1 /* 2 * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "interpreter/bytecodeHistogram.hpp" 28 #include "interpreter/interp_masm.hpp" 29 #include "interpreter/interpreter.hpp" 30 #include "interpreter/interpreterRuntime.hpp" 31 #include "interpreter/templateInterpreterGenerator.hpp" 32 #include "interpreter/templateTable.hpp" 33 #include "oops/arrayOop.hpp" 34 #include "oops/methodData.hpp" 35 #include "oops/method.hpp" 36 #include "oops/oop.inline.hpp" 37 #include "oops/valueKlass.hpp" 38 #include "prims/jvmtiExport.hpp" 39 #include "prims/jvmtiThreadState.hpp" 40 #include "runtime/arguments.hpp" 41 #include "runtime/deoptimization.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "runtime/stubRoutines.hpp" 45 #include "runtime/synchronizer.hpp" 46 #include "runtime/timer.hpp" 47 #include "runtime/vframeArray.hpp" 48 #include "utilities/debug.hpp" 49 #include "utilities/macros.hpp" 50 51 #define __ _masm-> 52 53 // Size of interpreter code. Increase if too small. Interpreter will 54 // fail with a guarantee ("not enough space for interpreter generation"); 55 // if too small. 56 // Run with +PrintInterpreter to get the VM to print out the size. 57 // Max size with JVMTI 58 #ifdef AMD64 59 int TemplateInterpreter::InterpreterCodeSize = JVMCI_ONLY(280) NOT_JVMCI(268) * 1024; 60 #else 61 int TemplateInterpreter::InterpreterCodeSize = 224 * 1024; 62 #endif // AMD64 63 64 // Global Register Names 65 static const Register rbcp = LP64_ONLY(r13) NOT_LP64(rsi); 66 static const Register rlocals = LP64_ONLY(r14) NOT_LP64(rdi); 67 68 const int method_offset = frame::interpreter_frame_method_offset * wordSize; 69 const int bcp_offset = frame::interpreter_frame_bcp_offset * wordSize; 70 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize; 71 72 73 //----------------------------------------------------------------------------- 74 75 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { 76 address entry = __ pc(); 77 78 #ifdef ASSERT 79 { 80 Label L; 81 __ lea(rax, Address(rbp, 82 frame::interpreter_frame_monitor_block_top_offset * 83 wordSize)); 84 __ cmpptr(rax, rsp); // rax = maximal rsp for current rbp (stack 85 // grows negative) 86 __ jcc(Assembler::aboveEqual, L); // check if frame is complete 87 __ stop ("interpreter frame not set up"); 88 __ bind(L); 89 } 90 #endif // ASSERT 91 // Restore bcp under the assumption that the current frame is still 92 // interpreted 93 __ restore_bcp(); 94 95 // expression stack must be empty before entering the VM if an 96 // exception happened 97 __ empty_expression_stack(); 98 // throw exception 99 __ call_VM(noreg, 100 CAST_FROM_FN_PTR(address, 101 InterpreterRuntime::throw_StackOverflowError)); 102 return entry; 103 } 104 105 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler( 106 const char* name) { 107 address entry = __ pc(); 108 // expression stack must be empty before entering the VM if an 109 // exception happened 110 __ empty_expression_stack(); 111 // setup parameters 112 // ??? convention: expect aberrant index in register ebx 113 Register rarg = NOT_LP64(rax) LP64_ONLY(c_rarg1); 114 __ lea(rarg, ExternalAddress((address)name)); 115 __ call_VM(noreg, 116 CAST_FROM_FN_PTR(address, 117 InterpreterRuntime:: 118 throw_ArrayIndexOutOfBoundsException), 119 rarg, rbx); 120 return entry; 121 } 122 123 address TemplateInterpreterGenerator::generate_ClassCastException_handler() { 124 address entry = __ pc(); 125 126 // object is at TOS 127 Register rarg = NOT_LP64(rax) LP64_ONLY(c_rarg1); 128 __ pop(rarg); 129 130 // expression stack must be empty before entering the VM if an 131 // exception happened 132 __ empty_expression_stack(); 133 134 __ call_VM(noreg, 135 CAST_FROM_FN_PTR(address, 136 InterpreterRuntime:: 137 throw_ClassCastException), 138 rarg); 139 return entry; 140 } 141 142 address TemplateInterpreterGenerator::generate_exception_handler_common( 143 const char* name, const char* message, bool pass_oop) { 144 assert(!pass_oop || message == NULL, "either oop or message but not both"); 145 address entry = __ pc(); 146 147 Register rarg = NOT_LP64(rax) LP64_ONLY(c_rarg1); 148 Register rarg2 = NOT_LP64(rbx) LP64_ONLY(c_rarg2); 149 150 if (pass_oop) { 151 // object is at TOS 152 __ pop(rarg2); 153 } 154 // expression stack must be empty before entering the VM if an 155 // exception happened 156 __ empty_expression_stack(); 157 // setup parameters 158 __ lea(rarg, ExternalAddress((address)name)); 159 if (pass_oop) { 160 __ call_VM(rax, CAST_FROM_FN_PTR(address, 161 InterpreterRuntime:: 162 create_klass_exception), 163 rarg, rarg2); 164 } else { 165 __ lea(rarg2, ExternalAddress((address)message)); 166 __ call_VM(rax, 167 CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), 168 rarg, rarg2); 169 } 170 // throw exception 171 __ jump(ExternalAddress(Interpreter::throw_exception_entry())); 172 return entry; 173 } 174 175 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) { 176 address entry = __ pc(); 177 178 #ifndef _LP64 179 #ifdef COMPILER2 180 // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases 181 if ((state == ftos && UseSSE < 1) || (state == dtos && UseSSE < 2)) { 182 for (int i = 1; i < 8; i++) { 183 __ ffree(i); 184 } 185 } else if (UseSSE < 2) { 186 __ empty_FPU_stack(); 187 } 188 #endif // COMPILER2 189 if ((state == ftos && UseSSE < 1) || (state == dtos && UseSSE < 2)) { 190 __ MacroAssembler::verify_FPU(1, "generate_return_entry_for compiled"); 191 } else { 192 __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled"); 193 } 194 195 if (state == ftos) { 196 __ MacroAssembler::verify_FPU(UseSSE >= 1 ? 0 : 1, "generate_return_entry_for in interpreter"); 197 } else if (state == dtos) { 198 __ MacroAssembler::verify_FPU(UseSSE >= 2 ? 0 : 1, "generate_return_entry_for in interpreter"); 199 } 200 #endif // _LP64 201 202 // Restore stack bottom in case i2c adjusted stack 203 __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize)); 204 // and NULL it as marker that esp is now tos until next java call 205 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); 206 207 if (/*state == qtos*/ false && ValueTypeReturnedAsFields) { 208 #ifndef _LP64 209 __ super_call_VM_leaf(StubRoutines::store_value_type_fields_to_buf()); 210 #else 211 // A value type is being returned. If fields are in registers we 212 // need to allocate a value type instance and initialize it with 213 // the value of the fields. 214 Label skip, slow_case; 215 // We only need a new buffered value if a new one is not returned 216 __ testptr(rax, 1); 217 __ jcc(Assembler::zero, skip); 218 219 // Try to allocate a new buffered value (from the heap) 220 if (UseTLAB) { 221 __ mov(rbx, rax); 222 __ andptr(rbx, -2); 223 224 __ movl(r14, Address(rbx, Klass::layout_helper_offset())); 225 226 __ movptr(r13, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset()))); 227 __ lea(r14, Address(r13, r14, Address::times_1)); 228 __ cmpptr(r14, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset()))); 229 __ jcc(Assembler::above, slow_case); 230 __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), r14); 231 232 if (UseBiasedLocking) { 233 __ movptr(rax, Address(rbx, Klass::prototype_header_offset())); 234 __ movptr(Address(r13, oopDesc::mark_offset_in_bytes ()), rax); 235 } else { 236 __ movptr(Address(r13, oopDesc::mark_offset_in_bytes ()), 237 (intptr_t)markOopDesc::prototype()); 238 } 239 __ xorl(rax, rax); // use zero reg to clear memory (shorter code) 240 __ store_klass_gap(r13, rax); // zero klass gap for compressed oops 241 __ mov(rax, rbx); 242 __ store_klass(r13, rbx); // klass 243 244 // We have our new buffered value, initialize its fields with a 245 // value class specific handler 246 __ movptr(rbx, Address(rax, ValueKlass::pack_handler_offset())); 247 __ mov(rax, r13); 248 __ call(rbx); 249 __ jmp(skip); 250 } 251 252 __ bind(slow_case); 253 // We failed to allocate a new value, fall back to a runtime 254 // call. Some oop field may be live in some registers but we can't 255 // tell. That runtime call will take care of preserving them 256 // across a GC if there's one. 257 __ super_call_VM_leaf(StubRoutines::store_value_type_fields_to_buf()); 258 __ bind(skip); 259 #endif 260 } 261 262 __ restore_bcp(); 263 __ restore_locals(); 264 265 if (state == atos) { 266 Register mdp = rbx; 267 Register tmp = rcx; 268 __ profile_return_type(mdp, rax, tmp); 269 } 270 271 const Register cache = rbx; 272 const Register index = rcx; 273 __ get_cache_and_index_at_bcp(cache, index, 1, index_size); 274 275 const Register flags = cache; 276 __ movl(flags, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset())); 277 __ andl(flags, ConstantPoolCacheEntry::parameter_size_mask); 278 __ lea(rsp, Address(rsp, flags, Interpreter::stackElementScale())); 279 280 const Register java_thread = NOT_LP64(rcx) LP64_ONLY(r15_thread); 281 if (JvmtiExport::can_pop_frame()) { 282 NOT_LP64(__ get_thread(java_thread)); 283 __ check_and_handle_popframe(java_thread); 284 } 285 if (JvmtiExport::can_force_early_return()) { 286 NOT_LP64(__ get_thread(java_thread)); 287 __ check_and_handle_earlyret(java_thread); 288 } 289 290 __ dispatch_next(state, step); 291 292 return entry; 293 } 294 295 296 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step, address continuation) { 297 address entry = __ pc(); 298 299 #ifndef _LP64 300 if (state == ftos) { 301 __ MacroAssembler::verify_FPU(UseSSE >= 1 ? 