1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm.h"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.inline.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.inline.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_windows.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/decoder.hpp"
  71 #include "utilities/defaultStream.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/vmError.hpp"
  75 
  76 #ifdef _DEBUG
  77 #include <crtdbg.h>
  78 #endif
  79 
  80 
  81 #include <windows.h>
  82 #include <sys/types.h>
  83 #include <sys/stat.h>
  84 #include <sys/timeb.h>
  85 #include <objidl.h>
  86 #include <shlobj.h>
  87 
  88 #include <malloc.h>
  89 #include <signal.h>
  90 #include <direct.h>
  91 #include <errno.h>
  92 #include <fcntl.h>
  93 #include <io.h>
  94 #include <process.h>              // For _beginthreadex(), _endthreadex()
  95 #include <imagehlp.h>             // For os::dll_address_to_function_name
  96 // for enumerating dll libraries
  97 #include <vdmdbg.h>
  98 
  99 // for timer info max values which include all bits
 100 #define ALL_64_BITS CONST64(-1)
 101 
 102 // For DLL loading/load error detection
 103 // Values of PE COFF
 104 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 105 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 106 
 107 static HANDLE main_process;
 108 static HANDLE main_thread;
 109 static int    main_thread_id;
 110 
 111 static FILETIME process_creation_time;
 112 static FILETIME process_exit_time;
 113 static FILETIME process_user_time;
 114 static FILETIME process_kernel_time;
 115 
 116 #ifdef _M_IA64
 117   #define __CPU__ ia64
 118 #else
 119   #ifdef _M_AMD64
 120     #define __CPU__ amd64
 121   #else
 122     #define __CPU__ i486
 123   #endif
 124 #endif
 125 
 126 // save DLL module handle, used by GetModuleFileName
 127 
 128 HINSTANCE vm_lib_handle;
 129 
 130 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 131   switch (reason) {
 132   case DLL_PROCESS_ATTACH:
 133     vm_lib_handle = hinst;
 134     if (ForceTimeHighResolution) {
 135       timeBeginPeriod(1L);
 136     }
 137     break;
 138   case DLL_PROCESS_DETACH:
 139     if (ForceTimeHighResolution) {
 140       timeEndPeriod(1L);
 141     }
 142     break;
 143   default:
 144     break;
 145   }
 146   return true;
 147 }
 148 
 149 static inline double fileTimeAsDouble(FILETIME* time) {
 150   const double high  = (double) ((unsigned int) ~0);
 151   const double split = 10000000.0;
 152   double result = (time->dwLowDateTime / split) +
 153                    time->dwHighDateTime * (high/split);
 154   return result;
 155 }
 156 
 157 // Implementation of os
 158 
 159 bool os::unsetenv(const char* name) {
 160   assert(name != NULL, "Null pointer");
 161   return (SetEnvironmentVariable(name, NULL) == TRUE);
 162 }
 163 
 164 // No setuid programs under Windows.
 165 bool os::have_special_privileges() {
 166   return false;
 167 }
 168 
 169 
 170 // This method is  a periodic task to check for misbehaving JNI applications
 171 // under CheckJNI, we can add any periodic checks here.
 172 // For Windows at the moment does nothing
 173 void os::run_periodic_checks() {
 174   return;
 175 }
 176 
 177 // previous UnhandledExceptionFilter, if there is one
 178 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 179 
 180 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 181 
 182 void os::init_system_properties_values() {
 183   // sysclasspath, java_home, dll_dir
 184   {
 185     char *home_path;
 186     char *dll_path;
 187     char *pslash;
 188     char *bin = "\\bin";
 189     char home_dir[MAX_PATH + 1];
 190     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 191 
 192     if (alt_home_dir != NULL)  {
 193       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 194       home_dir[MAX_PATH] = '\0';
 195     } else {
 196       os::jvm_path(home_dir, sizeof(home_dir));
 197       // Found the full path to jvm.dll.
 198       // Now cut the path to <java_home>/jre if we can.
 199       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 200       pslash = strrchr(home_dir, '\\');
 201       if (pslash != NULL) {
 202         *pslash = '\0';                   // get rid of \{client|server}
 203         pslash = strrchr(home_dir, '\\');
 204         if (pslash != NULL) {
 205           *pslash = '\0';                 // get rid of \bin
 206         }
 207       }
 208     }
 209 
 210     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 211     if (home_path == NULL) {
 212       return;
 213     }
 214     strcpy(home_path, home_dir);
 215     Arguments::set_java_home(home_path);
 216     FREE_C_HEAP_ARRAY(char, home_path);
 217 
 218     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 219                                 mtInternal);
 220     if (dll_path == NULL) {
 221       return;
 222     }
 223     strcpy(dll_path, home_dir);
 224     strcat(dll_path, bin);
 225     Arguments::set_dll_dir(dll_path);
 226     FREE_C_HEAP_ARRAY(char, dll_path);
 227 
 228     if (!set_boot_path('\\', ';')) {
 229       return;
 230     }
 231   }
 232 
 233 // library_path
 234 #define EXT_DIR "\\lib\\ext"
 235 #define BIN_DIR "\\bin"
 236 #define PACKAGE_DIR "\\Sun\\Java"
 237   {
 238     // Win32 library search order (See the documentation for LoadLibrary):
 239     //
 240     // 1. The directory from which application is loaded.
 241     // 2. The system wide Java Extensions directory (Java only)
 242     // 3. System directory (GetSystemDirectory)
 243     // 4. Windows directory (GetWindowsDirectory)
 244     // 5. The PATH environment variable
 245     // 6. The current directory
 246 
 247     char *library_path;
 248     char tmp[MAX_PATH];
 249     char *path_str = ::getenv("PATH");
 250 
 251     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 252                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 253 
 254     library_path[0] = '\0';
 255 
 256     GetModuleFileName(NULL, tmp, sizeof(tmp));
 257     *(strrchr(tmp, '\\')) = '\0';
 258     strcat(library_path, tmp);
 259 
 260     GetWindowsDirectory(tmp, sizeof(tmp));
 261     strcat(library_path, ";");
 262     strcat(library_path, tmp);
 263     strcat(library_path, PACKAGE_DIR BIN_DIR);
 264 
 265     GetSystemDirectory(tmp, sizeof(tmp));
 266     strcat(library_path, ";");
 267     strcat(library_path, tmp);
 268 
 269     GetWindowsDirectory(tmp, sizeof(tmp));
 270     strcat(library_path, ";");
 271     strcat(library_path, tmp);
 272 
 273     if (path_str) {
 274       strcat(library_path, ";");
 275       strcat(library_path, path_str);
 276     }
 277 
 278     strcat(library_path, ";.");
 279 
 280     Arguments::set_library_path(library_path);
 281     FREE_C_HEAP_ARRAY(char, library_path);
 282   }
 283 
 284   // Default extensions directory
 285   {
 286     char path[MAX_PATH];
 287     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 288     GetWindowsDirectory(path, MAX_PATH);
 289     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 290             path, PACKAGE_DIR, EXT_DIR);
 291     Arguments::set_ext_dirs(buf);
 292   }
 293   #undef EXT_DIR
 294   #undef BIN_DIR
 295   #undef PACKAGE_DIR
 296 
 297 #ifndef _WIN64
 298   // set our UnhandledExceptionFilter and save any previous one
 299   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 300 #endif
 301 
 302   // Done
 303   return;
 304 }
 305 
 306 void os::breakpoint() {
 307   DebugBreak();
 308 }
 309 
 310 // Invoked from the BREAKPOINT Macro
 311 extern "C" void breakpoint() {
 312   os::breakpoint();
 313 }
 314 
 315 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 316 // So far, this method is only used by Native Memory Tracking, which is
 317 // only supported on Windows XP or later.
 318 //
 319 int os::get_native_stack(address* stack, int frames, int toSkip) {
 320 #ifdef _NMT_NOINLINE_
 321   toSkip++;
 322 #endif
 323   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
 324                                                        (PVOID*)stack, NULL);
 325   for (int index = captured; index < frames; index ++) {
 326     stack[index] = NULL;
 327   }
 328   return captured;
 329 }
 330 
 331 
 332 // os::current_stack_base()
 333 //
 334 //   Returns the base of the stack, which is the stack's
 335 //   starting address.  This function must be called
 336 //   while running on the stack of the thread being queried.
 337 
 338 address os::current_stack_base() {
 339   MEMORY_BASIC_INFORMATION minfo;
 340   address stack_bottom;
 341   size_t stack_size;
 342 
 343   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 344   stack_bottom =  (address)minfo.AllocationBase;
 345   stack_size = minfo.RegionSize;
 346 
 347   // Add up the sizes of all the regions with the same
 348   // AllocationBase.
 349   while (1) {
 350     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 351     if (stack_bottom == (address)minfo.AllocationBase) {
 352       stack_size += minfo.RegionSize;
 353     } else {
 354       break;
 355     }
 356   }
 357 
 358 #ifdef _M_IA64
 359   // IA64 has memory and register stacks
 360   //
 361   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 362   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 363   // growing downwards, 2MB summed up)
 364   //
 365   // ...
 366   // ------- top of stack (high address) -----
 367   // |
 368   // |      1MB
 369   // |      Backing Store (Register Stack)
 370   // |
 371   // |         / \
 372   // |          |
 373   // |          |
 374   // |          |
 375   // ------------------------ stack base -----
 376   // |      1MB
 377   // |      Memory Stack
 378   // |
 379   // |          |
 380   // |          |
 381   // |          |
 382   // |         \ /
 383   // |
 384   // ----- bottom of stack (low address) -----
 385   // ...
 386 
 387   stack_size = stack_size / 2;
 388 #endif
 389   return stack_bottom + stack_size;
 390 }
 391 
 392 size_t os::current_stack_size() {
 393   size_t sz;
 394   MEMORY_BASIC_INFORMATION minfo;
 395   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 396   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 397   return sz;
 398 }
 399 
 400 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 401   const struct tm* time_struct_ptr = localtime(clock);
 402   if (time_struct_ptr != NULL) {
 403     *res = *time_struct_ptr;
 404     return res;
 405   }
 406   return NULL;
 407 }
 408 
 409 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 410 
 411 // Thread start routine for all new Java threads
 412 static unsigned __stdcall java_start(Thread* thread) {
 413   // Try to randomize the cache line index of hot stack frames.
 414   // This helps when threads of the same stack traces evict each other's
 415   // cache lines. The threads can be either from the same JVM instance, or
 416   // from different JVM instances. The benefit is especially true for
 417   // processors with hyperthreading technology.
 418   static int counter = 0;
 419   int pid = os::current_process_id();
 420   _alloca(((pid ^ counter++) & 7) * 128);
 421 
 422   OSThread* osthr = thread->osthread();
 423   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 424 
 425   if (UseNUMA) {
 426     int lgrp_id = os::numa_get_group_id();
 427     if (lgrp_id != -1) {
 428       thread->set_lgrp_id(lgrp_id);
 429     }
 430   }
 431 
 432   // Diagnostic code to investigate JDK-6573254
 433   int res = 30115;  // non-java thread
 434   if (thread->is_Java_thread()) {
 435     res = 20115;    // java thread
 436   }
 437 
 438   // Install a win32 structured exception handler around every thread created
 439   // by VM, so VM can generate error dump when an exception occurred in non-
 440   // Java thread (e.g. VM thread).
 441   __try {
 442     thread->run();
 443   } __except(topLevelExceptionFilter(
 444                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 445     // Nothing to do.
 446   }
 447 
 448   // One less thread is executing
 449   // When the VMThread gets here, the main thread may have already exited
 450   // which frees the CodeHeap containing the Atomic::add code
 451   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 452     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 453   }
 454 
 455   // Thread must not return from exit_process_or_thread(), but if it does,
 456   // let it proceed to exit normally
 457   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 458 }
 459 
 460 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 461                                   int thread_id) {
 462   // Allocate the OSThread object
 463   OSThread* osthread = new OSThread(NULL, NULL);
 464   if (osthread == NULL) return NULL;
 465 
 466   // Initialize support for Java interrupts
 467   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 468   if (interrupt_event == NULL) {
 469     delete osthread;
 470     return NULL;
 471   }
 472   osthread->set_interrupt_event(interrupt_event);
 473 
 474   // Store info on the Win32 thread into the OSThread
 475   osthread->set_thread_handle(thread_handle);
 476   osthread->set_thread_id(thread_id);
 477 
 478   if (UseNUMA) {
 479     int lgrp_id = os::numa_get_group_id();
 480     if (lgrp_id != -1) {
 481       thread->set_lgrp_id(lgrp_id);
 482     }
 483   }
 484 
 485   // Initial thread state is INITIALIZED, not SUSPENDED
 486   osthread->set_state(INITIALIZED);
 487 
 488   return osthread;
 489 }
 490 
 491 
 492 bool os::create_attached_thread(JavaThread* thread) {
 493 #ifdef ASSERT
 494   thread->verify_not_published();
 495 #endif
 496   HANDLE thread_h;
 497   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 498                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 499     fatal("DuplicateHandle failed\n");
 500   }
 501   OSThread* osthread = create_os_thread(thread, thread_h,
 502                                         (int)current_thread_id());
 503   if (osthread == NULL) {
 504     return false;
 505   }
 506 
 507   // Initial thread state is RUNNABLE
 508   osthread->set_state(RUNNABLE);
 509 
 510   thread->set_osthread(osthread);
 511   return true;
 512 }
 513 
 514 bool os::create_main_thread(JavaThread* thread) {
 515 #ifdef ASSERT
 516   thread->verify_not_published();
 517 #endif
 518   if (_starting_thread == NULL) {
 519     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 520     if (_starting_thread == NULL) {
 521       return false;
 522     }
 523   }
 524 
 525   // The primordial thread is runnable from the start)
 526   _starting_thread->set_state(RUNNABLE);
 527 
 528   thread->set_osthread(_starting_thread);
 529   return true;
 530 }
 531 
 532 // Allocate and initialize a new OSThread
 533 bool os::create_thread(Thread* thread, ThreadType thr_type,
 534                        size_t stack_size) {
 535   unsigned thread_id;
 536 
 537   // Allocate the OSThread object
 538   OSThread* osthread = new OSThread(NULL, NULL);
 539   if (osthread == NULL) {
 540     return false;
 541   }
 542 
 543   // Initialize support for Java interrupts
 544   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 545   if (interrupt_event == NULL) {
 546     delete osthread;
 547     return NULL;
 548   }
 549   osthread->set_interrupt_event(interrupt_event);
 550   osthread->set_interrupted(false);
 551 
 552   thread->set_osthread(osthread);
 553 
 554   if (stack_size == 0) {
 555     switch (thr_type) {
 556     case os::java_thread:
 557       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 558       if (JavaThread::stack_size_at_create() > 0) {
 559         stack_size = JavaThread::stack_size_at_create();
 560       }
 561       break;
 562     case os::compiler_thread:
 563       if (CompilerThreadStackSize > 0) {
 564         stack_size = (size_t)(CompilerThreadStackSize * K);
 565         break;
 566       } // else fall through:
 567         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 568     case os::vm_thread:
 569     case os::pgc_thread:
 570     case os::cgc_thread:
 571     case os::watcher_thread:
 572       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 573       break;
 574     }
 575   }
 576 
 577   // Create the Win32 thread
 578   //
 579   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 580   // does not specify stack size. Instead, it specifies the size of
 581   // initially committed space. The stack size is determined by
 582   // PE header in the executable. If the committed "stack_size" is larger
 583   // than default value in the PE header, the stack is rounded up to the
 584   // nearest multiple of 1MB. For example if the launcher has default
 585   // stack size of 320k, specifying any size less than 320k does not
 586   // affect the actual stack size at all, it only affects the initial
 587   // commitment. On the other hand, specifying 'stack_size' larger than
 588   // default value may cause significant increase in memory usage, because
 589   // not only the stack space will be rounded up to MB, but also the
 590   // entire space is committed upfront.
 591   //
 592   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 593   // for CreateThread() that can treat 'stack_size' as stack size. However we
 594   // are not supposed to call CreateThread() directly according to MSDN
 595   // document because JVM uses C runtime library. The good news is that the
 596   // flag appears to work with _beginthredex() as well.
 597 
 598 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 599   #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 600 #endif
 601 
 602   HANDLE thread_handle =
 603     (HANDLE)_beginthreadex(NULL,
 604                            (unsigned)stack_size,
 605                            (unsigned (__stdcall *)(void*)) java_start,
 606                            thread,
 607                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 608                            &thread_id);
 609   if (thread_handle == NULL) {
 610     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 611     // without the flag.
 612     thread_handle =
 613       (HANDLE)_beginthreadex(NULL,
 614                              (unsigned)stack_size,
 615                              (unsigned (__stdcall *)(void*)) java_start,
 616                              thread,
 617                              CREATE_SUSPENDED,
 618                              &thread_id);
 619   }
 620   if (thread_handle == NULL) {
 621     // Need to clean up stuff we've allocated so far
 622     CloseHandle(osthread->interrupt_event());
 623     thread->set_osthread(NULL);
 624     delete osthread;
 625     return NULL;
 626   }
 627 
 628   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 629 
 630   // Store info on the Win32 thread into the OSThread
 631   osthread->set_thread_handle(thread_handle);
 632   osthread->set_thread_id(thread_id);
 633 
 634   // Initial thread state is INITIALIZED, not SUSPENDED
 635   osthread->set_state(INITIALIZED);
 636 
 637   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 638   return true;
 639 }
 640 
 641 
 642 // Free Win32 resources related to the OSThread
 643 void os::free_thread(OSThread* osthread) {
 644   assert(osthread != NULL, "osthread not set");
 645   CloseHandle(osthread->thread_handle());
 646   CloseHandle(osthread->interrupt_event());
 647   delete osthread;
 648 }
 649 
 650 static jlong first_filetime;
 651 static jlong initial_performance_count;
 652 static jlong performance_frequency;
 653 
 654 
 655 jlong as_long(LARGE_INTEGER x) {
 656   jlong result = 0; // initialization to avoid warning
 657   set_high(&result, x.HighPart);
 658   set_low(&result, x.LowPart);
 659   return result;
 660 }
 661 
 662 
 663 jlong os::elapsed_counter() {
 664   LARGE_INTEGER count;
 665   if (win32::_has_performance_count) {
 666     QueryPerformanceCounter(&count);
 667     return as_long(count) - initial_performance_count;
 668   } else {
 669     FILETIME wt;
 670     GetSystemTimeAsFileTime(&wt);
 671     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 672   }
 673 }
 674 
 675 
 676 jlong os::elapsed_frequency() {
 677   if (win32::_has_performance_count) {
 678     return performance_frequency;
 679   } else {
 680     // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 681     return 10000000;
 682   }
 683 }
 684 
 685 
 686 julong os::available_memory() {
 687   return win32::available_memory();
 688 }
 689 
 690 julong os::win32::available_memory() {
 691   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 692   // value if total memory is larger than 4GB
 693   MEMORYSTATUSEX ms;
 694   ms.dwLength = sizeof(ms);
 695   GlobalMemoryStatusEx(&ms);
 696 
 697   return (julong)ms.ullAvailPhys;
 698 }
 699 
 700 julong os::physical_memory() {
 701   return win32::physical_memory();
 702 }
 703 
 704 bool os::has_allocatable_memory_limit(julong* limit) {
 705   MEMORYSTATUSEX ms;
 706   ms.dwLength = sizeof(ms);
 707   GlobalMemoryStatusEx(&ms);
 708 #ifdef _LP64
 709   *limit = (julong)ms.ullAvailVirtual;
 710   return true;
 711 #else
 712   // Limit to 1400m because of the 2gb address space wall
 713   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 714   return true;
 715 #endif
 716 }
 717 
 718 // VC6 lacks DWORD_PTR
 719 #if _MSC_VER < 1300
 720 typedef UINT_PTR DWORD_PTR;
 721 #endif
 722 
 723 int os::active_processor_count() {
 724   DWORD_PTR lpProcessAffinityMask = 0;
 725   DWORD_PTR lpSystemAffinityMask = 0;
 726   int proc_count = processor_count();
 727   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 728       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 729     // Nof active processors is number of bits in process affinity mask
 730     int bitcount = 0;
 731     while (lpProcessAffinityMask != 0) {
 732       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 733       bitcount++;
 734     }
 735     return bitcount;
 736   } else {
 737     return proc_count;
 738   }
 739 }
 740 
 741 void os::set_native_thread_name(const char *name) {
 742 
 743   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 744   //
 745   // Note that unfortunately this only works if the process
 746   // is already attached to a debugger; debugger must observe
 747   // the exception below to show the correct name.
 748 
 749   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 750   struct {
 751     DWORD dwType;     // must be 0x1000
 752     LPCSTR szName;    // pointer to name (in user addr space)
 753     DWORD dwThreadID; // thread ID (-1=caller thread)
 754     DWORD dwFlags;    // reserved for future use, must be zero
 755   } info;
 756 
 757   info.dwType = 0x1000;
 758   info.szName = name;
 759   info.dwThreadID = -1;
 760   info.dwFlags = 0;
 761 
 762   __try {
 763     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 764   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 765 }
 766 
 767 bool os::distribute_processes(uint length, uint* distribution) {
 768   // Not yet implemented.
 769   return false;
 770 }
 771 
 772 bool os::bind_to_processor(uint processor_id) {
 773   // Not yet implemented.
