1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 #include "runtime/signature.hpp"
  32 
  33 class ciValueKlass;
  34 
  35 // MacroAssembler extends Assembler by frequently used macros.
  36 //
  37 // Instructions for which a 'better' code sequence exists depending
  38 // on arguments should also go in here.
  39 
  40 class MacroAssembler: public Assembler {
  41   friend class LIR_Assembler;
  42   friend class Runtime1;      // as_Address()
  43 
  44  public:
  45   // Support for VM calls
  46   //
  47   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  48   // may customize this version by overriding it for its purposes (e.g., to save/restore
  49   // additional registers when doing a VM call).
  50 
  51   virtual void call_VM_leaf_base(
  52     address entry_point,               // the entry point
  53     int     number_of_arguments        // the number of arguments to pop after the call
  54   );
  55 
  56  protected:
  57   // This is the base routine called by the different versions of call_VM. The interpreter
  58   // may customize this version by overriding it for its purposes (e.g., to save/restore
  59   // additional registers when doing a VM call).
  60   //
  61   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  62   // returns the register which contains the thread upon return. If a thread register has been
  63   // specified, the return value will correspond to that register. If no last_java_sp is specified
  64   // (noreg) than rsp will be used instead.
  65   virtual void call_VM_base(           // returns the register containing the thread upon return
  66     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  67     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  68     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  69     address  entry_point,              // the entry point
  70     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  71     bool     check_exceptions          // whether to check for pending exceptions after return
  72   );
  73 
  74   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  75 
  76   // helpers for FPU flag access
  77   // tmp is a temporary register, if none is available use noreg
  78   void save_rax   (Register tmp);
  79   void restore_rax(Register tmp);
  80 
  81  public:
  82   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  83 
  84  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  85  // The implementation is only non-empty for the InterpreterMacroAssembler,
  86  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  87  virtual void check_and_handle_popframe(Register java_thread);
  88  virtual void check_and_handle_earlyret(Register java_thread);
  89 
  90   Address as_Address(AddressLiteral adr);
  91   Address as_Address(ArrayAddress adr);
  92 
  93   // Support for NULL-checks
  94   //
  95   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  96   // If the accessed location is M[reg + offset] and the offset is known, provide the
  97   // offset. No explicit code generation is needed if the offset is within a certain
  98   // range (0 <= offset <= page_size).
  99 
 100   void null_check(Register reg, int offset = -1);
 101   static bool needs_explicit_null_check(intptr_t offset);
 102   static bool uses_implicit_null_check(void* address);
 103 
 104   // valueKlass queries, kills temp_reg
 105   void test_klass_is_value(Register klass, Register temp_reg, Label& is_value);
 106   void test_klass_is_empty_value(Register klass, Register temp_reg, Label& is_empty_value);
 107 
 108   // Get the default value oop for the given ValueKlass
 109   void get_default_value_oop(Register value_klass, Register temp_reg, Register obj);
 110   // The empty value oop, for the given ValueKlass ("empty" as in no instance fields)
 111   // get_default_value_oop with extra assertion for empty value klass
 112   void get_empty_value_oop(Register value_klass, Register temp_reg, Register obj);
 113 
 114   void test_field_is_flattenable(Register flags, Register temp_reg, Label& is_flattenable);
 115   void test_field_is_not_flattenable(Register flags, Register temp_reg, Label& notFlattenable);
 116   void test_field_is_flattened(Register flags, Register temp_reg, Label& is_flattened);
 117 
 118   // Check oops array storage properties, i.e. flattened and/or null-free
 119   void test_flattened_array_oop(Register oop, Register temp_reg, Label&is_flattened_array);
 120   void test_non_flattened_array_oop(Register oop, Register temp_reg, Label&is_non_flattened_array);
 121   void test_null_free_array_oop(Register oop, Register temp_reg, Label&is_null_free_array);
 122   void test_non_null_free_array_oop(Register oop, Register temp_reg, Label&is_non_null_free_array);
 123 
 124   // Required platform-specific helpers for Label::patch_instructions.
 125   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 126   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 127     unsigned char op = branch[0];
 128     assert(op == 0xE8 /* call */ ||
 129         op == 0xE9 /* jmp */ ||
 130         op == 0xEB /* short jmp */ ||
 131         (op & 0xF0) == 0x70 /* short jcc */ ||
 132         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 133         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 134         "Invalid opcode at patch point");
 135 
 136     if (op == 0xEB || (op & 0xF0) == 0x70) {
 137       // short offset operators (jmp and jcc)
 138       char* disp = (char*) &branch[1];
 139       int imm8 = target - (address) &disp[1];
 140       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d",
 141                 file == NULL ? "<NULL>" : file, line);
 142       *disp = imm8;
 143     } else {
 144       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 145       int imm32 = target - (address) &disp[1];
 146       *disp = imm32;
 147     }
 148   }
 149 
 150   // The following 4 methods return the offset of the appropriate move instruction
 151 
 152   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 153   int load_unsigned_byte(Register dst, Address src);
 154   int load_unsigned_short(Register dst, Address src);
 155 
 156   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 157   int load_signed_byte(Register dst, Address src);
 158   int load_signed_short(Register dst, Address src);
 159 
 160   // Support for sign-extension (hi:lo = extend_sign(lo))
 161   void extend_sign(Register hi, Register lo);
 162 
 163   // Load and store values by size and signed-ness
 164   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 165   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 166 
 167   // Support for inc/dec with optimal instruction selection depending on value
 168 
 169   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 170   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 171 
 172   void decrementl(Address dst, int value = 1);
 173   void decrementl(Register reg, int value = 1);
 174 
 175   void decrementq(Register reg, int value = 1);
 176   void decrementq(Address dst, int value = 1);
 177 
 178   void incrementl(Address dst, int value = 1);
 179   void incrementl(Register reg, int value = 1);
 180 
 181   void incrementq(Register reg, int value = 1);
 182   void incrementq(Address dst, int value = 1);
 183 
 184 #ifdef COMPILER2
 185   // special instructions for EVEX
 186   void setvectmask(Register dst, Register src);
 187   void restorevectmask();
 188 #endif
 189 
 190   // Support optimal SSE move instructions.
 191   void movflt(XMMRegister dst, XMMRegister src) {
 192     if (dst-> encoding() == src->encoding()) return;
 193     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 194     else                       { movss (dst, src); return; }
 195   }
 196   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 197   void movflt(XMMRegister dst, AddressLiteral src);
 198   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 199 
 200   void movdbl(XMMRegister dst, XMMRegister src) {
 201     if (dst-> encoding() == src->encoding()) return;
 202     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 203     else                       { movsd (dst, src); return; }
 204   }
 205 
 206   void movdbl(XMMRegister dst, AddressLiteral src);
 207 
 208   void movdbl(XMMRegister dst, Address src) {
 209     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 210     else                         { movlpd(dst, src); return; }
 211   }
 212   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 213 
 214   void incrementl(AddressLiteral dst);
 215   void incrementl(ArrayAddress dst);
 216 
 217   void incrementq(AddressLiteral dst);
 218 
 219   // Alignment
 220   void align(int modulus);
 221   void align(int modulus, int target);
 222 
 223   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 224   void fat_nop();
 225 
 226   // Stack frame creation/removal
 227   void enter();
 228   void leave();
 229 
 230   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 231   // The pointer will be loaded into the thread register.
 232   void get_thread(Register thread);
 233 
 234 
 235   // Support for VM calls
 236   //
 237   // It is imperative that all calls into the VM are handled via the call_VM macros.