0 : 1, "generate_deopt_entry_for in interpreter"); 302 } else if (state == dtos) { 303 __ MacroAssembler::verify_FPU(UseSSE >= 2 ? 0 : 1, "generate_deopt_entry_for in interpreter"); 304 } 305 #endif // _LP64 306 307 // NULL last_sp until next java call 308 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); 309 __ restore_bcp(); 310 __ restore_locals(); 311 const Register thread = NOT_LP64(rcx) LP64_ONLY(r15_thread); 312 NOT_LP64(__ get_thread(thread)); 313 #if INCLUDE_JVMCI 314 // Check if we need to take lock at entry of synchronized method. This can 315 // only occur on method entry so emit it only for vtos with step 0. 316 if ((EnableJVMCI || UseAOT) && state == vtos && step == 0) { 317 Label L; 318 __ cmpb(Address(thread, JavaThread::pending_monitorenter_offset()), 0); 319 __ jcc(Assembler::zero, L); 320 // Clear flag. 321 __ movb(Address(thread, JavaThread::pending_monitorenter_offset()), 0); 322 // Satisfy calling convention for lock_method(). 323 __ get_method(rbx); 324 // Take lock. 325 lock_method(); 326 __ bind(L); 327 } else { 328 #ifdef ASSERT 329 if (EnableJVMCI) { 330 Label L; 331 __ cmpb(Address(r15_thread, JavaThread::pending_monitorenter_offset()), 0); 332 __ jccb(Assembler::zero, L); 333 __ stop("unexpected pending monitor in deopt entry"); 334 __ bind(L); 335 } 336 #endif 337 } 338 #endif 339 // handle exceptions 340 { 341 Label L; 342 __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD); 343 __ jcc(Assembler::zero, L); 344 __ call_VM(noreg, 345 CAST_FROM_FN_PTR(address, 346 InterpreterRuntime::throw_pending_exception)); 347 __ should_not_reach_here(); 348 __ bind(L); 349 } 350 if (continuation == NULL) { 351 __ dispatch_next(state, step); 352 } else { 353 __ jump_to_entry(continuation); 354 } 355 return entry; 356 } 357 358 address TemplateInterpreterGenerator::generate_result_handler_for( 359 BasicType type) { 360 address entry = __ pc(); 361 switch (type) { 362 case T_BOOLEAN: __ c2bool(rax); break; 363 #ifndef _LP64 364 case T_CHAR : __ andptr(rax, 0xFFFF); break; 365 #else 366 case T_CHAR : __ movzwl(rax, rax); break; 367 #endif // _LP64 368 case T_BYTE : __ sign_extend_byte(rax); break; 369 case T_SHORT : __ sign_extend_short(rax); break; 370 case T_INT : /* nothing to do */ break; 371 case T_LONG : /* nothing to do */ break; 372 case T_VOID : /* nothing to do */ break; 373 #ifndef _LP64 374 case T_DOUBLE : 375 case T_FLOAT : 376 { const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp(); 377 __ pop(t); // remove return address first 378 // Must return a result for interpreter or compiler. In SSE 379 // mode, results are returned in xmm0 and the FPU stack must 380 // be empty. 381 if (type == T_FLOAT && UseSSE >= 1) { 382 // Load ST0 383 __ fld_d(Address(rsp, 0)); 384 // Store as float and empty fpu stack 385 __ fstp_s(Address(rsp, 0)); 386 // and reload 387 __ movflt(xmm0, Address(rsp, 0)); 388 } else if (type == T_DOUBLE && UseSSE >= 2 ) { 389 __ movdbl(xmm0, Address(rsp, 0)); 390 } else { 391 // restore ST0 392 __ fld_d(Address(rsp, 0)); 393 } 394 // and pop the temp 395 __ addptr(rsp, 2 * wordSize); 396 __ push(t); // restore return address 397 } 398 break; 399 #else 400 case T_FLOAT : /* nothing to do */ break; 401 case T_DOUBLE : /* nothing to do */ break; 402 #endif // _LP64 403 404 case T_VALUETYPE: // fall through (value types are handled with oops) 405 case T_OBJECT : 406 // retrieve result from frame 407 __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize)); 408 // and verify it 409 __ verify_oop(rax); 410 break; 411 default : ShouldNotReachHere(); 412 } 413 __ ret(0); // return from result handler 414 return entry; 415 } 416 417 address TemplateInterpreterGenerator::generate_safept_entry_for( 418 TosState state, 419 address runtime_entry) { 420 address entry = __ pc(); 421 __ push(state); 422 __ call_VM(noreg, runtime_entry); 423 __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos)); 424 return entry; 425 } 426 427 428 429 // Helpers for commoning out cases in the various type of method entries. 430 // 431 432 433 // increment invocation count & check for overflow 434 // 435 // Note: checking for negative value instead of overflow 436 // so we have a 'sticky' overflow test 437 // 438 // rbx: method 439 // rcx: invocation counter 440 // 441 void TemplateInterpreterGenerator::generate_counter_incr( 442 Label* overflow, 443 Label* profile_method, 444 Label* profile_method_continue) { 445 Label done; 446 // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not. 447 if (TieredCompilation) { 448 int increment = InvocationCounter::count_increment; 449 Label no_mdo; 450 if (ProfileInterpreter) { 451 // Are we profiling? 452 __ movptr(rax, Address(rbx, Method::method_data_offset())); 453 __ testptr(rax, rax); 454 __ jccb(Assembler::zero, no_mdo); 455 // Increment counter in the MDO 456 const Address mdo_invocation_counter(rax, in_bytes(MethodData::invocation_counter_offset()) + 457 in_bytes(InvocationCounter::counter_offset())); 458 const Address mask(rax, in_bytes(MethodData::invoke_mask_offset())); 459 __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow); 460 __ jmp(done); 461 } 462 __ bind(no_mdo); 463 // Increment counter in MethodCounters 464 const Address invocation_counter(rax, 465 MethodCounters::invocation_counter_offset() + 466 InvocationCounter::counter_offset()); 467 __ get_method_counters(rbx, rax, done); 468 const Address mask(rax, in_bytes(MethodCounters::invoke_mask_offset())); 469 __ increment_mask_and_jump(invocation_counter, increment, mask, rcx, 470 false, Assembler::zero, overflow); 471 __ bind(done); 472 } else { // not TieredCompilation 473 const Address backedge_counter(rax, 474 MethodCounters::backedge_counter_offset() + 475 InvocationCounter::counter_offset()); 476 const Address invocation_counter(rax, 477 MethodCounters::invocation_counter_offset() + 478 InvocationCounter::counter_offset()); 479 480 __ get_method_counters(rbx, rax, done); 481 482 if (ProfileInterpreter) { 483 __ incrementl(Address(rax, 484 MethodCounters::interpreter_invocation_counter_offset())); 485 } 486 // Update standard invocation counters 487 __ movl(rcx, invocation_counter); 488 __ incrementl(rcx, InvocationCounter::count_increment); 489 __ movl(invocation_counter, rcx); // save invocation count 490 491 __ movl(rax, backedge_counter); // load backedge counter 492 __ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits 493 494 __ addl(rcx, rax); // add both counters 495 496 // profile_method is non-null only for interpreted method so 497 // profile_method != NULL == !native_call 498 499 if (ProfileInterpreter && profile_method != NULL) { 500 // Test to see if we should create a method data oop 501 __ movptr(rax, Address(rbx, Method::method_counters_offset())); 502 __ cmp32(rcx, Address(rax, in_bytes(MethodCounters::interpreter_profile_limit_offset()))); 503 __ jcc(Assembler::less, *profile_method_continue); 504 505 // if no method data exists, go to profile_method 506 __ test_method_data_pointer(rax, *profile_method); 507 } 508 509 __ movptr(rax, Address(rbx, Method::method_counters_offset())); 510 __ cmp32(rcx, Address(rax, in_bytes(MethodCounters::interpreter_invocation_limit_offset()))); 511 __ jcc(Assembler::aboveEqual, *overflow); 512 __ bind(done); 513 } 514 } 515 516 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) { 517 518 // Asm interpreter on entry 519 // r14/rdi - locals 520 // r13/rsi - bcp 521 // rbx - method 522 // rdx - cpool --- DOES NOT APPEAR TO BE TRUE 523 // rbp - interpreter frame 524 525 // On return (i.e. jump to entry_point) [ back to invocation of interpreter ] 526 // Everything as it was on entry 527 // rdx is not restored. Doesn't appear to really be set. 528 529 // InterpreterRuntime::frequency_counter_overflow takes two 530 // arguments, the first (thread) is passed by call_VM, the second 531 // indicates if the counter overflow occurs at a backwards branch 532 // (NULL bcp). We pass zero for it. The call returns the address 533 // of the verified entry point for the method or NULL if the 534 // compilation did not complete (either went background or bailed 535 // out). 