1 /* 2 * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/stringTable.hpp" 27 #include "classfile/symbolTable.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "code/codeCache.hpp" 30 #include "gc/parallel/gcTaskManager.hpp" 31 #include "gc/parallel/parallelScavengeHeap.inline.hpp" 32 #include "gc/parallel/pcTasks.hpp" 33 #include "gc/parallel/psAdaptiveSizePolicy.hpp" 34 #include "gc/parallel/psCompactionManager.inline.hpp" 35 #include "gc/parallel/psMarkSweep.hpp" 36 #include "gc/parallel/psMarkSweepDecorator.hpp" 37 #include "gc/parallel/psOldGen.hpp" 38 #include "gc/parallel/psParallelCompact.inline.hpp" 39 #include "gc/parallel/psPromotionManager.inline.hpp" 40 #include "gc/parallel/psScavenge.hpp" 41 #include "gc/parallel/psYoungGen.hpp" 42 #include "gc/shared/gcCause.hpp" 43 #include "gc/shared/gcHeapSummary.hpp" 44 #include "gc/shared/gcId.hpp" 45 #include "gc/shared/gcLocker.inline.hpp" 46 #include "gc/shared/gcTimer.hpp" 47 #include "gc/shared/gcTrace.hpp" 48 #include "gc/shared/gcTraceTime.inline.hpp" 49 #include "gc/shared/isGCActiveMark.hpp" 50 #include "gc/shared/referencePolicy.hpp" 51 #include "gc/shared/referenceProcessor.hpp" 52 #include "gc/shared/spaceDecorator.hpp" 53 #include "logging/log.hpp" 54 #include "oops/instanceKlass.inline.hpp" 55 #include "oops/instanceMirrorKlass.inline.hpp" 56 #include "oops/methodData.hpp" 57 #include "oops/objArrayKlass.inline.hpp" 58 #include "oops/oop.inline.hpp" 59 #include "oops/valueArrayKlass.inline.hpp" 60 #include "runtime/atomic.inline.hpp" 61 #include "runtime/fprofiler.hpp" 62 #include "runtime/safepoint.hpp" 63 #include "runtime/vmThread.hpp" 64 #include "services/management.hpp" 65 #include "services/memTracker.hpp" 66 #include "services/memoryService.hpp" 67 #include "utilities/events.hpp" 68 #include "utilities/stack.inline.hpp" 69 70 #include <math.h> 71 72 // All sizes are in HeapWords. 73 const size_t ParallelCompactData::Log2RegionSize = 16; // 64K words 74 const size_t ParallelCompactData::RegionSize = (size_t)1 << Log2RegionSize; 75 const size_t ParallelCompactData::RegionSizeBytes = 76 RegionSize << LogHeapWordSize; 77 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1; 78 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1; 79 const size_t ParallelCompactData::RegionAddrMask = ~RegionAddrOffsetMask; 80 81 const size_t ParallelCompactData::Log2BlockSize = 7; // 128 words 82 const size_t ParallelCompactData::BlockSize = (size_t)1 << Log2BlockSize; 83 const size_t ParallelCompactData::BlockSizeBytes = 84 BlockSize << LogHeapWordSize; 85 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1; 86 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1; 87 const size_t ParallelCompactData::BlockAddrMask = ~BlockAddrOffsetMask; 88 89 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize; 90 const size_t ParallelCompactData::Log2BlocksPerRegion = 91 Log2RegionSize - Log2BlockSize; 92 93 const ParallelCompactData::RegionData::region_sz_t 94 ParallelCompactData::RegionData::dc_shift = 27; 95 96 const ParallelCompactData::RegionData::region_sz_t 97 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift; 98 99 const ParallelCompactData::RegionData::region_sz_t 100 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift; 101 102 const ParallelCompactData::RegionData::region_sz_t 103 ParallelCompactData::RegionData::los_mask = ~dc_mask; 104 105 const ParallelCompactData::RegionData::region_sz_t 106 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift; 107 108 const ParallelCompactData::RegionData::region_sz_t 109 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift; 110 111 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id]; 112 113 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL; 114 115 double PSParallelCompact::_dwl_mean; 116 double PSParallelCompact::_dwl_std_dev; 117 double PSParallelCompact::_dwl_first_term; 118 double PSParallelCompact::_dwl_adjustment; 119 #ifdef ASSERT 120 bool PSParallelCompact::_dwl_initialized = false; 121 #endif // #ifdef ASSERT 122 123 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size, 124 HeapWord* destination) 125 { 126 assert(src_region_idx != 0, "invalid src_region_idx"); 127 assert(partial_obj_size != 0, "invalid partial_obj_size argument"); 128 assert(destination != NULL, "invalid destination argument"); 129 130 _src_region_idx = src_region_idx; 131 _partial_obj_size = partial_obj_size; 132 _destination = destination; 133 134 // These fields may not be updated below, so make sure they're clear. 135 assert(_dest_region_addr == NULL, "should have been cleared"); 136 assert(_first_src_addr == NULL, "should have been cleared"); 137 138 // Determine the number of destination regions for the partial object. 139 HeapWord* const last_word = destination + partial_obj_size - 1; 140 const ParallelCompactData& sd = PSParallelCompact::summary_data(); 141 HeapWord* const beg_region_addr = sd.region_align_down(destination); 142 HeapWord* const end_region_addr = sd.region_align_down(last_word); 143 144 if (beg_region_addr == end_region_addr) { 145 // One destination region. 146 _destination_count = 1; 147 if (end_region_addr == destination) { 148 // The destination falls on a region boundary, thus the first word of the 149 // partial object will be the first word copied to the destination region. 150 _dest_region_addr = end_region_addr; 151 _first_src_addr = sd.region_to_addr(src_region_idx); 152 } 153 } else { 154 // Two destination regions. When copied, the partial object will cross a 155 // destination region boundary, so a word somewhere within the partial 156 // object will be the first word copied to the second destination region. 157 _destination_count = 2; 158 _dest_region_addr = end_region_addr; 159 const size_t ofs = pointer_delta(end_region_addr, destination); 160 assert(ofs < _partial_obj_size, "sanity"); 161 _first_src_addr = sd.region_to_addr(src_region_idx) + ofs; 162 } 163 } 164 165 void SplitInfo::clear() 166 { 167 _src_region_idx = 0; 168 _partial_obj_size = 0; 169 _destination = NULL; 170 _destination_count = 0; 171 _dest_region_addr = NULL; 172 _first_src_addr = NULL; 173 assert(!is_valid(), "sanity"); 174 } 175 176 #ifdef ASSERT 177 void SplitInfo::verify_clear() 178 { 179 assert(_src_region_idx == 0, "not clear"); 180 assert(_partial_obj_size == 0, "not clear"); 181 assert(_destination == NULL, "not clear"); 182 assert(_destination_count == 0, "not clear"); 183 assert(_dest_region_addr == NULL, "not clear"); 184 assert(_first_src_addr == NULL, "not clear"); 185 } 186 #endif // #ifdef ASSERT 187 188 189 void PSParallelCompact::print_on_error(outputStream* st) { 190 _mark_bitmap.print_on_error(st); 191 } 192 193 #ifndef PRODUCT 194 const char* PSParallelCompact::space_names[] = { 195 "old ", "eden", "from", "to " 196 }; 197 198 void PSParallelCompact::print_region_ranges() { 199 if (!log_develop_is_enabled(Trace, gc, compaction, phases)) { 200 return; 201 } 202 LogHandle(gc, compaction, phases) log; 203 ResourceMark rm; 204 Universe::print_on(log.trace_stream()); 205 log.trace("space bottom top end new_top"); 206 log.trace("------ ---------- ---------- ---------- ----------"); 207 208 for (unsigned int id = 0; id < last_space_id; ++id) { 209 const MutableSpace* space = _space_info[id].space(); 210 log.trace("%u %s " 211 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " " 212 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ", 213 id, space_names[id], 214 summary_data().addr_to_region_idx(space->bottom()), 215 summary_data().addr_to_region_idx(space->top()), 216 summary_data().addr_to_region_idx(space->end()), 217 summary_data().addr_to_region_idx(_space_info[id].new_top())); 218 } 219 } 220 221 void 222 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c) 223 { 224 #define REGION_IDX_FORMAT SIZE_FORMAT_W(7) 225 #define REGION_DATA_FORMAT SIZE_FORMAT_W(5) 226 227 ParallelCompactData& sd = PSParallelCompact::summary_data(); 228 size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0; 229 log_develop_trace(gc, compaction, phases)( 230 REGION_IDX_FORMAT " " PTR_FORMAT " " 231 REGION_IDX_FORMAT " " PTR_FORMAT " " 232 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " " 233 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d", 234 i, p2i(c->data_location()), dci, p2i(c->destination()), 235 c->partial_obj_size(), c->live_obj_size(), 236 c->data_size(), c->source_region(), c->destination_count()); 237 238 #undef REGION_IDX_FORMAT 239 #undef REGION_DATA_FORMAT 240 } 241 242 void 243 print_generic_summary_data(ParallelCompactData& summary_data, 244 HeapWord* const beg_addr, 245 HeapWord* const end_addr) 246 { 247 size_t total_words = 0; 248 size_t i = summary_data.addr_to_region_idx(beg_addr); 249 const size_t last = summary_data.addr_to_region_idx(end_addr); 250 HeapWord* pdest = 0; 251 252 while (i <= last) { 253 ParallelCompactData::RegionData* c = summary_data.region(i); 254 if (c->data_size() != 0 || c->destination() != pdest) { 255 print_generic_summary_region(i, c); 256 total_words += c->data_size(); 257 pdest = c->destination(); 258 } 259 ++i; 260 } 261 262 log_develop_trace(gc, compaction, phases)("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize); 263 } 264 265 void 266 print_generic_summary_data(ParallelCompactData& summary_data, 267 SpaceInfo* space_info) 268 { 269 if (!log_develop_is_enabled(Trace, gc, compaction, phases)) { 270 return; 271 } 272 273 for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) { 274 const MutableSpace* space = space_info[id].space(); 275 print_generic_summary_data(summary_data, space->bottom(), 276 MAX2(space->top(), space_info[id].new_top())); 277 } 278 } 279 280 void 281 print_initial_summary_data(ParallelCompactData& summary_data, 282 const MutableSpace* space) { 283 if (space->top() == space->bottom()) { 284 return; 285 } 286 287 const size_t region_size = ParallelCompactData::RegionSize; 288 typedef ParallelCompactData::RegionData RegionData; 289 HeapWord* const top_aligned_up = summary_data.region_align_up(space->top()); 290 const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up); 291 const RegionData* c = summary_data.region(end_region - 1); 292 HeapWord* end_addr = c->destination() + c->data_size(); 293 const size_t live_in_space = pointer_delta(end_addr, space->bottom()); 294 295 // Print (and count) the full regions at the beginning of the space. 296 size_t full_region_count = 0; 297 size_t i = summary_data.addr_to_region_idx(space->bottom()); 298 while (i < end_region && summary_data.region(i)->data_size() == region_size) { 299 ParallelCompactData::RegionData* c = summary_data.region(i); 300 log_develop_trace(gc, compaction, phases)( 301 SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d", 302 i, p2i(c->destination()), 303 c->partial_obj_size(), c->live_obj_size(), 304 c->data_size(), c->source_region(), c->destination_count()); 305 ++full_region_count; 306 ++i; 307 } 308 309 size_t live_to_right = live_in_space - full_region_count * region_size; 310 311 double max_reclaimed_ratio = 0.0; 312 size_t max_reclaimed_ratio_region = 0; 313 size_t max_dead_to_right = 0; 314 size_t max_live_to_right = 0; 315 316 // Print the 'reclaimed ratio' for regions while there is something live in 317 // the region or to the right of it. The remaining regions are empty (and 318 // uninteresting), and computing the ratio will result in division by 0. 319 while (i < end_region && live_to_right > 0) { 320 c = summary_data.region(i); 321 HeapWord* const region_addr = summary_data.region_to_addr(i); 322 const size_t used_to_right = pointer_delta(space->top(), region_addr); 323 const size_t dead_to_right = used_to_right - live_to_right; 324 const double reclaimed_ratio = double(dead_to_right) / live_to_right; 325 326 if (reclaimed_ratio > max_reclaimed_ratio) { 327 max_reclaimed_ratio = reclaimed_ratio; 328 max_reclaimed_ratio_region = i; 329 max_dead_to_right = dead_to_right; 330 max_live_to_right = live_to_right; 331 } 332 333 ParallelCompactData::RegionData* c = summary_data.region(i); 334 log_develop_trace(gc, compaction, phases)( 335 SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d" 336 "%12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10), 337 i, p2i(c->destination()), 338 c->partial_obj_size(), c->live_obj_size(), 339 c->data_size(), c->source_region(), c->destination_count(), 340 reclaimed_ratio, dead_to_right, live_to_right); 341 342 343 live_to_right -= c->data_size(); 344 ++i; 345 } 346 347 // Any remaining regions are empty. Print one more if there is one. 348 if (i < end_region) { 349 ParallelCompactData::RegionData* c = summary_data.region(i); 350 log_develop_trace(gc, compaction, phases)( 351 SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d", 352 i, p2i(c->destination()), 353 c->partial_obj_size(), c->live_obj_size(), 354 c->data_size(), c->source_region(), c->destination_count()); 355 } 356 357 log_develop_trace(gc, compaction, phases)("max: " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f", 358 max_reclaimed_ratio_region, max_dead_to_right, max_live_to_right, max_reclaimed_ratio); 359 } 360 361 void 362 print_initial_summary_data(ParallelCompactData& summary_data, 363 SpaceInfo* space_info) { 364 if (!log_develop_is_enabled(Trace, gc, compaction, phases)) { 365 return; 366 } 367 368 unsigned int id = PSParallelCompact::old_space_id; 369 const MutableSpace* space; 370 do { 371 space = space_info[id].space(); 372 print_initial_summary_data(summary_data, space); 373 } while (++id < PSParallelCompact::eden_space_id); 374 375 do { 376 space = space_info[id].space(); 377 print_generic_summary_data(summary_data, space->bottom(), space->top()); 378 } while (++id < PSParallelCompact::last_space_id); 379 } 380 #endif // #ifndef PRODUCT 381 382 #ifdef ASSERT 383 size_t add_obj_count; 384 size_t add_obj_size; 385 size_t mark_bitmap_count; 386 size_t mark_bitmap_size; 387 #endif // #ifdef ASSERT 388 389 ParallelCompactData::ParallelCompactData() 390 { 391 _region_start = 0; 392 393 _region_vspace = 0; 394 _reserved_byte_size = 0; 395 _region_data = 0; 396 _region_count = 0; 397 398 _block_vspace = 0; 399 _block_data = 0; 400 _block_count = 0; 401 } 402 403 bool ParallelCompactData::initialize(MemRegion covered_region) 404 { 405 _region_start = covered_region.start(); 406 const size_t region_size = covered_region.word_size(); 407 DEBUG_ONLY(_region_end = _region_start + region_size;) 408 409 assert(region_align_down(_region_start) == _region_start, 410 "region start not aligned"); 411 assert((region_size & RegionSizeOffsetMask) == 0, 412 "region size not a multiple of RegionSize"); 413 414 bool result = initialize_region_data(region_size) && initialize_block_data(); 415 return result; 416 } 417 418 PSVirtualSpace* 419 ParallelCompactData::create_vspace(size_t count, size_t element_size) 420 { 421 const size_t raw_bytes = count * element_size; 422 const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10); 423 const size_t granularity = os::vm_allocation_granularity(); 424 _reserved_byte_size = align_size_up(raw_bytes, MAX2(page_sz, granularity)); 425 426 const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 : 427 MAX2(page_sz, granularity); 428 ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0); 429 os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(), 430 rs.size()); 431 432 MemTracker::record_virtual_memory_type((address)rs.base(), mtGC); 433 434 PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz); 435 if (vspace != 0) { 436 if (vspace->expand_by(_reserved_byte_size)) { 437 return vspace; 438 } 439 delete vspace; 440 // Release memory reserved in the space. 