1 /*
   2  * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2018, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "gc/shared/barrierSetAssembler.hpp"
  29 #include "interpreter/bytecodeHistogram.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "interpreter/interpreterRuntime.hpp"
  32 #include "interpreter/interp_masm.hpp"
  33 #include "interpreter/templateInterpreterGenerator.hpp"
  34 #include "interpreter/templateTable.hpp"
  35 #include "interpreter/bytecodeTracer.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/arrayOop.hpp"
  38 #include "oops/methodData.hpp"
  39 #include "oops/method.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiThreadState.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/deoptimization.hpp"
  45 #include "runtime/frame.inline.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/synchronizer.hpp"
  49 #include "runtime/timer.hpp"
  50 #include "runtime/vframeArray.hpp"
  51 #include "utilities/debug.hpp"
  52 #include <sys/types.h>
  53 
  54 #ifndef PRODUCT
  55 #include "oops/method.hpp"
  56 #endif // !PRODUCT
  57 
  58 #ifdef BUILTIN_SIM
  59 #include "../../../../../../simulator/simulator.hpp"
  60 #endif
  61 
  62 // Size of interpreter code.  Increase if too small.  Interpreter will
  63 // fail with a guarantee ("not enough space for interpreter generation");
  64 // if too small.
  65 // Run with +PrintInterpreter to get the VM to print out the size.
  66 // Max size with JVMTI
  67 int TemplateInterpreter::InterpreterCodeSize = 200 * 1024;
  68 
  69 #define __ _masm->
  70 
  71 //-----------------------------------------------------------------------------
  72 
  73 extern "C" void entry(CodeBuffer*);
  74 
  75 //-----------------------------------------------------------------------------
  76 
  77 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  78   address entry = __ pc();
  79 
  80   __ andr(esp, esp, -16);
  81   __ mov(c_rarg3, esp);
  82   // rmethod
  83   // rlocals
  84   // c_rarg3: first stack arg - wordSize
  85 
  86   // adjust sp
  87   __ sub(sp, c_rarg3, 18 * wordSize);
  88   __ str(lr, Address(__ pre(sp, -2 * wordSize)));
  89   __ call_VM(noreg,
  90              CAST_FROM_FN_PTR(address,
  91                               InterpreterRuntime::slow_signature_handler),
  92              rmethod, rlocals, c_rarg3);
  93 
  94   // r0: result handler
  95 
  96   // Stack layout:
  97   // rsp: return address           <- sp
  98   //      1 garbage
  99   //      8 integer args (if static first is unused)
 100   //      1 float/double identifiers
 101   //      8 double args
 102   //        stack args              <- esp
 103   //        garbage
 104   //        expression stack bottom
 105   //        bcp (NULL)
 106   //        ...
 107 
 108   // Restore LR
 109   __ ldr(lr, Address(__ post(sp, 2 * wordSize)));
 110 
 111   // Do FP first so we can use c_rarg3 as temp
 112   __ ldrw(c_rarg3, Address(sp, 9 * wordSize)); // float/double identifiers
 113 
 114   for (int i = 0; i < Argument::n_float_register_parameters_c; i++) {
 115     const FloatRegister r = as_FloatRegister(i);
 116 
 117     Label d, done;
 118 
 119     __ tbnz(c_rarg3, i, d);
 120     __ ldrs(r, Address(sp, (10 + i) * wordSize));
 121     __ b(done);
 122     __ bind(d);
 123     __ ldrd(r, Address(sp, (10 + i) * wordSize));
 124     __ bind(done);
 125   }
 126 
 127   // c_rarg0 contains the result from the call of
 128   // InterpreterRuntime::slow_signature_handler so we don't touch it
 129   // here.  It will be loaded with the JNIEnv* later.
 130   __ ldr(c_rarg1, Address(sp, 1 * wordSize));
 131   for (int i = c_rarg2->encoding(); i <= c_rarg7->encoding(); i += 2) {
 132     Register rm = as_Register(i), rn = as_Register(i+1);
 133     __ ldp(rm, rn, Address(sp, i * wordSize));
 134   }
 135 
 136   __ add(sp, sp, 18 * wordSize);
 137   __ ret(lr);
 138 
 139   return entry;
 140 }
 141 
 142 
 143 //
 144 // Various method entries
 145 //
 146 
 147 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
 148   // rmethod: Method*
 149   // r13: sender sp
 150   // esp: args
 151 
 152   if (!InlineIntrinsics) return NULL; // Generate a vanilla entry
 153 
 154   // These don't need a safepoint check because they aren't virtually
 155   // callable. We won't enter these intrinsics from compiled code.
 156   // If in the future we added an intrinsic which was virtually callable
 157   // we'd have to worry about how to safepoint so that this code is used.
 158 
 159   // mathematical functions inlined by compiler
 160   // (interpreter must provide identical implementation
 161   // in order to avoid monotonicity bugs when switching
 162   // from interpreter to compiler in the middle of some
 163   // computation)
 164   //
 165   // stack:
 166   //        [ arg ] <-- esp
 167   //        [ arg ]
 168   // retaddr in lr
 169 
 170   address entry_point = NULL;
 171   Register continuation = lr;
 172   switch (kind) {
 173   case Interpreter::java_lang_math_abs:
 174     entry_point = __ pc();
 175     __ ldrd(v0, Address(esp));
 176     __ fabsd(v0, v0);
 177     __ mov(sp, r13); // Restore caller's SP
 178     break;
 179   case Interpreter::java_lang_math_sqrt:
 180     entry_point = __ pc();
 181     __ ldrd(v0, Address(esp));
 182     __ fsqrtd(v0, v0);
 183     __ mov(sp, r13);
 184     break;
 185   case Interpreter::java_lang_math_sin :
 186   case Interpreter::java_lang_math_cos :
 187   case Interpreter::java_lang_math_tan :
 188   case Interpreter::java_lang_math_log :
 189   case Interpreter::java_lang_math_log10 :
 190   case Interpreter::java_lang_math_exp :
 191     entry_point = __ pc();
 192     __ ldrd(v0, Address(esp));
 193     __ mov(sp, r13);
 194     __ mov(r19, lr);
 195     continuation = r19;  // The first callee-saved register
 196     generate_transcendental_entry(kind, 1);
 197     break;
 198   case Interpreter::java_lang_math_pow :
 199     entry_point = __ pc();
 200     __ mov(r19, lr);
 201     continuation = r19;
 202     __ ldrd(v0, Address(esp, 2 * Interpreter::stackElementSize));
 203     __ ldrd(v1, Address(esp));
 204     __ mov(sp, r13);
 205     generate_transcendental_entry(kind, 2);
 206     break;
 207   case Interpreter::java_lang_math_fmaD :
 208     if (UseFMA) {
 209       entry_point = __ pc();
 210       __ ldrd(v0, Address(esp, 4 * Interpreter::stackElementSize));
 211       __ ldrd(v1, Address(esp, 2 * Interpreter::stackElementSize));
 212       __ ldrd(v2, Address(esp));
 213       __ fmaddd(v0, v0, v1, v2);
 214       __ mov(sp, r13); // Restore caller's SP
 215     }
 216     break;
 217   case Interpreter::java_lang_math_fmaF :
 218     if (UseFMA) {
 219       entry_point = __ pc();
 220       __ ldrs(v0, Address(esp, 2 * Interpreter::stackElementSize));
 221       __ ldrs(v1, Address(esp, Interpreter::stackElementSize));
 222       __ ldrs(v2, Address(esp));
 223       __ fmadds(v0, v0, v1, v2);
 224       __ mov(sp, r13); // Restore caller's SP
 225     }
 226     break;
 227   default:
 228     ;
 229   }
 230   if (entry_point) {
 231     __ br(continuation);
 232   }
 233 
 234   return entry_point;
 235 }
 236 
 237   // double trigonometrics and transcendentals
 238   // static jdouble dsin(jdouble x);
 239   // static jdouble dcos(jdouble x);
 240   // static jdouble dtan(jdouble x);
 241   // static jdouble dlog(jdouble x);
 242   // static jdouble dlog10(jdouble x);
 243   // static jdouble dexp(jdouble x);
 244   // static jdouble dpow(jdouble x, jdouble y);
 245 
 246 void TemplateInterpreterGenerator::generate_transcendental_entry(AbstractInterpreter::MethodKind kind, int fpargs) {
 247   address fn;
 248   switch (kind) {
 249   case Interpreter::java_lang_math_sin :
 250     if (StubRoutines::dsin() == NULL) {
 251       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
 252     } else {
 253       fn = CAST_FROM_FN_PTR(address, StubRoutines::dsin());
 254     }
 255     break;
 256   case Interpreter::java_lang_math_cos :
 257     if (StubRoutines::dcos() == NULL) {
 258       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
 259     } else {
 260       fn = CAST_FROM_FN_PTR(address, StubRoutines::dcos());
 261     }
 262     break;
 263   case Interpreter::java_lang_math_tan :
 264     if (StubRoutines::dtan() == NULL) {
 265       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
 266     } else {
 267       fn = CAST_FROM_FN_PTR(address, StubRoutines::dtan());
 268     }
 269     break;
 270   case Interpreter::java_lang_math_log :
 271     if (StubRoutines::dlog() == NULL) {
 272       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
 273     } else {
 274       fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog());
 275     }
 276     break;
 277   case Interpreter::java_lang_math_log10 :
 278     if (StubRoutines::dlog10() == NULL) {
 279       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
 280     } else {
 281       fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog10());
 282     }
 283     break;
 284   case Interpreter::java_lang_math_exp :
 285     if (StubRoutines::dexp() == NULL) {
 286       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
 287     } else {
 288       fn = CAST_FROM_FN_PTR(address, StubRoutines::dexp());
 289     }
 290     break;
 291   case Interpreter::java_lang_math_pow :
 292     fpargs = 2;
 293     if (StubRoutines::dpow() == NULL) {
 294       fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
 295     } else {
 296       fn = CAST_FROM_FN_PTR(address, StubRoutines::dpow());
 297     }
 298     break;
 299   default:
 300     ShouldNotReachHere();
 301     fn = NULL;  // unreachable
 302   }
 303   const int gpargs = 0, rtype = 3;
 304   __ mov(rscratch1, fn);
 305   __ blrt(rscratch1, gpargs, fpargs, rtype);
 306 }
 307 
 308 // Abstract method entry
 309 // Attempt to execute abstract method. Throw exception
 310 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 311   // rmethod: Method*
 312   // r13: sender SP
 313 
 314   address entry_point = __ pc();
 315 
 316   // abstract method entry
 317 
 318   //  pop return address, reset last_sp to NULL
 319   __ empty_expression_stack();
 320   __ restore_bcp();      // bcp must be correct for exception handler   (was destroyed)
 321   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
 322 
 323   // throw exception
 324   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
 325                                      InterpreterRuntime::throw_AbstractMethodErrorWithMethod),
 326                                      rmethod);
 327   // the call_VM checks for exception, so we should never return here.
