rev 54670 : Port of valuetypes to aarch64
1 /* 2 * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "interpreter/interpreter.hpp" 28 #include "memory/resourceArea.hpp" 29 #include "oops/markOop.hpp" 30 #include "oops/method.hpp" 31 #include "oops/oop.inline.hpp" 32 #include "prims/methodHandles.hpp" 33 #include "runtime/frame.inline.hpp" 34 #include "runtime/handles.inline.hpp" 35 #include "runtime/javaCalls.hpp" 36 #include "runtime/monitorChunk.hpp" 37 #include "runtime/os.inline.hpp" 38 #include "runtime/signature.hpp" 39 #include "runtime/stubCodeGenerator.hpp" 40 #include "runtime/stubRoutines.hpp" 41 #include "vmreg_aarch64.inline.hpp" 42 #ifdef COMPILER1 43 #include "c1/c1_Runtime1.hpp" 44 #include "runtime/vframeArray.hpp" 45 #endif 46 47 #ifdef ASSERT 48 void RegisterMap::check_location_valid() { 49 } 50 #endif 51 52 53 // Profiling/safepoint support 54 55 bool frame::safe_for_sender(JavaThread *thread) { 56 address sp = (address)_sp; 57 address fp = (address)_fp; 58 address unextended_sp = (address)_unextended_sp; 59 60 // consider stack guards when trying to determine "safe" stack pointers 61 static size_t stack_guard_size = os::uses_stack_guard_pages() ? 62 (JavaThread::stack_red_zone_size() + JavaThread::stack_yellow_zone_size()) : 0; 63 size_t usable_stack_size = thread->stack_size() - stack_guard_size; 64 65 // sp must be within the usable part of the stack (not in guards) 66 bool sp_safe = (sp < thread->stack_base()) && 67 (sp >= thread->stack_base() - usable_stack_size); 68 69 70 if (!sp_safe) { 71 return false; 72 } 73 74 // When we are running interpreted code the machine stack pointer, SP, is 75 // set low enough so that the Java expression stack can grow and shrink 76 // without ever exceeding the machine stack bounds. So, ESP >= SP. 77 78 // When we call out of an interpreted method, SP is incremented so that 79 // the space between SP and ESP is removed. The SP saved in the callee's 80 // frame is the SP *before* this increment. So, when we walk a stack of 81 // interpreter frames the sender's SP saved in a frame might be less than 82 // the SP at the point of call. 83 84 // So unextended sp must be within the stack but we need not to check 85 // that unextended sp >= sp 86 87 bool unextended_sp_safe = (unextended_sp < thread->stack_base()); 88 89 if (!unextended_sp_safe) { 90 return false; 91 } 92 93 // an fp must be within the stack and above (but not equal) sp 94 // second evaluation on fp+ is added to handle situation where fp is -1 95 bool fp_safe = (fp < thread->stack_base() && (fp > sp) && (((fp + (return_addr_offset * sizeof(void*))) < thread->stack_base()))); 96 97 // We know sp/unextended_sp are safe only fp is questionable here 98 99 // If the current frame is known to the code cache then we can attempt to 100 // to construct the sender and do some validation of it. This goes a long way 101 // toward eliminating issues when we get in frame construction code 102 103 if (_cb != NULL ) { 104 105 // First check if frame is complete and tester is reliable 106 // Unfortunately we can only check frame complete for runtime stubs and nmethod 107 // other generic buffer blobs are more problematic so we just assume they are 108 // ok. adapter blobs never have a frame complete and are never ok. 109 110 if (!_cb->is_frame_complete_at(_pc)) { 111 if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) { 112 return false; 113 } 114 } 115 116 // Could just be some random pointer within the codeBlob 117 if (!_cb->code_contains(_pc)) { 118 return false; 119 } 120 121 // Entry frame checks 122 if (is_entry_frame()) { 123 // an entry frame must have a valid fp. 124 return fp_safe && is_entry_frame_valid(thread); 125 } 126 127 intptr_t* sender_sp = NULL; 128 intptr_t* sender_unextended_sp = NULL; 129 address sender_pc = NULL; 130 intptr_t* saved_fp = NULL; 131 132 if (is_interpreted_frame()) { 133 // fp must be safe 134 if (!fp_safe) { 135 return false; 136 } 137 138 sender_pc = (address) this->fp()[return_addr_offset]; 139 // for interpreted frames, the value below is the sender "raw" sp, 140 // which can be different from the sender unextended sp (the sp seen 141 // by the sender) because of current frame local variables 142 sender_sp = (intptr_t*) addr_at(sender_sp_offset); 143 sender_unextended_sp = (intptr_t*) this->fp()[interpreter_frame_sender_sp_offset]; 144 saved_fp = (intptr_t*) this->fp()[link_offset]; 145 146 } else { 147 // must be some sort of compiled/runtime frame 148 // fp does not have to be safe (although it could be check for c1?) 