441 rs.release(); 442 } 443 444 return 0; 445 } 446 447 bool ParallelCompactData::initialize_region_data(size_t region_size) 448 { 449 const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize; 450 _region_vspace = create_vspace(count, sizeof(RegionData)); 451 if (_region_vspace != 0) { 452 _region_data = (RegionData*)_region_vspace->reserved_low_addr(); 453 _region_count = count; 454 return true; 455 } 456 return false; 457 } 458 459 bool ParallelCompactData::initialize_block_data() 460 { 461 assert(_region_count != 0, "region data must be initialized first"); 462 const size_t count = _region_count << Log2BlocksPerRegion; 463 _block_vspace = create_vspace(count, sizeof(BlockData)); 464 if (_block_vspace != 0) { 465 _block_data = (BlockData*)_block_vspace->reserved_low_addr(); 466 _block_count = count; 467 return true; 468 } 469 return false; 470 } 471 472 void ParallelCompactData::clear() 473 { 474 memset(_region_data, 0, _region_vspace->committed_size()); 475 memset(_block_data, 0, _block_vspace->committed_size()); 476 } 477 478 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) { 479 assert(beg_region <= _region_count, "beg_region out of range"); 480 assert(end_region <= _region_count, "end_region out of range"); 481 assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize"); 482 483 const size_t region_cnt = end_region - beg_region; 484 memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData)); 485 486 const size_t beg_block = beg_region * BlocksPerRegion; 487 const size_t block_cnt = region_cnt * BlocksPerRegion; 488 memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData)); 489 } 490 491 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const 492 { 493 const RegionData* cur_cp = region(region_idx); 494 const RegionData* const end_cp = region(region_count() - 1); 495 496 HeapWord* result = region_to_addr(region_idx); 497 if (cur_cp < end_cp) { 498 do { 499 result += cur_cp->partial_obj_size(); 500 } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp); 501 } 502 return result; 503 } 504 505 void ParallelCompactData::add_obj(HeapWord* addr, size_t len) 506 { 507 const size_t obj_ofs = pointer_delta(addr, _region_start); 508 const size_t beg_region = obj_ofs >> Log2RegionSize; 509 const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize; 510 511 DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);) 512 DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);) 513 514 if (beg_region == end_region) { 515 // All in one region. 516 _region_data[beg_region].add_live_obj(len); 517 return; 518 } 519 520 // First region. 521 const size_t beg_ofs = region_offset(addr); 522 _region_data[beg_region].add_live_obj(RegionSize - beg_ofs); 523 524 Klass* klass = ((oop)addr)->klass(); 525 // Middle regions--completely spanned by this object. 526 for (size_t region = beg_region + 1; region < end_region; ++region) { 527 _region_data[region].set_partial_obj_size(RegionSize); 528 _region_data[region].set_partial_obj_addr(addr); 529 } 530 531 // Last region. 532 const size_t end_ofs = region_offset(addr + len - 1); 533 _region_data[end_region].set_partial_obj_size(end_ofs + 1); 534 _region_data[end_region].set_partial_obj_addr(addr); 535 } 536 537 void 538 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end) 539 { 540 assert(region_offset(beg) == 0, "not RegionSize aligned"); 541 assert(region_offset(end) == 0, "not RegionSize aligned"); 542 543 size_t cur_region = addr_to_region_idx(beg); 544 const size_t end_region = addr_to_region_idx(end); 545 HeapWord* addr = beg; 546 while (cur_region < end_region) { 547 _region_data[cur_region].set_destination(addr); 548 _region_data[cur_region].set_destination_count(0); 549 _region_data[cur_region].set_source_region(cur_region); 550 _region_data[cur_region].set_data_location(addr); 551 552 // Update live_obj_size so the region appears completely full. 553 size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size(); 554 _region_data[cur_region].set_live_obj_size(live_size); 555 556 ++cur_region; 557 addr += RegionSize; 558 } 559 } 560 561 // Find the point at which a space can be split and, if necessary, record the 562 // split point. 563 // 564 // If the current src region (which overflowed the destination space) doesn't 565 // have a partial object, the split point is at the beginning of the current src 566 // region (an "easy" split, no extra bookkeeping required). 567 // 568 // If the current src region has a partial object, the split point is in the 569 // region where that partial object starts (call it the split_region). If 570 // split_region has a partial object, then the split point is just after that 571 // partial object (a "hard" split where we have to record the split data and 572 // zero the partial_obj_size field). With a "hard" split, we know that the 573 // partial_obj ends within split_region because the partial object that caused 574 // the overflow starts in split_region. If split_region doesn't have a partial 575 // obj, then the split is at the beginning of split_region (another "easy" 576 // split). 577 HeapWord* 578 ParallelCompactData::summarize_split_space(size_t src_region, 579 SplitInfo& split_info, 580 HeapWord* destination, 581 HeapWord* target_end, 582 HeapWord** target_next) 583 { 584 assert(destination <= target_end, "sanity"); 585 assert(destination + _region_data[src_region].data_size() > target_end, 586 "region should not fit into target space"); 587 assert(is_region_aligned(target_end), "sanity"); 588 589 size_t split_region = src_region; 590 HeapWord* split_destination = destination; 591 size_t partial_obj_size = _region_data[src_region].partial_obj_size(); 592 593 if (destination + partial_obj_size > target_end) { 594 // The split point is just after the partial object (if any) in the 595 // src_region that contains the start of the object that overflowed the 596 // destination space. 597 // 598 // Find the start of the "overflow" object and set split_region to the 599 // region containing it. 600 HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr(); 601 split_region = addr_to_region_idx(overflow_obj); 602 603 // Clear the source_region field of all destination regions whose first word 604 // came from data after the split point (a non-null source_region field 605 // implies a region must be filled). 606 // 607 // An alternative to the simple loop below: clear during post_compact(), 608 // which uses memcpy instead of individual stores, and is easy to 609 // parallelize. (The downside is that it clears the entire RegionData 610 // object as opposed to just one field.) 611 // 612 // post_compact() would have to clear the summary data up to the highest 613 // address that was written during the summary phase, which would be 614 // 615 // max(top, max(new_top, clear_top)) 616 // 617 // where clear_top is a new field in SpaceInfo. Would have to set clear_top 618 // to target_end. 619 const RegionData* const sr = region(split_region); 620 const size_t beg_idx = 621 addr_to_region_idx(region_align_up(sr->destination() + 622 sr->partial_obj_size())); 623 const size_t end_idx = addr_to_region_idx(target_end); 624 625 log_develop_trace(gc, compaction, phases)("split: clearing source_region field in [" SIZE_FORMAT ", " SIZE_FORMAT ")", beg_idx, end_idx); 626 for (size_t idx = beg_idx; idx < end_idx; ++idx) { 627 _region_data[idx].set_source_region(0); 628 } 629 630 // Set split_destination and partial_obj_size to reflect the split region. 631 split_destination = sr->destination(); 632 partial_obj_size = sr->partial_obj_size(); 633 } 634 635 // The split is recorded only if a partial object extends onto the region. 636 if (partial_obj_size != 0) { 637 _region_data[split_region].set_partial_obj_size(0); 638 split_info.record(split_region, partial_obj_size, split_destination); 639 } 640 641 // Setup the continuation addresses. 642 *target_next = split_destination + partial_obj_size; 643 HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size; 644 645 if (log_develop_is_enabled(Trace, gc, compaction, phases)) { 646 const char * split_type = partial_obj_size == 0 ? "easy" : "hard"; 647 log_develop_trace(gc, compaction, phases)("%s split: src=" PTR_FORMAT " src_c=" SIZE_FORMAT " pos=" SIZE_FORMAT, 648 split_type, p2i(source_next), split_region, partial_obj_size); 649 log_develop_trace(gc, compaction, phases)("%s split: dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT " tn=" PTR_FORMAT, 650 split_type, p2i(split_destination), 651 addr_to_region_idx(split_destination), 652 p2i(*target_next)); 653 654 if (partial_obj_size != 0) { 655 HeapWord* const po_beg = split_info.destination(); 656 HeapWord* const po_end = po_beg + split_info.partial_obj_size(); 657 log_develop_trace(gc, compaction, phases)("%s split: po_beg=" PTR_FORMAT " " SIZE_FORMAT " po_end=" PTR_FORMAT " " SIZE_FORMAT, 658 split_type, 659 p2i(po_beg), addr_to_region_idx(po_beg), 660 p2i(po_end), addr_to_region_idx(po_end)); 661 } 662 } 663 664 return source_next; 665 } 666 667 bool ParallelCompactData::summarize(SplitInfo& split_info, 668 HeapWord* source_beg, HeapWord* source_end, 669 HeapWord** source_next, 670 HeapWord* target_beg, HeapWord* target_end, 671 HeapWord** target_next) 672 { 673 HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next; 674 log_develop_trace(gc, compaction, phases)( 675 "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT 676 "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT, 677 p2i(source_beg), p2i(source_end), p2i(source_next_val), 678 p2i(target_beg), p2i(target_end), p2i(*target_next)); 679 680 size_t cur_region = addr_to_region_idx(source_beg); 681 const size_t end_region = addr_to_region_idx(region_align_up(source_end)); 682 683 HeapWord *dest_addr = target_beg; 684 while (cur_region < end_region) { 685 // The destination must be set even if the region has no data. 686 _region_data[cur_region].set_destination(dest_addr); 687 688 size_t words = _region_data[cur_region].data_size(); 689 if (words > 0) { 690 // If cur_region does not fit entirely into the target space, find a point 691 // at which the source space can be 'split' so that part is copied to the 692 // target space and the rest is copied elsewhere. 693 if (dest_addr + words > target_end) { 694 assert(source_next != NULL, "source_next is NULL when splitting"); 695 *source_next = summarize_split_space(cur_region, split_info, dest_addr, 696 target_end, target_next); 697 return false; 698 } 699 700 // Compute the destination_count for cur_region, and if necessary, update 701 // source_region for a destination region. The source_region field is 702 // updated if cur_region is the first (left-most) region to be copied to a 703 // destination region. 704 // 705 // The destination_count calculation is a bit subtle. A region that has 706 // data that compacts into itself does not count itself as a destination. 707 // This maintains the invariant that a zero count means the region is 708 // available and can be claimed and then filled. 709 uint destination_count = 0; 710 if (split_info.is_split(cur_region)) { 711 // The current region has been split: the partial object will be copied 712 // to one destination space and the remaining data will be copied to 713 // another destination space. Adjust the initial destination_count and, 714 // if necessary, set the source_region field if the partial object will 715 // cross a destination region boundary. 716 destination_count = split_info.destination_count(); 717 if (destination_count == 2) { 718 size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr()); 719 _region_data[dest_idx].set_source_region(cur_region); 720 } 721 } 722 723 HeapWord* const last_addr = dest_addr + words - 1; 724 const size_t dest_region_1 = addr_to_region_idx(dest_addr); 725 const size_t dest_region_2 = addr_to_region_idx(last_addr); 726 727 // Initially assume that the destination regions will be the same and 728 // adjust the value below if necessary. Under this assumption, if 729 // cur_region == dest_region_2, then cur_region will be compacted 730 // completely into itself. 731 destination_count += cur_region == dest_region_2 ? 0 : 1; 732 if (dest_region_1 != dest_region_2) { 733 // Destination regions differ; adjust destination_count. 734 destination_count += 1; 735 // Data from cur_region will be copied to the start of dest_region_2. 736 _region_data[dest_region_2].set_source_region(cur_region); 737 } else if (region_offset(dest_addr) == 0) { 738 // Data from cur_region will be copied to the start of the destination 739 // region. 740 _region_data[dest_region_1].set_source_region(cur_region); 741 } 742 743 _region_data[cur_region].set_destination_count(destination_count); 744 _region_data[cur_region].set_data_location(region_to_addr(cur_region)); 745 dest_addr += words; 746 } 747 748 ++cur_region; 749 } 750 751 *target_next = dest_addr; 752 return true; 753 } 754 755 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr, ParCompactionManager* cm) { 756 assert(addr != NULL, "Should detect NULL oop earlier"); 757 assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap"); 758 assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked"); 759 760 // Region covering the object. 761 RegionData* const region_ptr = addr_to_region_ptr(addr); 762 HeapWord* result = region_ptr->destination(); 763 764 // If the entire Region is live, the new location is region->destination + the 765 // offset of the object within in the Region. 766 767 // Run some performance tests to determine if this special case pays off. It 768 // is worth it for pointers into the dense prefix. If the optimization to 769 // avoid pointer updates in regions that only point to the dense prefix is 770 // ever implemented, this should be revisited. 771 if (region_ptr->data_size() == RegionSize) { 772 result += region_offset(addr); 773 return result; 774 } 775 776 // Otherwise, the new location is region->destination + block offset + the 777 // number of live words in the Block that are (a) to the left of addr and (b) 778 // due to objects that start in the Block. 779 780 // Fill in the block table if necessary. This is unsynchronized, so multiple 781 // threads may fill the block table for a region (harmless, since it is 782 // idempotent). 783 if (!region_ptr->blocks_filled()) { 784 PSParallelCompact::fill_blocks(addr_to_region_idx(addr)); 785 region_ptr->set_blocks_filled(); 786 } 787 788 HeapWord* const search_start = block_align_down(addr); 789 const size_t block_offset = addr_to_block_ptr(addr)->offset(); 790 791 const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap(); 792 const size_t live = bitmap->live_words_in_range(cm, search_start, oop(addr)); 793 result += block_offset + live; 794 DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result)); 795 return result; 796 } 797 798 #ifdef ASSERT 799 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace) 800 { 801 const size_t* const beg = (const size_t*)vspace->committed_low_addr(); 802 const size_t* const end = (const size_t*)vspace->committed_high_addr(); 803 for (const size_t* p = beg; p < end; ++p) { 804 assert(*p == 0, "not zero"); 805 } 806 } 807 808 void ParallelCompactData::verify_clear() 809 { 810 verify_clear(_region_vspace); 811 verify_clear(_block_vspace); 812 } 813 #endif // #ifdef ASSERT 814 815 STWGCTimer PSParallelCompact::_gc_timer; 816 ParallelOldTracer PSParallelCompact::_gc_tracer; 817 elapsedTimer PSParallelCompact::_accumulated_time; 818 unsigned int PSParallelCompact::_total_invocations = 0; 819 unsigned int PSParallelCompact::_maximum_compaction_gc_num = 0; 820 jlong PSParallelCompact::_time_of_last_gc = 0; 821 CollectorCounters* PSParallelCompact::_counters = NULL; 822 ParMarkBitMap PSParallelCompact::_mark_bitmap; 823 ParallelCompactData PSParallelCompact::_summary_data; 824 825 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure; 826 827 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); } 828 829 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) { 830 PSParallelCompact::AdjustPointerClosure closure(_cm); 831 klass->oops_do(&closure); 832 } 833 834 void PSParallelCompact::post_initialize() { 835 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 836 MemRegion mr = heap->reserved_region(); 837 _ref_processor = 838 new ReferenceProcessor(mr, // span 839 ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing 840 ParallelGCThreads, // mt processing degree 841 true, // mt discovery 842 ParallelGCThreads, // mt discovery degree 843 true, // atomic_discovery 844 &_is_alive_closure); // non-header is alive closure 845 _counters = new CollectorCounters("PSParallelCompact", 1); 846 847 // Initialize static fields in ParCompactionManager. 