536 Register rarg = NOT_LP64(rax) LP64_ONLY(c_rarg1); 537 __ movl(rarg, 0); 538 __ call_VM(noreg, 539 CAST_FROM_FN_PTR(address, 540 InterpreterRuntime::frequency_counter_overflow), 541 rarg); 542 543 __ movptr(rbx, Address(rbp, method_offset)); // restore Method* 544 // Preserve invariant that r13/r14 contain bcp/locals of sender frame 545 // and jump to the interpreted entry. 546 __ jmp(do_continue, relocInfo::none); 547 } 548 549 // See if we've got enough room on the stack for locals plus overhead below 550 // JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError 551 // without going through the signal handler, i.e., reserved and yellow zones 552 // will not be made usable. The shadow zone must suffice to handle the 553 // overflow. 554 // The expression stack grows down incrementally, so the normal guard 555 // page mechanism will work for that. 556 // 557 // NOTE: Since the additional locals are also always pushed (wasn't 558 // obvious in generate_fixed_frame) so the guard should work for them 559 // too. 560 // 561 // Args: 562 // rdx: number of additional locals this frame needs (what we must check) 563 // rbx: Method* 564 // 565 // Kills: 566 // rax 567 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) { 568 569 // monitor entry size: see picture of stack in frame_x86.hpp 570 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 571 572 // total overhead size: entry_size + (saved rbp through expr stack 573 // bottom). be sure to change this if you add/subtract anything 574 // to/from the overhead area 575 const int overhead_size = 576 -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size; 577 578 const int page_size = os::vm_page_size(); 579 580 Label after_frame_check; 581 582 // see if the frame is greater than one page in size. If so, 583 // then we need to verify there is enough stack space remaining 584 // for the additional locals. 585 __ cmpl(rdx, (page_size - overhead_size) / Interpreter::stackElementSize); 586 __ jcc(Assembler::belowEqual, after_frame_check); 587 588 // compute rsp as if this were going to be the last frame on 589 // the stack before the red zone 590 591 Label after_frame_check_pop; 592 const Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread); 593 #ifndef _LP64 594 __ push(thread); 595 __ get_thread(thread); 596 #endif 597 598 const Address stack_limit(thread, JavaThread::stack_overflow_limit_offset()); 599 600 // locals + overhead, in bytes 601 __ mov(rax, rdx); 602 __ shlptr(rax, Interpreter::logStackElementSize); // Convert parameter count to bytes. 603 __ addptr(rax, overhead_size); 604 605 #ifdef ASSERT 606 Label limit_okay; 607 // Verify that thread stack overflow limit is non-zero. 608 __ cmpptr(stack_limit, (int32_t)NULL_WORD); 609 __ jcc(Assembler::notEqual, limit_okay); 610 __ stop("stack overflow limit is zero"); 611 __ bind(limit_okay); 612 #endif 613 614 // Add locals/frame size to stack limit. 615 __ addptr(rax, stack_limit); 616 617 // Check against the current stack bottom. 618 __ cmpptr(rsp, rax); 619 620 __ jcc(Assembler::above, after_frame_check_pop); 621 NOT_LP64(__ pop(rsi)); // get saved bcp 622 623 // Restore sender's sp as SP. This is necessary if the sender's 624 // frame is an extended compiled frame (see gen_c2i_adapter()) 625 // and safer anyway in case of JSR292 adaptations. 626 627 __ pop(rax); // return address must be moved if SP is changed 628 __ mov(rsp, rbcp); 629 __ push(rax); 630 631 // Note: the restored frame is not necessarily interpreted. 632 // Use the shared runtime version of the StackOverflowError. 633 assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated"); 634 __ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry())); 635 // all done with frame size check 636 __ bind(after_frame_check_pop); 637 NOT_LP64(__ pop(rsi)); 638 639 // all done with frame size check 640 __ bind(after_frame_check); 641 } 642 643 // Allocate monitor and lock method (asm interpreter) 644 // 645 // Args: 646 // rbx: Method* 647 // r14/rdi: locals 648 // 649 // Kills: 650 // rax 651 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs) 652 // rscratch1, rscratch2 (scratch regs) 653 void TemplateInterpreterGenerator::lock_method() { 654 // synchronize method 655 const Address access_flags(rbx, Method::access_flags_offset()); 656 const Address monitor_block_top( 657 rbp, 658 frame::interpreter_frame_monitor_block_top_offset * wordSize); 659 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 660 661 #ifdef ASSERT 662 { 663 Label L; 664 __ movl(rax, access_flags); 665 __ testl(rax, JVM_ACC_SYNCHRONIZED); 666 __ jcc(Assembler::notZero, L); 667 __ stop("method doesn't need synchronization"); 668 __ bind(L); 669 } 670 #endif // ASSERT 671 672 // get synchronization object 673 { 674 Label done; 675 __ movl(rax, access_flags); 676 __ testl(rax, JVM_ACC_STATIC); 677 // get receiver (assume this is frequent case) 678 __ movptr(rax, Address(rlocals, Interpreter::local_offset_in_bytes(0))); 679 __ jcc(Assembler::zero, done); 680 __ load_mirror(rax, rbx); 681 682 #ifdef ASSERT 683 { 684 Label L; 685 __ testptr(rax, rax); 686 __ jcc(Assembler::notZero, L); 687 __ stop("synchronization object is NULL"); 688 __ bind(L); 689 } 690 #endif // ASSERT 691 692 __ bind(done); 693 } 694 695 // add space for monitor & lock 696 __ subptr(rsp, entry_size); // add space for a monitor entry 697 __ movptr(monitor_block_top, rsp); // set new monitor block top 698 // store object 699 __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); 700 const Register lockreg = NOT_LP64(rdx) LP64_ONLY(c_rarg1); 701 __ movptr(lockreg, rsp); // object address 702 __ lock_object(lockreg); 703 } 704 705 // Generate a fixed interpreter frame. This is identical setup for 706 // interpreted methods and for native methods hence the shared code. 707 // 708 // Args: 709 // rax: return address 710 // rbx: Method* 711 // r14/rdi: pointer to locals 712 // r13/rsi: sender sp 713 // rdx: cp cache 714 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) { 715 // initialize fixed part of activation frame 716 __ push(rax); // save return address 717 __ enter(); // save old & set new rbp 718 __ push(rbcp); // set sender sp 719 __ push((int)NULL_WORD); // leave last_sp as null 720 __ movptr(rbcp, Address(rbx, Method::const_offset())); // get ConstMethod* 721 __ lea(rbcp, Address(rbcp, ConstMethod::codes_offset())); // get codebase 722 __ push(rbx); // save Method* 723 // Get mirror and store it in the frame as GC root for this Method* 724 __ load_mirror(rdx, rbx); 725 __ push(rdx); 726 if (ProfileInterpreter) { 727 Label method_data_continue; 728 __ movptr(rdx, Address(rbx, in_bytes(Method::method_data_offset()))); 729 __ testptr(rdx, rdx); 730 __ jcc(Assembler::zero, method_data_continue); 731 __ addptr(rdx, in_bytes(MethodData::data_offset())); 732 __ bind(method_data_continue); 733 __ push(rdx); // set the mdp (method data pointer) 734 } else { 735 __ push(0); 736 } 737 738 __ movptr(rdx, Address(rbx, Method::const_offset())); 739 __ movptr(rdx, Address(rdx, ConstMethod::constants_offset())); 740 __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes())); 741 __ push(rdx); // set constant pool cache 742 const Register thread1 = NOT_LP64(rdx) LP64_ONLY(r15_thread); 743 NOT_LP64(__ get_thread(thread1)); 744 __ movptr(rdx, Address(thread1, JavaThread::vt_alloc_ptr_offset())); 745 __ push(rdx); // value type allocation pointer when activation is created 746 __ push(rlocals); // set locals pointer 747 if (native_call) { 748 __ push(0); // no bcp 749 } else { 750 __ push(rbcp); // set bcp 751 } 752 __ push(0); // reserve word for pointer to expression stack bottom 753 __ movptr(Address(rsp, 0), rsp); // set expression stack bottom 754 } 755 756 // End of helpers 757 758 // Method entry for java.lang.ref.Reference.get. 759 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) { 760 #if INCLUDE_ALL_GCS 761 // Code: _aload_0, _getfield, _areturn 762 // parameter size = 1 763 // 764 // The code that gets generated by this routine is split into 2 parts: 765 // 1. The "intrinsified" code for G1 (or any SATB based GC), 766 // 2. The slow path - which is an expansion of the regular method entry. 