149 150 // check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc 151 if (_cb->frame_size() <= 0) { 152 return false; 153 } 154 155 sender_sp = _unextended_sp + _cb->frame_size(); 156 // Is sender_sp safe? 157 if ((address)sender_sp >= thread->stack_base()) { 158 return false; 159 } 160 sender_unextended_sp = sender_sp; 161 sender_pc = (address) *(sender_sp-1); 162 // Note: frame::sender_sp_offset is only valid for compiled frame 163 saved_fp = (intptr_t*) *(sender_sp - frame::sender_sp_offset); 164 } 165 166 167 // If the potential sender is the interpreter then we can do some more checking 168 if (Interpreter::contains(sender_pc)) { 169 170 // fp is always saved in a recognizable place in any code we generate. However 171 // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved fp 172 // is really a frame pointer. 173 174 bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp); 175 176 if (!saved_fp_safe) { 177 return false; 178 } 179 180 // construct the potential sender 181 182 frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc); 183 184 return sender.is_interpreted_frame_valid(thread); 185 186 } 187 188 // We must always be able to find a recognizable pc 189 CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc); 190 if (sender_pc == NULL || sender_blob == NULL) { 191 return false; 192 } 193 194 // Could be a zombie method 195 if (sender_blob->is_zombie() || sender_blob->is_unloaded()) { 196 return false; 197 } 198 199 // Could just be some random pointer within the codeBlob 200 if (!sender_blob->code_contains(sender_pc)) { 201 return false; 202 } 203 204 // We should never be able to see an adapter if the current frame is something from code cache 205 if (sender_blob->is_adapter_blob()) { 206 return false; 207 } 208 209 // Could be the call_stub 210 if (StubRoutines::returns_to_call_stub(sender_pc)) { 211 bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp); 212 213 if (!saved_fp_safe) { 214 return false; 215 } 216 217 // construct the potential sender 218 219 frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc); 220 221 // Validate the JavaCallWrapper an entry frame must have 222 address jcw = (address)sender.entry_frame_call_wrapper(); 223 224 bool jcw_safe = (jcw < thread->stack_base()) && (jcw > (address)sender.fp()); 225 226 return jcw_safe; 227 } 228 229 CompiledMethod* nm = sender_blob->as_compiled_method_or_null(); 230 if (nm != NULL) { 231 if (nm->is_deopt_mh_entry(sender_pc) || nm->is_deopt_entry(sender_pc) || 232 nm->method()->is_method_handle_intrinsic()) { 233 return false; 234 } 235 } 236 237 // If the frame size is 0 something (or less) is bad because every nmethod has a non-zero frame size 238 // because the return address counts against the callee's frame. 239 240 if (sender_blob->frame_size() <= 0) { 241 assert(!sender_blob->is_compiled(), "should count return address at least"); 242 return false; 243 } 244 245 // We should never be able to see anything here except an nmethod. If something in the 246 // code cache (current frame) is called by an entity within the code cache that entity 247 // should not be anything but the call stub (already covered), the interpreter (already covered) 248 // or an nmethod. 249 250 if (!sender_blob->is_compiled()) { 251 return false; 252 } 253 254 // Could put some more validation for the potential non-interpreted sender 255 // frame we'd create by calling sender if I could think of any. Wait for next crash in forte... 