848 ParCompactionManager::initialize(mark_bitmap()); 849 } 850 851 bool PSParallelCompact::initialize() { 852 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 853 MemRegion mr = heap->reserved_region(); 854 855 // Was the old gen get allocated successfully? 856 if (!heap->old_gen()->is_allocated()) { 857 return false; 858 } 859 860 initialize_space_info(); 861 initialize_dead_wood_limiter(); 862 863 if (!_mark_bitmap.initialize(mr)) { 864 vm_shutdown_during_initialization( 865 err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel " 866 "garbage collection for the requested " SIZE_FORMAT "KB heap.", 867 _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K)); 868 return false; 869 } 870 871 if (!_summary_data.initialize(mr)) { 872 vm_shutdown_during_initialization( 873 err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel " 874 "garbage collection for the requested " SIZE_FORMAT "KB heap.", 875 _summary_data.reserved_byte_size()/K, mr.byte_size()/K)); 876 return false; 877 } 878 879 return true; 880 } 881 882 void PSParallelCompact::initialize_space_info() 883 { 884 memset(&_space_info, 0, sizeof(_space_info)); 885 886 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 887 PSYoungGen* young_gen = heap->young_gen(); 888 889 _space_info[old_space_id].set_space(heap->old_gen()->object_space()); 890 _space_info[eden_space_id].set_space(young_gen->eden_space()); 891 _space_info[from_space_id].set_space(young_gen->from_space()); 892 _space_info[to_space_id].set_space(young_gen->to_space()); 893 894 _space_info[old_space_id].set_start_array(heap->old_gen()->start_array()); 895 } 896 897 void PSParallelCompact::initialize_dead_wood_limiter() 898 { 899 const size_t max = 100; 900 _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0; 901 _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0; 902 _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev); 903 DEBUG_ONLY(_dwl_initialized = true;) 904 _dwl_adjustment = normal_distribution(1.0); 905 } 906 907 void 908 PSParallelCompact::clear_data_covering_space(SpaceId id) 909 { 910 // At this point, top is the value before GC, new_top() is the value that will 911 // be set at the end of GC. The marking bitmap is cleared to top; nothing 912 // should be marked above top. The summary data is cleared to the larger of 913 // top & new_top. 914 MutableSpace* const space = _space_info[id].space(); 915 HeapWord* const bot = space->bottom(); 916 HeapWord* const top = space->top(); 917 HeapWord* const max_top = MAX2(top, _space_info[id].new_top()); 918 919 const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot); 920 const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top)); 921 _mark_bitmap.clear_range(beg_bit, end_bit); 922 923 const size_t beg_region = _summary_data.addr_to_region_idx(bot); 924 const size_t end_region = 925 _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top)); 926 _summary_data.clear_range(beg_region, end_region); 927 928 // Clear the data used to 'split' regions. 929 SplitInfo& split_info = _space_info[id].split_info(); 930 if (split_info.is_valid()) { 931 split_info.clear(); 932 } 933 DEBUG_ONLY(split_info.verify_clear();) 934 } 935 936 void PSParallelCompact::pre_compact() 937 { 938 // Update the from & to space pointers in space_info, since they are swapped 939 // at each young gen gc. Do the update unconditionally (even though a 940 // promotion failure does not swap spaces) because an unknown number of young 941 // collections will have swapped the spaces an unknown number of times. 942 GCTraceTime(Trace, gc, phases) tm("Pre Compact", &_gc_timer); 943 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 944 _space_info[from_space_id].set_space(heap->young_gen()->from_space()); 945 _space_info[to_space_id].set_space(heap->young_gen()->to_space()); 946 947 DEBUG_ONLY(add_obj_count = add_obj_size = 0;) 948 DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;) 949 950 // Increment the invocation count 951 heap->increment_total_collections(true); 952 953 // We need to track unique mark sweep invocations as well. 954 _total_invocations++; 955 956 heap->print_heap_before_gc(); 957 heap->trace_heap_before_gc(&_gc_tracer); 958 959 // Fill in TLABs 960 heap->accumulate_statistics_all_tlabs(); 961 heap->ensure_parsability(true); // retire TLABs 962 963 if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) { 964 HandleMark hm; // Discard invalid handles created during verification 965 Universe::verify("Before GC"); 966 } 967 968 // Verify object start arrays 969 if (VerifyObjectStartArray && 970 VerifyBeforeGC) { 971 heap->old_gen()->verify_object_start_array(); 972 } 973 974 DEBUG_ONLY(mark_bitmap()->verify_clear();) 975 DEBUG_ONLY(summary_data().verify_clear();) 976 977 // Have worker threads release resources the next time they run a task. 978 gc_task_manager()->release_all_resources(); 979 980 ParCompactionManager::reset_all_bitmap_query_caches(); 981 } 982 983 void PSParallelCompact::post_compact() 984 { 985 GCTraceTime(Trace, gc, phases) tm("Post Compact", &_gc_timer); 986 987 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 988 // Clear the marking bitmap, summary data and split info. 989 clear_data_covering_space(SpaceId(id)); 990 // Update top(). Must be done after clearing the bitmap and summary data. 991 _space_info[id].publish_new_top(); 992 } 993 994 MutableSpace* const eden_space = _space_info[eden_space_id].space(); 995 MutableSpace* const from_space = _space_info[from_space_id].space(); 996 MutableSpace* const to_space = _space_info[to_space_id].space(); 997 998 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 999 bool eden_empty = eden_space->is_empty(); 1000 if (!eden_empty) { 1001 eden_empty = absorb_live_data_from_eden(heap->size_policy(), 1002 heap->young_gen(), heap->old_gen()); 1003 } 1004 1005 // Update heap occupancy information which is used as input to the soft ref 1006 // clearing policy at the next gc. 1007 Universe::update_heap_info_at_gc(); 1008 1009 bool young_gen_empty = eden_empty && from_space->is_empty() && 1010 to_space->is_empty(); 1011 1012 ModRefBarrierSet* modBS = barrier_set_cast<ModRefBarrierSet>(heap->barrier_set()); 1013 MemRegion old_mr = heap->old_gen()->reserved(); 1014 if (young_gen_empty) { 1015 modBS->clear(MemRegion(old_mr.start(), old_mr.end())); 1016 } else { 1017 modBS->invalidate(MemRegion(old_mr.start(), old_mr.end())); 1018 } 1019 1020 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 1021 ClassLoaderDataGraph::purge(); 1022 MetaspaceAux::verify_metrics(); 1023 1024 CodeCache::gc_epilogue(); 1025 JvmtiExport::gc_epilogue(); 1026 1027 #if defined(COMPILER2) || INCLUDE_JVMCI 1028 DerivedPointerTable::update_pointers(); 1029 #endif 1030 1031 ref_processor()->enqueue_discovered_references(NULL); 1032 1033 if (ZapUnusedHeapArea) { 1034 heap->gen_mangle_unused_area(); 1035 } 1036 1037 // Update time of last GC 1038 reset_millis_since_last_gc(); 1039 } 1040 1041 HeapWord* 1042 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id, 1043 bool maximum_compaction) 1044 { 1045 const size_t region_size = ParallelCompactData::RegionSize; 1046 const ParallelCompactData& sd = summary_data(); 1047 1048 const MutableSpace* const space = _space_info[id].space(); 1049 HeapWord* const top_aligned_up = sd.region_align_up(space->top()); 1050 const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom()); 1051 const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up); 1052 1053 // Skip full regions at the beginning of the space--they are necessarily part 1054 // of the dense prefix. 1055 size_t full_count = 0; 1056 const RegionData* cp; 1057 for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) { 1058 ++full_count; 1059 } 1060 1061 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity"); 1062 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num; 1063 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval; 1064 if (maximum_compaction || cp == end_cp || interval_ended) { 1065 _maximum_compaction_gc_num = total_invocations(); 1066 return sd.region_to_addr(cp); 1067 } 1068 1069 HeapWord* const new_top = _space_info[id].new_top(); 1070 const size_t space_live = pointer_delta(new_top, space->bottom()); 1071 const size_t space_used = space->used_in_words(); 1072 const size_t space_capacity = space->capacity_in_words(); 1073 1074 const double cur_density = double(space_live) / space_capacity; 1075 const double deadwood_density = 1076 (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density; 1077 const size_t deadwood_goal = size_t(space_capacity * deadwood_density); 1078 1079 if (TraceParallelOldGCDensePrefix) { 1080 tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT, 1081 cur_density, deadwood_density, deadwood_goal); 1082 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " " 1083 "space_cap=" SIZE_FORMAT, 1084 space_live, space_used, 1085 space_capacity); 1086 } 1087 1088 // XXX - Use binary search? 1089 HeapWord* dense_prefix = sd.region_to_addr(cp); 1090 const RegionData* full_cp = cp; 1091 const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1); 1092 while (cp < end_cp) { 1093 HeapWord* region_destination = cp->destination(); 1094 const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination); 1095 if (TraceParallelOldGCDensePrefix && Verbose) { 1096 tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " " 1097 "dp=" PTR_FORMAT " " "cdw=" SIZE_FORMAT_W(8), 1098 sd.region(cp), p2i(region_destination), 1099 p2i(dense_prefix), cur_deadwood); 1100 } 1101 1102 if (cur_deadwood >= deadwood_goal) { 1103 // Found the region that has the correct amount of deadwood to the left. 1104 // This typically occurs after crossing a fairly sparse set of regions, so 1105 // iterate backwards over those sparse regions, looking for the region 1106 // that has the lowest density of live objects 'to the right.' 1107 size_t space_to_left = sd.region(cp) * region_size; 1108 size_t live_to_left = space_to_left - cur_deadwood; 1109 size_t space_to_right = space_capacity - space_to_left; 1110 size_t live_to_right = space_live - live_to_left; 1111 double density_to_right = double(live_to_right) / space_to_right; 1112 while (cp > full_cp) { 1113 --cp; 1114 const size_t prev_region_live_to_right = live_to_right - 1115 cp->data_size(); 1116 const size_t prev_region_space_to_right = space_to_right + region_size; 1117 double prev_region_density_to_right = 1118 double(prev_region_live_to_right) / prev_region_space_to_right; 1119 if (density_to_right <= prev_region_density_to_right) { 1120 return dense_prefix; 1121 } 1122 if (TraceParallelOldGCDensePrefix && Verbose) { 1123 tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f " 1124 "pc_d2r=%10.8f", sd.region(cp), density_to_right, 1125 prev_region_density_to_right); 1126 } 1127 dense_prefix -= region_size; 1128 live_to_right = prev_region_live_to_right; 1129 space_to_right = prev_region_space_to_right; 1130 density_to_right = prev_region_density_to_right; 1131 } 1132 return dense_prefix; 1133 } 1134 1135 dense_prefix += region_size; 1136 ++cp; 1137 } 1138 1139 return dense_prefix; 1140 } 1141 1142 #ifndef PRODUCT 1143 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm, 1144 const SpaceId id, 1145 const bool maximum_compaction, 1146 HeapWord* const addr) 1147 { 1148 const size_t region_idx = summary_data().addr_to_region_idx(addr); 1149 RegionData* const cp = summary_data().region(region_idx); 1150 const MutableSpace* const space = _space_info[id].space(); 1151 HeapWord* const new_top = _space_info[id].new_top(); 1152 1153 const size_t space_live = pointer_delta(new_top, space->bottom()); 1154 const size_t dead_to_left = pointer_delta(addr, cp->destination()); 1155 const size_t space_cap = space->capacity_in_words(); 1156 const double dead_to_left_pct = double(dead_to_left) / space_cap; 1157 const size_t live_to_right = new_top - cp->destination(); 1158 const size_t dead_to_right = space->top() - addr - live_to_right; 1159 1160 tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " " 1161 "spl=" SIZE_FORMAT " " 1162 "d2l=" SIZE_FORMAT " d2l%%=%6.4f " 1163 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT 1164 " ratio=%10.8f", 1165 algorithm, p2i(addr), region_idx, 1166 space_live, 1167 dead_to_left, dead_to_left_pct, 1168 dead_to_right, live_to_right, 1169 double(dead_to_right) / live_to_right); 1170 } 1171 #endif // #ifndef PRODUCT 1172 1173 // Return a fraction indicating how much of the generation can be treated as 1174 // "dead wood" (i.e., not reclaimed). The function uses a normal distribution 1175 // based on the density of live objects in the generation to determine a limit, 1176 // which is then adjusted so the return value is min_percent when the density is 1177 // 1. 1178 // 1179 // The following table shows some return values for a different values of the 1180 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and 1181 // min_percent is 1. 1182 // 1183 // fraction allowed as dead wood 1184 // ----------------------------------------------------------------- 1185 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95 1186 // ------- ---------- ---------- ---------- ---------- ---------- ---------- 1187 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 1188 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941 1189 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272 1190 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066 1191 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975 1192 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313 1193 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132 1194 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289 1195 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500 1196 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386 1197 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510 1198 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386 1199 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500 1200 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289 1201 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132 1202 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313 1203 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975 1204 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066 1205 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272 1206 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941 1207 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 1208 1209 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent) 1210 { 1211 assert(_dwl_initialized, "uninitialized"); 1212 1213 // The raw limit is the value of the normal distribution at x = density. 