1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_Instruction.hpp"
  31 #include "c1/c1_LIRAssembler.hpp"
  32 #include "c1/c1_LIRGenerator.hpp"
  33 #include "c1/c1_Runtime1.hpp"
  34 #include "c1/c1_ValueStack.hpp"
  35 #include "ci/ciArray.hpp"
  36 #include "ci/ciObjArrayKlass.hpp"
  37 #include "ci/ciTypeArrayKlass.hpp"
  38 #include "ci/ciValueKlass.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "vmreg_aarch64.inline.hpp"
  42 
  43 #ifdef ASSERT
  44 #define __ gen()->lir(__FILE__, __LINE__)->
  45 #else
  46 #define __ gen()->lir()->
  47 #endif
  48 
  49 // Item will be loaded into a byte register; Intel only
  50 void LIRItem::load_byte_item() {
  51   load_item();
  52 }
  53 
  54 
  55 void LIRItem::load_nonconstant() {
  56   LIR_Opr r = value()->operand();
  57   if (r->is_constant()) {
  58     _result = r;
  59   } else {
  60     load_item();
  61   }
  62 }
  63 
  64 //--------------------------------------------------------------
  65 //               LIRGenerator
  66 //--------------------------------------------------------------
  67 
  68 
  69 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::r0_oop_opr; }
  70 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::r3_opr; }
  71 LIR_Opr LIRGenerator::divInOpr()        { Unimplemented(); return LIR_OprFact::illegalOpr; }
  72 LIR_Opr LIRGenerator::divOutOpr()       { Unimplemented(); return LIR_OprFact::illegalOpr; }
  73 LIR_Opr LIRGenerator::remOutOpr()       { Unimplemented(); return LIR_OprFact::illegalOpr; }
  74 LIR_Opr LIRGenerator::shiftCountOpr()   { Unimplemented(); return LIR_OprFact::illegalOpr; }
  75 LIR_Opr LIRGenerator::syncLockOpr()     { return new_register(T_INT); }
  76 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::r0_opr; }
  77 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
  78 
  79 
  80 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  81   LIR_Opr opr;
  82   switch (type->tag()) {
  83     case intTag:     opr = FrameMap::r0_opr;          break;
  84     case objectTag:  opr = FrameMap::r0_oop_opr;      break;
  85     case longTag:    opr = FrameMap::long0_opr;        break;
  86     case floatTag:   opr = FrameMap::fpu0_float_opr;  break;
  87     case doubleTag:  opr = FrameMap::fpu0_double_opr;  break;
  88 
  89     case addressTag:
  90     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  91   }
  92 
  93   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
  94   return opr;
  95 }
  96 
  97 
  98 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
  99   LIR_Opr reg = new_register(T_INT);
 100   set_vreg_flag(reg, LIRGenerator::byte_reg);
 101   return reg;
 102 }
 103 
 104 
 105 //--------- loading items into registers --------------------------------
 106 
 107 
 108 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
 109   if (v->type()->as_IntConstant() != NULL) {
 110     return v->type()->as_IntConstant()->value() == 0L;
 111   } else if (v->type()->as_LongConstant() != NULL) {
 112     return v->type()->as_LongConstant()->value() == 0L;
 113   } else if (v->type()->as_ObjectConstant() != NULL) {
 114     return v->type()->as_ObjectConstant()->value()->is_null_object();
 115   } else {
 116     return false;
 117   }
 118 }
 119 
 120 bool LIRGenerator::can_inline_as_constant(Value v) const {
 121   // FIXME: Just a guess
 122   if (v->type()->as_IntConstant() != NULL) {
 123     return Assembler::operand_valid_for_add_sub_immediate(v->type()->as_IntConstant()->value());
 124   } else if (v->type()->as_LongConstant() != NULL) {
 125     return v->type()->as_LongConstant()->value() == 0L;
 126   } else if (v->type()->as_ObjectConstant() != NULL) {
 127     return v->type()->as_ObjectConstant()->value()->is_null_object();
 128   } else {
 129     return false;
 130   }
 131 }
 132 
 133 
 134 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { return false; }
 135 
 136 
 137 LIR_Opr LIRGenerator::safepoint_poll_register() {
 138   return LIR_OprFact::illegalOpr;
 139 }
 140 
 141 
 142 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
 143                                             int shift, int disp, BasicType type) {
 144   assert(base->is_register(), "must be");
 145   intx large_disp = disp;
 146 
 147   // accumulate fixed displacements
 148   if (index->is_constant()) {
 149     LIR_Const *constant = index->as_constant_ptr();
 150     if (constant->type() == T_INT) {
 151       large_disp += index->as_jint() << shift;
 152     } else {
 153       assert(constant->type() == T_LONG, "should be");
 154       jlong c = index->as_jlong() << shift;
 155       if ((jlong)((jint)c) == c) {