 774   return false;
 775 }
 776 
 777 void os::win32::initialize_performance_counter() {
 778   LARGE_INTEGER count;
 779   if (QueryPerformanceFrequency(&count)) {
 780     win32::_has_performance_count = 1;
 781     performance_frequency = as_long(count);
 782     QueryPerformanceCounter(&count);
 783     initial_performance_count = as_long(count);
 784   } else {
 785     win32::_has_performance_count = 0;
 786     FILETIME wt;
 787     GetSystemTimeAsFileTime(&wt);
 788     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 789   }
 790 }
 791 
 792 
 793 double os::elapsedTime() {
 794   return (double) elapsed_counter() / (double) elapsed_frequency();
 795 }
 796 
 797 
 798 // Windows format:
 799 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 800 // Java format:
 801 //   Java standards require the number of milliseconds since 1/1/1970
 802 
 803 // Constant offset - calculated using offset()
 804 static jlong  _offset   = 116444736000000000;
 805 // Fake time counter for reproducible results when debugging
 806 static jlong  fake_time = 0;
 807 
 808 #ifdef ASSERT
 809 // Just to be safe, recalculate the offset in debug mode
 810 static jlong _calculated_offset = 0;
 811 static int   _has_calculated_offset = 0;
 812 
 813 jlong offset() {
 814   if (_has_calculated_offset) return _calculated_offset;
 815   SYSTEMTIME java_origin;
 816   java_origin.wYear          = 1970;
 817   java_origin.wMonth         = 1;
 818   java_origin.wDayOfWeek     = 0; // ignored
 819   java_origin.wDay           = 1;
 820   java_origin.wHour          = 0;
 821   java_origin.wMinute        = 0;
 822   java_origin.wSecond        = 0;
 823   java_origin.wMilliseconds  = 0;
 824   FILETIME jot;
 825   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 826     fatal("Error = %d\nWindows error", GetLastError());
 827   }
 828   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 829   _has_calculated_offset = 1;
 830   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 831   return _calculated_offset;
 832 }
 833 #else
 834 jlong offset() {
 835   return _offset;
 836 }
 837 #endif
 838 
 839 jlong windows_to_java_time(FILETIME wt) {
 840   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 841   return (a - offset()) / 10000;
 842 }
 843 
 844 // Returns time ticks in (10th of micro seconds)
 845 jlong windows_to_time_ticks(FILETIME wt) {
 846   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 847   return (a - offset());
 848 }
 849 
 850 FILETIME java_to_windows_time(jlong l) {
 851   jlong a = (l * 10000) + offset();
 852   FILETIME result;
 853   result.dwHighDateTime = high(a);
 854   result.dwLowDateTime  = low(a);
 855   return result;
 856 }
 857 
 858 bool os::supports_vtime() { return true; }
 859 bool os::enable_vtime() { return false; }
 860 bool os::vtime_enabled() { return false; }
 861 
 862 double os::elapsedVTime() {
 863   FILETIME created;
 864   FILETIME exited;
 865   FILETIME kernel;
 866   FILETIME user;
 867   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 868     // the resolution of windows_to_java_time() should be sufficient (ms)
 869     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 870   } else {
 871     return elapsedTime();
 872   }
 873 }
 874 
 875 jlong os::javaTimeMillis() {
 876   if (UseFakeTimers) {
 877     return fake_time++;
 878   } else {
 879     FILETIME wt;
 880     GetSystemTimeAsFileTime(&wt);
 881     return windows_to_java_time(wt);
 882   }
 883 }
 884 
 885 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 886   FILETIME wt;
 887   GetSystemTimeAsFileTime(&wt);
 888   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 889   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 890   seconds = secs;
 891   nanos = jlong(ticks - (secs*10000000)) * 100;
 892 }
 893 
 894 jlong os::javaTimeNanos() {
 895   if (!win32::_has_performance_count) {
 896     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 897   } else {
 898     LARGE_INTEGER current_count;
 899     QueryPerformanceCounter(&current_count);
 900     double current = as_long(current_count);
 901     double freq = performance_frequency;
 902     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 903     return time;
 904   }
 905 }
 906 
 907 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 908   if (!win32::_has_performance_count) {
 909     // javaTimeMillis() doesn't have much percision,
 910     // but it is not going to wrap -- so all 64 bits
 911     info_ptr->max_value = ALL_64_BITS;
 912 
 913     // this is a wall clock timer, so may skip
 914     info_ptr->may_skip_backward = true;
 915     info_ptr->may_skip_forward = true;
 916   } else {
 917     jlong freq = performance_frequency;
 918     if (freq < NANOSECS_PER_SEC) {
 919       // the performance counter is 64 bits and we will
 920       // be multiplying it -- so no wrap in 64 bits
 921       info_ptr->max_value = ALL_64_BITS;
 922     } else if (freq > NANOSECS_PER_SEC) {
 923       // use the max value the counter can reach to
 924       // determine the max value which could be returned
 925       julong max_counter = (julong)ALL_64_BITS;
 926       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 927     } else {
 928       // the performance counter is 64 bits and we will
 929       // be using it directly -- so no wrap in 64 bits
 930       info_ptr->max_value = ALL_64_BITS;
 931     }
 932 
 933     // using a counter, so no skipping
 934     info_ptr->may_skip_backward = false;
 935     info_ptr->may_skip_forward = false;
 936   }
 937   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 938 }
 939 
 940 char* os::local_time_string(char *buf, size_t buflen) {
 941   SYSTEMTIME st;
 942   GetLocalTime(&st);
 943   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 944                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 945   return buf;
 946 }
 947 
 948 bool os::getTimesSecs(double* process_real_time,
 949                       double* process_user_time,
 950                       double* process_system_time) {
 951   HANDLE h_process = GetCurrentProcess();
 952   FILETIME create_time, exit_time, kernel_time, user_time;
 953   BOOL result = GetProcessTimes(h_process,
 954                                 &create_time,
 955                                 &exit_time,
 956                                 &kernel_time,
 957                                 &user_time);
 958   if (result != 0) {
 959     FILETIME wt;
 960     GetSystemTimeAsFileTime(&wt);
 961     jlong rtc_millis = windows_to_java_time(wt);
 962     jlong user_millis = windows_to_java_time(user_time);
 963     jlong system_millis = windows_to_java_time(kernel_time);
 964     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 965     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 966     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 967     return true;
 968   } else {
 969     return false;
 970   }
 971 }
 972 
 973 void os::shutdown() {
 974   // allow PerfMemory to attempt cleanup of any persistent resources
 975   perfMemory_exit();
 976 
 977   // flush buffered output, finish log files
 978   ostream_abort();
 979 
 980   // Check for abort hook
 981   abort_hook_t abort_hook = Arguments::abort_hook();
 982   if (abort_hook != NULL) {
 983     abort_hook();
 984   }
 985 }
 986 
 987 
 988 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 989                                          PMINIDUMP_EXCEPTION_INFORMATION,
 990                                          PMINIDUMP_USER_STREAM_INFORMATION,
 991                                          PMINIDUMP_CALLBACK_INFORMATION);
 992 
 993 static HANDLE dumpFile = NULL;
 994 
 995 // Check if dump file can be created.
 996 void os::check_dump_limit(char* buffer, size_t buffsz) {
 997   bool status = true;
 998   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
 999     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1000     status = false;
1001   }
1002 
1003 #ifndef ASSERT
1004   if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
1005     jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
1006     status = false;
1007   }
1008 #endif
1009 
1010   if (status) {
1011     const char* cwd = get_current_directory(NULL, 0);
1012     int pid = current_process_id();
1013     if (cwd != NULL) {
1014       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1015     } else {
1016       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1017     }
1018 
1019     if (dumpFile == NULL &&
1020        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1021                  == INVALID_HANDLE_VALUE) {
1022       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1023       status = false;
1024     }
1025   }
1026   VMError::record_coredump_status(buffer, status);
1027 }
1028 
1029 void os::abort(bool dump_core, void* siginfo, void* context) {
1030   HINSTANCE dbghelp;
1031   EXCEPTION_POINTERS ep;
1032   MINIDUMP_EXCEPTION_INFORMATION mei;
1033   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1034 
1035   HANDLE hProcess = GetCurrentProcess();
1036   DWORD processId = GetCurrentProcessId();
1037   MINIDUMP_TYPE dumpType;
1038 
1039   shutdown();
1040   if (!dump_core || dumpFile == NULL) {
1041     if (dumpFile != NULL) {
1042       CloseHandle(dumpFile);
1043     }
1044     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1045   }
1046 
1047   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1048 
1049   if (dbghelp == NULL) {
1050     jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1051     CloseHandle(dumpFile);
1052     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1053   }
1054 
1055   _MiniDumpWriteDump =
1056       CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1057                                     PMINIDUMP_EXCEPTION_INFORMATION,
1058                                     PMINIDUMP_USER_STREAM_INFORMATION,
1059                                     PMINIDUMP_CALLBACK_INFORMATION),
1060                                     GetProcAddress(dbghelp,
1061                                     "MiniDumpWriteDump"));
1062 
1063   if (_MiniDumpWriteDump == NULL) {
1064     jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1065     CloseHandle(dumpFile);
1066     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1067   }
1068 
1069   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1070 
1071   // Older versions of dbghelp.h do not contain all the dumptypes we want, dbghelp.h with
1072   // API_VERSION_NUMBER 11 or higher contains the ones we want though
1073 #if API_VERSION_NUMBER >= 11
1074   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1075                              MiniDumpWithUnloadedModules);
1076 #endif
1077 
1078   if (siginfo != NULL && context != NULL) {
1079     ep.ContextRecord = (PCONTEXT) context;
1080     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1081 
1082     mei.ThreadId = GetCurrentThreadId();
1083     mei.ExceptionPointers = &ep;
1084     pmei = &mei;
1085   } else {
1086     pmei = NULL;
1087   }
1088 
1089   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1090   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1091   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1092       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1093     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1094   }
1095   CloseHandle(dumpFile);
1096   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1097 }
1098 
1099 // Die immediately, no exit hook, no abort hook, no cleanup.
1100 void os::die() {
1101   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1102 }
1103 
1104 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1105 //  * dirent_md.c       1.15 00/02/02
1106 //
1107 // The declarations for DIR and struct dirent are in jvm_win32.h.
1108 
1109 // Caller must have already run dirname through JVM_NativePath, which removes
1110 // duplicate slashes and converts all instances of '/' into '\\'.
1111 
1112 DIR * os::opendir(const char *dirname) {
1113   assert(dirname != NULL, "just checking");   // hotspot change
1114   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1115   DWORD fattr;                                // hotspot change
1116   char alt_dirname[4] = { 0, 0, 0, 0 };
1117 
1118   if (dirp == 0) {
1119     errno = ENOMEM;
1120     return 0;
1121   }
1122 
1123   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1124   // as a directory in FindFirstFile().  We detect this case here and
1125   // prepend the current drive name.
1126   //
1127   if (dirname[1] == '\0' && dirname[0] == '\\') {
1128     alt_dirname[0] = _getdrive() + 'A' - 1;
1129     alt_dirname[1] = ':';
1130     alt_dirname[2] = '\\';
1131     alt_dirname[3] = '\0';
1132     dirname = alt_dirname;
1133   }
1134 
1135   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1136   if (dirp->path == 0) {
1137     free(dirp);
1138     errno = ENOMEM;
1139     return 0;
1140   }
1141   strcpy(dirp->path, dirname);
1142 
1143   fattr = GetFileAttributes(dirp->path);
1144   if (fattr == 0xffffffff) {
1145     free(dirp->path);
1146     free(dirp);
1147     errno = ENOENT;
1148     return 0;
1149   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1150     free(dirp->path);
1151     free(dirp);
1152     errno = ENOTDIR;
1153     return 0;
1154   }
1155 
1156   // Append "*.*", or possibly "\\*.*", to path
1157   if (dirp->path[1] == ':' &&
1158       (dirp->path[2] == '\0' ||
1159       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1160     // No '\\' needed for cases like "Z:" or "Z:\"
1161     strcat(dirp->path, "*.*");
1162   } else {
1163     strcat(dirp->path, "\\*.*");
1164   }
1165 
1166   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1167   if (dirp->handle == INVALID_HANDLE_VALUE) {
1168     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1169       free(dirp->path);
1170       free(dirp);
1171       errno = EACCES;
1172       return 0;
1173     }
1174   }
1175   return dirp;
1176 }
1177 
1178 // parameter dbuf unused on Windows
1179 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1180   assert(dirp != NULL, "just checking");      // hotspot change
1181   if (dirp->handle == INVALID_HANDLE_VALUE) {
1182     return 0;
1183   }
1184 
1185   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1186 
1187   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1188     if (GetLastError() == ERROR_INVALID_HANDLE) {
1189       errno = EBADF;
1190       return 0;
1191     }
1192     FindClose(dirp->handle);
1193     dirp->handle = INVALID_HANDLE_VALUE;
1194   }
1195 
1196   return &dirp->dirent;
1197 }
1198 
1199 int os::closedir(DIR *dirp) {
1200   assert(dirp != NULL, "just checking");      // hotspot change
1201   if (dirp->handle != INVALID_HANDLE_VALUE) {
1202     if (!FindClose(dirp->handle)) {
1203       errno = EBADF;
1204       return -1;
1205     }
1206     dirp->handle = INVALID_HANDLE_VALUE;
1207   }
1208   free(dirp->path);
1209   free(dirp);
1210   return 0;
1211 }
1212 
1213 // This must be hard coded because it's the system's temporary
1214 // directory not the java application's temp directory, ala java.io.tmpdir.
1215 const char* os::get_temp_directory() {
1216   static char path_buf[MAX_PATH];
1217   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1218     return path_buf;
1219   } else {
1220     path_buf[0] = '\0';
1221     return path_buf;
1222   }
1223 }
1224 
1225 static bool file_exists(const char* filename) {
1226   if (filename == NULL || strlen(filename) == 0) {
1227     return false;
1228   }
1229   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1230 }
1231 
1232 bool os::dll_build_name(char *buffer, size_t buflen,
1233                         const char* pname, const char* fname) {
1234   bool retval = false;
1235   const size_t pnamelen = pname ? strlen(pname) : 0;
1236   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1237 
1238   // Return error on buffer overflow.
1239   if (pnamelen + strlen(fname) + 10 > buflen) {
1240     return retval;
1241   }
1242 
1243   if (pnamelen == 0) {
1244     jio_snprintf(buffer, buflen, "%s.dll", fname);
1245     retval = true;
1246   } else if (c == ':' || c == '\\') {
1247     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1248     retval = true;
1249   } else if (strchr(pname, *os::path_separator()) != NULL) {
1250     int n;
1251     char** pelements = split_path(pname, &n);
1252     if (pelements == NULL) {
1253       return false;
1254     }
1255     for (int i = 0; i < n; i++) {
1256       char* path = pelements[i];
1257       // Really shouldn't be NULL, but check can't hurt
1258       size_t plen = (path == NULL) ? 0 : strlen(path);
1259       if (plen == 0) {
1260         continue; // skip the empty path values
1261       }
1262       const char lastchar = path[plen - 1];
1263       if (lastchar == ':' || lastchar == '\\') {
1264         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1265       } else {
1266         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1267       }
1268       if (file_exists(buffer)) {
1269         retval = true;
1270         break;
1271       }
1272     }
1273     // release the storage
1274     for (int i = 0; i < n; i++) {
1275       if (pelements[i] != NULL) {
1276         FREE_C_HEAP_ARRAY(char, pelements[i]);
1277       }
1278     }
1279     if (pelements != NULL) {
1280       FREE_C_HEAP_ARRAY(char*, pelements);
1281     }
1282   } else {
1283     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1284     retval = true;
1285   }
1286   return retval;
1287 }
1288 
1289 // Needs to be in os specific directory because windows requires another
1290 // header file <direct.h>
1291 const char* os::get_current_directory(char *buf, size_t buflen) {
1292   int n = static_cast<int>(buflen);
1293   if (buflen > INT_MAX)  n = INT_MAX;
1294   return _getcwd(buf, n);
1295 }
1296 
1297 //-----------------------------------------------------------
1298 // Helper functions for fatal error handler
1299 #ifdef _WIN64
1300 // Helper routine which returns true if address in
1301 // within the NTDLL address space.
1302 //
1303 static bool _addr_in_ntdll(address addr) {
1304   HMODULE hmod;
1305   MODULEINFO minfo;
1306 
1307   hmod = GetModuleHandle("NTDLL.DLL");
1308   if (hmod == NULL) return false;
1309   if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1310                                           &minfo, sizeof(MODULEINFO))) {
1311     return false;
1312   }
1313 
1314   if ((addr >= minfo.lpBaseOfDll) &&
1315       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1316     return true;
1317   } else {
1318     return false;
1319   }
1320 }
1321 #endif
1322 
1323 struct _modinfo {
1324   address addr;
1325   char*   full_path;   // point to a char buffer
1326   int     buflen;      // size of the buffer
1327   address base_addr;
1328 };
1329 
1330 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1331                                   address top_address, void * param) {
1332   struct _modinfo *pmod = (struct _modinfo *)param;
1333   if (!pmod) return -1;
1334 
1335   if (base_addr   <= pmod->addr &&
1336       top_address > pmod->addr) {
1337     // if a buffer is provided, copy path name to the buffer
1338     if (pmod->full_path) {
1339       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1340     }
1341     pmod->base_addr = base_addr;
1342     return 1;
1343   }
1344   return 0;
1345 }
1346 
1347 bool os::dll_address_to_library_name(address addr, char* buf,
1348                                      int buflen, int* offset) {
1349   // buf is not optional, but offset is optional
1350   assert(buf != NULL, "sanity check");
1351 
1352 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1353 //       return the full path to the DLL file, sometimes it returns path
1354 //       to the corresponding PDB file (debug info); sometimes it only
1355 //       returns partial path, which makes life painful.
1356 
1357   struct _modinfo mi;
1358   mi.addr      = addr;
1359   mi.full_path = buf;
1360   mi.buflen    = buflen;
1361   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1362     // buf already contains path name
1363     if (offset) *offset = addr - mi.base_addr;
1364     return true;
1365   }
1366 
1367   buf[0] = '\0';
1368   if (offset) *offset = -1;
1369   return false;
1370 }
1371 
1372 bool os::dll_address_to_function_name(address addr, char *buf,
1373                                       int buflen, int *offset,
1374                                       bool demangle) {
1375   // buf is not optional, but offset is optional
1376   assert(buf != NULL, "sanity check");
1377 
1378   if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1379     return true;
1380   }
1381   if (offset != NULL)  *offset  = -1;
1382   buf[0] = '\0';
1383   return false;
1384 }
1385 
1386 // save the start and end address of jvm.dll into param[0] and param[1]
1387 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1388                            address top_address, void * param) {
1389   if (!param) return -1;
1390 
1391   if (base_addr   <= (address)_locate_jvm_dll &&
1392       top_address > (address)_locate_jvm_dll) {
1393     ((address*)param)[0] = base_addr;
1394     ((address*)param)[1] = top_address;
1395     return 1;
1396   }
1397   return 0;
1398 }
1399 
1400 address vm_lib_location[2];    // start and end address of jvm.dll
1401 
1402 // check if addr is inside jvm.dll
1403 bool os::address_is_in_vm(address addr) {
1404   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1405     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1406       assert(false, "Can't find jvm module.");
1407       return false;
1408     }
1409   }
1410 
1411   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1412 }
1413 
1414 // print module info; param is outputStream*
1415 static int _print_module(const char* fname, address base_address,
1416                          address top_address, void* param) {
1417   if (!param) return -1;
1418 
1419   outputStream* st = (outputStream*)param;
1420 
1421   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1422   return 0;
1423 }
1424 
1425 // Loads .dll/.so and
1426 // in case of error it checks if .dll/.so was built for the
1427 // same architecture as Hotspot is running on
1428 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1429   void * result = LoadLibrary(name);
1430   if (result != NULL) {
1431     return result;
1432   }
1433 
1434   DWORD errcode = GetLastError();
1435   if (errcode == ERROR_MOD_NOT_FOUND) {
1436     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1437     ebuf[ebuflen - 1] = '\0';
1438     return NULL;
1439   }
1440 
1441   // Parsing dll below
1442   // If we can read dll-info and find that dll was built
1443   // for an architecture other than Hotspot is running in
1444   // - then print to buffer "DLL was built for a different architecture"
1445   // else call os::lasterror to obtain system error message
1446 
1447   // Read system error message into ebuf
1448   // It may or may not be overwritten below (in the for loop and just above)
1449   lasterror(ebuf, (size_t) ebuflen);
1450   ebuf[ebuflen - 1] = '\0';
1451   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1452   if (fd < 0) {
1453     return NULL;
1454   }
1455 
1456   uint32_t signature_offset;
1457   uint16_t lib_arch = 0;
1458   bool failed_to_get_lib_arch =
1459     ( // Go to position 3c in the dll
1460      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1461      ||
1462      // Read location of signature
1463      (sizeof(signature_offset) !=
1464      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1465      ||
1466      // Go to COFF File Header in dll
1467      // that is located after "signature" (4 bytes long)
1468      (os::seek_to_file_offset(fd,
1469      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1470      ||
1471      // Read field that contains code of architecture
1472      // that dll was built for
1473      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1474     );
1475 
1476   ::close(fd);
1477   if (failed_to_get_lib_arch) {
1478     // file i/o error - report os::lasterror(...) msg
1479     return NULL;
1480   }
1481 
1482   typedef struct {
1483     uint16_t arch_code;
1484     char* arch_name;
1485   } arch_t;
1486 
1487   static const arch_t arch_array[] = {
1488     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1489     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1490     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1491   };
1492 #if   (defined _M_IA64)
1493   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1494 #elif (defined _M_AMD64)
1495   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1496 #elif (defined _M_IX86)
1497   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1498 #else
1499   #error Method os::dll_load requires that one of following \
1500          is defined :_M_IA64,_M_AMD64 or _M_IX86
1501 #endif
1502 
1503 
1504   // Obtain a string for printf operation
1505   // lib_arch_str shall contain string what platform this .dll was built for
1506   // running_arch_str shall string contain what platform Hotspot was built for
1507   char *running_arch_str = NULL, *lib_arch_str = NULL;
1508   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1509     if (lib_arch == arch_array[i].arch_code) {
1510       lib_arch_str = arch_array[i].arch_name;
1511     }
1512     if (running_arch == arch_array[i].arch_code) {
1513       running_arch_str = arch_array[i].arch_name;
1514     }
1515   }
1516 
1517   assert(running_arch_str,
1518          "Didn't find running architecture code in arch_array");
1519 
1520   // If the architecture is right
1521   // but some other error took place - report os::lasterror(...) msg
1522   if (lib_arch == running_arch) {
1523     return NULL;
1524   }
1525 
1526   if (lib_arch_str != NULL) {
1527     ::_snprintf(ebuf, ebuflen - 1,
1528                 "Can't load %s-bit .dll on a %s-bit platform",
1529                 lib_arch_str, running_arch_str);
1530   } else {
1531     // don't know what architecture this dll was build for
1532     ::_snprintf(ebuf, ebuflen - 1,
1533                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1534                 lib_arch, running_arch_str);
1535   }
1536 
1537   return NULL;
1538 }
1539 
1540 void os::print_dll_info(outputStream *st) {
1541   st->print_cr("Dynamic libraries:");
1542   get_loaded_modules_info(_print_module, (void *)st);
1543 }
1544 
1545 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1546   HANDLE   hProcess;
1547 
1548 # define MAX_NUM_MODULES 128
1549   HMODULE     modules[MAX_NUM_MODULES];
1550   static char filename[MAX_PATH];
1551   int         result = 0;
1552 
1553   if (!os::PSApiDll::PSApiAvailable()) {
1554     return 0;
1555   }
1556 
1557   int pid = os::current_process_id();
1558   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1559                          FALSE, pid);
1560   if (hProcess == NULL) return 0;
1561 
1562   DWORD size_needed;
1563   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1564                                         sizeof(modules), &size_needed)) {
1565     CloseHandle(hProcess);
1566     return 0;
1567   }
1568 
1569   // number of modules that are currently loaded
1570   int num_modules = size_needed / sizeof(HMODULE);
1571 
1572   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1573     // Get Full pathname:
1574     if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1575                                            filename, sizeof(filename))) {
1576       filename[0] = '\0';
1577     }
1578 
1579     MODULEINFO modinfo;
1580     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1581                                             &modinfo, sizeof(modinfo))) {
1582       modinfo.lpBaseOfDll = NULL;
1583       modinfo.SizeOfImage = 0;
1584     }
1585 
1586     // Invoke callback function
1587     result = callback(filename, (address)modinfo.lpBaseOfDll,
1588                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1589     if (result) break;
1590   }
1591 
1592   CloseHandle(hProcess);
1593   return result;
1594 }
1595 
1596 #ifndef PRODUCT
1597 bool os::get_host_name(char* buf, size_t buflen) {
1598   DWORD size = (DWORD)buflen;
1599   return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1600 }
1601 #endif // PRODUCT
1602 
1603 void os::get_summary_os_info(char* buf, size_t buflen) {
1604   stringStream sst(buf, buflen);
1605   os::win32::print_windows_version(&sst);
1606   // chop off newline character
1607   char* nl = strchr(buf, '\n');
1608   if (nl != NULL) *nl = '\0';
1609 }
1610 
1611 void os::print_os_info_brief(outputStream* st) {
1612   os::print_os_info(st);
1613 }
1614 
1615 void os::print_os_info(outputStream* st) {
1616 #ifdef ASSERT
1617   char buffer[1024];
1618   st->print("HostName: ");
1619   if (get_host_name(buffer, sizeof(buffer))) {
1620     st->print("%s ", buffer);
1621   } else {
1622     st->print("N/A ");
1623   }
1624 #endif
1625   st->print("OS:");
1626   os::win32::print_windows_version(st);
1627 }
1628 
1629 void os::win32::print_windows_version(outputStream* st) {
1630   OSVERSIONINFOEX osvi;
1631   VS_FIXEDFILEINFO *file_info;
1632   TCHAR kernel32_path[MAX_PATH];
1633   UINT len, ret;
1634 
1635   // Use the GetVersionEx information to see if we're on a server or
1636   // workstation edition of Windows. Starting with Windows 8.1 we can't
1637   // trust the OS version information returned by this API.