256 257 // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb 258 259 // We've validated the potential sender that would be created 260 return true; 261 } 262 263 // Must be native-compiled frame. Since sender will try and use fp to find 264 // linkages it must be safe 265 266 if (!fp_safe) { 267 return false; 268 } 269 270 // Will the pc we fetch be non-zero (which we'll find at the oldest frame) 271 272 if ( (address) this->fp()[return_addr_offset] == NULL) return false; 273 274 275 // could try and do some more potential verification of native frame if we could think of some... 276 277 return true; 278 279 } 280 281 void frame::patch_pc(Thread* thread, address pc) { 282 address* pc_addr = &(((address*) sp())[-1]); 283 if (TracePcPatching) { 284 tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]", 285 p2i(pc_addr), p2i(*pc_addr), p2i(pc)); 286 } 287 // Either the return address is the original one or we are going to 288 // patch in the same address that's already there. 289 assert(_pc == *pc_addr || pc == *pc_addr, "must be"); 290 *pc_addr = pc; 291 _cb = CodeCache::find_blob(pc); 292 address original_pc = CompiledMethod::get_deopt_original_pc(this); 293 if (original_pc != NULL) { 294 assert(original_pc == _pc, "expected original PC to be stored before patching"); 295 _deopt_state = is_deoptimized; 296 // leave _pc as is 297 } else { 298 _deopt_state = not_deoptimized; 299 _pc = pc; 300 } 301 } 302 303 bool frame::is_interpreted_frame() const { 304 return Interpreter::contains(pc()); 305 } 306 307 int frame::frame_size(RegisterMap* map) const { 308 frame sender = this->sender(map); 309 return sender.sp() - sp(); 310 } 311 312 intptr_t* frame::entry_frame_argument_at(int offset) const { 313 // convert offset to index to deal with tsi 314 int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize); 315 // Entry frame's arguments are always in relation to unextended_sp() 316 return &unextended_sp()[index]; 317 } 318 319 // sender_sp 320 intptr_t* frame::interpreter_frame_sender_sp() const { 321 assert(is_interpreted_frame(), "interpreted frame expected"); 322 return (intptr_t*) at(interpreter_frame_sender_sp_offset); 323 } 324 325 void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) { 326 assert(is_interpreted_frame(), "interpreted frame expected"); 327 ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp); 328 } 329 330 331 // monitor elements 332 333 BasicObjectLock* frame::interpreter_frame_monitor_begin() const { 334 return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset); 335 } 336 337 BasicObjectLock* frame::interpreter_frame_monitor_end() const { 338 BasicObjectLock* result = (BasicObjectLock*) *addr_at(interpreter_frame_monitor_block_top_offset); 339 // make sure the pointer points inside the frame 340 assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer"); 341 assert((intptr_t*) result < fp(), "monitor end should be strictly below the frame pointer"); 342 return result; 343 } 344 345 void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) { 346 *((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value; 347 } 348 349 // Used by template based interpreter deoptimization 350 void frame::interpreter_frame_set_last_sp(intptr_t* sp) { 351 *((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = sp; 352 } 353 354 frame frame::sender_for_entry_frame(RegisterMap* map) const { 355 assert(map != NULL, "map must be set"); 356 // Java frame called from C; skip all C frames and return top C 357 // frame of that chunk as the sender 358 JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor(); 359 assert(!entry_frame_is_first(), "next Java fp must be non zero"); 360 assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack"); 361 // Since we are walking the stack now this nested anchor is obviously walkable 362 // even if it wasn't when it was stacked. 363 if (!jfa->walkable()) { 364 // Capture _last_Java_pc (if needed) and mark anchor walkable. 