< prev index next >

src/hotspot/cpu/aarch64/sharedRuntime_aarch64.cpp

Print this page
rev 53735 : AArch64 support for ValueTypes

@@ -24,10 +24,11 @@
  */
 
 #include "precompiled.hpp"
 #include "asm/macroAssembler.hpp"
 #include "asm/macroAssembler.inline.hpp"
+#include "classfile/symbolTable.hpp"
 #include "code/debugInfoRec.hpp"
 #include "code/icBuffer.hpp"
 #include "code/vtableStubs.hpp"
 #include "interpreter/interpreter.hpp"
 #include "interpreter/interp_masm.hpp"

@@ -287,10 +288,11 @@
       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
       // fall through
     case T_OBJECT:
     case T_ARRAY:
     case T_ADDRESS:
+    case T_VALUETYPE:
       if (int_args < Argument::n_int_register_parameters_j) {
         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
       } else {
         regs[i].set2(VMRegImpl::stack2reg(stk_args));
         stk_args += 2;

@@ -320,10 +322,93 @@
   }
 
   return align_up(stk_args, 2);
 }
 
+const uint SharedRuntime::java_return_convention_max_int = Argument::n_int_register_parameters_j+1;
+const uint SharedRuntime::java_return_convention_max_float = Argument::n_float_register_parameters_j;
+
+int SharedRuntime::java_return_convention(const BasicType *sig_bt,
+                                          VMRegPair *regs,
+                                          int total_args_passed) {
+
+  // Create the mapping between argument positions and
+  // registers.
+  static const Register INT_ArgReg[java_return_convention_max_int] = {
+    j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7
+  };
+  static const FloatRegister FP_ArgReg[java_return_convention_max_float] = {
+    j_farg0, j_farg1, j_farg2, j_farg3,
+    j_farg4, j_farg5, j_farg6, j_farg7
+  };
+
+
+  uint int_args = 0;
+  uint fp_args = 0;
+
+  for (int i = 0; i < total_args_passed; i++) {
+    switch (sig_bt[i]) {
+    case T_BOOLEAN:
+    case T_CHAR:
+    case T_BYTE:
+    case T_SHORT:
+    case T_INT:
+      if (int_args < Argument::n_int_register_parameters_j) {
+        regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
+        int_args ++;
+      } else {
+        // Should we have gurantee here?
+        return -1;
+      }
+      break;
+    case T_VOID:
+      // halves of T_LONG or T_DOUBLE
+      assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
+      regs[i].set_bad();
+      break;
+    case T_LONG:
+      assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
+      // fall through
+    case T_OBJECT:
+    case T_ARRAY:
+    case T_ADDRESS:
+      // Should T_METADATA be added to java_calling_convention as well ?
+    case T_METADATA:
+    case T_VALUETYPE:
+      if (int_args < Argument::n_int_register_parameters_j) {
+        regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
+        int_args ++;
+      } else {
+        return -1;
+      }
+      break;
+    case T_FLOAT:
+      if (fp_args < Argument::n_float_register_parameters_j) {
+        regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
+        fp_args ++;
+      } else {
+        return -1;
+      }
+      break;
+    case T_DOUBLE:
+      assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
+      if (fp_args < Argument::n_float_register_parameters_j) {
+        regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
+        fp_args ++;
+      } else {
+        return -1;
+      }
+      break;
+    default:
+      ShouldNotReachHere();
+      break;
+    }
+  }
+
+   return int_args + fp_args;
+}
+
 // Patch the callers callsite with entry to compiled code if it exists.
 static void patch_callers_callsite(MacroAssembler *masm) {
   Label L;
   __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset())));
   __ cbz(rscratch1, L);