 328   __ should_not_reach_here();
 329 
 330   return entry_point;
 331 }
 332 
 333 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 334   address entry = __ pc();
 335 
 336 #ifdef ASSERT
 337   {
 338     Label L;
 339     __ ldr(rscratch1, Address(rfp,
 340                        frame::interpreter_frame_monitor_block_top_offset *
 341                        wordSize));
 342     __ mov(rscratch2, sp);
 343     __ cmp(rscratch1, rscratch2); // maximal rsp for current rfp (stack
 344                            // grows negative)
 345     __ br(Assembler::HS, L); // check if frame is complete
 346     __ stop ("interpreter frame not set up");
 347     __ bind(L);
 348   }
 349 #endif // ASSERT
 350   // Restore bcp under the assumption that the current frame is still
 351   // interpreted
 352   __ restore_bcp();
 353 
 354   // expression stack must be empty before entering the VM if an
 355   // exception happened
 356   __ empty_expression_stack();
 357   // throw exception
 358   __ call_VM(noreg,
 359              CAST_FROM_FN_PTR(address,
 360                               InterpreterRuntime::throw_StackOverflowError));
 361   return entry;
 362 }
 363 
 364 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() {
 365   address entry = __ pc();
 366   // expression stack must be empty before entering the VM if an
 367   // exception happened
 368   __ empty_expression_stack();
 369   // setup parameters
 370 
 371   // ??? convention: expect aberrant index in register r1
 372   __ movw(c_rarg2, r1);
 373   // ??? convention: expect array in register r3
 374   __ mov(c_rarg1, r3);
 375   __ call_VM(noreg,
 376              CAST_FROM_FN_PTR(address,
 377                               InterpreterRuntime::
 378                               throw_ArrayIndexOutOfBoundsException),
 379              c_rarg1, c_rarg2);
 380   return entry;
 381 }
 382 
 383 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 384   address entry = __ pc();
 385 
 386   // object is at TOS
 387   __ pop(c_rarg1);
 388 
 389   // expression stack must be empty before entering the VM if an
 390   // exception happened
 391   __ empty_expression_stack();
 392 
 393   __ call_VM(noreg,
 394              CAST_FROM_FN_PTR(address,
 395                               InterpreterRuntime::
 396                               throw_ClassCastException),
 397              c_rarg1);
 398   return entry;
 399 }
 400 
 401 address TemplateInterpreterGenerator::generate_exception_handler_common(
 402         const char* name, const char* message, bool pass_oop) {
 403   assert(!pass_oop || message == NULL, "either oop or message but not both");
 404   address entry = __ pc();
 405   if (pass_oop) {
 406     // object is at TOS
 407     __ pop(c_rarg2);
 408   }
 409   // expression stack must be empty before entering the VM if an
 410   // exception happened
 411   __ empty_expression_stack();
 412   // setup parameters
 413   __ lea(c_rarg1, Address((address)name));
 414   if (pass_oop) {
 415     __ call_VM(r0, CAST_FROM_FN_PTR(address,
 416                                     InterpreterRuntime::
 417                                     create_klass_exception),
 418                c_rarg1, c_rarg2);
 419   } else {
 420     // kind of lame ExternalAddress can't take NULL because
 421     // external_word_Relocation will assert.
 422     if (message != NULL) {
 423       __ lea(c_rarg2, Address((address)message));
 424     } else {
 425       __ mov(c_rarg2, NULL_WORD);
 426     }
 427     __ call_VM(r0,
 428                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
 429                c_rarg1, c_rarg2);
 430   }
 431   // throw exception
 432   __ b(address(Interpreter::throw_exception_entry()));
 433   return entry;
 434 }
 435 
 436 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 437   address entry = __ pc();
 438 
 439   // Restore stack bottom in case i2c adjusted stack
 440   __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 441   // and NULL it as marker that esp is now tos until next java call
 442   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 443   __ restore_bcp();
 444   __ restore_locals();
 445   __ restore_constant_pool_cache();
 446   __ get_method(rmethod);
 447 
 448   if (state == atos) {
 449     Register obj = r0;
 450     Register mdp = r1;
 451     Register tmp = r2;
 452     __ ldr(mdp, Address(rmethod, Method::method_data_offset()));
 453     __ profile_return_type(mdp, obj, tmp);
 454   }
 455 
 456   // Pop N words from the stack
 457   __ get_cache_and_index_at_bcp(r1, r2, 1, index_size);
 458   __ ldr(r1, Address(r1, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
 459   __ andr(r1, r1, ConstantPoolCacheEntry::parameter_size_mask);
 460 
 461   __ add(esp, esp, r1, Assembler::LSL, 3);
 462 
 463   // Restore machine SP
 464   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
 465   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
 466   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
 467   __ ldr(rscratch2,
 468          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
 469   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtw, 3);
 470   __ andr(sp, rscratch1, -16);
 471 
 472 #ifndef PRODUCT
 473   // tell the simulator that the method has been reentered
 474   if (NotifySimulator) {
 475     __ notify(Assembler::method_reentry);
 476   }
 477 #endif
 478 
 479  __ check_and_handle_popframe(rthread);
 480  __ check_and_handle_earlyret(rthread);
 481 
 482   __ get_dispatch();
 483   __ dispatch_next(state, step);
 484 
 485   return entry;
 486 }
 487 
 488 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
 489                                                                int step,
 490                                                                address continuation) {
 491   address entry = __ pc();
 492   __ restore_bcp();
 493   __ restore_locals();
 494   __ restore_constant_pool_cache();
 495   __ get_method(rmethod);
 496   __ get_dispatch();
 497 
 498   // Calculate stack limit
 499   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
 500   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
 501   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
 502   __ ldr(rscratch2,
 503          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
 504   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtx, 3);
 505   __ andr(sp, rscratch1, -16);
 506 
 507   // Restore expression stack pointer
 508   __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 509   // NULL last_sp until next java call
 510   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 511 
 512 #if INCLUDE_JVMCI
 513   // Check if we need to take lock at entry of synchronized method.  This can
 514   // only occur on method entry so emit it only for vtos with step 0.
 515   if ((EnableJVMCI || UseAOT) && state == vtos && step == 0) {
 516     Label L;
 517     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 518     __ cbz(rscratch1, L);
 519     // Clear flag.
 520     __ strb(zr, Address(rthread, JavaThread::pending_monitorenter_offset()));
 521     // Take lock.
 522     lock_method();
 523     __ bind(L);
 524   } else {
 525 #ifdef ASSERT
 526     if (EnableJVMCI) {
 527       Label L;
 528       __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 529       __ cbz(rscratch1, L);
 530       __ stop("unexpected pending monitor in deopt entry");
 531       __ bind(L);
 532     }
 533 #endif
 534   }
 535 #endif
 536   // handle exceptions
 537   {
 538     Label L;
 539     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 540     __ cbz(rscratch1, L);
 541     __ call_VM(noreg,
 542                CAST_FROM_FN_PTR(address,
 543                                 InterpreterRuntime::throw_pending_exception));
 544     __ should_not_reach_here();
 545     __ bind(L);
 546   }
 547 
 548   if (continuation == NULL) {
 549     __ dispatch_next(state, step);
 550   } else {
 551     __ jump_to_entry(continuation);
 552   }
 553   return entry;
 554 }
 555 
 556 address TemplateInterpreterGenerator::generate_result_handler_for(
 557         BasicType type) {
 558     address entry = __ pc();
 559   switch (type) {
 560   case T_BOOLEAN: __ c2bool(r0);         break;
 561   case T_CHAR   : __ uxth(r0, r0);       break;
 562   case T_BYTE   : __ sxtb(r0, r0);        break;
 563   case T_SHORT  : __ sxth(r0, r0);        break;
 564   case T_INT    : __ uxtw(r0, r0);        break;  // FIXME: We almost certainly don't need this
 565   case T_LONG   : /* nothing to do */        break;
 566   case T_VOID   : /* nothing to do */        break;
 567   case T_FLOAT  : /* nothing to do */        break;
 568   case T_DOUBLE : /* nothing to do */        break;
 569   case T_VALUETYPE: // fall through (value types are handled with oops)
 570   case T_OBJECT :
 571     // retrieve result from frame
 572     __ ldr(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
 573     // and verify it
 574     __ verify_oop(r0);
 575     break;
 576   default       : ShouldNotReachHere();
 577   }
 578   __ ret(lr);                                  // return from result handler
 579   return entry;
 580 }
 581 
 582 address TemplateInterpreterGenerator::generate_safept_entry_for(
 583         TosState state,
 584         address runtime_entry) {
 585   address entry = __ pc();
 586   __ push(state);
 587   __ call_VM(noreg, runtime_entry);
 588   __ membar(Assembler::AnyAny);
 589   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 590   return entry;
 591 }
 592 
 593 // Helpers for commoning out cases in the various type of method entries.