 156         large_disp += c;
 157         index = LIR_OprFact::illegalOpr;
 158       } else {
 159         LIR_Opr tmp = new_register(T_LONG);
 160         __ move(index, tmp);
 161         index = tmp;
 162         // apply shift and displacement below
 163       }
 164     }
 165   }
 166 
 167   if (index->is_register()) {
 168     // apply the shift and accumulate the displacement
 169     if (shift > 0) {
 170       LIR_Opr tmp = new_pointer_register();
 171       __ shift_left(index, shift, tmp);
 172       index = tmp;
 173     }
 174     if (large_disp != 0) {
 175       LIR_Opr tmp = new_pointer_register();
 176       if (Assembler::operand_valid_for_add_sub_immediate(large_disp)) {
 177         __ add(tmp, tmp, LIR_OprFact::intptrConst(large_disp));
 178         index = tmp;
 179       } else {
 180         __ move(tmp, LIR_OprFact::intptrConst(large_disp));
 181         __ add(tmp, index, tmp);
 182         index = tmp;
 183       }
 184       large_disp = 0;
 185     }
 186   } else if (large_disp != 0 && !Address::offset_ok_for_immed(large_disp, shift)) {
 187     // index is illegal so replace it with the displacement loaded into a register
 188     index = new_pointer_register();
 189     __ move(LIR_OprFact::intptrConst(large_disp), index);
 190     large_disp = 0;
 191   }
 192 
 193   // at this point we either have base + index or base + displacement
 194   if (large_disp == 0) {
 195     return new LIR_Address(base, index, type);
 196   } else {
 197     assert(Address::offset_ok_for_immed(large_disp, 0), "must be");
 198     return new LIR_Address(base, large_disp, type);
 199   }
 200 }
 201 
 202 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
 203                                               BasicType type) {
 204   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
 205   int elem_size = type2aelembytes(type);
 206   int shift = exact_log2(elem_size);
 207 
 208   LIR_Address* addr;
 209   if (index_opr->is_constant()) {
 210     addr = new LIR_Address(array_opr,
 211                            offset_in_bytes + (intx)(index_opr->as_jint()) * elem_size, type);
 212   } else {
 213     if (offset_in_bytes) {
 214       LIR_Opr tmp = new_pointer_register();
 215       __ add(array_opr, LIR_OprFact::intConst(offset_in_bytes), tmp);
 216       array_opr = tmp;
 217       offset_in_bytes = 0;
 218     }
 219     addr =  new LIR_Address(array_opr,
 220                             index_opr,
 221                             LIR_Address::scale(type),
 222                             offset_in_bytes, type);
 223   }
 224   return addr;
 225 }
 226 
 227 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
 228   LIR_Opr r;
 229   if (type == T_LONG) {
 230     r = LIR_OprFact::longConst(x);
 231     if (!Assembler::operand_valid_for_logical_immediate(false, x)) {
 232       LIR_Opr tmp = new_register(type);
 233       __ move(r, tmp);
 234       return tmp;
 235     }
 236   } else if (type == T_INT) {
 237     r = LIR_OprFact::intConst(x);
 238     if (!Assembler::operand_valid_for_logical_immediate(true, x)) {
 239       // This is all rather nasty.  We don't know whether our constant
 240       // is required for a logical or an arithmetic operation, wo we
 241       // don't know what the range of valid values is!!
 242       LIR_Opr tmp = new_register(type);
 243       __ move(r, tmp);
 244       return tmp;
 245     }
 246   } else {
 247     ShouldNotReachHere();
 248     r = NULL;  // unreachable
 249   }
 250   return r;
 251 }
 252 
 253 
 254 
 255 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
 256   LIR_Opr pointer = new_pointer_register();
 257   __ move(LIR_OprFact::intptrConst(counter), pointer);
 258   LIR_Address* addr = new LIR_Address(pointer, type);
 259   increment_counter(addr, step);
 260 }
 261 
 262 
 263 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
 264   LIR_Opr imm = NULL;
 265   switch(addr->type()) {
 266   case T_INT:
 267     imm = LIR_OprFact::intConst(step);
 268     break;
 269   case T_LONG:
 270     imm = LIR_OprFact::longConst(step);
 271     break;
 272   default:
 273     ShouldNotReachHere();
 274   }
 275   LIR_Opr reg = new_register(addr->type());
 276   __ load(addr, reg);
 277   __ add(reg, imm, reg);
 278   __ store(reg, addr);
 279 }
 280 
 281 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
 282   LIR_Opr reg = new_register(T_INT);
 283   __ load(generate_address(base, disp, T_INT), reg, info);
 284   __ cmp(condition, reg, LIR_OprFact::intConst(c));
 285 }
 286 
 287 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
 288   LIR_Opr reg1 = new_register(T_INT);
