1 /* 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include <sys/types.h> 27 28 #include "precompiled.hpp" 29 #include "asm/assembler.hpp" 30 #include "asm/assembler.inline.hpp" 31 #include "interpreter/interpreter.hpp" 32 33 #include "compiler/disassembler.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "nativeInst_aarch64.hpp" 36 #include "opto/compile.hpp" 37 #include "opto/node.hpp" 38 #include "runtime/biasedLocking.hpp" 39 #include "runtime/icache.hpp" 40 #include "runtime/interfaceSupport.hpp" 41 #include "runtime/sharedRuntime.hpp" 42 43 #if INCLUDE_ALL_GCS 44 #include "gc/g1/g1CollectedHeap.inline.hpp" 45 #include "gc/g1/g1SATBCardTableModRefBS.hpp" 46 #include "gc/g1/heapRegion.hpp" 47 #endif 48 49 #ifdef PRODUCT 50 #define BLOCK_COMMENT(str) /* nothing */ 51 #define STOP(error) stop(error) 52 #else 53 #define BLOCK_COMMENT(str) block_comment(str) 54 #define STOP(error) block_comment(error); stop(error) 55 #endif 56 57 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 58 59 // Patch any kind of instruction; there may be several instructions. 60 // Return the total length (in bytes) of the instructions. 61 int MacroAssembler::pd_patch_instruction_size(address branch, address target) { 62 int instructions = 1; 63 assert((uint64_t)target < (1ul << 48), "48-bit overflow in address constant"); 64 long offset = (target - branch) >> 2; 65 unsigned insn = *(unsigned*)branch; 66 if ((Instruction_aarch64::extract(insn, 29, 24) & 0b111011) == 0b011000) { 67 // Load register (literal) 68 Instruction_aarch64::spatch(branch, 23, 5, offset); 69 } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) { 70 // Unconditional branch (immediate) 71 Instruction_aarch64::spatch(branch, 25, 0, offset); 72 } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) { 73 // Conditional branch (immediate) 74 Instruction_aarch64::spatch(branch, 23, 5, offset); 75 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) { 76 // Compare & branch (immediate) 77 Instruction_aarch64::spatch(branch, 23, 5, offset); 78 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) { 79 // Test & branch (immediate) 80 Instruction_aarch64::spatch(branch, 18, 5, offset); 81 } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) { 82 // PC-rel. addressing 83 offset = target-branch; 84 int shift = Instruction_aarch64::extract(insn, 31, 31); 85 if (shift) { 86 u_int64_t dest = (u_int64_t)target; 87 uint64_t pc_page = (uint64_t)branch >> 12; 88 uint64_t adr_page = (uint64_t)target >> 12; 89 unsigned offset_lo = dest & 0xfff; 90 offset = adr_page - pc_page; 91 92 // We handle 3 types of PC relative addressing 93 // 1 - adrp Rx, target_page 94 // ldr/str Ry, [Rx, #offset_in_page] 95 // 2 - adrp Rx, target_page 96 // add Ry, Rx, #offset_in_page 97 // 3 - adrp Rx, target_page (page aligned reloc, offset == 0) 98 // In the first 2 cases we must check that Rx is the same in the adrp and the 99 // subsequent ldr/str or add instruction. Otherwise we could accidentally end 100 // up treating a type 3 relocation as a type 1 or 2 just because it happened 101 // to be followed by a random unrelated ldr/str or add instruction. 102 // 103 // In the case of a type 3 relocation, we know that these are only generated 104 // for the safepoint polling page, or for the card type byte map base so we 105 // assert as much and of course that the offset is 0. 106 // 107 unsigned insn2 = ((unsigned*)branch)[1]; 108 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 109 Instruction_aarch64::extract(insn, 4, 0) == 110 Instruction_aarch64::extract(insn2, 9, 5)) { 111 // Load/store register (unsigned immediate) 112 unsigned size = Instruction_aarch64::extract(insn2, 31, 30); 113 Instruction_aarch64::patch(branch + sizeof (unsigned), 114 21, 10, offset_lo >> size); 115 guarantee(((dest >> size) << size) == dest, "misaligned target"); 116 instructions = 2; 117 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 118 Instruction_aarch64::extract(insn, 4, 0) == 119 Instruction_aarch64::extract(insn2, 4, 0)) { 120 // add (immediate) 121 Instruction_aarch64::patch(branch + sizeof (unsigned), 122 21, 10, offset_lo); 123 instructions = 2; 124 } else { 125 assert((jbyte *)target == 126 ((CardTableModRefBS*)(Universe::heap()->barrier_set()))->byte_map_base || 127 target == StubRoutines::crc_table_addr() || 128 (address)target == os::get_polling_page(), 129 "adrp must be polling page or byte map base"); 130 assert(offset_lo == 0, "offset must be 0 for polling page or byte map base"); 131 } 132 } 133 int offset_lo = offset & 3; 134 offset >>= 2; 135 Instruction_aarch64::spatch(branch, 23, 5, offset); 136 Instruction_aarch64::patch(branch, 30, 29, offset_lo); 137 } else if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010100) { 138 u_int64_t dest = (u_int64_t)target; 139 // Move wide constant 140 assert(nativeInstruction_at(branch+4)->is_movk(), "wrong insns in patch"); 141 assert(nativeInstruction_at(branch+8)->is_movk(), "wrong insns in patch"); 142 Instruction_aarch64::patch(branch, 20, 5, dest & 0xffff); 143 Instruction_aarch64::patch(branch+4, 20, 5, (dest >>= 16) & 0xffff); 144 Instruction_aarch64::patch(branch+8, 20, 5, (dest >>= 16) & 0xffff); 145 assert(target_addr_for_insn(branch) == target, "should be"); 146 instructions = 3; 147 } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 && 148 Instruction_aarch64::extract(insn, 4, 0) == 0b11111) { 149 // nothing to do 150 assert(target == 0, "did not expect to relocate target for polling page load"); 151 } else { 152 ShouldNotReachHere(); 153 } 154 return instructions * NativeInstruction::instruction_size; 155 } 156 157 int MacroAssembler::patch_oop(address insn_addr, address o) { 158 int instructions; 159 unsigned insn = *(unsigned*)insn_addr; 160 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 161 162 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 163 // narrow OOPs by setting the upper 16 bits in the first 164 // instruction. 165 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 166 // Move narrow OOP 167 narrowOop n = oopDesc::encode_heap_oop((oop)o); 168 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 169 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 170 instructions = 2; 171 } else { 172 // Move wide OOP 173 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 174 uintptr_t dest = (uintptr_t)o; 175 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 176 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 177 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 178 instructions = 3; 179 } 180 return instructions * NativeInstruction::instruction_size; 181 } 182 183 address MacroAssembler::target_addr_for_insn(address insn_addr, unsigned insn) { 184 long offset = 0; 185 if ((Instruction_aarch64::extract(insn, 29, 24) & 0b011011) == 0b00011000) { 186 // Load register (literal) 187 offset = Instruction_aarch64::sextract(insn, 23, 5); 188 return address(((uint64_t)insn_addr + (offset << 2))); 189 } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) { 190 // Unconditional branch (immediate) 191 offset = Instruction_aarch64::sextract(insn, 25, 0); 192 } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) { 193 // Conditional branch (immediate) 194 offset = Instruction_aarch64::sextract(insn, 23, 5); 195 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) { 196 // Compare & branch (immediate) 197 offset = Instruction_aarch64::sextract(insn, 23, 5); 198 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) { 199 // Test & branch (immediate) 200 offset = Instruction_aarch64::sextract(insn, 18, 5); 201 } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) { 202 // PC-rel. addressing 203 offset = Instruction_aarch64::extract(insn, 30, 29); 204 offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2; 205 int shift = Instruction_aarch64::extract(insn, 31, 31) ? 12 : 0; 206 if (shift) { 207 offset <<= shift; 208 uint64_t target_page = ((uint64_t)insn_addr) + offset; 209 target_page &= ((uint64_t)-1) << shift; 210 // Return the target address for the following sequences 211 // 1 - adrp Rx, target_page 212 // ldr/str Ry, [Rx, #offset_in_page] 213 // 2 - adrp Rx, target_page ] 214 // add Ry, Rx, #offset_in_page 215 // 3 - adrp Rx, target_page (page aligned reloc, offset == 0) 216 // 217 // In the first two cases we check that the register is the same and 218 // return the target_page + the offset within the page. 219 // Otherwise we assume it is a page aligned relocation and return 220 // the target page only. The only cases this is generated is for 221 // the safepoint polling page or for the card table byte map base so 222 // we assert as much. 223 // 224 unsigned insn2 = ((unsigned*)insn_addr)[1]; 225 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 226 Instruction_aarch64::extract(insn, 4, 0) == 227 Instruction_aarch64::extract(insn2, 9, 5)) { 228 // Load/store register (unsigned immediate) 229 unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 230 unsigned int size = Instruction_aarch64::extract(insn2, 31, 30); 231 return address(target_page + (byte_offset << size)); 232 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 233 Instruction_aarch64::extract(insn, 4, 0) == 234 Instruction_aarch64::extract(insn2, 4, 0)) { 235 // add (immediate) 236 unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 237 return address(target_page + byte_offset); 238 } else { 239 assert((jbyte *)target_page == 240 ((CardTableModRefBS*)(Universe::heap()->barrier_set()))->byte_map_base || 241 (address)target_page == os::get_polling_page(), 242 "adrp must be polling page or byte map base"); 243 return (address)target_page; 244 } 245 } else { 246 ShouldNotReachHere(); 247 } 248 } else if (Instruction_aarch64::extract(insn, 31, 23) == 0b110100101) { 249 u_int32_t *insns = (u_int32_t *)insn_addr; 250 // Move wide constant: movz, movk, movk. See movptr(). 251 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 252 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 253 return address(u_int64_t(Instruction_aarch64::extract(insns[0], 20, 5)) 254 + (u_int64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 255 + (u_int64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 256 } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 && 257 Instruction_aarch64::extract(insn, 4, 0) == 0b11111) { 258 return 0; 259 } else { 260 ShouldNotReachHere(); 261 } 262 return address(((uint64_t)insn_addr + (offset << 2))); 263 } 264 265 void MacroAssembler::serialize_memory(Register thread, Register tmp) { 266 dsb(Assembler::SY); 267 } 268 269 270 void MacroAssembler::reset_last_Java_frame(bool clear_fp, 271 bool clear_pc) { 272 // we must set sp to zero to clear frame 273 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 274 // must clear fp, so that compiled frames are not confused; it is 275 // possible that we need it only for debugging 276 if (clear_fp) { 277 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 278 } 279 280 if (clear_pc) { 281 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 282 } 283 } 284 285 // Calls to C land 286 // 287 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 288 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 289 // has to be reset to 0. This is required to allow proper stack traversal. 290 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 291 Register last_java_fp, 292 Register last_java_pc, 293 Register scratch) { 294 295 if (last_java_pc->is_valid()) { 296 str(last_java_pc, Address(rthread, 297 JavaThread::frame_anchor_offset() 298 + JavaFrameAnchor::last_Java_pc_offset())); 299 } 300 301 // determine last_java_sp register 302 if (last_java_sp == sp) { 303 mov(scratch, sp); 304 last_java_sp = scratch; 305 } else if (!last_java_sp->is_valid()) { 306 last_java_sp = esp; 307 } 308 309 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 310 311 // last_java_fp is optional 312 if (last_java_fp->is_valid()) { 313 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 314 } 315 } 316 317 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 318 Register last_java_fp, 319 address last_java_pc, 320 Register scratch) { 321 if (last_java_pc != NULL) { 322 adr(scratch, last_java_pc); 323 } else { 324 // FIXME: This is almost never correct. We should delete all 325 // cases of set_last_Java_frame with last_java_pc=NULL and use the 326 // correct return address instead. 327 adr(scratch, pc()); 328 } 329 330 str(scratch, Address(rthread, 331 JavaThread::frame_anchor_offset() 332 + JavaFrameAnchor::last_Java_pc_offset())); 333 334 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 335 } 336 337 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 338 Register last_java_fp, 339 Label &L, 340 Register scratch) { 341 if (L.is_bound()) { 342 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 343 } else { 344 InstructionMark im(this); 345 L.add_patch_at(code(), locator()); 346 set_last_Java_frame(last_java_sp, last_java_fp, (address)NULL, scratch); 347 } 348 } 349 350 void MacroAssembler::far_call(Address entry, CodeBuffer *cbuf, Register tmp) { 351 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 352 assert(CodeCache::find_blob(entry.target()) != NULL, 353 "destination of far call not found in code cache"); 354 if (far_branches()) { 355 unsigned long offset; 356 // We can use ADRP here because we know that the total size of 357 // the code cache cannot exceed 2Gb. 358 adrp(tmp, entry, offset); 359 add(tmp, tmp, offset); 360 if (cbuf) cbuf->set_insts_mark(); 361 blr(tmp); 362 } else { 363 if (cbuf) cbuf->set_insts_mark(); 364 bl(entry); 365 } 366 } 367 368 void MacroAssembler::far_jump(Address entry, CodeBuffer *cbuf, Register tmp) { 369 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 370 assert(CodeCache::find_blob(entry.target()) != NULL, 371 "destination of far call not found in code cache"); 372 if (far_branches()) { 373 unsigned long offset; 374 // We can use ADRP here because we know that the total size of 375 // the code cache cannot exceed 2Gb. 376 adrp(tmp, entry, offset); 377 add(tmp, tmp, offset); 378 if (cbuf) cbuf->set_insts_mark(); 379 br(tmp); 380 } else { 381 if (cbuf) cbuf->set_insts_mark(); 382 b(entry); 383 } 384 } 385 386 int MacroAssembler::biased_locking_enter(Register lock_reg, 387 Register obj_reg, 388 Register swap_reg, 389 Register tmp_reg, 390 bool swap_reg_contains_mark, 391 Label& done, 392 Label* slow_case, 393 BiasedLockingCounters* counters) { 394 assert(UseBiasedLocking, "why call this otherwise?"); 395 assert_different_registers(lock_reg, obj_reg, swap_reg); 396 397 if (PrintBiasedLockingStatistics && counters == NULL) 398 counters = BiasedLocking::counters(); 399 400 bool need_tmp_reg = false; 401 if (tmp_reg == noreg) { 402 tmp_reg = rscratch2; 403 } 404 assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, rscratch1); 405 assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout"); 406 Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes()); 407 Address klass_addr (obj_reg, oopDesc::klass_offset_in_bytes()); 408 Address saved_mark_addr(lock_reg, 0); 409 410 // Biased locking 411 // See whether the lock is currently biased toward our thread and 412 // whether the epoch is still valid 413 // Note that the runtime guarantees sufficient alignment of JavaThread 414 // pointers to allow age to be placed into low bits 415 // First check to see whether biasing is even enabled for this object 416 Label cas_label; 417 int null_check_offset = -1; 418 if (!swap_reg_contains_mark) { 419 null_check_offset = offset(); 420 ldr(swap_reg, mark_addr); 421 } 422 andr(tmp_reg, swap_reg, markOopDesc::biased_lock_mask_in_place); 423 cmp(tmp_reg, markOopDesc::biased_lock_pattern); 424 br(Assembler::NE, cas_label); 425 // The bias pattern is present in the object's header. Need to check 426 // whether the bias owner and the epoch are both still current. 427 load_prototype_header(tmp_reg, obj_reg); 428 orr(tmp_reg, tmp_reg, rthread); 429 eor(tmp_reg, swap_reg, tmp_reg); 430 andr(tmp_reg, tmp_reg, ~((int) markOopDesc::age_mask_in_place)); 431 if (counters != NULL) { 432 Label around; 433 cbnz(tmp_reg, around); 434 atomic_incw(Address((address)counters->biased_lock_entry_count_addr()), tmp_reg, rscratch1); 435 b(done); 436 bind(around); 437 } else { 438 cbz(tmp_reg, done); 439 } 440 441 Label try_revoke_bias; 442 Label try_rebias; 443 444 // At this point we know that the header has the bias pattern and 445 // that we are not the bias owner in the current epoch. We need to 446 // figure out more details about the state of the header in order to 447 // know what operations can be legally performed on the object's 448 // header. 449 450 // If the low three bits in the xor result aren't clear, that means 451 // the prototype header is no longer biased and we have to revoke 452 // the bias on this object. 453 andr(rscratch1, tmp_reg, markOopDesc::biased_lock_mask_in_place); 454 cbnz(rscratch1, try_revoke_bias); 455 456 // Biasing is still enabled for this data type. See whether the 457 // epoch of the current bias is still valid, meaning that the epoch 458 // bits of the mark word are equal to the epoch bits of the 459 // prototype header. (Note that the prototype header's epoch bits 460 // only change at a safepoint.) If not, attempt to rebias the object 461 // toward the current thread. Note that we must be absolutely sure 462 // that the current epoch is invalid in order to do this because 463 // otherwise the manipulations it performs on the mark word are 464 // illegal. 