 594 //
 595 
 596 
 597 // increment invocation count & check for overflow
 598 //
 599 // Note: checking for negative value instead of overflow
 600 //       so we have a 'sticky' overflow test
 601 //
 602 // rmethod: method
 603 //
 604 void TemplateInterpreterGenerator::generate_counter_incr(
 605         Label* overflow,
 606         Label* profile_method,
 607         Label* profile_method_continue) {
 608   Label done;
 609   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
 610   if (TieredCompilation) {
 611     int increment = InvocationCounter::count_increment;
 612     Label no_mdo;
 613     if (ProfileInterpreter) {
 614       // Are we profiling?
 615       __ ldr(r0, Address(rmethod, Method::method_data_offset()));
 616       __ cbz(r0, no_mdo);
 617       // Increment counter in the MDO
 618       const Address mdo_invocation_counter(r0, in_bytes(MethodData::invocation_counter_offset()) +
 619                                                 in_bytes(InvocationCounter::counter_offset()));
 620       const Address mask(r0, in_bytes(MethodData::invoke_mask_offset()));
 621       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow);
 622       __ b(done);
 623     }
 624     __ bind(no_mdo);
 625     // Increment counter in MethodCounters
 626     const Address invocation_counter(rscratch2,
 627                   MethodCounters::invocation_counter_offset() +
 628                   InvocationCounter::counter_offset());
 629     __ get_method_counters(rmethod, rscratch2, done);
 630     const Address mask(rscratch2, in_bytes(MethodCounters::invoke_mask_offset()));
 631     __ increment_mask_and_jump(invocation_counter, increment, mask, rscratch1, r1, false, Assembler::EQ, overflow);
 632     __ bind(done);
 633   } else { // not TieredCompilation
 634     const Address backedge_counter(rscratch2,
 635                   MethodCounters::backedge_counter_offset() +
 636                   InvocationCounter::counter_offset());
 637     const Address invocation_counter(rscratch2,
 638                   MethodCounters::invocation_counter_offset() +
 639                   InvocationCounter::counter_offset());
 640 
 641     __ get_method_counters(rmethod, rscratch2, done);
 642 
 643     if (ProfileInterpreter) { // %%% Merge this into MethodData*
 644       __ ldrw(r1, Address(rscratch2, MethodCounters::interpreter_invocation_counter_offset()));
 645       __ addw(r1, r1, 1);
 646       __ strw(r1, Address(rscratch2, MethodCounters::interpreter_invocation_counter_offset()));
 647     }
 648     // Update standard invocation counters
 649     __ ldrw(r1, invocation_counter);
 650     __ ldrw(r0, backedge_counter);
 651 
 652     __ addw(r1, r1, InvocationCounter::count_increment);
 653     __ andw(r0, r0, InvocationCounter::count_mask_value);
 654 
 655     __ strw(r1, invocation_counter);
 656     __ addw(r0, r0, r1);                // add both counters
 657 
 658     // profile_method is non-null only for interpreted method so
 659     // profile_method != NULL == !native_call
 660 
 661     if (ProfileInterpreter && profile_method != NULL) {
 662       // Test to see if we should create a method data oop
 663       __ ldr(rscratch2, Address(rmethod, Method::method_counters_offset()));
 664       __ ldrw(rscratch2, Address(rscratch2, in_bytes(MethodCounters::interpreter_profile_limit_offset())));
 665       __ cmpw(r0, rscratch2);
 666       __ br(Assembler::LT, *profile_method_continue);
 667 
 668       // if no method data exists, go to profile_method
 669       __ test_method_data_pointer(rscratch2, *profile_method);
 670     }
 671 
 672     {
 673       __ ldr(rscratch2, Address(rmethod, Method::method_counters_offset()));
 674       __ ldrw(rscratch2, Address(rscratch2, in_bytes(MethodCounters::interpreter_invocation_limit_offset())));
 675       __ cmpw(r0, rscratch2);
 676       __ br(Assembler::HS, *overflow);
 677     }
 678     __ bind(done);
 679   }
 680 }
 681 
 682 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
 683 
 684   // Asm interpreter on entry
 685   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
 686   // Everything as it was on entry
 687 
 688   // InterpreterRuntime::frequency_counter_overflow takes two
 689   // arguments, the first (thread) is passed by call_VM, the second
 690   // indicates if the counter overflow occurs at a backwards branch
 691   // (NULL bcp).  We pass zero for it.  The call returns the address
 692   // of the verified entry point for the method or NULL if the
 693   // compilation did not complete (either went background or bailed
 694   // out).
 695   __ mov(c_rarg1, 0);
 696   __ call_VM(noreg,
 697              CAST_FROM_FN_PTR(address,
 698                               InterpreterRuntime::frequency_counter_overflow),
 699              c_rarg1);
 700 
 701   __ b(do_continue);
 702 }
 703 
 704 // See if we've got enough room on the stack for locals plus overhead
 705 // below JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
 706 // without going through the signal handler, i.e., reserved and yellow zones
 707 // will not be made usable. The shadow zone must suffice to handle the
 708 // overflow.
 709 // The expression stack grows down incrementally, so the normal guard
 710 // page mechanism will work for that.
 711 //
 712 // NOTE: Since the additional locals are also always pushed (wasn't
 713 // obvious in generate_method_entry) so the guard should work for them
 714 // too.
 715 //
 716 // Args:
 717 //      r3: number of additional locals this frame needs (what we must check)
 718 //      rmethod: Method*
 719 //
 720 // Kills:
 721 //      r0
 722 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) {
 723 
 724   // monitor entry size: see picture of stack set
 725   // (generate_method_entry) and frame_amd64.hpp
 726   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 727 
 728   // total overhead size: entry_size + (saved rbp through expr stack
 729   // bottom).  be sure to change this if you add/subtract anything
 730   // to/from the overhead area
 731   const int overhead_size =
 732     -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
 733 
 734   const int page_size = os::vm_page_size();
 735 
 736   Label after_frame_check;
 737 
 738   // see if the frame is greater than one page in size. If so,
 739   // then we need to verify there is enough stack space remaining
 740   // for the additional locals.
 741   //
 742   // Note that we use SUBS rather than CMP here because the immediate
 743   // field of this instruction may overflow.  SUBS can cope with this
 744   // because it is a macro that will expand to some number of MOV
 745   // instructions and a register operation.
 746   __ subs(rscratch1, r3, (page_size - overhead_size) / Interpreter::stackElementSize);
 747   __ br(Assembler::LS, after_frame_check);
 748 
 749   // compute rsp as if this were going to be the last frame on
 750   // the stack before the red zone
 751 
 752   // locals + overhead, in bytes
 753   __ mov(r0, overhead_size);
 754   __ add(r0, r0, r3, Assembler::LSL, Interpreter::logStackElementSize);  // 2 slots per parameter.
 755 
 756   const Address stack_limit(rthread, JavaThread::stack_overflow_limit_offset());
 757   __ ldr(rscratch1, stack_limit);
 758 
 759 #ifdef ASSERT
 760   Label limit_okay;
 761   // Verify that thread stack limit is non-zero.
 762   __ cbnz(rscratch1, limit_okay);
 763   __ stop("stack overflow limit is zero");
 764   __ bind(limit_okay);
 765 #endif
 766 
 767   // Add stack limit to locals.
 768   __ add(r0, r0, rscratch1);
 769 
 770   // Check against the current stack bottom.
 771   __ cmp(sp, r0);
 772   __ br(Assembler::HI, after_frame_check);
 773 
 774   // Remove the incoming args, peeling the machine SP back to where it
 775   // was in the caller.  This is not strictly necessary, but unless we
 776   // do so the stack frame may have a garbage FP; this ensures a
 777   // correct call stack that we can always unwind.  The ANDR should be
 778   // unnecessary because the sender SP in r13 is always aligned, but
 779   // it doesn't hurt.
 780   __ andr(sp, r13, -16);
 781 
 782   // Note: the restored frame is not necessarily interpreted.
 783   // Use the shared runtime version of the StackOverflowError.
 784   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
 785   __ far_jump(RuntimeAddress(StubRoutines::throw_StackOverflowError_entry()));
 786 
 787   // all done with frame size check
 788   __ bind(after_frame_check);
 789 }
 790 
 791 // Allocate monitor and lock method (asm interpreter)
 792 //
 793 // Args:
 794 //      rmethod: Method*
 795 //      rlocals: locals
 796 //
 797 // Kills:
 798 //      r0
 799 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
 800 //      rscratch1, rscratch2 (scratch regs)
 801 void TemplateInterpreterGenerator::lock_method() {
 802   // synchronize method
 803   const Address access_flags(rmethod, Method::access_flags_offset());
 804   const Address monitor_block_top(
 805         rfp,
 806         frame::interpreter_frame_monitor_block_top_offset * wordSize);
 807   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 808 
 809 #ifdef ASSERT
 810   {
 811     Label L;
 812     __ ldrw(r0, access_flags);
 813     __ tst(r0, JVM_ACC_SYNCHRONIZED);
 814     __ br(Assembler::NE, L);
 815     __ stop("method doesn't need synchronization");
 816     __ bind(L);
 817   }
 818 #endif // ASSERT
 819 
 820   // get synchronization object
 821   {
 822     Label done;
 823     __ ldrw(r0, access_flags);
 824     __ tst(r0, JVM_ACC_STATIC);
 825     // get receiver (assume this is frequent case)
 826     __ ldr(r0, Address(rlocals, Interpreter::local_offset_in_bytes(0)));
 827     __ br(Assembler::EQ, done);
 828     __ load_mirror(r0, rmethod);
 829 
 830 #ifdef ASSERT
 831     {
 832       Label L;
 833       __ cbnz(r0, L);
 834       __ stop("synchronization object is NULL");
 835       __ bind(L);
 836     }
 837 #endif // ASSERT
 838 
 839     __ bind(done);
 840     __ resolve(IS_NOT_NULL, r0);
 841   }
 842 
 843   // add space for monitor & lock
 844   __ sub(sp, sp, entry_size); // add space for a monitor entry
 845   __ sub(esp, esp, entry_size);
 846   __ mov(rscratch1, esp);
 847   __ str(rscratch1, monitor_block_top);  // set new monitor block top
 848   // store object
 849   __ str(r0, Address(esp, BasicObjectLock::obj_offset_in_bytes()));
 850   __ mov(c_rarg1, esp); // object address
 851   __ lock_object(c_rarg1);
 852 }
 853 
 854 // Generate a fixed interpreter frame. This is identical setup for
 855 // interpreted methods and for native methods hence the shared code.