767 // 768 // Notes:- 769 // * In the G1 code we do not check whether we need to block for 770 // a safepoint. If G1 is enabled then we must execute the specialized 771 // code for Reference.get (except when the Reference object is null) 772 // so that we can log the value in the referent field with an SATB 773 // update buffer. 774 // If the code for the getfield template is modified so that the 775 // G1 pre-barrier code is executed when the current method is 776 // Reference.get() then going through the normal method entry 777 // will be fine. 778 // * The G1 code can, however, check the receiver object (the instance 779 // of java.lang.Reference) and jump to the slow path if null. If the 780 // Reference object is null then we obviously cannot fetch the referent 781 // and so we don't need to call the G1 pre-barrier. Thus we can use the 782 // regular method entry code to generate the NPE. 783 // 784 // rbx: Method* 785 786 // r13: senderSP must preserve for slow path, set SP to it on fast path 787 788 address entry = __ pc(); 789 790 const int referent_offset = java_lang_ref_Reference::referent_offset; 791 guarantee(referent_offset > 0, "referent offset not initialized"); 792 793 if (UseG1GC) { 794 Label slow_path; 795 // rbx: method 796 797 // Check if local 0 != NULL 798 // If the receiver is null then it is OK to jump to the slow path. 799 __ movptr(rax, Address(rsp, wordSize)); 800 801 __ testptr(rax, rax); 802 __ jcc(Assembler::zero, slow_path); 803 804 // rax: local 0 805 // rbx: method (but can be used as scratch now) 806 // rdx: scratch 807 // rdi: scratch 808 809 // Preserve the sender sp in case the pre-barrier 810 // calls the runtime 811 NOT_LP64(__ push(rsi)); 812 813 // Generate the G1 pre-barrier code to log the value of 814 // the referent field in an SATB buffer. 815 816 // Load the value of the referent field. 817 const Address field_address(rax, referent_offset); 818 __ load_heap_oop(rax, field_address); 819 820 const Register sender_sp = NOT_LP64(rsi) LP64_ONLY(r13); 821 const Register thread = NOT_LP64(rcx) LP64_ONLY(r15_thread); 822 NOT_LP64(__ get_thread(thread)); 823 824 // Generate the G1 pre-barrier code to log the value of 825 // the referent field in an SATB buffer. 826 __ g1_write_barrier_pre(noreg /* obj */, 827 rax /* pre_val */, 828 thread /* thread */, 829 rbx /* tmp */, 830 true /* tosca_live */, 831 true /* expand_call */); 832 833 // _areturn 834 NOT_LP64(__ pop(rsi)); // get sender sp 835 __ pop(rdi); // get return address 836 __ mov(rsp, sender_sp); // set sp to sender sp 837 __ jmp(rdi); 838 __ ret(0); 839 840 // generate a vanilla interpreter entry as the slow path 841 __ bind(slow_path); 842 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals)); 843 return entry; 844 } 845 #endif // INCLUDE_ALL_GCS 846 847 // If G1 is not enabled then attempt to go through the accessor entry point 848 // Reference.get is an accessor 849 return NULL; 850 } 851 852 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) { 853 // Quick & dirty stack overflow checking: bang the stack & handle trap. 854 // Note that we do the banging after the frame is setup, since the exception 855 // handling code expects to find a valid interpreter frame on the stack. 856 // Doing the banging earlier fails if the caller frame is not an interpreter 857 // frame. 858 // (Also, the exception throwing code expects to unlock any synchronized 859 // method receiever, so do the banging after locking the receiver.) 860 861 // Bang each page in the shadow zone. We can't assume it's been done for 862 // an interpreter frame with greater than a page of locals, so each page 863 // needs to be checked. Only true for non-native. 864 if (UseStackBanging) { 865 const int page_size = os::vm_page_size(); 866 const int n_shadow_pages = ((int)JavaThread::stack_shadow_zone_size()) / page_size; 867 const int start_page = native_call ? n_shadow_pages : 1; 868 for (int pages = start_page; pages <= n_shadow_pages; pages++) { 869 __ bang_stack_with_offset(pages*page_size); 870 } 871 } 872 } 873 874 // Interpreter stub for calling a native method. (asm interpreter) 875 // This sets up a somewhat different looking stack for calling the 876 // native method than the typical interpreter frame setup. 877 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) { 878 // determine code generation flags 879 bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods; 880 881 // rbx: Method* 882 // rbcp: sender sp 883 884 address entry_point = __ pc(); 885 886 const Address constMethod (rbx, Method::const_offset()); 887 const Address access_flags (rbx, Method::access_flags_offset()); 888 const Address size_of_parameters(rcx, ConstMethod:: 889 size_of_parameters_offset()); 890 891 892 // get parameter size (always needed) 893 __ movptr(rcx, constMethod); 894 __ load_unsigned_short(rcx, size_of_parameters); 895 896 // native calls don't need the stack size check since they have no 897 // expression stack and the arguments are already on the stack and 898 // we only add a handful of words to the stack 899 900 // rbx: Method* 901 // rcx: size of parameters 902 // rbcp: sender sp 903 __ pop(rax); // get return address 904 905 // for natives the size of locals is zero 906 907 // compute beginning of parameters 908 __ lea(rlocals, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize)); 909 910 // add 2 zero-initialized slots for native calls 911 // initialize result_handler slot 912 __ push((int) NULL_WORD); 913 // slot for oop temp 914 // (static native method holder mirror/jni oop result) 915 __ push((int) NULL_WORD); 916 917 // initialize fixed part of activation frame 918 generate_fixed_frame(true); 919 920 // make sure method is native & not abstract 921 #ifdef ASSERT 922 __ movl(rax, access_flags); 923 { 924 Label L; 925 __ testl(rax, JVM_ACC_NATIVE); 926 __ jcc(Assembler::notZero, L); 927 __ stop("tried to execute non-native method as native"); 928 __ bind(L); 929 } 930 { 931 Label L; 932 __ testl(rax, JVM_ACC_ABSTRACT); 933 __ jcc(Assembler::zero, L); 934 __ stop("tried to execute abstract method in interpreter"); 935 __ bind(L); 936 } 937 #endif 938 939 // Since at this point in the method invocation the exception handler 940 // would try to exit the monitor of synchronized methods which hasn't 941 // been entered yet, we set the thread local variable 942 // _do_not_unlock_if_synchronized to true. The remove_activation will 943 // check this flag. 944 945 const Register thread1 = NOT_LP64(rax) LP64_ONLY(r15_thread); 946 NOT_LP64(__ get_thread(thread1)); 947 const Address do_not_unlock_if_synchronized(thread1, 948 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 949 __ movbool(do_not_unlock_if_synchronized, true); 950 951 // increment invocation count & check for overflow 952 Label invocation_counter_overflow; 953 if (inc_counter) { 954 generate_counter_incr(&invocation_counter_overflow, NULL, NULL); 955 } 956 957 Label continue_after_compile; 958 __ bind(continue_after_compile); 959 960 bang_stack_shadow_pages(true); 961 962 // reset the _do_not_unlock_if_synchronized flag 963 NOT_LP64(__ get_thread(thread1)); 964 __ movbool(do_not_unlock_if_synchronized, false); 965 966 // check for synchronized methods 967 // Must happen AFTER invocation_counter check and stack overflow check, 968 // so method is not locked if overflows. 969 if (synchronized) { 970 lock_method(); 971 } else { 972 // no synchronization necessary 973 #ifdef ASSERT 974 { 975 Label L; 976 __ movl(rax, access_flags); 977 __ testl(rax, JVM_ACC_SYNCHRONIZED); 978 __ jcc(Assembler::zero, L); 979 __ stop("method needs synchronization"); 980 __ bind(L); 981 } 982 #endif 983 } 984 985 // start execution 986 #ifdef ASSERT 987 { 988 Label L; 989 const Address monitor_block_top(rbp, 990 frame::interpreter_frame_monitor_block_top_offset * wordSize); 991 __ movptr(rax, monitor_block_top); 992 __ cmpptr(rax, rsp); 993 __ jcc(Assembler::equal, L); 994 __ stop("broken stack frame setup in interpreter"); 995 __ bind(L); 996 } 997 #endif 998 999 // jvmti support 1000 __ notify_method_entry(); 1001 1002 // work registers 1003 const Register method = rbx; 1004 const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); 1005 const Register t = NOT_LP64(rcx) LP64_ONLY(r11); 1006 1007 // allocate space for parameters 1008 __ get_method(method); 1009 __ movptr(t, Address(method, Method::const_offset())); 1010 __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset())); 1011 1012 #ifndef _LP64 1013 __ shlptr(t, Interpreter::logStackElementSize); // Convert parameter count to bytes. 