365 jfa->capture_last_Java_pc(); 366 } 367 map->clear(); 368 assert(map->include_argument_oops(), "should be set by clear"); 369 vmassert(jfa->last_Java_pc() != NULL, "not walkable"); 370 frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc()); 371 return fr; 372 } 373 374 //------------------------------------------------------------------------------ 375 // frame::verify_deopt_original_pc 376 // 377 // Verifies the calculated original PC of a deoptimization PC for the 378 // given unextended SP. 379 #ifdef ASSERT 380 void frame::verify_deopt_original_pc(CompiledMethod* nm, intptr_t* unextended_sp) { 381 frame fr; 382 383 // This is ugly but it's better than to change {get,set}_original_pc 384 // to take an SP value as argument. And it's only a debugging 385 // method anyway. 386 fr._unextended_sp = unextended_sp; 387 388 address original_pc = nm->get_original_pc(&fr); 389 assert(nm->insts_contains_inclusive(original_pc), 390 "original PC must be in the main code section of the the compiled method (or must be immediately following it)"); 391 } 392 #endif 393 394 //------------------------------------------------------------------------------ 395 // frame::adjust_unextended_sp 396 void frame::adjust_unextended_sp() { 397 // On aarch64, sites calling method handle intrinsics and lambda forms are treated 398 // as any other call site. Therefore, no special action is needed when we are 399 // returning to any of these call sites. 400 401 if (_cb != NULL) { 402 CompiledMethod* sender_cm = _cb->as_compiled_method_or_null(); 403 if (sender_cm != NULL) { 404 // If the sender PC is a deoptimization point, get the original PC. 405 if (sender_cm->is_deopt_entry(_pc) || 406 sender_cm->is_deopt_mh_entry(_pc)) { 407 DEBUG_ONLY(verify_deopt_original_pc(sender_cm, _unextended_sp)); 408 } 409 } 410 } 411 } 412 413 //------------------------------------------------------------------------------ 414 // frame::update_map_with_saved_link 415 void frame::update_map_with_saved_link(RegisterMap* map, intptr_t** link_addr) { 416 // The interpreter and compiler(s) always save fp in a known 417 // location on entry. We must record where that location is 418 // so that if fp was live on callout from c2 we can find 419 // the saved copy no matter what it called. 420 421 // Since the interpreter always saves fp if we record where it is then 422 // we don't have to always save fp on entry and exit to c2 compiled 423 // code, on entry will be enough. 424 map->set_location(rfp->as_VMReg(), (address) link_addr); 425 // this is weird "H" ought to be at a higher address however the 426 // oopMaps seems to have the "H" regs at the same address and the 427 // vanilla register. 428 // XXXX make this go away 429 if (true) { 430 map->set_location(rfp->as_VMReg()->next(), (address) link_addr); 431 } 432 } 433 434 435 //------------------------------------------------------------------------------ 436 // frame::sender_for_interpreter_frame 437 frame frame::sender_for_interpreter_frame(RegisterMap* map) const { 438 // SP is the raw SP from the sender after adapter or interpreter 439 // extension. 440 intptr_t* sender_sp = this->sender_sp(); 441 442 // This is the sp before any possible extension (adapter/locals). 443 intptr_t* unextended_sp = interpreter_frame_sender_sp(); 444 445 #if COMPILER2_OR_JVMCI 446 if (map->update_map()) { 447 update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset)); 448 } 449 #endif // COMPILER2_OR_JVMCI 450 451 return frame(sender_sp, unextended_sp, link(), sender_pc()); 452 } 453 454 455 //------------------------------------------------------------------------------ 456 // frame::sender_for_compiled_frame 457 frame frame::sender_for_compiled_frame(RegisterMap* map) const { 458 // we cannot rely upon the last fp having been saved to the thread 459 // in C2 code but it will have been pushed onto the stack. so we 460 // have to find it relative to the unextended sp 461 462 assert(_cb->frame_size() >= 0, "must have non-zero frame size"); 463 intptr_t* l_sender_sp = unextended_sp() + _cb->frame_size(); 464 intptr_t* unextended_sp = l_sender_sp; 465 466 // the return_address is always the word on the stack 467 address sender_pc = (address) *(l_sender_sp-1); 468 469 intptr_t** saved_fp_addr = (intptr_t**) (l_sender_sp - frame::sender_sp_offset); 470 471 // assert (sender_sp() == l_sender_sp, "should be"); 472 // assert (*saved_fp_addr == link(), "should be"); 473 474 if (map->update_map()) { 475 // Tell GC to use argument oopmaps for some runtime stubs that need it. 476 // For C1, the runtime stub might not have oop maps, so set this flag 477 // outside of update_register_map. 478 map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread())); 479 if (_cb->oop_maps() != NULL) { 480 OopMapSet::update_register_map(this, map); 481 } 482 483 // Since the prolog does the save and restore of FP there is no 484 // oopmap for it so we must fill in its location as if there was 485 // an oopmap entry since if our caller was compiled code there 486 // could be live jvm state in it. 487 update_map_with_saved_link(map, saved_fp_addr); 488 } 489 490 return frame(l_sender_sp, unextended_sp, *saved_fp_addr, sender_pc); 491 } 492 493 //------------------------------------------------------------------------------ 494 // frame::sender 495 frame frame::sender(RegisterMap* map) const { 496 // Default is we done have to follow them. The sender_for_xxx will 497 // update it accordingly 498 map->set_include_argument_oops(false); 499 500 if (is_entry_frame()) 501 return sender_for_entry_frame(map); 502 if (is_interpreted_frame()) 503 return sender_for_interpreter_frame(map); 504 assert(_cb == CodeCache::find_blob(pc()),"Must be the same"); 505 506 // This test looks odd: why is it not is_compiled_frame() ? That's 507 // because stubs also have OOP maps. 508 if (_cb != NULL) { 509 return sender_for_compiled_frame(map); 510 } 511 512 // Must be native-compiled frame, i.e. the marshaling code for native 513 // methods that exists in the core system. 514 return frame(sender_sp(), link(), sender_pc()); 515 } 516 517 bool frame::is_interpreted_frame_valid(JavaThread* thread) const { 518 assert(is_interpreted_frame(), "Not an interpreted frame"); 519 // These are reasonable sanity checks 520 if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) { 521 return false; 522 } 523 if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) { 524 return false; 525 } 526 if (fp() + interpreter_frame_initial_sp_offset < sp()) { 527 return false; 528 } 529 // These are hacks to keep us out of trouble. 530 // The problem with these is that they mask other problems 531 if (fp() <= sp()) { // this attempts to deal with unsigned comparison above 532 return false; 533 } 534 535 // do some validation of frame elements 536 537 // first the method 538 539 Method* m = *interpreter_frame_method_addr(); 540 541 // validate the method we'd find in this potential sender 542 if (!Method::is_valid_method(m)) return false; 543 544 // stack frames shouldn't be much larger than max_stack elements 545 // this test requires the use of unextended_sp which is the sp as seen by 546 // the current frame, and not sp which is the "raw" pc which could point 547 // further because of local variables of the callee method inserted after 548 // method arguments 549 if (fp() - unextended_sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) { 550 return false; 551 } 552 553 // validate bci/bcx 554 555 address bcp = interpreter_frame_bcp(); 556 if (m->validate_bci_from_bcp(bcp) < 0) { 557 return false; 558 } 559 560 // validate constantPoolCache* 561 ConstantPoolCache* cp = *interpreter_frame_cache_addr(); 562 if (cp == NULL || !cp->is_metaspace_object()) return false; 563 564 // validate locals 565 566 address locals = (address) *interpreter_frame_locals_addr(); 567 568 if (locals > thread->stack_base() || locals < (address) fp()) return false; 569 570 // We'd have to be pretty unlucky to be mislead at this point 571 return true; 572 } 573 574 BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) { 575 assert(is_interpreted_frame(), "interpreted frame expected"); 576 Method* method = interpreter_frame_method(); 577 BasicType type = method->result_type(); 578 579 intptr_t* tos_addr; 580 if (method->is_native()) { 581 // TODO : ensure AARCH64 does the same as Intel here i.e. push v0 then r0 582 // Prior to calling into the runtime to report the method_exit the possible 583 // return value is pushed to the native stack. If the result is a jfloat/jdouble 584 // then ST0 is saved before EAX/EDX. See the note in generate_native_result 585 tos_addr = (intptr_t*)sp(); 586 if (type == T_FLOAT || type == T_DOUBLE) { 587 // This is times two because we do a push(ltos) after pushing XMM0 588 // and that takes two interpreter stack slots. 