 238   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 239   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 240 
 241 
 242   void call_VM(Register oop_result,
 243                address entry_point,
 244                bool check_exceptions = true);
 245   void call_VM(Register oop_result,
 246                address entry_point,
 247                Register arg_1,
 248                bool check_exceptions = true);
 249   void call_VM(Register oop_result,
 250                address entry_point,
 251                Register arg_1, Register arg_2,
 252                bool check_exceptions = true);
 253   void call_VM(Register oop_result,
 254                address entry_point,
 255                Register arg_1, Register arg_2, Register arg_3,
 256                bool check_exceptions = true);
 257 
 258   // Overloadings with last_Java_sp
 259   void call_VM(Register oop_result,
 260                Register last_java_sp,
 261                address entry_point,
 262                int number_of_arguments = 0,
 263                bool check_exceptions = true);
 264   void call_VM(Register oop_result,
 265                Register last_java_sp,
 266                address entry_point,
 267                Register arg_1, bool
 268                check_exceptions = true);
 269   void call_VM(Register oop_result,
 270                Register last_java_sp,
 271                address entry_point,
 272                Register arg_1, Register arg_2,
 273                bool check_exceptions = true);
 274   void call_VM(Register oop_result,
 275                Register last_java_sp,
 276                address entry_point,
 277                Register arg_1, Register arg_2, Register arg_3,
 278                bool check_exceptions = true);
 279 
 280   void get_vm_result  (Register oop_result, Register thread);
 281   void get_vm_result_2(Register metadata_result, Register thread);
 282 
 283   // These always tightly bind to MacroAssembler::call_VM_base
 284   // bypassing the virtual implementation
 285   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 286   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 287   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 288   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 289   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 290 
 291   void call_VM_leaf0(address entry_point);
 292   void call_VM_leaf(address entry_point,
 293                     int number_of_arguments = 0);
 294   void call_VM_leaf(address entry_point,
 295                     Register arg_1);
 296   void call_VM_leaf(address entry_point,
 297                     Register arg_1, Register arg_2);
 298   void call_VM_leaf(address entry_point,
 299                     Register arg_1, Register arg_2, Register arg_3);
 300 
 301   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 302   // bypassing the virtual implementation
 303   void super_call_VM_leaf(address entry_point);
 304   void super_call_VM_leaf(address entry_point, Register arg_1);
 305   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 306   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 307   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 308 
 309   // last Java Frame (fills frame anchor)
 310   void set_last_Java_frame(Register thread,
 311                            Register last_java_sp,
 312                            Register last_java_fp,
 313                            address last_java_pc);
 314 
 315   // thread in the default location (r15_thread on 64bit)
 316   void set_last_Java_frame(Register last_java_sp,
 317                            Register last_java_fp,
 318                            address last_java_pc);
 319 
 320   void reset_last_Java_frame(Register thread, bool clear_fp);
 321 
 322   // thread in the default location (r15_thread on 64bit)
 323   void reset_last_Java_frame(bool clear_fp);
 324 
 325   // jobjects
 326   void clear_jweak_tag(Register possibly_jweak);
 327   void resolve_jobject(Register value, Register thread, Register tmp);
 328 
 329   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 330   void c2bool(Register x);
 331 
 332   // C++ bool manipulation
 333 
 334   void movbool(Register dst, Address src);
 335   void movbool(Address dst, bool boolconst);
 336   void movbool(Address dst, Register src);
 337   void testbool(Register dst);
 338 
 339   void resolve_oop_handle(Register result, Register tmp = rscratch2);
 340   void resolve_weak_handle(Register result, Register tmp);
 341   void load_mirror(Register mirror, Register method, Register tmp = rscratch2);
 342   void load_method_holder_cld(Register rresult, Register rmethod);
 343 
 344   void load_method_holder(Register holder, Register method);
 345 
 346   // oop manipulations
 347   void load_metadata(Register dst, Register src);
 348   void load_storage_props(Register dst, Register src);
 349   void load_klass(Register dst, Register src);
 350   void store_klass(Register dst, Register src);
 351 
 352   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 353                       Register tmp1, Register thread_tmp);
 354   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 355                        Register tmp1, Register tmp2, Register tmp3 = noreg);
 356 
 357   void access_value_copy(DecoratorSet decorators, Register src, Register dst, Register value_klass);
 358 
 359   // value type data payload offsets...
 360   void first_field_offset(Register value_klass, Register offset);
 361   void data_for_oop(Register oop, Register data, Register value_klass);
 362   // get data payload ptr a flat value array at index, kills rcx and index
 363   void data_for_value_array_index(Register array, Register array_klass,
 364                                   Register index, Register data);
 365 
 366 
 367   // Resolves obj access. Result is placed in the same register.
 368   // All other registers are preserved.
 369   void resolve(DecoratorSet decorators, Register obj);
 370 
 371   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 372                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 373   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 374                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 375   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 376                       Register tmp2 = noreg, Register tmp3 = noreg, DecoratorSet decorators = 0);
 377 
 378   // Used for storing NULL. All other oop constants should be
 379   // stored using routines that take a jobject.
 380   void store_heap_oop_null(Address dst);
 381 
 382   void load_prototype_header(Register dst, Register src);
 383 
 384 #ifdef _LP64
 385   void store_klass_gap(Register dst, Register src);
 386 
 387   // This dummy is to prevent a call to store_heap_oop from
 388   // converting a zero (like NULL) into a Register by giving
 389   // the compiler two choices it can't resolve
 390 
 391   void store_heap_oop(Address dst, void* dummy);
 392 
 393   void encode_heap_oop(Register r);
 394   void decode_heap_oop(Register r);
 395   void encode_heap_oop_not_null(Register r);
 396   void decode_heap_oop_not_null(Register r);
 397   void encode_heap_oop_not_null(Register dst, Register src);
 398   void decode_heap_oop_not_null(Register dst, Register src);
 399 
 400   void set_narrow_oop(Register dst, jobject obj);
 401   void set_narrow_oop(Address dst, jobject obj);
 402   void cmp_narrow_oop(Register dst, jobject obj);
 403   void cmp_narrow_oop(Address dst, jobject obj);
 404 
 405   void encode_klass_not_null(Register r);
 406   void decode_klass_not_null(Register r);
 407   void encode_klass_not_null(Register dst, Register src);
 408   void decode_klass_not_null(Register dst, Register src);
 409   void set_narrow_klass(Register dst, Klass* k);
 410   void set_narrow_klass(Address dst, Klass* k);
 411   void cmp_narrow_klass(Register dst, Klass* k);
 412   void cmp_narrow_klass(Address dst, Klass* k);
 413 
 414   // Returns the byte size of the instructions generated by decode_klass_not_null()
 415   // when compressed klass pointers are being used.
 416   static int instr_size_for_decode_klass_not_null();
 417 
 418   // if heap base register is used - reinit it with the correct value
 419   void reinit_heapbase();
 420 
 421   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 422 
 423 #endif // _LP64
 424 
 425   // Int division/remainder for Java
 426   // (as idivl, but checks for special case as described in JVM spec.)
 427   // returns idivl instruction offset for implicit exception handling
 428   int corrected_idivl(Register reg);
 429 
 430   // Long division/remainder for Java
 431   // (as idivq, but checks for special case as described in JVM spec.)