 856 //
 857 // Args:
 858 //      lr: return address
 859 //      rmethod: Method*
 860 //      rlocals: pointer to locals
 861 //      rcpool: cp cache
 862 //      stack_pointer: previous sp
 863 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 864   // initialize fixed part of activation frame
 865   if (native_call) {
 866     __ sub(esp, sp, 14 *  wordSize);
 867     __ mov(rbcp, zr);
 868     __ stp(esp, zr, Address(__ pre(sp, -14 * wordSize)));
 869     // add 2 zero-initialized slots for native calls
 870     __ stp(zr, zr, Address(sp, 12 * wordSize));
 871   } else {
 872     __ sub(esp, sp, 12 *  wordSize);
 873     __ ldr(rscratch1, Address(rmethod, Method::const_offset()));      // get ConstMethod
 874     __ add(rbcp, rscratch1, in_bytes(ConstMethod::codes_offset())); // get codebase
 875     __ stp(esp, rbcp, Address(__ pre(sp, -12 * wordSize)));
 876   }
 877 
 878   if (ProfileInterpreter) {
 879     Label method_data_continue;
 880     __ ldr(rscratch1, Address(rmethod, Method::method_data_offset()));
 881     __ cbz(rscratch1, method_data_continue);
 882     __ lea(rscratch1, Address(rscratch1, in_bytes(MethodData::data_offset())));
 883     __ bind(method_data_continue);
 884     __ stp(rscratch1, rmethod, Address(sp, 6 * wordSize));  // save Method* and mdp (method data pointer)
 885   } else {
 886     __ stp(zr, rmethod, Address(sp, 6 * wordSize));        // save Method* (no mdp)
 887   }
 888 
 889   // Get mirror and store it in the frame as GC root for this Method*
 890   __ load_mirror(rscratch1, rmethod);
 891   __ stp(rscratch1, zr, Address(sp, 4 * wordSize));
 892 
 893   __ ldr(rcpool, Address(rmethod, Method::const_offset()));
 894   __ ldr(rcpool, Address(rcpool, ConstMethod::constants_offset()));
 895   __ ldr(rcpool, Address(rcpool, ConstantPool::cache_offset_in_bytes()));
 896   __ stp(rlocals, rcpool, Address(sp, 2 * wordSize));
 897 
 898   __ stp(rfp, lr, Address(sp, 10 * wordSize));
 899   __ lea(rfp, Address(sp, 10 * wordSize));
 900 
 901   // set sender sp
 902   // leave last_sp as null
 903   __ stp(zr, r13, Address(sp, 8 * wordSize));
 904 
 905   // Move SP out of the way
 906   if (! native_call) {
 907     __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
 908     __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
 909     __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
 910     __ sub(rscratch1, sp, rscratch1, ext::uxtw, 3);
 911     __ andr(sp, rscratch1, -16);
 912   }
 913 }
 914 
 915 // End of helpers
 916 
 917 // Various method entries
 918 //------------------------------------------------------------------------------------------------------------------------
 919 //
 920 //
 921 
 922 // Method entry for java.lang.ref.Reference.get.
 923 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 924   // Code: _aload_0, _getfield, _areturn
 925   // parameter size = 1
 926   //
 927   // The code that gets generated by this routine is split into 2 parts:
 928   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 929   //    2. The slow path - which is an expansion of the regular method entry.
 930   //
 931   // Notes:-
 932   // * In the G1 code we do not check whether we need to block for
 933   //   a safepoint. If G1 is enabled then we must execute the specialized
 934   //   code for Reference.get (except when the Reference object is null)
 935   //   so that we can log the value in the referent field with an SATB
 936   //   update buffer.
 937   //   If the code for the getfield template is modified so that the
 938   //   G1 pre-barrier code is executed when the current method is
 939   //   Reference.get() then going through the normal method entry
 940   //   will be fine.
 941   // * The G1 code can, however, check the receiver object (the instance
 942   //   of java.lang.Reference) and jump to the slow path if null. If the
 943   //   Reference object is null then we obviously cannot fetch the referent
 944   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 945   //   regular method entry code to generate the NPE.
 946   //
 947   // This code is based on generate_accessor_entry.
 948   //
 949   // rmethod: Method*
 950   // r13: senderSP must preserve for slow path, set SP to it on fast path
 951 
 952   // LR is live.  It must be saved around calls.
 953 
 954   address entry = __ pc();
 955 
 956   const int referent_offset = java_lang_ref_Reference::referent_offset;
 957   guarantee(referent_offset > 0, "referent offset not initialized");
 958 
 959   Label slow_path;
 960   const Register local_0 = c_rarg0;
 961   // Check if local 0 != NULL
 962   // If the receiver is null then it is OK to jump to the slow path.
 963   __ ldr(local_0, Address(esp, 0));
 964   __ cbz(local_0, slow_path);
 965 
 966   __ mov(r19, r13);   // Move senderSP to a callee-saved register
 967 
 968   // Load the value of the referent field.
 969   const Address field_address(local_0, referent_offset);
 970   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
 971   bs->load_at(_masm, IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, local_0, field_address, /*tmp1*/ rscratch2, /*tmp2*/ rscratch1);
 972 
 973   // areturn
 974   __ andr(sp, r19, -16);  // done with stack
 975   __ ret(lr);
 976 
 977   // generate a vanilla interpreter entry as the slow path
 978   __ bind(slow_path);
 979   __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
 980   return entry;
 981 
 982 }
 983 
 984 /**
 985  * Method entry for static native methods:
 986  *   int java.util.zip.CRC32.update(int crc, int b)
 987  */
 988 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
 989   if (UseCRC32Intrinsics) {
 990     address entry = __ pc();
 991 
 992     // rmethod: Method*
 993     // r13: senderSP must preserved for slow path
 994     // esp: args
 995 
 996     Label slow_path;
 997     // If we need a safepoint check, generate full interpreter entry.
 998     __ safepoint_poll(slow_path);
 999 
1000     // We don't generate local frame and don't align stack because
1001     // we call stub code and there is no safepoint on this path.
1002 
1003     // Load parameters
1004     const Register crc = c_rarg0;  // crc
1005     const Register val = c_rarg1;  // source java byte value
1006     const Register tbl = c_rarg2;  // scratch
1007 
1008     // Arguments are reversed on java expression stack
1009     __ ldrw(val, Address(esp, 0));              // byte value
1010     __ ldrw(crc, Address(esp, wordSize));       // Initial CRC
1011 
1012     unsigned long offset;
1013     __ adrp(tbl, ExternalAddress(StubRoutines::crc_table_addr()), offset);
1014     __ add(tbl, tbl, offset);
1015 
1016     __ mvnw(crc, crc); // ~crc
1017     __ update_byte_crc32(crc, val, tbl);
1018     __ mvnw(crc, crc); // ~crc
1019 
1020     // result in c_rarg0
1021 
1022     __ andr(sp, r13, -16);
1023     __ ret(lr);
1024 
1025     // generate a vanilla native entry as the slow path
1026     __ bind(slow_path);
1027     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1028     return entry;
1029   }
1030   return NULL;
1031 }
1032 
1033 /**
1034  * Method entry for static native methods:
1035  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
1036  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
1037  */
1038 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1039   if (UseCRC32Intrinsics) {
1040     address entry = __ pc();
1041 
1042     // rmethod,: Method*
1043     // r13: senderSP must preserved for slow path
1044 
1045     Label slow_path;
1046     // If we need a safepoint check, generate full interpreter entry.
1047     __ safepoint_poll(slow_path);
1048 
1049     // We don't generate local frame and don't align stack because
1050     // we call stub code and there is no safepoint on this path.
1051 
1052     // Load parameters
1053     const Register crc = c_rarg0;  // crc
1054     const Register buf = c_rarg1;  // source java byte array address
1055     const Register len = c_rarg2;  // length
1056     const Register off = len;      // offset (never overlaps with 'len')
1057 
1058     // Arguments are reversed on java expression stack
1059     // Calculate address of start element
1060     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
1061       __ ldr(buf, Address(esp, 2*wordSize)); // long buf
1062       __ ldrw(off, Address(esp, wordSize)); // offset
1063       __ add(buf, buf, off); // + offset
1064       __ ldrw(crc,   Address(esp, 4*wordSize)); // Initial CRC
1065     } else {
1066       __ ldr(buf, Address(esp, 2*wordSize)); // byte[] array
1067       __ resolve(IS_NOT_NULL | ACCESS_READ, buf);
1068       __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
1069       __ ldrw(off, Address(esp, wordSize)); // offset
1070       __ add(buf, buf, off); // + offset
1071       __ ldrw(crc,   Address(esp, 3*wordSize)); // Initial CRC
1072     }
1073     // Can now load 'len' since we're finished with 'off'
1074     __ ldrw(len, Address(esp, 0x0)); // Length
1075 
1076     __ andr(sp, r13, -16); // Restore the caller's SP
1077 
1078     // We are frameless so we can just jump to the stub.
1079     __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()));
1080 
1081     // generate a vanilla native entry as the slow path
1082     __ bind(slow_path);
1083     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1084     return entry;
1085   }
1086   return NULL;
1087 }
1088 
1089 /**
1090  * Method entry for intrinsic-candidate (non-native) methods:
1091  *   int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end)
1092  *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
1093  * Unlike CRC32, CRC32C does not have any methods marked as native
1094  * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
1095  */
1096 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1097   if (UseCRC32CIntrinsics) {
1098     address entry = __ pc();
1099 
1100     // Prepare jump to stub using parameters from the stack
1101     const Register crc = c_rarg0; // initial crc
1102     const Register buf = c_rarg1; // source java byte array address
1103     const Register len = c_rarg2; // len argument to the kernel
1104 
1105     const Register end = len; // index of last element to process
1106     const Register off = crc; // offset
1107 
1108     __ ldrw(end, Address(esp)); // int end
1109     __ ldrw(off, Address(esp, wordSize)); // int offset
1110     __ sub(len, end, off);
1111     __ ldr(buf, Address(esp, 2*wordSize)); // byte[] buf | long buf
1112     if (kind == Interpreter::java_util_zip_CRC32C_updateBytes) {
1113       __ resolve(IS_NOT_NULL | ACCESS_READ, buf);
1114     }
1115     __ add(buf, buf, off); // + offset
1116     if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) {
1117       __ ldrw(crc, Address(esp, 4*wordSize)); // long crc
1118     } else {
1119       __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
1120       __ ldrw(crc, Address(esp, 3*wordSize)); // long crc
1121     }
1122 
1123     __ andr(sp, r13, -16); // Restore the caller's SP
1124 
1125     // Jump to the stub.