589 tos_addr += 2 * Interpreter::stackElementWords; 590 } 591 } else { 592 tos_addr = (intptr_t*)interpreter_frame_tos_address(); 593 } 594 595 switch (type) { 596 case T_OBJECT : 597 case T_ARRAY : { 598 oop obj; 599 if (method->is_native()) { 600 obj = cast_to_oop(at(interpreter_frame_oop_temp_offset)); 601 } else { 602 oop* obj_p = (oop*)tos_addr; 603 obj = (obj_p == NULL) ? (oop)NULL : *obj_p; 604 } 605 assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check"); 606 *oop_result = obj; 607 break; 608 } 609 case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break; 610 case T_BYTE : value_result->b = *(jbyte*)tos_addr; break; 611 case T_CHAR : value_result->c = *(jchar*)tos_addr; break; 612 case T_SHORT : value_result->s = *(jshort*)tos_addr; break; 613 case T_INT : value_result->i = *(jint*)tos_addr; break; 614 case T_LONG : value_result->j = *(jlong*)tos_addr; break; 615 case T_FLOAT : { 616 value_result->f = *(jfloat*)tos_addr; 617 break; 618 } 619 case T_DOUBLE : value_result->d = *(jdouble*)tos_addr; break; 620 case T_VOID : /* Nothing to do */ break; 621 default : ShouldNotReachHere(); 622 } 623 624 return type; 625 } 626 627 628 intptr_t* frame::interpreter_frame_tos_at(jint offset) const { 629 int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize); 630 return &interpreter_frame_tos_address()[index]; 631 } 632 633 #ifndef PRODUCT 634 635 #define DESCRIBE_FP_OFFSET(name) \ 636 values.describe(frame_no, fp() + frame::name##_offset, #name) 637 638 void frame::describe_pd(FrameValues& values, int frame_no) { 639 if (is_interpreted_frame()) { 640 DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp); 641 DESCRIBE_FP_OFFSET(interpreter_frame_last_sp); 642 DESCRIBE_FP_OFFSET(interpreter_frame_method); 643 DESCRIBE_FP_OFFSET(interpreter_frame_mdp); 644 DESCRIBE_FP_OFFSET(interpreter_frame_mirror); 645 DESCRIBE_FP_OFFSET(interpreter_frame_cache); 646 DESCRIBE_FP_OFFSET(interpreter_frame_locals); 647 DESCRIBE_FP_OFFSET(interpreter_frame_bcp); 648 DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp); 649 } 650 } 651 #endif 652 653 intptr_t *frame::initial_deoptimization_info() { 654 // Not used on aarch64, but we must return something. 655 return NULL; 656 } 657 658 intptr_t* frame::real_fp() const { 659 if (_cb != NULL) { 660 // use the frame size if valid 661 int size = _cb->frame_size(); 662 if (size > 0) { 663 return unextended_sp() + size; 664 } 665 } 666 // else rely on fp() 667 assert(! is_compiled_frame(), "unknown compiled frame size"); 668 return fp(); 669 } 670 671 #undef DESCRIBE_FP_OFFSET 672 673 #define DESCRIBE_FP_OFFSET(name) \ 674 { \ 675 unsigned long *p = (unsigned long *)fp; \ 676 printf("0x%016lx 0x%016lx %s\n", (unsigned long)(p + frame::name##_offset), \ 677 p[frame::name##_offset], #name); \ 678 } 679 680 static __thread unsigned long nextfp; 681 static __thread unsigned long nextpc; 682 static __thread unsigned long nextsp; 683 static __thread RegisterMap *reg_map; 684 685 static void printbc(Method *m, intptr_t bcx) { 686 const char *name; 687 char buf[16]; 688 if (m->validate_bci_from_bcp((address)bcx) < 0 689 || !m->contains((address)bcx)) { 690 name = "???"; 691 snprintf(buf, sizeof buf, "(bad)"); 692 } else { 693 int bci = m->bci_from((address)bcx); 694 snprintf(buf, sizeof buf, "%d", bci); 695 name = Bytecodes::name(m->code_at(bci)); 696 } 697 ResourceMark rm; 698 printf("%s : %s ==> %s\n", m->name_and_sig_as_C_string(), buf, name); 699 } 700 701 void internal_pf(unsigned long sp, unsigned long fp, unsigned long pc, unsigned long bcx) { 702 if (! fp) 703 return; 704 705 DESCRIBE_FP_OFFSET(return_addr); 706 DESCRIBE_FP_OFFSET(link); 707 DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp); 708 DESCRIBE_FP_OFFSET(interpreter_frame_last_sp); 709 DESCRIBE_FP_OFFSET(interpreter_frame_method); 710 DESCRIBE_FP_OFFSET(interpreter_frame_mdp); 711 DESCRIBE_FP_OFFSET(interpreter_frame_cache); 712 DESCRIBE_FP_OFFSET(interpreter_frame_locals); 713 DESCRIBE_FP_OFFSET(interpreter_frame_bcp); 714 DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp); 715 unsigned long *p = (unsigned long *)fp; 716 717 // We want to see all frames, native and Java. For compiled and 718 // interpreted frames we have special information that allows us to 719 // unwind them; for everything else we assume that the native frame 720 // pointer chain is intact. 