@@ -350,16 +435,27 @@
   // restore sp
   __ leave();
   __ bind(L);
 }
 
+// For each value type argument, sig includes the list of fields of
+// the value type. This utility function computes the number of
+// arguments for the call if value types are passed by reference (the
+// calling convention the interpreter expects).
+static int compute_total_args_passed_int(const GrowableArray<SigEntry>* sig_extended) {
+  guarantee(ValueTypePassFieldsAsArgs == false, "Support for ValValueTypePassFieldsAsArgs = true is not implemented");
+
+  int total_args_passed = 0;
+  total_args_passed = sig_extended->length();
+  return total_args_passed;
+}
+
 static void gen_c2i_adapter(MacroAssembler *masm,
-                            int total_args_passed,
-                            int comp_args_on_stack,
-                            const BasicType *sig_bt,
+                            const GrowableArray<SigEntry>* sig_extended,
                             const VMRegPair *regs,
                             Label& skip_fixup) {
+
   // Before we get into the guts of the C2I adapter, see if we should be here
   // at all.  We've come from compiled code and are attempting to jump to the
   // interpreter, which means the caller made a static call to get here
   // (vcalls always get a compiled target if there is one).  Check for a
   // compiled target.  If there is one, we need to patch the caller's call.

@@ -370,24 +466,25 @@
   int words_pushed = 0;
 
   // Since all args are passed on the stack, total_args_passed *
   // Interpreter::stackElementSize is the space we need.
 
+  int total_args_passed = compute_total_args_passed_int(sig_extended);
   int extraspace = total_args_passed * Interpreter::stackElementSize;
 
   __ mov(r13, sp);
 
   // stack is aligned, keep it that way
-  extraspace = align_up(extraspace, 2*wordSize);
-
+  extraspace = align_up(extraspace, 2 * wordSize);
   if (extraspace)
     __ sub(sp, sp, extraspace);
 
   // Now write the args into the outgoing interpreter space
   for (int i = 0; i < total_args_passed; i++) {
-    if (sig_bt[i] == T_VOID) {
-      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
+    BasicType bt = sig_extended->at(i)._bt;
+    if (bt == T_VOID) {
+      //DMS TODO assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
       continue;
     }
 
     // offset to start parameters
     int st_off   = (total_args_passed - i - 1) * Interpreter::stackElementSize;

@@ -412,13 +509,11 @@
       assert(!r_2->is_valid(), "");
       continue;
     }
     if (r_1->is_stack()) {
       // memory to memory use rscratch1
-      int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size
-                    + extraspace
-                    + words_pushed * wordSize);
+      int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace + words_pushed * wordSize);
       if (!r_2->is_valid()) {
         // sign extend??
         __ ldrw(rscratch1, Address(sp, ld_off));
         __ str(rscratch1, Address(sp, st_off));
 

@@ -426,11 +521,11 @@
 
         __ ldr(rscratch1, Address(sp, ld_off));
 
         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
         // T_DOUBLE and T_LONG use two slots in the interpreter
-        if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
+        if ( bt == T_LONG || bt == T_DOUBLE) {
           // ld_off == LSW, ld_off+wordSize == MSW
           // st_off == MSW, next_off == LSW
           __ str(rscratch1, Address(sp, next_off));
 #ifdef ASSERT
           // Overwrite the unused slot with known junk

@@ -448,11 +543,11 @@
         // why not sign extend??
         __ str(r, Address(sp, st_off));
       } else {
         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
         // T_DOUBLE and T_LONG use two slots in the interpreter
-        if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
+        if ( bt == T_LONG || bt == T_DOUBLE) {
           // long/double in gpr
 #ifdef ASSERT
           // Overwrite the unused slot with known junk
           __ mov(rscratch1, 0xdeadffffdeadaaabul);
           __ str(rscratch1, Address(sp, st_off));

@@ -484,15 +579,15 @@
   __ br(rscratch1);
 }
 
 
 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
-                                    int total_args_passed,
                                     int comp_args_on_stack,
-                                    const BasicType *sig_bt,
+                                    const GrowableArray<SigEntry>* sig,
                                     const VMRegPair *regs) {
 
+
   // Note: r13 contains the senderSP on entry. We must preserve it since
   // we may do a i2c -> c2i transition if we lose a race where compiled
   // code goes non-entrant while we get args ready.
 