 289   __ load(generate_address(base, disp, type), reg1, info);
 290   __ cmp(condition, reg, reg1);
 291 }
 292 
 293 
 294 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
 295 
 296   if (is_power_of_2(c - 1)) {
 297     __ shift_left(left, exact_log2(c - 1), tmp);
 298     __ add(tmp, left, result);
 299     return true;
 300   } else if (is_power_of_2(c + 1)) {
 301     __ shift_left(left, exact_log2(c + 1), tmp);
 302     __ sub(tmp, left, result);
 303     return true;
 304   } else {
 305     return false;
 306   }
 307 }
 308 
 309 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
 310   BasicType type = item->type();
 311   __ store(item, new LIR_Address(FrameMap::sp_opr, in_bytes(offset_from_sp), type));
 312 }
 313 
 314 void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) {
 315     LIR_Opr tmp1 = new_register(objectType);
 316     LIR_Opr tmp2 = new_register(objectType);
 317     LIR_Opr tmp3 = new_register(objectType);
 318     __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci);
 319 }
 320 
 321 //----------------------------------------------------------------------
 322 //             visitor functions
 323 //----------------------------------------------------------------------
 324 
 325 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
 326   assert(x->is_pinned(),"");
 327   LIRItem obj(x->obj(), this);
 328   obj.load_item();
 329 
 330   set_no_result(x);
 331 
 332   // "lock" stores the address of the monitor stack slot, so this is not an oop
 333   LIR_Opr lock = new_register(T_INT);
 334   // Need a scratch register for biased locking
 335   LIR_Opr scratch = LIR_OprFact::illegalOpr;
 336   if (UseBiasedLocking || x->maybe_valuetype()) {
 337     scratch = new_register(T_INT);
 338   }
 339 
 340   CodeEmitInfo* info_for_exception = NULL;
 341   if (x->needs_null_check()) {
 342     info_for_exception = state_for(x);
 343   }
 344 
 345   CodeStub* throw_imse_stub = 
 346       x->maybe_valuetype() ?
 347       new SimpleExceptionStub(Runtime1::throw_illegal_monitor_state_exception_id, LIR_OprFact::illegalOpr, state_for(x)) :
 348       NULL;
 349 
 350   // this CodeEmitInfo must not have the xhandlers because here the
 351   // object is already locked (xhandlers expect object to be unlocked)
 352   CodeEmitInfo* info = state_for(x, x->state(), true);
 353   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
 354                         x->monitor_no(), info_for_exception, info, throw_imse_stub);
 355 }
 356 
 357 
 358 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
 359   assert(x->is_pinned(),"");
 360 
 361   LIRItem obj(x->obj(), this);
 362   obj.dont_load_item();
 363 
 364   LIR_Opr lock = new_register(T_INT);
 365   LIR_Opr obj_temp = new_register(T_INT);
 366   set_no_result(x);
 367   monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
 368 }
 369 
 370 
 371 void LIRGenerator::do_NegateOp(NegateOp* x) {
 372 
 373   LIRItem from(x->x(), this);
 374   from.load_item();
 375   LIR_Opr result = rlock_result(x);
 376   __ negate (from.result(), result);
 377 
 378 }
 379 
 380 // for  _fadd, _fmul, _fsub, _fdiv, _frem
 381 //      _dadd, _dmul, _dsub, _ddiv, _drem
 382 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
 383 
 384   if (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem) {
 385     // float remainder is implemented as a direct call into the runtime
 386     LIRItem right(x->x(), this);
 387     LIRItem left(x->y(), this);
 388 
 389     BasicTypeList signature(2);
 390     if (x->op() == Bytecodes::_frem) {
 391       signature.append(T_FLOAT);
 392       signature.append(T_FLOAT);
 393     } else {
 394       signature.append(T_DOUBLE);
 395       signature.append(T_DOUBLE);
 396     }
 397     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 398 
 399     const LIR_Opr result_reg = result_register_for(x->type());
 400     left.load_item_force(cc->at(1));
 401     right.load_item();
 402 
 403     __ move(right.result(), cc->at(0));
 404 
 405     address entry;
 406     if (x->op() == Bytecodes::_frem) {
 407       entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
 408     } else {
 409       entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
 410     }
 411 
 412     LIR_Opr result = rlock_result(x);
 413     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
 414     __ move(result_reg, result);
 415 
 416     return;
 417   }
 418 
 419   LIRItem left(x->x(),  this);
 420   LIRItem right(x->y(), this);
 421   LIRItem* left_arg  = &left;
 422   LIRItem* right_arg = &right;
 423 
 424   // Always load right hand side.