1638   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1639   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1640   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1641     st->print_cr("Call to GetVersionEx failed");
1642     return;
1643   }
1644   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1645 
1646   // Get the full path to \Windows\System32\kernel32.dll and use that for
1647   // determining what version of Windows we're running on.
1648   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1649   ret = GetSystemDirectory(kernel32_path, len);
1650   if (ret == 0 || ret > len) {
1651     st->print_cr("Call to GetSystemDirectory failed");
1652     return;
1653   }
1654   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1655 
1656   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1657   if (version_size == 0) {
1658     st->print_cr("Call to GetFileVersionInfoSize failed");
1659     return;
1660   }
1661 
1662   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1663   if (version_info == NULL) {
1664     st->print_cr("Failed to allocate version_info");
1665     return;
1666   }
1667 
1668   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1669     os::free(version_info);
1670     st->print_cr("Call to GetFileVersionInfo failed");
1671     return;
1672   }
1673 
1674   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1675     os::free(version_info);
1676     st->print_cr("Call to VerQueryValue failed");
1677     return;
1678   }
1679 
1680   int major_version = HIWORD(file_info->dwProductVersionMS);
1681   int minor_version = LOWORD(file_info->dwProductVersionMS);
1682   int build_number = HIWORD(file_info->dwProductVersionLS);
1683   int build_minor = LOWORD(file_info->dwProductVersionLS);
1684   int os_vers = major_version * 1000 + minor_version;
1685   os::free(version_info);
1686 
1687   st->print(" Windows ");
1688   switch (os_vers) {
1689 
1690   case 6000:
1691     if (is_workstation) {
1692       st->print("Vista");
1693     } else {
1694       st->print("Server 2008");
1695     }
1696     break;
1697 
1698   case 6001:
1699     if (is_workstation) {
1700       st->print("7");
1701     } else {
1702       st->print("Server 2008 R2");
1703     }
1704     break;
1705 
1706   case 6002:
1707     if (is_workstation) {
1708       st->print("8");
1709     } else {
1710       st->print("Server 2012");
1711     }
1712     break;
1713 
1714   case 6003:
1715     if (is_workstation) {
1716       st->print("8.1");
1717     } else {
1718       st->print("Server 2012 R2");
1719     }
1720     break;
1721 
1722   case 10000:
1723     if (is_workstation) {
1724       st->print("10");
1725     } else {
1726       // The server version name of Windows 10 is not known at this time
1727       st->print("%d.%d", major_version, minor_version);
1728     }
1729     break;
1730 
1731   default:
1732     // Unrecognized windows, print out its major and minor versions
1733     st->print("%d.%d", major_version, minor_version);
1734     break;
1735   }
1736 
1737   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1738   // find out whether we are running on 64 bit processor or not
1739   SYSTEM_INFO si;
1740   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1741   os::Kernel32Dll::GetNativeSystemInfo(&si);
1742   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1743     st->print(" , 64 bit");
1744   }
1745 
1746   st->print(" Build %d", build_number);
1747   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1748   st->cr();
1749 }
1750 
1751 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1752   // Nothing to do for now.
1753 }
1754 
1755 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1756   HKEY key;
1757   DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1758                "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1759   if (status == ERROR_SUCCESS) {
1760     DWORD size = (DWORD)buflen;
1761     status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1762     if (status != ERROR_SUCCESS) {
1763         strncpy(buf, "## __CPU__", buflen);
1764     }
1765     RegCloseKey(key);
1766   } else {
1767     // Put generic cpu info to return
1768     strncpy(buf, "## __CPU__", buflen);
1769   }
1770 }
1771 
1772 void os::print_memory_info(outputStream* st) {
1773   st->print("Memory:");
1774   st->print(" %dk page", os::vm_page_size()>>10);
1775 
1776   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1777   // value if total memory is larger than 4GB
1778   MEMORYSTATUSEX ms;
1779   ms.dwLength = sizeof(ms);
1780   GlobalMemoryStatusEx(&ms);
1781 
1782   st->print(", physical %uk", os::physical_memory() >> 10);
1783   st->print("(%uk free)", os::available_memory() >> 10);
1784 
1785   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1786   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1787   st->cr();
1788 }
1789 
1790 void os::print_siginfo(outputStream *st, void *siginfo) {
1791   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1792   st->print("siginfo:");
1793   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1794 
1795   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1796       er->NumberParameters >= 2) {
1797     switch (er->ExceptionInformation[0]) {
1798     case 0: st->print(", reading address"); break;
1799     case 1: st->print(", writing address"); break;
1800     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1801                        er->ExceptionInformation[0]);
1802     }
1803     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1804   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1805              er->NumberParameters >= 2 && UseSharedSpaces) {
1806     FileMapInfo* mapinfo = FileMapInfo::current_info();
1807     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1808       st->print("\n\nError accessing class data sharing archive."       \
1809                 " Mapped file inaccessible during execution, "          \
1810                 " possible disk/network problem.");
1811     }
1812   } else {
1813     int num = er->NumberParameters;
1814     if (num > 0) {
1815       st->print(", ExceptionInformation=");
1816       for (int i = 0; i < num; i++) {
1817         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1818       }
1819     }
1820   }
1821   st->cr();
1822 }
1823 
1824 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1825   // do nothing
1826 }
1827 
1828 static char saved_jvm_path[MAX_PATH] = {0};
1829 
1830 // Find the full path to the current module, jvm.dll
1831 void os::jvm_path(char *buf, jint buflen) {
1832   // Error checking.
1833   if (buflen < MAX_PATH) {
1834     assert(false, "must use a large-enough buffer");
1835     buf[0] = '\0';
1836     return;
1837   }
1838   // Lazy resolve the path to current module.
1839   if (saved_jvm_path[0] != 0) {
1840     strcpy(buf, saved_jvm_path);
1841     return;
1842   }
1843 
1844   buf[0] = '\0';
1845   if (Arguments::sun_java_launcher_is_altjvm()) {
1846     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1847     // for a JAVA_HOME environment variable and fix up the path so it
1848     // looks like jvm.dll is installed there (append a fake suffix
1849     // hotspot/jvm.dll).
1850     char* java_home_var = ::getenv("JAVA_HOME");
1851     if (java_home_var != NULL && java_home_var[0] != 0 &&
1852         strlen(java_home_var) < (size_t)buflen) {
1853       strncpy(buf, java_home_var, buflen);
1854 
1855       // determine if this is a legacy image or modules image
1856       // modules image doesn't have "jre" subdirectory
1857       size_t len = strlen(buf);
1858       char* jrebin_p = buf + len;
1859       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1860       if (0 != _access(buf, 0)) {
1861         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1862       }
1863       len = strlen(buf);
1864       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1865     }
1866   }
1867 
1868   if (buf[0] == '\0') {
1869     GetModuleFileName(vm_lib_handle, buf, buflen);
1870   }
1871   strncpy(saved_jvm_path, buf, MAX_PATH);
1872   saved_jvm_path[MAX_PATH - 1] = '\0';
1873 }
1874 
1875 
1876 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1877 #ifndef _WIN64
1878   st->print("_");
1879 #endif
1880 }
1881 
1882 
1883 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1884 #ifndef _WIN64
1885   st->print("@%d", args_size  * sizeof(int));
1886 #endif
1887 }
1888 
1889 // This method is a copy of JDK's sysGetLastErrorString
1890 // from src/windows/hpi/src/system_md.c
1891 
1892 size_t os::lasterror(char* buf, size_t len) {
1893   DWORD errval;
1894 
1895   if ((errval = GetLastError()) != 0) {
1896     // DOS error
1897     size_t n = (size_t)FormatMessage(
1898                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1899                                      NULL,
1900                                      errval,
1901                                      0,
1902                                      buf,
1903                                      (DWORD)len,
1904                                      NULL);
1905     if (n > 3) {
1906       // Drop final '.', CR, LF
1907       if (buf[n - 1] == '\n') n--;
1908       if (buf[n - 1] == '\r') n--;
1909       if (buf[n - 1] == '.') n--;
1910       buf[n] = '\0';
1911     }
1912     return n;
1913   }
1914 
1915   if (errno != 0) {
1916     // C runtime error that has no corresponding DOS error code
1917     const char* s = strerror(errno);
1918     size_t n = strlen(s);
1919     if (n >= len) n = len - 1;
1920     strncpy(buf, s, n);
1921     buf[n] = '\0';
1922     return n;
1923   }
1924 
1925   return 0;
1926 }
1927 
1928 int os::get_last_error() {
1929   DWORD error = GetLastError();
1930   if (error == 0) {
1931     error = errno;
1932   }
1933   return (int)error;
1934 }
1935 
1936 WindowsSemaphore::WindowsSemaphore(uint value) {
1937   _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1938 
1939   guarantee(_semaphore != NULL, "CreateSemaphore failed with error code: %lu", GetLastError());
1940 }
1941 
1942 WindowsSemaphore::~WindowsSemaphore() {
1943   ::CloseHandle(_semaphore);
1944 }
1945 
1946 void WindowsSemaphore::signal(uint count) {
1947   if (count > 0) {
1948     BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1949 
1950     assert(ret != 0, "ReleaseSemaphore failed with error code: %lu", GetLastError());
1951   }
1952 }
1953 
1954 void WindowsSemaphore::wait() {
1955   DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1956   assert(ret != WAIT_FAILED,   "WaitForSingleObject failed with error code: %lu", GetLastError());
1957   assert(ret == WAIT_OBJECT_0, "WaitForSingleObject failed with return value: %lu", ret);
1958 }
1959 
1960 // sun.misc.Signal
1961 // NOTE that this is a workaround for an apparent kernel bug where if
1962 // a signal handler for SIGBREAK is installed then that signal handler
1963 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1964 // See bug 4416763.
1965 static void (*sigbreakHandler)(int) = NULL;
1966 
1967 static void UserHandler(int sig, void *siginfo, void *context) {
1968   os::signal_notify(sig);
1969   // We need to reinstate the signal handler each time...
1970   os::signal(sig, (void*)UserHandler);
1971 }
1972 
1973 void* os::user_handler() {
1974   return (void*) UserHandler;
1975 }
1976 
1977 void* os::signal(int signal_number, void* handler) {
1978   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1979     void (*oldHandler)(int) = sigbreakHandler;
1980     sigbreakHandler = (void (*)(int)) handler;
1981     return (void*) oldHandler;
1982   } else {
1983     return (void*)::signal(signal_number, (void (*)(int))handler);
1984   }
1985 }
1986 
1987 void os::signal_raise(int signal_number) {
1988   raise(signal_number);
1989 }
1990 
1991 // The Win32 C runtime library maps all console control events other than ^C
1992 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1993 // logoff, and shutdown events.  We therefore install our own console handler
1994 // that raises SIGTERM for the latter cases.
1995 //
1996 static BOOL WINAPI consoleHandler(DWORD event) {
1997   switch (event) {
1998   case CTRL_C_EVENT:
1999     if (is_error_reported()) {
2000       // Ctrl-C is pressed during error reporting, likely because the error
2001       // handler fails to abort. Let VM die immediately.
2002       os::die();
2003     }
2004 
2005     os::signal_raise(SIGINT);
2006     return TRUE;
2007     break;
2008   case CTRL_BREAK_EVENT:
2009     if (sigbreakHandler != NULL) {
2010       (*sigbreakHandler)(SIGBREAK);
2011     }
2012     return TRUE;
2013     break;
2014   case CTRL_LOGOFF_EVENT: {
2015     // Don't terminate JVM if it is running in a non-interactive session,
2016     // such as a service process.
2017     USEROBJECTFLAGS flags;
2018     HANDLE handle = GetProcessWindowStation();
2019     if (handle != NULL &&
2020         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
2021         sizeof(USEROBJECTFLAGS), NULL)) {
2022       // If it is a non-interactive session, let next handler to deal
2023       // with it.
2024       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
2025         return FALSE;
2026       }
2027     }
2028   }
2029   case CTRL_CLOSE_EVENT:
2030   case CTRL_SHUTDOWN_EVENT:
2031     os::signal_raise(SIGTERM);
2032     return TRUE;
2033     break;
2034   default:
2035     break;
2036   }
2037   return FALSE;
2038 }
2039 
2040 // The following code is moved from os.cpp for making this
2041 // code platform specific, which it is by its very nature.
2042 
2043 // Return maximum OS signal used + 1 for internal use only
2044 // Used as exit signal for signal_thread
2045 int os::sigexitnum_pd() {
2046   return NSIG;
2047 }
2048 
2049 // a counter for each possible signal value, including signal_thread exit signal
2050 static volatile jint pending_signals[NSIG+1] = { 0 };
2051 static HANDLE sig_sem = NULL;
2052 
2053 void os::signal_init_pd() {
2054   // Initialize signal structures
2055   memset((void*)pending_signals, 0, sizeof(pending_signals));
2056 
2057   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2058 
2059   // Programs embedding the VM do not want it to attempt to receive
2060   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2061   // shutdown hooks mechanism introduced in 1.3.  For example, when
2062   // the VM is run as part of a Windows NT service (i.e., a servlet
2063   // engine in a web server), the correct behavior is for any console
2064   // control handler to return FALSE, not TRUE, because the OS's
2065   // "final" handler for such events allows the process to continue if
2066   // it is a service (while terminating it if it is not a service).
2067   // To make this behavior uniform and the mechanism simpler, we
2068   // completely disable the VM's usage of these console events if -Xrs
2069   // (=ReduceSignalUsage) is specified.  This means, for example, that
2070   // the CTRL-BREAK thread dump mechanism is also disabled in this
2071   // case.  See bugs 4323062, 4345157, and related bugs.
2072 
2073   if (!ReduceSignalUsage) {
2074     // Add a CTRL-C handler
2075     SetConsoleCtrlHandler(consoleHandler, TRUE);
2076   }
2077 }
2078 
2079 void os::signal_notify(int signal_number) {
2080   BOOL ret;
2081   if (sig_sem != NULL) {
2082     Atomic::inc(&pending_signals[signal_number]);
2083     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2084     assert(ret != 0, "ReleaseSemaphore() failed");
2085   }
2086 }
2087 
2088 static int check_pending_signals(bool wait_for_signal) {
2089   DWORD ret;
2090   while (true) {
2091     for (int i = 0; i < NSIG + 1; i++) {
2092       jint n = pending_signals[i];
2093       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2094         return i;
2095       }
2096     }
2097     if (!wait_for_signal) {
2098       return -1;
2099     }
2100 
2101     JavaThread *thread = JavaThread::current();
2102 
2103     ThreadBlockInVM tbivm(thread);
2104 
2105     bool threadIsSuspended;
2106     do {
2107       thread->set_suspend_equivalent();
2108       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2109       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2110       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2111 
2112       // were we externally suspended while we were waiting?
2113       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2114       if (threadIsSuspended) {
2115         // The semaphore has been incremented, but while we were waiting
2116         // another thread suspended us. We don't want to continue running
2117         // while suspended because that would surprise the thread that
2118         // suspended us.
2119         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2120         assert(ret != 0, "ReleaseSemaphore() failed");
2121 
2122         thread->java_suspend_self();
2123       }
2124     } while (threadIsSuspended);
2125   }
2126 }
2127 
2128 int os::signal_lookup() {
2129   return check_pending_signals(false);
2130 }
2131 
2132 int os::signal_wait() {
2133   return check_pending_signals(true);
2134 }
2135 
2136 // Implicit OS exception handling
2137 
2138 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2139                       address handler) {
2140   JavaThread* thread = JavaThread::current();
2141   // Save pc in thread
2142 #ifdef _M_IA64
2143   // Do not blow up if no thread info available.
2144   if (thread) {
2145     // Saving PRECISE pc (with slot information) in thread.
2146     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2147     // Convert precise PC into "Unix" format
2148     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2149     thread->set_saved_exception_pc((address)precise_pc);
2150   }
2151   // Set pc to handler
2152   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2153   // Clear out psr.ri (= Restart Instruction) in order to continue
2154   // at the beginning of the target bundle.
2155   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2156   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2157 #else
2158   #ifdef _M_AMD64
2159   // Do not blow up if no thread info available.
2160   if (thread) {
2161     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2162   }
2163   // Set pc to handler
2164   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2165   #else
2166   // Do not blow up if no thread info available.
2167   if (thread) {
2168     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2169   }
2170   // Set pc to handler
2171   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2172   #endif
2173 #endif
2174 
2175   // Continue the execution
2176   return EXCEPTION_CONTINUE_EXECUTION;
2177 }
2178 
2179 
2180 // Used for PostMortemDump
2181 extern "C" void safepoints();
2182 extern "C" void find(int x);
2183 extern "C" void events();
2184 
2185 // According to Windows API documentation, an illegal instruction sequence should generate
2186 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2187 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2188 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2189 
2190 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2191 
2192 // From "Execution Protection in the Windows Operating System" draft 0.35
2193 // Once a system header becomes available, the "real" define should be
2194 // included or copied here.
2195 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2196 
2197 // Handle NAT Bit consumption on IA64.
2198 #ifdef _M_IA64
2199   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2200 #endif
2201 
2202 // Windows Vista/2008 heap corruption check
2203 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2204 
2205 #define def_excpt(val) #val, val
2206 
2207 struct siglabel {
2208   char *name;
2209   int   number;
2210 };
2211 
2212 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2213 // C++ compiler contain this error code. Because this is a compiler-generated
2214 // error, the code is not listed in the Win32 API header files.
2215 // The code is actually a cryptic mnemonic device, with the initial "E"
2216 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2217 // ASCII values of "msc".
2218 
2219 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2220 
2221 
2222 struct siglabel exceptlabels[] = {
2223     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2224     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2225     def_excpt(EXCEPTION_BREAKPOINT),
2226     def_excpt(EXCEPTION_SINGLE_STEP),
2227     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2228     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2229     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2230     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2231     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2232     def_excpt(EXCEPTION_FLT_OVERFLOW),
2233     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2234     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2235     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2236     def_excpt(EXCEPTION_INT_OVERFLOW),
2237     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2238     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2239     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2240     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2241     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2242     def_excpt(EXCEPTION_STACK_OVERFLOW),
2243     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2244     def_excpt(EXCEPTION_GUARD_PAGE),
2245     def_excpt(EXCEPTION_INVALID_HANDLE),
2246     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2247     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2248 #ifdef _M_IA64
2249     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2250 #endif
2251     NULL, 0
2252 };
2253 
2254 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2255   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2256     if (exceptlabels[i].number == exception_code) {
2257       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2258       return buf;
2259     }
2260   }
2261 
2262   return NULL;
2263 }
2264 
2265 //-----------------------------------------------------------------------------
2266 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2267   // handle exception caused by idiv; should only happen for -MinInt/-1
2268   // (division by zero is handled explicitly)
2269 #ifdef _M_IA64
2270   assert(0, "Fix Handle_IDiv_Exception");
2271 #else
2272   #ifdef  _M_AMD64
2273   PCONTEXT ctx = exceptionInfo->ContextRecord;
2274   address pc = (address)ctx->Rip;
2275   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
2276   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2277   if (pc[0] == 0xF7) {
2278     // set correct result values and continue after idiv instruction
2279     ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
2280   } else {
2281     ctx->Rip = (DWORD64)pc + 3;        // REX idiv reg, reg  is 3 bytes
2282   }
2283   // Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
2284   // this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
2285   // idiv opcode (0xF7).