 432   // returns idivq instruction offset for implicit exception handling
 433   int corrected_idivq(Register reg);
 434 
 435   void int3();
 436 
 437   // Long operation macros for a 32bit cpu
 438   // Long negation for Java
 439   void lneg(Register hi, Register lo);
 440 
 441   // Long multiplication for Java
 442   // (destroys contents of eax, ebx, ecx and edx)
 443   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 444 
 445   // Long shifts for Java
 446   // (semantics as described in JVM spec.)
 447   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 448   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 449 
 450   // Long compare for Java
 451   // (semantics as described in JVM spec.)
 452   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 453 
 454 
 455   // misc
 456 
 457   // Sign extension
 458   void sign_extend_short(Register reg);
 459   void sign_extend_byte(Register reg);
 460 
 461   // Division by power of 2, rounding towards 0
 462   void division_with_shift(Register reg, int shift_value);
 463 
 464   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 465   //
 466   // CF (corresponds to C0) if x < y
 467   // PF (corresponds to C2) if unordered
 468   // ZF (corresponds to C3) if x = y
 469   //
 470   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 471   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 472   void fcmp(Register tmp);
 473   // Variant of the above which allows y to be further down the stack
 474   // and which only pops x and y if specified. If pop_right is
 475   // specified then pop_left must also be specified.
 476   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 477 
 478   // Floating-point comparison for Java
 479   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 480   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 481   // (semantics as described in JVM spec.)
 482   void fcmp2int(Register dst, bool unordered_is_less);
 483   // Variant of the above which allows y to be further down the stack
 484   // and which only pops x and y if specified. If pop_right is
 485   // specified then pop_left must also be specified.
 486   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 487 
 488   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 489   // tmp is a temporary register, if none is available use noreg
 490   void fremr(Register tmp);
 491 
 492   // dst = c = a * b + c
 493   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 494   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 495 
 496   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 497   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 498   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 499   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 500 
 501 
 502   // same as fcmp2int, but using SSE2
 503   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 504   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 505 
 506   // branch to L if FPU flag C2 is set/not set
 507   // tmp is a temporary register, if none is available use noreg
 508   void jC2 (Register tmp, Label& L);
 509   void jnC2(Register tmp, Label& L);
 510 
 511   // Pop ST (ffree & fincstp combined)
 512   void fpop();
 513 
 514   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 515   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 516   void load_float(Address src);
 517 
 518   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 519   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 520   void store_float(Address dst);
 521 
 522   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 523   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 524   void load_double(Address src);
 525 
 526   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 527   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 528   void store_double(Address dst);
 529 
 530   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 531   void push_fTOS();
 532 
 533   // pops double TOS element from CPU stack and pushes on FPU stack
 534   void pop_fTOS();
 535 
 536   void empty_FPU_stack();
 537 
 538   void push_IU_state();
 539   void pop_IU_state();
 540 
 541   void push_FPU_state();
 542   void pop_FPU_state();
 543 
 544   void push_CPU_state();
 545   void pop_CPU_state();
 546 
 547   // Round up to a power of two
 548   void round_to(Register reg, int modulus);
 549 
 550   // Callee saved registers handling
 551   void push_callee_saved_registers();
 552   void pop_callee_saved_registers();
 553 
 554   // allocation
 555 
 556   // Object / value buffer allocation...
 557   // Allocate instance of klass, assumes klass initialized by caller
 558   // new_obj prefers to be rax
 559   // Kills t1 and t2, perserves klass, return allocation in new_obj (rsi on LP64)
 560   void allocate_instance(Register klass, Register new_obj,
 561                          Register t1, Register t2,
 562                          bool clear_fields, Label& alloc_failed);
 563 
 564   void eden_allocate(
 565     Register thread,                   // Current thread
 566     Register obj,                      // result: pointer to object after successful allocation
 567     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 568     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 569     Register t1,                       // temp register
 570     Label&   slow_case                 // continuation point if fast allocation fails
 571   );
 572   void tlab_allocate(
 573     Register thread,                   // Current thread
 574     Register obj,                      // result: pointer to object after successful allocation
 575     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 576     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 577     Register t1,                       // temp register
 578     Register t2,                       // temp register
 579     Label&   slow_case                 // continuation point if fast allocation fails
 580   );
 581   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 582 
 583   // For field "index" within "klass", return value_klass ...
 584   void get_value_field_klass(Register klass, Register index, Register value_klass);
 585 
 586   // interface method calling
 587   void lookup_interface_method(Register recv_klass,
 588                                Register intf_klass,
 589                                RegisterOrConstant itable_index,
 590                                Register method_result,
 591                                Register scan_temp,
 592                                Label& no_such_interface,
 593                                bool return_method = true);
 594 
 595   // virtual method calling
 596   void lookup_virtual_method(Register recv_klass,
 597                              RegisterOrConstant vtable_index,
 598                              Register method_result);
 599 
 600   // Test sub_klass against super_klass, with fast and slow paths.
 601 
 602   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 603   // One of the three labels can be NULL, meaning take the fall-through.
 604   // If super_check_offset is -1, the value is loaded up from super_klass.
 605   // No registers are killed, except temp_reg.
 606   void check_klass_subtype_fast_path(Register sub_klass,
 607                                      Register super_klass,
 608                                      Register temp_reg,
 609                                      Label* L_success,
 610                                      Label* L_failure,
 611                                      Label* L_slow_path,
 612                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 613 
 614   // The rest of the type check; must be wired to a corresponding fast path.
 615   // It does not repeat the fast path logic, so don't use it standalone.
 616   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 617   // Updates the sub's secondary super cache as necessary.
 618   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 619   void check_klass_subtype_slow_path(Register sub_klass,
 620                                      Register super_klass,
 621                                      Register temp_reg,
 622                                      Register temp2_reg,
 623                                      Label* L_success,
 624                                      Label* L_failure,
 625                                      bool set_cond_codes = false);
 626 
 627   // Simplified, combined version, good for typical uses.
 628   // Falls through on failure.
 629   void check_klass_subtype(Register sub_klass,
 630                            Register super_klass,
 631                            Register temp_reg,
 632                            Label& L_success);
 633 
 634   void clinit_barrier(Register klass,
 635                       Register thread,
 636                       Label* L_fast_path = NULL,
 637                       Label* L_slow_path = NULL);
 638 
 639   // method handles (JSR 292)
 640   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 641 
 642   //----
 643   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 644 
 645   // Debugging
 646 
 647   // only if +VerifyOops
 648   // TODO: Make these macros with file and line like sparc version!
 649   void verify_oop(Register reg, const char* s = "broken oop");
 650   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 651 
 652   // TODO: verify method and klass metadata (compare against vptr?)
 653   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 654   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 655 
 656 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 657 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 658 
 659   // only if +VerifyFPU
 660   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 661 
 662   // Verify or restore cpu control state after JNI call
 663   void restore_cpu_control_state_after_jni();
 664 
 665   // prints msg, dumps registers and stops execution
 666   void stop(const char* msg);
 667 
 668   // prints msg and continues
 669   void warn(const char* msg);
 670 
 671   // dumps registers and other state
 672   void print_state();
 673 
 674   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 675   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 676   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 677   static void print_state64(int64_t pc, int64_t regs[]);
 678 
 679   void os_breakpoint();
 680 
 681   void untested()                                { stop("untested"); }
 682 
 683   void unimplemented(const char* what = "");
 684 
 685   void should_not_reach_here()                   { stop("should not reach here"); }
 686 
 687   void print_CPU_state();
 688 
 689   // Stack overflow checking
 690   void bang_stack_with_offset(int offset) {
 691     // stack grows down, caller passes positive offset
 692     assert(offset > 0, "must bang with negative offset");
 693     movl(Address(rsp, (-offset)), rax);
 694   }
 695 
 696   // Writes to stack successive pages until offset reached to check for
 697   // stack overflow + shadow pages.  Also, clobbers tmp
 698   void bang_stack_size(Register size, Register tmp);
 699 
 700   // Check for reserved stack access in method being exited (for JIT)
 701   void reserved_stack_check();
 702 
 703   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 704                                                 Register tmp,
 705                                                 int offset);
 706 
 707   // If thread_reg is != noreg the code assumes the register passed contains
 708   // the thread (required on 64 bit).