 425   right.load_item();
 426 
 427   if (!left.is_register())
 428     left.load_item();
 429 
 430   LIR_Opr reg = rlock(x);
 431   LIR_Opr tmp = LIR_OprFact::illegalOpr;
 432   if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
 433     tmp = new_register(T_DOUBLE);
 434   }
 435 
 436   arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), NULL);
 437 
 438   set_result(x, round_item(reg));
 439 }
 440 
 441 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
 442 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
 443 
 444   // missing test if instr is commutative and if we should swap
 445   LIRItem left(x->x(), this);
 446   LIRItem right(x->y(), this);
 447 
 448   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
 449 
 450     left.load_item();
 451     bool need_zero_check = true;
 452     if (right.is_constant()) {
 453       jlong c = right.get_jlong_constant();
 454       // no need to do div-by-zero check if the divisor is a non-zero constant
 455       if (c != 0) need_zero_check = false;
 456       // do not load right if the divisor is a power-of-2 constant
 457       if (c > 0 && is_power_of_2_long(c)) {
 458         right.dont_load_item();
 459       } else {
 460         right.load_item();
 461       }
 462     } else {
 463       right.load_item();
 464     }
 465     if (need_zero_check) {
 466       CodeEmitInfo* info = state_for(x);
 467       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
 468       __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
 469     }
 470 
 471     rlock_result(x);
 472     switch (x->op()) {
 473     case Bytecodes::_lrem:
 474       __ rem (left.result(), right.result(), x->operand());
 475       break;
 476     case Bytecodes::_ldiv:
 477       __ div (left.result(), right.result(), x->operand());
 478       break;
 479     default:
 480       ShouldNotReachHere();
 481       break;
 482     }
 483 
 484 
 485   } else {
 486     assert (x->op() == Bytecodes::_lmul || x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub,
 487             "expect lmul, ladd or lsub");
 488     // add, sub, mul
 489     left.load_item();
 490     if (! right.is_register()) {
 491       if (x->op() == Bytecodes::_lmul
 492           || ! right.is_constant()
 493           || ! Assembler::operand_valid_for_add_sub_immediate(right.get_jlong_constant())) {
 494         right.load_item();
 495       } else { // add, sub
 496         assert (x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, "expect ladd or lsub");
 497         // don't load constants to save register
 498         right.load_nonconstant();
 499       }
 500     }
 501     rlock_result(x);
 502     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
 503   }
 504 }
 505 
 506 // for: _iadd, _imul, _isub, _idiv, _irem
 507 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
 508 
 509   // Test if instr is commutative and if we should swap
 510   LIRItem left(x->x(),  this);
 511   LIRItem right(x->y(), this);
 512   LIRItem* left_arg = &left;
 513   LIRItem* right_arg = &right;
 514   if (x->is_commutative() && left.is_stack() && right.is_register()) {
 515     // swap them if left is real stack (or cached) and right is real register(not cached)
 516     left_arg = &right;
 517     right_arg = &left;
 518   }
 519 
 520   left_arg->load_item();
 521 
 522   // do not need to load right, as we can handle stack and constants
 523   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
 524 
 525     rlock_result(x);
 526     bool need_zero_check = true;
 527     if (right.is_constant()) {
 528       jint c = right.get_jint_constant();
 529       // no need to do div-by-zero check if the divisor is a non-zero constant
 530       if (c != 0) need_zero_check = false;
 531       // do not load right if the divisor is a power-of-2 constant
 532       if (c > 0 && is_power_of_2(c)) {
 533         right_arg->dont_load_item();
 534       } else {
 535         right_arg->load_item();
 536       }
 537     } else {
 538       right_arg->load_item();
 539     }
 540     if (need_zero_check) {
 541       CodeEmitInfo* info = state_for(x);
 542       __ cmp(lir_cond_equal, right_arg->result(), LIR_OprFact::longConst(0));
 543       __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
 544     }
 545 
 546     LIR_Opr ill = LIR_OprFact::illegalOpr;
 547     if (x->op() == Bytecodes::_irem) {
 548       __ irem(left_arg->result(), right_arg->result(), x->operand(), ill, NULL);
 549     } else if (x->op() == Bytecodes::_idiv) {
 550       __ idiv(left_arg->result(), right_arg->result(), x->operand(), ill, NULL);
 551     }
 552 
 553   } else if (x->op() == Bytecodes::_iadd || x->op() == Bytecodes::_isub) {
 554     if (right.is_constant()
 555         && Assembler::operand_valid_for_add_sub_immediate(right.get_jint_constant())) {
 556       right.load_nonconstant();
 557     } else {
 558       right.load_item();
 559     }
 560     rlock_result(x);
 561     arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), LIR_OprFact::illegalOpr);
 562   } else {
 563     assert (x->op() == Bytecodes::_imul, "expect imul");
 564     if (right.is_constant()) {
 565       jint c = right.get_jint_constant();
 566       if (c > 0 && c < max_jint && (is_power_of_2(c) || is_power_of_2(c - 1) || is_power_of_2(c + 1))) {
 567         right_arg->dont_load_item();
 568       } else {
 569         // Cannot use constant op.