1214 const double raw_limit = normal_distribution(density); 1215 1216 // Adjust the raw limit so it becomes the minimum when the density is 1. 1217 // 1218 // First subtract the adjustment value (which is simply the precomputed value 1219 // normal_distribution(1.0)); this yields a value of 0 when the density is 1. 1220 // Then add the minimum value, so the minimum is returned when the density is 1221 // 1. Finally, prevent negative values, which occur when the mean is not 0.5. 1222 const double min = double(min_percent) / 100.0; 1223 const double limit = raw_limit - _dwl_adjustment + min; 1224 return MAX2(limit, 0.0); 1225 } 1226 1227 ParallelCompactData::RegionData* 1228 PSParallelCompact::first_dead_space_region(const RegionData* beg, 1229 const RegionData* end) 1230 { 1231 const size_t region_size = ParallelCompactData::RegionSize; 1232 ParallelCompactData& sd = summary_data(); 1233 size_t left = sd.region(beg); 1234 size_t right = end > beg ? sd.region(end) - 1 : left; 1235 1236 // Binary search. 1237 while (left < right) { 1238 // Equivalent to (left + right) / 2, but does not overflow. 1239 const size_t middle = left + (right - left) / 2; 1240 RegionData* const middle_ptr = sd.region(middle); 1241 HeapWord* const dest = middle_ptr->destination(); 1242 HeapWord* const addr = sd.region_to_addr(middle); 1243 assert(dest != NULL, "sanity"); 1244 assert(dest <= addr, "must move left"); 1245 1246 if (middle > left && dest < addr) { 1247 right = middle - 1; 1248 } else if (middle < right && middle_ptr->data_size() == region_size) { 1249 left = middle + 1; 1250 } else { 1251 return middle_ptr; 1252 } 1253 } 1254 return sd.region(left); 1255 } 1256 1257 ParallelCompactData::RegionData* 1258 PSParallelCompact::dead_wood_limit_region(const RegionData* beg, 1259 const RegionData* end, 1260 size_t dead_words) 1261 { 1262 ParallelCompactData& sd = summary_data(); 1263 size_t left = sd.region(beg); 1264 size_t right = end > beg ? sd.region(end) - 1 : left; 1265 1266 // Binary search. 1267 while (left < right) { 1268 // Equivalent to (left + right) / 2, but does not overflow. 1269 const size_t middle = left + (right - left) / 2; 1270 RegionData* const middle_ptr = sd.region(middle); 1271 HeapWord* const dest = middle_ptr->destination(); 1272 HeapWord* const addr = sd.region_to_addr(middle); 1273 assert(dest != NULL, "sanity"); 1274 assert(dest <= addr, "must move left"); 1275 1276 const size_t dead_to_left = pointer_delta(addr, dest); 1277 if (middle > left && dead_to_left > dead_words) { 1278 right = middle - 1; 1279 } else if (middle < right && dead_to_left < dead_words) { 1280 left = middle + 1; 1281 } else { 1282 return middle_ptr; 1283 } 1284 } 1285 return sd.region(left); 1286 } 1287 1288 // The result is valid during the summary phase, after the initial summarization 1289 // of each space into itself, and before final summarization. 1290 inline double 1291 PSParallelCompact::reclaimed_ratio(const RegionData* const cp, 1292 HeapWord* const bottom, 1293 HeapWord* const top, 1294 HeapWord* const new_top) 1295 { 1296 ParallelCompactData& sd = summary_data(); 1297 1298 assert(cp != NULL, "sanity"); 1299 assert(bottom != NULL, "sanity"); 1300 assert(top != NULL, "sanity"); 1301 assert(new_top != NULL, "sanity"); 1302 assert(top >= new_top, "summary data problem?"); 1303 assert(new_top > bottom, "space is empty; should not be here"); 1304 assert(new_top >= cp->destination(), "sanity"); 1305 assert(top >= sd.region_to_addr(cp), "sanity"); 1306 1307 HeapWord* const destination = cp->destination(); 1308 const size_t dense_prefix_live = pointer_delta(destination, bottom); 1309 const size_t compacted_region_live = pointer_delta(new_top, destination); 1310 const size_t compacted_region_used = pointer_delta(top, 1311 sd.region_to_addr(cp)); 1312 const size_t reclaimable = compacted_region_used - compacted_region_live; 1313 1314 const double divisor = dense_prefix_live + 1.25 * compacted_region_live; 1315 return double(reclaimable) / divisor; 1316 } 1317 1318 // Return the address of the end of the dense prefix, a.k.a. the start of the 1319 // compacted region. The address is always on a region boundary. 1320 // 1321 // Completely full regions at the left are skipped, since no compaction can 1322 // occur in those regions. Then the maximum amount of dead wood to allow is 1323 // computed, based on the density (amount live / capacity) of the generation; 1324 // the region with approximately that amount of dead space to the left is 1325 // identified as the limit region. Regions between the last completely full 1326 // region and the limit region are scanned and the one that has the best 1327 // (maximum) reclaimed_ratio() is selected. 1328 HeapWord* 1329 PSParallelCompact::compute_dense_prefix(const SpaceId id, 1330 bool maximum_compaction) 1331 { 1332 const size_t region_size = ParallelCompactData::RegionSize; 1333 const ParallelCompactData& sd = summary_data(); 1334 1335 const MutableSpace* const space = _space_info[id].space(); 1336 HeapWord* const top = space->top(); 1337 HeapWord* const top_aligned_up = sd.region_align_up(top); 1338 HeapWord* const new_top = _space_info[id].new_top(); 1339 HeapWord* const new_top_aligned_up = sd.region_align_up(new_top); 1340 HeapWord* const bottom = space->bottom(); 1341 const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom); 1342 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up); 1343 const RegionData* const new_top_cp = 1344 sd.addr_to_region_ptr(new_top_aligned_up); 1345 1346 // Skip full regions at the beginning of the space--they are necessarily part 1347 // of the dense prefix. 1348 const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp); 1349 assert(full_cp->destination() == sd.region_to_addr(full_cp) || 1350 space->is_empty(), "no dead space allowed to the left"); 1351 assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1, 1352 "region must have dead space"); 1353 1354 // The gc number is saved whenever a maximum compaction is done, and used to 1355 // determine when the maximum compaction interval has expired. This avoids 1356 // successive max compactions for different reasons. 1357 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity"); 1358 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num; 1359 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval || 1360 total_invocations() == HeapFirstMaximumCompactionCount; 1361 if (maximum_compaction || full_cp == top_cp || interval_ended) { 1362 _maximum_compaction_gc_num = total_invocations(); 1363 return sd.region_to_addr(full_cp); 1364 } 1365 1366 const size_t space_live = pointer_delta(new_top, bottom); 1367 const size_t space_used = space->used_in_words(); 1368 const size_t space_capacity = space->capacity_in_words(); 1369 1370 const double density = double(space_live) / double(space_capacity); 1371 const size_t min_percent_free = MarkSweepDeadRatio; 1372 const double limiter = dead_wood_limiter(density, min_percent_free); 1373 const size_t dead_wood_max = space_used - space_live; 1374 const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter), 1375 dead_wood_max); 1376 1377 if (TraceParallelOldGCDensePrefix) { 1378 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " " 1379 "space_cap=" SIZE_FORMAT, 1380 space_live, space_used, 1381 space_capacity); 1382 tty->print_cr("dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f " 1383 "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT, 1384 density, min_percent_free, limiter, 1385 dead_wood_max, dead_wood_limit); 1386 } 1387 1388 // Locate the region with the desired amount of dead space to the left. 1389 const RegionData* const limit_cp = 1390 dead_wood_limit_region(full_cp, top_cp, dead_wood_limit); 1391 1392 // Scan from the first region with dead space to the limit region and find the 1393 // one with the best (largest) reclaimed ratio. 1394 double best_ratio = 0.0; 1395 const RegionData* best_cp = full_cp; 1396 for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) { 1397 double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top); 1398 if (tmp_ratio > best_ratio) { 1399 best_cp = cp; 1400 best_ratio = tmp_ratio; 1401 } 1402 } 1403 1404 return sd.region_to_addr(best_cp); 1405 } 1406 1407 void PSParallelCompact::summarize_spaces_quick() 1408 { 1409 for (unsigned int i = 0; i < last_space_id; ++i) { 1410 const MutableSpace* space = _space_info[i].space(); 1411 HeapWord** nta = _space_info[i].new_top_addr(); 1412 bool result = _summary_data.summarize(_space_info[i].split_info(), 1413 space->bottom(), space->top(), NULL, 1414 space->bottom(), space->end(), nta); 1415 assert(result, "space must fit into itself"); 1416 _space_info[i].set_dense_prefix(space->bottom()); 1417 } 1418 } 1419 1420 void PSParallelCompact::fill_dense_prefix_end(SpaceId id) 1421 { 1422 HeapWord* const dense_prefix_end = dense_prefix(id); 1423 const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end); 1424 const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end); 1425 if (dead_space_crosses_boundary(region, dense_prefix_bit)) { 1426 // Only enough dead space is filled so that any remaining dead space to the 1427 // left is larger than the minimum filler object. (The remainder is filled 1428 // during the copy/update phase.) 1429 // 1430 // The size of the dead space to the right of the boundary is not a 1431 // concern, since compaction will be able to use whatever space is 1432 // available. 1433 // 1434 // Here '||' is the boundary, 'x' represents a don't care bit and a box 1435 // surrounds the space to be filled with an object. 1436 // 1437 // In the 32-bit VM, each bit represents two 32-bit words: 1438 // +---+ 1439 // a) beg_bits: ... x x x | 0 | || 0 x x ... 1440 // end_bits: ... x x x | 0 | || 0 x x ... 1441 // +---+ 1442 // 1443 // In the 64-bit VM, each bit represents one 64-bit word: 1444 // +------------+ 1445 // b) beg_bits: ... x x x | 0 || 0 | x x ... 1446 // end_bits: ... x x 1 | 0 || 0 | x x ... 1447 // +------------+ 1448 // +-------+ 1449 // c) beg_bits: ... x x | 0 0 | || 0 x x ... 1450 // end_bits: ... x 1 | 0 0 | || 0 x x ... 1451 // +-------+ 1452 // +-----------+ 1453 // d) beg_bits: ... x | 0 0 0 | || 0 x x ... 1454 // end_bits: ... 1 | 0 0 0 | || 0 x x ... 1455 // +-----------+ 1456 // +-------+ 1457 // e) beg_bits: ... 0 0 | 0 0 | || 0 x x ... 1458 // end_bits: ... 0 0 | 0 0 | || 0 x x ... 1459 // +-------+ 1460 1461 // Initially assume case a, c or e will apply. 1462 size_t obj_len = CollectedHeap::min_fill_size(); 1463 HeapWord* obj_beg = dense_prefix_end - obj_len; 1464 1465 #ifdef _LP64 1466 if (MinObjAlignment > 1) { // object alignment > heap word size 1467 // Cases a, c or e. 1468 } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) { 1469 // Case b above. 1470 obj_beg = dense_prefix_end - 1; 1471 } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) && 1472 _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) { 1473 // Case d above. 1474 obj_beg = dense_prefix_end - 3; 1475 obj_len = 3; 1476 } 1477 #endif // #ifdef _LP64 1478 1479 CollectedHeap::fill_with_object(obj_beg, obj_len); 1480 _mark_bitmap.mark_obj(obj_beg, obj_len); 1481 _summary_data.add_obj(obj_beg, obj_len); 1482 assert(start_array(id) != NULL, "sanity"); 1483 start_array(id)->allocate_block(obj_beg); 1484 } 1485 } 1486 1487 void 1488 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr) 1489 { 1490 RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr); 1491 HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr); 1492 RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up); 1493 for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) { 1494 cur->set_source_region(0); 1495 } 1496 } 1497 1498 void 1499 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction) 1500 { 1501 assert(id < last_space_id, "id out of range"); 1502 assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(), 1503 "should have been reset in summarize_spaces_quick()"); 1504 1505 const MutableSpace* space = _space_info[id].space(); 1506 if (_space_info[id].new_top() != space->bottom()) { 1507 HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction); 1508 _space_info[id].set_dense_prefix(dense_prefix_end); 1509 1510 #ifndef PRODUCT 1511 if (TraceParallelOldGCDensePrefix) { 1512 print_dense_prefix_stats("ratio", id, maximum_compaction, 1513 dense_prefix_end); 1514 HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction); 1515 print_dense_prefix_stats("density", id, maximum_compaction, addr); 1516 } 1517 #endif // #ifndef PRODUCT 1518 1519 // Recompute the summary data, taking into account the dense prefix. If 1520 // every last byte will be reclaimed, then the existing summary data which 1521 // compacts everything can be left in place. 1522 if (!maximum_compaction && dense_prefix_end != space->bottom()) { 1523 // If dead space crosses the dense prefix boundary, it is (at least 1524 // partially) filled with a dummy object, marked live and added to the 1525 // summary data. This simplifies the copy/update phase and must be done 1526 // before the final locations of objects are determined, to prevent 1527 // leaving a fragment of dead space that is too small to fill. 1528 fill_dense_prefix_end(id); 1529 1530 // Compute the destination of each Region, and thus each object. 1531 _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end); 1532 _summary_data.summarize(_space_info[id].split_info(), 1533 dense_prefix_end, space->top(), NULL, 1534 dense_prefix_end, space->end(), 1535 _space_info[id].new_top_addr()); 1536 } 1537 } 1538 1539 if (log_develop_is_enabled(Trace, gc, compaction, phases)) { 1540 const size_t region_size = ParallelCompactData::RegionSize; 1541 HeapWord* const dense_prefix_end = _space_info[id].dense_prefix(); 1542 const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end); 1543 const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom()); 1544 HeapWord* const new_top = _space_info[id].new_top(); 1545 const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top); 1546 const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end); 1547 log_develop_trace(gc, compaction, phases)( 1548 "id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " " 1549 "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " " 1550 "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT, 1551 id, space->capacity_in_words(), p2i(dense_prefix_end), 1552 dp_region, dp_words / region_size, 1553 cr_words / region_size, p2i(new_top)); 1554 } 1555 } 1556 1557 #ifndef PRODUCT 1558 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id, 1559 HeapWord* dst_beg, HeapWord* dst_end, 1560 SpaceId src_space_id, 1561 HeapWord* src_beg, HeapWord* src_end) 1562 { 1563 log_develop_trace(gc, compaction, phases)( 1564 "Summarizing %d [%s] into %d [%s]: " 1565 "src=" PTR_FORMAT "-" PTR_FORMAT " " 1566 SIZE_FORMAT "-" SIZE_FORMAT " " 1567 "dst=" PTR_FORMAT "-" PTR_FORMAT " " 1568 SIZE_FORMAT "-" SIZE_FORMAT, 1569 src_space_id, space_names[src_space_id], 1570 dst_space_id, space_names[dst_space_id], 1571 p2i(src_beg), p2i(src_end), 1572 _summary_data.addr_to_region_idx(src_beg), 1573 _summary_data.addr_to_region_idx(src_end), 1574 p2i(dst_beg), p2i(dst_end), 1575 _summary_data.addr_to_region_idx(dst_beg), 1576 _summary_data.addr_to_region_idx(dst_end)); 1577 } 1578 #endif // #ifndef PRODUCT 1579 1580 void PSParallelCompact::summary_phase(ParCompactionManager* cm, 1581 bool maximum_compaction) 1582 { 1583 GCTraceTime(Trace, gc, phases) tm("Summary Phase", &_gc_timer); 1584 1585 #ifdef ASSERT 1586 if (TraceParallelOldGCMarkingPhase) { 1587 tty->print_cr("add_obj_count=" SIZE_FORMAT " " 1588 "add_obj_bytes=" SIZE_FORMAT, 1589 add_obj_count, add_obj_size * HeapWordSize); 1590 tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " " 1591 "mark_bitmap_bytes=" SIZE_FORMAT, 1592 mark_bitmap_count, mark_bitmap_size * HeapWordSize); 1593 } 1594 #endif // #ifdef ASSERT 1595 1596 // Quick summarization of each space into itself, to see how much is live. 1597 summarize_spaces_quick(); 1598 1599 log_develop_trace(gc, compaction, phases)("summary phase: after summarizing each space to self"); 1600 NOT_PRODUCT(print_region_ranges()); 1601 NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info)); 1602 1603 // The amount of live data that will end up in old space (assuming it fits). 