2286   ctx->Rdx = (DWORD)0;             // remainder
2287   // Continue the execution
2288   #else
2289   PCONTEXT ctx = exceptionInfo->ContextRecord;
2290   address pc = (address)ctx->Eip;
2291   assert(pc[0] == 0xF7, "not an idiv opcode");
2292   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2293   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2294   // set correct result values and continue after idiv instruction
2295   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2296   ctx->Eax = (DWORD)min_jint;      // result
2297   ctx->Edx = (DWORD)0;             // remainder
2298   // Continue the execution
2299   #endif
2300 #endif
2301   return EXCEPTION_CONTINUE_EXECUTION;
2302 }
2303 
2304 //-----------------------------------------------------------------------------
2305 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2306   PCONTEXT ctx = exceptionInfo->ContextRecord;
2307 #ifndef  _WIN64
2308   // handle exception caused by native method modifying control word
2309   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2310 
2311   switch (exception_code) {
2312   case EXCEPTION_FLT_DENORMAL_OPERAND:
2313   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2314   case EXCEPTION_FLT_INEXACT_RESULT:
2315   case EXCEPTION_FLT_INVALID_OPERATION:
2316   case EXCEPTION_FLT_OVERFLOW:
2317   case EXCEPTION_FLT_STACK_CHECK:
2318   case EXCEPTION_FLT_UNDERFLOW:
2319     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2320     if (fp_control_word != ctx->FloatSave.ControlWord) {
2321       // Restore FPCW and mask out FLT exceptions
2322       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2323       // Mask out pending FLT exceptions
2324       ctx->FloatSave.StatusWord &=  0xffffff00;
2325       return EXCEPTION_CONTINUE_EXECUTION;
2326     }
2327   }
2328 
2329   if (prev_uef_handler != NULL) {
2330     // We didn't handle this exception so pass it to the previous
2331     // UnhandledExceptionFilter.
2332     return (prev_uef_handler)(exceptionInfo);
2333   }
2334 #else // !_WIN64
2335   // On Windows, the mxcsr control bits are non-volatile across calls
2336   // See also CR 6192333
2337   //
2338   jint MxCsr = INITIAL_MXCSR;
2339   // we can't use StubRoutines::addr_mxcsr_std()
2340   // because in Win64 mxcsr is not saved there
2341   if (MxCsr != ctx->MxCsr) {
2342     ctx->MxCsr = MxCsr;
2343     return EXCEPTION_CONTINUE_EXECUTION;
2344   }
2345 #endif // !_WIN64
2346 
2347   return EXCEPTION_CONTINUE_SEARCH;
2348 }
2349 
2350 static inline void report_error(Thread* t, DWORD exception_code,
2351                                 address addr, void* siginfo, void* context) {
2352   VMError::report_and_die(t, exception_code, addr, siginfo, context);
2353 
2354   // If UseOsErrorReporting, this will return here and save the error file
2355   // somewhere where we can find it in the minidump.
2356 }
2357 
2358 bool os::win32::get_frame_at_stack_banging_point(JavaThread* thread,
2359         struct _EXCEPTION_POINTERS* exceptionInfo, address pc, frame* fr) {
2360   PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2361   address addr = (address) exceptionRecord->ExceptionInformation[1];
2362   if (Interpreter::contains(pc)) {
2363     *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2364     if (!fr->is_first_java_frame()) {
2365         assert(fr->safe_for_sender(thread), "Safety check");
2366       *fr = fr->java_sender();
2367     }
2368   } else {
2369     // more complex code with compiled code
2370     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
2371     CodeBlob* cb = CodeCache::find_blob(pc);
2372     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
2373       // Not sure where the pc points to, fallback to default 
2374       // stack overflow handling
2375       return false;
2376     } else {
2377       *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2378       // in compiled code, the stack banging is performed just after the return pc
2379       // has been pushed on the stack
2380       *fr = frame(fr->sp() + 1, fr->fp(), (address)*(fr->sp()));
2381       if (!fr->is_java_frame()) {
2382         assert(fr->safe_for_sender(thread), "Safety check");
2383         *fr = fr->java_sender();
2384       }
2385     }
2386   }
2387   assert(fr->is_java_frame(), "Safety check");
2388   return true;
2389 }
2390 
2391 //-----------------------------------------------------------------------------
2392 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2393   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2394   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2395 #ifdef _M_IA64
2396   // On Itanium, we need the "precise pc", which has the slot number coded
2397   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2398   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2399   // Convert the pc to "Unix format", which has the slot number coded
2400   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2401   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2402   // information is saved in the Unix format.
2403   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2404 #else
2405   #ifdef _M_AMD64
2406   address pc = (address) exceptionInfo->ContextRecord->Rip;
2407   #else
2408   address pc = (address) exceptionInfo->ContextRecord->Eip;
2409   #endif
2410 #endif
2411   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2412 
2413   // Handle SafeFetch32 and SafeFetchN exceptions.
2414   if (StubRoutines::is_safefetch_fault(pc)) {
2415     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2416   }
2417 
2418 #ifndef _WIN64
2419   // Execution protection violation - win32 running on AMD64 only
2420   // Handled first to avoid misdiagnosis as a "normal" access violation;
2421   // This is safe to do because we have a new/unique ExceptionInformation
2422   // code for this condition.
2423   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2424     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2425     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2426     address addr = (address) exceptionRecord->ExceptionInformation[1];
2427 
2428     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2429       int page_size = os::vm_page_size();
2430 
2431       // Make sure the pc and the faulting address are sane.
2432       //
2433       // If an instruction spans a page boundary, and the page containing
2434       // the beginning of the instruction is executable but the following
2435       // page is not, the pc and the faulting address might be slightly
2436       // different - we still want to unguard the 2nd page in this case.
2437       //
2438       // 15 bytes seems to be a (very) safe value for max instruction size.
2439       bool pc_is_near_addr =
2440         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2441       bool instr_spans_page_boundary =
2442         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2443                          (intptr_t) page_size) > 0);
2444 
2445       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2446         static volatile address last_addr =
2447           (address) os::non_memory_address_word();
2448 
2449         // In conservative mode, don't unguard unless the address is in the VM
2450         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2451             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2452 
2453           // Set memory to RWX and retry
2454           address page_start =
2455             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2456           bool res = os::protect_memory((char*) page_start, page_size,
2457                                         os::MEM_PROT_RWX);
2458 
2459           if (PrintMiscellaneous && Verbose) {
2460             char buf[256];
2461             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2462                          "at " INTPTR_FORMAT
2463                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2464                          page_start, (res ? "success" : strerror(errno)));
2465             tty->print_raw_cr(buf);
2466           }
2467 
2468           // Set last_addr so if we fault again at the same address, we don't
2469           // end up in an endless loop.
2470           //
2471           // There are two potential complications here.  Two threads trapping
2472           // at the same address at the same time could cause one of the
2473           // threads to think it already unguarded, and abort the VM.  Likely
2474           // very rare.
2475           //
2476           // The other race involves two threads alternately trapping at
2477           // different addresses and failing to unguard the page, resulting in
2478           // an endless loop.  This condition is probably even more unlikely
2479           // than the first.
2480           //
2481           // Although both cases could be avoided by using locks or thread
2482           // local last_addr, these solutions are unnecessary complication:
2483           // this handler is a best-effort safety net, not a complete solution.
2484           // It is disabled by default and should only be used as a workaround
2485           // in case we missed any no-execute-unsafe VM code.
2486 
2487           last_addr = addr;
2488 
2489           return EXCEPTION_CONTINUE_EXECUTION;
2490         }
2491       }
2492 
2493       // Last unguard failed or not unguarding
2494       tty->print_raw_cr("Execution protection violation");
2495       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2496                    exceptionInfo->ContextRecord);
2497       return EXCEPTION_CONTINUE_SEARCH;
2498     }
2499   }
2500 #endif // _WIN64
2501 
2502   // Check to see if we caught the safepoint code in the
2503   // process of write protecting the memory serialization page.
2504   // It write enables the page immediately after protecting it
2505   // so just return.
2506   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2507     JavaThread* thread = (JavaThread*) t;
2508     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2509     address addr = (address) exceptionRecord->ExceptionInformation[1];
2510     if (os::is_memory_serialize_page(thread, addr)) {
2511       // Block current thread until the memory serialize page permission restored.
2512       os::block_on_serialize_page_trap();
2513       return EXCEPTION_CONTINUE_EXECUTION;
2514     }
2515   }
2516 
2517   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2518       VM_Version::is_cpuinfo_segv_addr(pc)) {
2519     // Verify that OS save/restore AVX registers.
2520     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2521   }
2522 
2523   if (t != NULL && t->is_Java_thread()) {
2524     JavaThread* thread = (JavaThread*) t;
2525     bool in_java = thread->thread_state() == _thread_in_Java;
2526 
2527     // Handle potential stack overflows up front.
2528     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2529       if (os::uses_stack_guard_pages()) {
2530 #ifdef _M_IA64
2531         // Use guard page for register stack.
2532         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2533         address addr = (address) exceptionRecord->ExceptionInformation[1];
2534         // Check for a register stack overflow on Itanium
2535         if (thread->addr_inside_register_stack_red_zone(addr)) {
2536           // Fatal red zone violation happens if the Java program
2537           // catches a StackOverflow error and does so much processing
2538           // that it runs beyond the unprotected yellow guard zone. As
2539           // a result, we are out of here.
2540           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2541         } else if(thread->addr_inside_register_stack(addr)) {
2542           // Disable the yellow zone which sets the state that
2543           // we've got a stack overflow problem.
2544           if (thread->stack_yellow_zone_enabled()) {
2545             thread->disable_stack_yellow_zone();
2546           }
2547           // Give us some room to process the exception.
2548           thread->disable_register_stack_guard();
2549           // Tracing with +Verbose.
2550           if (Verbose) {
2551             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2552             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2553             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2554             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2555                           thread->register_stack_base(),
2556                           thread->register_stack_base() + thread->stack_size());
2557           }
2558 
2559           // Reguard the permanent register stack red zone just to be sure.
2560           // We saw Windows silently disabling this without telling us.
2561           thread->enable_register_stack_red_zone();
2562 
2563           return Handle_Exception(exceptionInfo,
2564                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2565         }
2566 #endif
2567         if (thread->stack_guards_enabled()) {
2568           if (_thread_in_Java) {
2569             frame fr;
2570             PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2571             address addr = (address) exceptionRecord->ExceptionInformation[1];
2572             if (os::win32::get_frame_at_stack_banging_point(thread, exceptionInfo, pc, &fr)) {
2573               assert(fr.is_java_frame(), "Must be a Java frame");
2574               SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
2575             }
2576           }
2577           // Yellow zone violation.  The o/s has unprotected the first yellow
2578           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2579           // update the enabled status, even if the zone contains only one page.
2580           thread->disable_stack_yellow_zone();
2581           // If not in java code, return and hope for the best.
2582           return in_java
2583               ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2584               :  EXCEPTION_CONTINUE_EXECUTION;
2585         } else {
2586           // Fatal red zone violation.
2587           thread->disable_stack_red_zone();
2588           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2589           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2590                        exceptionInfo->ContextRecord);
2591           return EXCEPTION_CONTINUE_SEARCH;
2592         }
2593       } else if (in_java) {
2594         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2595         // a one-time-only guard page, which it has released to us.  The next
2596         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2597         return Handle_Exception(exceptionInfo,
2598                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2599       } else {
2600         // Can only return and hope for the best.  Further stack growth will
2601         // result in an ACCESS_VIOLATION.
2602         return EXCEPTION_CONTINUE_EXECUTION;
2603       }
2604     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2605       // Either stack overflow or null pointer exception.
2606       if (in_java) {
2607         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2608         address addr = (address) exceptionRecord->ExceptionInformation[1];
2609         address stack_end = thread->stack_base() - thread->stack_size();
2610         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2611           // Stack overflow.
2612           assert(!os::uses_stack_guard_pages(),
2613                  "should be caught by red zone code above.");
2614           return Handle_Exception(exceptionInfo,
2615                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2616         }
2617         // Check for safepoint polling and implicit null
2618         // We only expect null pointers in the stubs (vtable)
2619         // the rest are checked explicitly now.
2620         CodeBlob* cb = CodeCache::find_blob(pc);
2621         if (cb != NULL) {
2622           if (os::is_poll_address(addr)) {
2623             address stub = SharedRuntime::get_poll_stub(pc);
2624             return Handle_Exception(exceptionInfo, stub);
2625           }
2626         }
2627         {
2628 #ifdef _WIN64
2629           // If it's a legal stack address map the entire region in
2630           //
2631           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2632           address addr = (address) exceptionRecord->ExceptionInformation[1];
2633           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2634             addr = (address)((uintptr_t)addr &
2635                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2636             os::commit_memory((char *)addr, thread->stack_base() - addr,
2637                               !ExecMem);
2638             return EXCEPTION_CONTINUE_EXECUTION;
2639           } else
2640 #endif
2641           {
2642             // Null pointer exception.
2643 #ifdef _M_IA64
2644             // Process implicit null checks in compiled code. Note: Implicit null checks
2645             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2646             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2647               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2648               // Handle implicit null check in UEP method entry
2649               if (cb && (cb->is_frame_complete_at(pc) ||
2650                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2651                 if (Verbose) {
2652                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2653                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2654                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2655                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2656                                 *(bundle_start + 1), *bundle_start);
2657                 }
2658                 return Handle_Exception(exceptionInfo,
2659                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2660               }
2661             }
2662 
2663             // Implicit null checks were processed above.  Hence, we should not reach
2664             // here in the usual case => die!
2665             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2666             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2667                          exceptionInfo->ContextRecord);
2668             return EXCEPTION_CONTINUE_SEARCH;
2669 
2670 #else // !IA64
2671 
2672             // Windows 98 reports faulting addresses incorrectly
2673             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2674                 !os::win32::is_nt()) {
2675               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2676               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2677             }
2678             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2679                          exceptionInfo->ContextRecord);
2680             return EXCEPTION_CONTINUE_SEARCH;
2681 #endif
2682           }
2683         }
2684       }
2685 
2686 #ifdef _WIN64
2687       // Special care for fast JNI field accessors.
2688       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2689       // in and the heap gets shrunk before the field access.
2690       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2691         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2692         if (addr != (address)-1) {
2693           return Handle_Exception(exceptionInfo, addr);
2694         }
2695       }
2696 #endif
2697 
2698       // Stack overflow or null pointer exception in native code.
2699       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2700                    exceptionInfo->ContextRecord);
2701       return EXCEPTION_CONTINUE_SEARCH;
2702     } // /EXCEPTION_ACCESS_VIOLATION
2703     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2704 #if defined _M_IA64
2705     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2706               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2707       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2708 
2709       // Compiled method patched to be non entrant? Following conditions must apply:
2710       // 1. must be first instruction in bundle
2711       // 2. must be a break instruction with appropriate code
2712       if ((((uint64_t) pc & 0x0F) == 0) &&
2713           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2714         return Handle_Exception(exceptionInfo,
2715                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2716       }
2717     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2718 #endif
2719 
2720 
2721     if (in_java) {
2722       switch (exception_code) {
2723       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2724         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2725 
2726       case EXCEPTION_INT_OVERFLOW:
2727         return Handle_IDiv_Exception(exceptionInfo);
2728 
2729       } // switch
2730     }
2731     if (((thread->thread_state() == _thread_in_Java) ||
2732          (thread->thread_state() == _thread_in_native)) &&
2733          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2734       LONG result=Handle_FLT_Exception(exceptionInfo);
2735       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2736     }
2737   }
2738 
2739   if (exception_code != EXCEPTION_BREAKPOINT) {
2740     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2741                  exceptionInfo->ContextRecord);
2742   }
2743   return EXCEPTION_CONTINUE_SEARCH;
2744 }
2745 
2746 #ifndef _WIN64
2747 // Special care for fast JNI accessors.
2748 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2749 // the heap gets shrunk before the field access.
2750 // Need to install our own structured exception handler since native code may
2751 // install its own.
2752 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2753   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2754   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2755     address pc = (address) exceptionInfo->ContextRecord->Eip;
2756     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2757     if (addr != (address)-1) {
2758       return Handle_Exception(exceptionInfo, addr);
2759     }
2760   }
2761   return EXCEPTION_CONTINUE_SEARCH;
2762 }
2763 
2764 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2765   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2766                                                      jobject obj,           \
2767                                                      jfieldID fieldID) {    \
2768     __try {                                                                 \
2769       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2770                                                                  obj,       \
2771                                                                  fieldID);  \
2772     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2773                                               _exception_info())) {         \
2774     }                                                                       \
2775     return 0;                                                               \
2776   }
2777 
2778 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2779 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2780 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2781 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2782 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2783 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2784 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2785 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2786 
2787 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2788   switch (type) {
2789   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2790   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2791   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2792   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2793   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2794   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2795   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2796   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2797   default:        ShouldNotReachHere();
2798   }
2799   return (address)-1;
2800 }
2801 #endif
2802 
2803 // Virtual Memory
2804 
2805 int os::vm_page_size() { return os::win32::vm_page_size(); }
2806 int os::vm_allocation_granularity() {
2807   return os::win32::vm_allocation_granularity();
2808 }
2809 
2810 // Windows large page support is available on Windows 2003. In order to use
2811 // large page memory, the administrator must first assign additional privilege
2812 // to the user:
2813 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2814 //   + select Local Policies -> User Rights Assignment
2815 //   + double click "Lock pages in memory", add users and/or groups
2816 //   + reboot
2817 // Note the above steps are needed for administrator as well, as administrators
2818 // by default do not have the privilege to lock pages in memory.
2819 //
2820 // Note about Windows 2003: although the API supports committing large page
2821 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2822 // scenario, I found through experiment it only uses large page if the entire
2823 // memory region is reserved and committed in a single VirtualAlloc() call.
2824 // This makes Windows large page support more or less like Solaris ISM, in
2825 // that the entire heap must be committed upfront. This probably will change
2826 // in the future, if so the code below needs to be revisited.
2827 
2828 #ifndef MEM_LARGE_PAGES
2829   #define MEM_LARGE_PAGES 0x20000000
2830 #endif
2831 
2832 static HANDLE    _hProcess;
2833 static HANDLE    _hToken;
2834 
2835 // Container for NUMA node list info
2836 class NUMANodeListHolder {
2837  private:
2838   int *_numa_used_node_list;  // allocated below
2839   int _numa_used_node_count;
2840 
2841   void free_node_list() {
2842     if (_numa_used_node_list != NULL) {
2843       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2844     }
2845   }
2846 
2847  public:
2848   NUMANodeListHolder() {
2849     _numa_used_node_count = 0;
2850     _numa_used_node_list = NULL;
2851     // do rest of initialization in build routine (after function pointers are set up)
2852   }
2853 
2854   ~NUMANodeListHolder() {
2855     free_node_list();
2856   }
2857 
2858   bool build() {
2859     DWORD_PTR proc_aff_mask;
2860     DWORD_PTR sys_aff_mask;
2861     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2862     ULONG highest_node_number;
2863     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2864     free_node_list();
2865     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2866     for (unsigned int i = 0; i <= highest_node_number; i++) {
2867       ULONGLONG proc_mask_numa_node;
2868       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2869       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2870         _numa_used_node_list[_numa_used_node_count++] = i;
2871       }
2872     }
2873     return (_numa_used_node_count > 1);
2874   }
2875 
2876   int get_count() { return _numa_used_node_count; }
2877   int get_node_list_entry(int n) {
2878     // for indexes out of range, returns -1
2879     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2880   }
2881 
2882 } numa_node_list_holder;
2883 
2884 
2885 
2886 static size_t _large_page_size = 0;
2887 
2888 static bool resolve_functions_for_large_page_init() {
2889   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2890     os::Advapi32Dll::AdvapiAvailable();
2891 }
2892 
2893 static bool request_lock_memory_privilege() {
2894   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2895                           os::current_process_id());
2896 
2897   LUID luid;
2898   if (_hProcess != NULL &&
2899       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2900       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2901 
2902     TOKEN_PRIVILEGES tp;
2903     tp.PrivilegeCount = 1;
2904     tp.Privileges[0].Luid = luid;
2905     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2906 
2907     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2908     // privilege. Check GetLastError() too. See MSDN document.
2909     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2910         (GetLastError() == ERROR_SUCCESS)) {
2911       return true;
2912     }
2913   }
2914 
2915   return false;
2916 }
2917 
2918 static void cleanup_after_large_page_init() {
2919   if (_hProcess) CloseHandle(_hProcess);
2920   _hProcess = NULL;
2921   if (_hToken) CloseHandle(_hToken);
2922   _hToken = NULL;
2923 }
2924 
2925 static bool numa_interleaving_init() {
2926   bool success = false;
2927   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2928 
2929   // print a warning if UseNUMAInterleaving flag is specified on command line
2930   bool warn_on_failure = use_numa_interleaving_specified;
2931 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2932 
2933   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2934   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2935   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2936 
2937   if (os::Kernel32Dll::NumaCallsAvailable()) {
2938     if (numa_node_list_holder.build()) {
2939       if (PrintMiscellaneous && Verbose) {
2940         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2941         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2942           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2943         }
2944         tty->print("\n");
2945       }
2946       success = true;
2947     } else {
2948       WARN("Process does not cover multiple NUMA nodes.");
2949     }
2950   } else {
2951     WARN("NUMA Interleaving is not supported by the operating system.");
2952   }
2953   if (!success) {
2954     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2955   }
2956   return success;
2957 #undef WARN
2958 }
2959 
2960 // this routine is used whenever we need to reserve a contiguous VA range
2961 // but we need to make separate VirtualAlloc calls for each piece of the range
2962 // Reasons for doing this:
2963 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2964 //  * UseNUMAInterleaving requires a separate node for each piece
2965 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2966                                          DWORD prot,
2967                                          bool should_inject_error = false) {
2968   char * p_buf;
2969   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2970   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2971   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2972 
2973   // first reserve enough address space in advance since we want to be
2974   // able to break a single contiguous virtual address range into multiple
2975   // large page commits but WS2003 does not allow reserving large page space
2976   // so we just use 4K pages for reserve, this gives us a legal contiguous
2977   // address space. then we will deallocate that reservation, and re alloc
2978   // using large pages
2979   const size_t size_of_reserve = bytes + chunk_size;
2980   if (bytes > size_of_reserve) {
2981     // Overflowed.
2982     return NULL;
2983   }
2984   p_buf = (char *) VirtualAlloc(addr,
2985                                 size_of_reserve,  // size of Reserve
2986                                 MEM_RESERVE,
2987                                 PAGE_READWRITE);
2988   // If reservation failed, return NULL
2989   if (p_buf == NULL) return NULL;
2990   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2991   os::release_memory(p_buf, bytes + chunk_size);
2992 
2993   // we still need to round up to a page boundary (in case we are using large pages)
2994   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2995   // instead we handle this in the bytes_to_rq computation below
2996   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2997 
2998   // now go through and allocate one chunk at a time until all bytes are
2999   // allocated
3000   size_t  bytes_remaining = bytes;
3001   // An overflow of align_size_up() would have been caught above
3002   // in the calculation of size_of_reserve.