1014 __ addptr(t, 2*wordSize); // allocate two more slots for JNIEnv and possible mirror 1015 __ subptr(rsp, t); 1016 __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics 1017 #else 1018 __ shll(t, Interpreter::logStackElementSize); 1019 1020 __ subptr(rsp, t); 1021 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 1022 __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI) 1023 #endif // _LP64 1024 1025 // get signature handler 1026 { 1027 Label L; 1028 __ movptr(t, Address(method, Method::signature_handler_offset())); 1029 __ testptr(t, t); 1030 __ jcc(Assembler::notZero, L); 1031 __ call_VM(noreg, 1032 CAST_FROM_FN_PTR(address, 1033 InterpreterRuntime::prepare_native_call), 1034 method); 1035 __ get_method(method); 1036 __ movptr(t, Address(method, Method::signature_handler_offset())); 1037 __ bind(L); 1038 } 1039 1040 // call signature handler 1041 assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals, 1042 "adjust this code"); 1043 assert(InterpreterRuntime::SignatureHandlerGenerator::to() == rsp, 1044 "adjust this code"); 1045 assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == NOT_LP64(t) LP64_ONLY(rscratch1), 1046 "adjust this code"); 1047 1048 // The generated handlers do not touch RBX (the method oop). 1049 // However, large signatures cannot be cached and are generated 1050 // each time here. The slow-path generator can do a GC on return, 1051 // so we must reload it after the call. 1052 __ call(t); 1053 __ get_method(method); // slow path can do a GC, reload RBX 1054 1055 1056 // result handler is in rax 1057 // set result handler 1058 __ movptr(Address(rbp, 1059 (frame::interpreter_frame_result_handler_offset) * wordSize), 1060 rax); 1061 1062 // pass mirror handle if static call 1063 { 1064 Label L; 1065 __ movl(t, Address(method, Method::access_flags_offset())); 1066 __ testl(t, JVM_ACC_STATIC); 1067 __ jcc(Assembler::zero, L); 1068 // get mirror 1069 __ load_mirror(t, method); 1070 // copy mirror into activation frame 1071 __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize), 1072 t); 1073 // pass handle to mirror 1074 #ifndef _LP64 1075 __ lea(t, Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize)); 1076 __ movptr(Address(rsp, wordSize), t); 1077 #else 1078 __ lea(c_rarg1, 1079 Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize)); 1080 #endif // _LP64 1081 __ bind(L); 1082 } 1083 1084 // get native function entry point 1085 { 1086 Label L; 1087 __ movptr(rax, Address(method, Method::native_function_offset())); 1088 ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry()); 1089 __ cmpptr(rax, unsatisfied.addr()); 1090 __ jcc(Assembler::notEqual, L); 1091 __ call_VM(noreg, 1092 CAST_FROM_FN_PTR(address, 1093 InterpreterRuntime::prepare_native_call), 1094 method); 1095 __ get_method(method); 1096 __ movptr(rax, Address(method, Method::native_function_offset())); 1097 __ bind(L); 1098 } 1099 1100 // pass JNIEnv 1101 #ifndef _LP64 1102 __ get_thread(thread); 1103 __ lea(t, Address(thread, JavaThread::jni_environment_offset())); 1104 __ movptr(Address(rsp, 0), t); 1105 1106 // set_last_Java_frame_before_call 1107 // It is enough that the pc() 1108 // points into the right code segment. It does not have to be the correct return pc. 1109 __ set_last_Java_frame(thread, noreg, rbp, __ pc()); 1110 #else 1111 __ lea(c_rarg0, Address(r15_thread, JavaThread::jni_environment_offset())); 1112 1113 // It is enough that the pc() points into the right code 1114 // segment. It does not have to be the correct return pc. 1115 __ set_last_Java_frame(rsp, rbp, (address) __ pc()); 1116 #endif // _LP64 1117 1118 // change thread state 1119 #ifdef ASSERT 1120 { 1121 Label L; 1122 __ movl(t, Address(thread, JavaThread::thread_state_offset())); 1123 __ cmpl(t, _thread_in_Java); 1124 __ jcc(Assembler::equal, L); 1125 __ stop("Wrong thread state in native stub"); 1126 __ bind(L); 1127 } 1128 #endif 1129 1130 // Change state to native 1131 1132 __ movl(Address(thread, JavaThread::thread_state_offset()), 1133 _thread_in_native); 1134 1135 // Call the native method. 1136 __ call(rax); 1137 // 32: result potentially in rdx:rax or ST0 1138 // 64: result potentially in rax or xmm0 1139 1140 // Verify or restore cpu control state after JNI call 1141 __ restore_cpu_control_state_after_jni(); 1142 1143 // NOTE: The order of these pushes is known to frame::interpreter_frame_result 1144 // in order to extract the result of a method call. If the order of these 1145 // pushes change or anything else is added to the stack then the code in 1146 // interpreter_frame_result must also change. 1147 1148 #ifndef _LP64 1149 // save potential result in ST(0) & rdx:rax 1150 // (if result handler is the T_FLOAT or T_DOUBLE handler, result must be in ST0 - 1151 // the check is necessary to avoid potential Intel FPU overflow problems by saving/restoring 'empty' FPU registers) 1152 // It is safe to do this push because state is _thread_in_native and return address will be found 1153 // via _last_native_pc and not via _last_jave_sp 1154 1155 // NOTE: the order of theses push(es) is known to frame::interpreter_frame_result. 1156 // If the order changes or anything else is added to the stack the code in 1157 // interpreter_frame_result will have to be changed. 1158 1159 { Label L; 1160 Label push_double; 1161 ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT)); 1162 ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE)); 1163 __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize), 1164 float_handler.addr()); 1165 __ jcc(Assembler::equal, push_double); 1166 __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize), 1167 double_handler.addr()); 1168 __ jcc(Assembler::notEqual, L); 1169 __ bind(push_double); 1170 __ push_d(); // FP values are returned using the FPU, so push FPU contents (even if UseSSE > 0). 1171 __ bind(L); 1172 } 1173 #else 1174 __ push(dtos); 1175 #endif // _LP64 1176 1177 __ push(ltos); 1178 1179 // change thread state 1180 NOT_LP64(__ get_thread(thread)); 1181 __ movl(Address(thread, JavaThread::thread_state_offset()), 1182 _thread_in_native_trans); 1183 1184 if (os::is_MP()) { 1185 if (UseMembar) { 1186 // Force this write out before the read below 1187 __ membar(Assembler::Membar_mask_bits( 1188 Assembler::LoadLoad | Assembler::LoadStore | 1189 Assembler::StoreLoad | Assembler::StoreStore)); 1190 } else { 1191 // Write serialization page so VM thread can do a pseudo remote membar. 1192 // We use the current thread pointer to calculate a thread specific 1193 // offset to write to within the page. This minimizes bus traffic 1194 // due to cache line collision. 1195 __ serialize_memory(thread, rcx); 1196 } 1197 } 1198 1199 #ifndef _LP64 1200 if (AlwaysRestoreFPU) { 1201 // Make sure the control word is correct. 1202 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std())); 1203 } 1204 #endif // _LP64 1205 1206 // check for safepoint operation in progress and/or pending suspend requests 1207 { 1208 Label Continue; 1209 Label slow_path; 1210 1211 #ifndef _LP64 1212 __ safepoint_poll(slow_path, thread, noreg); 1213 #else 1214 __ safepoint_poll(slow_path, r15_thread, rscratch1); 1215 #endif 1216 1217 __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0); 1218 __ jcc(Assembler::equal, Continue); 1219 __ bind(slow_path); 1220 1221 // Don't use call_VM as it will see a possible pending exception 1222 // and forward it and never return here preventing us from 1223 // clearing _last_native_pc down below. Also can't use 1224 // call_VM_leaf either as it will check to see if r13 & r14 are 1225 // preserved and correspond to the bcp/locals pointers. So we do a 1226 // runtime call by hand. 1227 // 1228 #ifndef _LP64 1229 __ push(thread); 1230 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, 1231 JavaThread::check_special_condition_for_native_trans))); 1232 __ increment(rsp, wordSize); 1233 __ get_thread(thread); 1234 #else 1235 __ mov(c_rarg0, r15_thread); 1236 __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM) 1237 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 1238 __ andptr(rsp, -16); // align stack as required by ABI 1239 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); 1240 __ mov(rsp, r12); // restore sp 1241 __ reinit_heapbase(); 1242 #endif // _LP64 1243 __ bind(Continue); 1244 } 1245 1246 // change thread state 1247 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java); 1248 1249 // reset_last_Java_frame 1250 __ reset_last_Java_frame(thread, true); 1251 1252 if (CheckJNICalls) { 1253 // clear_pending_jni_exception_check 1254 __ movptr(Address(thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD); 1255 } 1256 1257 // reset handle block 1258 __ movptr(t, Address(thread, JavaThread::active_handles_offset())); 1259 __ movl(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD); 1260 1261 // If result is an oop unbox and store it in frame where gc will see it 1262 // and result handler will pick it up 1263 1264 { 1265 Label no_oop, not_weak, store_result; 1266 __ lea(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT))); 1267 __ cmpptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize)); 1268 __ jcc(Assembler::notEqual, no_oop); 1269 // retrieve result 1270 __ pop(ltos); 1271 // Unbox oop result, e.g. JNIHandles::resolve value. 