 709   void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
 710 
 711   void verify_tlab();
 712 
 713   // Biased locking support
 714   // lock_reg and obj_reg must be loaded up with the appropriate values.
 715   // swap_reg must be rax, and is killed.
 716   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 717   // be killed; if not supplied, push/pop will be used internally to
 718   // allocate a temporary (inefficient, avoid if possible).
 719   // Optional slow case is for implementations (interpreter and C1) which branch to
 720   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 721   // Returns offset of first potentially-faulting instruction for null
 722   // check info (currently consumed only by C1). If
 723   // swap_reg_contains_mark is true then returns -1 as it is assumed
 724   // the calling code has already passed any potential faults.
 725   int biased_locking_enter(Register lock_reg, Register obj_reg,
 726                            Register swap_reg, Register tmp_reg,
 727                            bool swap_reg_contains_mark,
 728                            Label& done, Label* slow_case = NULL,
 729                            BiasedLockingCounters* counters = NULL);
 730   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 731 #ifdef COMPILER2
 732   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 733   // See full desription in macroAssembler_x86.cpp.
 734   void fast_lock(Register obj, Register box, Register tmp,
 735                  Register scr, Register cx1, Register cx2,
 736                  BiasedLockingCounters* counters,
 737                  RTMLockingCounters* rtm_counters,
 738                  RTMLockingCounters* stack_rtm_counters,
 739                  Metadata* method_data,
 740                  bool use_rtm, bool profile_rtm);
 741   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 742 #if INCLUDE_RTM_OPT
 743   void rtm_counters_update(Register abort_status, Register rtm_counters);
 744   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 745   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 746                                    RTMLockingCounters* rtm_counters,
 747                                    Metadata* method_data);
 748   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 749                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 750   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 751   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 752   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 753                          Register retry_on_abort_count,
 754                          RTMLockingCounters* stack_rtm_counters,
 755                          Metadata* method_data, bool profile_rtm,
 756                          Label& DONE_LABEL, Label& IsInflated);
 757   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 758                             Register scr, Register retry_on_busy_count,
 759                             Register retry_on_abort_count,
 760                             RTMLockingCounters* rtm_counters,
 761                             Metadata* method_data, bool profile_rtm,
 762                             Label& DONE_LABEL);
 763 #endif
 764 #endif
 765 
 766   Condition negate_condition(Condition cond);
 767 
 768   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 769   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 770   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 771   // here in MacroAssembler. The major exception to this rule is call
 772 
 773   // Arithmetics
 774 
 775 
 776   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 777   void addptr(Address dst, Register src);
 778 
 779   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 780   void addptr(Register dst, int32_t src);
 781   void addptr(Register dst, Register src);
 782   void addptr(Register dst, RegisterOrConstant src) {
 783     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 784     else                   addptr(dst,       src.as_register());
 785   }
 786 
 787   void andptr(Register dst, int32_t src);
 788   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 789 
 790   void cmp8(AddressLiteral src1, int imm);
 791 
 792   // renamed to drag out the casting of address to int32_t/intptr_t
 793   void cmp32(Register src1, int32_t imm);
 794 
 795   void cmp32(AddressLiteral src1, int32_t imm);
 796   // compare reg - mem, or reg - &mem
 797   void cmp32(Register src1, AddressLiteral src2);
 798 
 799   void cmp32(Register src1, Address src2);
 800 
 801 #ifndef _LP64
 802   void cmpklass(Address dst, Metadata* obj);
 803   void cmpklass(Register dst, Metadata* obj);
 804   void cmpoop(Address dst, jobject obj);
 805   void cmpoop_raw(Address dst, jobject obj);
 806 #endif // _LP64
 807 
 808   void cmpoop(Register src1, Register src2);
 809   void cmpoop(Register src1, Address src2);
 810   void cmpoop(Register dst, jobject obj);
 811   void cmpoop_raw(Register dst, jobject obj);
 812 
 813   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 814   void cmpptr(Address src1, AddressLiteral src2);
 815 
 816   void cmpptr(Register src1, AddressLiteral src2);
 817 
 818   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 819   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 820   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 821 
 822   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 823   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 824 
 825   // cmp64 to avoild hiding cmpq
 826   void cmp64(Register src1, AddressLiteral src);
 827 
 828   void cmpxchgptr(Register reg, Address adr);
 829 
 830   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 831 
 832 
 833   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 834   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 835 
 836 
 837   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 838 
 839   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 840 
 841   void shlptr(Register dst, int32_t shift);
 842   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 843 
 844   void shrptr(Register dst, int32_t shift);
 845   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 846 
 847   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 848   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 849 
 850   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 851 
 852   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 853   void subptr(Register dst, int32_t src);
 854   // Force generation of a 4 byte immediate value even if it fits into 8bit
 855   void subptr_imm32(Register dst, int32_t src);
 856   void subptr(Register dst, Register src);
 857   void subptr(Register dst, RegisterOrConstant src) {
 858     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 859     else                   subptr(dst,       src.as_register());
 860   }
 861 
 862   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 863   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 864 
 865   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 866   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 867 
 868   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 869 
 870 
 871 
 872   // Helper functions for statistics gathering.
 873   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 874   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 875   // Unconditional atomic increment.
 876   void atomic_incl(Address counter_addr);
 877   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 878 #ifdef _LP64
 879   void atomic_incq(Address counter_addr);
 880   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 881 #endif
 882   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 883   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 884 
 885   void lea(Register dst, AddressLiteral adr);
 886   void lea(Address dst, AddressLiteral adr);
 887   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 888 
 889   void leal32(Register dst, Address src) { leal(dst, src); }
 890 
 891   // Import other testl() methods from the parent class or else
 892   // they will be hidden by the following overriding declaration.
 893   using Assembler::testl;
 894   void testl(Register dst, AddressLiteral src);
 895 
 896   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 897   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 898   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 899   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 900 
 901   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 902   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 903   void testptr(Register src1, Register src2);
 904 
 905   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 906   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 907 
 908   // Calls
 909 
 910   void call(Label& L, relocInfo::relocType rtype);
 911   void call(Register entry);
 912 
 913   // NOTE: this call transfers to the effective address of entry NOT
 914   // the address contained by entry. This is because this is more natural
 915   // for jumps/calls.
 916   void call(AddressLiteral entry);
 917 
 918   // Emit the CompiledIC call idiom
 919   void ic_call(address entry, jint method_index = 0);
 920 
 921   // Jumps
 922 
 923   // NOTE: these jumps tranfer to the effective address of dst NOT
 924   // the address contained by dst. This is because this is more natural
 925   // for jumps/calls.