3003   char * next_alloc_addr = p_buf;
3004   HANDLE hProc = GetCurrentProcess();
3005 
3006 #ifdef ASSERT
3007   // Variable for the failure injection
3008   long ran_num = os::random();
3009   size_t fail_after = ran_num % bytes;
3010 #endif
3011 
3012   int count=0;
3013   while (bytes_remaining) {
3014     // select bytes_to_rq to get to the next chunk_size boundary
3015 
3016     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
3017     // Note allocate and commit
3018     char * p_new;
3019 
3020 #ifdef ASSERT
3021     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
3022 #else
3023     const bool inject_error_now = false;
3024 #endif
3025 
3026     if (inject_error_now) {
3027       p_new = NULL;
3028     } else {
3029       if (!UseNUMAInterleaving) {
3030         p_new = (char *) VirtualAlloc(next_alloc_addr,
3031                                       bytes_to_rq,
3032                                       flags,
3033                                       prot);
3034       } else {
3035         // get the next node to use from the used_node_list
3036         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
3037         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
3038         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
3039                                                             next_alloc_addr,
3040                                                             bytes_to_rq,
3041                                                             flags,
3042                                                             prot,
3043                                                             node);
3044       }
3045     }
3046 
3047     if (p_new == NULL) {
3048       // Free any allocated pages
3049       if (next_alloc_addr > p_buf) {
3050         // Some memory was committed so release it.
3051         size_t bytes_to_release = bytes - bytes_remaining;
3052         // NMT has yet to record any individual blocks, so it
3053         // need to create a dummy 'reserve' record to match
3054         // the release.
3055         MemTracker::record_virtual_memory_reserve((address)p_buf,
3056                                                   bytes_to_release, CALLER_PC);
3057         os::release_memory(p_buf, bytes_to_release);
3058       }
3059 #ifdef ASSERT
3060       if (should_inject_error) {
3061         if (TracePageSizes && Verbose) {
3062           tty->print_cr("Reserving pages individually failed.");
3063         }
3064       }
3065 #endif
3066       return NULL;
3067     }
3068 
3069     bytes_remaining -= bytes_to_rq;
3070     next_alloc_addr += bytes_to_rq;
3071     count++;
3072   }
3073   // Although the memory is allocated individually, it is returned as one.
3074   // NMT records it as one block.
3075   if ((flags & MEM_COMMIT) != 0) {
3076     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
3077   } else {
3078     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
3079   }
3080 
3081   // made it this far, success
3082   return p_buf;
3083 }
3084 
3085 
3086 
3087 void os::large_page_init() {
3088   if (!UseLargePages) return;
3089 
3090   // print a warning if any large page related flag is specified on command line
3091   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3092                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3093   bool success = false;
3094 
3095 #define WARN(msg) if (warn_on_failure) { warning(msg); }
3096   if (resolve_functions_for_large_page_init()) {
3097     if (request_lock_memory_privilege()) {
3098       size_t s = os::Kernel32Dll::GetLargePageMinimum();
3099       if (s) {
3100 #if defined(IA32) || defined(AMD64)
3101         if (s > 4*M || LargePageSizeInBytes > 4*M) {
3102           WARN("JVM cannot use large pages bigger than 4mb.");
3103         } else {
3104 #endif
3105           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3106             _large_page_size = LargePageSizeInBytes;
3107           } else {
3108             _large_page_size = s;
3109           }
3110           success = true;
3111 #if defined(IA32) || defined(AMD64)
3112         }
3113 #endif
3114       } else {
3115         WARN("Large page is not supported by the processor.");
3116       }
3117     } else {
3118       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3119     }
3120   } else {
3121     WARN("Large page is not supported by the operating system.");
3122   }
3123 #undef WARN
3124 
3125   const size_t default_page_size = (size_t) vm_page_size();
3126   if (success && _large_page_size > default_page_size) {
3127     _page_sizes[0] = _large_page_size;
3128     _page_sizes[1] = default_page_size;
3129     _page_sizes[2] = 0;
3130   }
3131 
3132   cleanup_after_large_page_init();
3133   UseLargePages = success;
3134 }
3135 
3136 // On win32, one cannot release just a part of reserved memory, it's an
3137 // all or nothing deal.  When we split a reservation, we must break the
3138 // reservation into two reservations.
3139 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3140                                   bool realloc) {
3141   if (size > 0) {
3142     release_memory(base, size);
3143     if (realloc) {
3144       reserve_memory(split, base);
3145     }
3146     if (size != split) {
3147       reserve_memory(size - split, base + split);
3148     }
3149   }
3150 }
3151 
3152 // Multiple threads can race in this code but it's not possible to unmap small sections of
3153 // virtual space to get requested alignment, like posix-like os's.
3154 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3155 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3156   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3157          "Alignment must be a multiple of allocation granularity (page size)");
3158   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3159 
3160   size_t extra_size = size + alignment;
3161   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3162 
3163   char* aligned_base = NULL;
3164 
3165   do {
3166     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3167     if (extra_base == NULL) {
3168       return NULL;
3169     }
3170     // Do manual alignment
3171     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3172 
3173     os::release_memory(extra_base, extra_size);
3174 
3175     aligned_base = os::reserve_memory(size, aligned_base);
3176 
3177   } while (aligned_base == NULL);
3178 
3179   return aligned_base;
3180 }
3181 
3182 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3183   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3184          "reserve alignment");
3185   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3186   char* res;
3187   // note that if UseLargePages is on, all the areas that require interleaving
3188   // will go thru reserve_memory_special rather than thru here.
3189   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3190   if (!use_individual) {
3191     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3192   } else {
3193     elapsedTimer reserveTimer;
3194     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3195     // in numa interleaving, we have to allocate pages individually
3196     // (well really chunks of NUMAInterleaveGranularity size)
3197     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3198     if (res == NULL) {
3199       warning("NUMA page allocation failed");
3200     }
3201     if (Verbose && PrintMiscellaneous) {
3202       reserveTimer.stop();
3203       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3204                     reserveTimer.milliseconds(), reserveTimer.ticks());
3205     }
3206   }
3207   assert(res == NULL || addr == NULL || addr == res,
3208          "Unexpected address from reserve.");
3209 
3210   return res;
3211 }
3212 
3213 // Reserve memory at an arbitrary address, only if that area is
3214 // available (and not reserved for something else).
3215 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3216   // Windows os::reserve_memory() fails of the requested address range is
3217   // not avilable.
3218   return reserve_memory(bytes, requested_addr);
3219 }
3220 
3221 size_t os::large_page_size() {
3222   return _large_page_size;
3223 }
3224 
3225 bool os::can_commit_large_page_memory() {
3226   // Windows only uses large page memory when the entire region is reserved
3227   // and committed in a single VirtualAlloc() call. This may change in the
3228   // future, but with Windows 2003 it's not possible to commit on demand.
3229   return false;
3230 }
3231 
3232 bool os::can_execute_large_page_memory() {
3233   return true;
3234 }
3235 
3236 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3237                                  bool exec) {
3238   assert(UseLargePages, "only for large pages");
3239 
3240   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3241     return NULL; // Fallback to small pages.
3242   }
3243 
3244   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3245   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3246 
3247   // with large pages, there are two cases where we need to use Individual Allocation
3248   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3249   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3250   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3251     if (TracePageSizes && Verbose) {
3252       tty->print_cr("Reserving large pages individually.");
3253     }
3254     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3255     if (p_buf == NULL) {
3256       // give an appropriate warning message
3257       if (UseNUMAInterleaving) {
3258         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3259       }
3260       if (UseLargePagesIndividualAllocation) {
3261         warning("Individually allocated large pages failed, "
3262                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3263       }
3264       return NULL;
3265     }
3266 
3267     return p_buf;
3268 
3269   } else {
3270     if (TracePageSizes && Verbose) {
3271       tty->print_cr("Reserving large pages in a single large chunk.");
3272     }
3273     // normal policy just allocate it all at once
3274     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3275     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3276     if (res != NULL) {
3277       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3278     }
3279 
3280     return res;
3281   }
3282 }
3283 
3284 bool os::release_memory_special(char* base, size_t bytes) {
3285   assert(base != NULL, "Sanity check");
3286   return release_memory(base, bytes);
3287 }
3288 
3289 void os::print_statistics() {
3290 }
3291 
3292 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3293   int err = os::get_last_error();
3294   char buf[256];
3295   size_t buf_len = os::lasterror(buf, sizeof(buf));
3296   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3297           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3298           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3299 }
3300 
3301 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3302   if (bytes == 0) {
3303     // Don't bother the OS with noops.
3304     return true;
3305   }
3306   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3307   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3308   // Don't attempt to print anything if the OS call fails. We're
3309   // probably low on resources, so the print itself may cause crashes.
3310 
3311   // unless we have NUMAInterleaving enabled, the range of a commit
3312   // is always within a reserve covered by a single VirtualAlloc
3313   // in that case we can just do a single commit for the requested size
3314   if (!UseNUMAInterleaving) {
3315     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3316       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3317       return false;
3318     }
3319     if (exec) {
3320       DWORD oldprot;
3321       // Windows doc says to use VirtualProtect to get execute permissions
3322       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3323         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3324         return false;
3325       }
3326     }
3327     return true;
3328   } else {
3329 
3330     // when NUMAInterleaving is enabled, the commit might cover a range that
3331     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3332     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3333     // returns represents the number of bytes that can be committed in one step.
3334     size_t bytes_remaining = bytes;
3335     char * next_alloc_addr = addr;
3336     while (bytes_remaining > 0) {
3337       MEMORY_BASIC_INFORMATION alloc_info;
3338       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3339       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3340       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3341                        PAGE_READWRITE) == NULL) {
3342         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3343                                             exec);)
3344         return false;
3345       }
3346       if (exec) {
3347         DWORD oldprot;
3348         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3349                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3350           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3351                                               exec);)
3352           return false;
3353         }
3354       }
3355       bytes_remaining -= bytes_to_rq;
3356       next_alloc_addr += bytes_to_rq;
3357     }
3358   }
3359   // if we made it this far, return true
3360   return true;
3361 }
3362 
3363 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3364                           bool exec) {
3365   // alignment_hint is ignored on this OS
3366   return pd_commit_memory(addr, size, exec);
3367 }
3368 
3369 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3370                                   const char* mesg) {
3371   assert(mesg != NULL, "mesg must be specified");
3372   if (!pd_commit_memory(addr, size, exec)) {
3373     warn_fail_commit_memory(addr, size, exec);
3374     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3375   }
3376 }
3377 
3378 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3379                                   size_t alignment_hint, bool exec,
3380                                   const char* mesg) {
3381   // alignment_hint is ignored on this OS
3382   pd_commit_memory_or_exit(addr, size, exec, mesg);
3383 }
3384 
3385 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3386   if (bytes == 0) {
3387     // Don't bother the OS with noops.
3388     return true;
3389   }
3390   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3391   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3392   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3393 }
3394 
3395 bool os::pd_release_memory(char* addr, size_t bytes) {
3396   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3397 }
3398 
3399 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3400   return os::commit_memory(addr, size, !ExecMem);
3401 }
3402 
3403 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3404   return os::uncommit_memory(addr, size);
3405 }
3406 
3407 // Set protections specified
3408 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3409                         bool is_committed) {
3410   unsigned int p = 0;
3411   switch (prot) {
3412   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3413   case MEM_PROT_READ: p = PAGE_READONLY; break;
3414   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3415   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3416   default:
3417     ShouldNotReachHere();
3418   }
3419 
3420   DWORD old_status;
3421 
3422   // Strange enough, but on Win32 one can change protection only for committed
3423   // memory, not a big deal anyway, as bytes less or equal than 64K
3424   if (!is_committed) {
3425     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3426                           "cannot commit protection page");
3427   }
3428   // One cannot use os::guard_memory() here, as on Win32 guard page
3429   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3430   //
3431   // Pages in the region become guard pages. Any attempt to access a guard page
3432   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3433   // the guard page status. Guard pages thus act as a one-time access alarm.
3434   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3435 }
3436 
3437 bool os::guard_memory(char* addr, size_t bytes) {
3438   DWORD old_status;
3439   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3440 }
3441 
3442 bool os::unguard_memory(char* addr, size_t bytes) {
3443   DWORD old_status;
3444   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3445 }
3446 
3447 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3448 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3449 void os::numa_make_global(char *addr, size_t bytes)    { }
3450 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3451 bool os::numa_topology_changed()                       { return false; }
3452 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3453 int os::numa_get_group_id()                            { return 0; }
3454 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3455   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3456     // Provide an answer for UMA systems
3457     ids[0] = 0;
3458     return 1;
3459   } else {
3460     // check for size bigger than actual groups_num
3461     size = MIN2(size, numa_get_groups_num());
3462     for (int i = 0; i < (int)size; i++) {
3463       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3464     }
3465     return size;
3466   }
3467 }
3468 
3469 bool os::get_page_info(char *start, page_info* info) {
3470   return false;
3471 }
3472 
3473 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3474                      page_info* page_found) {
3475   return end;
3476 }
3477 
3478 char* os::non_memory_address_word() {
3479   // Must never look like an address returned by reserve_memory,
3480   // even in its subfields (as defined by the CPU immediate fields,
3481   // if the CPU splits constants across multiple instructions).
3482   return (char*)-1;
3483 }
3484 
3485 #define MAX_ERROR_COUNT 100
3486 #define SYS_THREAD_ERROR 0xffffffffUL
3487 
3488 void os::pd_start_thread(Thread* thread) {
3489   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3490   // Returns previous suspend state:
3491   // 0:  Thread was not suspended
3492   // 1:  Thread is running now
3493   // >1: Thread is still suspended.
3494   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3495 }
3496 
3497 class HighResolutionInterval : public CHeapObj<mtThread> {
3498   // The default timer resolution seems to be 10 milliseconds.
3499   // (Where is this written down?)
3500   // If someone wants to sleep for only a fraction of the default,
3501   // then we set the timer resolution down to 1 millisecond for
3502   // the duration of their interval.
3503   // We carefully set the resolution back, since otherwise we
3504   // seem to incur an overhead (3%?) that we don't need.
3505   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3506   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3507   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3508   // timeBeginPeriod() if the relative error exceeded some threshold.
3509   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3510   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3511   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3512   // resolution timers running.
3513  private:
3514   jlong resolution;
3515  public:
3516   HighResolutionInterval(jlong ms) {
3517     resolution = ms % 10L;
3518     if (resolution != 0) {
3519       MMRESULT result = timeBeginPeriod(1L);
3520     }
3521   }
3522   ~HighResolutionInterval() {
3523     if (resolution != 0) {
3524       MMRESULT result = timeEndPeriod(1L);
3525     }
3526     resolution = 0L;
3527   }
3528 };
3529 
3530 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3531   jlong limit = (jlong) MAXDWORD;
3532 
3533   while (ms > limit) {
3534     int res;
3535     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3536       return res;
3537     }
3538     ms -= limit;
3539   }
3540 
3541   assert(thread == Thread::current(), "thread consistency check");
3542   OSThread* osthread = thread->osthread();
3543   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3544   int result;
3545   if (interruptable) {
3546     assert(thread->is_Java_thread(), "must be java thread");
3547     JavaThread *jt = (JavaThread *) thread;
3548     ThreadBlockInVM tbivm(jt);
3549 
3550     jt->set_suspend_equivalent();
3551     // cleared by handle_special_suspend_equivalent_condition() or
3552     // java_suspend_self() via check_and_wait_while_suspended()
3553 
3554     HANDLE events[1];
3555     events[0] = osthread->interrupt_event();
3556     HighResolutionInterval *phri=NULL;
3557     if (!ForceTimeHighResolution) {
3558       phri = new HighResolutionInterval(ms);
3559     }
3560     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3561       result = OS_TIMEOUT;
3562     } else {
3563       ResetEvent(osthread->interrupt_event());
3564       osthread->set_interrupted(false);
3565       result = OS_INTRPT;
3566     }
3567     delete phri; //if it is NULL, harmless
3568 
3569     // were we externally suspended while we were waiting?
3570     jt->check_and_wait_while_suspended();
3571   } else {
3572     assert(!thread->is_Java_thread(), "must not be java thread");
3573     Sleep((long) ms);
3574     result = OS_TIMEOUT;
3575   }
3576   return result;
3577 }
3578 
3579 // Short sleep, direct OS call.
3580 //
3581 // ms = 0, means allow others (if any) to run.
3582 //
3583 void os::naked_short_sleep(jlong ms) {
3584   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3585   Sleep(ms);
3586 }
3587 
3588 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3589 void os::infinite_sleep() {
3590   while (true) {    // sleep forever ...
3591     Sleep(100000);  // ... 100 seconds at a time
3592   }
3593 }
3594 
3595 typedef BOOL (WINAPI * STTSignature)(void);
3596 
3597 void os::naked_yield() {
3598   // Use either SwitchToThread() or Sleep(0)
3599   // Consider passing back the return value from SwitchToThread().
3600   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3601     SwitchToThread();
3602   } else {
3603     Sleep(0);
3604   }
3605 }
3606 
3607 // Win32 only gives you access to seven real priorities at a time,
3608 // so we compress Java's ten down to seven.  It would be better
3609 // if we dynamically adjusted relative priorities.
3610 
3611 int os::java_to_os_priority[CriticalPriority + 1] = {
3612   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3613   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3614   THREAD_PRIORITY_LOWEST,                       // 2
3615   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3616   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3617   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3618   THREAD_PRIORITY_NORMAL,                       // 6
3619   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3620   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3621   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3622   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3623   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3624 };
3625 
3626 int prio_policy1[CriticalPriority + 1] = {
3627   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3628   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3629   THREAD_PRIORITY_LOWEST,                       // 2
3630   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3631   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3632   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3633   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3634   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3635   THREAD_PRIORITY_HIGHEST,                      // 8
3636   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3637   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3638   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3639 };
3640 
3641 static int prio_init() {
3642   // If ThreadPriorityPolicy is 1, switch tables
3643   if (ThreadPriorityPolicy == 1) {
3644     int i;
3645     for (i = 0; i < CriticalPriority + 1; i++) {
3646       os::java_to_os_priority[i] = prio_policy1[i];
3647     }
3648   }
3649   if (UseCriticalJavaThreadPriority) {
3650     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3651   }
3652   return 0;
3653 }
3654 
3655 OSReturn os::set_native_priority(Thread* thread, int priority) {
3656   if (!UseThreadPriorities) return OS_OK;
3657   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3658   return ret ? OS_OK : OS_ERR;
3659 }
3660 
3661 OSReturn os::get_native_priority(const Thread* const thread,
3662                                  int* priority_ptr) {
3663   if (!UseThreadPriorities) {
3664     *priority_ptr = java_to_os_priority[NormPriority];
3665     return OS_OK;
3666   }
3667   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3668   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3669     assert(false, "GetThreadPriority failed");
3670     return OS_ERR;
3671   }
3672   *priority_ptr = os_prio;
3673   return OS_OK;
3674 }
3675 
3676 
3677 // Hint to the underlying OS that a task switch would not be good.
3678 // Void return because it's a hint and can fail.
3679 void os::hint_no_preempt() {}
3680 
3681 void os::interrupt(Thread* thread) {
3682   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3683          Threads_lock->owned_by_self(),
3684          "possibility of dangling Thread pointer");
3685 
3686   OSThread* osthread = thread->osthread();
3687   osthread->set_interrupted(true);
3688   // More than one thread can get here with the same value of osthread,
3689   // resulting in multiple notifications.  We do, however, want the store
3690   // to interrupted() to be visible to other threads before we post
3691   // the interrupt event.
3692   OrderAccess::release();
3693   SetEvent(osthread->interrupt_event());
3694   // For JSR166:  unpark after setting status
3695   if (thread->is_Java_thread()) {
3696     ((JavaThread*)thread)->parker()->unpark();
3697   }
3698 
3699   ParkEvent * ev = thread->_ParkEvent;
3700   if (ev != NULL) ev->unpark();
3701 }
3702 
3703 
3704 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3705   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3706          "possibility of dangling Thread pointer");
3707 
3708   OSThread* osthread = thread->osthread();
3709   // There is no synchronization between the setting of the interrupt
3710   // and it being cleared here. It is critical - see 6535709 - that
3711   // we only clear the interrupt state, and reset the interrupt event,
3712   // if we are going to report that we were indeed interrupted - else
3713   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3714   // depending on the timing. By checking thread interrupt event to see
3715   // if the thread gets real interrupt thus prevent spurious wakeup.