1604 size_t old_space_total_live = 0; 1605 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 1606 old_space_total_live += pointer_delta(_space_info[id].new_top(), 1607 _space_info[id].space()->bottom()); 1608 } 1609 1610 MutableSpace* const old_space = _space_info[old_space_id].space(); 1611 const size_t old_capacity = old_space->capacity_in_words(); 1612 if (old_space_total_live > old_capacity) { 1613 // XXX - should also try to expand 1614 maximum_compaction = true; 1615 } 1616 1617 // Old generations. 1618 summarize_space(old_space_id, maximum_compaction); 1619 1620 // Summarize the remaining spaces in the young gen. The initial target space 1621 // is the old gen. If a space does not fit entirely into the target, then the 1622 // remainder is compacted into the space itself and that space becomes the new 1623 // target. 1624 SpaceId dst_space_id = old_space_id; 1625 HeapWord* dst_space_end = old_space->end(); 1626 HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr(); 1627 for (unsigned int id = eden_space_id; id < last_space_id; ++id) { 1628 const MutableSpace* space = _space_info[id].space(); 1629 const size_t live = pointer_delta(_space_info[id].new_top(), 1630 space->bottom()); 1631 const size_t available = pointer_delta(dst_space_end, *new_top_addr); 1632 1633 NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end, 1634 SpaceId(id), space->bottom(), space->top());) 1635 if (live > 0 && live <= available) { 1636 // All the live data will fit. 1637 bool done = _summary_data.summarize(_space_info[id].split_info(), 1638 space->bottom(), space->top(), 1639 NULL, 1640 *new_top_addr, dst_space_end, 1641 new_top_addr); 1642 assert(done, "space must fit into old gen"); 1643 1644 // Reset the new_top value for the space. 1645 _space_info[id].set_new_top(space->bottom()); 1646 } else if (live > 0) { 1647 // Attempt to fit part of the source space into the target space. 1648 HeapWord* next_src_addr = NULL; 1649 bool done = _summary_data.summarize(_space_info[id].split_info(), 1650 space->bottom(), space->top(), 1651 &next_src_addr, 1652 *new_top_addr, dst_space_end, 1653 new_top_addr); 1654 assert(!done, "space should not fit into old gen"); 1655 assert(next_src_addr != NULL, "sanity"); 1656 1657 // The source space becomes the new target, so the remainder is compacted 1658 // within the space itself. 1659 dst_space_id = SpaceId(id); 1660 dst_space_end = space->end(); 1661 new_top_addr = _space_info[id].new_top_addr(); 1662 NOT_PRODUCT(summary_phase_msg(dst_space_id, 1663 space->bottom(), dst_space_end, 1664 SpaceId(id), next_src_addr, space->top());) 1665 done = _summary_data.summarize(_space_info[id].split_info(), 1666 next_src_addr, space->top(), 1667 NULL, 1668 space->bottom(), dst_space_end, 1669 new_top_addr); 1670 assert(done, "space must fit when compacted into itself"); 1671 assert(*new_top_addr <= space->top(), "usage should not grow"); 1672 } 1673 } 1674 1675 log_develop_trace(gc, compaction, phases)("Summary_phase: after final summarization"); 1676 NOT_PRODUCT(print_region_ranges()); 1677 NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info)); 1678 } 1679 1680 // This method should contain all heap-specific policy for invoking a full 1681 // collection. invoke_no_policy() will only attempt to compact the heap; it 1682 // will do nothing further. If we need to bail out for policy reasons, scavenge 1683 // before full gc, or any other specialized behavior, it needs to be added here. 1684 // 1685 // Note that this method should only be called from the vm_thread while at a 1686 // safepoint. 1687 // 1688 // Note that the all_soft_refs_clear flag in the collector policy 1689 // may be true because this method can be called without intervening 1690 // activity. For example when the heap space is tight and full measure 1691 // are being taken to free space. 1692 void PSParallelCompact::invoke(bool maximum_heap_compaction) { 1693 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); 1694 assert(Thread::current() == (Thread*)VMThread::vm_thread(), 1695 "should be in vm thread"); 1696 1697 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 1698 GCCause::Cause gc_cause = heap->gc_cause(); 1699 assert(!heap->is_gc_active(), "not reentrant"); 1700 1701 PSAdaptiveSizePolicy* policy = heap->size_policy(); 1702 IsGCActiveMark mark; 1703 1704 if (ScavengeBeforeFullGC) { 1705 PSScavenge::invoke_no_policy(); 1706 } 1707 1708 const bool clear_all_soft_refs = 1709 heap->collector_policy()->should_clear_all_soft_refs(); 1710 1711 PSParallelCompact::invoke_no_policy(clear_all_soft_refs || 1712 maximum_heap_compaction); 1713 } 1714 1715 // This method contains no policy. You should probably 1716 // be calling invoke() instead. 1717 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) { 1718 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); 1719 assert(ref_processor() != NULL, "Sanity"); 1720 1721 if (GCLocker::check_active_before_gc()) { 1722 return false; 1723 } 1724 1725 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 1726 1727 GCIdMark gc_id_mark; 1728 _gc_timer.register_gc_start(); 1729 _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start()); 1730 1731 TimeStamp marking_start; 1732 TimeStamp compaction_start; 1733 TimeStamp collection_exit; 1734 1735 GCCause::Cause gc_cause = heap->gc_cause(); 1736 PSYoungGen* young_gen = heap->young_gen(); 1737 PSOldGen* old_gen = heap->old_gen(); 1738 PSAdaptiveSizePolicy* size_policy = heap->size_policy(); 1739 1740 // The scope of casr should end after code that can change 1741 // CollectorPolicy::_should_clear_all_soft_refs. 1742 ClearedAllSoftRefs casr(maximum_heap_compaction, 1743 heap->collector_policy()); 1744 1745 if (ZapUnusedHeapArea) { 1746 // Save information needed to minimize mangling 1747 heap->record_gen_tops_before_GC(); 1748 } 1749 1750 // Make sure data structures are sane, make the heap parsable, and do other 1751 // miscellaneous bookkeeping. 1752 pre_compact(); 1753 1754 PreGCValues pre_gc_values(heap); 1755 1756 // Get the compaction manager reserved for the VM thread. 1757 ParCompactionManager* const vmthread_cm = 1758 ParCompactionManager::manager_array(gc_task_manager()->workers()); 1759 1760 { 1761 ResourceMark rm; 1762 HandleMark hm; 1763 1764 // Set the number of GC threads to be used in this collection 1765 gc_task_manager()->set_active_gang(); 1766 gc_task_manager()->task_idle_workers(); 1767 1768 GCTraceCPUTime tcpu; 1769 GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause, true); 1770 1771 heap->pre_full_gc_dump(&_gc_timer); 1772 1773 TraceCollectorStats tcs(counters()); 1774 TraceMemoryManagerStats tms(true /* Full GC */,gc_cause); 1775 1776 if (TraceOldGenTime) accumulated_time()->start(); 1777 1778 // Let the size policy know we're starting 1779 size_policy->major_collection_begin(); 1780 1781 CodeCache::gc_prologue(); 1782 1783 #if defined(COMPILER2) || INCLUDE_JVMCI 1784 DerivedPointerTable::clear(); 1785 #endif 1786 1787 ref_processor()->enable_discovery(); 1788 ref_processor()->setup_policy(maximum_heap_compaction); 1789 1790 bool marked_for_unloading = false; 1791 1792 marking_start.update(); 1793 marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer); 1794 1795 bool max_on_system_gc = UseMaximumCompactionOnSystemGC 1796 && GCCause::is_user_requested_gc(gc_cause); 1797 summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc); 1798 1799 #if defined(COMPILER2) || INCLUDE_JVMCI 1800 assert(DerivedPointerTable::is_active(), "Sanity"); 1801 DerivedPointerTable::set_active(false); 1802 #endif 1803 1804 // adjust_roots() updates Universe::_intArrayKlassObj which is 1805 // needed by the compaction for filling holes in the dense prefix. 1806 adjust_roots(vmthread_cm); 1807 1808 compaction_start.update(); 1809 compact(); 1810 1811 // Reset the mark bitmap, summary data, and do other bookkeeping. Must be 1812 // done before resizing. 1813 post_compact(); 1814 1815 // Let the size policy know we're done 1816 size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause); 1817 1818 if (UseAdaptiveSizePolicy) { 1819 log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections()); 1820 log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT, 1821 old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes()); 1822 1823 // Don't check if the size_policy is ready here. Let 1824 // the size_policy check that internally. 1825 if (UseAdaptiveGenerationSizePolicyAtMajorCollection && 1826 AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) { 1827 // Swap the survivor spaces if from_space is empty. The 1828 // resize_young_gen() called below is normally used after 1829 // a successful young GC and swapping of survivor spaces; 1830 // otherwise, it will fail to resize the young gen with 1831 // the current implementation. 1832 if (young_gen->from_space()->is_empty()) { 1833 young_gen->from_space()->clear(SpaceDecorator::Mangle); 1834 young_gen->swap_spaces(); 1835 } 1836 1837 // Calculate optimal free space amounts 1838 assert(young_gen->max_size() > 1839 young_gen->from_space()->capacity_in_bytes() + 1840 young_gen->to_space()->capacity_in_bytes(), 1841 "Sizes of space in young gen are out-of-bounds"); 1842 1843 size_t young_live = young_gen->used_in_bytes(); 1844 size_t eden_live = young_gen->eden_space()->used_in_bytes(); 1845 size_t old_live = old_gen->used_in_bytes(); 1846 size_t cur_eden = young_gen->eden_space()->capacity_in_bytes(); 1847 size_t max_old_gen_size = old_gen->max_gen_size(); 1848 size_t max_eden_size = young_gen->max_size() - 1849 young_gen->from_space()->capacity_in_bytes() - 1850 young_gen->to_space()->capacity_in_bytes(); 1851 1852 // Used for diagnostics 1853 size_policy->clear_generation_free_space_flags(); 1854 1855 size_policy->compute_generations_free_space(young_live, 1856 eden_live, 1857 old_live, 1858 cur_eden, 1859 max_old_gen_size, 1860 max_eden_size, 1861 true /* full gc*/); 1862 1863 size_policy->check_gc_overhead_limit(young_live, 1864 eden_live, 1865 max_old_gen_size, 1866 max_eden_size, 1867 true /* full gc*/, 1868 gc_cause, 1869 heap->collector_policy()); 1870 1871 size_policy->decay_supplemental_growth(true /* full gc*/); 1872 1873 heap->resize_old_gen( 1874 size_policy->calculated_old_free_size_in_bytes()); 1875 1876 heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(), 1877 size_policy->calculated_survivor_size_in_bytes()); 1878 } 1879 1880 log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections()); 1881 } 1882 1883 if (UsePerfData) { 1884 PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters(); 1885 counters->update_counters(); 1886 counters->update_old_capacity(old_gen->capacity_in_bytes()); 1887 counters->update_young_capacity(young_gen->capacity_in_bytes()); 1888 } 1889 1890 heap->resize_all_tlabs(); 1891 1892 // Resize the metaspace capacity after a collection 1893 MetaspaceGC::compute_new_size(); 1894 1895 if (TraceOldGenTime) { 1896 accumulated_time()->stop(); 1897 } 1898 1899 young_gen->print_used_change(pre_gc_values.young_gen_used()); 1900 old_gen->print_used_change(pre_gc_values.old_gen_used()); 1901 MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used()); 1902 1903 // Track memory usage and detect low memory 1904 MemoryService::track_memory_usage(); 1905 heap->update_counters(); 1906 gc_task_manager()->release_idle_workers(); 1907 1908 heap->post_full_gc_dump(&_gc_timer); 1909 } 1910 1911 #ifdef ASSERT 1912 for (size_t i = 0; i < ParallelGCThreads + 1; ++i) { 1913 ParCompactionManager* const cm = 1914 ParCompactionManager::manager_array(int(i)); 1915 assert(cm->marking_stack()->is_empty(), "should be empty"); 1916 assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty"); 1917 } 1918 #endif // ASSERT 1919 1920 if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) { 1921 HandleMark hm; // Discard invalid handles created during verification 1922 Universe::verify("After GC"); 1923 } 1924 1925 // Re-verify object start arrays 1926 if (VerifyObjectStartArray && 1927 VerifyAfterGC) { 1928 old_gen->verify_object_start_array(); 1929 } 1930 1931 if (ZapUnusedHeapArea) { 1932 old_gen->object_space()->check_mangled_unused_area_complete(); 1933 } 1934 1935 NOT_PRODUCT(ref_processor()->verify_no_references_recorded()); 1936 1937 collection_exit.update(); 1938 1939 heap->print_heap_after_gc(); 1940 heap->trace_heap_after_gc(&_gc_tracer); 1941 1942 log_debug(gc, task, time)("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " " JLONG_FORMAT, 1943 marking_start.ticks(), compaction_start.ticks(), 1944 collection_exit.ticks()); 1945 gc_task_manager()->print_task_time_stamps(); 1946 1947 #ifdef TRACESPINNING 1948 ParallelTaskTerminator::print_termination_counts(); 1949 #endif 1950 1951 AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections()); 1952 1953 _gc_timer.register_gc_end(); 1954 1955 _gc_tracer.report_dense_prefix(dense_prefix(old_space_id)); 1956 _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions()); 1957 1958 return true; 1959 } 1960 1961 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy, 1962 PSYoungGen* young_gen, 1963 PSOldGen* old_gen) { 1964 MutableSpace* const eden_space = young_gen->eden_space(); 1965 assert(!eden_space->is_empty(), "eden must be non-empty"); 1966 assert(young_gen->virtual_space()->alignment() == 1967 old_gen->virtual_space()->alignment(), "alignments do not match"); 1968 1969 if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) { 1970 return false; 1971 } 1972 1973 // Both generations must be completely committed. 1974 if (young_gen->virtual_space()->uncommitted_size() != 0) { 1975 return false; 1976 } 1977 if (old_gen->virtual_space()->uncommitted_size() != 0) { 1978 return false; 1979 } 1980 1981 // Figure out how much to take from eden. Include the average amount promoted 1982 // in the total; otherwise the next young gen GC will simply bail out to a 1983 // full GC. 1984 const size_t alignment = old_gen->virtual_space()->alignment(); 1985 const size_t eden_used = eden_space->used_in_bytes(); 1986 const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average(); 1987 const size_t absorb_size = align_size_up(eden_used + promoted, alignment); 1988 const size_t eden_capacity = eden_space->capacity_in_bytes(); 1989 1990 if (absorb_size >= eden_capacity) { 1991 return false; // Must leave some space in eden. 1992 } 1993 1994 const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size; 1995 if (new_young_size < young_gen->min_gen_size()) { 1996 return false; // Respect young gen minimum size. 1997 } 1998 1999 log_trace(heap, ergo)(" absorbing " SIZE_FORMAT "K: " 2000 "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K " 2001 "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K " 2002 "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ", 2003 absorb_size / K, 2004 eden_capacity / K, (eden_capacity - absorb_size) / K, 2005 young_gen->from_space()->used_in_bytes() / K, 2006 young_gen->to_space()->used_in_bytes() / K, 2007 young_gen->capacity_in_bytes() / K, new_young_size / K); 2008 2009 // Fill the unused part of the old gen. 2010 MutableSpace* const old_space = old_gen->object_space(); 2011 HeapWord* const unused_start = old_space->top(); 2012 size_t const unused_words = pointer_delta(old_space->end(), unused_start); 2013 2014 if (unused_words > 0) { 2015 if (unused_words < CollectedHeap::min_fill_size()) { 2016 return false; // If the old gen cannot be filled, must give up. 2017 } 2018 CollectedHeap::fill_with_objects(unused_start, unused_words); 2019 } 2020 2021 // Take the live data from eden and set both top and end in the old gen to 2022 // eden top. (Need to set end because reset_after_change() mangles the region 2023 // from end to virtual_space->high() in debug builds). 