 926   void jump(AddressLiteral dst);
 927   void jump_cc(Condition cc, AddressLiteral dst);
 928 
 929   // 32bit can do a case table jump in one instruction but we no longer allow the base
 930   // to be installed in the Address class. This jump will tranfers to the address
 931   // contained in the location described by entry (not the address of entry)
 932   void jump(ArrayAddress entry);
 933 
 934   // Floating
 935 
 936   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 937   void andpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
 938   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 939 
 940   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 941   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 942   void andps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
 943 
 944   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 945   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 946   void comiss(XMMRegister dst, AddressLiteral src);
 947 
 948   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 949   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 950   void comisd(XMMRegister dst, AddressLiteral src);
 951 
 952   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 953   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 954 
 955   void fldcw(Address src) { Assembler::fldcw(src); }
 956   void fldcw(AddressLiteral src);
 957 
 958   void fld_s(int index)   { Assembler::fld_s(index); }
 959   void fld_s(Address src) { Assembler::fld_s(src); }
 960   void fld_s(AddressLiteral src);
 961 
 962   void fld_d(Address src) { Assembler::fld_d(src); }
 963   void fld_d(AddressLiteral src);
 964 
 965   void fld_x(Address src) { Assembler::fld_x(src); }
 966   void fld_x(AddressLiteral src);
 967 
 968   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 969   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 970 
 971   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 972   void ldmxcsr(AddressLiteral src);
 973 
 974 #ifdef _LP64
 975  private:
 976   void sha256_AVX2_one_round_compute(
 977     Register  reg_old_h,
 978     Register  reg_a,
 979     Register  reg_b,
 980     Register  reg_c,
 981     Register  reg_d,
 982     Register  reg_e,
 983     Register  reg_f,
 984     Register  reg_g,
 985     Register  reg_h,
 986     int iter);
 987   void sha256_AVX2_four_rounds_compute_first(int start);
 988   void sha256_AVX2_four_rounds_compute_last(int start);
 989   void sha256_AVX2_one_round_and_sched(
 990         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 991         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 992         XMMRegister xmm_2,     /* ymm6 */
 993         XMMRegister xmm_3,     /* ymm7 */
 994         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 995         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 996         Register    reg_c,      /* edi */
 997         Register    reg_d,      /* esi */
 998         Register    reg_e,      /* r8d */
 999         Register    reg_f,      /* r9d */
1000         Register    reg_g,      /* r10d */
1001         Register    reg_h,      /* r11d */
1002         int iter);
1003 
1004   void addm(int disp, Register r1, Register r2);
1005   void gfmul(XMMRegister tmp0, XMMRegister t);
1006   void schoolbookAAD(int i, Register subkeyH, XMMRegister data, XMMRegister tmp0,
1007                      XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3);
1008   void generateHtbl_one_block(Register htbl);
1009   void generateHtbl_eight_blocks(Register htbl);
1010  public:
1011   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1012                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1013                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1014                    bool multi_block, XMMRegister shuf_mask);
1015   void avx_ghash(Register state, Register htbl, Register data, Register blocks);
1016 #endif
1017 
1018 #ifdef _LP64
1019  private:
1020   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
1021                                      Register e, Register f, Register g, Register h, int iteration);
1022 
1023   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1024                                           Register a, Register b, Register c, Register d, Register e, Register f,
1025                                           Register g, Register h, int iteration);
1026 
1027   void addmq(int disp, Register r1, Register r2);
1028  public:
1029   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1030                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1031                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
1032                    XMMRegister shuf_mask);
1033 private:
1034   void roundEnc(XMMRegister key, int rnum);
1035   void lastroundEnc(XMMRegister key, int rnum);
1036   void roundDec(XMMRegister key, int rnum);
1037   void lastroundDec(XMMRegister key, int rnum);
1038   void ev_load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask);
1039 
1040 public:
1041   void aesecb_encrypt(Register source_addr, Register dest_addr, Register key, Register len);
1042   void aesecb_decrypt(Register source_addr, Register dest_addr, Register key, Register len);
1043   void aesctr_encrypt(Register src_addr, Register dest_addr, Register key, Register counter,
1044                       Register len_reg, Register used, Register used_addr, Register saved_encCounter_start);
1045 
1046 #endif
1047 
1048   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
1049                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
1050                  Register buf, Register state, Register ofs, Register limit, Register rsp,
1051                  bool multi_block);
1052 
1053 #ifdef _LP64
1054   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1055                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1056                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1057                    bool multi_block, XMMRegister shuf_mask);
1058 #else
1059   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1060                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1061                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1062                    bool multi_block);
1063 #endif
1064 
1065   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1066                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1067                 Register rax, Register rcx, Register rdx, Register tmp);
1068 
1069 #ifdef _LP64
1070   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1071                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1072                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
1073 
1074   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1075                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1076                   Register rax, Register rcx, Register rdx, Register r11);
1077 
1078   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1079                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1080                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1081 
1082   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1083                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1084                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1085                 Register tmp3, Register tmp4);
1086 
1087   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1088                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1089                 Register rax, Register rcx, Register rdx, Register tmp1,
1090                 Register tmp2, Register tmp3, Register tmp4);
1091   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1092                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1093                 Register rax, Register rcx, Register rdx, Register tmp1,
1094                 Register tmp2, Register tmp3, Register tmp4);
1095 #else
1096   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1097                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1098                 Register rax, Register rcx, Register rdx, Register tmp1);
1099 
1100   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1101                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1102                 Register rax, Register rcx, Register rdx, Register tmp);
1103 
1104   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1105                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1106                 Register rdx, Register tmp);
1107 
1108   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1109                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1110                 Register rax, Register rbx, Register rdx);
1111 
1112   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1113                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1114                 Register rax, Register rcx, Register rdx, Register tmp);
1115 
1116   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1117                         Register edx, Register ebx, Register esi, Register edi,
1118                         Register ebp, Register esp);
1119 
1120   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1121                          Register esi, Register edi, Register ebp, Register esp);
1122 
1123   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1124                         Register edx, Register ebx, Register esi, Register edi,
1125                         Register ebp, Register esp);
1126 
1127   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1128                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1129                 Register rax, Register rcx, Register rdx, Register tmp);
1130 #endif
1131 
1132   void increase_precision();
1133   void restore_precision();
1134 
1135 private:
1136 
1137   // these are private because users should be doing movflt/movdbl
1138 
1139   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1140   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1141   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1142   void movss(XMMRegister dst, AddressLiteral src);
1143 
1144   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1145   void movlpd(XMMRegister dst, AddressLiteral src);
1146 
1147 public:
1148 
1149   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1150   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1151   void addsd(XMMRegister dst, AddressLiteral src);
1152 
1153   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1154   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1155   void addss(XMMRegister dst, AddressLiteral src);
1156 
1157   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1158   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1159   void addpd(XMMRegister dst, AddressLiteral src);