1272 __ resolve_jobject(rax /* value */, 1273 thread /* thread */, 1274 t /* tmp */); 1275 __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize), rax); 1276 // keep stack depth as expected by pushing oop which will eventually be discarded 1277 __ push(ltos); 1278 __ bind(no_oop); 1279 } 1280 1281 1282 { 1283 Label no_reguard; 1284 __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), 1285 JavaThread::stack_guard_yellow_reserved_disabled); 1286 __ jcc(Assembler::notEqual, no_reguard); 1287 1288 __ pusha(); // XXX only save smashed registers 1289 #ifndef _LP64 1290 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages))); 1291 __ popa(); 1292 #else 1293 __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM) 1294 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 1295 __ andptr(rsp, -16); // align stack as required by ABI 1296 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages))); 1297 __ mov(rsp, r12); // restore sp 1298 __ popa(); // XXX only restore smashed registers 1299 __ reinit_heapbase(); 1300 #endif // _LP64 1301 1302 __ bind(no_reguard); 1303 } 1304 1305 1306 // The method register is junk from after the thread_in_native transition 1307 // until here. Also can't call_VM until the bcp has been 1308 // restored. Need bcp for throwing exception below so get it now. 1309 __ get_method(method); 1310 1311 // restore to have legal interpreter frame, i.e., bci == 0 <=> code_base() 1312 __ movptr(rbcp, Address(method, Method::const_offset())); // get ConstMethod* 1313 __ lea(rbcp, Address(rbcp, ConstMethod::codes_offset())); // get codebase 1314 1315 // handle exceptions (exception handling will handle unlocking!) 1316 { 1317 Label L; 1318 __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD); 1319 __ jcc(Assembler::zero, L); 1320 // Note: At some point we may want to unify this with the code 1321 // used in call_VM_base(); i.e., we should use the 1322 // StubRoutines::forward_exception code. For now this doesn't work 1323 // here because the rsp is not correctly set at this point. 1324 __ MacroAssembler::call_VM(noreg, 1325 CAST_FROM_FN_PTR(address, 1326 InterpreterRuntime::throw_pending_exception)); 1327 __ should_not_reach_here(); 1328 __ bind(L); 1329 } 1330 1331 // do unlocking if necessary 1332 { 1333 Label L; 1334 __ movl(t, Address(method, Method::access_flags_offset())); 1335 __ testl(t, JVM_ACC_SYNCHRONIZED); 1336 __ jcc(Assembler::zero, L); 1337 // the code below should be shared with interpreter macro 1338 // assembler implementation 1339 { 1340 Label unlock; 1341 // BasicObjectLock will be first in list, since this is a 1342 // synchronized method. However, need to check that the object 1343 // has not been unlocked by an explicit monitorexit bytecode. 1344 const Address monitor(rbp, 1345 (intptr_t)(frame::interpreter_frame_initial_sp_offset * 1346 wordSize - (int)sizeof(BasicObjectLock))); 1347 1348 const Register regmon = NOT_LP64(rdx) LP64_ONLY(c_rarg1); 1349 1350 // monitor expect in c_rarg1 for slow unlock path 1351 __ lea(regmon, monitor); // address of first monitor 1352 1353 __ movptr(t, Address(regmon, BasicObjectLock::obj_offset_in_bytes())); 1354 __ testptr(t, t); 1355 __ jcc(Assembler::notZero, unlock); 1356 1357 // Entry already unlocked, need to throw exception 1358 __ MacroAssembler::call_VM(noreg, 1359 CAST_FROM_FN_PTR(address, 1360 InterpreterRuntime::throw_illegal_monitor_state_exception)); 1361 __ should_not_reach_here(); 1362 1363 __ bind(unlock); 1364 __ unlock_object(regmon); 1365 } 1366 __ bind(L); 1367 } 1368 1369 // jvmti support 1370 // Note: This must happen _after_ handling/throwing any exceptions since 1371 // the exception handler code notifies the runtime of method exits 1372 // too. If this happens before, method entry/exit notifications are 1373 // not properly paired (was bug - gri 11/22/99). 1374 __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI); 1375 1376 // restore potential result in edx:eax, call result handler to 1377 // restore potential result in ST0 & handle result 1378 1379 __ pop(ltos); 1380 LP64_ONLY( __ pop(dtos)); 1381 1382 __ movptr(t, Address(rbp, 1383 (frame::interpreter_frame_result_handler_offset) * wordSize)); 1384 __ call(t); 1385 1386 // remove activation 1387 __ movptr(t, Address(rbp, 1388 frame::interpreter_frame_sender_sp_offset * 1389 wordSize)); // get sender sp 1390 __ leave(); // remove frame anchor 1391 __ pop(rdi); // get return address 1392 __ mov(rsp, t); // set sp to sender sp 1393 __ jmp(rdi); 1394 1395 if (inc_counter) { 1396 // Handle overflow of counter and compile method 1397 __ bind(invocation_counter_overflow); 1398 generate_counter_overflow(continue_after_compile); 1399 } 1400 1401 return entry_point; 1402 } 1403 1404 // Abstract method entry 1405 // Attempt to execute abstract method. Throw exception 1406 address TemplateInterpreterGenerator::generate_abstract_entry(void) { 1407 1408 address entry_point = __ pc(); 1409 1410 // abstract method entry 1411 1412 // pop return address, reset last_sp to NULL 1413 __ empty_expression_stack(); 1414 __ restore_bcp(); // rsi must be correct for exception handler (was destroyed) 1415 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 1416 1417 // throw exception 1418 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); 1419 // the call_VM checks for exception, so we should never return here. 1420 __ should_not_reach_here(); 1421 1422 return entry_point; 1423 } 1424 1425 // 1426 // Generic interpreted method entry to (asm) interpreter 1427 // 1428 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) { 1429 // determine code generation flags 1430 bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods; 1431 1432 // ebx: Method* 1433 // rbcp: sender sp 1434 address entry_point = __ pc(); 1435 1436 const Address constMethod(rbx, Method::const_offset()); 1437 const Address access_flags(rbx, Method::access_flags_offset()); 1438 const Address size_of_parameters(rdx, 1439 ConstMethod::size_of_parameters_offset()); 1440 const Address size_of_locals(rdx, ConstMethod::size_of_locals_offset()); 1441 1442 1443 // get parameter size (always needed) 1444 __ movptr(rdx, constMethod); 1445 __ load_unsigned_short(rcx, size_of_parameters); 1446 1447 // rbx: Method* 1448 // rcx: size of parameters 1449 // rbcp: sender_sp (could differ from sp+wordSize if we were called via c2i ) 1450 1451 __ load_unsigned_short(rdx, size_of_locals); // get size of locals in words 1452 __ subl(rdx, rcx); // rdx = no. of additional locals 1453 1454 // YYY 1455 // __ incrementl(rdx); 1456 // __ andl(rdx, -2); 1457 1458 // see if we've got enough room on the stack for locals plus overhead. 1459 generate_stack_overflow_check(); 1460 1461 // get return address 1462 __ pop(rax); 1463 1464 // compute beginning of parameters 1465 __ lea(rlocals, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize)); 1466 1467 // rdx - # of additional locals 1468 // allocate space for locals 1469 // explicitly initialize locals 1470 { 1471 Label exit, loop; 1472 __ testl(rdx, rdx); 1473 __ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0 1474 __ bind(loop); 1475 __ push((int) NULL_WORD); // initialize local variables 1476 __ decrementl(rdx); // until everything initialized 1477 __ jcc(Assembler::greater, loop); 1478 __ bind(exit); 1479 } 1480 1481 // initialize fixed part of activation frame 1482 generate_fixed_frame(false); 1483 1484 // make sure method is not native & not abstract 1485 #ifdef ASSERT 1486 __ movl(rax, access_flags); 1487 { 1488 Label L; 1489 __ testl(rax, JVM_ACC_NATIVE); 1490 __ jcc(Assembler::zero, L); 1491 __ stop("tried to execute native method as non-native"); 1492 __ bind(L); 1493 } 1494 { 1495 Label L; 1496 __ testl(rax, JVM_ACC_ABSTRACT); 1497 __ jcc(Assembler::zero, L); 1498 __ stop("tried to execute abstract method in interpreter"); 1499 __ bind(L); 1500 } 1501 #endif 1502 1503 // Since at this point in the method invocation the exception 