 570         right_arg->load_item();
 571       }
 572     } else {
 573       right.load_item();
 574     }
 575     rlock_result(x);
 576     arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), new_register(T_INT));
 577   }
 578 }
 579 
 580 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
 581   // when an operand with use count 1 is the left operand, then it is
 582   // likely that no move for 2-operand-LIR-form is necessary
 583   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
 584     x->swap_operands();
 585   }
 586 
 587   ValueTag tag = x->type()->tag();
 588   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
 589   switch (tag) {
 590     case floatTag:
 591     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
 592     case longTag:    do_ArithmeticOp_Long(x); return;
 593     case intTag:     do_ArithmeticOp_Int(x);  return;
 594     default:         ShouldNotReachHere();    return;
 595   }
 596 }
 597 
 598 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
 599 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
 600 
 601   LIRItem left(x->x(),  this);
 602   LIRItem right(x->y(), this);
 603 
 604   left.load_item();
 605 
 606   rlock_result(x);
 607   if (right.is_constant()) {
 608     right.dont_load_item();
 609 
 610     switch (x->op()) {
 611     case Bytecodes::_ishl: {
 612       int c = right.get_jint_constant() & 0x1f;
 613       __ shift_left(left.result(), c, x->operand());
 614       break;
 615     }
 616     case Bytecodes::_ishr: {
 617       int c = right.get_jint_constant() & 0x1f;
 618       __ shift_right(left.result(), c, x->operand());
 619       break;
 620     }
 621     case Bytecodes::_iushr: {
 622       int c = right.get_jint_constant() & 0x1f;
 623       __ unsigned_shift_right(left.result(), c, x->operand());
 624       break;
 625     }
 626     case Bytecodes::_lshl: {
 627       int c = right.get_jint_constant() & 0x3f;
 628       __ shift_left(left.result(), c, x->operand());
 629       break;
 630     }
 631     case Bytecodes::_lshr: {
 632       int c = right.get_jint_constant() & 0x3f;
 633       __ shift_right(left.result(), c, x->operand());
 634       break;
 635     }
 636     case Bytecodes::_lushr: {
 637       int c = right.get_jint_constant() & 0x3f;
 638       __ unsigned_shift_right(left.result(), c, x->operand());
 639       break;
 640     }
 641     default:
 642       ShouldNotReachHere();
 643     }
 644   } else {
 645     right.load_item();
 646     LIR_Opr tmp = new_register(T_INT);
 647     switch (x->op()) {
 648     case Bytecodes::_ishl: {
 649       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 650       __ shift_left(left.result(), tmp, x->operand(), tmp);
 651       break;
 652     }
 653     case Bytecodes::_ishr: {
 654       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 655       __ shift_right(left.result(), tmp, x->operand(), tmp);
 656       break;
 657     }
 658     case Bytecodes::_iushr: {
 659       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 660       __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
 661       break;
 662     }
 663     case Bytecodes::_lshl: {
 664       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 665       __ shift_left(left.result(), tmp, x->operand(), tmp);
 666       break;
 667     }
 668     case Bytecodes::_lshr: {
 669       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 670       __ shift_right(left.result(), tmp, x->operand(), tmp);
 671       break;
 672     }
 673     case Bytecodes::_lushr: {
 674       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 675       __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
 676       break;
 677     }
 678     default:
 679       ShouldNotReachHere();
 680     }
 681   }
 682 }
 683 
 684 // _iand, _land, _ior, _lor, _ixor, _lxor
 685 void LIRGenerator::do_LogicOp(LogicOp* x) {
 686 
 687   LIRItem left(x->x(),  this);
 688   LIRItem right(x->y(), this);
 689 
 690   left.load_item();
 691 
 692   rlock_result(x);
 693   if (right.is_constant()
 694       && ((right.type()->tag() == intTag
 695            && Assembler::operand_valid_for_logical_immediate(true, right.get_jint_constant()))
 696           || (right.type()->tag() == longTag
 697               && Assembler::operand_valid_for_logical_immediate(false, right.get_jlong_constant()))))  {
 698     right.dont_load_item();
 699   } else {
 700     right.load_item();
 701   }
 702   switch (x->op()) {
 703   case Bytecodes::_iand:
 704   case Bytecodes::_land:
 705     __ logical_and(left.result(), right.result(), x->operand()); break;
 706   case Bytecodes::_ior:
 707   case Bytecodes::_lor:
 708     __ logical_or (left.result(), right.result(), x->operand()); break;
 709   case Bytecodes::_ixor:
 710   case Bytecodes::_lxor:
 711     __ logical_xor(left.result(), right.result(), x->operand()); break;
 712   default: Unimplemented();
 713   }
 714 }
 715 
 716 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
 717 void LIRGenerator::do_CompareOp(CompareOp* x) {
 718   LIRItem left(x->x(), this);
 719   LIRItem right(x->y(), this);
 720   ValueTag tag = x->x()->type()->tag();
 721   if (tag == longTag) {
 722     left.set_destroys_register();
 723   }
 724   left.load_item();
 725   right.load_item();
 726   LIR_Opr reg = rlock_result(x);
 727 
 728   if (x->x()->type()->is_float_kind()) {
 729     Bytecodes::Code code = x->op();
 730     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
 731   } else if (x->x()->type()->tag() == longTag) {
 732     __ lcmp2int(left.result(), right.result(), reg);
 733   } else {
 734     Unimplemented();
 735   }
 736 }
 737 
 738 LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) {
 739   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
 740   new_value.load_item();
 741   cmp_value.load_item();
 742   LIR_Opr result = new_register(T_INT);
 743   if (type == T_OBJECT || type == T_ARRAY) {
 744     __ cas_obj(addr, cmp_value.result(), new_value.result(), new_register(T_INT), new_register(T_INT), result);
 745   } else if (type == T_INT) {
 746     __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