   // In addition we use r13 to locate all the interpreter args because

@@ -569,23 +664,26 @@
     __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
     __ bind(no_alternative_target);
   }
 #endif // INCLUDE_JVMCI
 
+  int total_args_passed = compute_total_args_passed_int(sig);
+
   // Now generate the shuffle code.
   for (int i = 0; i < total_args_passed; i++) {
-    if (sig_bt[i] == T_VOID) {
-      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
+    BasicType bt = sig->at(i)._bt;
+    if (bt == T_VOID) {
+      //DMS TODO: assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
       continue;
     }
 
     // Pick up 0, 1 or 2 words from SP+offset.
 
     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
             "scrambled load targets?");
     // Load in argument order going down.
-    int ld_off = (total_args_passed - i - 1)*Interpreter::stackElementSize;
+    int ld_off = (total_args_passed - i - 1) * Interpreter::stackElementSize;
     // Point to interpreter value (vs. tag)
     int next_off = ld_off - Interpreter::stackElementSize;
     //
     //
     //

@@ -612,12 +710,11 @@
         //
         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
         // are accessed as negative so LSW is at LOW address
 
         // ld_off is MSW so get LSW
-        const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
-                           next_off : ld_off;
+        const int offset = (bt == T_LONG || bt == T_DOUBLE) ? next_off : ld_off;
         __ ldr(rscratch2, Address(esp, offset));
         // st_off is LSW (i.e. reg.first())
         __ str(rscratch2, Address(sp, st_off));
       }
     } else if (r_1->is_Register()) {  // Register argument

@@ -628,12 +725,11 @@
         // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
         // two slots but only uses one for thr T_LONG or T_DOUBLE case
         // So we must adjust where to pick up the data to match the
         // interpreter.
 
-        const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
-                           next_off : ld_off;
+        const int offset = (bt == T_LONG || bt == T_DOUBLE) ? next_off : ld_off;
 
         // this can be a misaligned move
         __ ldr(r, Address(esp, offset));
       } else {
         // sign extend and use a full word?

@@ -728,15 +824,18 @@
 }
 #endif
 
 // ---------------------------------------------------------------
 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
-                                                            int total_args_passed,
                                                             int comp_args_on_stack,
-                                                            const BasicType *sig_bt,
-                                                            const VMRegPair *regs,
-                                                            AdapterFingerPrint* fingerprint) {
+                                                            int comp_args_on_stack_cc,
+                                                            const GrowableArray<SigEntry>* sig,
+                                                            const VMRegPair* regs,
+                                                            const GrowableArray<SigEntry>* sig_cc,
+                                                            const VMRegPair* regs_cc,
+                                                            AdapterFingerPrint* fingerprint,
+                                                            AdapterBlob*& new_adapter) {
   address i2c_entry = __ pc();
 #ifdef BUILTIN_SIM
   char *name = NULL;
   AArch64Simulator *sim = NULL;
   size_t len = 65536;

@@ -748,11 +847,11 @@
     generate_i2c_adapter_name(name, total_args_passed, sig_bt);
     sim = AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck);
     sim->notifyCompile(name, i2c_entry);
   }
 #endif
-  gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
+  gen_i2c_adapter(masm, comp_args_on_stack_cc, sig_cc, regs_cc);
 
   address c2i_unverified_entry = __ pc();
   Label skip_fixup;
 
   Label ok;

@@ -788,24 +887,35 @@
     __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
     __ block_comment("} c2i_unverified_entry");
   }
 
   address c2i_entry = __ pc();
+  address c2i_value_entry = c2i_entry;
 
 #ifdef BUILTIN_SIM
   if (name) {
     name[0] = 'c';
     name[2] = 'i';
     sim->notifyCompile(name, c2i_entry);
     FREE_C_HEAP_ARRAY(char, name, mtInternal);
   }
 #endif
 
-  gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
+  gen_c2i_adapter(masm, sig_cc, regs_cc, skip_fixup);
 
   __ flush();
-  return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
+
+  OopMapSet* oop_maps = NULL;
+
+  int frame_complete = CodeOffsets::frame_never_safe;
+  int frame_size_in_words = 0;
+
+  // The c2i adapter might safepoint and trigger a GC. The caller must make sure that
+  // the GC knows about the location of oop argument locations passed to the c2i adapter.
+  bool caller_must_gc_arguments = (regs != regs_cc);
+  new_adapter = AdapterBlob::create(masm->code(), frame_complete, frame_size_in_words, oop_maps, caller_must_gc_arguments);
+  return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_value_entry, c2i_unverified_entry);
 }
 