465 andr(rscratch1, tmp_reg, markOopDesc::epoch_mask_in_place); 466 cbnz(rscratch1, try_rebias); 467 468 // The epoch of the current bias is still valid but we know nothing 469 // about the owner; it might be set or it might be clear. Try to 470 // acquire the bias of the object using an atomic operation. If this 471 // fails we will go in to the runtime to revoke the object's bias. 472 // Note that we first construct the presumed unbiased header so we 473 // don't accidentally blow away another thread's valid bias. 474 { 475 Label here; 476 mov(rscratch1, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place); 477 andr(swap_reg, swap_reg, rscratch1); 478 orr(tmp_reg, swap_reg, rthread); 479 cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case); 480 // If the biasing toward our thread failed, this means that 481 // another thread succeeded in biasing it toward itself and we 482 // need to revoke that bias. The revocation will occur in the 483 // interpreter runtime in the slow case. 484 bind(here); 485 if (counters != NULL) { 486 atomic_incw(Address((address)counters->anonymously_biased_lock_entry_count_addr()), 487 tmp_reg, rscratch1); 488 } 489 } 490 b(done); 491 492 bind(try_rebias); 493 // At this point we know the epoch has expired, meaning that the 494 // current "bias owner", if any, is actually invalid. Under these 495 // circumstances _only_, we are allowed to use the current header's 496 // value as the comparison value when doing the cas to acquire the 497 // bias in the current epoch. In other words, we allow transfer of 498 // the bias from one thread to another directly in this situation. 499 // 500 // FIXME: due to a lack of registers we currently blow away the age 501 // bits in this situation. Should attempt to preserve them. 502 { 503 Label here; 504 load_prototype_header(tmp_reg, obj_reg); 505 orr(tmp_reg, rthread, tmp_reg); 506 cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case); 507 // If the biasing toward our thread failed, then another thread 508 // succeeded in biasing it toward itself and we need to revoke that 509 // bias. The revocation will occur in the runtime in the slow case. 510 bind(here); 511 if (counters != NULL) { 512 atomic_incw(Address((address)counters->rebiased_lock_entry_count_addr()), 513 tmp_reg, rscratch1); 514 } 515 } 516 b(done); 517 518 bind(try_revoke_bias); 519 // The prototype mark in the klass doesn't have the bias bit set any 520 // more, indicating that objects of this data type are not supposed 521 // to be biased any more. We are going to try to reset the mark of 522 // this object to the prototype value and fall through to the 523 // CAS-based locking scheme. Note that if our CAS fails, it means 524 // that another thread raced us for the privilege of revoking the 525 // bias of this particular object, so it's okay to continue in the 526 // normal locking code. 527 // 528 // FIXME: due to a lack of registers we currently blow away the age 529 // bits in this situation. Should attempt to preserve them. 530 { 531 Label here, nope; 532 load_prototype_header(tmp_reg, obj_reg); 533 cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, &nope); 534 bind(here); 535 536 // Fall through to the normal CAS-based lock, because no matter what 537 // the result of the above CAS, some thread must have succeeded in 538 // removing the bias bit from the object's header. 539 if (counters != NULL) { 540 atomic_incw(Address((address)counters->revoked_lock_entry_count_addr()), tmp_reg, 541 rscratch1); 542 } 543 bind(nope); 544 } 545 546 bind(cas_label); 547 548 return null_check_offset; 549 } 550 551 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) { 552 assert(UseBiasedLocking, "why call this otherwise?"); 553 554 // Check for biased locking unlock case, which is a no-op 555 // Note: we do not have to check the thread ID for two reasons. 556 // First, the interpreter checks for IllegalMonitorStateException at 557 // a higher level. Second, if the bias was revoked while we held the 558 // lock, the object could not be rebiased toward another thread, so 559 // the bias bit would be clear. 560 ldr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 561 andr(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place); 562 cmp(temp_reg, markOopDesc::biased_lock_pattern); 563 br(Assembler::EQ, done); 564 } 565 566 567 // added to make this compile 568 569 REGISTER_DEFINITION(Register, noreg); 570 571 static void pass_arg0(MacroAssembler* masm, Register arg) { 572 if (c_rarg0 != arg ) { 573 masm->mov(c_rarg0, arg); 574 } 575 } 576 577 static void pass_arg1(MacroAssembler* masm, Register arg) { 578 if (c_rarg1 != arg ) { 579 masm->mov(c_rarg1, arg); 580 } 581 } 582 583 static void pass_arg2(MacroAssembler* masm, Register arg) { 584 if (c_rarg2 != arg ) { 585 masm->mov(c_rarg2, arg); 586 } 587 } 588 589 static void pass_arg3(MacroAssembler* masm, Register arg) { 590 if (c_rarg3 != arg ) { 591 masm->mov(c_rarg3, arg); 592 } 593 } 594 595 void MacroAssembler::call_VM_base(Register oop_result, 596 Register java_thread, 597 Register last_java_sp, 598 address entry_point, 599 int number_of_arguments, 600 bool check_exceptions) { 601 // determine java_thread register 602 if (!java_thread->is_valid()) { 603 java_thread = rthread; 604 } 605 606 // determine last_java_sp register 607 if (!last_java_sp->is_valid()) { 608 last_java_sp = esp; 609 } 610 611 // debugging support 612 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 613 assert(java_thread == rthread, "unexpected register"); 614 #ifdef ASSERT 615 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 616 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 617 #endif // ASSERT 618 619 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 620 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 621 622 // push java thread (becomes first argument of C function) 623 624 mov(c_rarg0, java_thread); 625 626 // set last Java frame before call 627 assert(last_java_sp != rfp, "can't use rfp"); 628 629 Label l; 630 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 631 632 // do the call, remove parameters 633 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 634 635 // reset last Java frame 636 // Only interpreter should have to clear fp 637 reset_last_Java_frame(true, true); 638 639 // C++ interp handles this in the interpreter 640 check_and_handle_popframe(java_thread); 641 check_and_handle_earlyret(java_thread); 642 643 if (check_exceptions) { 644 // check for pending exceptions (java_thread is set upon return) 645 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 646 Label ok; 647 cbz(rscratch1, ok); 648 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 649 br(rscratch1); 650 bind(ok); 651 } 652 653 // get oop result if there is one and reset the value in the thread 654 if (oop_result->is_valid()) { 655 get_vm_result(oop_result, java_thread); 656 } 657 } 658 659 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 660 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 661 } 662 663 // Maybe emit a call via a trampoline. If the code cache is small 664 // trampolines won't be emitted. 665 666 void MacroAssembler::trampoline_call(Address entry, CodeBuffer *cbuf) { 667 assert(entry.rspec().type() == relocInfo::runtime_call_type 668 || entry.rspec().type() == relocInfo::opt_virtual_call_type 669 || entry.rspec().type() == relocInfo::static_call_type 670 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 671 672 unsigned int start_offset = offset(); 673 if (far_branches() && !Compile::current()->in_scratch_emit_size()) { 674 emit_trampoline_stub(offset(), entry.target()); 675 } 676 677 if (cbuf) cbuf->set_insts_mark(); 678 relocate(entry.rspec()); 679 if (Assembler::reachable_from_branch_at(pc(), entry.target())) { 680 bl(entry.target()); 681 } else { 682 bl(pc()); 683 } 684 } 685 686 687 // Emit a trampoline stub for a call to a target which is too far away. 688 // 689 // code sequences: 690 // 691 // call-site: 692 // branch-and-link to <destination> or <trampoline stub> 693 // 694 // Related trampoline stub for this call site in the stub section: 695 // load the call target from the constant pool 696 // branch (LR still points to the call site above) 697 698 void MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 699 address dest) { 700 address stub = start_a_stub(Compile::MAX_stubs_size/2); 701 if (stub == NULL) { 702 start_a_stub(Compile::MAX_stubs_size/2); 703 Compile::current()->env()->record_out_of_memory_failure(); 704 return; 705 } 706 707 // Create a trampoline stub relocation which relates this trampoline stub 708 // with the call instruction at insts_call_instruction_offset in the 709 // instructions code-section. 710 align(wordSize); 711 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 712 + insts_call_instruction_offset)); 713 const int stub_start_offset = offset(); 714 715 // Now, create the trampoline stub's code: 716 // - load the call 717 // - call 718 Label target; 719 ldr(rscratch1, target); 720 br(rscratch1); 721 bind(target); 722 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 723 "should be"); 724 emit_int64((int64_t)dest); 725 726 const address stub_start_addr = addr_at(stub_start_offset); 727 728 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 729 730 end_a_stub(); 731 } 732 733 void MacroAssembler::ic_call(address entry) { 734 RelocationHolder rh = virtual_call_Relocation::spec(pc()); 735 // address const_ptr = long_constant((jlong)Universe::non_oop_word()); 736 // unsigned long offset; 737 // ldr_constant(rscratch2, const_ptr); 738 movptr(rscratch2, (uintptr_t)Universe::non_oop_word()); 739 trampoline_call(Address(entry, rh)); 740 } 741 742 // Implementation of call_VM versions 743 744 void MacroAssembler::call_VM(Register oop_result, 745 address entry_point, 746 bool check_exceptions) { 747 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 748 } 749 750 void MacroAssembler::call_VM(Register oop_result, 751 address entry_point, 752 Register arg_1, 753 bool check_exceptions) { 754 pass_arg1(this, arg_1); 755 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 756 } 757 758 void MacroAssembler::call_VM(Register oop_result, 759 address entry_point, 760 Register arg_1, 761 Register arg_2, 762 bool check_exceptions) { 763 assert(arg_1 != c_rarg2, "smashed arg"); 764 pass_arg2(this, arg_2); 765 pass_arg1(this, arg_1); 766 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 767 } 768 769 void MacroAssembler::call_VM(Register oop_result, 770 address entry_point, 771 Register arg_1, 772 Register arg_2, 773 Register arg_3, 774 bool check_exceptions) { 775 assert(arg_1 != c_rarg3, "smashed arg"); 776 assert(arg_2 != c_rarg3, "smashed arg"); 777 pass_arg3(this, arg_3); 778 779 assert(arg_1 != c_rarg2, "smashed arg"); 780 pass_arg2(this, arg_2); 781 782 pass_arg1(this, arg_1); 783 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 784 } 785 786 void MacroAssembler::call_VM(Register oop_result, 787 Register last_java_sp, 788 address entry_point, 789 int number_of_arguments, 790 bool check_exceptions) { 791 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 792 } 793 794 void MacroAssembler::call_VM(Register oop_result, 795 Register last_java_sp, 796 address entry_point, 797 Register arg_1, 798 bool check_exceptions) { 799 pass_arg1(this, arg_1); 800 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 801 } 802 803 void MacroAssembler::call_VM(Register oop_result, 804 Register last_java_sp, 805 address entry_point, 806 Register arg_1, 807 Register arg_2, 808 bool check_exceptions) { 809 810 assert(arg_1 != c_rarg2, "smashed arg"); 811 pass_arg2(this, arg_2); 812 pass_arg1(this, arg_1); 813 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 814 } 815 816 void MacroAssembler::call_VM(Register oop_result, 817 Register last_java_sp, 818 address entry_point, 819 Register arg_1, 820 Register arg_2, 821 Register arg_3, 822 bool check_exceptions) { 823 assert(arg_1 != c_rarg3, "smashed arg"); 824 assert(arg_2 != c_rarg3, "smashed arg"); 825 pass_arg3(this, arg_3); 826 assert(arg_1 != c_rarg2, "smashed arg"); 827 pass_arg2(this, arg_2); 828 pass_arg1(this, arg_1); 829 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 830 } 831 832 833 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 834 ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 835 str(zr, Address(java_thread, JavaThread::vm_result_offset())); 836 verify_oop(oop_result, "broken oop in call_VM_base"); 837 } 838 839 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 840 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 841 str(zr, Address(java_thread, JavaThread::vm_result_2_offset())); 842 } 843 844 void MacroAssembler::align(int modulus) { 845 while (offset() % modulus != 0) nop(); 846 } 847 848 // these are no-ops overridden by InterpreterMacroAssembler 849 850 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 851 852 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 853 854 855 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr, 856 Register tmp, 857 int offset) { 858 intptr_t value = *delayed_value_addr; 859 if (value != 0) 860 return RegisterOrConstant(value + offset); 861 862 // load indirectly to solve generation ordering problem 863 ldr(tmp, ExternalAddress((address) delayed_value_addr)); 864 865 if (offset != 0) 866 add(tmp, tmp, offset); 867 868 return RegisterOrConstant(tmp); 869 } 870 871 872 void MacroAssembler:: notify(int type) { 873 if (type == bytecode_start) { 874 // set_last_Java_frame(esp, rfp, (address)NULL); 875 Assembler:: notify(type); 876 // reset_last_Java_frame(true, false); 877 } 878 else 879 Assembler:: notify(type); 880 } 881 882 // Look up the method for a megamorphic invokeinterface call. 883 // The target method is determined by <intf_klass, itable_index>. 884 // The receiver klass is in recv_klass. 885 // On success, the result will be in method_result, and execution falls through. 886 // On failure, execution transfers to the given label. 887 void MacroAssembler::lookup_interface_method(Register recv_klass, 888 Register intf_klass, 889 RegisterOrConstant itable_index, 890 Register method_result, 891 Register scan_temp, 892 Label& L_no_such_interface) { 893 assert_different_registers(recv_klass, intf_klass, method_result, scan_temp); 894 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 895 "caller must use same register for non-constant itable index as for method"); 896 897 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 898 int vtable_base = InstanceKlass::vtable_start_offset() * wordSize; 899 int itentry_off = itableMethodEntry::method_offset_in_bytes(); 900 int scan_step = itableOffsetEntry::size() * wordSize; 901 int vte_size = vtableEntry::size() * wordSize; 902 assert(vte_size == wordSize, "else adjust times_vte_scale"); 903 904 ldrw(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize)); 905 906 // %%% Could store the aligned, prescaled offset in the klassoop. 907 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 908 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 909 add(scan_temp, scan_temp, vtable_base); 910 if (HeapWordsPerLong > 1) { 911 // Round up to align_object_offset boundary 912 // see code for instanceKlass::start_of_itable! 913 round_to(scan_temp, BytesPerLong); 914 } 915 916 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 917 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 918 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 919 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 920 if (itentry_off) 921 add(recv_klass, recv_klass, itentry_off); 922 923 // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) { 924 // if (scan->interface() == intf) { 925 // result = (klass + scan->offset() + itable_index); 926 // } 927 // } 928 Label search, found_method; 929 930 for (int peel = 1; peel >= 0; peel--) { 931 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes())); 932 cmp(intf_klass, method_result); 933 934 if (peel) { 935 br(Assembler::EQ, found_method); 936 } else { 937 br(Assembler::NE, search); 938 // (invert the test to fall through to found_method...) 939 } 940 941 if (!peel) break; 942 943 bind(search); 944 945 // Check that the previous entry is non-null. A null entry means that 946 // the receiver class doesn't implement the interface, and wasn't the 947 // same as when the caller was compiled. 948 cbz(method_result, L_no_such_interface); 949 add(scan_temp, scan_temp, scan_step); 950 } 951 952 bind(found_method); 953 954 // Got a hit. 955 ldr(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes())); 956 ldr(method_result, Address(recv_klass, scan_temp)); 957 } 958 959 // virtual method calling 960 void MacroAssembler::lookup_virtual_method(Register recv_klass, 961 RegisterOrConstant vtable_index, 962 Register method_result) { 963 const int base = InstanceKlass::vtable_start_offset() * wordSize; 964 assert(vtableEntry::size() * wordSize == 8, 965 "adjust the scaling in the code below"); 966 int vtable_offset_in_bytes = base + vtableEntry::method_offset_in_bytes(); 967 968 if (vtable_index.is_register()) { 969 lea(method_result, Address(recv_klass, 970 vtable_index.as_register(), 971 Address::lsl(LogBytesPerWord))); 972 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 973 } else { 974 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 975 ldr(method_result, Address(recv_klass, vtable_offset_in_bytes)); 976 } 977 } 978 979 void MacroAssembler::check_klass_subtype(Register sub_klass, 980 Register super_klass, 981 Register temp_reg, 982 Label& L_success) { 983 Label L_failure; 984 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, NULL); 985 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL); 986 bind(L_failure); 987 } 988 989 990 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 991 Register super_klass, 992 Register temp_reg, 993 Label* L_success, 994 Label* L_failure, 995 Label* L_slow_path, 996 RegisterOrConstant super_check_offset) { 997 assert_different_registers(sub_klass, super_klass, temp_reg); 998 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 999 if (super_check_offset.is_register()) { 1000 assert_different_registers(sub_klass, super_klass, 1001 super_check_offset.as_register()); 1002 } else if (must_load_sco) { 1003 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1004 } 1005 1006 Label L_fallthrough; 1007 int label_nulls = 0; 1008 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } 1009 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } 1010 if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; } 1011 assert(label_nulls <= 1, "at most one NULL in the batch"); 1012 1013 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1014 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1015 Address super_check_offset_addr(super_klass, sco_offset); 1016 1017 // Hacked jmp, which may only be used just before L_fallthrough. 