 747   } else if (type == T_LONG) {
 748     __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
 749   } else {
 750     ShouldNotReachHere();
 751     Unimplemented();
 752   }
 753   __ logical_xor(FrameMap::r8_opr, LIR_OprFact::intConst(1), result);
 754   return result;
 755 }
 756 
 757 LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) {
 758   bool is_oop = type == T_OBJECT || type == T_ARRAY;
 759   LIR_Opr result = new_register(type);
 760   value.load_item();
 761   assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type");
 762   LIR_Opr tmp = new_register(T_INT);
 763   __ xchg(addr, value.result(), result, tmp);
 764   return result;
 765 }
 766 
 767 LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) {
 768   LIR_Opr result = new_register(type);
 769   value.load_item();
 770   assert(type == T_INT LP64_ONLY( || type == T_LONG ), "unexpected type");
 771   LIR_Opr tmp = new_register(T_INT);
 772   __ xadd(addr, value.result(), result, tmp);
 773   return result;
 774 }
 775 
 776 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
 777   assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
 778   if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog ||
 779       x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos ||
 780       x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan ||
 781       x->id() == vmIntrinsics::_dlog10) {
 782     do_LibmIntrinsic(x);
 783     return;
 784   }
 785   switch (x->id()) {
 786     case vmIntrinsics::_dabs:
 787     case vmIntrinsics::_dsqrt: {
 788       assert(x->number_of_arguments() == 1, "wrong type");
 789       LIRItem value(x->argument_at(0), this);
 790       value.load_item();
 791       LIR_Opr dst = rlock_result(x);
 792 
 793       switch (x->id()) {
 794         case vmIntrinsics::_dsqrt: {
 795           __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
 796           break;
 797         }
 798         case vmIntrinsics::_dabs: {
 799           __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
 800           break;
 801         }
 802         default:
 803           ShouldNotReachHere();
 804       }
 805       break;
 806     }
 807     default:
 808       ShouldNotReachHere();
 809   }
 810 }
 811 
 812 void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) {
 813   LIRItem value(x->argument_at(0), this);
 814   value.set_destroys_register();
 815 
 816   LIR_Opr calc_result = rlock_result(x);
 817   LIR_Opr result_reg = result_register_for(x->type());
 818 
 819   CallingConvention* cc = NULL;
 820 
 821   if (x->id() == vmIntrinsics::_dpow) {
 822     LIRItem value1(x->argument_at(1), this);
 823 
 824     value1.set_destroys_register();
 825 
 826     BasicTypeList signature(2);
 827     signature.append(T_DOUBLE);
 828     signature.append(T_DOUBLE);
 829     cc = frame_map()->c_calling_convention(&signature);
 830     value.load_item_force(cc->at(0));
 831     value1.load_item_force(cc->at(1));
 832   } else {
 833     BasicTypeList signature(1);
 834     signature.append(T_DOUBLE);
 835     cc = frame_map()->c_calling_convention(&signature);
 836     value.load_item_force(cc->at(0));
 837   }
 838 
 839   switch (x->id()) {
 840     case vmIntrinsics::_dexp:
 841       if (StubRoutines::dexp() != NULL) {
 842         __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args());
 843       } else {
 844         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args());
 845       }
 846       break;
 847     case vmIntrinsics::_dlog:
 848       if (StubRoutines::dlog() != NULL) {
 849         __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args());
 850       } else {
 851         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args());
 852       }
 853       break;
 854     case vmIntrinsics::_dlog10:
 855       if (StubRoutines::dlog10() != NULL) {
 856         __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args());
 857       } else {
 858         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args());
 859       }
 860       break;
 861     case vmIntrinsics::_dpow:
 862       if (StubRoutines::dpow() != NULL) {
 863         __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args());
 864       } else {
 865         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args());
 866       }
 867       break;
 868     case vmIntrinsics::_dsin:
 869       if (StubRoutines::dsin() != NULL) {
 870         __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args());
 871       } else {
 872         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args());
 873       }
 874       break;
 875     case vmIntrinsics::_dcos:
 876       if (StubRoutines::dcos() != NULL) {
 877         __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args());
 878       } else {
 879         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args());
 880       }
 881       break;
 882     case vmIntrinsics::_dtan:
 883       if (StubRoutines::dtan() != NULL) {
 884         __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args());
 885       } else {
 886         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args());
 887       }
 888       break;
 889     default:  ShouldNotReachHere();
 890   }
 891   __ move(result_reg, calc_result);
 892 }
 893 
 894 
 895 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
 896   assert(x->number_of_arguments() == 5, "wrong type");
 897 
 898   // Make all state_for calls early since they can emit code
 899   CodeEmitInfo* info = state_for(x, x->state());
 900 
 901   LIRItem src(x->argument_at(0), this);
 902   LIRItem src_pos(x->argument_at(1), this);
 903   LIRItem dst(x->argument_at(2), this);
 904   LIRItem dst_pos(x->argument_at(3), this);
 905   LIRItem length(x->argument_at(4), this);
 906 
 907   // operands for arraycopy must use fixed registers, otherwise
 908   // LinearScan will fail allocation (because arraycopy always needs a
 909   // call)
 910 
 911   // The java calling convention will give us enough registers
 912   // so that on the stub side the args will be perfect already.