2024 HeapWord* const new_top = eden_space->top(); 2025 old_gen->virtual_space()->expand_into(young_gen->virtual_space(), 2026 absorb_size); 2027 young_gen->reset_after_change(); 2028 old_space->set_top(new_top); 2029 old_space->set_end(new_top); 2030 old_gen->reset_after_change(); 2031 2032 // Update the object start array for the filler object and the data from eden. 2033 ObjectStartArray* const start_array = old_gen->start_array(); 2034 for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) { 2035 start_array->allocate_block(p); 2036 } 2037 2038 // Could update the promoted average here, but it is not typically updated at 2039 // full GCs and the value to use is unclear. Something like 2040 // 2041 // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc. 2042 2043 size_policy->set_bytes_absorbed_from_eden(absorb_size); 2044 return true; 2045 } 2046 2047 GCTaskManager* const PSParallelCompact::gc_task_manager() { 2048 assert(ParallelScavengeHeap::gc_task_manager() != NULL, 2049 "shouldn't return NULL"); 2050 return ParallelScavengeHeap::gc_task_manager(); 2051 } 2052 2053 void PSParallelCompact::marking_phase(ParCompactionManager* cm, 2054 bool maximum_heap_compaction, 2055 ParallelOldTracer *gc_tracer) { 2056 // Recursively traverse all live objects and mark them 2057 GCTraceTime(Trace, gc, phases) tm("Marking Phase", &_gc_timer); 2058 2059 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 2060 uint parallel_gc_threads = heap->gc_task_manager()->workers(); 2061 uint active_gc_threads = heap->gc_task_manager()->active_workers(); 2062 TaskQueueSetSuper* qset = ParCompactionManager::region_array(); 2063 ParallelTaskTerminator terminator(active_gc_threads, qset); 2064 2065 ParCompactionManager::MarkAndPushClosure mark_and_push_closure(cm); 2066 ParCompactionManager::FollowStackClosure follow_stack_closure(cm); 2067 2068 // Need new claim bits before marking starts. 2069 ClassLoaderDataGraph::clear_claimed_marks(); 2070 2071 { 2072 GCTraceTime(Trace, gc, phases) tm("Par Mark", &_gc_timer); 2073 2074 ParallelScavengeHeap::ParStrongRootsScope psrs; 2075 2076 GCTaskQueue* q = GCTaskQueue::create(); 2077 2078 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe)); 2079 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles)); 2080 // We scan the thread roots in parallel 2081 Threads::create_thread_roots_marking_tasks(q); 2082 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer)); 2083 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler)); 2084 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management)); 2085 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary)); 2086 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data)); 2087 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti)); 2088 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache)); 2089 2090 if (active_gc_threads > 1) { 2091 for (uint j = 0; j < active_gc_threads; j++) { 2092 q->enqueue(new StealMarkingTask(&terminator)); 2093 } 2094 } 2095 2096 gc_task_manager()->execute_and_wait(q); 2097 } 2098 2099 // Process reference objects found during marking 2100 { 2101 GCTraceTime(Trace, gc, phases) tm("Reference Processing", &_gc_timer); 2102 2103 ReferenceProcessorStats stats; 2104 if (ref_processor()->processing_is_mt()) { 2105 RefProcTaskExecutor task_executor; 2106 stats = ref_processor()->process_discovered_references( 2107 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, 2108 &task_executor, &_gc_timer); 2109 } else { 2110 stats = ref_processor()->process_discovered_references( 2111 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL, 2112 &_gc_timer); 2113 } 2114 2115 gc_tracer->report_gc_reference_stats(stats); 2116 } 2117 2118 GCTraceTime(Trace, gc) tm_m("Class Unloading", &_gc_timer); 2119 2120 // This is the point where the entire marking should have completed. 2121 assert(cm->marking_stacks_empty(), "Marking should have completed"); 2122 2123 // Follow system dictionary roots and unload classes. 2124 bool purged_class = SystemDictionary::do_unloading(is_alive_closure()); 2125 2126 // Unload nmethods. 2127 CodeCache::do_unloading(is_alive_closure(), purged_class); 2128 2129 // Prune dead klasses from subklass/sibling/implementor lists. 2130 Klass::clean_weak_klass_links(is_alive_closure()); 2131 2132 // Delete entries for dead interned strings. 2133 StringTable::unlink(is_alive_closure()); 2134 2135 // Clean up unreferenced symbols in symbol table. 2136 SymbolTable::unlink(); 2137 _gc_tracer.report_object_count_after_gc(is_alive_closure()); 2138 } 2139 2140 // This should be moved to the shared markSweep code! 2141 class PSAlwaysTrueClosure: public BoolObjectClosure { 2142 public: 2143 bool do_object_b(oop p) { return true; } 2144 }; 2145 static PSAlwaysTrueClosure always_true; 2146 2147 void PSParallelCompact::adjust_roots(ParCompactionManager* cm) { 2148 // Adjust the pointers to reflect the new locations 2149 GCTraceTime(Trace, gc, phases) tm("Adjust Roots", &_gc_timer); 2150 2151 // Need new claim bits when tracing through and adjusting pointers. 2152 ClassLoaderDataGraph::clear_claimed_marks(); 2153 2154 PSParallelCompact::AdjustPointerClosure oop_closure(cm); 2155 PSParallelCompact::AdjustKlassClosure klass_closure(cm); 2156 2157 // General strong roots. 2158 Universe::oops_do(&oop_closure); 2159 JNIHandles::oops_do(&oop_closure); // Global (strong) JNI handles 2160 CLDToOopClosure adjust_from_cld(&oop_closure); 2161 Threads::oops_do(&oop_closure, &adjust_from_cld, NULL); 2162 ObjectSynchronizer::oops_do(&oop_closure); 2163 FlatProfiler::oops_do(&oop_closure); 2164 Management::oops_do(&oop_closure); 2165 JvmtiExport::oops_do(&oop_closure); 2166 SystemDictionary::oops_do(&oop_closure); 2167 ClassLoaderDataGraph::oops_do(&oop_closure, &klass_closure, true); 2168 2169 // Now adjust pointers in remaining weak roots. (All of which should 2170 // have been cleared if they pointed to non-surviving objects.) 2171 // Global (weak) JNI handles 2172 JNIHandles::weak_oops_do(&always_true, &oop_closure); 2173 2174 CodeBlobToOopClosure adjust_from_blobs(&oop_closure, CodeBlobToOopClosure::FixRelocations); 2175 CodeCache::blobs_do(&adjust_from_blobs); 2176 StringTable::oops_do(&oop_closure); 2177 ref_processor()->weak_oops_do(&oop_closure); 2178 // Roots were visited so references into the young gen in roots 2179 // may have been scanned. Process them also. 2180 // Should the reference processor have a span that excludes 2181 // young gen objects? 2182 PSScavenge::reference_processor()->weak_oops_do(&oop_closure); 2183 } 2184 2185 // Helper class to print 8 region numbers per line and then print the total at the end. 2186 class FillableRegionLogger : public StackObj { 2187 private: 2188 LogHandle(gc, compaction) log; 2189 static const int LineLength = 8; 2190 size_t _regions[LineLength]; 2191 int _next_index; 2192 bool _enabled; 2193 size_t _total_regions; 2194 public: 2195 FillableRegionLogger() : _next_index(0), _total_regions(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)) { } 2196 ~FillableRegionLogger() { 2197 log.trace(SIZE_FORMAT " initially fillable regions", _total_regions); 2198 } 2199 2200 void print_line() { 2201 if (!_enabled || _next_index == 0) { 2202 return; 2203 } 2204 FormatBuffer<> line("Fillable: "); 2205 for (int i = 0; i < _next_index; i++) { 2206 line.append(" " SIZE_FORMAT_W(7), _regions[i]); 2207 } 2208 log.trace("%s", line.buffer()); 2209 _next_index = 0; 2210 } 2211 2212 void handle(size_t region) { 2213 if (!_enabled) { 2214 return; 2215 } 2216 _regions[_next_index++] = region; 2217 if (_next_index == LineLength) { 2218 print_line(); 2219 } 2220 _total_regions++; 2221 } 2222 }; 2223 2224 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q, 2225 uint parallel_gc_threads) 2226 { 2227 GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer); 2228 2229 // Find the threads that are active 2230 unsigned int which = 0; 2231 2232 const uint task_count = MAX2(parallel_gc_threads, 1U); 2233 for (uint j = 0; j < task_count; j++) { 2234 q->enqueue(new DrainStacksCompactionTask(j)); 2235 ParCompactionManager::verify_region_list_empty(j); 2236 // Set the region stacks variables to "no" region stack values 2237 // so that they will be recognized and needing a region stack 2238 // in the stealing tasks if they do not get one by executing 2239 // a draining stack. 2240 ParCompactionManager* cm = ParCompactionManager::manager_array(j); 2241 cm->set_region_stack(NULL); 2242 cm->set_region_stack_index((uint)max_uintx); 2243 } 2244 ParCompactionManager::reset_recycled_stack_index(); 2245 2246 // Find all regions that are available (can be filled immediately) and 2247 // distribute them to the thread stacks. The iteration is done in reverse 2248 // order (high to low) so the regions will be removed in ascending order. 2249 2250 const ParallelCompactData& sd = PSParallelCompact::summary_data(); 2251 2252 // A region index which corresponds to the tasks created above. 2253 // "which" must be 0 <= which < task_count 2254 2255 which = 0; 2256 // id + 1 is used to test termination so unsigned can 2257 // be used with an old_space_id == 0. 2258 FillableRegionLogger region_logger; 2259 for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) { 2260 SpaceInfo* const space_info = _space_info + id; 2261 MutableSpace* const space = space_info->space(); 2262 HeapWord* const new_top = space_info->new_top(); 2263 2264 const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix()); 2265 const size_t end_region = 2266 sd.addr_to_region_idx(sd.region_align_up(new_top)); 2267 2268 for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) { 2269 if (sd.region(cur)->claim_unsafe()) { 2270 ParCompactionManager::region_list_push(which, cur); 2271 region_logger.handle(cur); 2272 // Assign regions to tasks in round-robin fashion. 2273 if (++which == task_count) { 2274 assert(which <= parallel_gc_threads, 2275 "Inconsistent number of workers"); 2276 which = 0; 2277 } 2278 } 2279 } 2280 region_logger.print_line(); 2281 } 2282 } 2283 2284 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4 2285 2286 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q, 2287 uint parallel_gc_threads) { 2288 GCTraceTime(Trace, gc, phases) tm("Dense Prefix Task Setup", &_gc_timer); 2289 2290 ParallelCompactData& sd = PSParallelCompact::summary_data(); 2291 2292 // Iterate over all the spaces adding tasks for updating 2293 // regions in the dense prefix. Assume that 1 gc thread 2294 // will work on opening the gaps and the remaining gc threads 2295 // will work on the dense prefix. 2296 unsigned int space_id; 2297 for (space_id = old_space_id; space_id < last_space_id; ++ space_id) { 2298 HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix(); 2299 const MutableSpace* const space = _space_info[space_id].space(); 2300 2301 if (dense_prefix_end == space->bottom()) { 2302 // There is no dense prefix for this space. 2303 continue; 2304 } 2305 2306 // The dense prefix is before this region. 2307 size_t region_index_end_dense_prefix = 2308 sd.addr_to_region_idx(dense_prefix_end); 2309 RegionData* const dense_prefix_cp = 2310 sd.region(region_index_end_dense_prefix); 2311 assert(dense_prefix_end == space->end() || 2312 dense_prefix_cp->available() || 2313 dense_prefix_cp->claimed(), 2314 "The region after the dense prefix should always be ready to fill"); 2315 2316 size_t region_index_start = sd.addr_to_region_idx(space->bottom()); 2317 2318 // Is there dense prefix work? 2319 size_t total_dense_prefix_regions = 2320 region_index_end_dense_prefix - region_index_start; 2321 // How many regions of the dense prefix should be given to 2322 // each thread? 2323 if (total_dense_prefix_regions > 0) { 2324 uint tasks_for_dense_prefix = 1; 2325 if (total_dense_prefix_regions <= 2326 (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) { 2327 // Don't over partition. This assumes that 2328 // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value 2329 // so there are not many regions to process. 2330 tasks_for_dense_prefix = parallel_gc_threads; 2331 } else { 2332 // Over partition 2333 tasks_for_dense_prefix = parallel_gc_threads * 2334 PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING; 2335 } 2336 size_t regions_per_thread = total_dense_prefix_regions / 2337 tasks_for_dense_prefix; 2338 // Give each thread at least 1 region. 2339 if (regions_per_thread == 0) { 2340 regions_per_thread = 1; 2341 } 2342 2343 for (uint k = 0; k < tasks_for_dense_prefix; k++) { 2344 if (region_index_start >= region_index_end_dense_prefix) { 2345 break; 2346 } 2347 // region_index_end is not processed 2348 size_t region_index_end = MIN2(region_index_start + regions_per_thread, 2349 region_index_end_dense_prefix); 2350 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id), 2351 region_index_start, 2352 region_index_end)); 2353 region_index_start = region_index_end; 2354 } 2355 } 2356 // This gets any part of the dense prefix that did not 2357 // fit evenly. 2358 if (region_index_start < region_index_end_dense_prefix) { 2359 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id), 2360 region_index_start, 2361 region_index_end_dense_prefix)); 2362 } 2363 } 2364 } 2365 2366 void PSParallelCompact::enqueue_region_stealing_tasks( 2367 GCTaskQueue* q, 2368 ParallelTaskTerminator* terminator_ptr, 2369 uint parallel_gc_threads) { 2370 GCTraceTime(Trace, gc, phases) tm("Steal Task Setup", &_gc_timer); 2371 2372 // Once a thread has drained it's stack, it should try to steal regions from 2373 // other threads. 2374 if (parallel_gc_threads > 1) { 2375 for (uint j = 0; j < parallel_gc_threads; j++) { 2376 q->enqueue(new StealRegionCompactionTask(terminator_ptr)); 2377 } 2378 } 2379 } 2380 2381 #ifdef ASSERT 2382 // Write a histogram of the number of times the block table was filled for a 2383 // region. 