1126     __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32C()));
1127 
1128     return entry;
1129   }
1130   return NULL;
1131 }
1132 
1133 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1134   // Bang each page in the shadow zone. We can't assume it's been done for
1135   // an interpreter frame with greater than a page of locals, so each page
1136   // needs to be checked.  Only true for non-native.
1137   if (UseStackBanging) {
1138     const int n_shadow_pages = JavaThread::stack_shadow_zone_size() / os::vm_page_size();
1139     const int start_page = native_call ? n_shadow_pages : 1;
1140     const int page_size = os::vm_page_size();
1141     for (int pages = start_page; pages <= n_shadow_pages ; pages++) {
1142       __ sub(rscratch2, sp, pages*page_size);
1143       __ str(zr, Address(rscratch2));
1144     }
1145   }
1146 }
1147 
1148 
1149 // Interpreter stub for calling a native method. (asm interpreter)
1150 // This sets up a somewhat different looking stack for calling the
1151 // native method than the typical interpreter frame setup.
1152 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1153   // determine code generation flags
1154   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1155 
1156   // r1: Method*
1157   // rscratch1: sender sp
1158 
1159   address entry_point = __ pc();
1160 
1161   const Address constMethod       (rmethod, Method::const_offset());
1162   const Address access_flags      (rmethod, Method::access_flags_offset());
1163   const Address size_of_parameters(r2, ConstMethod::
1164                                        size_of_parameters_offset());
1165 
1166   // get parameter size (always needed)
1167   __ ldr(r2, constMethod);
1168   __ load_unsigned_short(r2, size_of_parameters);
1169 
1170   // Native calls don't need the stack size check since they have no
1171   // expression stack and the arguments are already on the stack and
1172   // we only add a handful of words to the stack.
1173 
1174   // rmethod: Method*
1175   // r2: size of parameters
1176   // rscratch1: sender sp
1177 
1178   // for natives the size of locals is zero
1179 
1180   // compute beginning of parameters (rlocals)
1181   __ add(rlocals, esp, r2, ext::uxtx, 3);
1182   __ add(rlocals, rlocals, -wordSize);
1183 
1184   // Pull SP back to minimum size: this avoids holes in the stack
1185   __ andr(sp, esp, -16);
1186 
1187   // initialize fixed part of activation frame
1188   generate_fixed_frame(true);
1189 #ifndef PRODUCT
1190   // tell the simulator that a method has been entered
1191   if (NotifySimulator) {
1192     __ notify(Assembler::method_entry);
1193   }
1194 #endif
1195 
1196   // make sure method is native & not abstract
1197 #ifdef ASSERT
1198   __ ldrw(r0, access_flags);
1199   {
1200     Label L;
1201     __ tst(r0, JVM_ACC_NATIVE);
1202     __ br(Assembler::NE, L);
1203     __ stop("tried to execute non-native method as native");
1204     __ bind(L);
1205   }
1206   {
1207     Label L;
1208     __ tst(r0, JVM_ACC_ABSTRACT);
1209     __ br(Assembler::EQ, L);
1210     __ stop("tried to execute abstract method in interpreter");
1211     __ bind(L);
1212   }
1213 #endif
1214 
1215   // Since at this point in the method invocation the exception
1216   // handler would try to exit the monitor of synchronized methods
1217   // which hasn't been entered yet, we set the thread local variable
1218   // _do_not_unlock_if_synchronized to true. The remove_activation
1219   // will check this flag.
1220 
1221    const Address do_not_unlock_if_synchronized(rthread,
1222         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1223   __ mov(rscratch2, true);
1224   __ strb(rscratch2, do_not_unlock_if_synchronized);
1225 
1226   // increment invocation count & check for overflow
1227   Label invocation_counter_overflow;
1228   if (inc_counter) {
1229     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1230   }
1231 
1232   Label continue_after_compile;
1233   __ bind(continue_after_compile);
1234 
1235   bang_stack_shadow_pages(true);
1236 
1237   // reset the _do_not_unlock_if_synchronized flag
1238   __ strb(zr, do_not_unlock_if_synchronized);
1239 
1240   // check for synchronized methods
1241   // Must happen AFTER invocation_counter check and stack overflow check,
1242   // so method is not locked if overflows.
1243   if (synchronized) {
1244     lock_method();
1245   } else {
1246     // no synchronization necessary
1247 #ifdef ASSERT
1248     {
1249       Label L;
1250       __ ldrw(r0, access_flags);
1251       __ tst(r0, JVM_ACC_SYNCHRONIZED);
1252       __ br(Assembler::EQ, L);
1253       __ stop("method needs synchronization");
1254       __ bind(L);
1255     }
1256 #endif
1257   }
1258 
1259   // start execution
1260 #ifdef ASSERT
1261   {
1262     Label L;
1263     const Address monitor_block_top(rfp,
1264                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1265     __ ldr(rscratch1, monitor_block_top);
1266     __ cmp(esp, rscratch1);
1267     __ br(Assembler::EQ, L);
1268     __ stop("broken stack frame setup in interpreter");
1269     __ bind(L);
1270   }
1271 #endif
1272 
1273   // jvmti support
1274   __ notify_method_entry();
1275 
1276   // work registers
1277   const Register t = r17;
1278   const Register result_handler = r19;
1279 
1280   // allocate space for parameters
1281   __ ldr(t, Address(rmethod, Method::const_offset()));
1282   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
1283 
1284   __ sub(rscratch1, esp, t, ext::uxtx, Interpreter::logStackElementSize);
1285   __ andr(sp, rscratch1, -16);
1286   __ mov(esp, rscratch1);
1287 
1288   // get signature handler
1289   {
1290     Label L;
1291     __ ldr(t, Address(rmethod, Method::signature_handler_offset()));
1292     __ cbnz(t, L);
1293     __ call_VM(noreg,
1294                CAST_FROM_FN_PTR(address,
1295                                 InterpreterRuntime::prepare_native_call),
1296                rmethod);
1297     __ ldr(t, Address(rmethod, Method::signature_handler_offset()));
1298     __ bind(L);
1299   }
1300 
1301   // call signature handler
1302   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals,
1303          "adjust this code");
1304   assert(InterpreterRuntime::SignatureHandlerGenerator::to() == sp,
1305          "adjust this code");
1306   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
1307           "adjust this code");
1308 
1309   // The generated handlers do not touch rmethod (the method).
1310   // However, large signatures cannot be cached and are generated
1311   // each time here.  The slow-path generator can do a GC on return,
1312   // so we must reload it after the call.
1313   __ blr(t);
1314   __ get_method(rmethod);        // slow path can do a GC, reload rmethod
1315 
1316 
1317   // result handler is in r0
1318   // set result handler
1319   __ mov(result_handler, r0);
1320   // pass mirror handle if static call
1321   {
1322     Label L;
1323     __ ldrw(t, Address(rmethod, Method::access_flags_offset()));
1324     __ tbz(t, exact_log2(JVM_ACC_STATIC), L);
1325     // get mirror
1326     __ load_mirror(t, rmethod);
1327     // copy mirror into activation frame
1328     __ str(t, Address(rfp, frame::interpreter_frame_oop_temp_offset * wordSize));
1329     // pass handle to mirror
1330     __ add(c_rarg1, rfp, frame::interpreter_frame_oop_temp_offset * wordSize);
1331     __ bind(L);
1332   }
1333 
1334   // get native function entry point in r10
1335   {
1336     Label L;
1337     __ ldr(r10, Address(rmethod, Method::native_function_offset()));
1338     address unsatisfied = (SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
1339     __ mov(rscratch2, unsatisfied);
1340     __ ldr(rscratch2, rscratch2);
1341     __ cmp(r10, rscratch2);
1342     __ br(Assembler::NE, L);
1343     __ call_VM(noreg,
1344                CAST_FROM_FN_PTR(address,
1345                                 InterpreterRuntime::prepare_native_call),
1346                rmethod);
1347     __ get_method(rmethod);
1348     __ ldr(r10, Address(rmethod, Method::native_function_offset()));
1349     __ bind(L);
1350   }
1351 
1352   // pass JNIEnv
1353   __ add(c_rarg0, rthread, in_bytes(JavaThread::jni_environment_offset()));
1354 
1355   // It is enough that the pc() points into the right code
1356   // segment. It does not have to be the correct return pc.
1357   __ set_last_Java_frame(esp, rfp, (address)NULL, rscratch1);
1358 
1359   // change thread state
1360 #ifdef ASSERT
1361   {
1362     Label L;
1363     __ ldrw(t, Address(rthread, JavaThread::thread_state_offset()));
1364     __ cmp(t, (u1)_thread_in_Java);
1365     __ br(Assembler::EQ, L);
1366     __ stop("Wrong thread state in native stub");
1367     __ bind(L);
1368   }
1369 #endif
1370 
1371   // Change state to native
1372   __ mov(rscratch1, _thread_in_native);
1373   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1374   __ stlrw(rscratch1, rscratch2);
1375 
1376   // Call the native method.
1377   __ blrt(r10, rscratch1);
1378   __ maybe_isb();
1379   __ get_method(rmethod);
1380   // result potentially in r0 or v0
1381 
1382   // make room for the pushes we're about to do
1383   __ sub(rscratch1, esp, 4 * wordSize);
1384   __ andr(sp, rscratch1, -16);
1385 
1386   // NOTE: The order of these pushes is known to frame::interpreter_frame_result
1387   // in order to extract the result of a method call. If the order of these
1388   // pushes change or anything else is added to the stack then the code in
1389   // interpreter_frame_result must also change.