 913   // On the other slow/special case side we call C and the arg
 914   // positions are not similar enough to pick one as the best.
 915   // Also because the java calling convention is a "shifted" version
 916   // of the C convention we can process the java args trivially into C
 917   // args without worry of overwriting during the xfer
 918 
 919   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
 920   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
 921   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
 922   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
 923   length.load_item_force  (FrameMap::as_opr(j_rarg4));
 924 
 925   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
 926 
 927   set_no_result(x);
 928 
 929   int flags;
 930   ciArrayKlass* expected_type;
 931   arraycopy_helper(x, &flags, &expected_type);
 932 
 933   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
 934 }
 935 
 936 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
 937   assert(UseCRC32Intrinsics, "why are we here?");
 938   // Make all state_for calls early since they can emit code
 939   LIR_Opr result = rlock_result(x);
 940   int flags = 0;
 941   switch (x->id()) {
 942     case vmIntrinsics::_updateCRC32: {
 943       LIRItem crc(x->argument_at(0), this);
 944       LIRItem val(x->argument_at(1), this);
 945       // val is destroyed by update_crc32
 946       val.set_destroys_register();
 947       crc.load_item();
 948       val.load_item();
 949       __ update_crc32(crc.result(), val.result(), result);
 950       break;
 951     }
 952     case vmIntrinsics::_updateBytesCRC32:
 953     case vmIntrinsics::_updateByteBufferCRC32: {
 954       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
 955 
 956       LIRItem crc(x->argument_at(0), this);
 957       LIRItem buf(x->argument_at(1), this);
 958       LIRItem off(x->argument_at(2), this);
 959       LIRItem len(x->argument_at(3), this);
 960       buf.load_item();
 961       off.load_nonconstant();
 962 
 963       LIR_Opr index = off.result();
 964       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
 965       if(off.result()->is_constant()) {
 966         index = LIR_OprFact::illegalOpr;
 967        offset += off.result()->as_jint();
 968       }
 969       LIR_Opr base_op = buf.result();
 970 
 971       if (index->is_valid()) {
 972         LIR_Opr tmp = new_register(T_LONG);
 973         __ convert(Bytecodes::_i2l, index, tmp);
 974         index = tmp;
 975       }
 976 
 977       if (is_updateBytes) {
 978         base_op = access_resolve(ACCESS_READ, base_op);
 979       }
 980 
 981       if (offset) {
 982         LIR_Opr tmp = new_pointer_register();
 983         __ add(base_op, LIR_OprFact::intConst(offset), tmp);
 984         base_op = tmp;
 985         offset = 0;
 986       }
 987 
 988       LIR_Address* a = new LIR_Address(base_op,
 989                                        index,
 990                                        offset,
 991                                        T_BYTE);
 992       BasicTypeList signature(3);
 993       signature.append(T_INT);
 994       signature.append(T_ADDRESS);
 995       signature.append(T_INT);
 996       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 997       const LIR_Opr result_reg = result_register_for(x->type());
 998 
 999       LIR_Opr addr = new_pointer_register();
1000       __ leal(LIR_OprFact::address(a), addr);
1001 
1002       crc.load_item_force(cc->at(0));
1003       __ move(addr, cc->at(1));
1004       len.load_item_force(cc->at(2));
1005 
1006       __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
1007       __ move(result_reg, result);
1008 
1009       break;
1010     }
1011     default: {
1012       ShouldNotReachHere();
1013     }
1014   }
1015 }
1016 
1017 void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
1018   assert(UseCRC32CIntrinsics, "why are we here?");
1019   // Make all state_for calls early since they can emit code
1020   LIR_Opr result = rlock_result(x);
1021   int flags = 0;
1022   switch (x->id()) {
1023     case vmIntrinsics::_updateBytesCRC32C:
1024     case vmIntrinsics::_updateDirectByteBufferCRC32C: {
1025       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32C);