2384 void PSParallelCompact::write_block_fill_histogram() 2385 { 2386 if (!log_develop_is_enabled(Trace, gc, compaction)) { 2387 return; 2388 } 2389 2390 LogHandle(gc, compaction) log; 2391 ResourceMark rm; 2392 outputStream* out = log.trace_stream(); 2393 2394 typedef ParallelCompactData::RegionData rd_t; 2395 ParallelCompactData& sd = summary_data(); 2396 2397 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 2398 MutableSpace* const spc = _space_info[id].space(); 2399 if (spc->bottom() != spc->top()) { 2400 const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom()); 2401 HeapWord* const top_aligned_up = sd.region_align_up(spc->top()); 2402 const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up); 2403 2404 size_t histo[5] = { 0, 0, 0, 0, 0 }; 2405 const size_t histo_len = sizeof(histo) / sizeof(size_t); 2406 const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t)); 2407 2408 for (const rd_t* cur = beg; cur < end; ++cur) { 2409 ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)]; 2410 } 2411 out->print("Block fill histogram: %u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt); 2412 for (size_t i = 0; i < histo_len; ++i) { 2413 out->print(" " SIZE_FORMAT_W(5) " %5.1f%%", 2414 histo[i], 100.0 * histo[i] / region_cnt); 2415 } 2416 out->cr(); 2417 } 2418 } 2419 } 2420 #endif // #ifdef ASSERT 2421 2422 void PSParallelCompact::compact() { 2423 GCTraceTime(Trace, gc, phases) tm("Compaction Phase", &_gc_timer); 2424 2425 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 2426 PSOldGen* old_gen = heap->old_gen(); 2427 old_gen->start_array()->reset(); 2428 uint parallel_gc_threads = heap->gc_task_manager()->workers(); 2429 uint active_gc_threads = heap->gc_task_manager()->active_workers(); 2430 TaskQueueSetSuper* qset = ParCompactionManager::region_array(); 2431 ParallelTaskTerminator terminator(active_gc_threads, qset); 2432 2433 GCTaskQueue* q = GCTaskQueue::create(); 2434 enqueue_region_draining_tasks(q, active_gc_threads); 2435 enqueue_dense_prefix_tasks(q, active_gc_threads); 2436 enqueue_region_stealing_tasks(q, &terminator, active_gc_threads); 2437 2438 { 2439 GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer); 2440 2441 gc_task_manager()->execute_and_wait(q); 2442 2443 #ifdef ASSERT 2444 // Verify that all regions have been processed before the deferred updates. 2445 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 2446 verify_complete(SpaceId(id)); 2447 } 2448 #endif 2449 } 2450 2451 { 2452 // Update the deferred objects, if any. Any compaction manager can be used. 2453 GCTraceTime(Trace, gc, phases) tm("Deferred Updates", &_gc_timer); 2454 ParCompactionManager* cm = ParCompactionManager::manager_array(0); 2455 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 2456 update_deferred_objects(cm, SpaceId(id)); 2457 } 2458 } 2459 2460 DEBUG_ONLY(write_block_fill_histogram()); 2461 } 2462 2463 #ifdef ASSERT 2464 void PSParallelCompact::verify_complete(SpaceId space_id) { 2465 // All Regions between space bottom() to new_top() should be marked as filled 2466 // and all Regions between new_top() and top() should be available (i.e., 2467 // should have been emptied). 2468 ParallelCompactData& sd = summary_data(); 2469 SpaceInfo si = _space_info[space_id]; 2470 HeapWord* new_top_addr = sd.region_align_up(si.new_top()); 2471 HeapWord* old_top_addr = sd.region_align_up(si.space()->top()); 2472 const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom()); 2473 const size_t new_top_region = sd.addr_to_region_idx(new_top_addr); 2474 const size_t old_top_region = sd.addr_to_region_idx(old_top_addr); 2475 2476 bool issued_a_warning = false; 2477 2478 size_t cur_region; 2479 for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) { 2480 const RegionData* const c = sd.region(cur_region); 2481 if (!c->completed()) { 2482 warning("region " SIZE_FORMAT " not filled: " 2483 "destination_count=%u", 2484 cur_region, c->destination_count()); 2485 issued_a_warning = true; 2486 } 2487 } 2488 2489 for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) { 2490 const RegionData* const c = sd.region(cur_region); 2491 if (!c->available()) { 2492 warning("region " SIZE_FORMAT " not empty: " 2493 "destination_count=%u", 2494 cur_region, c->destination_count()); 2495 issued_a_warning = true; 2496 } 2497 } 2498 2499 if (issued_a_warning) { 2500 print_region_ranges(); 2501 } 2502 } 2503 #endif // #ifdef ASSERT 2504 2505 inline void UpdateOnlyClosure::do_addr(HeapWord* addr) { 2506 _start_array->allocate_block(addr); 2507 compaction_manager()->update_contents(oop(addr)); 2508 } 2509 2510 // Update interior oops in the ranges of regions [beg_region, end_region). 2511 void 2512 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm, 2513 SpaceId space_id, 2514 size_t beg_region, 2515 size_t end_region) { 2516 ParallelCompactData& sd = summary_data(); 2517 ParMarkBitMap* const mbm = mark_bitmap(); 2518 2519 HeapWord* beg_addr = sd.region_to_addr(beg_region); 2520 HeapWord* const end_addr = sd.region_to_addr(end_region); 2521 assert(beg_region <= end_region, "bad region range"); 2522 assert(end_addr <= dense_prefix(space_id), "not in the dense prefix"); 2523 2524 #ifdef ASSERT 2525 // Claim the regions to avoid triggering an assert when they are marked as 2526 // filled. 2527 for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) { 2528 assert(sd.region(claim_region)->claim_unsafe(), "claim() failed"); 2529 } 2530 #endif // #ifdef ASSERT 2531 2532 if (beg_addr != space(space_id)->bottom()) { 2533 // Find the first live object or block of dead space that *starts* in this 2534 // range of regions. If a partial object crosses onto the region, skip it; 2535 // it will be marked for 'deferred update' when the object head is 2536 // processed. If dead space crosses onto the region, it is also skipped; it 2537 // will be filled when the prior region is processed. If neither of those 2538 // apply, the first word in the region is the start of a live object or dead 2539 // space. 2540 assert(beg_addr > space(space_id)->bottom(), "sanity"); 2541 const RegionData* const cp = sd.region(beg_region); 2542 if (cp->partial_obj_size() != 0) { 2543 beg_addr = sd.partial_obj_end(beg_region); 2544 } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) { 2545 beg_addr = mbm->find_obj_beg(beg_addr, end_addr); 2546 } 2547 } 2548 2549 if (beg_addr < end_addr) { 2550 // A live object or block of dead space starts in this range of Regions. 2551 HeapWord* const dense_prefix_end = dense_prefix(space_id); 2552 2553 // Create closures and iterate. 2554 UpdateOnlyClosure update_closure(mbm, cm, space_id); 2555 FillClosure fill_closure(cm, space_id); 2556 ParMarkBitMap::IterationStatus status; 2557 status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr, 2558 dense_prefix_end); 2559 if (status == ParMarkBitMap::incomplete) { 2560 update_closure.do_addr(update_closure.source()); 2561 } 2562 } 2563 2564 // Mark the regions as filled. 2565 RegionData* const beg_cp = sd.region(beg_region); 2566 RegionData* const end_cp = sd.region(end_region); 2567 for (RegionData* cp = beg_cp; cp < end_cp; ++cp) { 2568 cp->set_completed(); 2569 } 2570 } 2571 2572 // Return the SpaceId for the space containing addr. If addr is not in the 2573 // heap, last_space_id is returned. In debug mode it expects the address to be 2574 // in the heap and asserts such. 2575 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) { 2576 assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap"); 2577 2578 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 2579 if (_space_info[id].space()->contains(addr)) { 2580 return SpaceId(id); 2581 } 2582 } 2583 2584 assert(false, "no space contains the addr"); 2585 return last_space_id; 2586 } 2587 2588 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm, 2589 SpaceId id) { 2590 assert(id < last_space_id, "bad space id"); 2591 2592 ParallelCompactData& sd = summary_data(); 2593 const SpaceInfo* const space_info = _space_info + id; 2594 ObjectStartArray* const start_array = space_info->start_array(); 2595 2596 const MutableSpace* const space = space_info->space(); 2597 assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set"); 2598 HeapWord* const beg_addr = space_info->dense_prefix(); 2599 HeapWord* const end_addr = sd.region_align_up(space_info->new_top()); 2600 2601 const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr); 2602 const RegionData* const end_region = sd.addr_to_region_ptr(end_addr); 2603 const RegionData* cur_region; 2604 for (cur_region = beg_region; cur_region < end_region; ++cur_region) { 2605 HeapWord* const addr = cur_region->deferred_obj_addr(); 2606 if (addr != NULL) { 2607 if (start_array != NULL) { 2608 start_array->allocate_block(addr); 2609 } 2610 cm->update_contents(oop(addr)); 2611 assert(oop(addr)->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr))); 2612 } 2613 } 2614 } 2615 2616 // Skip over count live words starting from beg, and return the address of the 2617 // next live word. Unless marked, the word corresponding to beg is assumed to 2618 // be dead. Callers must either ensure beg does not correspond to the middle of 2619 // an object, or account for those live words in some other way. Callers must 2620 // also ensure that there are enough live words in the range [beg, end) to skip. 2621 HeapWord* 2622 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count) 2623 { 2624 assert(count > 0, "sanity"); 2625 2626 ParMarkBitMap* m = mark_bitmap(); 2627 idx_t bits_to_skip = m->words_to_bits(count); 2628 idx_t cur_beg = m->addr_to_bit(beg); 2629 const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end)); 2630 2631 do { 2632 cur_beg = m->find_obj_beg(cur_beg, search_end); 2633 idx_t cur_end = m->find_obj_end(cur_beg, search_end); 2634 const size_t obj_bits = cur_end - cur_beg + 1; 2635 if (obj_bits > bits_to_skip) { 2636 return m->bit_to_addr(cur_beg + bits_to_skip); 2637 } 2638 bits_to_skip -= obj_bits; 2639 cur_beg = cur_end + 1; 2640 } while (bits_to_skip > 0); 2641 2642 // Skipping the desired number of words landed just past the end of an object. 2643 // Find the start of the next object. 2644 cur_beg = m->find_obj_beg(cur_beg, search_end); 2645 assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip"); 2646 return m->bit_to_addr(cur_beg); 2647 } 2648 2649 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr, 2650 SpaceId src_space_id, 2651 size_t src_region_idx) 2652 { 2653 assert(summary_data().is_region_aligned(dest_addr), "not aligned"); 2654 2655 const SplitInfo& split_info = _space_info[src_space_id].split_info(); 2656 if (split_info.dest_region_addr() == dest_addr) { 2657 // The partial object ending at the split point contains the first word to 2658 // be copied to dest_addr. 2659 return split_info.first_src_addr(); 2660 } 2661 2662 const ParallelCompactData& sd = summary_data(); 2663 ParMarkBitMap* const bitmap = mark_bitmap(); 2664 const size_t RegionSize = ParallelCompactData::RegionSize; 2665 2666 assert(sd.is_region_aligned(dest_addr), "not aligned"); 2667 const RegionData* const src_region_ptr = sd.region(src_region_idx); 2668 const size_t partial_obj_size = src_region_ptr->partial_obj_size(); 2669 HeapWord* const src_region_destination = src_region_ptr->destination(); 2670 2671 assert(dest_addr >= src_region_destination, "wrong src region"); 2672 assert(src_region_ptr->data_size() > 0, "src region cannot be empty"); 2673 2674 HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx); 2675 HeapWord* const src_region_end = src_region_beg + RegionSize; 2676 2677 HeapWord* addr = src_region_beg; 2678 if (dest_addr == src_region_destination) { 2679 // Return the first live word in the source region. 2680 if (partial_obj_size == 0) { 2681 addr = bitmap->find_obj_beg(addr, src_region_end); 2682 assert(addr < src_region_end, "no objects start in src region"); 2683 } 2684 return addr; 2685 } 2686 2687 // Must skip some live data. 2688 size_t words_to_skip = dest_addr - src_region_destination; 2689 assert(src_region_ptr->data_size() > words_to_skip, "wrong src region"); 2690 2691 if (partial_obj_size >= words_to_skip) { 2692 // All the live words to skip are part of the partial object. 2693 addr += words_to_skip; 2694 if (partial_obj_size == words_to_skip) { 2695 // Find the first live word past the partial object. 2696 addr = bitmap->find_obj_beg(addr, src_region_end); 2697 assert(addr < src_region_end, "wrong src region"); 2698 } 2699 return addr; 2700 } 2701 2702 // Skip over the partial object (if any). 2703 if (partial_obj_size != 0) { 2704 words_to_skip -= partial_obj_size; 2705 addr += partial_obj_size; 2706 } 2707 2708 // Skip over live words due to objects that start in the region. 2709 addr = skip_live_words(addr, src_region_end, words_to_skip); 2710 assert(addr < src_region_end, "wrong src region"); 2711 return addr; 2712 } 2713 2714 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm, 2715 SpaceId src_space_id, 2716 size_t beg_region, 2717 HeapWord* end_addr) 2718 { 2719 ParallelCompactData& sd = summary_data(); 2720 2721 #ifdef ASSERT 2722 MutableSpace* const src_space = _space_info[src_space_id].space(); 2723 HeapWord* const beg_addr = sd.region_to_addr(beg_region); 2724 assert(src_space->contains(beg_addr) || beg_addr == src_space->end(), 2725 "src_space_id does not match beg_addr"); 2726 assert(src_space->contains(end_addr) || end_addr == src_space->end(), 2727 "src_space_id does not match end_addr"); 2728 #endif // #ifdef ASSERT 2729 2730 RegionData* const beg = sd.region(beg_region); 2731 RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr)); 2732 2733 // Regions up to new_top() are enqueued if they become available. 2734 HeapWord* const new_top = _space_info[src_space_id].new_top(); 2735 RegionData* const enqueue_end = 2736 sd.addr_to_region_ptr(sd.region_align_up(new_top)); 2737 2738 for (RegionData* cur = beg; cur < end; ++cur) { 2739 assert(cur->data_size() > 0, "region must have live data"); 2740 cur->decrement_destination_count(); 2741 if (cur < enqueue_end && cur->available() && cur->claim()) { 2742 cm->push_region(sd.region(cur)); 2743 } 2744 } 2745 } 2746 2747 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure, 2748 SpaceId& src_space_id, 2749 HeapWord*& src_space_top, 2750 HeapWord* end_addr) 2751 { 2752 typedef ParallelCompactData::RegionData RegionData; 2753 2754 ParallelCompactData& sd = PSParallelCompact::summary_data(); 2755 const size_t region_size = ParallelCompactData::RegionSize; 2756 2757 size_t src_region_idx = 0; 2758 2759 // Skip empty regions (if any) up to the top of the space. 2760 HeapWord* const src_aligned_up = sd.region_align_up(end_addr); 2761 RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up); 2762 HeapWord* const top_aligned_up = sd.region_align_up(src_space_top); 2763 const RegionData* const top_region_ptr = 2764 sd.addr_to_region_ptr(top_aligned_up); 2765 while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) { 2766 ++src_region_ptr; 2767 } 2768 2769 if (src_region_ptr < top_region_ptr) { 2770 // The next source region is in the current space. Update src_region_idx 2771 // and the source address to match src_region_ptr. 2772 src_region_idx = sd.region(src_region_ptr); 2773 HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx); 2774 if (src_region_addr > closure.source()) { 2775 closure.set_source(src_region_addr); 2776 } 2777 return src_region_idx; 2778 } 2779 2780 // Switch to a new source space and find the first non-empty region. 2781 unsigned int space_id = src_space_id + 1; 2782 assert(space_id < last_space_id, "not enough spaces"); 2783 2784 HeapWord* const destination = closure.destination(); 2785 2786 do { 2787 MutableSpace* space = _space_info[space_id].space(); 2788 HeapWord* const bottom = space->bottom(); 2789 const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom); 2790 2791 // Iterate over the spaces that do not compact into themselves. 2792 if (bottom_cp->destination() != bottom) { 2793 HeapWord* const top_aligned_up = sd.region_align_up(space->top()); 2794 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up); 2795 2796 for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) { 2797 if (src_cp->live_obj_size() > 0) { 2798 // Found it. 2799 assert(src_cp->destination() == destination, 2800 "first live obj in the space must match the destination"); 2801 assert(src_cp->partial_obj_size() == 0, 2802 "a space cannot begin with a partial obj"); 2803 2804 src_space_id = SpaceId(space_id); 2805 src_space_top = space->top(); 2806 const size_t src_region_idx = sd.region(src_cp); 2807 closure.set_source(sd.region_to_addr(src_region_idx)); 2808 return src_region_idx; 2809 } else { 2810 assert(src_cp->data_size() == 0, "sanity"); 2811 } 2812 } 2813 } 2814 } while (++space_id < last_space_id); 2815 2816 assert(false, "no source region was found"); 2817 return 0; 2818 } 2819 2820 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx) 2821 { 2822 typedef ParMarkBitMap::IterationStatus IterationStatus; 2823 const size_t RegionSize = ParallelCompactData::RegionSize; 2824 ParMarkBitMap* const bitmap = mark_bitmap(); 2825 ParallelCompactData& sd = summary_data(); 2826 RegionData* const region_ptr = sd.region(region_idx); 2827 2828 // Get the items needed to construct the closure. 