1018 #define final_jmp(label) \ 1019 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1020 else b(label) /*omit semi*/ 1021 1022 // If the pointers are equal, we are done (e.g., String[] elements). 1023 // This self-check enables sharing of secondary supertype arrays among 1024 // non-primary types such as array-of-interface. Otherwise, each such 1025 // type would need its own customized SSA. 1026 // We move this check to the front of the fast path because many 1027 // type checks are in fact trivially successful in this manner, 1028 // so we get a nicely predicted branch right at the start of the check. 1029 cmp(sub_klass, super_klass); 1030 br(Assembler::EQ, *L_success); 1031 1032 // Check the supertype display: 1033 if (must_load_sco) { 1034 ldrw(temp_reg, super_check_offset_addr); 1035 super_check_offset = RegisterOrConstant(temp_reg); 1036 } 1037 Address super_check_addr(sub_klass, super_check_offset); 1038 ldr(rscratch1, super_check_addr); 1039 cmp(super_klass, rscratch1); // load displayed supertype 1040 1041 // This check has worked decisively for primary supers. 1042 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1043 // (Secondary supers are interfaces and very deeply nested subtypes.) 1044 // This works in the same check above because of a tricky aliasing 1045 // between the super_cache and the primary super display elements. 1046 // (The 'super_check_addr' can address either, as the case requires.) 1047 // Note that the cache is updated below if it does not help us find 1048 // what we need immediately. 1049 // So if it was a primary super, we can just fail immediately. 1050 // Otherwise, it's the slow path for us (no success at this point). 1051 1052 if (super_check_offset.is_register()) { 1053 br(Assembler::EQ, *L_success); 1054 cmp(super_check_offset.as_register(), sc_offset); 1055 if (L_failure == &L_fallthrough) { 1056 br(Assembler::EQ, *L_slow_path); 1057 } else { 1058 br(Assembler::NE, *L_failure); 1059 final_jmp(*L_slow_path); 1060 } 1061 } else if (super_check_offset.as_constant() == sc_offset) { 1062 // Need a slow path; fast failure is impossible. 1063 if (L_slow_path == &L_fallthrough) { 1064 br(Assembler::EQ, *L_success); 1065 } else { 1066 br(Assembler::NE, *L_slow_path); 1067 final_jmp(*L_success); 1068 } 1069 } else { 1070 // No slow path; it's a fast decision. 1071 if (L_failure == &L_fallthrough) { 1072 br(Assembler::EQ, *L_success); 1073 } else { 1074 br(Assembler::NE, *L_failure); 1075 final_jmp(*L_success); 1076 } 1077 } 1078 1079 bind(L_fallthrough); 1080 1081 #undef final_jmp 1082 } 1083 1084 // These two are taken from x86, but they look generally useful 1085 1086 // scans count pointer sized words at [addr] for occurence of value, 1087 // generic 1088 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1089 Register scratch) { 1090 Label Lloop, Lexit; 1091 cbz(count, Lexit); 1092 bind(Lloop); 1093 ldr(scratch, post(addr, wordSize)); 1094 cmp(value, scratch); 1095 br(EQ, Lexit); 1096 sub(count, count, 1); 1097 cbnz(count, Lloop); 1098 bind(Lexit); 1099 } 1100 1101 // scans count 4 byte words at [addr] for occurence of value, 1102 // generic 1103 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1104 Register scratch) { 1105 Label Lloop, Lexit; 1106 cbz(count, Lexit); 1107 bind(Lloop); 1108 ldrw(scratch, post(addr, wordSize)); 1109 cmpw(value, scratch); 1110 br(EQ, Lexit); 1111 sub(count, count, 1); 1112 cbnz(count, Lloop); 1113 bind(Lexit); 1114 } 1115 1116 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1117 Register super_klass, 1118 Register temp_reg, 1119 Register temp2_reg, 1120 Label* L_success, 1121 Label* L_failure, 1122 bool set_cond_codes) { 1123 assert_different_registers(sub_klass, super_klass, temp_reg); 1124 if (temp2_reg != noreg) 1125 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1126 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1127 1128 Label L_fallthrough; 1129 int label_nulls = 0; 1130 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } 1131 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } 1132 assert(label_nulls <= 1, "at most one NULL in the batch"); 1133 1134 // a couple of useful fields in sub_klass: 1135 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1136 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1137 Address secondary_supers_addr(sub_klass, ss_offset); 1138 Address super_cache_addr( sub_klass, sc_offset); 1139 1140 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1141 1142 // Do a linear scan of the secondary super-klass chain. 1143 // This code is rarely used, so simplicity is a virtue here. 1144 // The repne_scan instruction uses fixed registers, which we must spill. 1145 // Don't worry too much about pre-existing connections with the input regs. 1146 1147 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1148 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1149 1150 // Get super_klass value into r0 (even if it was in r5 or r2). 1151 RegSet pushed_registers; 1152 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1153 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1154 1155 if (super_klass != r0 || UseCompressedOops) { 1156 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1157 } 1158 1159 push(pushed_registers, sp); 1160 1161 #ifndef PRODUCT 1162 mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr); 1163 Address pst_counter_addr(rscratch2); 1164 ldr(rscratch1, pst_counter_addr); 1165 add(rscratch1, rscratch1, 1); 1166 str(rscratch1, pst_counter_addr); 1167 #endif //PRODUCT 1168 1169 // We will consult the secondary-super array. 1170 ldr(r5, secondary_supers_addr); 1171 // Load the array length. 1172 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1173 // Skip to start of data. 1174 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1175 1176 cmp(sp, zr); // Clear Z flag; SP is never zero 1177 // Scan R2 words at [R5] for an occurrence of R0. 1178 // Set NZ/Z based on last compare. 1179 repne_scan(r5, r0, r2, rscratch1); 1180 1181 // Unspill the temp. registers: 1182 pop(pushed_registers, sp); 1183 1184 br(Assembler::NE, *L_failure); 1185 1186 // Success. Cache the super we found and proceed in triumph. 1187 str(super_klass, super_cache_addr); 1188 1189 if (L_success != &L_fallthrough) { 1190 b(*L_success); 1191 } 1192 1193 #undef IS_A_TEMP 1194 1195 bind(L_fallthrough); 1196 } 1197 1198 1199 void MacroAssembler::verify_oop(Register reg, const char* s) { 1200 if (!VerifyOops) return; 1201 1202 // Pass register number to verify_oop_subroutine 1203 const char* b = NULL; 1204 { 1205 ResourceMark rm; 1206 stringStream ss; 1207 ss.print("verify_oop: %s: %s", reg->name(), s); 1208 b = code_string(ss.as_string()); 1209 } 1210 BLOCK_COMMENT("verify_oop {"); 1211 1212 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1213 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1214 1215 mov(r0, reg); 1216 mov(rscratch1, (address)b); 1217 1218 // call indirectly to solve generation ordering problem 1219 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1220 ldr(rscratch2, Address(rscratch2)); 1221 blr(rscratch2); 1222 1223 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1224 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1225 1226 BLOCK_COMMENT("} verify_oop"); 1227 } 1228 1229 void MacroAssembler::verify_oop_addr(Address addr, const char* s) { 1230 if (!VerifyOops) return; 1231 1232 const char* b = NULL; 1233 { 1234 ResourceMark rm; 1235 stringStream ss; 1236 ss.print("verify_oop_addr: %s", s); 1237 b = code_string(ss.as_string()); 1238 } 1239 BLOCK_COMMENT("verify_oop_addr {"); 1240 1241 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1242 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1243 1244 // addr may contain sp so we will have to adjust it based on the 1245 // pushes that we just did. 1246 if (addr.uses(sp)) { 1247 lea(r0, addr); 1248 ldr(r0, Address(r0, 4 * wordSize)); 1249 } else { 1250 ldr(r0, addr); 1251 } 1252 mov(rscratch1, (address)b); 1253 1254 // call indirectly to solve generation ordering problem 1255 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1256 ldr(rscratch2, Address(rscratch2)); 1257 blr(rscratch2); 1258 1259 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1260 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1261 1262 BLOCK_COMMENT("} verify_oop_addr"); 1263 } 1264 1265 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 1266 int extra_slot_offset) { 1267 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 1268 int stackElementSize = Interpreter::stackElementSize; 1269 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 1270 #ifdef ASSERT 1271 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 1272 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 1273 #endif 1274 if (arg_slot.is_constant()) { 1275 return Address(esp, arg_slot.as_constant() * stackElementSize 1276 + offset); 1277 } else { 1278 add(rscratch1, esp, arg_slot.as_register(), 1279 ext::uxtx, exact_log2(stackElementSize)); 1280 return Address(rscratch1, offset); 1281 } 1282 } 1283 1284 void MacroAssembler::call_VM_leaf_base(address entry_point, 1285 int number_of_arguments, 1286 Label *retaddr) { 1287 call_VM_leaf_base1(entry_point, number_of_arguments, 0, ret_type_integral, retaddr); 1288 } 1289 1290 void MacroAssembler::call_VM_leaf_base1(address entry_point, 1291 int number_of_gp_arguments, 1292 int number_of_fp_arguments, 1293 ret_type type, 1294 Label *retaddr) { 1295 Label E, L; 1296 1297 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 1298 1299 // We add 1 to number_of_arguments because the thread in arg0 is 1300 // not counted 1301 mov(rscratch1, entry_point); 1302 blrt(rscratch1, number_of_gp_arguments + 1, number_of_fp_arguments, type); 1303 if (retaddr) 1304 bind(*retaddr); 1305 1306 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 1307 maybe_isb(); 1308 } 1309 1310 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1311 call_VM_leaf_base(entry_point, number_of_arguments); 1312 } 1313 1314 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1315 pass_arg0(this, arg_0); 1316 call_VM_leaf_base(entry_point, 1); 1317 } 1318 1319 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1320 pass_arg0(this, arg_0); 1321 pass_arg1(this, arg_1); 1322 call_VM_leaf_base(entry_point, 2); 1323 } 1324 1325 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 1326 Register arg_1, Register arg_2) { 1327 pass_arg0(this, arg_0); 1328 pass_arg1(this, arg_1); 1329 pass_arg2(this, arg_2); 1330 call_VM_leaf_base(entry_point, 3); 1331 } 1332 1333 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1334 pass_arg0(this, arg_0); 1335 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1336 } 1337 1338 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1339 1340 assert(arg_0 != c_rarg1, "smashed arg"); 1341 pass_arg1(this, arg_1); 1342 pass_arg0(this, arg_0); 1343 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1344 } 1345 1346 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1347 assert(arg_0 != c_rarg2, "smashed arg"); 1348 assert(arg_1 != c_rarg2, "smashed arg"); 1349 pass_arg2(this, arg_2); 1350 assert(arg_0 != c_rarg1, "smashed arg"); 1351 pass_arg1(this, arg_1); 1352 pass_arg0(this, arg_0); 1353 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1354 } 1355 1356 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1357 assert(arg_0 != c_rarg3, "smashed arg"); 1358 assert(arg_1 != c_rarg3, "smashed arg"); 1359 assert(arg_2 != c_rarg3, "smashed arg"); 1360 pass_arg3(this, arg_3); 1361 assert(arg_0 != c_rarg2, "smashed arg"); 1362 assert(arg_1 != c_rarg2, "smashed arg"); 1363 pass_arg2(this, arg_2); 1364 assert(arg_0 != c_rarg1, "smashed arg"); 1365 pass_arg1(this, arg_1); 1366 pass_arg0(this, arg_0); 1367 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1368 } 1369 1370 void MacroAssembler::null_check(Register reg, int offset) { 1371 if (needs_explicit_null_check(offset)) { 1372 // provoke OS NULL exception if reg = NULL by 1373 // accessing M[reg] w/o changing any registers 1374 // NOTE: this is plenty to provoke a segv 1375 ldr(zr, Address(reg)); 1376 } else { 1377 // nothing to do, (later) access of M[reg + offset] 1378 // will provoke OS NULL exception if reg = NULL 1379 } 1380 } 1381 1382 // MacroAssembler protected routines needed to implement 1383 // public methods 1384 1385 void MacroAssembler::mov(Register r, Address dest) { 1386 code_section()->relocate(pc(), dest.rspec()); 1387 u_int64_t imm64 = (u_int64_t)dest.target(); 1388 movptr(r, imm64); 1389 } 1390 1391 // Move a constant pointer into r. In AArch64 mode the virtual 1392 // address space is 48 bits in size, so we only need three 1393 // instructions to create a patchable instruction sequence that can 1394 // reach anywhere. 1395 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 1396 #ifndef PRODUCT 1397 { 1398 char buffer[64]; 1399 snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64); 1400 block_comment(buffer); 1401 } 1402 #endif 1403 assert(imm64 < (1ul << 48), "48-bit overflow in address constant"); 1404 movz(r, imm64 & 0xffff); 1405 imm64 >>= 16; 1406 movk(r, imm64 & 0xffff, 16); 1407 imm64 >>= 16; 1408 movk(r, imm64 & 0xffff, 32); 1409 } 1410 1411 void MacroAssembler::mov_immediate64(Register dst, u_int64_t imm64) 1412 { 1413 #ifndef PRODUCT 1414 { 1415 char buffer[64]; 1416 snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64); 1417 block_comment(buffer); 1418 } 1419 #endif 1420 if (operand_valid_for_logical_immediate(false, imm64)) { 1421 orr(dst, zr, imm64); 1422 } else { 1423 // we can use a combination of MOVZ or MOVN with 1424 // MOVK to build up the constant 1425 u_int64_t imm_h[4]; 1426 int zero_count = 0; 1427 int neg_count = 0; 1428 int i; 1429 for (i = 0; i < 4; i++) { 1430 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 1431 if (imm_h[i] == 0) { 1432 zero_count++; 1433 } else if (imm_h[i] == 0xffffL) { 1434 neg_count++; 1435 } 1436 } 1437 if (zero_count == 4) { 1438 // one MOVZ will do 1439 movz(dst, 0); 1440 } else if (neg_count == 4) { 1441 // one MOVN will do 1442 movn(dst, 0); 1443 } else if (zero_count == 3) { 1444 for (i = 0; i < 4; i++) { 1445 if (imm_h[i] != 0L) { 1446 movz(dst, (u_int32_t)imm_h[i], (i << 4)); 1447 break; 1448 } 1449 } 1450 } else if (neg_count == 3) { 1451 // one MOVN will do 1452 for (int i = 0; i < 4; i++) { 1453 if (imm_h[i] != 0xffffL) { 1454 movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1455 break; 1456 } 1457 } 1458 } else if (zero_count == 2) { 1459 // one MOVZ and one MOVK will do 1460 for (i = 0; i < 3; i++) { 1461 if (imm_h[i] != 0L) { 1462 movz(dst, (u_int32_t)imm_h[i], (i << 4)); 1463 i++; 1464 break; 1465 } 1466 } 1467 for (;i < 4; i++) { 1468 if (imm_h[i] != 0L) { 1469 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1470 } 1471 } 1472 } else if (neg_count == 2) { 1473 // one MOVN and one MOVK will do 1474 for (i = 0; i < 4; i++) { 1475 if (imm_h[i] != 0xffffL) { 1476 movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1477 i++; 1478 break; 1479 } 1480 } 1481 for (;i < 4; i++) { 1482 if (imm_h[i] != 0xffffL) { 1483 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1484 } 1485 } 1486 } else if (zero_count == 1) { 1487 // one MOVZ and two MOVKs will do 1488 for (i = 0; i < 4; i++) { 1489 if (imm_h[i] != 0L) { 1490 movz(dst, (u_int32_t)imm_h[i], (i << 4)); 1491 i++; 1492 break; 1493 } 1494 } 1495 for (;i < 4; i++) { 1496 if (imm_h[i] != 0x0L) { 1497 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1498 } 1499 } 1500 } else if (neg_count == 1) { 1501 // one MOVN and two MOVKs will do 1502 for (i = 0; i < 4; i++) { 1503 if (imm_h[i] != 0xffffL) { 1504 movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1505 i++; 1506 break; 1507 } 1508 } 1509 for (;i < 4; i++) { 1510 if (imm_h[i] != 0xffffL) { 1511 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1512 } 1513 } 1514 } else { 1515 // use a MOVZ and 3 MOVKs (makes it easier to debug) 1516 movz(dst, (u_int32_t)imm_h[0], 0); 1517 for (i = 1; i < 4; i++) { 1518 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1519 } 1520 } 1521 } 1522 } 1523 1524 void MacroAssembler::mov_immediate32(Register dst, u_int32_t imm32) 1525 { 1526 #ifndef PRODUCT 1527 { 1528 char buffer[64]; 1529 snprintf(buffer, sizeof(buffer), "0x%"PRIX32, imm32); 1530 block_comment(buffer); 1531 } 1532 #endif 1533 if (operand_valid_for_logical_immediate(true, imm32)) { 1534 orrw(dst, zr, imm32); 1535 } else { 1536 // we can use MOVZ, MOVN or two calls to MOVK to build up the 1537 // constant 1538 u_int32_t imm_h[2]; 1539 imm_h[0] = imm32 & 0xffff; 1540 imm_h[1] = ((imm32 >> 16) & 0xffff); 1541 if (imm_h[0] == 0) { 1542 movzw(dst, imm_h[1], 16); 1543 } else if (imm_h[0] == 0xffff) { 1544 movnw(dst, imm_h[1] ^ 0xffff, 16); 1545 } else if (imm_h[1] == 0) { 1546 movzw(dst, imm_h[0], 0); 1547 } else if (imm_h[1] == 0xffff) { 1548 movnw(dst, imm_h[0] ^ 0xffff, 0); 1549 } else { 1550 // use a MOVZ and MOVK (makes it easier to debug) 1551 movzw(dst, imm_h[0], 0); 1552 movkw(dst, imm_h[1], 16); 1553 } 1554 } 1555 } 1556 1557 // Form an address from base + offset in Rd. Rd may or may 1558 // not actually be used: you must use the Address that is returned. 