1390   __ push(dtos);
1391   __ push(ltos);
1392 
1393   // change thread state
1394   __ mov(rscratch1, _thread_in_native_trans);
1395   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1396   __ stlrw(rscratch1, rscratch2);
1397 
1398   // Force this write out before the read below
1399   __ dmb(Assembler::ISH);
1400 
1401   // check for safepoint operation in progress and/or pending suspend requests
1402   {
1403     Label L, Continue;
1404     __ safepoint_poll_acquire(L);
1405     __ ldrw(rscratch2, Address(rthread, JavaThread::suspend_flags_offset()));
1406     __ cbz(rscratch2, Continue);
1407     __ bind(L);
1408 
1409     // Don't use call_VM as it will see a possible pending exception
1410     // and forward it and never return here preventing us from
1411     // clearing _last_native_pc down below. So we do a runtime call by
1412     // hand.
1413     //
1414     __ mov(c_rarg0, rthread);
1415     __ mov(rscratch2, CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans));
1416     __ blrt(rscratch2, 1, 0, 0);
1417     __ maybe_isb();
1418     __ get_method(rmethod);
1419     __ reinit_heapbase();
1420     __ bind(Continue);
1421   }
1422 
1423   // change thread state
1424   __ mov(rscratch1, _thread_in_Java);
1425   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1426   __ stlrw(rscratch1, rscratch2);
1427 
1428   // reset_last_Java_frame
1429   __ reset_last_Java_frame(true);
1430 
1431   if (CheckJNICalls) {
1432     // clear_pending_jni_exception_check
1433     __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset()));
1434   }
1435 
1436   // reset handle block
1437   __ ldr(t, Address(rthread, JavaThread::active_handles_offset()));
1438   __ str(zr, Address(t, JNIHandleBlock::top_offset_in_bytes()));
1439 
1440   // If result is an oop unbox and store it in frame where gc will see it
1441   // and result handler will pick it up
1442 
1443   {
1444     Label no_oop;
1445     __ adr(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
1446     __ cmp(t, result_handler);
1447     __ br(Assembler::NE, no_oop);
1448     // Unbox oop result, e.g. JNIHandles::resolve result.
1449     __ pop(ltos);
1450     __ resolve_jobject(r0, rthread, t);
1451     __ str(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
1452     // keep stack depth as expected by pushing oop which will eventually be discarded
1453     __ push(ltos);
1454     __ bind(no_oop);
1455   }
1456 
1457   {
1458     Label no_reguard;
1459     __ lea(rscratch1, Address(rthread, in_bytes(JavaThread::stack_guard_state_offset())));
1460     __ ldrw(rscratch1, Address(rscratch1));
1461     __ cmp(rscratch1, (u1)JavaThread::stack_guard_yellow_reserved_disabled);
1462     __ br(Assembler::NE, no_reguard);
1463 
1464     __ pusha(); // XXX only save smashed registers
1465     __ mov(c_rarg0, rthread);
1466     __ mov(rscratch2, CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
1467     __ blrt(rscratch2, 0, 0, 0);
1468     __ popa(); // XXX only restore smashed registers
1469     __ bind(no_reguard);
1470   }
1471 
1472   // The method register is junk from after the thread_in_native transition
1473   // until here.  Also can't call_VM until the bcp has been
1474   // restored.  Need bcp for throwing exception below so get it now.
1475   __ get_method(rmethod);
1476 
1477   // restore bcp to have legal interpreter frame, i.e., bci == 0 <=>
1478   // rbcp == code_base()
1479   __ ldr(rbcp, Address(rmethod, Method::const_offset()));   // get ConstMethod*
1480   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));          // get codebase
1481   // handle exceptions (exception handling will handle unlocking!)
1482   {
1483     Label L;
1484     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
1485     __ cbz(rscratch1, L);
1486     // Note: At some point we may want to unify this with the code
1487     // used in call_VM_base(); i.e., we should use the
1488     // StubRoutines::forward_exception code. For now this doesn't work
1489     // here because the rsp is not correctly set at this point.
1490     __ MacroAssembler::call_VM(noreg,
1491                                CAST_FROM_FN_PTR(address,
1492                                InterpreterRuntime::throw_pending_exception));
1493     __ should_not_reach_here();
1494     __ bind(L);
1495   }
1496 
1497   // do unlocking if necessary
1498   {
1499     Label L;
1500     __ ldrw(t, Address(rmethod, Method::access_flags_offset()));
1501     __ tbz(t, exact_log2(JVM_ACC_SYNCHRONIZED), L);
1502     // the code below should be shared with interpreter macro
1503     // assembler implementation
1504     {
1505       Label unlock;
1506       // BasicObjectLock will be first in list, since this is a
1507       // synchronized method. However, need to check that the object
1508       // has not been unlocked by an explicit monitorexit bytecode.
1509 
1510       // monitor expect in c_rarg1 for slow unlock path
1511       __ lea (c_rarg1, Address(rfp,   // address of first monitor
1512                                (intptr_t)(frame::interpreter_frame_initial_sp_offset *
1513                                           wordSize - sizeof(BasicObjectLock))));
1514 
1515       __ ldr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
1516       __ cbnz(t, unlock);
1517 
1518       // Entry already unlocked, need to throw exception
1519       __ MacroAssembler::call_VM(noreg,
1520                                  CAST_FROM_FN_PTR(address,
1521                    InterpreterRuntime::throw_illegal_monitor_state_exception));
1522       __ should_not_reach_here();
1523 
1524       __ bind(unlock);
1525       __ unlock_object(c_rarg1);
1526     }
1527     __ bind(L);
1528   }
1529 
1530   // jvmti support
1531   // Note: This must happen _after_ handling/throwing any exceptions since
1532   //       the exception handler code notifies the runtime of method exits
1533   //       too. If this happens before, method entry/exit notifications are
1534   //       not properly paired (was bug - gri 11/22/99).
1535   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1536 
1537   // restore potential result in r0:d0, call result handler to
1538   // restore potential result in ST0 & handle result
1539 
1540   __ pop(ltos);
1541   __ pop(dtos);
1542 
1543   __ blr(result_handler);
1544 
1545   // remove activation
1546   __ ldr(esp, Address(rfp,
1547                     frame::interpreter_frame_sender_sp_offset *
1548                     wordSize)); // get sender sp
1549   // remove frame anchor
1550   __ leave();
1551 
1552   // resture sender sp
1553   __ mov(sp, esp);
1554 
1555   __ ret(lr);
1556 
1557   if (inc_counter) {
1558     // Handle overflow of counter and compile method
1559     __ bind(invocation_counter_overflow);
1560     generate_counter_overflow(continue_after_compile);
1561   }
1562 
1563   return entry_point;
1564 }
1565 
1566 //
1567 // Generic interpreted method entry to (asm) interpreter
1568 //
1569 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1570   // determine code generation flags
1571   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1572 
1573   // rscratch1: sender sp
1574   address entry_point = __ pc();
1575 
1576   const Address constMethod(rmethod, Method::const_offset());
1577   const Address access_flags(rmethod, Method::access_flags_offset());
1578   const Address size_of_parameters(r3,
1579                                    ConstMethod::size_of_parameters_offset());
1580   const Address size_of_locals(r3, ConstMethod::size_of_locals_offset());
1581 
1582   // get parameter size (always needed)
1583   // need to load the const method first
1584   __ ldr(r3, constMethod);
1585   __ load_unsigned_short(r2, size_of_parameters);
1586 
1587   // r2: size of parameters
1588 
1589   __ load_unsigned_short(r3, size_of_locals); // get size of locals in words
1590   __ sub(r3, r3, r2); // r3 = no. of additional locals
1591 
1592   // see if we've got enough room on the stack for locals plus overhead.
1593   generate_stack_overflow_check();
1594 
1595   // compute beginning of parameters (rlocals)
1596   __ add(rlocals, esp, r2, ext::uxtx, 3);
1597   __ sub(rlocals, rlocals, wordSize);
1598 
1599   // Make room for locals
1600   __ sub(rscratch1, esp, r3, ext::uxtx, 3);
1601   __ andr(sp, rscratch1, -16);
1602 
1603   // r3 - # of additional locals
1604   // allocate space for locals
1605   // explicitly initialize locals
1606   {
1607     Label exit, loop;
1608     __ ands(zr, r3, r3);
1609     __ br(Assembler::LE, exit); // do nothing if r3 <= 0
1610     __ bind(loop);
1611     __ str(zr, Address(__ post(rscratch1, wordSize)));
1612     __ sub(r3, r3, 1); // until everything initialized
1613     __ cbnz(r3, loop);
1614     __ bind(exit);
1615   }
1616 
1617   // And the base dispatch table
1618   __ get_dispatch();
1619 
1620   // initialize fixed part of activation frame
1621   generate_fixed_frame(false);
1622 #ifndef PRODUCT
1623   // tell the simulator that a method has been entered
1624   if (NotifySimulator) {
1625     __ notify(Assembler::method_entry);
1626   }
1627 #endif
1628   // make sure method is not native & not abstract
1629 #ifdef ASSERT
1630   __ ldrw(r0, access_flags);
1631   {
1632     Label L;
1633     __ tst(r0, JVM_ACC_NATIVE);
1634     __ br(Assembler::EQ, L);
1635     __ stop("tried to execute native method as non-native");
1636     __ bind(L);
1637   }
1638  {
1639     Label L;
1640     __ tst(r0, JVM_ACC_ABSTRACT);
1641     __ br(Assembler::EQ, L);
1642     __ stop("tried to execute abstract method in interpreter");
1643     __ bind(L);
1644   }
1645 #endif
1646 
1647   // Since at this point in the method invocation the exception
1648   // handler would try to exit the monitor of synchronized methods
1649   // which hasn't been entered yet, we set the thread local variable
1650   // _do_not_unlock_if_synchronized to true. The remove_activation
1651   // will check this flag.