2829 HeapWord* dest_addr = sd.region_to_addr(region_idx); 2830 SpaceId dest_space_id = space_id(dest_addr); 2831 ObjectStartArray* start_array = _space_info[dest_space_id].start_array(); 2832 HeapWord* new_top = _space_info[dest_space_id].new_top(); 2833 assert(dest_addr < new_top, "sanity"); 2834 const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize); 2835 2836 // Get the source region and related info. 2837 size_t src_region_idx = region_ptr->source_region(); 2838 SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx)); 2839 HeapWord* src_space_top = _space_info[src_space_id].space()->top(); 2840 2841 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words); 2842 closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx)); 2843 2844 // Adjust src_region_idx to prepare for decrementing destination counts (the 2845 // destination count is not decremented when a region is copied to itself). 2846 if (src_region_idx == region_idx) { 2847 src_region_idx += 1; 2848 } 2849 2850 if (bitmap->is_unmarked(closure.source())) { 2851 // The first source word is in the middle of an object; copy the remainder 2852 // of the object or as much as will fit. The fact that pointer updates were 2853 // deferred will be noted when the object header is processed. 2854 HeapWord* const old_src_addr = closure.source(); 2855 closure.copy_partial_obj(); 2856 if (closure.is_full()) { 2857 decrement_destination_counts(cm, src_space_id, src_region_idx, 2858 closure.source()); 2859 region_ptr->set_deferred_obj_addr(NULL); 2860 region_ptr->set_completed(); 2861 return; 2862 } 2863 2864 HeapWord* const end_addr = sd.region_align_down(closure.source()); 2865 if (sd.region_align_down(old_src_addr) != end_addr) { 2866 // The partial object was copied from more than one source region. 2867 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr); 2868 2869 // Move to the next source region, possibly switching spaces as well. All 2870 // args except end_addr may be modified. 2871 src_region_idx = next_src_region(closure, src_space_id, src_space_top, 2872 end_addr); 2873 } 2874 } 2875 2876 do { 2877 HeapWord* const cur_addr = closure.source(); 2878 HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1), 2879 src_space_top); 2880 IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr); 2881 2882 if (status == ParMarkBitMap::incomplete) { 2883 // The last obj that starts in the source region does not end in the 2884 // region. 2885 assert(closure.source() < end_addr, "sanity"); 2886 HeapWord* const obj_beg = closure.source(); 2887 HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(), 2888 src_space_top); 2889 HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end); 2890 if (obj_end < range_end) { 2891 // The end was found; the entire object will fit. 2892 status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end)); 2893 assert(status != ParMarkBitMap::would_overflow, "sanity"); 2894 } else { 2895 // The end was not found; the object will not fit. 2896 assert(range_end < src_space_top, "obj cannot cross space boundary"); 2897 status = ParMarkBitMap::would_overflow; 2898 } 2899 } 2900 2901 if (status == ParMarkBitMap::would_overflow) { 2902 // The last object did not fit. Note that interior oop updates were 2903 // deferred, then copy enough of the object to fill the region. 2904 region_ptr->set_deferred_obj_addr(closure.destination()); 2905 status = closure.copy_until_full(); // copies from closure.source() 2906 2907 decrement_destination_counts(cm, src_space_id, src_region_idx, 2908 closure.source()); 2909 region_ptr->set_completed(); 2910 return; 2911 } 2912 2913 if (status == ParMarkBitMap::full) { 2914 decrement_destination_counts(cm, src_space_id, src_region_idx, 2915 closure.source()); 2916 region_ptr->set_deferred_obj_addr(NULL); 2917 region_ptr->set_completed(); 2918 return; 2919 } 2920 2921 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr); 2922 2923 // Move to the next source region, possibly switching spaces as well. All 2924 // args except end_addr may be modified. 2925 src_region_idx = next_src_region(closure, src_space_id, src_space_top, 2926 end_addr); 2927 } while (true); 2928 } 2929 2930 void PSParallelCompact::fill_blocks(size_t region_idx) 2931 { 2932 // Fill in the block table elements for the specified region. Each block 2933 // table element holds the number of live words in the region that are to the 2934 // left of the first object that starts in the block. Thus only blocks in 2935 // which an object starts need to be filled. 2936 // 2937 // The algorithm scans the section of the bitmap that corresponds to the 2938 // region, keeping a running total of the live words. When an object start is 2939 // found, if it's the first to start in the block that contains it, the 2940 // current total is written to the block table element. 2941 const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize; 2942 const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize; 2943 const size_t RegionSize = ParallelCompactData::RegionSize; 2944 2945 ParallelCompactData& sd = summary_data(); 2946 const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size(); 2947 if (partial_obj_size >= RegionSize) { 2948 return; // No objects start in this region. 2949 } 2950 2951 // Ensure the first loop iteration decides that the block has changed. 2952 size_t cur_block = sd.block_count(); 2953 2954 const ParMarkBitMap* const bitmap = mark_bitmap(); 2955 2956 const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment; 2957 assert((size_t)1 << Log2BitsPerBlock == 2958 bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity"); 2959 2960 size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize); 2961 const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize); 2962 size_t live_bits = bitmap->words_to_bits(partial_obj_size); 2963 beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end); 2964 while (beg_bit < range_end) { 2965 const size_t new_block = beg_bit >> Log2BitsPerBlock; 2966 if (new_block != cur_block) { 2967 cur_block = new_block; 2968 sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits)); 2969 } 2970 2971 const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end); 2972 if (end_bit < range_end - 1) { 2973 live_bits += end_bit - beg_bit + 1; 2974 beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end); 2975 } else { 2976 return; 2977 } 2978 } 2979 } 2980 2981 void 2982 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) { 2983 const MutableSpace* sp = space(space_id); 2984 if (sp->is_empty()) { 2985 return; 2986 } 2987 2988 ParallelCompactData& sd = PSParallelCompact::summary_data(); 2989 ParMarkBitMap* const bitmap = mark_bitmap(); 2990 HeapWord* const dp_addr = dense_prefix(space_id); 2991 HeapWord* beg_addr = sp->bottom(); 2992 HeapWord* end_addr = sp->top(); 2993 2994 assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix"); 2995 2996 const size_t beg_region = sd.addr_to_region_idx(beg_addr); 2997 const size_t dp_region = sd.addr_to_region_idx(dp_addr); 2998 if (beg_region < dp_region) { 2999 update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region); 3000 } 3001 3002 // The destination of the first live object that starts in the region is one 3003 // past the end of the partial object entering the region (if any). 3004 HeapWord* const dest_addr = sd.partial_obj_end(dp_region); 3005 HeapWord* const new_top = _space_info[space_id].new_top(); 3006 assert(new_top >= dest_addr, "bad new_top value"); 3007 const size_t words = pointer_delta(new_top, dest_addr); 3008 3009 if (words > 0) { 3010 ObjectStartArray* start_array = _space_info[space_id].start_array(); 3011 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words); 3012 3013 ParMarkBitMap::IterationStatus status; 3014 status = bitmap->iterate(&closure, dest_addr, end_addr); 3015 assert(status == ParMarkBitMap::full, "iteration not complete"); 3016 assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr, 3017 "live objects skipped because closure is full"); 3018 } 3019 } 3020 3021 jlong PSParallelCompact::millis_since_last_gc() { 3022 // We need a monotonically non-decreasing time in ms but 3023 // os::javaTimeMillis() does not guarantee monotonicity. 3024 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; 3025 jlong ret_val = now - _time_of_last_gc; 3026 // XXX See note in genCollectedHeap::millis_since_last_gc(). 3027 if (ret_val < 0) { 3028 NOT_PRODUCT(warning("time warp: " JLONG_FORMAT, ret_val);) 3029 return 0; 3030 } 3031 return ret_val; 3032 } 3033 3034 void PSParallelCompact::reset_millis_since_last_gc() { 3035 // We need a monotonically non-decreasing time in ms but 3036 // os::javaTimeMillis() does not guarantee monotonicity. 3037 _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; 3038 } 3039 3040 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full() 3041 { 3042 if (source() != destination()) { 3043 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) 3044 Copy::aligned_conjoint_words(source(), destination(), words_remaining()); 3045 } 3046 update_state(words_remaining()); 3047 assert(is_full(), "sanity"); 3048 return ParMarkBitMap::full; 3049 } 3050 3051 void MoveAndUpdateClosure::copy_partial_obj() 3052 { 3053 size_t words = words_remaining(); 3054 3055 HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end()); 3056 HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end); 3057 if (end_addr < range_end) { 3058 words = bitmap()->obj_size(source(), end_addr); 3059 } 3060 3061 // This test is necessary; if omitted, the pointer updates to a partial object 3062 // that crosses the dense prefix boundary could be overwritten. 3063 if (source() != destination()) { 3064 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) 3065 Copy::aligned_conjoint_words(source(), destination(), words); 3066 } 3067 update_state(words); 3068 } 3069 3070 void InstanceKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) { 3071 PSParallelCompact::AdjustPointerClosure closure(cm); 3072 oop_oop_iterate_oop_maps<true>(obj, &closure); 3073 } 3074 3075 void InstanceMirrorKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) { 3076 InstanceKlass::oop_pc_update_pointers(obj, cm); 3077 3078 PSParallelCompact::AdjustPointerClosure closure(cm); 3079 oop_oop_iterate_statics<true>(obj, &closure); 3080 } 3081 3082 void InstanceClassLoaderKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) { 3083 InstanceKlass::oop_pc_update_pointers(obj, cm); 3084 } 3085 3086 #ifdef ASSERT 3087 template <class T> static void trace_reference_gc(const char *s, oop obj, 3088 T* referent_addr, 3089 T* next_addr, 3090 T* discovered_addr) { 3091 log_develop_trace(gc, ref)("%s obj " PTR_FORMAT, s, p2i(obj)); 3092 log_develop_trace(gc, ref)(" referent_addr/* " PTR_FORMAT " / " PTR_FORMAT, 3093 p2i(referent_addr), referent_addr ? p2i(oopDesc::load_decode_heap_oop(referent_addr)) : NULL); 3094 log_develop_trace(gc, ref)(" next_addr/* " PTR_FORMAT " / " PTR_FORMAT, 3095 p2i(next_addr), next_addr ? p2i(oopDesc::load_decode_heap_oop(next_addr)) : NULL); 3096 log_develop_trace(gc, ref)(" discovered_addr/* " PTR_FORMAT " / " PTR_FORMAT, 3097 p2i(discovered_addr), discovered_addr ? p2i(oopDesc::load_decode_heap_oop(discovered_addr)) : NULL); 3098 } 3099 #endif 3100 3101 template <class T> 3102 static void oop_pc_update_pointers_specialized(oop obj, ParCompactionManager* cm) { 3103 T* referent_addr = (T*)java_lang_ref_Reference::referent_addr(obj); 3104 PSParallelCompact::adjust_pointer(referent_addr, cm); 3105 T* next_addr = (T*)java_lang_ref_Reference::next_addr(obj); 3106 PSParallelCompact::adjust_pointer(next_addr, cm); 3107 T* discovered_addr = (T*)java_lang_ref_Reference::discovered_addr(obj); 3108 PSParallelCompact::adjust_pointer(discovered_addr, cm); 3109 debug_only(trace_reference_gc("InstanceRefKlass::oop_update_ptrs", obj, 3110 referent_addr, next_addr, discovered_addr);) 3111 } 3112 3113 void InstanceRefKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) { 3114 InstanceKlass::oop_pc_update_pointers(obj, cm); 3115 3116 if (UseCompressedOops) { 3117 oop_pc_update_pointers_specialized<narrowOop>(obj, cm); 3118 } else { 3119 oop_pc_update_pointers_specialized<oop>(obj, cm); 3120 } 3121 } 3122 3123 void ObjArrayKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) { 3124 assert(obj->is_objArray(), "obj must be obj array"); 3125 PSParallelCompact::AdjustPointerClosure closure(cm); 3126 oop_oop_iterate_elements<true>(objArrayOop(obj), &closure); 3127 } 3128 3129 void TypeArrayKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) { 3130 assert(obj->is_typeArray(),"must be a type array"); 3131 } 3132 3133 void ValueArrayKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) { 3134 assert(obj->is_valueArray(),"must be a value array"); 3135 if (contains_oops()) { 3136 PSParallelCompact::AdjustPointerClosure closure(cm); 3137 oop_oop_iterate_elements<true>(valueArrayOop(obj), &closure); 3138 } 3139 } 3140 3141 ParMarkBitMapClosure::IterationStatus 3142 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) { 3143 assert(destination() != NULL, "sanity"); 3144 assert(bitmap()->obj_size(addr) == words, "bad size"); 3145 3146 _source = addr; 3147 assert(PSParallelCompact::summary_data().calc_new_pointer(source(), compaction_manager()) == 3148 destination(), "wrong destination"); 3149 3150 if (words > words_remaining()) { 3151 return ParMarkBitMap::would_overflow; 3152 } 3153 3154 // The start_array must be updated even if the object is not moving. 3155 if (_start_array != NULL) { 3156 _start_array->allocate_block(destination()); 3157 } 3158 3159 if (destination() != source()) { 3160 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) 3161 Copy::aligned_conjoint_words(source(), destination(), words); 3162 } 3163 3164 oop moved_oop = (oop) destination(); 3165 compaction_manager()->update_contents(moved_oop); 3166 assert(moved_oop->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop)); 3167 3168 update_state(words); 3169 assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity"); 3170 return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete; 3171 } 3172 3173 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm, 3174 ParCompactionManager* cm, 3175 PSParallelCompact::SpaceId space_id) : 3176 ParMarkBitMapClosure(mbm, cm), 3177 _space_id(space_id), 3178 _start_array(PSParallelCompact::start_array(space_id)) 3179 { 3180 } 3181 3182 // Updates the references in the object to their new values. 3183 ParMarkBitMapClosure::IterationStatus 3184 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) { 3185 do_addr(addr); 3186 return ParMarkBitMap::incomplete; 3187 } 3188 3189 ParMarkBitMapClosure::IterationStatus 3190 FillClosure::do_addr(HeapWord* addr, size_t size) { 3191 CollectedHeap::fill_with_objects(addr, size); 3192 HeapWord* const end = addr + size; 3193 do { 3194 _start_array->allocate_block(addr); 3195 addr += oop(addr)->size(); 3196 } while (addr < end); 3197 return ParMarkBitMap::incomplete; 3198 }