1559 // It is up to you to ensure that the shift provided matches the size 1560 // of your data. 1561 Address MacroAssembler::form_address(Register Rd, Register base, long byte_offset, int shift) { 1562 if (Address::offset_ok_for_immed(byte_offset, shift)) 1563 // It fits; no need for any heroics 1564 return Address(base, byte_offset); 1565 1566 // Don't do anything clever with negative or misaligned offsets 1567 unsigned mask = (1 << shift) - 1; 1568 if (byte_offset < 0 || byte_offset & mask) { 1569 mov(Rd, byte_offset); 1570 add(Rd, base, Rd); 1571 return Address(Rd); 1572 } 1573 1574 // See if we can do this with two 12-bit offsets 1575 { 1576 unsigned long word_offset = byte_offset >> shift; 1577 unsigned long masked_offset = word_offset & 0xfff000; 1578 if (Address::offset_ok_for_immed(word_offset - masked_offset) 1579 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 1580 add(Rd, base, masked_offset << shift); 1581 word_offset -= masked_offset; 1582 return Address(Rd, word_offset << shift); 1583 } 1584 } 1585 1586 // Do it the hard way 1587 mov(Rd, byte_offset); 1588 add(Rd, base, Rd); 1589 return Address(Rd); 1590 } 1591 1592 void MacroAssembler::atomic_incw(Register counter_addr, Register tmp) { 1593 Label retry_load; 1594 bind(retry_load); 1595 // flush and load exclusive from the memory location 1596 ldxrw(tmp, counter_addr); 1597 addw(tmp, tmp, 1); 1598 // if we store+flush with no intervening write tmp wil be zero 1599 stxrw(tmp, tmp, counter_addr); 1600 cbnzw(tmp, retry_load); 1601 } 1602 1603 1604 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 1605 bool want_remainder, Register scratch) 1606 { 1607 // Full implementation of Java idiv and irem. The function 1608 // returns the (pc) offset of the div instruction - may be needed 1609 // for implicit exceptions. 1610 // 1611 // constraint : ra/rb =/= scratch 1612 // normal case 1613 // 1614 // input : ra: dividend 1615 // rb: divisor 1616 // 1617 // result: either 1618 // quotient (= ra idiv rb) 1619 // remainder (= ra irem rb) 1620 1621 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 1622 1623 int idivl_offset = offset(); 1624 if (! want_remainder) { 1625 sdivw(result, ra, rb); 1626 } else { 1627 sdivw(scratch, ra, rb); 1628 Assembler::msubw(result, scratch, rb, ra); 1629 } 1630 1631 return idivl_offset; 1632 } 1633 1634 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 1635 bool want_remainder, Register scratch) 1636 { 1637 // Full implementation of Java ldiv and lrem. The function 1638 // returns the (pc) offset of the div instruction - may be needed 1639 // for implicit exceptions. 1640 // 1641 // constraint : ra/rb =/= scratch 1642 // normal case 1643 // 1644 // input : ra: dividend 1645 // rb: divisor 1646 // 1647 // result: either 1648 // quotient (= ra idiv rb) 1649 // remainder (= ra irem rb) 1650 1651 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 1652 1653 int idivq_offset = offset(); 1654 if (! want_remainder) { 1655 sdiv(result, ra, rb); 1656 } else { 1657 sdiv(scratch, ra, rb); 1658 Assembler::msub(result, scratch, rb, ra); 1659 } 1660 1661 return idivq_offset; 1662 } 1663 1664 // MacroAssembler routines found actually to be needed 1665 1666 void MacroAssembler::push(Register src) 1667 { 1668 str(src, Address(pre(esp, -1 * wordSize))); 1669 } 1670 1671 void MacroAssembler::pop(Register dst) 1672 { 1673 ldr(dst, Address(post(esp, 1 * wordSize))); 1674 } 1675 1676 // Note: load_unsigned_short used to be called load_unsigned_word. 1677 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 1678 int off = offset(); 1679 ldrh(dst, src); 1680 return off; 1681 } 1682 1683 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 1684 int off = offset(); 1685 ldrb(dst, src); 1686 return off; 1687 } 1688 1689 int MacroAssembler::load_signed_short(Register dst, Address src) { 1690 int off = offset(); 1691 ldrsh(dst, src); 1692 return off; 1693 } 1694 1695 int MacroAssembler::load_signed_byte(Register dst, Address src) { 1696 int off = offset(); 1697 ldrsb(dst, src); 1698 return off; 1699 } 1700 1701 int MacroAssembler::load_signed_short32(Register dst, Address src) { 1702 int off = offset(); 1703 ldrshw(dst, src); 1704 return off; 1705 } 1706 1707 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 1708 int off = offset(); 1709 ldrsbw(dst, src); 1710 return off; 1711 } 1712 1713 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 1714 switch (size_in_bytes) { 1715 case 8: ldr(dst, src); break; 1716 case 4: ldrw(dst, src); break; 1717 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 1718 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 1719 default: ShouldNotReachHere(); 1720 } 1721 } 1722 1723 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 1724 switch (size_in_bytes) { 1725 case 8: str(src, dst); break; 1726 case 4: strw(src, dst); break; 1727 case 2: strh(src, dst); break; 1728 case 1: strb(src, dst); break; 1729 default: ShouldNotReachHere(); 1730 } 1731 } 1732 1733 void MacroAssembler::decrementw(Register reg, int value) 1734 { 1735 if (value < 0) { incrementw(reg, -value); return; } 1736 if (value == 0) { return; } 1737 if (value < (1 << 12)) { subw(reg, reg, value); return; } 1738 /* else */ { 1739 guarantee(reg != rscratch2, "invalid dst for register decrement"); 1740 movw(rscratch2, (unsigned)value); 1741 subw(reg, reg, rscratch2); 1742 } 1743 } 1744 1745 void MacroAssembler::decrement(Register reg, int value) 1746 { 1747 if (value < 0) { increment(reg, -value); return; } 1748 if (value == 0) { return; } 1749 if (value < (1 << 12)) { sub(reg, reg, value); return; } 1750 /* else */ { 1751 assert(reg != rscratch2, "invalid dst for register decrement"); 1752 mov(rscratch2, (unsigned long)value); 1753 sub(reg, reg, rscratch2); 1754 } 1755 } 1756 1757 void MacroAssembler::decrementw(Address dst, int value) 1758 { 1759 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 1760 ldrw(rscratch1, dst); 1761 decrementw(rscratch1, value); 1762 strw(rscratch1, dst); 1763 } 1764 1765 void MacroAssembler::decrement(Address dst, int value) 1766 { 1767 assert(!dst.uses(rscratch1), "invalid address for decrement"); 1768 ldr(rscratch1, dst); 1769 decrement(rscratch1, value); 1770 str(rscratch1, dst); 1771 } 1772 1773 void MacroAssembler::incrementw(Register reg, int value) 1774 { 1775 if (value < 0) { decrementw(reg, -value); return; } 1776 if (value == 0) { return; } 1777 if (value < (1 << 12)) { addw(reg, reg, value); return; } 1778 /* else */ { 1779 assert(reg != rscratch2, "invalid dst for register increment"); 1780 movw(rscratch2, (unsigned)value); 1781 addw(reg, reg, rscratch2); 1782 } 1783 } 1784 1785 void MacroAssembler::increment(Register reg, int value) 1786 { 1787 if (value < 0) { decrement(reg, -value); return; } 1788 if (value == 0) { return; } 1789 if (value < (1 << 12)) { add(reg, reg, value); return; } 1790 /* else */ { 1791 assert(reg != rscratch2, "invalid dst for register increment"); 1792 movw(rscratch2, (unsigned)value); 1793 add(reg, reg, rscratch2); 1794 } 1795 } 1796 1797 void MacroAssembler::incrementw(Address dst, int value) 1798 { 1799 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 1800 ldrw(rscratch1, dst); 1801 incrementw(rscratch1, value); 1802 strw(rscratch1, dst); 1803 } 1804 1805 void MacroAssembler::increment(Address dst, int value) 1806 { 1807 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 1808 ldr(rscratch1, dst); 1809 increment(rscratch1, value); 1810 str(rscratch1, dst); 1811 } 1812 1813 1814 void MacroAssembler::pusha() { 1815 push(0x7fffffff, sp); 1816 } 1817 1818 void MacroAssembler::popa() { 1819 pop(0x7fffffff, sp); 1820 } 1821 1822 // Push lots of registers in the bit set supplied. Don't push sp. 1823 // Return the number of words pushed 1824 int MacroAssembler::push(unsigned int bitset, Register stack) { 1825 int words_pushed = 0; 1826 1827 // Scan bitset to accumulate register pairs 1828 unsigned char regs[32]; 1829 int count = 0; 1830 for (int reg = 0; reg <= 30; reg++) { 1831 if (1 & bitset) 1832 regs[count++] = reg; 1833 bitset >>= 1; 1834 } 1835 regs[count++] = zr->encoding_nocheck(); 1836 count &= ~1; // Only push an even nuber of regs 1837 1838 if (count) { 1839 stp(as_Register(regs[0]), as_Register(regs[1]), 1840 Address(pre(stack, -count * wordSize))); 1841 words_pushed += 2; 1842 } 1843 for (int i = 2; i < count; i += 2) { 1844 stp(as_Register(regs[i]), as_Register(regs[i+1]), 1845 Address(stack, i * wordSize)); 1846 words_pushed += 2; 1847 } 1848 1849 assert(words_pushed == count, "oops, pushed != count"); 1850 1851 return count; 1852 } 1853 1854 int MacroAssembler::pop(unsigned int bitset, Register stack) { 1855 int words_pushed = 0; 1856 1857 // Scan bitset to accumulate register pairs 1858 unsigned char regs[32]; 1859 int count = 0; 1860 for (int reg = 0; reg <= 30; reg++) { 1861 if (1 & bitset) 1862 regs[count++] = reg; 1863 bitset >>= 1; 1864 } 1865 regs[count++] = zr->encoding_nocheck(); 1866 count &= ~1; 1867 1868 for (int i = 2; i < count; i += 2) { 1869 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 1870 Address(stack, i * wordSize)); 1871 words_pushed += 2; 1872 } 1873 if (count) { 1874 ldp(as_Register(regs[0]), as_Register(regs[1]), 1875 Address(post(stack, count * wordSize))); 1876 words_pushed += 2; 1877 } 1878 1879 assert(words_pushed == count, "oops, pushed != count"); 1880 1881 return count; 1882 } 1883 #ifdef ASSERT 1884 void MacroAssembler::verify_heapbase(const char* msg) { 1885 #if 0 1886 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 1887 assert (Universe::heap() != NULL, "java heap should be initialized"); 1888 if (CheckCompressedOops) { 1889 Label ok; 1890 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 1891 cmpptr(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr())); 1892 br(Assembler::EQ, ok); 1893 stop(msg); 1894 bind(ok); 1895 pop(1 << rscratch1->encoding(), sp); 1896 } 1897 #endif 1898 } 1899 #endif 1900 1901 void MacroAssembler::stop(const char* msg) { 1902 address ip = pc(); 1903 pusha(); 1904 mov(c_rarg0, (address)msg); 1905 mov(c_rarg1, (address)ip); 1906 mov(c_rarg2, sp); 1907 mov(c_rarg3, CAST_FROM_FN_PTR(address, MacroAssembler::debug64)); 1908 // call(c_rarg3); 1909 blrt(c_rarg3, 3, 0, 1); 1910 hlt(0); 1911 } 1912 1913 // If a constant does not fit in an immediate field, generate some 1914 // number of MOV instructions and then perform the operation. 1915 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm, 1916 add_sub_imm_insn insn1, 1917 add_sub_reg_insn insn2) { 1918 assert(Rd != zr, "Rd = zr and not setting flags?"); 1919 if (operand_valid_for_add_sub_immediate((int)imm)) { 1920 (this->*insn1)(Rd, Rn, imm); 1921 } else { 1922 if (uabs(imm) < (1 << 24)) { 1923 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 1924 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 1925 } else { 1926 assert_different_registers(Rd, Rn); 1927 mov(Rd, (uint64_t)imm); 1928 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 1929 } 1930 } 1931 } 1932 1933 // Seperate vsn which sets the flags. Optimisations are more restricted 1934 // because we must set the flags correctly. 1935 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm, 1936 add_sub_imm_insn insn1, 1937 add_sub_reg_insn insn2) { 1938 if (operand_valid_for_add_sub_immediate((int)imm)) { 1939 (this->*insn1)(Rd, Rn, imm); 1940 } else { 1941 assert_different_registers(Rd, Rn); 1942 assert(Rd != zr, "overflow in immediate operand"); 1943 mov(Rd, (uint64_t)imm); 1944 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 1945 } 1946 } 1947 1948 1949 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 1950 if (increment.is_register()) { 1951 add(Rd, Rn, increment.as_register()); 1952 } else { 1953 add(Rd, Rn, increment.as_constant()); 1954 } 1955 } 1956 1957 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 1958 if (increment.is_register()) { 1959 addw(Rd, Rn, increment.as_register()); 1960 } else { 1961 addw(Rd, Rn, increment.as_constant()); 1962 } 1963 } 1964 1965 void MacroAssembler::reinit_heapbase() 1966 { 1967 if (UseCompressedOops) { 1968 if (Universe::is_fully_initialized()) { 1969 mov(rheapbase, Universe::narrow_ptrs_base()); 1970 } else { 1971 lea(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr())); 1972 ldr(rheapbase, Address(rheapbase)); 1973 } 1974 } 1975 } 1976 1977 // this simulates the behaviour of the x86 cmpxchg instruction using a 1978 // load linked/store conditional pair. we use the acquire/release 1979 // versions of these instructions so that we flush pending writes as 1980 // per Java semantics. 1981 1982 // n.b the x86 version assumes the old value to be compared against is 1983 // in rax and updates rax with the value located in memory if the 1984 // cmpxchg fails. we supply a register for the old value explicitly 1985 1986 // the aarch64 load linked/store conditional instructions do not 1987 // accept an offset. so, unlike x86, we must provide a plain register 1988 // to identify the memory word to be compared/exchanged rather than a 1989 // register+offset Address. 1990 1991 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 1992 Label &succeed, Label *fail) { 1993 // oldv holds comparison value 1994 // newv holds value to write in exchange 1995 // addr identifies memory word to compare against/update 1996 // tmp returns 0/1 for success/failure 1997 Label retry_load, nope; 1998 1999 bind(retry_load); 2000 // flush and load exclusive from the memory location 2001 // and fail if it is not what we expect 2002 ldaxr(tmp, addr); 2003 cmp(tmp, oldv); 2004 br(Assembler::NE, nope); 2005 // if we store+flush with no intervening write tmp wil be zero 2006 stlxr(tmp, newv, addr); 2007 cbzw(tmp, succeed); 2008 // retry so we only ever return after a load fails to compare 2009 // ensures we don't return a stale value after a failed write. 2010 b(retry_load); 2011 // if the memory word differs we return it in oldv and signal a fail 2012 bind(nope); 2013 membar(AnyAny); 2014 mov(oldv, tmp); 2015 if (fail) 2016 b(*fail); 2017 } 2018 2019 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 2020 Label &succeed, Label *fail) { 2021 // oldv holds comparison value 2022 // newv holds value to write in exchange 2023 // addr identifies memory word to compare against/update 2024 // tmp returns 0/1 for success/failure 2025 Label retry_load, nope; 2026 2027 bind(retry_load); 2028 // flush and load exclusive from the memory location 2029 // and fail if it is not what we expect 2030 ldaxrw(tmp, addr); 2031 cmp(tmp, oldv); 2032 br(Assembler::NE, nope); 2033 // if we store+flush with no intervening write tmp wil be zero 2034 stlxrw(tmp, newv, addr); 2035 cbzw(tmp, succeed); 2036 // retry so we only ever return after a load fails to compare 2037 // ensures we don't return a stale value after a failed write. 2038 b(retry_load); 2039 // if the memory word differs we return it in oldv and signal a fail 2040 bind(nope); 2041 membar(AnyAny); 2042 mov(oldv, tmp); 2043 if (fail) 2044 b(*fail); 2045 } 2046 2047 static bool different(Register a, RegisterOrConstant b, Register c) { 2048 if (b.is_constant()) 2049 return a != c; 2050 else 2051 return a != b.as_register() && a != c && b.as_register() != c; 2052 } 2053 2054 #define ATOMIC_OP(LDXR, OP, STXR) \ 2055 void MacroAssembler::atomic_##OP(Register prev, RegisterOrConstant incr, Register addr) { \ 2056 Register result = rscratch2; \ 2057 if (prev->is_valid()) \ 2058 result = different(prev, incr, addr) ? prev : rscratch2; \ 2059 \ 2060 Label retry_load; \ 2061 bind(retry_load); \ 2062 LDXR(result, addr); \ 2063 OP(rscratch1, result, incr); \ 2064 STXR(rscratch1, rscratch1, addr); \ 2065 cbnzw(rscratch1, retry_load); \ 2066 if (prev->is_valid() && prev != result) \ 2067 mov(prev, result); \ 2068 } 2069 2070 ATOMIC_OP(ldxr, add, stxr) 2071 ATOMIC_OP(ldxrw, addw, stxrw) 2072 2073 #undef ATOMIC_OP 2074 2075 #define ATOMIC_XCHG(OP, LDXR, STXR) \ 2076 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 2077 Register result = rscratch2; \ 2078 if (prev->is_valid()) \ 2079 result = different(prev, newv, addr) ? prev : rscratch2; \ 2080 \ 2081 Label retry_load; \ 2082 bind(retry_load); \ 2083 LDXR(result, addr); \ 2084 STXR(rscratch1, newv, addr); \ 2085 cbnzw(rscratch1, retry_load); \ 2086 if (prev->is_valid() && prev != result) \ 2087 mov(prev, result); \ 2088 } 2089 2090 ATOMIC_XCHG(xchg, ldxr, stxr) 2091 ATOMIC_XCHG(xchgw, ldxrw, stxrw) 2092 2093 #undef ATOMIC_XCHG 2094 2095 void MacroAssembler::incr_allocated_bytes(Register thread, 2096 Register var_size_in_bytes, 2097 int con_size_in_bytes, 2098 Register t1) { 2099 if (!thread->is_valid()) { 2100 thread = rthread; 2101 } 2102 assert(t1->is_valid(), "need temp reg"); 2103 2104 ldr(t1, Address(thread, in_bytes(JavaThread::allocated_bytes_offset()))); 2105 if (var_size_in_bytes->is_valid()) { 2106 add(t1, t1, var_size_in_bytes); 2107 } else { 2108 add(t1, t1, con_size_in_bytes); 2109 } 2110 str(t1, Address(thread, in_bytes(JavaThread::allocated_bytes_offset()))); 2111 } 2112 2113 #ifndef PRODUCT 2114 extern "C" void findpc(intptr_t x); 2115 #endif 2116 2117 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 2118 { 2119 // In order to get locks to work, we need to fake a in_VM state 2120 if (ShowMessageBoxOnError ) { 2121 JavaThread* thread = JavaThread::current(); 2122 JavaThreadState saved_state = thread->thread_state(); 2123 thread->set_thread_state(_thread_in_vm); 2124 #ifndef PRODUCT 2125 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 2126 ttyLocker ttyl; 2127 BytecodeCounter::print(); 2128 } 2129 #endif 2130 if (os::message_box(msg, "Execution stopped, print registers?")) { 2131 ttyLocker ttyl; 2132 tty->print_cr(" pc = 0x%016lx", pc); 2133 #ifndef PRODUCT 2134 tty->cr(); 2135 findpc(pc); 2136 tty->cr(); 2137 #endif 2138 tty->print_cr(" r0 = 0x%016lx", regs[0]); 2139 tty->print_cr(" r1 = 0x%016lx", regs[1]); 2140 tty->print_cr(" r2 = 0x%016lx", regs[2]); 2141 tty->print_cr(" r3 = 0x%016lx", regs[3]); 2142 tty->print_cr(" r4 = 0x%016lx", regs[4]); 2143 tty->print_cr(" r5 = 0x%016lx", regs[5]); 2144 tty->print_cr(" r6 = 0x%016lx", regs[6]); 2145 tty->print_cr(" r7 = 0x%016lx", regs[7]); 2146 tty->print_cr(" r8 = 0x%016lx", regs[8]); 2147 tty->print_cr(" r9 = 0x%016lx", regs[9]); 2148 tty->print_cr("r10 = 0x%016lx", regs[10]); 2149 tty->print_cr("r11 = 0x%016lx", regs[11]); 2150 tty->print_cr("r12 = 0x%016lx", regs[12]); 2151 tty->print_cr("r13 = 0x%016lx", regs[13]); 2152 tty->print_cr("r14 = 0x%016lx", regs[14]); 2153 tty->print_cr("r15 = 0x%016lx", regs[15]); 2154 tty->print_cr("r16 = 0x%016lx", regs[16]); 2155 tty->print_cr("r17 = 