1652 
1653    const Address do_not_unlock_if_synchronized(rthread,
1654         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1655   __ mov(rscratch2, true);
1656   __ strb(rscratch2, do_not_unlock_if_synchronized);
1657 
1658   Label no_mdp;
1659   Register mdp = r3;
1660   __ ldr(mdp, Address(rmethod, Method::method_data_offset()));
1661   __ cbz(mdp, no_mdp);
1662   __ add(mdp, mdp, in_bytes(MethodData::data_offset()));
1663   __ profile_parameters_type(mdp, r1, r2);
1664   __ bind(no_mdp);
1665 
1666   // increment invocation count & check for overflow
1667   Label invocation_counter_overflow;
1668   Label profile_method;
1669   Label profile_method_continue;
1670   if (inc_counter) {
1671     generate_counter_incr(&invocation_counter_overflow,
1672                           &profile_method,
1673                           &profile_method_continue);
1674     if (ProfileInterpreter) {
1675       __ bind(profile_method_continue);
1676     }
1677   }
1678 
1679   Label continue_after_compile;
1680   __ bind(continue_after_compile);
1681 
1682   bang_stack_shadow_pages(false);
1683 
1684   // reset the _do_not_unlock_if_synchronized flag
1685   __ strb(zr, do_not_unlock_if_synchronized);
1686 
1687   // check for synchronized methods
1688   // Must happen AFTER invocation_counter check and stack overflow check,
1689   // so method is not locked if overflows.
1690   if (synchronized) {
1691     // Allocate monitor and lock method
1692     lock_method();
1693   } else {
1694     // no synchronization necessary
1695 #ifdef ASSERT
1696     {
1697       Label L;
1698       __ ldrw(r0, access_flags);
1699       __ tst(r0, JVM_ACC_SYNCHRONIZED);
1700       __ br(Assembler::EQ, L);
1701       __ stop("method needs synchronization");
1702       __ bind(L);
1703     }
1704 #endif
1705   }
1706 
1707   // start execution
1708 #ifdef ASSERT
1709   {
1710     Label L;
1711      const Address monitor_block_top (rfp,
1712                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1713     __ ldr(rscratch1, monitor_block_top);
1714     __ cmp(esp, rscratch1);
1715     __ br(Assembler::EQ, L);
1716     __ stop("broken stack frame setup in interpreter");
1717     __ bind(L);
1718   }
1719 #endif
1720 
1721   // jvmti support
1722   __ notify_method_entry();
1723 
1724   __ dispatch_next(vtos);
1725 
1726   // invocation counter overflow
1727   if (inc_counter) {
1728     if (ProfileInterpreter) {
1729       // We have decided to profile this method in the interpreter
1730       __ bind(profile_method);
1731       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1732       __ set_method_data_pointer_for_bcp();
1733       // don't think we need this
1734       __ get_method(r1);
1735       __ b(profile_method_continue);
1736     }
1737     // Handle overflow of counter and compile method
1738     __ bind(invocation_counter_overflow);
1739     generate_counter_overflow(continue_after_compile);
1740   }
1741 
1742   return entry_point;
1743 }
1744 
1745 //-----------------------------------------------------------------------------
1746 // Exceptions
1747 
1748 void TemplateInterpreterGenerator::generate_throw_exception() {
1749   // Entry point in previous activation (i.e., if the caller was
1750   // interpreted)
1751   Interpreter::_rethrow_exception_entry = __ pc();
1752   // Restore sp to interpreter_frame_last_sp even though we are going
1753   // to empty the expression stack for the exception processing.
1754   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1755   // r0: exception
1756   // r3: return address/pc that threw exception
1757   __ restore_bcp();    // rbcp points to call/send
1758   __ restore_locals();
1759   __ restore_constant_pool_cache();
1760   __ reinit_heapbase();  // restore rheapbase as heapbase.
1761   __ get_dispatch();
1762 
1763 #ifndef PRODUCT
1764   // tell the simulator that the caller method has been reentered
1765   if (NotifySimulator) {
1766     __ get_method(rmethod);
1767     __ notify(Assembler::method_reentry);
1768   }
1769 #endif
1770   // Entry point for exceptions thrown within interpreter code
1771   Interpreter::_throw_exception_entry = __ pc();
1772   // If we came here via a NullPointerException on the receiver of a
1773   // method, rmethod may be corrupt.
1774   __ get_method(rmethod);
1775   // expression stack is undefined here
1776   // r0: exception
1777   // rbcp: exception bcp
1778   __ verify_oop(r0);
1779   __ mov(c_rarg1, r0);
1780 
1781   // expression stack must be empty before entering the VM in case of
1782   // an exception
1783   __ empty_expression_stack();
1784   // find exception handler address and preserve exception oop
1785   __ call_VM(r3,
1786              CAST_FROM_FN_PTR(address,
1787                           InterpreterRuntime::exception_handler_for_exception),
1788              c_rarg1);
1789 
1790   // Calculate stack limit
1791   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
1792   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
1793   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 4);
1794   __ ldr(rscratch2,
1795          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
1796   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtx, 3);
1797   __ andr(sp, rscratch1, -16);
1798 
1799   // r0: exception handler entry point
1800   // r3: preserved exception oop
1801   // rbcp: bcp for exception handler
1802   __ push_ptr(r3); // push exception which is now the only value on the stack
1803   __ br(r0); // jump to exception handler (may be _remove_activation_entry!)
1804 
1805   // If the exception is not handled in the current frame the frame is
1806   // removed and the exception is rethrown (i.e. exception
1807   // continuation is _rethrow_exception).
1808   //
1809   // Note: At this point the bci is still the bxi for the instruction
1810   // which caused the exception and the expression stack is
1811   // empty. Thus, for any VM calls at this point, GC will find a legal
1812   // oop map (with empty expression stack).
1813 
1814   //
1815   // JVMTI PopFrame support
1816   //
1817 
1818   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1819   __ empty_expression_stack();
1820   // Set the popframe_processing bit in pending_popframe_condition
1821   // indicating that we are currently handling popframe, so that
1822   // call_VMs that may happen later do not trigger new popframe
1823   // handling cycles.
1824   __ ldrw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
1825   __ orr(r3, r3, JavaThread::popframe_processing_bit);
1826   __ strw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
1827 
1828   {
1829     // Check to see whether we are returning to a deoptimized frame.
1830     // (The PopFrame call ensures that the caller of the popped frame is
1831     // either interpreted or compiled and deoptimizes it if compiled.)
1832     // In this case, we can't call dispatch_next() after the frame is
1833     // popped, but instead must save the incoming arguments and restore
1834     // them after deoptimization has occurred.
1835     //
1836     // Note that we don't compare the return PC against the
1837     // deoptimization blob's unpack entry because of the presence of
1838     // adapter frames in C2.
1839     Label caller_not_deoptimized;
1840     __ ldr(c_rarg1, Address(rfp, frame::return_addr_offset * wordSize));
1841     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1842                                InterpreterRuntime::interpreter_contains), c_rarg1);
1843     __ cbnz(r0, caller_not_deoptimized);
1844 
1845     // Compute size of arguments for saving when returning to
1846     // deoptimized caller
1847     __ get_method(r0);
1848     __ ldr(r0, Address(r0, Method::const_offset()));
1849     __ load_unsigned_short(r0, Address(r0, in_bytes(ConstMethod::
1850                                                     size_of_parameters_offset())));
1851     __ lsl(r0, r0, Interpreter::logStackElementSize);
1852     __ restore_locals(); // XXX do we need this?
1853     __ sub(rlocals, rlocals, r0);
1854     __ add(rlocals, rlocals, wordSize);
1855     // Save these arguments
1856     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1857                                            Deoptimization::
1858                                            popframe_preserve_args),
1859                           rthread, r0, rlocals);
1860 
1861     __ remove_activation(vtos,
1862                          /* throw_monitor_exception */ false,
1863                          /* install_monitor_exception */ false,
1864                          /* notify_jvmdi */ false);
1865 
1866     // Inform deoptimization that it is responsible for restoring
1867     // these arguments
1868     __ mov(rscratch1, JavaThread::popframe_force_deopt_reexecution_bit);
1869     __ strw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
1870 
1871     // Continue in deoptimization handler
1872     __ ret(lr);
1873 
1874     __ bind(caller_not_deoptimized);
1875   }
1876 
1877   __ remove_activation(vtos,
1878                        /* throw_monitor_exception */ false,
1879                        /* install_monitor_exception */ false,
1880                        /* notify_jvmdi */ false);
1881 
1882   // Restore the last_sp and null it out
1883   __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1884   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1885 
1886   __ restore_bcp();
1887   __ restore_locals();
1888   __ restore_constant_pool_cache();
1889   __ get_method(rmethod);
1890   __ get_dispatch();
1891 
1892   // The method data pointer was incremented already during
1893   // call profiling. We have to restore the mdp for the current bcp.