1160 
1161   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1162   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1163   void divsd(XMMRegister dst, AddressLiteral src);
1164 
1165   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1166   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1167   void divss(XMMRegister dst, AddressLiteral src);
1168 
1169   // Move Unaligned Double Quadword
1170   void movdqu(Address     dst, XMMRegister src);
1171   void movdqu(XMMRegister dst, Address src);
1172   void movdqu(XMMRegister dst, XMMRegister src);
1173   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1174   // AVX Unaligned forms
1175   void vmovdqu(Address     dst, XMMRegister src);
1176   void vmovdqu(XMMRegister dst, Address src);
1177   void vmovdqu(XMMRegister dst, XMMRegister src);
1178   void vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1179   void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1180   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1181   void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1182   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch);
1183 
1184   // Move Aligned Double Quadword
1185   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1186   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1187   void movdqa(XMMRegister dst, AddressLiteral src);
1188 
1189   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1190   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1191   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1192   void movsd(XMMRegister dst, AddressLiteral src);
1193 
1194   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1195   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1196   void mulpd(XMMRegister dst, AddressLiteral src);
1197 
1198   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1199   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1200   void mulsd(XMMRegister dst, AddressLiteral src);
1201 
1202   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1203   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1204   void mulss(XMMRegister dst, AddressLiteral src);
1205 
1206   // Carry-Less Multiplication Quadword
1207   void pclmulldq(XMMRegister dst, XMMRegister src) {
1208     // 0x00 - multiply lower 64 bits [0:63]
1209     Assembler::pclmulqdq(dst, src, 0x00);
1210   }
1211   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1212     // 0x11 - multiply upper 64 bits [64:127]
1213     Assembler::pclmulqdq(dst, src, 0x11);
1214   }
1215 
1216   void pcmpeqb(XMMRegister dst, XMMRegister src);
1217   void pcmpeqw(XMMRegister dst, XMMRegister src);
1218 
1219   void pcmpestri(XMMRegister dst, Address src, int imm8);
1220   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1221 
1222   void pmovzxbw(XMMRegister dst, XMMRegister src);
1223   void pmovzxbw(XMMRegister dst, Address src);
1224 
1225   void pmovmskb(Register dst, XMMRegister src);
1226 
1227   void ptest(XMMRegister dst, XMMRegister src);
1228 
1229   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1230   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1231   void sqrtsd(XMMRegister dst, AddressLiteral src);
1232 
1233   void roundsd(XMMRegister dst, XMMRegister src, int32_t rmode)    { Assembler::roundsd(dst, src, rmode); }
1234   void roundsd(XMMRegister dst, Address src, int32_t rmode)        { Assembler::roundsd(dst, src, rmode); }
1235   void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register scratch_reg);
1236 
1237   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1238   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1239   void sqrtss(XMMRegister dst, AddressLiteral src);
1240 
1241   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1242   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1243   void subsd(XMMRegister dst, AddressLiteral src);
1244 
1245   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1246   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1247   void subss(XMMRegister dst, AddressLiteral src);
1248 
1249   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1250   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1251   void ucomiss(XMMRegister dst, AddressLiteral src);
1252 
1253   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1254   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1255   void ucomisd(XMMRegister dst, AddressLiteral src);
1256 
1257   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1258   void xorpd(XMMRegister dst, XMMRegister src);
1259   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1260   void xorpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1261 
1262   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1263   void xorps(XMMRegister dst, XMMRegister src);
1264   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1265   void xorps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1266 
1267   // Shuffle Bytes
1268   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1269   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1270   void pshufb(XMMRegister dst, AddressLiteral src);
1271   // AVX 3-operands instructions
1272 
1273   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1274   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1275   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1276 
1277   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1278   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1279   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1280 
1281   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1282   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1283 
1284   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1285   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1286 
1287   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1288   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1289 
1290   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1291   void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1292   void vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch);
1293 
1294   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1295   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1296   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1297 
1298   void vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
1299   void vpbroadcastw(XMMRegister dst, Address src, int vector_len) { Assembler::vpbroadcastw(dst, src, vector_len); }
1300 
1301   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1302 
1303   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1304 
1305   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1306   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1307 
1308   void vpmovmskb(Register dst, XMMRegister src);
1309 
1310   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1311   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1312 
1313   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1314   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1315 
1316   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1317   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1318 
1319   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1320   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1321 
1322   void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1323   void evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1324 
1325   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1326   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1327 
1328   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1329   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1330 
1331   void vptest(XMMRegister dst, XMMRegister src);
1332 
1333   void punpcklbw(XMMRegister dst, XMMRegister src);
1334   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1335 
1336   void pshufd(XMMRegister dst, Address src, int mode);
1337   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1338 
1339   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1340   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1341 
1342   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1343   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1344   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1345 
1346   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1347   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1348   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1349 
1350   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1351   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1352   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1353 
1354   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1355   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1356   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1357 
1358   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1359   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1360   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1361 
1362   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1363   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1364   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1365 
1366   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1367   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1368   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1369 
1370   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1371   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1372   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1373 
1374   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1375   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1376 
1377   // AVX Vector instructions
1378 
1379   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1380   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1381   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1382 
1383   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1384   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1385   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1386 
1387   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1388     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1389       Assembler::vpxor(dst, nds, src, vector_len);
1390     else
1391       Assembler::vxorpd(dst, nds, src, vector_len);
1392   }
1393   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1394     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1395       Assembler::vpxor(dst, nds, src, vector_len);
1396     else
1397       Assembler::vxorpd(dst, nds, src, vector_len);
1398   }
1399   void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1400 
1401   // Simple version for AVX2 256bit vectors
1402   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1403   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1404 