0x%016lx", regs[17]); 2156 tty->print_cr("r18 = 0x%016lx", regs[18]); 2157 tty->print_cr("r19 = 0x%016lx", regs[19]); 2158 tty->print_cr("r20 = 0x%016lx", regs[20]); 2159 tty->print_cr("r21 = 0x%016lx", regs[21]); 2160 tty->print_cr("r22 = 0x%016lx", regs[22]); 2161 tty->print_cr("r23 = 0x%016lx", regs[23]); 2162 tty->print_cr("r24 = 0x%016lx", regs[24]); 2163 tty->print_cr("r25 = 0x%016lx", regs[25]); 2164 tty->print_cr("r26 = 0x%016lx", regs[26]); 2165 tty->print_cr("r27 = 0x%016lx", regs[27]); 2166 tty->print_cr("r28 = 0x%016lx", regs[28]); 2167 tty->print_cr("r30 = 0x%016lx", regs[30]); 2168 tty->print_cr("r31 = 0x%016lx", regs[31]); 2169 BREAKPOINT; 2170 } 2171 ThreadStateTransition::transition(thread, _thread_in_vm, saved_state); 2172 } else { 2173 ttyLocker ttyl; 2174 ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", 2175 msg); 2176 assert(false, err_msg("DEBUG MESSAGE: %s", msg)); 2177 } 2178 } 2179 2180 #ifdef BUILTIN_SIM 2181 // routine to generate an x86 prolog for a stub function which 2182 // bootstraps into the generated ARM code which directly follows the 2183 // stub 2184 // 2185 // the argument encodes the number of general and fp registers 2186 // passed by the caller and the callng convention (currently just 2187 // the number of general registers and assumes C argument passing) 2188 2189 extern "C" { 2190 int aarch64_stub_prolog_size(); 2191 void aarch64_stub_prolog(); 2192 void aarch64_prolog(); 2193 } 2194 2195 void MacroAssembler::c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type, 2196 address *prolog_ptr) 2197 { 2198 int calltype = (((ret_type & 0x3) << 8) | 2199 ((fp_arg_count & 0xf) << 4) | 2200 (gp_arg_count & 0xf)); 2201 2202 // the addresses for the x86 to ARM entry code we need to use 2203 address start = pc(); 2204 // printf("start = %lx\n", start); 2205 int byteCount = aarch64_stub_prolog_size(); 2206 // printf("byteCount = %x\n", byteCount); 2207 int instructionCount = (byteCount + 3)/ 4; 2208 // printf("instructionCount = %x\n", instructionCount); 2209 for (int i = 0; i < instructionCount; i++) { 2210 nop(); 2211 } 2212 2213 memcpy(start, (void*)aarch64_stub_prolog, byteCount); 2214 2215 // write the address of the setup routine and the call format at the 2216 // end of into the copied code 2217 u_int64_t *patch_end = (u_int64_t *)(start + byteCount); 2218 if (prolog_ptr) 2219 patch_end[-2] = (u_int64_t)prolog_ptr; 2220 patch_end[-1] = calltype; 2221 } 2222 #endif 2223 2224 void MacroAssembler::push_CPU_state() { 2225 push(0x3fffffff, sp); // integer registers except lr & sp 2226 2227 for (int i = 30; i >= 0; i -= 2) 2228 stpd(as_FloatRegister(i), as_FloatRegister(i+1), 2229 Address(pre(sp, -2 * wordSize))); 2230 } 2231 2232 void MacroAssembler::pop_CPU_state() { 2233 for (int i = 0; i < 32; i += 2) 2234 ldpd(as_FloatRegister(i), as_FloatRegister(i+1), 2235 Address(post(sp, 2 * wordSize))); 2236 2237 pop(0x3fffffff, sp); // integer registers except lr & sp 2238 } 2239 2240 /** 2241 * Helpers for multiply_to_len(). 2242 */ 2243 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 2244 Register src1, Register src2) { 2245 adds(dest_lo, dest_lo, src1); 2246 adc(dest_hi, dest_hi, zr); 2247 adds(dest_lo, dest_lo, src2); 2248 adc(final_dest_hi, dest_hi, zr); 2249 } 2250 2251 // Generate an address from (r + r1 extend offset). "size" is the 2252 // size of the operand. The result may be in rscratch2. 2253 Address MacroAssembler::offsetted_address(Register r, Register r1, 2254 Address::extend ext, int offset, int size) { 2255 if (offset || (ext.shift() % size != 0)) { 2256 lea(rscratch2, Address(r, r1, ext)); 2257 return Address(rscratch2, offset); 2258 } else { 2259 return Address(r, r1, ext); 2260 } 2261 } 2262 2263 /** 2264 * Multiply 64 bit by 64 bit first loop. 2265 */ 2266 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 2267 Register y, Register y_idx, Register z, 2268 Register carry, Register product, 2269 Register idx, Register kdx) { 2270 // 2271 // jlong carry, x[], y[], z[]; 2272 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 2273 // huge_128 product = y[idx] * x[xstart] + carry; 2274 // z[kdx] = (jlong)product; 2275 // carry = (jlong)(product >>> 64); 2276 // } 2277 // z[xstart] = carry; 2278 // 2279 2280 Label L_first_loop, L_first_loop_exit; 2281 Label L_one_x, L_one_y, L_multiply; 2282 2283 subsw(xstart, xstart, 1); 2284 br(Assembler::MI, L_one_x); 2285 2286 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 2287 ldr(x_xstart, Address(rscratch1)); 2288 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 2289 2290 bind(L_first_loop); 2291 subsw(idx, idx, 1); 2292 br(Assembler::MI, L_first_loop_exit); 2293 subsw(idx, idx, 1); 2294 br(Assembler::MI, L_one_y); 2295 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2296 ldr(y_idx, Address(rscratch1)); 2297 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 2298 bind(L_multiply); 2299 2300 // AArch64 has a multiply-accumulate instruction that we can't use 2301 // here because it has no way to process carries, so we have to use 2302 // separate add and adc instructions. Bah. 2303 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 2304 mul(product, x_xstart, y_idx); 2305 adds(product, product, carry); 2306 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 2307 2308 subw(kdx, kdx, 2); 2309 ror(product, product, 32); // back to big-endian 2310 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 2311 2312 b(L_first_loop); 2313 2314 bind(L_one_y); 2315 ldrw(y_idx, Address(y, 0)); 2316 b(L_multiply); 2317 2318 bind(L_one_x); 2319 ldrw(x_xstart, Address(x, 0)); 2320 b(L_first_loop); 2321 2322 bind(L_first_loop_exit); 2323 } 2324 2325 /** 2326 * Multiply 128 bit by 128. Unrolled inner loop. 2327 * 2328 */ 2329 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 2330 Register carry, Register carry2, 2331 Register idx, Register jdx, 2332 Register yz_idx1, Register yz_idx2, 2333 Register tmp, Register tmp3, Register tmp4, 2334 Register tmp6, Register product_hi) { 2335 2336 // jlong carry, x[], y[], z[]; 2337 // int kdx = ystart+1; 2338 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 2339 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 2340 // jlong carry2 = (jlong)(tmp3 >>> 64); 2341 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 2342 // carry = (jlong)(tmp4 >>> 64); 2343 // z[kdx+idx+1] = (jlong)tmp3; 2344 // z[kdx+idx] = (jlong)tmp4; 2345 // } 2346 // idx += 2; 2347 // if (idx > 0) { 2348 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 2349 // z[kdx+idx] = (jlong)yz_idx1; 2350 // carry = (jlong)(yz_idx1 >>> 64); 2351 // } 2352 // 2353 2354 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 2355 2356 lsrw(jdx, idx, 2); 2357 2358 bind(L_third_loop); 2359 2360 subsw(jdx, jdx, 1); 2361 br(Assembler::MI, L_third_loop_exit); 2362 subw(idx, idx, 4); 2363 2364 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2365 2366 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 2367 2368 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 2369 2370 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 2371 ror(yz_idx2, yz_idx2, 32); 2372 2373 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 2374 2375 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 2376 umulh(tmp4, product_hi, yz_idx1); 2377 2378 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 2379 ror(rscratch2, rscratch2, 32); 2380 2381 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 2382 umulh(carry2, product_hi, yz_idx2); 2383 2384 // propagate sum of both multiplications into carry:tmp4:tmp3 2385 adds(tmp3, tmp3, carry); 2386 adc(tmp4, tmp4, zr); 2387 adds(tmp3, tmp3, rscratch1); 2388 adcs(tmp4, tmp4, tmp); 2389 adc(carry, carry2, zr); 2390 adds(tmp4, tmp4, rscratch2); 2391 adc(carry, carry, zr); 2392 2393 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 2394 ror(tmp4, tmp4, 32); 2395 stp(tmp4, tmp3, Address(tmp6, 0)); 2396 2397 b(L_third_loop); 2398 bind (L_third_loop_exit); 2399 2400 andw (idx, idx, 0x3); 2401 cbz(idx, L_post_third_loop_done); 2402 2403 Label L_check_1; 2404 subsw(idx, idx, 2); 2405 br(Assembler::MI, L_check_1); 2406 2407 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2408 ldr(yz_idx1, Address(rscratch1, 0)); 2409 ror(yz_idx1, yz_idx1, 32); 2410 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 2411 umulh(tmp4, product_hi, yz_idx1); 2412 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 2413 ldr(yz_idx2, Address(rscratch1, 0)); 2414 ror(yz_idx2, yz_idx2, 32); 2415 2416 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 2417 2418 ror(tmp3, tmp3, 32); 2419 str(tmp3, Address(rscratch1, 0)); 2420 2421 bind (L_check_1); 2422 2423 andw (idx, idx, 0x1); 2424 subsw(idx, idx, 1); 2425 br(Assembler::MI, L_post_third_loop_done); 2426 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2427 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 2428 umulh(carry2, tmp4, product_hi); 2429 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 2430 2431 add2_with_carry(carry2, tmp3, tmp4, carry); 2432 2433 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 2434 extr(carry, carry2, tmp3, 32); 2435 2436 bind(L_post_third_loop_done); 2437 } 2438 2439 /** 2440 * Code for BigInteger::multiplyToLen() instrinsic. 2441 * 2442 * r0: x 2443 * r1: xlen 2444 * r2: y 2445 * r3: ylen 2446 * r4: z 2447 * r5: zlen 2448 * r10: tmp1 2449 * r11: tmp2 2450 * r12: tmp3 2451 * r13: tmp4 2452 * r14: tmp5 2453 * r15: tmp6 2454 * r16: tmp7 2455 * 2456 */ 2457 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 2458 Register z, Register zlen, 2459 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 2460 Register tmp5, Register tmp6, Register product_hi) { 2461 2462 assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6); 2463 2464 const Register idx = tmp1; 2465 const Register kdx = tmp2; 2466 const Register xstart = tmp3; 2467 2468 const Register y_idx = tmp4; 2469 const Register carry = tmp5; 2470 const Register product = xlen; 2471 const Register x_xstart = zlen; // reuse register 2472 2473 // First Loop. 2474 // 2475 // final static long LONG_MASK = 0xffffffffL; 2476 // int xstart = xlen - 1; 2477 // int ystart = ylen - 1; 2478 // long carry = 0; 2479 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 2480 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 2481 // z[kdx] = (int)product; 2482 // carry = product >>> 32; 2483 // } 2484 // z[xstart] = (int)carry; 2485 // 2486 2487 movw(idx, ylen); // idx = ylen; 2488 movw(kdx, zlen); // kdx = xlen+ylen; 2489 mov(carry, zr); // carry = 0; 2490 2491 Label L_done; 2492 2493 movw(xstart, xlen); 2494 subsw(xstart, xstart, 1); 2495 br(Assembler::MI, L_done); 2496 2497 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 2498 2499 Label L_second_loop; 2500 cbzw(kdx, L_second_loop); 2501 2502 Label L_carry; 2503 subw(kdx, kdx, 1); 2504 cbzw(kdx, L_carry); 2505 2506 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 2507 lsr(carry, carry, 32); 2508 subw(kdx, kdx, 1); 2509 2510 bind(L_carry); 2511 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 2512 2513 // Second and third (nested) loops. 2514 // 2515 // for (int i = xstart-1; i >= 0; i--) { // Second loop 2516 // carry = 0; 2517 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 2518 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 2519 // (z[k] & LONG_MASK) + carry; 2520 // z[k] = (int)product; 2521 // carry = product >>> 32; 2522 // } 2523 // z[i] = (int)carry; 2524 // } 2525 // 2526 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 2527 2528 const Register jdx = tmp1; 2529 2530 bind(L_second_loop); 2531 mov(carry, zr); // carry = 0; 2532 movw(jdx, ylen); // j = ystart+1 2533 2534 subsw(xstart, xstart, 1); // i = xstart-1; 2535 br(Assembler::MI, L_done); 2536 2537 str(z, Address(pre(sp, -4 * wordSize))); 2538 2539 Label L_last_x; 2540 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 2541 subsw(xstart, xstart, 1); // i = xstart-1; 2542 br(Assembler::MI, L_last_x); 2543 2544 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 2545 ldr(product_hi, Address(rscratch1)); 2546 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 2547 2548 Label L_third_loop_prologue; 2549 bind(L_third_loop_prologue); 2550 2551 str(ylen, Address(sp, wordSize)); 2552 stp(x, xstart, Address(sp, 2 * wordSize)); 2553 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 2554 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 2555 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 2556 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 2557 2558 addw(tmp3, xlen, 1); 2559 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 2560 subsw(tmp3, tmp3, 1); 2561 br(Assembler::MI, L_done); 2562 2563 lsr(carry, carry, 32); 2564 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 2565 b(L_second_loop); 2566 2567 // Next infrequent code is moved outside loops. 2568 bind(L_last_x); 2569 ldrw(product_hi, Address(x, 0)); 2570 b(L_third_loop_prologue); 2571 2572 bind(L_done); 2573 } 2574 2575 /** 2576 * Emits code to update CRC-32 with a byte value according to constants in table 2577 * 2578 * @param [in,out]crc Register containing the crc. 2579 * @param [in]val Register containing the byte to fold into the CRC. 2580 * @param [in]table Register containing the table of crc constants. 2581 * 2582 * uint32_t crc; 2583 * val = crc_table[(val ^ crc) & 0xFF]; 2584 * crc = val ^ (crc >> 8); 2585 * 2586 */ 2587 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 2588 eor(val, val, crc); 2589 andr(val, val, 0xff); 2590 ldrw(val, Address(table, val, Address::lsl(2))); 2591 eor(crc, val, crc, Assembler::LSR, 8); 2592 } 2593 2594 /** 2595 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 2596 * 2597 * @param [in,out]crc Register containing the crc. 2598 * @param [in]v Register containing the 32-bit to fold into the CRC. 2599 * @param [in]table0 Register containing table 0 of crc constants. 2600 * @param [in]table1 Register containing table 1 of crc constants. 2601 * @param [in]table2 Register containing table 2 of crc constants. 2602 * @param [in]table3 Register containing table 3 of crc constants. 2603 * 2604 * uint32_t crc; 2605 * v = crc ^ v 2606 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 2607 * 2608 */ 2609 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 2610 Register table0, Register table1, Register table2, Register table3, 2611 bool upper) { 2612 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 2613 uxtb(tmp, v); 2614 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 2615 ubfx(tmp, v, 8, 8); 2616 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 2617 eor(crc, crc, tmp); 2618 ubfx(tmp, v, 16, 8); 2619 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 2620 eor(crc, crc, tmp); 2621 ubfx(tmp, v, 24, 8); 2622 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 2623 eor(crc, crc, tmp); 2624 } 2625 2626 /** 2627 * @param crc register containing existing CRC (32-bit) 2628 * @param buf register pointing to input byte buffer (byte*) 2629 * @param len register containing number of bytes 2630 * @param table register that will contain address of CRC table 2631 * @param tmp scratch register 2632 */ 2633 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 2634 Register table0, Register table1, Register table2, Register table3, 2635 Register tmp, Register tmp2, Register tmp3) { 2636 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 2637 unsigned long offset; 2638 2639 ornw(crc, zr, crc); 2640 2641 if (UseCRC32) { 2642 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop; 2643 2644 subs(len, len, 64); 2645 br(Assembler::GE, CRC_by64_loop); 2646 adds(len, len, 64-4); 2647 br(Assembler::GE, CRC_by4_loop); 2648 adds(len, len, 4); 2649 br(Assembler::GT, CRC_by1_loop); 2650 b(L_exit); 2651 2652 BIND(CRC_by4_loop); 2653 ldrw(tmp, Address(post(buf, 4))); 2654 subs(len, len, 4); 2655 crc32w(crc, crc, tmp); 2656 br(Assembler::GE, CRC_by4_loop); 2657 adds(len, len, 4); 2658 br(Assembler::LE, L_exit); 2659 BIND(CRC_by1_loop); 2660 ldrb(tmp, Address(post(buf, 1))); 2661 subs(len, len, 1); 2662 crc32b(crc, crc, tmp); 2663 br(Assembler::GT, CRC_by1_loop); 2664 b(L_exit); 2665 2666 align(CodeEntryAlignment); 2667 BIND(CRC_by64_loop); 2668 subs(len, len, 64); 2669 ldp(tmp, tmp3, Address(post(buf, 16))); 2670 crc32x(crc, crc, tmp); 2671 crc32x(crc, crc, tmp3); 2672 ldp(tmp, tmp3, Address(post(buf, 16))); 2673 crc32x(crc, crc, tmp); 2674 crc32x(crc, crc, tmp3); 2675 ldp(tmp, tmp3, Address(post(buf, 16))); 2676 crc32x(crc, crc, tmp); 2677 crc32x(crc, crc, tmp3); 2678 ldp(tmp, tmp3, Address(post(buf, 16))); 2679 crc32x(crc, crc, tmp); 2680 crc32x(crc, crc, tmp3); 2681 br(Assembler::GE, CRC_by64_loop); 2682 adds(len, len, 64-4); 2683 br(Assembler::GE, CRC_by4_loop); 2684 adds(len, len, 4); 2685 br(Assembler::GT, CRC_by1_loop); 2686 BIND(L_exit); 2687 ornw(crc, zr, crc); 2688 return; 2689 } 2690 2691 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 2692 if (offset) add(table0, table0, offset); 2693 add(table1, table0, 1*256*sizeof(juint)); 2694 add(table2, table0, 2*256*sizeof(juint)); 2695 add(table3, table0, 3*256*sizeof(juint)); 2696 2697 if (UseNeon) { 2698 cmp(len, 64); 2699 br(Assembler::LT, L_by16); 2700 eor(v16, T16B, v16, v16); 2701 2702 Label L_fold; 2703 2704 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 2705 2706 ld1(v0, v1, T2D, post(buf, 32)); 2707 ld1r(v4, T2D, post(tmp, 8)); 2708 ld1r(v5, T2D, post(tmp, 8)); 2709 ld1r(v6, T2D, post(tmp, 8)); 2710 ld1r(v7, T2D, post(tmp, 8)); 2711 mov(v16, T4S, 0, crc); 2712 2713 eor(v0, T16B, v0, v16); 2714 sub(len, len, 64); 2715 2716 BIND(L_fold); 2717 pmull(v22, T8H, v0, v5, T8B); 2718 pmull(v20, T8H, v0, v7, T8B); 2719 pmull(v23, T8H, v0, v4, T8B); 2720 pmull(v21, T8H, v0, v6, T8B); 2721 2722 pmull2(v18, T8H, v0, v5, T16B); 2723 pmull2(v16, T8H, v0, v7, T16B); 2724 pmull2(v19, T8H, v0, v4, T16B); 2725 pmull2(v17, T8H, v0, v6, T16B); 2726 2727 uzp1(v24, v20, v22, T8H); 2728 uzp2(v25, v20, v22, T8H); 2729 eor(v20, T16B, v24, v25); 2730 2731 uzp1(v26, v16, v18, T8H); 2732 uzp2(v27, v16, v18, T8H); 