1504 // handler would try to exit the monitor of synchronized methods 1505 // which hasn't been entered yet, we set the thread local variable 1506 // _do_not_unlock_if_synchronized to true. The remove_activation 1507 // will check this flag. 1508 1509 const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread); 1510 NOT_LP64(__ get_thread(thread)); 1511 const Address do_not_unlock_if_synchronized(thread, 1512 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1513 __ movbool(do_not_unlock_if_synchronized, true); 1514 1515 __ profile_parameters_type(rax, rcx, rdx); 1516 // increment invocation count & check for overflow 1517 Label invocation_counter_overflow; 1518 Label profile_method; 1519 Label profile_method_continue; 1520 if (inc_counter) { 1521 generate_counter_incr(&invocation_counter_overflow, 1522 &profile_method, 1523 &profile_method_continue); 1524 if (ProfileInterpreter) { 1525 __ bind(profile_method_continue); 1526 } 1527 } 1528 1529 Label continue_after_compile; 1530 __ bind(continue_after_compile); 1531 1532 // check for synchronized interpreted methods 1533 bang_stack_shadow_pages(false); 1534 1535 // reset the _do_not_unlock_if_synchronized flag 1536 NOT_LP64(__ get_thread(thread)); 1537 __ movbool(do_not_unlock_if_synchronized, false); 1538 1539 // check for synchronized methods 1540 // Must happen AFTER invocation_counter check and stack overflow check, 1541 // so method is not locked if overflows. 1542 if (synchronized) { 1543 // Allocate monitor and lock method 1544 lock_method(); 1545 } else { 1546 // no synchronization necessary 1547 #ifdef ASSERT 1548 { 1549 Label L; 1550 __ movl(rax, access_flags); 1551 __ testl(rax, JVM_ACC_SYNCHRONIZED); 1552 __ jcc(Assembler::zero, L); 1553 __ stop("method needs synchronization"); 1554 __ bind(L); 1555 } 1556 #endif 1557 } 1558 1559 // start execution 1560 #ifdef ASSERT 1561 { 1562 Label L; 1563 const Address monitor_block_top (rbp, 1564 frame::interpreter_frame_monitor_block_top_offset * wordSize); 1565 __ movptr(rax, monitor_block_top); 1566 __ cmpptr(rax, rsp); 1567 __ jcc(Assembler::equal, L); 1568 __ stop("broken stack frame setup in interpreter"); 1569 __ bind(L); 1570 } 1571 #endif 1572 1573 // jvmti support 1574 __ notify_method_entry(); 1575 1576 __ dispatch_next(vtos); 1577 1578 // invocation counter overflow 1579 if (inc_counter) { 1580 if (ProfileInterpreter) { 1581 // We have decided to profile this method in the interpreter 1582 __ bind(profile_method); 1583 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); 1584 __ set_method_data_pointer_for_bcp(); 1585 __ get_method(rbx); 1586 __ jmp(profile_method_continue); 1587 } 1588 // Handle overflow of counter and compile method 1589 __ bind(invocation_counter_overflow); 1590 generate_counter_overflow(continue_after_compile); 1591 } 1592 1593 return entry_point; 1594 } 1595 1596 //----------------------------------------------------------------------------- 1597 // Exceptions 1598 1599 void TemplateInterpreterGenerator::generate_throw_exception() { 1600 // Entry point in previous activation (i.e., if the caller was 1601 // interpreted) 1602 Interpreter::_rethrow_exception_entry = __ pc(); 1603 // Restore sp to interpreter_frame_last_sp even though we are going 1604 // to empty the expression stack for the exception processing. 1605 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); 1606 // rax: exception 1607 // rdx: return address/pc that threw exception 1608 __ restore_bcp(); // r13/rsi points to call/send 1609 __ restore_locals(); 1610 LP64_ONLY(__ reinit_heapbase()); // restore r12 as heapbase. 1611 // Entry point for exceptions thrown within interpreter code 1612 Interpreter::_throw_exception_entry = __ pc(); 1613 // expression stack is undefined here 1614 // rax: exception 1615 // r13/rsi: exception bcp 1616 __ verify_oop(rax); 1617 Register rarg = NOT_LP64(rax) LP64_ONLY(c_rarg1); 1618 LP64_ONLY(__ mov(c_rarg1, rax)); 1619 1620 // expression stack must be empty before entering the VM in case of 1621 // an exception 1622 __ empty_expression_stack(); 1623 // find exception handler address and preserve exception oop 1624 __ call_VM(rdx, 1625 CAST_FROM_FN_PTR(address, 1626 InterpreterRuntime::exception_handler_for_exception), 1627 rarg); 1628 // rax: exception handler entry point 1629 // rdx: preserved exception oop 1630 // r13/rsi: bcp for exception handler 1631 __ push_ptr(rdx); // push exception which is now the only value on the stack 1632 __ jmp(rax); // jump to exception handler (may be _remove_activation_entry!) 1633 1634 // If the exception is not handled in the current frame the frame is 1635 // removed and the exception is rethrown (i.e. exception 1636 // continuation is _rethrow_exception). 1637 // 1638 // Note: At this point the bci is still the bxi for the instruction 1639 // which caused the exception and the expression stack is 1640 // empty. Thus, for any VM calls at this point, GC will find a legal 1641 // oop map (with empty expression stack). 1642 1643 // In current activation 1644 // tos: exception 1645 // esi: exception bcp 1646 1647 // 1648 // JVMTI PopFrame support 1649 // 1650 1651 Interpreter::_remove_activation_preserving_args_entry = __ pc(); 1652 __ empty_expression_stack(); 1653 // Set the popframe_processing bit in pending_popframe_condition 1654 // indicating that we are currently handling popframe, so that 1655 // call_VMs that may happen later do not trigger new popframe 1656 // handling cycles. 1657 const Register thread = NOT_LP64(rcx) LP64_ONLY(r15_thread); 1658 NOT_LP64(__ get_thread(thread)); 1659 __ movl(rdx, Address(thread, JavaThread::popframe_condition_offset())); 1660 __ orl(rdx, JavaThread::popframe_processing_bit); 1661 __ movl(Address(thread, JavaThread::popframe_condition_offset()), rdx); 1662 1663 { 1664 // Check to see whether we are returning to a deoptimized frame. 1665 // (The PopFrame call ensures that the caller of the popped frame is 1666 // either interpreted or compiled and deoptimizes it if compiled.) 1667 // In this case, we can't call dispatch_next() after the frame is 1668 // popped, but instead must save the incoming arguments and restore 1669 // them after deoptimization has occurred. 1670 // 1671 // Note that we don't compare the return PC against the 1672 // deoptimization blob's unpack entry because of the presence of 1673 // adapter frames in C2. 1674 Label caller_not_deoptimized; 1675 Register rarg = NOT_LP64(rdx) LP64_ONLY(c_rarg1); 1676 __ movptr(rarg, Address(rbp, frame::return_addr_offset * wordSize)); 1677 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1678 InterpreterRuntime::interpreter_contains), rarg); 1679 __ testl(rax, rax); 1680 __ jcc(Assembler::notZero, caller_not_deoptimized); 1681 1682 // Compute size of arguments for saving when returning to 1683 // deoptimized caller 1684 __ get_method(rax); 1685 __ movptr(rax, Address(rax, Method::const_offset())); 1686 __ load_unsigned_short(rax, Address(rax, in_bytes(ConstMethod:: 1687 size_of_parameters_offset()))); 1688 __ shll(rax, Interpreter::logStackElementSize); 1689 __ restore_locals(); 1690 __ subptr(rlocals, rax); 1691 __ addptr(rlocals, wordSize); 1692 // Save these arguments 1693 NOT_LP64(__ get_thread(thread)); 1694 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1695 Deoptimization:: 1696 popframe_preserve_args), 1697 thread, rax, rlocals); 1698 1699 __ remove_activation(vtos, rdx, 1700 /* throw_monitor_exception */ false, 1701 /* install_monitor_exception */ false, 1702 /* notify_jvmdi */ false); 1703 1704 // Inform deoptimization that it is responsible for restoring 1705 // these arguments 1706 NOT_LP64(__ get_thread(thread)); 1707 __ movl(Address(thread, JavaThread::popframe_condition_offset()), 1708 JavaThread::popframe_force_deopt_reexecution_bit); 1709 1710 // Continue in deoptimization handler 1711 __ jmp(rdx); 1712 1713 __ bind(caller_not_deoptimized); 1714 } 1715 1716 __ remove_activation(vtos, rdx, /* rdx result (retaddr) is not used */ 1717 /* throw_monitor_exception */ false, 1718 /* install_monitor_exception */ false, 1719 /* notify_jvmdi */ false); 1720 1721 // Finish with popframe handling 1722 // A previous I2C followed by a deoptimization might have moved the 1723 // outgoing arguments further up the stack. PopFrame expects the 1724 // mutations to those outgoing arguments to be preserved and other 1725 // constraints basically require this frame to look exactly as 1726 // though it had previously invoked an interpreted activation with 1727 // no space between the top of the expression stack (current 1728 // last_sp) and the top of stack. Rather than force deopt to 1729 // maintain this kind of invariant all the time we call a small 1730 // fixup routine to move the mutated arguments onto the top of our 1731 // expression stack if necessary. 