1405   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1406     if (UseAVX > 2) {
1407       Assembler::vinserti32x4(dst, dst, src, imm8);
1408     } else if (UseAVX > 1) {
1409       // vinserti128 is available only in AVX2
1410       Assembler::vinserti128(dst, nds, src, imm8);
1411     } else {
1412       Assembler::vinsertf128(dst, nds, src, imm8);
1413     }
1414   }
1415 
1416   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1417     if (UseAVX > 2) {
1418       Assembler::vinserti32x4(dst, dst, src, imm8);
1419     } else if (UseAVX > 1) {
1420       // vinserti128 is available only in AVX2
1421       Assembler::vinserti128(dst, nds, src, imm8);
1422     } else {
1423       Assembler::vinsertf128(dst, nds, src, imm8);
1424     }
1425   }
1426 
1427   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1428     if (UseAVX > 2) {
1429       Assembler::vextracti32x4(dst, src, imm8);
1430     } else if (UseAVX > 1) {
1431       // vextracti128 is available only in AVX2
1432       Assembler::vextracti128(dst, src, imm8);
1433     } else {
1434       Assembler::vextractf128(dst, src, imm8);
1435     }
1436   }
1437 
1438   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1439     if (UseAVX > 2) {
1440       Assembler::vextracti32x4(dst, src, imm8);
1441     } else if (UseAVX > 1) {
1442       // vextracti128 is available only in AVX2
1443       Assembler::vextracti128(dst, src, imm8);
1444     } else {
1445       Assembler::vextractf128(dst, src, imm8);
1446     }
1447   }
1448 
1449   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1450   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1451     vinserti128(dst, dst, src, 1);
1452   }
1453   void vinserti128_high(XMMRegister dst, Address src) {
1454     vinserti128(dst, dst, src, 1);
1455   }
1456   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1457     vextracti128(dst, src, 1);
1458   }
1459   void vextracti128_high(Address dst, XMMRegister src) {
1460     vextracti128(dst, src, 1);
1461   }
1462 
1463   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1464     if (UseAVX > 2) {
1465       Assembler::vinsertf32x4(dst, dst, src, 1);
1466     } else {
1467       Assembler::vinsertf128(dst, dst, src, 1);
1468     }
1469   }
1470 
1471   void vinsertf128_high(XMMRegister dst, Address src) {
1472     if (UseAVX > 2) {
1473       Assembler::vinsertf32x4(dst, dst, src, 1);
1474     } else {
1475       Assembler::vinsertf128(dst, dst, src, 1);
1476     }
1477   }
1478 
1479   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1480     if (UseAVX > 2) {
1481       Assembler::vextractf32x4(dst, src, 1);
1482     } else {
1483       Assembler::vextractf128(dst, src, 1);
1484     }
1485   }
1486 
1487   void vextractf128_high(Address dst, XMMRegister src) {
1488     if (UseAVX > 2) {
1489       Assembler::vextractf32x4(dst, src, 1);
1490     } else {
1491       Assembler::vextractf128(dst, src, 1);
1492     }
1493   }
1494 
1495   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1496   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1497     Assembler::vinserti64x4(dst, dst, src, 1);
1498   }
1499   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1500     Assembler::vinsertf64x4(dst, dst, src, 1);
1501   }
1502   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1503     Assembler::vextracti64x4(dst, src, 1);
1504   }
1505   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1506     Assembler::vextractf64x4(dst, src, 1);
1507   }
1508   void vextractf64x4_high(Address dst, XMMRegister src) {
1509     Assembler::vextractf64x4(dst, src, 1);
1510   }
1511   void vinsertf64x4_high(XMMRegister dst, Address src) {
1512     Assembler::vinsertf64x4(dst, dst, src, 1);
1513   }
1514 
1515   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1516   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1517     vinserti128(dst, dst, src, 0);
1518   }
1519   void vinserti128_low(XMMRegister dst, Address src) {
1520     vinserti128(dst, dst, src, 0);
1521   }
1522   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1523     vextracti128(dst, src, 0);
1524   }
1525   void vextracti128_low(Address dst, XMMRegister src) {
1526     vextracti128(dst, src, 0);
1527   }
1528 
1529   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1530     if (UseAVX > 2) {
1531       Assembler::vinsertf32x4(dst, dst, src, 0);
1532     } else {
1533       Assembler::vinsertf128(dst, dst, src, 0);
1534     }
1535   }
1536 
1537   void vinsertf128_low(XMMRegister dst, Address src) {
1538     if (UseAVX > 2) {
1539       Assembler::vinsertf32x4(dst, dst, src, 0);
1540     } else {
1541       Assembler::vinsertf128(dst, dst, src, 0);
1542     }
1543   }
1544 
1545   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1546     if (UseAVX > 2) {
1547       Assembler::vextractf32x4(dst, src, 0);
1548     } else {
1549       Assembler::vextractf128(dst, src, 0);
1550     }
1551   }
1552 
1553   void vextractf128_low(Address dst, XMMRegister src) {
1554     if (UseAVX > 2) {
1555       Assembler::vextractf32x4(dst, src, 0);
1556     } else {
1557       Assembler::vextractf128(dst, src, 0);
1558     }
1559   }
1560 
1561   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1562   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1563     Assembler::vinserti64x4(dst, dst, src, 0);
1564   }
1565   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1566     Assembler::vinsertf64x4(dst, dst, src, 0);
1567   }
1568   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1569     Assembler::vextracti64x4(dst, src, 0);
1570   }
1571   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1572     Assembler::vextractf64x4(dst, src, 0);
1573   }
1574   void vextractf64x4_low(Address dst, XMMRegister src) {
1575     Assembler::vextractf64x4(dst, src, 0);
1576   }
1577   void vinsertf64x4_low(XMMRegister dst, Address src) {
1578     Assembler::vinsertf64x4(dst, dst, src, 0);
1579   }
1580 
1581   // Carry-Less Multiplication Quadword
1582   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1583     // 0x00 - multiply lower 64 bits [0:63]
1584     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1585   }
1586   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1587     // 0x11 - multiply upper 64 bits [64:127]
1588     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1589   }
1590   void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1591     // 0x10 - multiply nds[0:63] and src[64:127]
1592     Assembler::vpclmulqdq(dst, nds, src, 0x10);
1593   }
1594   void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1595     //0x01 - multiply nds[64:127] and src[0:63]
1596     Assembler::vpclmulqdq(dst, nds, src, 0x01);
1597   }
1598 
1599   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1600     // 0x00 - multiply lower 64 bits [0:63]
1601     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1602   }
1603   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1604     // 0x11 - multiply upper 64 bits [64:127]
1605     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1606   }
1607 
1608   // Data
1609 
1610   void cmov32( Condition cc, Register dst, Address  src);
1611   void cmov32( Condition cc, Register dst, Register src);
1612 
1613   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1614 
1615   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1616   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1617 
1618   void movoop(Register dst, jobject obj);
1619   void movoop(Address dst, jobject obj);
1620 
1621   void mov_metadata(Register dst, Metadata* obj);
1622   void mov_metadata(Address dst, Metadata* obj);
1623 
1624   void movptr(ArrayAddress dst, Register src);
1625   // can this do an lea?
1626   void movptr(Register dst, ArrayAddress src);
1627 
1628   void movptr(Register dst, Address src);
1629 
1630 #ifdef _LP64
1631   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1632 #else
1633   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1634 #endif
1635 
1636   void movptr(Register dst, intptr_t src);
1637   void movptr(Register dst, Register src);
1638   void movptr(Address dst, intptr_t src);
1639 
1640   void movptr(Address dst, Register src);
1641 
1642   void movptr(Register dst, RegisterOrConstant src) {
1643     if (src.is_constant()) movptr(dst, src.as_constant());
1644     else                   movptr(dst, src.as_register());
1645   }
1646 
1647 #ifdef _LP64
1648   // Generally the next two are only used for moving NULL
1649   // Although there are situations in initializing the mark word where
1650   // they could be used. They are dangerous.
1651 
1652   // They only exist on LP64 so that int32_t and intptr_t are not the same
1653   // and we have ambiguous declarations.
1654 
1655   void movptr(Address dst, int32_t imm32);
1656   void movptr(Register dst, int32_t imm32);
1657 #endif // _LP64
1658 
1659   // to avoid hiding movl
1660   void mov32(AddressLiteral dst, Register src);
1661   void mov32(Register dst, AddressLiteral src);
1662 
1663   // to avoid hiding movb
1664   void movbyte(ArrayAddress dst, int src);
1665 
1666   // Import other mov() methods from the parent class or else
1667   // they will be hidden by the following overriding declaration.
1668   using Assembler::movdl;
1669   using Assembler::movq;
1670   void movdl(XMMRegister dst, AddressLiteral src);
1671   void movq(XMMRegister dst, AddressLiteral src);
1672 
1673   // Can push value or effective address
1674   void pushptr(AddressLiteral src);
1675 
1676   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1677   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1678 
1679   void pushoop(jobject obj);
1680   void pushklass(Metadata* obj);
1681 
1682   // sign extend as need a l to ptr sized element
1683   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1684   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1685 
1686 #ifdef COMPILER2
1687   // Generic instructions support for use in .ad files C2 code generation
1688   void vabsnegd(int opcode, XMMRegister dst, Register scr);
1689   void vabsnegd(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr);
1690   void vabsnegf(int opcode, XMMRegister dst, Register scr);
1691   void vabsnegf(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr);
1692   void vextendbw(bool sign, XMMRegister dst, XMMRegister src, int vector_len);
1693   void vextendbw(bool sign, XMMRegister dst, XMMRegister src);
1694   void vshiftd(int opcode, XMMRegister dst, XMMRegister src);
1695   void vshiftd(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1696   void vshiftw(int opcode, XMMRegister dst, XMMRegister src);
1697   void vshiftw(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1698   void vshiftq(int opcode, XMMRegister dst, XMMRegister src);
1699   void vshiftq(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1700 #endif
1701 
1702   // C2 compiled method's prolog code.