3716   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3717   if (interrupted && clear_interrupted) {
3718     osthread->set_interrupted(false);
3719     ResetEvent(osthread->interrupt_event());
3720   } // Otherwise leave the interrupted state alone
3721 
3722   return interrupted;
3723 }
3724 
3725 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3726 ExtendedPC os::get_thread_pc(Thread* thread) {
3727   CONTEXT context;
3728   context.ContextFlags = CONTEXT_CONTROL;
3729   HANDLE handle = thread->osthread()->thread_handle();
3730 #ifdef _M_IA64
3731   assert(0, "Fix get_thread_pc");
3732   return ExtendedPC(NULL);
3733 #else
3734   if (GetThreadContext(handle, &context)) {
3735 #ifdef _M_AMD64
3736     return ExtendedPC((address) context.Rip);
3737 #else
3738     return ExtendedPC((address) context.Eip);
3739 #endif
3740   } else {
3741     return ExtendedPC(NULL);
3742   }
3743 #endif
3744 }
3745 
3746 // GetCurrentThreadId() returns DWORD
3747 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3748 
3749 static int _initial_pid = 0;
3750 
3751 int os::current_process_id() {
3752   return (_initial_pid ? _initial_pid : _getpid());
3753 }
3754 
3755 int    os::win32::_vm_page_size              = 0;
3756 int    os::win32::_vm_allocation_granularity = 0;
3757 int    os::win32::_processor_type            = 0;
3758 // Processor level is not available on non-NT systems, use vm_version instead
3759 int    os::win32::_processor_level           = 0;
3760 julong os::win32::_physical_memory           = 0;
3761 size_t os::win32::_default_stack_size        = 0;
3762 
3763 intx          os::win32::_os_thread_limit    = 0;
3764 volatile intx os::win32::_os_thread_count    = 0;
3765 
3766 bool   os::win32::_is_nt                     = false;
3767 bool   os::win32::_is_windows_2003           = false;
3768 bool   os::win32::_is_windows_server         = false;
3769 
3770 // 6573254
3771 // Currently, the bug is observed across all the supported Windows releases,
3772 // including the latest one (as of this writing - Windows Server 2012 R2)
3773 bool   os::win32::_has_exit_bug              = true;
3774 bool   os::win32::_has_performance_count     = 0;
3775 
3776 void os::win32::initialize_system_info() {
3777   SYSTEM_INFO si;
3778   GetSystemInfo(&si);
3779   _vm_page_size    = si.dwPageSize;
3780   _vm_allocation_granularity = si.dwAllocationGranularity;
3781   _processor_type  = si.dwProcessorType;
3782   _processor_level = si.wProcessorLevel;
3783   set_processor_count(si.dwNumberOfProcessors);
3784 
3785   MEMORYSTATUSEX ms;
3786   ms.dwLength = sizeof(ms);
3787 
3788   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3789   // dwMemoryLoad (% of memory in use)
3790   GlobalMemoryStatusEx(&ms);
3791   _physical_memory = ms.ullTotalPhys;
3792 
3793   OSVERSIONINFOEX oi;
3794   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3795   GetVersionEx((OSVERSIONINFO*)&oi);
3796   switch (oi.dwPlatformId) {
3797   case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3798   case VER_PLATFORM_WIN32_NT:
3799     _is_nt = true;
3800     {
3801       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3802       if (os_vers == 5002) {
3803         _is_windows_2003 = true;
3804       }
3805       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3806           oi.wProductType == VER_NT_SERVER) {
3807         _is_windows_server = true;
3808       }
3809     }
3810     break;
3811   default: fatal("Unknown platform");
3812   }
3813 
3814   _default_stack_size = os::current_stack_size();
3815   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3816   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3817          "stack size not a multiple of page size");
3818 
3819   initialize_performance_counter();
3820 }
3821 
3822 
3823 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3824                                       int ebuflen) {
3825   char path[MAX_PATH];
3826   DWORD size;
3827   DWORD pathLen = (DWORD)sizeof(path);
3828   HINSTANCE result = NULL;
3829 
3830   // only allow library name without path component
3831   assert(strchr(name, '\\') == NULL, "path not allowed");
3832   assert(strchr(name, ':') == NULL, "path not allowed");
3833   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3834     jio_snprintf(ebuf, ebuflen,
3835                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3836     return NULL;
3837   }
3838 
3839   // search system directory
3840   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3841     if (size >= pathLen) {
3842       return NULL; // truncated
3843     }
3844     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3845       return NULL; // truncated
3846     }
3847     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3848       return result;
3849     }
3850   }
3851 
3852   // try Windows directory
3853   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3854     if (size >= pathLen) {
3855       return NULL; // truncated
3856     }
3857     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3858       return NULL; // truncated
3859     }
3860     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3861       return result;
3862     }
3863   }
3864 
3865   jio_snprintf(ebuf, ebuflen,
3866                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3867   return NULL;
3868 }
3869 
3870 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3871 
3872 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3873   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3874   return TRUE;
3875 }
3876 
3877 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3878   // Basic approach:
3879   //  - Each exiting thread registers its intent to exit and then does so.
3880   //  - A thread trying to terminate the process must wait for all
3881   //    threads currently exiting to complete their exit.
3882 
3883   if (os::win32::has_exit_bug()) {
3884     // The array holds handles of the threads that have started exiting by calling
3885     // _endthreadex().
3886     // Should be large enough to avoid blocking the exiting thread due to lack of
3887     // a free slot.
3888     static HANDLE handles[MAXIMUM_WAIT_OBJECTS];
3889     static int handle_count = 0;
3890 
3891     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3892     static CRITICAL_SECTION crit_sect;
3893     static volatile jint process_exiting = 0;
3894     int i, j;
3895     DWORD res;
3896     HANDLE hproc, hthr;
3897 
3898     // The first thread that reached this point, initializes the critical section.
3899     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3900       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3901     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3902       EnterCriticalSection(&crit_sect);
3903 
3904       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3905         // Remove from the array those handles of the threads that have completed exiting.
3906         for (i = 0, j = 0; i < handle_count; ++i) {
3907           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3908           if (res == WAIT_TIMEOUT) {
3909             handles[j++] = handles[i];
3910           } else {
3911             if (res == WAIT_FAILED) {
3912               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3913                       GetLastError(), __FILE__, __LINE__);
3914             }
3915             // Don't keep the handle, if we failed waiting for it.
3916             CloseHandle(handles[i]);
3917           }
3918         }
3919 
3920         // If there's no free slot in the array of the kept handles, we'll have to
3921         // wait until at least one thread completes exiting.
3922         if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) {
3923           // Raise the priority of the oldest exiting thread to increase its chances
3924           // to complete sooner.
3925           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3926           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3927           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3928             i = (res - WAIT_OBJECT_0);
3929             handle_count = MAXIMUM_WAIT_OBJECTS - 1;
3930             for (; i < handle_count; ++i) {
3931               handles[i] = handles[i + 1];
3932             }
3933           } else {
3934             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3935                     (res == WAIT_FAILED ? "failed" : "timed out"),
3936                     GetLastError(), __FILE__, __LINE__);
3937             // Don't keep handles, if we failed waiting for them.
3938             for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) {
3939               CloseHandle(handles[i]);
3940             }
3941             handle_count = 0;
3942           }
3943         }
3944 
3945         // Store a duplicate of the current thread handle in the array of handles.
3946         hproc = GetCurrentProcess();
3947         hthr = GetCurrentThread();
3948         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3949                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3950           warning("DuplicateHandle failed (%u) in %s: %d\n",
3951                   GetLastError(), __FILE__, __LINE__);
3952         } else {
3953           ++handle_count;
3954         }
3955 
3956         // The current exiting thread has stored its handle in the array, and now
3957         // should leave the critical section before calling _endthreadex().
3958 
3959       } else if (what != EPT_THREAD) {
3960         if (handle_count > 0) {
3961           // Before ending the process, make sure all the threads that had called
3962           // _endthreadex() completed.
3963 
3964           // Set the priority level of the current thread to the same value as
3965           // the priority level of exiting threads.
3966           // This is to ensure it will be given a fair chance to execute if
3967           // the timeout expires.
3968           hthr = GetCurrentThread();
3969           SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3970           for (i = 0; i < handle_count; ++i) {
3971             SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL);
3972           }
3973           res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3974           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3975             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3976                     (res == WAIT_FAILED ? "failed" : "timed out"),
3977                     GetLastError(), __FILE__, __LINE__);
3978           }
3979           for (i = 0; i < handle_count; ++i) {
3980             CloseHandle(handles[i]);
3981           }
3982           handle_count = 0;
3983         }
3984 
3985         OrderAccess::release_store(&process_exiting, 1);
3986       }
3987 
3988       LeaveCriticalSection(&crit_sect);
3989     }
3990 
3991     if (what == EPT_THREAD) {
3992       while (OrderAccess::load_acquire(&process_exiting) != 0) {
3993         // Some other thread is about to call exit(), so we
3994         // don't let the current thread proceed to _endthreadex()
3995         SuspendThread(GetCurrentThread());
3996         // Avoid busy-wait loop, if SuspendThread() failed.
3997         Sleep(EXIT_TIMEOUT);
3998       }
3999     }
4000   }
4001 
4002   // We are here if either
4003   // - there's no 'race at exit' bug on this OS release;
4004   // - initialization of the critical section failed (unlikely);
4005   // - the current thread has stored its handle and left the critical section;
4006   // - the process-exiting thread has raised the flag and left the critical section.
4007   if (what == EPT_THREAD) {
4008     _endthreadex((unsigned)exit_code);
4009   } else if (what == EPT_PROCESS) {
4010     ::exit(exit_code);
4011   } else {
4012     _exit(exit_code);
4013   }
4014 
4015   // Should not reach here
4016   return exit_code;
4017 }
4018 
4019 #undef EXIT_TIMEOUT
4020 
4021 void os::win32::setmode_streams() {
4022   _setmode(_fileno(stdin), _O_BINARY);
4023   _setmode(_fileno(stdout), _O_BINARY);
4024   _setmode(_fileno(stderr), _O_BINARY);
4025 }
4026 
4027 
4028 bool os::is_debugger_attached() {
4029   return IsDebuggerPresent() ? true : false;
4030 }
4031 
4032 
4033 void os::wait_for_keypress_at_exit(void) {
4034   if (PauseAtExit) {
4035     fprintf(stderr, "Press any key to continue...\n");
4036     fgetc(stdin);
4037   }
4038 }
4039 
4040 
4041 int os::message_box(const char* title, const char* message) {
4042   int result = MessageBox(NULL, message, title,
4043                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
4044   return result == IDYES;
4045 }
4046 
4047 int os::allocate_thread_local_storage() {
4048   return TlsAlloc();
4049 }
4050 
4051 
4052 void os::free_thread_local_storage(int index) {
4053   TlsFree(index);
4054 }
4055 
4056 
4057 void os::thread_local_storage_at_put(int index, void* value) {
4058   TlsSetValue(index, value);
4059   assert(thread_local_storage_at(index) == value, "Just checking");
4060 }
4061 
4062 
4063 void* os::thread_local_storage_at(int index) {
4064   return TlsGetValue(index);
4065 }
4066 
4067 
4068 #ifndef PRODUCT
4069 #ifndef _WIN64
4070 // Helpers to check whether NX protection is enabled
4071 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
4072   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
4073       pex->ExceptionRecord->NumberParameters > 0 &&
4074       pex->ExceptionRecord->ExceptionInformation[0] ==
4075       EXCEPTION_INFO_EXEC_VIOLATION) {
4076     return EXCEPTION_EXECUTE_HANDLER;
4077   }
4078   return EXCEPTION_CONTINUE_SEARCH;
4079 }
4080 
4081 void nx_check_protection() {
4082   // If NX is enabled we'll get an exception calling into code on the stack
4083   char code[] = { (char)0xC3 }; // ret
4084   void *code_ptr = (void *)code;
4085   __try {
4086     __asm call code_ptr
4087   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4088     tty->print_raw_cr("NX protection detected.");
4089   }
4090 }
4091 #endif // _WIN64
4092 #endif // PRODUCT
4093 
4094 // this is called _before_ the global arguments have been parsed
4095 void os::init(void) {
4096   _initial_pid = _getpid();
4097 
4098   init_random(1234567);
4099 
4100   win32::initialize_system_info();
4101   win32::setmode_streams();
4102   init_page_sizes((size_t) win32::vm_page_size());
4103 
4104   // This may be overridden later when argument processing is done.
4105   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
4106                 os::win32::is_windows_2003());
4107 
4108   // Initialize main_process and main_thread
4109   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4110   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4111                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4112     fatal("DuplicateHandle failed\n");
4113   }
4114   main_thread_id = (int) GetCurrentThreadId();
4115 }
4116 
4117 // To install functions for atexit processing
4118 extern "C" {
4119   static void perfMemory_exit_helper() {
4120     perfMemory_exit();
4121   }
4122 }
4123 
4124 static jint initSock();
4125 
4126 // this is called _after_ the global arguments have been parsed
4127 jint os::init_2(void) {
4128   // Allocate a single page and mark it as readable for safepoint polling
4129   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4130   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4131 
4132   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4133   guarantee(return_page != NULL, "Commit Failed for polling page");
4134 
4135   os::set_polling_page(polling_page);
4136 
4137 #ifndef PRODUCT
4138   if (Verbose && PrintMiscellaneous) {
4139     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4140                (intptr_t)polling_page);
4141   }
4142 #endif
4143 
4144   if (!UseMembar) {
4145     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4146     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4147 
4148     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4149     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4150 
4151     os::set_memory_serialize_page(mem_serialize_page);
4152 
4153 #ifndef PRODUCT
4154     if (Verbose && PrintMiscellaneous) {
4155       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4156                  (intptr_t)mem_serialize_page);
4157     }
4158 #endif
4159   }
4160 
4161   // Setup Windows Exceptions
4162 
4163   // for debugging float code generation bugs
4164   if (ForceFloatExceptions) {
4165 #ifndef  _WIN64
4166     static long fp_control_word = 0;
4167     __asm { fstcw fp_control_word }
4168     // see Intel PPro Manual, Vol. 2, p 7-16
4169     const long precision = 0x20;
4170     const long underflow = 0x10;
4171     const long overflow  = 0x08;
4172     const long zero_div  = 0x04;
4173     const long denorm    = 0x02;
4174     const long invalid   = 0x01;
4175     fp_control_word |= invalid;
4176     __asm { fldcw fp_control_word }
4177 #endif
4178   }
4179 
4180   // If stack_commit_size is 0, windows will reserve the default size,
4181   // but only commit a small portion of it.
4182   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4183   size_t default_reserve_size = os::win32::default_stack_size();
4184   size_t actual_reserve_size = stack_commit_size;
4185   if (stack_commit_size < default_reserve_size) {
4186     // If stack_commit_size == 0, we want this too
4187     actual_reserve_size = default_reserve_size;
4188   }
4189 
4190   // Check minimum allowable stack size for thread creation and to initialize
4191   // the java system classes, including StackOverflowError - depends on page
4192   // size.  Add a page for compiler2 recursion in main thread.
4193   // Add in 2*BytesPerWord times page size to account for VM stack during
4194   // class initialization depending on 32 or 64 bit VM.
4195   size_t min_stack_allowed =
4196             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4197                      2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4198   if (actual_reserve_size < min_stack_allowed) {
4199     tty->print_cr("\nThe stack size specified is too small, "
4200                   "Specify at least %dk",
4201                   min_stack_allowed / K);
4202     return JNI_ERR;
4203   }
4204 
4205   JavaThread::set_stack_size_at_create(stack_commit_size);
4206 
4207   // Calculate theoretical max. size of Threads to guard gainst artifical
4208   // out-of-memory situations, where all available address-space has been
4209   // reserved by thread stacks.
4210   assert(actual_reserve_size != 0, "Must have a stack");
4211 
4212   // Calculate the thread limit when we should start doing Virtual Memory
4213   // banging. Currently when the threads will have used all but 200Mb of space.
4214   //
4215   // TODO: consider performing a similar calculation for commit size instead
4216   // as reserve size, since on a 64-bit platform we'll run into that more
4217   // often than running out of virtual memory space.  We can use the
4218   // lower value of the two calculations as the os_thread_limit.
4219   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4220   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4221 
4222   // at exit methods are called in the reverse order of their registration.
4223   // there is no limit to the number of functions registered. atexit does
4224   // not set errno.
4225 
4226   if (PerfAllowAtExitRegistration) {
4227     // only register atexit functions if PerfAllowAtExitRegistration is set.
4228     // atexit functions can be delayed until process exit time, which
4229     // can be problematic for embedded VM situations. Embedded VMs should
4230     // call DestroyJavaVM() to assure that VM resources are released.
4231 
4232     // note: perfMemory_exit_helper atexit function may be removed in
4233     // the future if the appropriate cleanup code can be added to the
4234     // VM_Exit VMOperation's doit method.
4235     if (atexit(perfMemory_exit_helper) != 0) {
4236       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4237     }
4238   }
4239 
4240 #ifndef _WIN64
4241   // Print something if NX is enabled (win32 on AMD64)
4242   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4243 #endif
4244 
4245   // initialize thread priority policy
4246   prio_init();
4247 
4248   if (UseNUMA && !ForceNUMA) {
4249     UseNUMA = false; // We don't fully support this yet
4250   }
4251 
4252   if (UseNUMAInterleaving) {
4253     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4254     bool success = numa_interleaving_init();
4255     if (!success) UseNUMAInterleaving = false;
4256   }
4257 
4258   if (initSock() != JNI_OK) {
4259     return JNI_ERR;
4260   }
4261 
4262   return JNI_OK;
4263 }
4264 
4265 // Mark the polling page as unreadable
4266 void os::make_polling_page_unreadable(void) {
4267   DWORD old_status;
4268   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4269                       PAGE_NOACCESS, &old_status)) {
4270     fatal("Could not disable polling page");
4271   }
4272 }
4273 
4274 // Mark the polling page as readable
4275 void os::make_polling_page_readable(void) {
4276   DWORD old_status;
4277   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4278                       PAGE_READONLY, &old_status)) {
4279     fatal("Could not enable polling page");
4280   }
4281 }
4282 
4283 
4284 int os::stat(const char *path, struct stat *sbuf) {
4285   char pathbuf[MAX_PATH];
4286   if (strlen(path) > MAX_PATH - 1) {
4287     errno = ENAMETOOLONG;
4288     return -1;
4289   }
4290   os::native_path(strcpy(pathbuf, path));
4291   int ret = ::stat(pathbuf, sbuf);
4292   if (sbuf != NULL && UseUTCFileTimestamp) {
4293     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4294     // the system timezone and so can return different values for the
4295     // same file if/when daylight savings time changes.  This adjustment
4296     // makes sure the same timestamp is returned regardless of the TZ.
4297     //
4298     // See:
4299     // http://msdn.microsoft.com/library/
4300     //   default.asp?url=/library/en-us/sysinfo/base/
4301     //   time_zone_information_str.asp
4302     // and
4303     // http://msdn.microsoft.com/library/default.asp?url=
4304     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4305     //
4306     // NOTE: there is a insidious bug here:  If the timezone is changed
4307     // after the call to stat() but before 'GetTimeZoneInformation()', then
4308     // the adjustment we do here will be wrong and we'll return the wrong
4309     // value (which will likely end up creating an invalid class data
4310     // archive).  Absent a better API for this, or some time zone locking
4311     // mechanism, we'll have to live with this risk.
4312     TIME_ZONE_INFORMATION tz;
4313     DWORD tzid = GetTimeZoneInformation(&tz);
4314     int daylightBias =
4315       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4316     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4317   }
4318   return ret;
4319 }
4320 
4321 
4322 #define FT2INT64(ft) \
4323   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4324 
4325 
4326 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4327 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4328 // of a thread.
4329 //
4330 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4331 // the fast estimate available on the platform.
4332 
4333 // current_thread_cpu_time() is not optimized for Windows yet
4334 jlong os::current_thread_cpu_time() {
4335   // return user + sys since the cost is the same
4336   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4337 }
4338 
4339 jlong os::thread_cpu_time(Thread* thread) {
4340   // consistent with what current_thread_cpu_time() returns.
4341   return os::thread_cpu_time(thread, true /* user+sys */);
4342 }
4343 
4344 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4345   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4346 }
4347 
4348 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4349   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4350   // If this function changes, os::is_thread_cpu_time_supported() should too
4351   if (os::win32::is_nt()) {
4352     FILETIME CreationTime;
4353     FILETIME ExitTime;
4354     FILETIME KernelTime;
4355     FILETIME UserTime;
4356 
4357     if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4358                        &ExitTime, &KernelTime, &UserTime) == 0) {
4359       return -1;
4360     } else if (user_sys_cpu_time) {
4361       return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4362     } else {
4363       return FT2INT64(UserTime) * 100;
4364     }
4365   } else {
4366     return (jlong) timeGetTime() * 1000000;
4367   }
4368 }
4369 
4370 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4371   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4372   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4373   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4374   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4375 }
4376 
4377 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4378   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4379   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4380   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4381   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4382 }
4383 
4384 bool os::is_thread_cpu_time_supported() {
4385   // see os::thread_cpu_time
4386   if (os::win32::is_nt()) {
4387     FILETIME CreationTime;
4388     FILETIME ExitTime;
4389     FILETIME KernelTime;
4390     FILETIME UserTime;
4391 
4392     if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4393                        &KernelTime, &UserTime) == 0) {
4394       return false;
4395     } else {
4396       return true;
4397     }
4398   } else {
4399     return false;
4400   }
4401 }
4402 
4403 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4404 // It does have primitives (PDH API) to get CPU usage and run queue length.
4405 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4406 // If we wanted to implement loadavg on Windows, we have a few options:
4407 //
4408 // a) Query CPU usage and run queue length and "fake" an answer by
4409 //    returning the CPU usage if it's under 100%, and the run queue
4410 //    length otherwise.  It turns out that querying is pretty slow
4411 //    on Windows, on the order of 200 microseconds on a fast machine.
4412 //    Note that on the Windows the CPU usage value is the % usage
4413 //    since the last time the API was called (and the first call
4414 //    returns 100%), so we'd have to deal with that as well.
4415 //
4416 // b) Sample the "fake" answer using a sampling thread and store
4417 //    the answer in a global variable.  The call to loadavg would
4418 //    just return the value of the global, avoiding the slow query.
4419 //
4420 // c) Sample a better answer using exponential decay to smooth the
4421 //    value.  This is basically the algorithm used by UNIX kernels.
4422 //
4423 // Note that sampling thread starvation could affect both (b) and (c).
4424 int os::loadavg(double loadavg[], int nelem) {
4425   return -1;
4426 }
4427 
4428 
4429 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4430 bool os::dont_yield() {
4431   return DontYieldALot;
4432 }
4433 
4434 // This method is a slightly reworked copy of JDK's sysOpen
4435 // from src/windows/hpi/src/sys_api_md.c
4436 
4437 int os::open(const char *path, int oflag, int mode) {
4438   char pathbuf[MAX_PATH];
4439 
4440   if (strlen(path) > MAX_PATH - 1) {
4441     errno = ENAMETOOLONG;
4442     return -1;
4443   }
4444   os::native_path(strcpy(pathbuf, path));
4445   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4446 }
4447 
4448 FILE* os::open(int fd, const char* mode) {
4449   return ::_fdopen(fd, mode);
4450 }
4451 
4452 // Is a (classpath) directory empty?
4453 bool os::dir_is_empty(const char* path) {
4454   WIN32_FIND_DATA fd;
4455   HANDLE f = FindFirstFile(path, &fd);
4456   if (f == INVALID_HANDLE_VALUE) {
4457     return true;
4458   }
4459   FindClose(f);
4460   return false;
4461 }
4462 
4463 // create binary file, rewriting existing file if required
4464 int os::create_binary_file(const char* path, bool rewrite_existing) {
4465   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4466   if (!rewrite_existing) {
4467     oflags |= _O_EXCL;
4468   }
4469   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4470 }
4471 
4472 // return current position of file pointer
4473 jlong os::current_file_offset(int fd) {
4474   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4475 }
4476 
4477 // move file pointer to the specified offset
4478 jlong os::seek_to_file_offset(int fd, jlong offset) {
4479   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4480 }
4481 
4482 
4483 jlong os::lseek(int fd, jlong offset, int whence) {
4484   return (jlong) ::_lseeki64(fd, offset, whence);
4485 }
4486 
4487 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4488   OVERLAPPED ov;
4489   DWORD nread;
4490   BOOL result;
4491 
4492   ZeroMemory(&ov, sizeof(ov));
4493   ov.Offset = (DWORD)offset;
4494   ov.OffsetHigh = (DWORD)(offset >> 32);
4495 
4496   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4497 
4498   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4499 
4500   return result ? nread : 0;
4501 }
4502 
4503 
4504 // This method is a slightly reworked copy of JDK's sysNativePath
4505 // from src/windows/hpi/src/path_md.c
4506 
4507 // Convert a pathname to native format.  On win32, this involves forcing all
4508 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4509 // sometimes rejects '/') and removing redundant separators.  The input path is
4510 // assumed to have been converted into the character encoding used by the local
4511 // system.  Because this might be a double-byte encoding, care is taken to
4512 // treat double-byte lead characters correctly.