721 frame this_frame((intptr_t*)sp, (intptr_t*)fp, (address)pc); 722 if (this_frame.is_compiled_frame() || 723 this_frame.is_interpreted_frame()) { 724 frame sender = this_frame.sender(reg_map); 725 nextfp = (unsigned long)sender.fp(); 726 nextpc = (unsigned long)sender.pc(); 727 nextsp = (unsigned long)sender.unextended_sp(); 728 } else { 729 nextfp = p[frame::link_offset]; 730 nextpc = p[frame::return_addr_offset]; 731 nextsp = (unsigned long)&p[frame::sender_sp_offset]; 732 } 733 734 if (bcx == -1ul) 735 bcx = p[frame::interpreter_frame_bcp_offset]; 736 737 if (Interpreter::contains((address)pc)) { 738 Method* m = (Method*)p[frame::interpreter_frame_method_offset]; 739 if(m && m->is_method()) { 740 printbc(m, bcx); 741 } else 742 printf("not a Method\n"); 743 } else { 744 CodeBlob *cb = CodeCache::find_blob((address)pc); 745 if (cb != NULL) { 746 if (cb->is_nmethod()) { 747 ResourceMark rm; 748 nmethod* nm = (nmethod*)cb; 749 printf("nmethod %s\n", nm->method()->name_and_sig_as_C_string()); 750 } else if (cb->name()) { 751 printf("CodeBlob %s\n", cb->name()); 752 } 753 } 754 } 755 } 756 757 extern "C" void npf() { 758 CodeBlob *cb = CodeCache::find_blob((address)nextpc); 759 // C2 does not always chain the frame pointers when it can, instead 760 // preferring to use fixed offsets from SP, so a simple leave() does 761 // not work. Instead, it adds the frame size to SP then pops FP and 762 // LR. We have to do the same thing to get a good call chain. 763 if (cb && cb->frame_size()) 764 nextfp = nextsp + wordSize * (cb->frame_size() - 2); 765 internal_pf (nextsp, nextfp, nextpc, -1); 766 } 767 768 extern "C" void pf(unsigned long sp, unsigned long fp, unsigned long pc, 769 unsigned long bcx, unsigned long thread) { 770 RegisterMap map((JavaThread*)thread, false); 771 if (!reg_map) { 772 reg_map = (RegisterMap*)os::malloc(sizeof map, mtNone); 773 } 774 memcpy(reg_map, &map, sizeof map); 775 { 776 CodeBlob *cb = CodeCache::find_blob((address)pc); 777 if (cb && cb->frame_size()) 778 fp = sp + wordSize * (cb->frame_size() - 2); 779 } 780 internal_pf(sp, fp, pc, bcx); 781 } 782 783 // support for printing out where we are in a Java method 784 // needs to be passed current fp and bcp register values 785 // prints method name, bc index and bytecode name 786 extern "C" void pm(unsigned long fp, unsigned long bcx) { 787 DESCRIBE_FP_OFFSET(interpreter_frame_method); 788 unsigned long *p = (unsigned long *)fp; 789 Method* m = (Method*)p[frame::interpreter_frame_method_offset]; 790 printbc(m, bcx); 791 } 792 793 #ifndef PRODUCT 794 // This is a generic constructor which is only used by pns() in debug.cpp. 795 frame::frame(void* sp, void* fp, void* pc) { 796 init((intptr_t*)sp, (intptr_t*)fp, (address)pc); 797 } 798 799 void frame::pd_ps() {} 800 #endif 801 802 void JavaFrameAnchor::make_walkable(JavaThread* thread) { 803 // last frame set? 804 if (last_Java_sp() == NULL) return; 805 // already walkable? 806 if (walkable()) return; 807 vmassert(Thread::current() == (Thread*)thread, "not current thread"); 808 vmassert(last_Java_sp() != NULL, "not called from Java code?"); 809 vmassert(last_Java_pc() == NULL, "already walkable"); 810 capture_last_Java_pc(); 811 vmassert(walkable(), "something went wrong"); 812 } 813 814 void JavaFrameAnchor::capture_last_Java_pc() { 815 vmassert(_last_Java_sp != NULL, "no last frame set"); 816 vmassert(_last_Java_pc == NULL, "already walkable"); 817 _last_Java_pc = (address)_last_Java_sp[-1]; 818 } --- EOF ---