1732 #ifndef _LP64 1733 __ mov(rax, rsp); 1734 __ movptr(rbx, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize)); 1735 __ get_thread(thread); 1736 // PC must point into interpreter here 1737 __ set_last_Java_frame(thread, noreg, rbp, __ pc()); 1738 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), thread, rax, rbx); 1739 __ get_thread(thread); 1740 #else 1741 __ mov(c_rarg1, rsp); 1742 __ movptr(c_rarg2, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize)); 1743 // PC must point into interpreter here 1744 __ set_last_Java_frame(noreg, rbp, __ pc()); 1745 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), r15_thread, c_rarg1, c_rarg2); 1746 #endif 1747 __ reset_last_Java_frame(thread, true); 1748 1749 // Restore the last_sp and null it out 1750 __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize)); 1751 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); 1752 1753 __ restore_bcp(); 1754 __ restore_locals(); 1755 // The method data pointer was incremented already during 1756 // call profiling. We have to restore the mdp for the current bcp. 1757 if (ProfileInterpreter) { 1758 __ set_method_data_pointer_for_bcp(); 1759 } 1760 1761 // Clear the popframe condition flag 1762 NOT_LP64(__ get_thread(thread)); 1763 __ movl(Address(thread, JavaThread::popframe_condition_offset()), 1764 JavaThread::popframe_inactive); 1765 1766 #if INCLUDE_JVMTI 1767 { 1768 Label L_done; 1769 const Register local0 = rlocals; 1770 1771 __ cmpb(Address(rbcp, 0), Bytecodes::_invokestatic); 1772 __ jcc(Assembler::notEqual, L_done); 1773 1774 // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call. 1775 // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL. 1776 1777 __ get_method(rdx); 1778 __ movptr(rax, Address(local0, 0)); 1779 __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), rax, rdx, rbcp); 1780 1781 __ testptr(rax, rax); 1782 __ jcc(Assembler::zero, L_done); 1783 1784 __ movptr(Address(rbx, 0), rax); 1785 __ bind(L_done); 1786 } 1787 #endif // INCLUDE_JVMTI 1788 1789 __ dispatch_next(vtos); 1790 // end of PopFrame support 1791 1792 Interpreter::_remove_activation_entry = __ pc(); 1793 1794 // preserve exception over this code sequence 1795 __ pop_ptr(rax); 1796 NOT_LP64(__ get_thread(thread)); 1797 __ movptr(Address(thread, JavaThread::vm_result_offset()), rax); 1798 // remove the activation (without doing throws on illegalMonitorExceptions) 1799 __ remove_activation(vtos, rdx, false, true, false); 1800 // restore exception 1801 NOT_LP64(__ get_thread(thread)); 1802 __ get_vm_result(rax, thread); 1803 1804 // In between activations - previous activation type unknown yet 1805 // compute continuation point - the continuation point expects the 1806 // following registers set up: 1807 // 1808 // rax: exception 1809 // rdx: return address/pc that threw exception 1810 // rsp: expression stack of caller 1811 // rbp: ebp of caller 1812 __ push(rax); // save exception 1813 __ push(rdx); // save return address 1814 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1815 SharedRuntime::exception_handler_for_return_address), 1816 thread, rdx); 1817 __ mov(rbx, rax); // save exception handler 1818 __ pop(rdx); // restore return address 1819 __ pop(rax); // restore exception 1820 // Note that an "issuing PC" is actually the next PC after the call 1821 __ jmp(rbx); // jump to exception 1822 // handler of caller 1823 } 1824 1825 1826 // 1827 // JVMTI ForceEarlyReturn support 1828 // 1829 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) { 1830 address entry = __ pc(); 1831 1832 __ restore_bcp(); 1833 __ restore_locals(); 1834 __ empty_expression_stack(); 1835 __ load_earlyret_value(state); // 32 bits returns value in rdx, so don't reuse 1836 1837 const Register thread = NOT_LP64(rcx) LP64_ONLY(r15_thread); 1838 NOT_LP64(__ get_thread(thread)); 1839 __ movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset())); 1840 Address cond_addr(rcx, JvmtiThreadState::earlyret_state_offset()); 1841 1842 // Clear the earlyret state 1843 __ movl(cond_addr, JvmtiThreadState::earlyret_inactive); 1844 1845 __ remove_activation(state, rsi, 1846 false, /* throw_monitor_exception */ 1847 false, /* install_monitor_exception */ 1848 true); /* notify_jvmdi */ 1849 __ jmp(rsi); 1850 1851 return entry; 1852 } // end of ForceEarlyReturn support 1853 1854 1855 //----------------------------------------------------------------------------- 1856 // Helper for vtos entry point generation 1857 1858 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, 1859 address& bep, 1860 address& cep, 1861 address& sep, 1862 address& aep, 1863 address& iep, 1864 address& lep, 1865 address& fep, 1866 address& dep, 1867 address& vep) { 1868 assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); 1869 Label L; 1870 aep = __ pc(); __ push_ptr(); __ jmp(L); 1871 #ifndef _LP64 1872 fep = __ pc(); __ push(ftos); __ jmp(L); 1873 dep = __ pc(); __ push(dtos); __ jmp(L); 1874 #else 1875 fep = __ pc(); __ push_f(xmm0); __ jmp(L); 1876 dep = __ pc(); __ push_d(xmm0); __ jmp(L); 1877 #endif // _LP64 1878 lep = __ pc(); __ push_l(); __ jmp(L); 1879 bep = cep = sep = 1880 iep = __ pc(); __ push_i(); 1881 vep = __ pc(); 1882 __ bind(L); 1883 generate_and_dispatch(t); 1884 } 1885 1886 //----------------------------------------------------------------------------- 1887 1888 // Non-product code 1889 #ifndef PRODUCT 1890 1891 address TemplateInterpreterGenerator::generate_trace_code(TosState state) { 1892 address entry = __ pc(); 1893 1894 #ifndef _LP64 1895 // prepare expression stack 1896 __ pop(rcx); // pop return address so expression stack is 'pure' 1897 __ push(state); // save tosca 1898 1899 // pass tosca registers as arguments & call tracer 1900 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), rcx, rax, rdx); 1901 __ mov(rcx, rax); // make sure return address is not destroyed by pop(state) 1902 __ pop(state); // restore tosca 1903 1904 // return 1905 __ jmp(rcx); 1906 #else 1907 __ push(state); 1908 __ push(c_rarg0); 1909 __ push(c_rarg1); 1910 __ push(c_rarg2); 1911 __ push(c_rarg3); 1912 __ mov(c_rarg2, rax); // Pass itos 1913 #ifdef _WIN64 1914 __ movflt(xmm3, xmm0); // Pass ftos 1915 #endif 1916 __ call_VM(noreg, 1917 CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), 1918 c_rarg1, c_rarg2, c_rarg3); 1919 __ pop(c_rarg3); 1920 __ pop(c_rarg2); 1921 __ pop(c_rarg1); 1922 __ pop(c_rarg0); 1923 __ pop(state); 1924 __ ret(0); // return from result handler 1925 #endif // _LP64 1926 1927 return entry; 1928 } 1929 1930 void TemplateInterpreterGenerator::count_bytecode() { 1931 __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value)); 1932 } 1933 1934 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { 1935 __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()])); 1936 } 1937 1938 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { 1939 __ mov32(rbx, ExternalAddress((address) &BytecodePairHistogram::_index)); 1940 __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes); 1941 __ orl(rbx, 1942 ((int) t->bytecode()) << 1943 BytecodePairHistogram::log2_number_of_codes); 1944 __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx); 1945 __ lea(rscratch1, ExternalAddress((address) BytecodePairHistogram::_counters)); 1946 __ incrementl(Address(rscratch1, rbx, Address::times_4)); 1947 } 1948 1949 1950 void TemplateInterpreterGenerator::trace_bytecode(Template* t) { 1951 // Call a little run-time stub to avoid blow-up for each bytecode. 1952 // The run-time runtime saves the right registers, depending on 1953 // the tosca in-state for the given template. 1954 1955 assert(Interpreter::trace_code(t->tos_in()) != NULL, 1956 "entry must have been generated"); 1957 #ifndef _LP64 1958 __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in()))); 1959 #else 1960 __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM) 1961 __ andptr(rsp, -16); // align stack as required by ABI 1962 __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in()))); 1963 __ mov(rsp, r12); // restore sp 1964 __ reinit_heapbase(); 1965 #endif // _LP64 1966 } 1967 1968 1969 void TemplateInterpreterGenerator::stop_interpreter_at() { 1970 Label L; 1971 __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value), 1972 StopInterpreterAt); 1973 __ jcc(Assembler::notEqual, L); 1974 __ int3(); 1975 __ bind(L); 1976 } 1977 #endif // !PRODUCT