4513 //
4514 // This procedure modifies the given path in place, as the result is never
4515 // longer than the original.  There is no error return; this operation always
4516 // succeeds.
4517 char * os::native_path(char *path) {
4518   char *src = path, *dst = path, *end = path;
4519   char *colon = NULL;  // If a drive specifier is found, this will
4520                        // point to the colon following the drive letter
4521 
4522   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4523   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4524           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4525 
4526   // Check for leading separators
4527 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4528   while (isfilesep(*src)) {
4529     src++;
4530   }
4531 
4532   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4533     // Remove leading separators if followed by drive specifier.  This
4534     // hack is necessary to support file URLs containing drive
4535     // specifiers (e.g., "file://c:/path").  As a side effect,
4536     // "/c:/path" can be used as an alternative to "c:/path".
4537     *dst++ = *src++;
4538     colon = dst;
4539     *dst++ = ':';
4540     src++;
4541   } else {
4542     src = path;
4543     if (isfilesep(src[0]) && isfilesep(src[1])) {
4544       // UNC pathname: Retain first separator; leave src pointed at
4545       // second separator so that further separators will be collapsed
4546       // into the second separator.  The result will be a pathname
4547       // beginning with "\\\\" followed (most likely) by a host name.
4548       src = dst = path + 1;
4549       path[0] = '\\';     // Force first separator to '\\'
4550     }
4551   }
4552 
4553   end = dst;
4554 
4555   // Remove redundant separators from remainder of path, forcing all
4556   // separators to be '\\' rather than '/'. Also, single byte space
4557   // characters are removed from the end of the path because those
4558   // are not legal ending characters on this operating system.
4559   //
4560   while (*src != '\0') {
4561     if (isfilesep(*src)) {
4562       *dst++ = '\\'; src++;
4563       while (isfilesep(*src)) src++;
4564       if (*src == '\0') {
4565         // Check for trailing separator
4566         end = dst;
4567         if (colon == dst - 2) break;  // "z:\\"
4568         if (dst == path + 1) break;   // "\\"
4569         if (dst == path + 2 && isfilesep(path[0])) {
4570           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4571           // beginning of a UNC pathname.  Even though it is not, by
4572           // itself, a valid UNC pathname, we leave it as is in order
4573           // to be consistent with the path canonicalizer as well
4574           // as the win32 APIs, which treat this case as an invalid
4575           // UNC pathname rather than as an alias for the root
4576           // directory of the current drive.
4577           break;
4578         }
4579         end = --dst;  // Path does not denote a root directory, so
4580                       // remove trailing separator
4581         break;
4582       }
4583       end = dst;
4584     } else {
4585       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4586         *dst++ = *src++;
4587         if (*src) *dst++ = *src++;
4588         end = dst;
4589       } else {  // Copy a single-byte character
4590         char c = *src++;
4591         *dst++ = c;
4592         // Space is not a legal ending character
4593         if (c != ' ') end = dst;
4594       }
4595     }
4596   }
4597 
4598   *end = '\0';
4599 
4600   // For "z:", add "." to work around a bug in the C runtime library
4601   if (colon == dst - 1) {
4602     path[2] = '.';
4603     path[3] = '\0';
4604   }
4605 
4606   return path;
4607 }
4608 
4609 // This code is a copy of JDK's sysSetLength
4610 // from src/windows/hpi/src/sys_api_md.c
4611 
4612 int os::ftruncate(int fd, jlong length) {
4613   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4614   long high = (long)(length >> 32);
4615   DWORD ret;
4616 
4617   if (h == (HANDLE)(-1)) {
4618     return -1;
4619   }
4620 
4621   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4622   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4623     return -1;
4624   }
4625 
4626   if (::SetEndOfFile(h) == FALSE) {
4627     return -1;
4628   }
4629 
4630   return 0;
4631 }
4632 
4633 
4634 // This code is a copy of JDK's sysSync
4635 // from src/windows/hpi/src/sys_api_md.c
4636 // except for the legacy workaround for a bug in Win 98
4637 
4638 int os::fsync(int fd) {
4639   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4640 
4641   if ((!::FlushFileBuffers(handle)) &&
4642       (GetLastError() != ERROR_ACCESS_DENIED)) {
4643     // from winerror.h
4644     return -1;
4645   }
4646   return 0;
4647 }
4648 
4649 static int nonSeekAvailable(int, long *);
4650 static int stdinAvailable(int, long *);
4651 
4652 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4653 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4654 
4655 // This code is a copy of JDK's sysAvailable
4656 // from src/windows/hpi/src/sys_api_md.c
4657 
4658 int os::available(int fd, jlong *bytes) {
4659   jlong cur, end;
4660   struct _stati64 stbuf64;
4661 
4662   if (::_fstati64(fd, &stbuf64) >= 0) {
4663     int mode = stbuf64.st_mode;
4664     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4665       int ret;
4666       long lpbytes;
4667       if (fd == 0) {
4668         ret = stdinAvailable(fd, &lpbytes);
4669       } else {
4670         ret = nonSeekAvailable(fd, &lpbytes);
4671       }
4672       (*bytes) = (jlong)(lpbytes);
4673       return ret;
4674     }
4675     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4676       return FALSE;
4677     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4678       return FALSE;
4679     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4680       return FALSE;
4681     }
4682     *bytes = end - cur;
4683     return TRUE;
4684   } else {
4685     return FALSE;
4686   }
4687 }
4688 
4689 // This code is a copy of JDK's nonSeekAvailable
4690 // from src/windows/hpi/src/sys_api_md.c
4691 
4692 static int nonSeekAvailable(int fd, long *pbytes) {
4693   // This is used for available on non-seekable devices
4694   // (like both named and anonymous pipes, such as pipes
4695   //  connected to an exec'd process).
4696   // Standard Input is a special case.
4697   HANDLE han;
4698 
4699   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4700     return FALSE;
4701   }
4702 
4703   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4704     // PeekNamedPipe fails when at EOF.  In that case we
4705     // simply make *pbytes = 0 which is consistent with the
4706     // behavior we get on Solaris when an fd is at EOF.
4707     // The only alternative is to raise an Exception,
4708     // which isn't really warranted.
4709     //
4710     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4711       return FALSE;
4712     }
4713     *pbytes = 0;
4714   }
4715   return TRUE;
4716 }
4717 
4718 #define MAX_INPUT_EVENTS 2000
4719 
4720 // This code is a copy of JDK's stdinAvailable
4721 // from src/windows/hpi/src/sys_api_md.c
4722 
4723 static int stdinAvailable(int fd, long *pbytes) {
4724   HANDLE han;
4725   DWORD numEventsRead = 0;  // Number of events read from buffer
4726   DWORD numEvents = 0;      // Number of events in buffer
4727   DWORD i = 0;              // Loop index
4728   DWORD curLength = 0;      // Position marker
4729   DWORD actualLength = 0;   // Number of bytes readable
4730   BOOL error = FALSE;       // Error holder
4731   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4732 
4733   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4734     return FALSE;
4735   }
4736 
4737   // Construct an array of input records in the console buffer
4738   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4739   if (error == 0) {
4740     return nonSeekAvailable(fd, pbytes);
4741   }
4742 
4743   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4744   if (numEvents > MAX_INPUT_EVENTS) {
4745     numEvents = MAX_INPUT_EVENTS;
4746   }
4747 
4748   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4749   if (lpBuffer == NULL) {
4750     return FALSE;
4751   }
4752 
4753   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4754   if (error == 0) {
4755     os::free(lpBuffer);
4756     return FALSE;
4757   }
4758 
4759   // Examine input records for the number of bytes available
4760   for (i=0; i<numEvents; i++) {
4761     if (lpBuffer[i].EventType == KEY_EVENT) {
4762 
4763       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4764                                       &(lpBuffer[i].Event);
4765       if (keyRecord->bKeyDown == TRUE) {
4766         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4767         curLength++;
4768         if (*keyPressed == '\r') {
4769           actualLength = curLength;
4770         }
4771       }
4772     }
4773   }
4774 
4775   if (lpBuffer != NULL) {
4776     os::free(lpBuffer);
4777   }
4778 
4779   *pbytes = (long) actualLength;
4780   return TRUE;
4781 }
4782 
4783 // Map a block of memory.
4784 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4785                         char *addr, size_t bytes, bool read_only,
4786                         bool allow_exec) {
4787   HANDLE hFile;
4788   char* base;
4789 
4790   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4791                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4792   if (hFile == NULL) {
4793     if (PrintMiscellaneous && Verbose) {
4794       DWORD err = GetLastError();
4795       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4796     }
4797     return NULL;
4798   }
4799 
4800   if (allow_exec) {
4801     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4802     // unless it comes from a PE image (which the shared archive is not.)
4803     // Even VirtualProtect refuses to give execute access to mapped memory
4804     // that was not previously executable.
4805     //
4806     // Instead, stick the executable region in anonymous memory.  Yuck.
4807     // Penalty is that ~4 pages will not be shareable - in the future
4808     // we might consider DLLizing the shared archive with a proper PE
4809     // header so that mapping executable + sharing is possible.
4810 
4811     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4812                                 PAGE_READWRITE);
4813     if (base == NULL) {
4814       if (PrintMiscellaneous && Verbose) {
4815         DWORD err = GetLastError();
4816         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4817       }
4818       CloseHandle(hFile);
4819       return NULL;
4820     }
4821 
4822     DWORD bytes_read;
4823     OVERLAPPED overlapped;
4824     overlapped.Offset = (DWORD)file_offset;
4825     overlapped.OffsetHigh = 0;
4826     overlapped.hEvent = NULL;
4827     // ReadFile guarantees that if the return value is true, the requested
4828     // number of bytes were read before returning.
4829     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4830     if (!res) {
4831       if (PrintMiscellaneous && Verbose) {
4832         DWORD err = GetLastError();
4833         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4834       }
4835       release_memory(base, bytes);
4836       CloseHandle(hFile);
4837       return NULL;
4838     }
4839   } else {
4840     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4841                                     NULL /* file_name */);
4842     if (hMap == NULL) {
4843       if (PrintMiscellaneous && Verbose) {
4844         DWORD err = GetLastError();
4845         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4846       }
4847       CloseHandle(hFile);
4848       return NULL;
4849     }
4850 
4851     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4852     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4853                                   (DWORD)bytes, addr);
4854     if (base == NULL) {
4855       if (PrintMiscellaneous && Verbose) {
4856         DWORD err = GetLastError();
4857         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4858       }
4859       CloseHandle(hMap);
4860       CloseHandle(hFile);
4861       return NULL;
4862     }
4863 
4864     if (CloseHandle(hMap) == 0) {
4865       if (PrintMiscellaneous && Verbose) {
4866         DWORD err = GetLastError();
4867         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4868       }
4869       CloseHandle(hFile);
4870       return base;
4871     }
4872   }
4873 
4874   if (allow_exec) {
4875     DWORD old_protect;
4876     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4877     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4878 
4879     if (!res) {
4880       if (PrintMiscellaneous && Verbose) {
4881         DWORD err = GetLastError();
4882         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4883       }
4884       // Don't consider this a hard error, on IA32 even if the
4885       // VirtualProtect fails, we should still be able to execute
4886       CloseHandle(hFile);
4887       return base;
4888     }
4889   }
4890 
4891   if (CloseHandle(hFile) == 0) {
4892     if (PrintMiscellaneous && Verbose) {
4893       DWORD err = GetLastError();
4894       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4895     }
4896     return base;
4897   }
4898 
4899   return base;
4900 }
4901 
4902 
4903 // Remap a block of memory.
4904 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4905                           char *addr, size_t bytes, bool read_only,
4906                           bool allow_exec) {
4907   // This OS does not allow existing memory maps to be remapped so we
4908   // have to unmap the memory before we remap it.
4909   if (!os::unmap_memory(addr, bytes)) {
4910     return NULL;
4911   }
4912 
4913   // There is a very small theoretical window between the unmap_memory()
4914   // call above and the map_memory() call below where a thread in native
4915   // code may be able to access an address that is no longer mapped.
4916 
4917   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4918                         read_only, allow_exec);
4919 }
4920 
4921 
4922 // Unmap a block of memory.
4923 // Returns true=success, otherwise false.
4924 
4925 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4926   MEMORY_BASIC_INFORMATION mem_info;
4927   if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
4928     if (PrintMiscellaneous && Verbose) {
4929       DWORD err = GetLastError();
4930       tty->print_cr("VirtualQuery() failed: GetLastError->%ld.", err);
4931     }
4932     return false;
4933   }
4934 
4935   // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
4936   // Instead, executable region was allocated using VirtualAlloc(). See
4937   // pd_map_memory() above.
4938   //
4939   // The following flags should match the 'exec_access' flages used for
4940   // VirtualProtect() in pd_map_memory().
4941   if (mem_info.Protect == PAGE_EXECUTE_READ ||
4942       mem_info.Protect == PAGE_EXECUTE_READWRITE) {
4943     return pd_release_memory(addr, bytes);
4944   }
4945 
4946   BOOL result = UnmapViewOfFile(addr);
4947   if (result == 0) {
4948     if (PrintMiscellaneous && Verbose) {
4949       DWORD err = GetLastError();
4950       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4951     }
4952     return false;
4953   }
4954   return true;
4955 }
4956 
4957 void os::pause() {
4958   char filename[MAX_PATH];
4959   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4960     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4961   } else {
4962     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4963   }
4964 
4965   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4966   if (fd != -1) {
4967     struct stat buf;
4968     ::close(fd);
4969     while (::stat(filename, &buf) == 0) {
4970       Sleep(100);
4971     }
4972   } else {
4973     jio_fprintf(stderr,
4974                 "Could not open pause file '%s', continuing immediately.\n", filename);
4975   }
4976 }
4977 
4978 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4979   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4980 }
4981 
4982 // See the caveats for this class in os_windows.hpp
4983 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4984 // into this method and returns false. If no OS EXCEPTION was raised, returns
4985 // true.
4986 // The callback is supposed to provide the method that should be protected.
4987 //
4988 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4989   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4990   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4991          "crash_protection already set?");
4992 
4993   bool success = true;
4994   __try {
4995     WatcherThread::watcher_thread()->set_crash_protection(this);
4996     cb.call();
4997   } __except(EXCEPTION_EXECUTE_HANDLER) {
4998     // only for protection, nothing to do
4999     success = false;
5000   }
5001   WatcherThread::watcher_thread()->set_crash_protection(NULL);
5002   return success;
5003 }
5004 
5005 // An Event wraps a win32 "CreateEvent" kernel handle.
5006 //
5007 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
5008 //
5009 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
5010 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
5011 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
5012 //     In addition, an unpark() operation might fetch the handle field, but the
5013 //     event could recycle between the fetch and the SetEvent() operation.
5014 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
5015 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
5016 //     on an stale but recycled handle would be harmless, but in practice this might
5017 //     confuse other non-Sun code, so it's not a viable approach.
5018 //
5019 // 2:  Once a win32 event handle is associated with an Event, it remains associated
5020 //     with the Event.  The event handle is never closed.  This could be construed
5021 //     as handle leakage, but only up to the maximum # of threads that have been extant
5022 //     at any one time.  This shouldn't be an issue, as windows platforms typically
5023 //     permit a process to have hundreds of thousands of open handles.
5024 //
5025 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
5026 //     and release unused handles.
5027 //
5028 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
5029 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
5030 //
5031 // 5.  Use an RCU-like mechanism (Read-Copy Update).
5032 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
5033 //
5034 // We use (2).
5035 //
5036 // TODO-FIXME:
5037 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
5038 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
5039 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
5040 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
5041 //     into a single win32 CreateEvent() handle.
5042 //
5043 // Assumption:
5044 //    Only one parker can exist on an event, which is why we allocate
5045 //    them per-thread. Multiple unparkers can coexist.
5046 //
5047 // _Event transitions in park()
5048 //   -1 => -1 : illegal
5049 //    1 =>  0 : pass - return immediately
5050 //    0 => -1 : block; then set _Event to 0 before returning
5051 //
5052 // _Event transitions in unpark()
5053 //    0 => 1 : just return
5054 //    1 => 1 : just return
5055 //   -1 => either 0 or 1; must signal target thread
5056 //         That is, we can safely transition _Event from -1 to either
5057 //         0 or 1.
5058 //
5059 // _Event serves as a restricted-range semaphore.
5060 //   -1 : thread is blocked, i.e. there is a waiter
5061 //    0 : neutral: thread is running or ready,
5062 //        could have been signaled after a wait started
5063 //    1 : signaled - thread is running or ready
5064 //
5065 // Another possible encoding of _Event would be with
5066 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5067 //
5068 
5069 int os::PlatformEvent::park(jlong Millis) {
5070   // Transitions for _Event:
5071   //   -1 => -1 : illegal
5072   //    1 =>  0 : pass - return immediately
5073   //    0 => -1 : block; then set _Event to 0 before returning
5074 
5075   guarantee(_ParkHandle != NULL , "Invariant");
5076   guarantee(Millis > 0          , "Invariant");
5077 
5078   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
5079   // the initial park() operation.
5080   // Consider: use atomic decrement instead of CAS-loop
5081 
5082   int v;
5083   for (;;) {
5084     v = _Event;
5085     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5086   }
5087   guarantee((v == 0) || (v == 1), "invariant");
5088   if (v != 0) return OS_OK;
5089 
5090   // Do this the hard way by blocking ...
5091   // TODO: consider a brief spin here, gated on the success of recent
5092   // spin attempts by this thread.
5093   //
5094   // We decompose long timeouts into series of shorter timed waits.
5095   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5096   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5097   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5098   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5099   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5100   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5101   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5102   // for the already waited time.  This policy does not admit any new outcomes.
5103   // In the future, however, we might want to track the accumulated wait time and
5104   // adjust Millis accordingly if we encounter a spurious wakeup.
5105 
5106   const int MAXTIMEOUT = 0x10000000;
5107   DWORD rv = WAIT_TIMEOUT;
5108   while (_Event < 0 && Millis > 0) {
5109     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5110     if (Millis > MAXTIMEOUT) {
5111       prd = MAXTIMEOUT;
5112     }
5113     rv = ::WaitForSingleObject(_ParkHandle, prd);
5114     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5115     if (rv == WAIT_TIMEOUT) {
5116       Millis -= prd;
5117     }
5118   }
5119   v = _Event;
5120   _Event = 0;
5121   // see comment at end of os::PlatformEvent::park() below:
5122   OrderAccess::fence();
5123   // If we encounter a nearly simultanous timeout expiry and unpark()
5124   // we return OS_OK indicating we awoke via unpark().
5125   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5126   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5127 }
5128 
5129 void os::PlatformEvent::park() {
5130   // Transitions for _Event:
5131   //   -1 => -1 : illegal
5132   //    1 =>  0 : pass - return immediately
5133   //    0 => -1 : block; then set _Event to 0 before returning
5134 
5135   guarantee(_ParkHandle != NULL, "Invariant");
5136   // Invariant: Only the thread associated with the Event/PlatformEvent
5137   // may call park().
5138   // Consider: use atomic decrement instead of CAS-loop
5139   int v;
5140   for (;;) {
5141     v = _Event;
5142     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5143   }
5144   guarantee((v == 0) || (v == 1), "invariant");
5145   if (v != 0) return;
5146 
5147   // Do this the hard way by blocking ...
5148   // TODO: consider a brief spin here, gated on the success of recent
5149   // spin attempts by this thread.
5150   while (_Event < 0) {
5151     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5152     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5153   }
5154 
5155   // Usually we'll find _Event == 0 at this point, but as
5156   // an optional optimization we clear it, just in case can
5157   // multiple unpark() operations drove _Event up to 1.
5158   _Event = 0;
5159   OrderAccess::fence();
5160   guarantee(_Event >= 0, "invariant");
5161 }
5162 
5163 void os::PlatformEvent::unpark() {
5164   guarantee(_ParkHandle != NULL, "Invariant");
5165 
5166   // Transitions for _Event:
5167   //    0 => 1 : just return
5168   //    1 => 1 : just return
5169   //   -1 => either 0 or 1; must signal target thread
5170   //         That is, we can safely transition _Event from -1 to either
5171   //         0 or 1.
5172   // See also: "Semaphores in Plan 9" by Mullender & Cox
5173   //
5174   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5175   // that it will take two back-to-back park() calls for the owning
5176   // thread to block. This has the benefit of forcing a spurious return
5177   // from the first park() call after an unpark() call which will help
5178   // shake out uses of park() and unpark() without condition variables.
5179 
5180   if (Atomic::xchg(1, &_Event) >= 0) return;
5181 
5182   ::SetEvent(_ParkHandle);
5183 }
5184 
5185 
5186 // JSR166
5187 // -------------------------------------------------------
5188 
5189 // The Windows implementation of Park is very straightforward: Basic
5190 // operations on Win32 Events turn out to have the right semantics to
5191 // use them directly. We opportunistically resuse the event inherited
5192 // from Monitor.