2733 eor(v16, T16B, v26, v27); 2734 2735 ushll2(v22, T4S, v20, T8H, 8); 2736 ushll(v20, T4S, v20, T4H, 8); 2737 2738 ushll2(v18, T4S, v16, T8H, 8); 2739 ushll(v16, T4S, v16, T4H, 8); 2740 2741 eor(v22, T16B, v23, v22); 2742 eor(v18, T16B, v19, v18); 2743 eor(v20, T16B, v21, v20); 2744 eor(v16, T16B, v17, v16); 2745 2746 uzp1(v17, v16, v20, T2D); 2747 uzp2(v21, v16, v20, T2D); 2748 eor(v17, T16B, v17, v21); 2749 2750 ushll2(v20, T2D, v17, T4S, 16); 2751 ushll(v16, T2D, v17, T2S, 16); 2752 2753 eor(v20, T16B, v20, v22); 2754 eor(v16, T16B, v16, v18); 2755 2756 uzp1(v17, v20, v16, T2D); 2757 uzp2(v21, v20, v16, T2D); 2758 eor(v28, T16B, v17, v21); 2759 2760 pmull(v22, T8H, v1, v5, T8B); 2761 pmull(v20, T8H, v1, v7, T8B); 2762 pmull(v23, T8H, v1, v4, T8B); 2763 pmull(v21, T8H, v1, v6, T8B); 2764 2765 pmull2(v18, T8H, v1, v5, T16B); 2766 pmull2(v16, T8H, v1, v7, T16B); 2767 pmull2(v19, T8H, v1, v4, T16B); 2768 pmull2(v17, T8H, v1, v6, T16B); 2769 2770 ld1(v0, v1, T2D, post(buf, 32)); 2771 2772 uzp1(v24, v20, v22, T8H); 2773 uzp2(v25, v20, v22, T8H); 2774 eor(v20, T16B, v24, v25); 2775 2776 uzp1(v26, v16, v18, T8H); 2777 uzp2(v27, v16, v18, T8H); 2778 eor(v16, T16B, v26, v27); 2779 2780 ushll2(v22, T4S, v20, T8H, 8); 2781 ushll(v20, T4S, v20, T4H, 8); 2782 2783 ushll2(v18, T4S, v16, T8H, 8); 2784 ushll(v16, T4S, v16, T4H, 8); 2785 2786 eor(v22, T16B, v23, v22); 2787 eor(v18, T16B, v19, v18); 2788 eor(v20, T16B, v21, v20); 2789 eor(v16, T16B, v17, v16); 2790 2791 uzp1(v17, v16, v20, T2D); 2792 uzp2(v21, v16, v20, T2D); 2793 eor(v16, T16B, v17, v21); 2794 2795 ushll2(v20, T2D, v16, T4S, 16); 2796 ushll(v16, T2D, v16, T2S, 16); 2797 2798 eor(v20, T16B, v22, v20); 2799 eor(v16, T16B, v16, v18); 2800 2801 uzp1(v17, v20, v16, T2D); 2802 uzp2(v21, v20, v16, T2D); 2803 eor(v20, T16B, v17, v21); 2804 2805 shl(v16, T2D, v28, 1); 2806 shl(v17, T2D, v20, 1); 2807 2808 eor(v0, T16B, v0, v16); 2809 eor(v1, T16B, v1, v17); 2810 2811 subs(len, len, 32); 2812 br(Assembler::GE, L_fold); 2813 2814 mov(crc, 0); 2815 mov(tmp, v0, T1D, 0); 2816 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 2817 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 2818 mov(tmp, v0, T1D, 1); 2819 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 2820 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 2821 mov(tmp, v1, T1D, 0); 2822 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 2823 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 2824 mov(tmp, v1, T1D, 1); 2825 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 2826 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 2827 2828 add(len, len, 32); 2829 } 2830 2831 BIND(L_by16); 2832 subs(len, len, 16); 2833 br(Assembler::GE, L_by16_loop); 2834 adds(len, len, 16-4); 2835 br(Assembler::GE, L_by4_loop); 2836 adds(len, len, 4); 2837 br(Assembler::GT, L_by1_loop); 2838 b(L_exit); 2839 2840 BIND(L_by4_loop); 2841 ldrw(tmp, Address(post(buf, 4))); 2842 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 2843 subs(len, len, 4); 2844 br(Assembler::GE, L_by4_loop); 2845 adds(len, len, 4); 2846 br(Assembler::LE, L_exit); 2847 BIND(L_by1_loop); 2848 subs(len, len, 1); 2849 ldrb(tmp, Address(post(buf, 1))); 2850 update_byte_crc32(crc, tmp, table0); 2851 br(Assembler::GT, L_by1_loop); 2852 b(L_exit); 2853 2854 align(CodeEntryAlignment); 2855 BIND(L_by16_loop); 2856 subs(len, len, 16); 2857 ldp(tmp, tmp3, Address(post(buf, 16))); 2858 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 2859 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 2860 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 2861 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 2862 br(Assembler::GE, L_by16_loop); 2863 adds(len, len, 16-4); 2864 br(Assembler::GE, L_by4_loop); 2865 adds(len, len, 4); 2866 br(Assembler::GT, L_by1_loop); 2867 BIND(L_exit); 2868 ornw(crc, zr, crc); 2869 } 2870 2871 SkipIfEqual::SkipIfEqual( 2872 MacroAssembler* masm, const bool* flag_addr, bool value) { 2873 _masm = masm; 2874 unsigned long offset; 2875 _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset); 2876 _masm->ldrb(rscratch1, Address(rscratch1, offset)); 2877 _masm->cbzw(rscratch1, _label); 2878 } 2879 2880 SkipIfEqual::~SkipIfEqual() { 2881 _masm->bind(_label); 2882 } 2883 2884 void MacroAssembler::cmpptr(Register src1, Address src2) { 2885 unsigned long offset; 2886 adrp(rscratch1, src2, offset); 2887 ldr(rscratch1, Address(rscratch1, offset)); 2888 cmp(src1, rscratch1); 2889 } 2890 2891 void MacroAssembler::store_check(Register obj) { 2892 // Does a store check for the oop in register obj. The content of 2893 // register obj is destroyed afterwards. 2894 store_check_part_1(obj); 2895 store_check_part_2(obj); 2896 } 2897 2898 void MacroAssembler::store_check(Register obj, Address dst) { 2899 store_check(obj); 2900 } 2901 2902 2903 // split the store check operation so that other instructions can be scheduled inbetween 2904 void MacroAssembler::store_check_part_1(Register obj) { 2905 BarrierSet* bs = Universe::heap()->barrier_set(); 2906 assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind"); 2907 lsr(obj, obj, CardTableModRefBS::card_shift); 2908 } 2909 2910 void MacroAssembler::store_check_part_2(Register obj) { 2911 BarrierSet* bs = Universe::heap()->barrier_set(); 2912 assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind"); 2913 CardTableModRefBS* ct = (CardTableModRefBS*)bs; 2914 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); 2915 2916 // The calculation for byte_map_base is as follows: 2917 // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift); 2918 // So this essentially converts an address to a displacement and 2919 // it will never need to be relocated. 2920 2921 // FIXME: It's not likely that disp will fit into an offset so we 2922 // don't bother to check, but it could save an instruction. 2923 intptr_t disp = (intptr_t) ct->byte_map_base; 2924 mov(rscratch1, disp); 2925 strb(zr, Address(obj, rscratch1)); 2926 } 2927 2928 void MacroAssembler::load_klass(Register dst, Register src) { 2929 if (UseCompressedClassPointers) { 2930 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 2931 decode_klass_not_null(dst); 2932 } else { 2933 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 2934 } 2935 } 2936 2937 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) { 2938 if (UseCompressedClassPointers) { 2939 ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 2940 if (Universe::narrow_klass_base() == NULL) { 2941 cmp(trial_klass, tmp, LSL, Universe::narrow_klass_shift()); 2942 return; 2943 } else if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0 2944 && Universe::narrow_klass_shift() == 0) { 2945 // Only the bottom 32 bits matter 2946 cmpw(trial_klass, tmp); 2947 return; 2948 } 2949 decode_klass_not_null(tmp); 2950 } else { 2951 ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 2952 } 2953 cmp(trial_klass, tmp); 2954 } 2955 2956 void MacroAssembler::load_prototype_header(Register dst, Register src) { 2957 load_klass(dst, src); 2958 ldr(dst, Address(dst, Klass::prototype_header_offset())); 2959 } 2960 2961 void MacroAssembler::store_klass(Register dst, Register src) { 2962 // FIXME: Should this be a store release? concurrent gcs assumes 2963 // klass length is valid if klass field is not null. 2964 if (UseCompressedClassPointers) { 2965 encode_klass_not_null(src); 2966 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 2967 } else { 2968 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 2969 } 2970 } 2971 2972 void MacroAssembler::store_klass_gap(Register dst, Register src) { 2973 if (UseCompressedClassPointers) { 2974 // Store to klass gap in destination 2975 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 2976 } 2977 } 2978 2979 // Algorithm must match oop.inline.hpp encode_heap_oop. 2980 void MacroAssembler::encode_heap_oop(Register d, Register s) { 2981 #ifdef ASSERT 2982 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 2983 #endif 2984 verify_oop(s, "broken oop in encode_heap_oop"); 2985 if (Universe::narrow_oop_base() == NULL) { 2986 if (Universe::narrow_oop_shift() != 0) { 2987 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); 2988 lsr(d, s, LogMinObjAlignmentInBytes); 2989 } else { 2990 mov(d, s); 2991 } 2992 } else { 2993 subs(d, s, rheapbase); 2994 csel(d, d, zr, Assembler::HS); 2995 lsr(d, d, LogMinObjAlignmentInBytes); 2996 2997 /* Old algorithm: is this any worse? 2998 Label nonnull; 2999 cbnz(r, nonnull); 3000 sub(r, r, rheapbase); 3001 bind(nonnull); 3002 lsr(r, r, LogMinObjAlignmentInBytes); 3003 */ 3004 } 3005 } 3006 3007 void MacroAssembler::encode_heap_oop_not_null(Register r) { 3008 #ifdef ASSERT 3009 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 3010 if (CheckCompressedOops) { 3011 Label ok; 3012 cbnz(r, ok); 3013 stop("null oop passed to encode_heap_oop_not_null"); 3014 bind(ok); 3015 } 3016 #endif 3017 verify_oop(r, "broken oop in encode_heap_oop_not_null"); 3018 if (Universe::narrow_oop_base() != NULL) { 3019 sub(r, r, rheapbase); 3020 } 3021 if (Universe::narrow_oop_shift() != 0) { 3022 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); 3023 lsr(r, r, LogMinObjAlignmentInBytes); 3024 } 3025 } 3026 3027 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 3028 #ifdef ASSERT 3029 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 3030 if (CheckCompressedOops) { 3031 Label ok; 3032 cbnz(src, ok); 3033 stop("null oop passed to encode_heap_oop_not_null2"); 3034 bind(ok); 3035 } 3036 #endif 3037 verify_oop(src, "broken oop in encode_heap_oop_not_null2"); 3038 3039 Register data = src; 3040 if (Universe::narrow_oop_base() != NULL) { 3041 sub(dst, src, rheapbase); 3042 data = dst; 3043 } 3044 if (Universe::narrow_oop_shift() != 0) { 3045 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); 3046 lsr(dst, data, LogMinObjAlignmentInBytes); 3047 data = dst; 3048 } 3049 if (data == src) 3050 mov(dst, src); 3051 } 3052 3053 void MacroAssembler::decode_heap_oop(Register d, Register s) { 3054 #ifdef ASSERT 3055 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 3056 #endif 3057 if (Universe::narrow_oop_base() == NULL) { 3058 if (Universe::narrow_oop_shift() != 0 || d != s) { 3059 lsl(d, s, Universe::narrow_oop_shift()); 3060 } 3061 } else { 3062 Label done; 3063 if (d != s) 3064 mov(d, s); 3065 cbz(s, done); 3066 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 3067 bind(done); 3068 } 3069 verify_oop(d, "broken oop in decode_heap_oop"); 3070 } 3071 3072 void MacroAssembler::decode_heap_oop_not_null(Register r) { 3073 assert (UseCompressedOops, "should only be used for compressed headers"); 3074 assert (Universe::heap() != NULL, "java heap should be initialized"); 3075 // Cannot assert, unverified entry point counts instructions (see .ad file) 3076 // vtableStubs also counts instructions in pd_code_size_limit. 3077 // Also do not verify_oop as this is called by verify_oop. 3078 if (Universe::narrow_oop_shift() != 0) { 3079 assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); 3080 if (Universe::narrow_oop_base() != NULL) { 3081 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 3082 } else { 3083 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 3084 } 3085 } else { 3086 assert (Universe::narrow_oop_base() == NULL, "sanity"); 3087 } 3088 } 3089 3090 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 3091 assert (UseCompressedOops, "should only be used for compressed headers"); 3092 assert (Universe::heap() != NULL, "java heap should be initialized"); 3093 // Cannot assert, unverified entry point counts instructions (see .ad file) 3094 // vtableStubs also counts instructions in pd_code_size_limit. 3095 // Also do not verify_oop as this is called by verify_oop. 3096 if (Universe::narrow_oop_shift() != 0) { 3097 assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); 3098 if (Universe::narrow_oop_base() != NULL) { 3099 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 3100 } else { 3101 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 3102 } 3103 } else { 3104 assert (Universe::narrow_oop_base() == NULL, "sanity"); 3105 if (dst != src) { 3106 mov(dst, src); 3107 } 3108 } 3109 } 3110 3111 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 3112 if (Universe::narrow_klass_base() == NULL) { 3113 if (Universe::narrow_klass_shift() != 0) { 3114 assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong"); 3115 lsr(dst, src, LogKlassAlignmentInBytes); 3116 } else { 3117 if (dst != src) mov(dst, src); 3118 } 3119 return; 3120 } 3121 3122 if (use_XOR_for_compressed_class_base) { 3123 if (Universe::narrow_klass_shift() != 0) { 3124 eor(dst, src, (uint64_t)Universe::narrow_klass_base()); 3125 lsr(dst, dst, LogKlassAlignmentInBytes); 3126 } else { 3127 eor(dst, src, (uint64_t)Universe::narrow_klass_base()); 3128 } 3129 return; 3130 } 3131 3132 if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0 3133 && Universe::narrow_klass_shift() == 0) { 3134 movw(dst, src); 3135 return; 3136 } 3137 3138 #ifdef ASSERT 3139 verify_heapbase("MacroAssembler::encode_klass_not_null2: heap base corrupted?"); 3140 #endif 3141 3142 Register rbase = dst; 3143 if (dst == src) rbase = rheapbase; 3144 mov(rbase, (uint64_t)Universe::narrow_klass_base()); 3145 sub(dst, src, rbase); 3146 if (Universe::narrow_klass_shift() != 0) { 3147 assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong"); 3148 lsr(dst, dst, LogKlassAlignmentInBytes); 3149 } 3150 if (dst == src) reinit_heapbase(); 3151 } 3152 3153 void MacroAssembler::encode_klass_not_null(Register r) { 3154 encode_klass_not_null(r, r); 3155 } 3156 3157 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 3158 Register rbase = dst; 3159 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 3160 3161 if (Universe::narrow_klass_base() == NULL) { 3162 if (Universe::narrow_klass_shift() != 0) { 3163 assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong"); 3164 lsl(dst, src, LogKlassAlignmentInBytes); 3165 } else { 3166 if (dst != src) mov(dst, src); 3167 } 3168 return; 3169 } 3170 3171 if (use_XOR_for_compressed_class_base) { 3172 if (Universe::narrow_klass_shift() != 0) { 3173 lsl(dst, src, LogKlassAlignmentInBytes); 3174 eor(dst, dst, (uint64_t)Universe::narrow_klass_base()); 3175 } else { 3176 eor(dst, src, (uint64_t)Universe::narrow_klass_base()); 3177 } 3178 return; 3179 } 3180 3181 if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0 3182 && Universe::narrow_klass_shift() == 0) { 3183 if (dst != src) 3184 movw(dst, src); 3185 movk(dst, (uint64_t)Universe::narrow_klass_base() >> 32, 32); 3186 return; 3187 } 3188 3189 // Cannot assert, unverified entry point counts instructions (see .ad file) 3190 // vtableStubs also counts instructions in pd_code_size_limit. 3191 // Also do not verify_oop as this is called by verify_oop. 3192 if (dst == src) rbase = rheapbase; 3193 mov(rbase, (uint64_t)Universe::narrow_klass_base()); 3194 if (Universe::narrow_klass_shift() != 0) { 3195 assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong"); 3196 add(dst, rbase, src, Assembler::LSL, LogKlassAlignmentInBytes); 3197 } else { 3198 add(dst, rbase, src); 3199 } 3200 if (dst == src) reinit_heapbase(); 3201 } 3202 3203 void MacroAssembler::decode_klass_not_null(Register r) { 3204 decode_klass_not_null(r, r); 3205 } 3206 3207 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 3208 assert (UseCompressedOops, "should only be used for compressed oops"); 3209 assert (Universe::heap() != NULL, "java heap should be initialized"); 3210 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); 3211 3212 int oop_index = oop_recorder()->find_index(obj); 3213 assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop"); 3214 3215 InstructionMark im(this); 3216 RelocationHolder rspec = oop_Relocation::spec(oop_index); 3217 code_section()->relocate(inst_mark(), rspec); 3218 movz(dst, 0xDEAD, 16); 3219 movk(dst, 0xBEEF); 3220 } 3221 3222 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 3223 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 3224 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); 3225 int index = oop_recorder()->find_index(k); 3226 assert(! Universe::heap()->is_in_reserved(k), "should not be an oop"); 3227 3228 InstructionMark im(this); 3229 RelocationHolder rspec = metadata_Relocation::spec(index); 3230 code_section()->relocate(inst_mark(), rspec); 3231 narrowKlass nk = Klass::encode_klass(k); 3232 movz(dst, (nk >> 16), 16); 3233 movk(dst, nk & 0xffff); 3234 } 3235 3236 void MacroAssembler::load_heap_oop(Register dst, Address src) 3237 { 3238 if (UseCompressedOops) { 3239 ldrw(dst, src); 3240 decode_heap_oop(dst); 3241 } else { 3242 ldr(dst, src); 3243 } 3244 } 3245 3246 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) 3247 { 3248 if (UseCompressedOops) { 3249 ldrw(dst, src); 3250 decode_heap_oop_not_null(dst); 3251 } else { 3252 ldr(dst, src); 3253 } 3254 } 3255 3256 void MacroAssembler::store_heap_oop(Address dst, Register src) { 3257 if (UseCompressedOops) { 3258 assert(!dst.uses(src), "not enough registers"); 3259 encode_heap_oop(src); 3260 strw(src, dst); 3261 } else 3262 str(src, dst); 3263 } 3264 3265 // Used for storing NULLs. 3266 void MacroAssembler::store_heap_oop_null(Address dst) { 3267 if (UseCompressedOops) { 3268 strw(zr, dst); 3269 } else 3270 str(zr, dst); 3271 } 3272 3273 #if INCLUDE_ALL_GCS 3274 void MacroAssembler::g1_write_barrier_pre(Register obj, 3275 Register pre_val, 3276 Register thread, 3277 Register tmp, 3278 bool tosca_live, 3279 bool expand_call) { 3280 // If expand_call is true then we expand the call_VM_leaf macro 3281 // directly to skip generating the check by 3282 // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp. 3283 3284 assert(thread == rthread, "must be"); 3285 3286 Label done; 3287 Label runtime; 3288 3289 assert(pre_val != noreg, "check this code"); 3290 3291 if (obj != noreg) 3292 assert_different_registers(obj, pre_val, tmp); 3293 3294 Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() + 3295 PtrQueue::byte_offset_of_active())); 3296 Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() + 3297 PtrQueue::byte_offset_of_index())); 3298 Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() + 3299 PtrQueue::byte_offset_of_buf())); 3300 3301 3302 // Is marking active? 