1703   void verified_entry(Compile* C, int sp_inc = 0);
1704 
1705   enum RegState {
1706     reg_readonly,
1707     reg_writable,
1708     reg_written
1709   };
1710 
1711   int store_value_type_fields_to_buf(ciValueKlass* vk, bool from_interpreter = true);
1712 
1713   // Unpack all value type arguments passed as oops
1714   void unpack_value_args(Compile* C, bool receiver_only);
1715   bool move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[], int ret_off, int extra_stack_offset);
1716   bool unpack_value_helper(const GrowableArray<SigEntry>* sig, int& sig_index, VMReg from, VMRegPair* regs_to, int& to_index,
1717                            RegState reg_state[], int ret_off, int extra_stack_offset);
1718   bool pack_value_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index,
1719                          VMReg to, VMRegPair* regs_from, int regs_from_count, int& from_index, RegState reg_state[],
1720                          int ret_off, int extra_stack_offset);
1721   void restore_stack(Compile* C);
1722 
1723   int shuffle_value_args(bool is_packing, bool receiver_only, int extra_stack_offset,
1724                          BasicType* sig_bt, const GrowableArray<SigEntry>* sig_cc,
1725                          int args_passed, int args_on_stack, VMRegPair* regs,
1726                          int args_passed_to, int args_on_stack_to, VMRegPair* regs_to);
1727   bool shuffle_value_args_spill(bool is_packing,  const GrowableArray<SigEntry>* sig_cc, int sig_cc_index,
1728                                 VMRegPair* regs_from, int from_index, int regs_from_count,
1729                                 RegState* reg_state, int sp_inc, int extra_stack_offset);
1730   VMReg spill_reg_for(VMReg reg);
1731 
1732   // clear memory of size 'cnt' qwords, starting at 'base';
1733   // if 'is_large' is set, do not try to produce short loop
1734   void clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp, bool is_large, bool word_copy_only);
1735 
1736   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
1737   void xmm_clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp);
1738 
1739 #ifdef COMPILER2
1740   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1741                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1742 
1743   // IndexOf strings.
1744   // Small strings are loaded through stack if they cross page boundary.
1745   void string_indexof(Register str1, Register str2,
1746                       Register cnt1, Register cnt2,
1747                       int int_cnt2,  Register result,
1748                       XMMRegister vec, Register tmp,
1749                       int ae);
1750 
1751   // IndexOf for constant substrings with size >= 8 elements
1752   // which don't need to be loaded through stack.
1753   void string_indexofC8(Register str1, Register str2,
1754                       Register cnt1, Register cnt2,
1755                       int int_cnt2,  Register result,
1756                       XMMRegister vec, Register tmp,
1757                       int ae);
1758 
1759     // Smallest code: we don't need to load through stack,
1760     // check string tail.
1761 
1762   // helper function for string_compare
1763   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1764                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1765                           Address::ScaleFactor scale2, Register index, int ae);
1766   // Compare strings.
1767   void string_compare(Register str1, Register str2,
1768                       Register cnt1, Register cnt2, Register result,
1769                       XMMRegister vec1, int ae);
1770 
1771   // Search for Non-ASCII character (Negative byte value) in a byte array,
1772   // return true if it has any and false otherwise.
1773   void has_negatives(Register ary1, Register len,
1774                      Register result, Register tmp1,
1775                      XMMRegister vec1, XMMRegister vec2);
1776 
1777   // Compare char[] or byte[] arrays.
1778   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1779                      Register limit, Register result, Register chr,
1780                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1781 
1782 #endif
1783 
1784   // Fill primitive arrays
1785   void generate_fill(BasicType t, bool aligned,
1786                      Register to, Register value, Register count,
1787                      Register rtmp, XMMRegister xtmp);
1788 
1789   void encode_iso_array(Register src, Register dst, Register len,
1790                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1791                         XMMRegister tmp4, Register tmp5, Register result);
1792 
1793 #ifdef _LP64
1794   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1795   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1796                              Register y, Register y_idx, Register z,
1797                              Register carry, Register product,
1798                              Register idx, Register kdx);
1799   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1800                               Register yz_idx, Register idx,
1801                               Register carry, Register product, int offset);
1802   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1803                                     Register carry, Register carry2,
1804                                     Register idx, Register jdx,
1805                                     Register yz_idx1, Register yz_idx2,
1806                                     Register tmp, Register tmp3, Register tmp4);
1807   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1808                                Register yz_idx, Register idx, Register jdx,
1809                                Register carry, Register product,
1810                                Register carry2);
1811   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1812                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1813   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1814                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1815   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1816                             Register tmp2);
1817   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1818                        Register rdxReg, Register raxReg);
1819   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1820   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1821                        Register tmp3, Register tmp4);
1822   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1823                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1824 
1825   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1826                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1827                Register raxReg);
1828   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1829                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1830                Register raxReg);
1831   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1832                            Register result, Register tmp1, Register tmp2,
1833                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1834 #endif
1835 
1836   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1837   void update_byte_crc32(Register crc, Register val, Register table);
1838   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1839   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1840   // Note on a naming convention:
1841   // Prefix w = register only used on a Westmere+ architecture
1842   // Prefix n = register only used on a Nehalem architecture
1843 #ifdef _LP64
1844   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1845                        Register tmp1, Register tmp2, Register tmp3);
1846 #else
1847   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1848                        Register tmp1, Register tmp2, Register tmp3,
1849                        XMMRegister xtmp1, XMMRegister xtmp2);
1850 #endif
1851   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1852                         Register in_out,
1853                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1854                         XMMRegister w_xtmp2,
1855                         Register tmp1,
1856                         Register n_tmp2, Register n_tmp3);
1857   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1858                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1859                        Register tmp1, Register tmp2,
1860                        Register n_tmp3);
1861   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1862                          Register in_out1, Register in_out2, Register in_out3,
1863                          Register tmp1, Register tmp2, Register tmp3,
1864                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1865                          Register tmp4, Register tmp5,
1866                          Register n_tmp6);
1867   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1868                             Register tmp1, Register tmp2, Register tmp3,
1869                             Register tmp4, Register tmp5, Register tmp6,
1870                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1871                             bool is_pclmulqdq_supported);
1872   // Fold 128-bit data chunk
1873   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1874   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1875   // Fold 8-bit data
1876   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1877   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1878   void fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1879 
1880   // Compress char[] array to byte[].
1881   void char_array_compress(Register src, Register dst, Register len,
1882                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1883                            XMMRegister tmp4, Register tmp5, Register result);
1884 
1885   // Inflate byte[] array to char[].
1886   void byte_array_inflate(Register src, Register dst, Register len,
1887                           XMMRegister tmp1, Register tmp2);
1888 
1889 #ifdef _LP64
1890   void cache_wb(Address line);
1891   void cache_wbsync(bool is_pre);
1892 #endif // _LP64
1893 
1894   #include "asm/macroAssembler_common.hpp"
1895 
1896 };
1897 
1898 /**
1899  * class SkipIfEqual:
1900  *
1901  * Instantiating this class will result in assembly code being output that will
1902  * jump around any code emitted between the creation of the instance and it's
1903  * automatic destruction at the end of a scope block, depending on the value of
1904  * the flag passed to the constructor, which will be checked at run-time.
1905  */
1906 class SkipIfEqual {
1907  private:
1908   MacroAssembler* _masm;
1909   Label _label;
1910 
1911  public:
1912    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1913    ~SkipIfEqual();
1914 };
1915 
1916 #endif // CPU_X86_MACROASSEMBLER_X86_HPP