 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
                                          VMRegPair *regs,
                                          VMRegPair *regs2,

@@ -3192,5 +3302,103 @@
 
   // Set exception blob
   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
 }
 #endif // COMPILER2_OR_JVMCI
+
+BufferedValueTypeBlob* SharedRuntime::generate_buffered_value_type_adapter(const ValueKlass* vk) {
+  BufferBlob* buf = BufferBlob::create("value types pack/unpack", 16 * K);
+  CodeBuffer buffer(buf);
+  short buffer_locs[20];
+  buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
+                                         sizeof(buffer_locs)/sizeof(relocInfo));
+
+  MacroAssembler _masm(&buffer);
+  MacroAssembler* masm = &_masm;
+
+  const Array<SigEntry>* sig_vk = vk->extended_sig();
+  const Array<VMRegPair>* regs = vk->return_regs();
+
+  int pack_fields_off = __ offset();
+
+  int j = 1;
+  for (int i = 0; i < sig_vk->length(); i++) {
+    BasicType bt = sig_vk->at(i)._bt;
+    if (bt == T_VALUETYPE) {
+      continue;
+    }
+    if (bt == T_VOID) {
+      if (sig_vk->at(i-1)._bt == T_LONG ||
+          sig_vk->at(i-1)._bt == T_DOUBLE) {
+        j++;
+      }
+      continue;
+    }
+    int off = sig_vk->at(i)._offset;
+    VMRegPair pair = regs->at(j);
+    VMReg r_1 = pair.first();
+    VMReg r_2 = pair.second();
+    Address to(r0, off);
+    if (bt == T_FLOAT) { 
+      __ strs(r_1->as_FloatRegister(), to);
+    } else if (bt == T_DOUBLE) {
+      __ strd(r_1->as_FloatRegister(), to);
+    } else if (bt == T_OBJECT || bt == T_ARRAY) {
+      __ lea(r_1->as_Register(), to);
+    } else {
+      assert(is_java_primitive(bt), "unexpected basic type");
+      size_t size_in_bytes = type2aelembytes(bt);
+      __ store_sized_value(to, r_1->as_Register(), size_in_bytes);
+    }
+    j++;
+  }
+  assert(j == regs->length(), "missed a field?");
+
+  __ ret(r0);
+
+  int unpack_fields_off = __ offset();
+
+  j = 1;
+  for (int i = 0; i < sig_vk->length(); i++) {
+    BasicType bt = sig_vk->at(i)._bt;
+    if (bt == T_VALUETYPE) {
+      continue;
+    }
+    if (bt == T_VOID) {
+      if (sig_vk->at(i-1)._bt == T_LONG ||
+          sig_vk->at(i-1)._bt == T_DOUBLE) {
+        j++;
+      }
+      continue;
+    }
+    int off = sig_vk->at(i)._offset;
+    VMRegPair pair = regs->at(j);
+    VMReg r_1 = pair.first();
+    VMReg r_2 = pair.second();
+    Address from(r0, off);
+    if (bt == T_FLOAT) {
+      __ ldrs(r_1->as_FloatRegister(), from);
+    } else if (bt == T_DOUBLE) {
+      __ ldrd(r_1->as_FloatRegister(), from);
+    } else if (bt == T_OBJECT || bt == T_ARRAY) {
+      __ lea(r_1->as_Register(), from);
+    } else {
+      assert(is_java_primitive(bt), "unexpected basic type");
+      size_t size_in_bytes = type2aelembytes(bt);
+      __ load_sized_value(r_1->as_Register(), from, size_in_bytes, bt != T_CHAR && bt != T_BOOLEAN);
+    }
+    j++;
+  }
+  assert(j == regs->length(), "missed a field?");
+
+  // DMS CHECK:
+  if (StressValueTypeReturnedAsFields) {
+    __ load_klass(r0, r0);
+    __ orr(r0, r0, 1);
+  }
+
+  __ ret(r0);
+
+  __ flush();
+
+  return BufferedValueTypeBlob::create(&buffer, pack_fields_off, unpack_fields_off);
+}
< prev index next >