3303 if (in_bytes(PtrQueue::byte_width_of_active()) == 4) { 3304 ldrw(tmp, in_progress); 3305 } else { 3306 assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption"); 3307 ldrb(tmp, in_progress); 3308 } 3309 cbzw(tmp, done); 3310 3311 // Do we need to load the previous value? 3312 if (obj != noreg) { 3313 load_heap_oop(pre_val, Address(obj, 0)); 3314 } 3315 3316 // Is the previous value null? 3317 cbz(pre_val, done); 3318 3319 // Can we store original value in the thread's buffer? 3320 // Is index == 0? 3321 // (The index field is typed as size_t.) 3322 3323 ldr(tmp, index); // tmp := *index_adr 3324 cbz(tmp, runtime); // tmp == 0? 3325 // If yes, goto runtime 3326 3327 sub(tmp, tmp, wordSize); // tmp := tmp - wordSize 3328 str(tmp, index); // *index_adr := tmp 3329 ldr(rscratch1, buffer); 3330 add(tmp, tmp, rscratch1); // tmp := tmp + *buffer_adr 3331 3332 // Record the previous value 3333 str(pre_val, Address(tmp, 0)); 3334 b(done); 3335 3336 bind(runtime); 3337 // save the live input values 3338 push(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp); 3339 3340 // Calling the runtime using the regular call_VM_leaf mechanism generates 3341 // code (generated by InterpreterMacroAssember::call_VM_leaf_base) 3342 // that checks that the *(rfp+frame::interpreter_frame_last_sp) == NULL. 3343 // 3344 // If we care generating the pre-barrier without a frame (e.g. in the 3345 // intrinsified Reference.get() routine) then ebp might be pointing to 3346 // the caller frame and so this check will most likely fail at runtime. 3347 // 3348 // Expanding the call directly bypasses the generation of the check. 3349 // So when we do not have have a full interpreter frame on the stack 3350 // expand_call should be passed true. 3351 3352 if (expand_call) { 3353 assert(pre_val != c_rarg1, "smashed arg"); 3354 pass_arg1(this, thread); 3355 pass_arg0(this, pre_val); 3356 MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2); 3357 } else { 3358 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread); 3359 } 3360 3361 pop(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp); 3362 3363 bind(done); 3364 } 3365 3366 void MacroAssembler::g1_write_barrier_post(Register store_addr, 3367 Register new_val, 3368 Register thread, 3369 Register tmp, 3370 Register tmp2) { 3371 assert(thread == rthread, "must be"); 3372 3373 Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() + 3374 PtrQueue::byte_offset_of_index())); 3375 Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() + 3376 PtrQueue::byte_offset_of_buf())); 3377 3378 BarrierSet* bs = Universe::heap()->barrier_set(); 3379 CardTableModRefBS* ct = (CardTableModRefBS*)bs; 3380 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); 3381 3382 Label done; 3383 Label runtime; 3384 3385 // Does store cross heap regions? 3386 3387 eor(tmp, store_addr, new_val); 3388 lsr(tmp, tmp, HeapRegion::LogOfHRGrainBytes); 3389 cbz(tmp, done); 3390 3391 // crosses regions, storing NULL? 3392 3393 cbz(new_val, done); 3394 3395 // storing region crossing non-NULL, is card already dirty? 3396 3397 ExternalAddress cardtable((address) ct->byte_map_base); 3398 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); 3399 const Register card_addr = tmp; 3400 3401 lsr(card_addr, store_addr, CardTableModRefBS::card_shift); 3402 3403 unsigned long offset; 3404 adrp(tmp2, cardtable, offset); 3405 3406 // get the address of the card 3407 add(card_addr, card_addr, tmp2); 3408 ldrb(tmp2, Address(card_addr, offset)); 3409 cmpw(tmp2, (int)G1SATBCardTableModRefBS::g1_young_card_val()); 3410 br(Assembler::EQ, done); 3411 3412 assert((int)CardTableModRefBS::dirty_card_val() == 0, "must be 0"); 3413 3414 membar(Assembler::StoreLoad); 3415 3416 ldrb(tmp2, Address(card_addr, offset)); 3417 cbzw(tmp2, done); 3418 3419 // storing a region crossing, non-NULL oop, card is clean. 3420 // dirty card and log. 3421 3422 strb(zr, Address(card_addr, offset)); 3423 3424 ldr(rscratch1, queue_index); 3425 cbz(rscratch1, runtime); 3426 sub(rscratch1, rscratch1, wordSize); 3427 str(rscratch1, queue_index); 3428 3429 ldr(tmp2, buffer); 3430 str(card_addr, Address(tmp2, rscratch1)); 3431 b(done); 3432 3433 bind(runtime); 3434 // save the live input values 3435 push(store_addr->bit(true) | new_val->bit(true), sp); 3436 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread); 3437 pop(store_addr->bit(true) | new_val->bit(true), sp); 3438 3439 bind(done); 3440 } 3441 3442 #endif // INCLUDE_ALL_GCS 3443 3444 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 3445 assert(oop_recorder() != NULL, "this assembler needs a Recorder"); 3446 int index = oop_recorder()->allocate_metadata_index(obj); 3447 RelocationHolder rspec = metadata_Relocation::spec(index); 3448 return Address((address)obj, rspec); 3449 } 3450 3451 // Move an oop into a register. immediate is true if we want 3452 // immediate instrcutions, i.e. we are not going to patch this 3453 // instruction while the code is being executed by another thread. In 3454 // that case we can use move immediates rather than the constant pool. 3455 void MacroAssembler::movoop(Register dst, jobject obj, bool immediate) { 3456 int oop_index; 3457 if (obj == NULL) { 3458 oop_index = oop_recorder()->allocate_oop_index(obj); 3459 } else { 3460 oop_index = oop_recorder()->find_index(obj); 3461 assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop"); 3462 } 3463 RelocationHolder rspec = oop_Relocation::spec(oop_index); 3464 if (! immediate) { 3465 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 3466 ldr_constant(dst, Address(dummy, rspec)); 3467 } else 3468 mov(dst, Address((address)obj, rspec)); 3469 } 3470 3471 // Move a metadata address into a register. 3472 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 3473 int oop_index; 3474 if (obj == NULL) { 3475 oop_index = oop_recorder()->allocate_metadata_index(obj); 3476 } else { 3477 oop_index = oop_recorder()->find_index(obj); 3478 } 3479 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 3480 mov(dst, Address((address)obj, rspec)); 3481 } 3482 3483 Address MacroAssembler::constant_oop_address(jobject obj) { 3484 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder"); 3485 assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop"); 3486 int oop_index = oop_recorder()->find_index(obj); 3487 return Address((address)obj, oop_Relocation::spec(oop_index)); 3488 } 3489 3490 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 3491 void MacroAssembler::tlab_allocate(Register obj, 3492 Register var_size_in_bytes, 3493 int con_size_in_bytes, 3494 Register t1, 3495 Register t2, 3496 Label& slow_case) { 3497 assert_different_registers(obj, t2); 3498 assert_different_registers(obj, var_size_in_bytes); 3499 Register end = t2; 3500 3501 // verify_tlab(); 3502 3503 ldr(obj, Address(rthread, JavaThread::tlab_top_offset())); 3504 if (var_size_in_bytes == noreg) { 3505 lea(end, Address(obj, con_size_in_bytes)); 3506 } else { 3507 lea(end, Address(obj, var_size_in_bytes)); 3508 } 3509 ldr(rscratch1, Address(rthread, JavaThread::tlab_end_offset())); 3510 cmp(end, rscratch1); 3511 br(Assembler::HI, slow_case); 3512 3513 // update the tlab top pointer 3514 str(end, Address(rthread, JavaThread::tlab_top_offset())); 3515 3516 // recover var_size_in_bytes if necessary 3517 if (var_size_in_bytes == end) { 3518 sub(var_size_in_bytes, var_size_in_bytes, obj); 3519 } 3520 // verify_tlab(); 3521 } 3522 3523 // Preserves r19, and r3. 3524 Register MacroAssembler::tlab_refill(Label& retry, 3525 Label& try_eden, 3526 Label& slow_case) { 3527 Register top = r0; 3528 Register t1 = r2; 3529 Register t2 = r4; 3530 assert_different_registers(top, rthread, t1, t2, /* preserve: */ r19, r3); 3531 Label do_refill, discard_tlab; 3532 3533 if (!Universe::heap()->supports_inline_contig_alloc()) { 3534 // No allocation in the shared eden. 3535 b(slow_case); 3536 } 3537 3538 ldr(top, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 3539 ldr(t1, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 3540 3541 // calculate amount of free space 3542 sub(t1, t1, top); 3543 lsr(t1, t1, LogHeapWordSize); 3544 3545 // Retain tlab and allocate object in shared space if 3546 // the amount free in the tlab is too large to discard. 3547 3548 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()))); 3549 cmp(t1, rscratch1); 3550 br(Assembler::LE, discard_tlab); 3551 3552 // Retain 3553 // ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()))); 3554 mov(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment()); 3555 add(rscratch1, rscratch1, t2); 3556 str(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()))); 3557 3558 if (TLABStats) { 3559 // increment number of slow_allocations 3560 addmw(Address(rthread, in_bytes(JavaThread::tlab_slow_allocations_offset())), 3561 1, rscratch1); 3562 } 3563 b(try_eden); 3564 3565 bind(discard_tlab); 3566 if (TLABStats) { 3567 // increment number of refills 3568 addmw(Address(rthread, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1, 3569 rscratch1); 3570 // accumulate wastage -- t1 is amount free in tlab 3571 addmw(Address(rthread, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1, 3572 rscratch1); 3573 } 3574 3575 // if tlab is currently allocated (top or end != null) then 3576 // fill [top, end + alignment_reserve) with array object 3577 cbz(top, do_refill); 3578 3579 // set up the mark word 3580 mov(rscratch1, (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2)); 3581 str(rscratch1, Address(top, oopDesc::mark_offset_in_bytes())); 3582 // set the length to the remaining space 3583 sub(t1, t1, typeArrayOopDesc::header_size(T_INT)); 3584 add(t1, t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve()); 3585 lsl(t1, t1, log2_intptr(HeapWordSize/sizeof(jint))); 3586 strw(t1, Address(top, arrayOopDesc::length_offset_in_bytes())); 3587 // set klass to intArrayKlass 3588 { 3589 unsigned long offset; 3590 // dubious reloc why not an oop reloc? 3591 adrp(rscratch1, ExternalAddress((address)Universe::intArrayKlassObj_addr()), 3592 offset); 3593 ldr(t1, Address(rscratch1, offset)); 3594 } 3595 // store klass last. concurrent gcs assumes klass length is valid if 3596 // klass field is not null. 3597 store_klass(top, t1); 3598 3599 mov(t1, top); 3600 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 3601 sub(t1, t1, rscratch1); 3602 incr_allocated_bytes(rthread, t1, 0, rscratch1); 3603 3604 // refill the tlab with an eden allocation 3605 bind(do_refill); 3606 ldr(t1, Address(rthread, in_bytes(JavaThread::tlab_size_offset()))); 3607 lsl(t1, t1, LogHeapWordSize); 3608 // allocate new tlab, address returned in top 3609 eden_allocate(top, t1, 0, t2, slow_case); 3610 3611 // Check that t1 was preserved in eden_allocate. 3612 #ifdef ASSERT 3613 if (UseTLAB) { 3614 Label ok; 3615 Register tsize = r4; 3616 assert_different_registers(tsize, rthread, t1); 3617 str(tsize, Address(pre(sp, -16))); 3618 ldr(tsize, Address(rthread, in_bytes(JavaThread::tlab_size_offset()))); 3619 lsl(tsize, tsize, LogHeapWordSize); 3620 cmp(t1, tsize); 3621 br(Assembler::EQ, ok); 3622 STOP("assert(t1 != tlab size)"); 3623 should_not_reach_here(); 3624 3625 bind(ok); 3626 ldr(tsize, Address(post(sp, 16))); 3627 } 3628 #endif 3629 str(top, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 3630 str(top, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 3631 add(top, top, t1); 3632 sub(top, top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes()); 3633 str(top, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 3634 verify_tlab(); 3635 b(retry); 3636 3637 return rthread; // for use by caller 3638 } 3639 3640 // Defines obj, preserves var_size_in_bytes 3641 void MacroAssembler::eden_allocate(Register obj, 3642 Register var_size_in_bytes, 3643 int con_size_in_bytes, 3644 Register t1, 3645 Label& slow_case) { 3646 assert_different_registers(obj, var_size_in_bytes, t1); 3647 if (!Universe::heap()->supports_inline_contig_alloc()) { 3648 b(slow_case); 3649 } else { 3650 Register end = t1; 3651 Register heap_end = rscratch2; 3652 Label retry; 3653 bind(retry); 3654 { 3655 unsigned long offset; 3656 adrp(rscratch1, ExternalAddress((address) Universe::heap()->end_addr()), offset); 3657 ldr(heap_end, Address(rscratch1, offset)); 3658 } 3659 3660 ExternalAddress heap_top((address) Universe::heap()->top_addr()); 3661 3662 // Get the current top of the heap 3663 { 3664 unsigned long offset; 3665 adrp(rscratch1, heap_top, offset); 3666 // Use add() here after ARDP, rather than lea(). 3667 // lea() does not generate anything if its offset is zero. 3668 // However, relocs expect to find either an ADD or a load/store 3669 // insn after an ADRP. add() always generates an ADD insn, even 3670 // for add(Rn, Rn, 0). 3671 add(rscratch1, rscratch1, offset); 3672 ldaxr(obj, rscratch1); 3673 } 3674 3675 // Adjust it my the size of our new object 3676 if (var_size_in_bytes == noreg) { 3677 lea(end, Address(obj, con_size_in_bytes)); 3678 } else { 3679 lea(end, Address(obj, var_size_in_bytes)); 3680 } 3681 3682 // if end < obj then we wrapped around high memory 3683 cmp(end, obj); 3684 br(Assembler::LO, slow_case); 3685 3686 cmp(end, heap_end); 3687 br(Assembler::HI, slow_case); 3688 3689 // If heap_top hasn't been changed by some other thread, update it. 3690 stlxr(rscratch1, end, rscratch1); 3691 cbnzw(rscratch1, retry); 3692 } 3693 } 3694 3695 void MacroAssembler::verify_tlab() { 3696 #ifdef ASSERT 3697 if (UseTLAB && VerifyOops) { 3698 Label next, ok; 3699 3700 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 3701 3702 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 3703 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 3704 cmp(rscratch2, rscratch1); 3705 br(Assembler::HS, next); 3706 STOP("assert(top >= start)"); 3707 should_not_reach_here(); 3708 3709 bind(next); 3710 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 3711 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 3712 cmp(rscratch2, rscratch1); 3713 br(Assembler::HS, ok); 3714 STOP("assert(top <= end)"); 3715 should_not_reach_here(); 3716 3717 bind(ok); 3718 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 3719 } 3720 #endif 3721 } 3722 3723 // Writes to stack successive pages until offset reached to check for 3724 // stack overflow + shadow pages. This clobbers tmp. 3725 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 3726 assert_different_registers(tmp, size, rscratch1); 3727 mov(tmp, sp); 3728 // Bang stack for total size given plus shadow page size. 3729 // Bang one page at a time because large size can bang beyond yellow and 3730 // red zones. 3731 Label loop; 3732 mov(rscratch1, os::vm_page_size()); 3733 bind(loop); 3734 lea(tmp, Address(tmp, -os::vm_page_size())); 3735 subsw(size, size, rscratch1); 3736 str(size, Address(tmp)); 3737 br(Assembler::GT, loop); 3738 3739 // Bang down shadow pages too. 3740 // At this point, (tmp-0) is the last address touched, so don't 3741 // touch it again. (It was touched as (tmp-pagesize) but then tmp 3742 // was post-decremented.) Skip this address by starting at i=1, and 3743 // touch a few more pages below. N.B. It is important to touch all 3744 // the way down to and including i=StackShadowPages. 3745 for (int i = 0; i< StackShadowPages-1; i++) { 3746 // this could be any sized move but this is can be a debugging crumb 3747 // so the bigger the better. 3748 lea(tmp, Address(tmp, -os::vm_page_size())); 3749 str(size, Address(tmp)); 3750 } 3751 } 3752 3753 3754 address MacroAssembler::read_polling_page(Register r, address page, relocInfo::relocType rtype) { 3755 unsigned long off; 3756 adrp(r, Address(page, rtype), off); 3757 InstructionMark im(this); 3758 code_section()->relocate(inst_mark(), rtype); 3759 ldrw(zr, Address(r, off)); 3760 return inst_mark(); 3761 } 3762 3763 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 3764 InstructionMark im(this); 3765 code_section()->relocate(inst_mark(), rtype); 3766 ldrw(zr, Address(r, 0)); 3767 return inst_mark(); 3768 } 3769 3770 void MacroAssembler::adrp(Register reg1, const Address &dest, unsigned long &byte_offset) { 3771 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 3772 if (uabs(pc() - dest.target()) >= (1LL << 32)) { 3773 guarantee(rtype == relocInfo::none 3774 || rtype == relocInfo::external_word_type 3775 || rtype == relocInfo::poll_type 3776 || rtype == relocInfo::poll_return_type, 3777 "can only use a fixed address with an ADRP"); 3778 // Out of range. This doesn't happen very often, but we have to 3779 // handle it 3780 mov(reg1, dest); 3781 byte_offset = 0; 3782 } else { 3783 InstructionMark im(this); 3784 code_section()->relocate(inst_mark(), dest.rspec()); 3785 byte_offset = (uint64_t)dest.target() & 0xfff; 3786 _adrp(reg1, dest.target()); 3787 } 3788 } 3789 3790 void MacroAssembler::build_frame(int framesize) { 3791 assert(framesize > 0, "framesize must be > 0"); 3792 if (framesize < ((1 << 9) + 2 * wordSize)) { 3793 sub(sp, sp, framesize); 3794 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 3795 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 3796 } else { 3797 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 3798 if (PreserveFramePointer) mov(rfp, sp); 3799 if (framesize < ((1 << 12) + 2 * wordSize)) 3800 sub(sp, sp, framesize - 2 * wordSize); 3801 else { 3802 mov(rscratch1, framesize - 2 * wordSize); 3803 sub(sp, sp, rscratch1); 3804 } 3805 } 3806 } 3807 3808 void MacroAssembler::remove_frame(int framesize) { 3809 assert(framesize > 0, "framesize must be > 0"); 3810 if (framesize < ((1 << 9) + 2 * wordSize)) { 3811 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 3812 add(sp, sp, framesize); 3813 } else { 3814 if (framesize < ((1 << 12) + 2 * wordSize)) 3815 add(sp, sp, framesize - 2 * wordSize); 3816 else { 3817 mov(rscratch1, framesize - 2 * wordSize); 3818 add(sp, sp, rscratch1); 3819 } 3820 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 3821 } 3822 } 3823 3824 3825 // Search for str1 in str2 and return index or -1 3826 void MacroAssembler::string_indexof(Register str2, Register str1, 3827 Register cnt2, Register cnt1, 3828 Register tmp1, Register tmp2, 3829 Register tmp3, Register tmp4, 3830 int icnt1, Register result) { 3831 Label BM, LINEARSEARCH, DONE, NOMATCH, MATCH; 3832 3833 Register ch1 = rscratch1; 3834 Register ch2 = rscratch2; 3835 Register cnt1tmp = tmp1; 3836 Register cnt2tmp = tmp2; 3837 Register cnt1_neg = cnt1; 3838 Register cnt2_neg = cnt2; 3839 Register result_tmp = tmp4; 3840 3841 // Note, inline_string_indexOf() generates checks: 3842 // if (substr.count > string.count) return -1; 3843 // if (substr.count == 0) return 0; 3844 3845 // We have two strings, a source string in str2, cnt2 and a pattern string 3846 // in str1, cnt1. Find the 1st occurence of pattern in source or return -1. 