1894   if (ProfileInterpreter) {
1895     __ set_method_data_pointer_for_bcp();
1896   }
1897 
1898   // Clear the popframe condition flag
1899   __ strw(zr, Address(rthread, JavaThread::popframe_condition_offset()));
1900   assert(JavaThread::popframe_inactive == 0, "fix popframe_inactive");
1901 
1902 #if INCLUDE_JVMTI
1903   {
1904     Label L_done;
1905 
1906     __ ldrb(rscratch1, Address(rbcp, 0));
1907     __ cmpw(rscratch1, Bytecodes::_invokestatic);
1908     __ br(Assembler::NE, L_done);
1909 
1910     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1911     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
1912 
1913     __ ldr(c_rarg0, Address(rlocals, 0));
1914     __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), c_rarg0, rmethod, rbcp);
1915 
1916     __ cbz(r0, L_done);
1917 
1918     __ str(r0, Address(esp, 0));
1919     __ bind(L_done);
1920   }
1921 #endif // INCLUDE_JVMTI
1922 
1923   // Restore machine SP
1924   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
1925   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
1926   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 4);
1927   __ ldr(rscratch2,
1928          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
1929   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtw, 3);
1930   __ andr(sp, rscratch1, -16);
1931 
1932   __ dispatch_next(vtos);
1933   // end of PopFrame support
1934 
1935   Interpreter::_remove_activation_entry = __ pc();
1936 
1937   // preserve exception over this code sequence
1938   __ pop_ptr(r0);
1939   __ str(r0, Address(rthread, JavaThread::vm_result_offset()));
1940   // remove the activation (without doing throws on illegalMonitorExceptions)
1941   __ remove_activation(vtos, false, true, false);
1942   // restore exception
1943   __ get_vm_result(r0, rthread);
1944 
1945   // In between activations - previous activation type unknown yet
1946   // compute continuation point - the continuation point expects the
1947   // following registers set up:
1948   //
1949   // r0: exception
1950   // lr: return address/pc that threw exception
1951   // esp: expression stack of caller
1952   // rfp: fp of caller
1953   __ stp(r0, lr, Address(__ pre(sp, -2 * wordSize)));  // save exception & return address
1954   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1955                           SharedRuntime::exception_handler_for_return_address),
1956                         rthread, lr);
1957   __ mov(r1, r0);                               // save exception handler
1958   __ ldp(r0, lr, Address(__ post(sp, 2 * wordSize)));  // restore exception & return address
1959   // We might be returning to a deopt handler that expects r3 to
1960   // contain the exception pc
1961   __ mov(r3, lr);
1962   // Note that an "issuing PC" is actually the next PC after the call
1963   __ br(r1);                                    // jump to exception
1964                                                 // handler of caller
1965 }
1966 
1967 
1968 //
1969 // JVMTI ForceEarlyReturn support
1970 //
1971 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1972   address entry = __ pc();
1973 
1974   __ restore_bcp();
1975   __ restore_locals();
1976   __ empty_expression_stack();
1977   __ load_earlyret_value(state);
1978 
1979   __ ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
1980   Address cond_addr(rscratch1, JvmtiThreadState::earlyret_state_offset());
1981 
1982   // Clear the earlyret state
1983   assert(JvmtiThreadState::earlyret_inactive == 0, "should be");
1984   __ str(zr, cond_addr);
1985 
1986   __ remove_activation(state,
1987                        false, /* throw_monitor_exception */
1988                        false, /* install_monitor_exception */
1989                        true); /* notify_jvmdi */
1990   __ ret(lr);
1991 
1992   return entry;
1993 } // end of ForceEarlyReturn support
1994 
1995 
1996 
1997 //-----------------------------------------------------------------------------
1998 // Helper for vtos entry point generation
1999 
2000 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
2001                                                          address& bep,
2002                                                          address& cep,
2003                                                          address& sep,
2004                                                          address& aep,
2005                                                          address& iep,
2006                                                          address& lep,
2007                                                          address& fep,
2008                                                          address& dep,
2009                                                          address& vep) {
2010   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2011   Label L;
2012   aep = __ pc();  __ push_ptr();  __ b(L);
2013   fep = __ pc();  __ push_f();    __ b(L);
2014   dep = __ pc();  __ push_d();    __ b(L);
2015   lep = __ pc();  __ push_l();    __ b(L);
2016   bep = cep = sep =
2017   iep = __ pc();  __ push_i();
2018   vep = __ pc();
2019   __ bind(L);
2020   generate_and_dispatch(t);
2021 }
2022 
2023 //-----------------------------------------------------------------------------
2024 
2025 // Non-product code
2026 #ifndef PRODUCT
2027 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2028   address entry = __ pc();
2029 
2030   __ push(lr);
2031   __ push(state);
2032   __ push(RegSet::range(r0, r15), sp);
2033   __ mov(c_rarg2, r0);  // Pass itos
2034   __ call_VM(noreg,
2035              CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode),
2036              c_rarg1, c_rarg2, c_rarg3);
2037   __ pop(RegSet::range(r0, r15), sp);
2038   __ pop(state);
2039   __ pop(lr);
2040   __ ret(lr);                                   // return from result handler
2041 
2042   return entry;
2043 }
2044 
2045 void TemplateInterpreterGenerator::count_bytecode() {
2046   Register rscratch3 = r0;
2047   __ push(rscratch1);
2048   __ push(rscratch2);
2049   __ push(rscratch3);
2050   __ mov(rscratch3, (address) &BytecodeCounter::_counter_value);
2051   __ atomic_add(noreg, 1, rscratch3);
2052   __ pop(rscratch3);
2053   __ pop(rscratch2);
2054   __ pop(rscratch1);
2055 }
2056 
2057 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { ; }
2058 
2059 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { ; }
2060 
2061 
2062 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2063   // Call a little run-time stub to avoid blow-up for each bytecode.
2064   // The run-time runtime saves the right registers, depending on
2065   // the tosca in-state for the given template.
2066 
2067   assert(Interpreter::trace_code(t->tos_in()) != NULL,
2068          "entry must have been generated");
2069   __ bl(Interpreter::trace_code(t->tos_in()));
2070   __ reinit_heapbase();
2071 }
2072 
2073 
2074 void TemplateInterpreterGenerator::stop_interpreter_at() {
2075   Label L;
2076   __ push(rscratch1);
2077   __ mov(rscratch1, (address) &BytecodeCounter::_counter_value);
2078   __ ldr(rscratch1, Address(rscratch1));
2079   __ mov(rscratch2, StopInterpreterAt);
2080   __ cmpw(rscratch1, rscratch2);
2081   __ br(Assembler::NE, L);
2082   __ brk(0);
2083   __ bind(L);
2084   __ pop(rscratch1);
2085 }
2086 
2087 #ifdef BUILTIN_SIM
2088 
2089 #include <sys/mman.h>
2090 #include <unistd.h>
2091 
2092 extern "C" {
2093   static int PAGESIZE = getpagesize();
2094   int is_mapped_address(u_int64_t address)
2095   {
2096     address = (address & ~((u_int64_t)PAGESIZE - 1));
2097     if (msync((void *)address, PAGESIZE, MS_ASYNC) == 0) {
2098       return true;
2099     }
2100     if (errno != ENOMEM) {
2101       return true;
2102     }
2103     return false;
2104   }
2105 
2106   void bccheck1(u_int64_t pc, u_int64_t fp, char *method, int *bcidx, int *framesize, char *decode)
2107   {
2108     if (method != 0) {
2109       method[0] = '\0';
2110     }
2111     if (bcidx != 0) {
2112       *bcidx = -2;
2113     }
2114     if (decode != 0) {
2115       decode[0] = 0;
2116     }
2117 
2118     if (framesize != 0) {
2119       *framesize = -1;
2120     }
2121 
2122     if (Interpreter::contains((address)pc)) {
2123       AArch64Simulator *sim = AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck);
2124       Method* meth;
2125       address bcp;
2126       if (fp) {
2127 #define FRAME_SLOT_METHOD 3
2128 #define FRAME_SLOT_BCP 7
2129         meth = (Method*)sim->getMemory()->loadU64(fp - (FRAME_SLOT_METHOD << 3));
2130         bcp = (address)sim->getMemory()->loadU64(fp - (FRAME_SLOT_BCP << 3));
2131 #undef FRAME_SLOT_METHOD
2132 #undef FRAME_SLOT_BCP
2133       } else {
2134         meth = (Method*)sim->getCPUState().xreg(RMETHOD, 0);
2135         bcp = (address)sim->getCPUState().xreg(RBCP, 0);
2136       }
2137       if (meth->is_native()) {
2138         return;
2139       }
2140       if(method && meth->is_method()) {
2141         ResourceMark rm;
2142         method[0] = 'I';
2143         method[1] = ' ';
2144         meth->name_and_sig_as_C_string(method + 2, 398);
2145       }
2146       if (bcidx) {
2147         if (meth->contains(bcp)) {
2148           *bcidx = meth->bci_from(bcp);
2149         } else {
2150           *bcidx = -2;
2151         }
2152       }
2153       if (decode) {
2154         if (!BytecodeTracer::closure()) {
2155           BytecodeTracer::set_closure(BytecodeTracer::std_closure());
2156         }
2157         stringStream str(decode, 400);
2158         BytecodeTracer::trace(meth, bcp, &str);
2159       }
2160     } else {
2161       if (method) {
2162         CodeBlob *cb = CodeCache::find_blob((address)pc);
2163         if (cb != NULL) {
2164           if (cb->is_nmethod()) {
2165             ResourceMark rm;
2166             nmethod* nm = (nmethod*)cb;
2167             method[0] = 'C';
2168             method[1] = ' ';
2169             nm->method()->name_and_sig_as_C_string(method + 2, 398);
2170           } else if (cb->is_adapter_blob()) {
2171             strcpy(method, "B adapter blob");
2172           } else if (cb->is_runtime_stub()) {
2173             strcpy(method, "B runtime stub");
2174           } else if (cb->is_exception_stub()) {
2175             strcpy(method, "B exception stub");
2176           } else if (cb->is_deoptimization_stub()) {
2177             strcpy(method, "B deoptimization stub");
2178           } else if (cb->is_safepoint_stub()) {
2179             strcpy(method, "B safepoint stub");
2180           } else if (cb->is_uncommon_trap_stub()) {
2181             strcpy(method, "B uncommon trap stub");
2182           } else if (cb->contains((address)StubRoutines::call_stub())) {
2183             strcpy(method, "B call stub");
2184           } else {
2185             strcpy(method, "B unknown blob : ");
2186             strcat(method, cb->name());
2187           }
2188           if (framesize != NULL) {
2189             *framesize = cb->frame_size();
2190           }
2191         }
2192       }
2193     }
2194   }
2195 
2196 
2197   JNIEXPORT void bccheck(u_int64_t pc, u_int64_t fp, char *method, int *bcidx, int *framesize, char *decode)
2198   {
2199     bccheck1(pc, fp, method, bcidx, framesize, decode);
2200   }
2201 }
2202 
2203 #endif // BUILTIN_SIM
2204 #endif // !PRODUCT