5193 
5194 void Parker::park(bool isAbsolute, jlong time) {
5195   guarantee(_ParkEvent != NULL, "invariant");
5196   // First, demultiplex/decode time arguments
5197   if (time < 0) { // don't wait
5198     return;
5199   } else if (time == 0 && !isAbsolute) {
5200     time = INFINITE;
5201   } else if (isAbsolute) {
5202     time -= os::javaTimeMillis(); // convert to relative time
5203     if (time <= 0) {  // already elapsed
5204       return;
5205     }
5206   } else { // relative
5207     time /= 1000000;  // Must coarsen from nanos to millis
5208     if (time == 0) {  // Wait for the minimal time unit if zero
5209       time = 1;
5210     }
5211   }
5212 
5213   JavaThread* thread = (JavaThread*)(Thread::current());
5214   assert(thread->is_Java_thread(), "Must be JavaThread");
5215   JavaThread *jt = (JavaThread *)thread;
5216 
5217   // Don't wait if interrupted or already triggered
5218   if (Thread::is_interrupted(thread, false) ||
5219       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5220     ResetEvent(_ParkEvent);
5221     return;
5222   } else {
5223     ThreadBlockInVM tbivm(jt);
5224     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5225     jt->set_suspend_equivalent();
5226 
5227     WaitForSingleObject(_ParkEvent, time);
5228     ResetEvent(_ParkEvent);
5229 
5230     // If externally suspended while waiting, re-suspend
5231     if (jt->handle_special_suspend_equivalent_condition()) {
5232       jt->java_suspend_self();
5233     }
5234   }
5235 }
5236 
5237 void Parker::unpark() {
5238   guarantee(_ParkEvent != NULL, "invariant");
5239   SetEvent(_ParkEvent);
5240 }
5241 
5242 // Run the specified command in a separate process. Return its exit value,
5243 // or -1 on failure (e.g. can't create a new process).
5244 int os::fork_and_exec(char* cmd) {
5245   STARTUPINFO si;
5246   PROCESS_INFORMATION pi;
5247 
5248   memset(&si, 0, sizeof(si));
5249   si.cb = sizeof(si);
5250   memset(&pi, 0, sizeof(pi));
5251   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5252                             cmd,    // command line
5253                             NULL,   // process security attribute
5254                             NULL,   // thread security attribute
5255                             TRUE,   // inherits system handles
5256                             0,      // no creation flags
5257                             NULL,   // use parent's environment block
5258                             NULL,   // use parent's starting directory
5259                             &si,    // (in) startup information
5260                             &pi);   // (out) process information
5261 
5262   if (rslt) {
5263     // Wait until child process exits.
5264     WaitForSingleObject(pi.hProcess, INFINITE);
5265 
5266     DWORD exit_code;
5267     GetExitCodeProcess(pi.hProcess, &exit_code);
5268 
5269     // Close process and thread handles.
5270     CloseHandle(pi.hProcess);
5271     CloseHandle(pi.hThread);
5272 
5273     return (int)exit_code;
5274   } else {
5275     return -1;
5276   }
5277 }
5278 
5279 //--------------------------------------------------------------------------------------------------
5280 // Non-product code
5281 
5282 static int mallocDebugIntervalCounter = 0;
5283 static int mallocDebugCounter = 0;
5284 bool os::check_heap(bool force) {
5285   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5286   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5287     // Note: HeapValidate executes two hardware breakpoints when it finds something
5288     // wrong; at these points, eax contains the address of the offending block (I think).
5289     // To get to the exlicit error message(s) below, just continue twice.
5290     HANDLE heap = GetProcessHeap();
5291 
5292     // If we fail to lock the heap, then gflags.exe has been used
5293     // or some other special heap flag has been set that prevents
5294     // locking. We don't try to walk a heap we can't lock.
5295     if (HeapLock(heap) != 0) {
5296       PROCESS_HEAP_ENTRY phe;
5297       phe.lpData = NULL;
5298       while (HeapWalk(heap, &phe) != 0) {
5299         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5300             !HeapValidate(heap, 0, phe.lpData)) {
5301           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5302           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5303           fatal("corrupted C heap");
5304         }
5305       }
5306       DWORD err = GetLastError();
5307       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5308         fatal("heap walk aborted with error %d", err);
5309       }
5310       HeapUnlock(heap);
5311     }
5312     mallocDebugIntervalCounter = 0;
5313   }
5314   return true;
5315 }
5316 
5317 
5318 bool os::find(address addr, outputStream* st) {
5319   // Nothing yet
5320   return false;
5321 }
5322 
5323 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5324   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5325 
5326   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5327     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5328     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5329     address addr = (address) exceptionRecord->ExceptionInformation[1];
5330 
5331     if (os::is_memory_serialize_page(thread, addr)) {
5332       return EXCEPTION_CONTINUE_EXECUTION;
5333     }
5334   }
5335 
5336   return EXCEPTION_CONTINUE_SEARCH;
5337 }
5338 
5339 // We don't build a headless jre for Windows
5340 bool os::is_headless_jre() { return false; }
5341 
5342 static jint initSock() {
5343   WSADATA wsadata;
5344 
5345   if (!os::WinSock2Dll::WinSock2Available()) {
5346     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5347                 ::GetLastError());
5348     return JNI_ERR;
5349   }
5350 
5351   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5352     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5353                 ::GetLastError());
5354     return JNI_ERR;
5355   }
5356   return JNI_OK;
5357 }
5358 
5359 struct hostent* os::get_host_by_name(char* name) {
5360   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5361 }
5362 
5363 int os::socket_close(int fd) {
5364   return ::closesocket(fd);
5365 }
5366 
5367 int os::socket(int domain, int type, int protocol) {
5368   return ::socket(domain, type, protocol);
5369 }
5370 
5371 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5372   return ::connect(fd, him, len);
5373 }
5374 
5375 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5376   return ::recv(fd, buf, (int)nBytes, flags);
5377 }
5378 
5379 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5380   return ::send(fd, buf, (int)nBytes, flags);
5381 }
5382 
5383 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5384   return ::send(fd, buf, (int)nBytes, flags);
5385 }
5386 
5387 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5388 #if defined(IA32)
5389   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5390 #elif defined (AMD64)
5391   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5392 #endif
5393 
5394 // returns true if thread could be suspended,
5395 // false otherwise
5396 static bool do_suspend(HANDLE* h) {
5397   if (h != NULL) {
5398     if (SuspendThread(*h) != ~0) {
5399       return true;
5400     }
5401   }
5402   return false;
5403 }
5404 
5405 // resume the thread
5406 // calling resume on an active thread is a no-op
5407 static void do_resume(HANDLE* h) {
5408   if (h != NULL) {
5409     ResumeThread(*h);
5410   }
5411 }
5412 
5413 // retrieve a suspend/resume context capable handle
5414 // from the tid. Caller validates handle return value.
5415 void get_thread_handle_for_extended_context(HANDLE* h,
5416                                             OSThread::thread_id_t tid) {
5417   if (h != NULL) {
5418     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5419   }
5420 }
5421 
5422 // Thread sampling implementation
5423 //
5424 void os::SuspendedThreadTask::internal_do_task() {
5425   CONTEXT    ctxt;
5426   HANDLE     h = NULL;
5427 
5428   // get context capable handle for thread
5429   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5430 
5431   // sanity
5432   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5433     return;
5434   }
5435 
5436   // suspend the thread
5437   if (do_suspend(&h)) {
5438     ctxt.ContextFlags = sampling_context_flags;
5439     // get thread context
5440     GetThreadContext(h, &ctxt);
5441     SuspendedThreadTaskContext context(_thread, &ctxt);
5442     // pass context to Thread Sampling impl
5443     do_task(context);
5444     // resume thread
5445     do_resume(&h);
5446   }
5447 
5448   // close handle
5449   CloseHandle(h);
5450 }
5451 
5452 
5453 // Kernel32 API
5454 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5455 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5456 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5457 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5458 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5459 
5460 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5461 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5462 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5463 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5464 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5465 
5466 
5467 BOOL                        os::Kernel32Dll::initialized = FALSE;
5468 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5469   assert(initialized && _GetLargePageMinimum != NULL,
5470          "GetLargePageMinimumAvailable() not yet called");
5471   return _GetLargePageMinimum();
5472 }
5473 
5474 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5475   if (!initialized) {
5476     initialize();
5477   }
5478   return _GetLargePageMinimum != NULL;
5479 }
5480 
5481 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5482   if (!initialized) {
5483     initialize();
5484   }
5485   return _VirtualAllocExNuma != NULL;
5486 }
5487 
5488 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5489                                            SIZE_T bytes, DWORD flags,
5490                                            DWORD prot, DWORD node) {
5491   assert(initialized && _VirtualAllocExNuma != NULL,
5492          "NUMACallsAvailable() not yet called");
5493 
5494   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5495 }
5496 
5497 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5498   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5499          "NUMACallsAvailable() not yet called");
5500 
5501   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5502 }
5503 
5504 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5505                                                PULONGLONG proc_mask) {
5506   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5507          "NUMACallsAvailable() not yet called");
5508 
5509   return _GetNumaNodeProcessorMask(node, proc_mask);
5510 }
5511 
5512 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5513                                                  ULONG FrameToCapture,
5514                                                  PVOID* BackTrace,
5515                                                  PULONG BackTraceHash) {
5516   if (!initialized) {
5517     initialize();
5518   }
5519 
5520   if (_RtlCaptureStackBackTrace != NULL) {
5521     return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5522                                      BackTrace, BackTraceHash);
5523   } else {
5524     return 0;
5525   }
5526 }
5527 
5528 void os::Kernel32Dll::initializeCommon() {
5529   if (!initialized) {
5530     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5531     assert(handle != NULL, "Just check");
5532     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5533     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5534     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5535     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5536     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5537     initialized = TRUE;
5538   }
5539 }
5540 
5541 
5542 
5543 #ifndef JDK6_OR_EARLIER
5544 
5545 void os::Kernel32Dll::initialize() {
5546   initializeCommon();
5547 }
5548 
5549 
5550 // Kernel32 API
5551 inline BOOL os::Kernel32Dll::SwitchToThread() {
5552   return ::SwitchToThread();
5553 }
5554 
5555 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5556   return true;
5557 }
5558 
5559 // Help tools
5560 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5561   return true;
5562 }
5563 
5564 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5565                                                         DWORD th32ProcessId) {
5566   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5567 }
5568 
5569 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5570                                            LPMODULEENTRY32 lpme) {
5571   return ::Module32First(hSnapshot, lpme);
5572 }
5573 
5574 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5575                                           LPMODULEENTRY32 lpme) {
5576   return ::Module32Next(hSnapshot, lpme);
5577 }
5578 
5579 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5580   ::GetNativeSystemInfo(lpSystemInfo);
5581 }
5582 
5583 // PSAPI API
5584 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5585                                              HMODULE *lpModule, DWORD cb,
5586                                              LPDWORD lpcbNeeded) {
5587   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5588 }
5589 
5590 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5591                                                HMODULE hModule,
5592                                                LPTSTR lpFilename,
5593                                                DWORD nSize) {
5594   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5595 }
5596 
5597 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5598                                                HMODULE hModule,
5599                                                LPMODULEINFO lpmodinfo,
5600                                                DWORD cb) {
5601   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5602 }
5603 
5604 inline BOOL os::PSApiDll::PSApiAvailable() {
5605   return true;
5606 }
5607 
5608 
5609 // WinSock2 API
5610 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5611                                         LPWSADATA lpWSAData) {
5612   return ::WSAStartup(wVersionRequested, lpWSAData);
5613 }
5614 
5615 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5616   return ::gethostbyname(name);
5617 }
5618 
5619 inline BOOL os::WinSock2Dll::WinSock2Available() {
5620   return true;
5621 }
5622 
5623 // Advapi API
5624 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5625                                                    BOOL DisableAllPrivileges,
5626                                                    PTOKEN_PRIVILEGES NewState,
5627                                                    DWORD BufferLength,
5628                                                    PTOKEN_PRIVILEGES PreviousState,
5629                                                    PDWORD ReturnLength) {
5630   return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5631                                  BufferLength, PreviousState, ReturnLength);
5632 }
5633 
5634 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5635                                               DWORD DesiredAccess,
5636                                               PHANDLE TokenHandle) {
5637   return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5638 }
5639 
5640 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5641                                                   LPCTSTR lpName,
5642                                                   PLUID lpLuid) {
5643   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5644 }
5645 
5646 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5647   return true;
5648 }
5649 
5650 void* os::get_default_process_handle() {
5651   return (void*)GetModuleHandle(NULL);
5652 }
5653 
5654 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5655 // which is used to find statically linked in agents.
5656 // Additionally for windows, takes into account __stdcall names.
5657 // Parameters:
5658 //            sym_name: Symbol in library we are looking for
5659 //            lib_name: Name of library to look in, NULL for shared libs.
5660 //            is_absolute_path == true if lib_name is absolute path to agent
5661 //                                     such as "C:/a/b/L.dll"
5662 //            == false if only the base name of the library is passed in
5663 //               such as "L"
5664 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5665                                     bool is_absolute_path) {
5666   char *agent_entry_name;
5667   size_t len;
5668   size_t name_len;
5669   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5670   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5671   const char *start;
5672 
5673   if (lib_name != NULL) {
5674     len = name_len = strlen(lib_name);
5675     if (is_absolute_path) {
5676       // Need to strip path, prefix and suffix
5677       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5678         lib_name = ++start;
5679       } else {
5680         // Need to check for drive prefix
5681         if ((start = strchr(lib_name, ':')) != NULL) {
5682           lib_name = ++start;
5683         }
5684       }
5685       if (len <= (prefix_len + suffix_len)) {
5686         return NULL;
5687       }
5688       lib_name += prefix_len;
5689       name_len = strlen(lib_name) - suffix_len;
5690     }
5691   }
5692   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5693   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5694   if (agent_entry_name == NULL) {
5695     return NULL;
5696   }
5697   if (lib_name != NULL) {
5698     const char *p = strrchr(sym_name, '@');
5699     if (p != NULL && p != sym_name) {
5700       // sym_name == _Agent_OnLoad@XX
5701       strncpy(agent_entry_name, sym_name, (p - sym_name));
5702       agent_entry_name[(p-sym_name)] = '\0';
5703       // agent_entry_name == _Agent_OnLoad
5704       strcat(agent_entry_name, "_");
5705       strncat(agent_entry_name, lib_name, name_len);
5706       strcat(agent_entry_name, p);
5707       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5708     } else {
5709       strcpy(agent_entry_name, sym_name);
5710       strcat(agent_entry_name, "_");
5711       strncat(agent_entry_name, lib_name, name_len);
5712     }
5713   } else {
5714     strcpy(agent_entry_name, sym_name);
5715   }
5716   return agent_entry_name;
5717 }
5718 
5719 #else
5720 // Kernel32 API
5721 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5722 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5723 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5724 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5725 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5726 
5727 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5728 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5729 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5730 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5731 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5732 
5733 void os::Kernel32Dll::initialize() {
5734   if (!initialized) {
5735     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5736     assert(handle != NULL, "Just check");
5737 
5738     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5739     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5740       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5741     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5742     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5743     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5744     initializeCommon();  // resolve the functions that always need resolving
5745 
5746     initialized = TRUE;
5747   }
5748 }
5749 
5750 BOOL os::Kernel32Dll::SwitchToThread() {
5751   assert(initialized && _SwitchToThread != NULL,
5752          "SwitchToThreadAvailable() not yet called");
5753   return _SwitchToThread();
5754 }
5755 
5756 
5757 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5758   if (!initialized) {
5759     initialize();
5760   }
5761   return _SwitchToThread != NULL;
5762 }
5763 
5764 // Help tools
5765 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5766   if (!initialized) {
5767     initialize();
5768   }
5769   return _CreateToolhelp32Snapshot != NULL &&
5770          _Module32First != NULL &&
5771          _Module32Next != NULL;
5772 }
5773 
5774 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5775                                                  DWORD th32ProcessId) {
5776   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5777          "HelpToolsAvailable() not yet called");
5778 
5779   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5780 }
5781 
5782 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5783   assert(initialized && _Module32First != NULL,
5784          "HelpToolsAvailable() not yet called");
5785 
5786   return _Module32First(hSnapshot, lpme);
5787 }
5788 
5789 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5790                                           LPMODULEENTRY32 lpme) {
5791   assert(initialized && _Module32Next != NULL,
5792          "HelpToolsAvailable() not yet called");
5793 
5794   return _Module32Next(hSnapshot, lpme);
5795 }
5796 
5797 
5798 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5799   if (!initialized) {
5800     initialize();
5801   }
5802   return _GetNativeSystemInfo != NULL;
5803 }
5804 
5805 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5806   assert(initialized && _GetNativeSystemInfo != NULL,
5807          "GetNativeSystemInfoAvailable() not yet called");
5808 
5809   _GetNativeSystemInfo(lpSystemInfo);
5810 }
5811 
5812 // PSAPI API
5813 
5814 
5815 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5816 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5817 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5818 
5819 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5820 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5821 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5822 BOOL                    os::PSApiDll::initialized = FALSE;
5823 
5824 void os::PSApiDll::initialize() {
5825   if (!initialized) {
5826     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5827     if (handle != NULL) {
5828       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5829                                                                     "EnumProcessModules");
5830       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5831                                                                       "GetModuleFileNameExA");
5832       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5833                                                                         "GetModuleInformation");
5834     }
5835     initialized = TRUE;
5836   }
5837 }
5838 
5839 
5840 
5841 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5842                                       DWORD cb, LPDWORD lpcbNeeded) {
5843   assert(initialized && _EnumProcessModules != NULL,
5844          "PSApiAvailable() not yet called");
5845   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5846 }
5847 
5848 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5849                                         LPTSTR lpFilename, DWORD nSize) {
5850   assert(initialized && _GetModuleFileNameEx != NULL,
5851          "PSApiAvailable() not yet called");
5852   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5853 }
5854 
5855 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5856                                         LPMODULEINFO lpmodinfo, DWORD cb) {
5857   assert(initialized && _GetModuleInformation != NULL,
5858          "PSApiAvailable() not yet called");
5859   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5860 }
5861 
5862 BOOL os::PSApiDll::PSApiAvailable() {
5863   if (!initialized) {
5864     initialize();
5865   }
5866   return _EnumProcessModules != NULL &&
5867     _GetModuleFileNameEx != NULL &&
5868     _GetModuleInformation != NULL;
5869 }
5870 
5871 
5872 // WinSock2 API
5873 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5874 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5875 
5876 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5877 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5878 BOOL             os::WinSock2Dll::initialized = FALSE;
5879 
5880 void os::WinSock2Dll::initialize() {
5881   if (!initialized) {
5882     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5883     if (handle != NULL) {
5884       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5885       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5886     }
5887     initialized = TRUE;
5888   }
5889 }
5890 
5891 
5892 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5893   assert(initialized && _WSAStartup != NULL,
5894          "WinSock2Available() not yet called");
5895   return _WSAStartup(wVersionRequested, lpWSAData);
5896 }
5897 
5898 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5899   assert(initialized && _gethostbyname != NULL,
5900          "WinSock2Available() not yet called");
5901   return _gethostbyname(name);
5902 }
5903 
5904 BOOL os::WinSock2Dll::WinSock2Available() {
5905   if (!initialized) {
5906     initialize();
5907   }
5908   return _WSAStartup != NULL &&
5909     _gethostbyname != NULL;
5910 }
5911 
5912 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5913 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5914 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5915 
5916 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5917 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5918 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5919 BOOL                     os::Advapi32Dll::initialized = FALSE;
5920 
5921 void os::Advapi32Dll::initialize() {
5922   if (!initialized) {
5923     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5924     if (handle != NULL) {
5925       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5926                                                                           "AdjustTokenPrivileges");
5927       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5928                                                                 "OpenProcessToken");
5929       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5930                                                                         "LookupPrivilegeValueA");
5931     }
5932     initialized = TRUE;
5933   }
5934 }
5935 
5936 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5937                                             BOOL DisableAllPrivileges,
5938                                             PTOKEN_PRIVILEGES NewState,
5939                                             DWORD BufferLength,
5940                                             PTOKEN_PRIVILEGES PreviousState,
5941                                             PDWORD ReturnLength) {
5942   assert(initialized && _AdjustTokenPrivileges != NULL,
5943          "AdvapiAvailable() not yet called");
5944   return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5945                                 BufferLength, PreviousState, ReturnLength);
5946 }
5947 
5948 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5949                                        DWORD DesiredAccess,
5950                                        PHANDLE TokenHandle) {
5951   assert(initialized && _OpenProcessToken != NULL,
5952          "AdvapiAvailable() not yet called");
5953   return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5954 }
5955 
5956 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5957                                            LPCTSTR lpName, PLUID lpLuid) {
5958   assert(initialized && _LookupPrivilegeValue != NULL,
5959          "AdvapiAvailable() not yet called");
5960   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5961 }
5962 
5963 BOOL os::Advapi32Dll::AdvapiAvailable() {
5964   if (!initialized) {
5965     initialize();
5966   }
5967   return _AdjustTokenPrivileges != NULL &&
5968     _OpenProcessToken != NULL &&
5969     _LookupPrivilegeValue != NULL;
5970 }
5971 
5972 #endif
5973 
5974 #ifndef PRODUCT
5975 
5976 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5977 // contiguous memory block at a particular address.
5978 // The test first tries to find a good approximate address to allocate at by using the same
5979 // method to allocate some memory at any address. The test then tries to allocate memory in
5980 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5981 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5982 // the previously allocated memory is available for allocation. The only actual failure
5983 // that is reported is when the test tries to allocate at a particular location but gets a
5984 // different valid one. A NULL return value at this point is not considered an error but may
5985 // be legitimate.
5986 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5987 void TestReserveMemorySpecial_test() {
5988   if (!UseLargePages) {
5989     if (VerboseInternalVMTests) {
5990       gclog_or_tty->print("Skipping test because large pages are disabled");
5991     }
5992     return;
5993   }
5994   // save current value of globals
5995   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5996   bool old_use_numa_interleaving = UseNUMAInterleaving;
5997 
5998   // set globals to make sure we hit the correct code path
5999   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
6000 
6001   // do an allocation at an address selected by the OS to get a good one.
6002   const size_t large_allocation_size = os::large_page_size() * 4;
6003   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
6004   if (result == NULL) {
6005     if (VerboseInternalVMTests) {
6006       gclog_or_tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
6007                           large_allocation_size);
6008     }
6009   } else {
6010     os::release_memory_special(result, large_allocation_size);
6011 
6012     // allocate another page within the recently allocated memory area which seems to be a good location. At least
6013     // we managed to get it once.
6014     const size_t expected_allocation_size = os::large_page_size();
6015     char* expected_location = result + os::large_page_size();
6016     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
6017     if (actual_location == NULL) {
6018       if (VerboseInternalVMTests) {
6019         gclog_or_tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
6020                             expected_location, large_allocation_size);
6021       }
6022     } else {
6023       // release memory
6024       os::release_memory_special(actual_location, expected_allocation_size);
6025       // only now check, after releasing any memory to avoid any leaks.
6026       assert(actual_location == expected_location,
6027              "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
6028              expected_location, expected_allocation_size, actual_location);
6029     }
6030   }
6031 
6032   // restore globals
6033   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
6034   UseNUMAInterleaving = old_use_numa_interleaving;
6035 }
6036 #endif // PRODUCT