3847 3848 // For larger pattern and source we use a simplified Boyer Moore algorithm. 3849 // With a small pattern and source we use linear scan. 3850 3851 if (icnt1 == -1) { 3852 cmp(cnt1, 256); // Use Linear Scan if cnt1 < 8 || cnt1 >= 256 3853 ccmp(cnt1, 8, 0b0000, LO); // Can't handle skip >= 256 because we use 3854 br(LO, LINEARSEARCH); // a byte array. 3855 cmp(cnt1, cnt2, LSR, 2); // Source must be 4 * pattern for BM 3856 br(HS, LINEARSEARCH); 3857 } 3858 3859 // The Boyer Moore alogorithm is based on the description here:- 3860 // 3861 // http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm 3862 // 3863 // This describes and algorithm with 2 shift rules. The 'Bad Character' rule 3864 // and the 'Good Suffix' rule. 3865 // 3866 // These rules are essentially heuristics for how far we can shift the 3867 // pattern along the search string. 3868 // 3869 // The implementation here uses the 'Bad Character' rule only because of the 3870 // complexity of initialisation for the 'Good Suffix' rule. 3871 // 3872 // This is also known as the Boyer-Moore-Horspool algorithm:- 3873 // 3874 // http://en.wikipedia.org/wiki/Boyer-Moore-Horspool_algorithm 3875 // 3876 // #define ASIZE 128 3877 // 3878 // int bm(unsigned char *x, int m, unsigned char *y, int n) { 3879 // int i, j; 3880 // unsigned c; 3881 // unsigned char bc[ASIZE]; 3882 // 3883 // /* Preprocessing */ 3884 // for (i = 0; i < ASIZE; ++i) 3885 // bc[i] = 0; 3886 // for (i = 0; i < m - 1; ) { 3887 // c = x[i]; 3888 // ++i; 3889 // if (c < ASIZE) bc[c] = i; 3890 // } 3891 // 3892 // /* Searching */ 3893 // j = 0; 3894 // while (j <= n - m) { 3895 // c = y[i+j]; 3896 // if (x[m-1] == c) 3897 // for (i = m - 2; i >= 0 && x[i] == y[i + j]; --i); 3898 // if (i < 0) return j; 3899 // if (c < ASIZE) 3900 // j = j - bc[y[j+m-1]] + m; 3901 // else 3902 // j += 1; // Advance by 1 only if char >= ASIZE 3903 // } 3904 // } 3905 3906 if (icnt1 == -1) { 3907 BIND(BM); 3908 3909 Label ZLOOP, BCLOOP, BCSKIP, BMLOOPSTR2, BMLOOPSTR1, BMSKIP; 3910 Label BMADV, BMMATCH, BMCHECKEND; 3911 3912 Register cnt1end = tmp2; 3913 Register str2end = cnt2; 3914 Register skipch = tmp2; 3915 3916 // Restrict ASIZE to 128 to reduce stack space/initialisation. 3917 // The presence of chars >= ASIZE in the target string does not affect 3918 // performance, but we must be careful not to initialise them in the stack 3919 // array. 3920 // The presence of chars >= ASIZE in the source string may adversely affect 3921 // performance since we can only advance by one when we encounter one. 3922 3923 stp(zr, zr, pre(sp, -128)); 3924 for (int i = 1; i < 8; i++) 3925 stp(zr, zr, Address(sp, i*16)); 3926 3927 mov(cnt1tmp, 0); 3928 sub(cnt1end, cnt1, 1); 3929 BIND(BCLOOP); 3930 ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1))); 3931 cmp(ch1, 128); 3932 add(cnt1tmp, cnt1tmp, 1); 3933 br(HS, BCSKIP); 3934 strb(cnt1tmp, Address(sp, ch1)); 3935 BIND(BCSKIP); 3936 cmp(cnt1tmp, cnt1end); 3937 br(LT, BCLOOP); 3938 3939 mov(result_tmp, str2); 3940 3941 sub(cnt2, cnt2, cnt1); 3942 add(str2end, str2, cnt2, LSL, 1); 3943 BIND(BMLOOPSTR2); 3944 sub(cnt1tmp, cnt1, 1); 3945 ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1))); 3946 ldrh(skipch, Address(str2, cnt1tmp, Address::lsl(1))); 3947 cmp(ch1, skipch); 3948 br(NE, BMSKIP); 3949 subs(cnt1tmp, cnt1tmp, 1); 3950 br(LT, BMMATCH); 3951 BIND(BMLOOPSTR1); 3952 ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1))); 3953 ldrh(ch2, Address(str2, cnt1tmp, Address::lsl(1))); 3954 cmp(ch1, ch2); 3955 br(NE, BMSKIP); 3956 subs(cnt1tmp, cnt1tmp, 1); 3957 br(GE, BMLOOPSTR1); 3958 BIND(BMMATCH); 3959 sub(result_tmp, str2, result_tmp); 3960 lsr(result, result_tmp, 1); 3961 add(sp, sp, 128); 3962 b(DONE); 3963 BIND(BMADV); 3964 add(str2, str2, 2); 3965 b(BMCHECKEND); 3966 BIND(BMSKIP); 3967 cmp(skipch, 128); 3968 br(HS, BMADV); 3969 ldrb(ch2, Address(sp, skipch)); 3970 add(str2, str2, cnt1, LSL, 1); 3971 sub(str2, str2, ch2, LSL, 1); 3972 BIND(BMCHECKEND); 3973 cmp(str2, str2end); 3974 br(LE, BMLOOPSTR2); 3975 add(sp, sp, 128); 3976 b(NOMATCH); 3977 } 3978 3979 BIND(LINEARSEARCH); 3980 { 3981 Label DO1, DO2, DO3; 3982 3983 Register str2tmp = tmp2; 3984 Register first = tmp3; 3985 3986 if (icnt1 == -1) 3987 { 3988 Label DOSHORT, FIRST_LOOP, STR2_NEXT, STR1_LOOP, STR1_NEXT, LAST_WORD; 3989 3990 cmp(cnt1, 4); 3991 br(LT, DOSHORT); 3992 3993 sub(cnt2, cnt2, cnt1); 3994 sub(cnt1, cnt1, 4); 3995 mov(result_tmp, cnt2); 3996 3997 lea(str1, Address(str1, cnt1, Address::uxtw(1))); 3998 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 3999 sub(cnt1_neg, zr, cnt1, LSL, 1); 4000 sub(cnt2_neg, zr, cnt2, LSL, 1); 4001 ldr(first, Address(str1, cnt1_neg)); 4002 4003 BIND(FIRST_LOOP); 4004 ldr(ch2, Address(str2, cnt2_neg)); 4005 cmp(first, ch2); 4006 br(EQ, STR1_LOOP); 4007 BIND(STR2_NEXT); 4008 adds(cnt2_neg, cnt2_neg, 2); 4009 br(LE, FIRST_LOOP); 4010 b(NOMATCH); 4011 4012 BIND(STR1_LOOP); 4013 adds(cnt1tmp, cnt1_neg, 8); 4014 add(cnt2tmp, cnt2_neg, 8); 4015 br(GE, LAST_WORD); 4016 4017 BIND(STR1_NEXT); 4018 ldr(ch1, Address(str1, cnt1tmp)); 4019 ldr(ch2, Address(str2, cnt2tmp)); 4020 cmp(ch1, ch2); 4021 br(NE, STR2_NEXT); 4022 adds(cnt1tmp, cnt1tmp, 8); 4023 add(cnt2tmp, cnt2tmp, 8); 4024 br(LT, STR1_NEXT); 4025 4026 BIND(LAST_WORD); 4027 ldr(ch1, Address(str1)); 4028 sub(str2tmp, str2, cnt1_neg); // adjust to corresponding 4029 ldr(ch2, Address(str2tmp, cnt2_neg)); // word in str2 4030 cmp(ch1, ch2); 4031 br(NE, STR2_NEXT); 4032 b(MATCH); 4033 4034 BIND(DOSHORT); 4035 cmp(cnt1, 2); 4036 br(LT, DO1); 4037 br(GT, DO3); 4038 } 4039 4040 if (icnt1 == 4) { 4041 Label CH1_LOOP; 4042 4043 ldr(ch1, str1); 4044 sub(cnt2, cnt2, 4); 4045 mov(result_tmp, cnt2); 4046 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4047 sub(cnt2_neg, zr, cnt2, LSL, 1); 4048 4049 BIND(CH1_LOOP); 4050 ldr(ch2, Address(str2, cnt2_neg)); 4051 cmp(ch1, ch2); 4052 br(EQ, MATCH); 4053 adds(cnt2_neg, cnt2_neg, 2); 4054 br(LE, CH1_LOOP); 4055 b(NOMATCH); 4056 } 4057 4058 if (icnt1 == -1 || icnt1 == 2) { 4059 Label CH1_LOOP; 4060 4061 BIND(DO2); 4062 ldrw(ch1, str1); 4063 sub(cnt2, cnt2, 2); 4064 mov(result_tmp, cnt2); 4065 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4066 sub(cnt2_neg, zr, cnt2, LSL, 1); 4067 4068 BIND(CH1_LOOP); 4069 ldrw(ch2, Address(str2, cnt2_neg)); 4070 cmp(ch1, ch2); 4071 br(EQ, MATCH); 4072 adds(cnt2_neg, cnt2_neg, 2); 4073 br(LE, CH1_LOOP); 4074 b(NOMATCH); 4075 } 4076 4077 if (icnt1 == -1 || icnt1 == 3) { 4078 Label FIRST_LOOP, STR2_NEXT, STR1_LOOP; 4079 4080 BIND(DO3); 4081 ldrw(first, str1); 4082 ldrh(ch1, Address(str1, 4)); 4083 4084 sub(cnt2, cnt2, 3); 4085 mov(result_tmp, cnt2); 4086 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4087 sub(cnt2_neg, zr, cnt2, LSL, 1); 4088 4089 BIND(FIRST_LOOP); 4090 ldrw(ch2, Address(str2, cnt2_neg)); 4091 cmpw(first, ch2); 4092 br(EQ, STR1_LOOP); 4093 BIND(STR2_NEXT); 4094 adds(cnt2_neg, cnt2_neg, 2); 4095 br(LE, FIRST_LOOP); 4096 b(NOMATCH); 4097 4098 BIND(STR1_LOOP); 4099 add(cnt2tmp, cnt2_neg, 4); 4100 ldrh(ch2, Address(str2, cnt2tmp)); 4101 cmp(ch1, ch2); 4102 br(NE, STR2_NEXT); 4103 b(MATCH); 4104 } 4105 4106 if (icnt1 == -1 || icnt1 == 1) { 4107 Label CH1_LOOP, HAS_ZERO; 4108 Label DO1_SHORT, DO1_LOOP; 4109 4110 BIND(DO1); 4111 ldrh(ch1, str1); 4112 cmp(cnt2, 4); 4113 br(LT, DO1_SHORT); 4114 4115 orr(ch1, ch1, ch1, LSL, 16); 4116 orr(ch1, ch1, ch1, LSL, 32); 4117 4118 sub(cnt2, cnt2, 4); 4119 mov(result_tmp, cnt2); 4120 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4121 sub(cnt2_neg, zr, cnt2, LSL, 1); 4122 4123 mov(tmp3, 0x0001000100010001); 4124 BIND(CH1_LOOP); 4125 ldr(ch2, Address(str2, cnt2_neg)); 4126 eor(ch2, ch1, ch2); 4127 sub(tmp1, ch2, tmp3); 4128 orr(tmp2, ch2, 0x7fff7fff7fff7fff); 4129 bics(tmp1, tmp1, tmp2); 4130 br(NE, HAS_ZERO); 4131 adds(cnt2_neg, cnt2_neg, 8); 4132 br(LT, CH1_LOOP); 4133 4134 cmp(cnt2_neg, 8); 4135 mov(cnt2_neg, 0); 4136 br(LT, CH1_LOOP); 4137 b(NOMATCH); 4138 4139 BIND(HAS_ZERO); 4140 rev(tmp1, tmp1); 4141 clz(tmp1, tmp1); 4142 add(cnt2_neg, cnt2_neg, tmp1, LSR, 3); 4143 b(MATCH); 4144 4145 BIND(DO1_SHORT); 4146 mov(result_tmp, cnt2); 4147 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4148 sub(cnt2_neg, zr, cnt2, LSL, 1); 4149 BIND(DO1_LOOP); 4150 ldrh(ch2, Address(str2, cnt2_neg)); 4151 cmpw(ch1, ch2); 4152 br(EQ, MATCH); 4153 adds(cnt2_neg, cnt2_neg, 2); 4154 br(LT, DO1_LOOP); 4155 } 4156 } 4157 BIND(NOMATCH); 4158 mov(result, -1); 4159 b(DONE); 4160 BIND(MATCH); 4161 add(result, result_tmp, cnt2_neg, ASR, 1); 4162 BIND(DONE); 4163 } 4164 4165 // Compare strings. 4166 void MacroAssembler::string_compare(Register str1, Register str2, 4167 Register cnt1, Register cnt2, Register result, 4168 Register tmp1) { 4169 Label LENGTH_DIFF, DONE, SHORT_LOOP, SHORT_STRING, 4170 NEXT_WORD, DIFFERENCE; 4171 4172 BLOCK_COMMENT("string_compare {"); 4173 4174 // Compute the minimum of the string lengths and save the difference. 4175 subsw(tmp1, cnt1, cnt2); 4176 cselw(cnt2, cnt1, cnt2, Assembler::LE); // min 4177 4178 // A very short string 4179 cmpw(cnt2, 4); 4180 br(Assembler::LT, SHORT_STRING); 4181 4182 // Check if the strings start at the same location. 4183 cmp(str1, str2); 4184 br(Assembler::EQ, LENGTH_DIFF); 4185 4186 // Compare longwords 4187 { 4188 subw(cnt2, cnt2, 4); // The last longword is a special case 4189 4190 // Move both string pointers to the last longword of their 4191 // strings, negate the remaining count, and convert it to bytes. 4192 lea(str1, Address(str1, cnt2, Address::uxtw(1))); 4193 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4194 sub(cnt2, zr, cnt2, LSL, 1); 4195 4196 // Loop, loading longwords and comparing them into rscratch2. 4197 bind(NEXT_WORD); 4198 ldr(result, Address(str1, cnt2)); 4199 ldr(cnt1, Address(str2, cnt2)); 4200 adds(cnt2, cnt2, wordSize); 4201 eor(rscratch2, result, cnt1); 4202 cbnz(rscratch2, DIFFERENCE); 4203 br(Assembler::LT, NEXT_WORD); 4204 4205 // Last longword. In the case where length == 4 we compare the 4206 // same longword twice, but that's still faster than another 4207 // conditional branch. 4208 4209 ldr(result, Address(str1)); 4210 ldr(cnt1, Address(str2)); 4211 eor(rscratch2, result, cnt1); 4212 cbz(rscratch2, LENGTH_DIFF); 4213 4214 // Find the first different characters in the longwords and 4215 // compute their difference. 4216 bind(DIFFERENCE); 4217 rev(rscratch2, rscratch2); 4218 clz(rscratch2, rscratch2); 4219 andr(rscratch2, rscratch2, -16); 4220 lsrv(result, result, rscratch2); 4221 uxthw(result, result); 4222 lsrv(cnt1, cnt1, rscratch2); 4223 uxthw(cnt1, cnt1); 4224 subw(result, result, cnt1); 4225 b(DONE); 4226 } 4227 4228 bind(SHORT_STRING); 4229 // Is the minimum length zero? 4230 cbz(cnt2, LENGTH_DIFF); 4231 4232 bind(SHORT_LOOP); 4233 load_unsigned_short(result, Address(post(str1, 2))); 4234 load_unsigned_short(cnt1, Address(post(str2, 2))); 4235 subw(result, result, cnt1); 4236 cbnz(result, DONE); 4237 sub(cnt2, cnt2, 1); 4238 cbnz(cnt2, SHORT_LOOP); 4239 4240 // Strings are equal up to min length. Return the length difference. 4241 bind(LENGTH_DIFF); 4242 mov(result, tmp1); 4243 4244 // That's it 4245 bind(DONE); 4246 4247 BLOCK_COMMENT("} string_compare"); 4248 } 4249 4250 4251 void MacroAssembler::string_equals(Register str1, Register str2, 4252 Register cnt, Register result, 4253 Register tmp1) { 4254 Label SAME_CHARS, DONE, SHORT_LOOP, SHORT_STRING, 4255 NEXT_WORD; 4256 4257 const Register tmp2 = rscratch1; 4258 assert_different_registers(str1, str2, cnt, result, tmp1, tmp2, rscratch2); 4259 4260 BLOCK_COMMENT("string_equals {"); 4261 4262 // Start by assuming that the strings are not equal. 4263 mov(result, zr); 4264 4265 // A very short string 4266 cmpw(cnt, 4); 4267 br(Assembler::LT, SHORT_STRING); 4268 4269 // Check if the strings start at the same location. 4270 cmp(str1, str2); 4271 br(Assembler::EQ, SAME_CHARS); 4272 4273 // Compare longwords 4274 { 4275 subw(cnt, cnt, 4); // The last longword is a special case 4276 4277 // Move both string pointers to the last longword of their 4278 // strings, negate the remaining count, and convert it to bytes. 4279 lea(str1, Address(str1, cnt, Address::uxtw(1))); 4280 lea(str2, Address(str2, cnt, Address::uxtw(1))); 4281 sub(cnt, zr, cnt, LSL, 1); 4282 4283 // Loop, loading longwords and comparing them into rscratch2. 4284 bind(NEXT_WORD); 4285 ldr(tmp1, Address(str1, cnt)); 4286 ldr(tmp2, Address(str2, cnt)); 4287 adds(cnt, cnt, wordSize); 4288 eor(rscratch2, tmp1, tmp2); 4289 cbnz(rscratch2, DONE); 4290 br(Assembler::LT, NEXT_WORD); 4291 4292 // Last longword. In the case where length == 4 we compare the 4293 // same longword twice, but that's still faster than another 4294 // conditional branch. 4295 4296 ldr(tmp1, Address(str1)); 4297 ldr(tmp2, Address(str2)); 4298 eor(rscratch2, tmp1, tmp2); 4299 cbz(rscratch2, SAME_CHARS); 4300 b(DONE); 4301 } 4302 4303 bind(SHORT_STRING); 4304 // Is the length zero? 4305 cbz(cnt, SAME_CHARS); 4306 4307 bind(SHORT_LOOP); 4308 load_unsigned_short(tmp1, Address(post(str1, 2))); 4309 load_unsigned_short(tmp2, Address(post(str2, 2))); 4310 subw(tmp1, tmp1, tmp2); 4311 cbnz(tmp1, DONE); 4312 sub(cnt, cnt, 1); 4313 cbnz(cnt, SHORT_LOOP); 4314 4315 // Strings are equal. 4316 bind(SAME_CHARS); 4317 mov(result, true); 4318 4319 // That's it 4320 bind(DONE); 4321 4322 BLOCK_COMMENT("} string_equals"); 4323 } 4324 4325 // Compare char[] arrays aligned to 4 bytes 4326 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2, 4327 Register result, Register tmp1) 4328 { 4329 Register cnt1 = rscratch1; 4330 Register cnt2 = rscratch2; 4331 Register tmp2 = rscratch2; 4332 4333 Label SAME, DIFFER, NEXT, TAIL03, TAIL01; 4334 4335 int length_offset = arrayOopDesc::length_offset_in_bytes(); 4336 int base_offset = arrayOopDesc::base_offset_in_bytes(T_CHAR); 4337 4338 BLOCK_COMMENT("char_arrays_equals {"); 4339 4340 // different until proven equal 4341 mov(result, false); 4342 4343 // same array? 4344 cmp(ary1, ary2); 4345 br(Assembler::EQ, SAME); 4346 4347 // ne if either null 4348 cbz(ary1, DIFFER); 4349 cbz(ary2, DIFFER); 4350 4351 // lengths ne? 4352 ldrw(cnt1, Address(ary1, length_offset)); 4353 ldrw(cnt2, Address(ary2, length_offset)); 4354 cmp(cnt1, cnt2); 4355 br(Assembler::NE, DIFFER); 4356 4357 lea(ary1, Address(ary1, base_offset)); 4358 lea(ary2, Address(ary2, base_offset)); 4359 4360 subs(cnt1, cnt1, 4); 4361 br(LT, TAIL03); 4362 4363 BIND(NEXT); 4364 ldr(tmp1, Address(post(ary1, 8))); 4365 ldr(tmp2, Address(post(ary2, 8))); 4366 subs(cnt1, cnt1, 4); 4367 eor(tmp1, tmp1, tmp2); 4368 cbnz(tmp1, DIFFER); 4369 br(GE, NEXT); 4370 4371 BIND(TAIL03); // 0-3 chars left, cnt1 = #chars left - 4 4372 tst(cnt1, 0b10); 4373 br(EQ, TAIL01); 4374 ldrw(tmp1, Address(post(ary1, 4))); 4375 ldrw(tmp2, Address(post(ary2, 4))); 4376 cmp(tmp1, tmp2); 4377 br(NE, DIFFER); 4378 BIND(TAIL01); // 0-1 chars left 4379 tst(cnt1, 0b01); 4380 br(EQ, SAME); 4381 ldrh(tmp1, ary1); 4382 ldrh(tmp2, ary2); 4383 cmp(tmp1, tmp2); 4384 br(NE, DIFFER); 4385 4386 BIND(SAME); 4387 mov(result, true); 4388 BIND(DIFFER); // result already set 4389 4390 BLOCK_COMMENT("} char_arrays_equals"); 4391 } 4392 4393 // encode char[] to byte[] in ISO_8859_1 4394 void MacroAssembler::encode_iso_array(Register src, Register dst, 4395 Register len, Register result, 4396 FloatRegister Vtmp1, FloatRegister Vtmp2, 4397 FloatRegister Vtmp3, FloatRegister Vtmp4) 4398 { 4399 Label DONE, NEXT_32, LOOP_8, NEXT_8, LOOP_1, NEXT_1; 4400 Register tmp1 = rscratch1; 4401 4402 mov(result, len); // Save initial len 4403 4404 #ifndef BUILTIN_SIM 4405 subs(len, len, 32); 4406 br(LT, LOOP_8); 4407 4408 // The following code uses the SIMD 'uqxtn' and 'uqxtn2' instructions 4409 // to convert chars to bytes. These set the 'QC' bit in the FPSR if 4410 // any char could not fit in a byte, so clear the FPSR so we can test it. 4411 clear_fpsr(); 4412 4413 BIND(NEXT_32); 4414 ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src); 4415 uqxtn(Vtmp1, T8B, Vtmp1, T8H); // uqxtn - write bottom half 4416 uqxtn(Vtmp1, T16B, Vtmp2, T8H); // uqxtn2 - write top half 4417 uqxtn(Vtmp2, T8B, Vtmp3, T8H); 4418 uqxtn(Vtmp2, T16B, Vtmp4, T8H); // uqxtn2 4419 get_fpsr(tmp1); 4420 cbnzw(tmp1, LOOP_8); 4421 st1(Vtmp1, Vtmp2, T16B, post(dst, 32)); 4422 subs(len, len, 32); 4423 add(src, src, 64); 4424 br(GE, NEXT_32); 4425 4426 BIND(LOOP_8); 4427 adds(len, len, 32-8); 4428 br(LT, LOOP_1); 4429 clear_fpsr(); // QC may be set from loop above, clear again 4430 BIND(NEXT_8); 4431 ld1(Vtmp1, T8H, src); 4432 uqxtn(Vtmp1, T8B, Vtmp1, T8H); 4433 get_fpsr(tmp1); 4434 cbnzw(tmp1, LOOP_1); 4435 st1(Vtmp1, T8B, post(dst, 8)); 4436 subs(len, len, 8); 4437 add(src, src, 16); 4438 br(GE, NEXT_8); 4439 4440 BIND(LOOP_1); 4441 adds(len, len, 8); 4442 br(LE, DONE); 4443 #else 4444 cbz(len, DONE); 4445 #endif 4446 BIND(NEXT_1); 4447 ldrh(tmp1, Address(post(src, 2))); 4448 tst(tmp1, 0xff00); 4449 br(NE, DONE); 4450 strb(tmp1, Address(post(dst, 1))); 4451 subs(len, len, 1); 4452 br(GT, NEXT_1); 4453 4454 BIND(DONE); 4455 sub(result, result, len); // Return index where we stopped 4456 }