1026       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
1027 
1028       LIRItem crc(x->argument_at(0), this);
1029       LIRItem buf(x->argument_at(1), this);
1030       LIRItem off(x->argument_at(2), this);
1031       LIRItem end(x->argument_at(3), this);
1032 
1033       buf.load_item();
1034       off.load_nonconstant();
1035       end.load_nonconstant();
1036 
1037       // len = end - off
1038       LIR_Opr len  = end.result();
1039       LIR_Opr tmpA = new_register(T_INT);
1040       LIR_Opr tmpB = new_register(T_INT);
1041       __ move(end.result(), tmpA);
1042       __ move(off.result(), tmpB);
1043       __ sub(tmpA, tmpB, tmpA);
1044       len = tmpA;
1045 
1046       LIR_Opr index = off.result();
1047       if(off.result()->is_constant()) {
1048         index = LIR_OprFact::illegalOpr;
1049         offset += off.result()->as_jint();
1050       }
1051       LIR_Opr base_op = buf.result();
1052 
1053       if (index->is_valid()) {
1054         LIR_Opr tmp = new_register(T_LONG);
1055         __ convert(Bytecodes::_i2l, index, tmp);
1056         index = tmp;
1057       }
1058 
1059       if (is_updateBytes) {
1060         base_op = access_resolve(ACCESS_READ, base_op);
1061       }
1062 
1063       if (offset) {
1064         LIR_Opr tmp = new_pointer_register();
1065         __ add(base_op, LIR_OprFact::intConst(offset), tmp);
1066         base_op = tmp;
1067         offset = 0;
1068       }
1069 
1070       LIR_Address* a = new LIR_Address(base_op,
1071                                        index,
1072                                        offset,
1073                                        T_BYTE);
1074       BasicTypeList signature(3);
1075       signature.append(T_INT);
1076       signature.append(T_ADDRESS);
1077       signature.append(T_INT);
1078       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1079       const LIR_Opr result_reg = result_register_for(x->type());
1080 
1081       LIR_Opr addr = new_pointer_register();
1082       __ leal(LIR_OprFact::address(a), addr);
1083 
1084       crc.load_item_force(cc->at(0));
1085       __ move(addr, cc->at(1));
1086       __ move(len, cc->at(2));
1087 
1088       __ call_runtime_leaf(StubRoutines::updateBytesCRC32C(), getThreadTemp(), result_reg, cc->args());
1089       __ move(result_reg, result);
1090 
1091       break;
1092     }
1093     default: {
1094       ShouldNotReachHere();
1095     }
1096   }
1097 }
1098 
1099 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
1100   assert(x->number_of_arguments() == 3, "wrong type");
1101   assert(UseFMA, "Needs FMA instructions support.");
1102   LIRItem value(x->argument_at(0), this);
1103   LIRItem value1(x->argument_at(1), this);
1104   LIRItem value2(x->argument_at(2), this);
1105 
1106   value.load_item();
1107   value1.load_item();
1108   value2.load_item();
1109 
1110   LIR_Opr calc_input = value.result();
1111   LIR_Opr calc_input1 = value1.result();
1112   LIR_Opr calc_input2 = value2.result();
1113   LIR_Opr calc_result = rlock_result(x);
1114 
1115   switch (x->id()) {
1116   case vmIntrinsics::_fmaD:   __ fmad(calc_input, calc_input1, calc_input2, calc_result); break;
1117   case vmIntrinsics::_fmaF:   __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break;
1118   default:                    ShouldNotReachHere();
1119   }
1120 }
1121 
1122 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
1123   fatal("vectorizedMismatch intrinsic is not implemented on this platform");
1124 }
1125 
1126 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
1127 // _i2b, _i2c, _i2s
1128 void LIRGenerator::do_Convert(Convert* x) {
1129   LIRItem value(x->value(), this);
1130   value.load_item();
1131   LIR_Opr input = value.result();
1132   LIR_Opr result = rlock(x);
1133 
1134   // arguments of lir_convert
1135   LIR_Opr conv_input = input;
1136   LIR_Opr conv_result = result;
1137   ConversionStub* stub = NULL;
1138 
1139   __ convert(x->op(), conv_input, conv_result);
1140 
1141   assert(result->is_virtual(), "result must be virtual register");
1142   set_result(x, result);
1143 }
1144 
1145 void LIRGenerator::do_NewInstance(NewInstance* x) {
1146 #ifndef PRODUCT
1147   if (PrintNotLoaded && !x->klass()->is_loaded()) {
1148     tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
1149   }
1150 #endif
1151   CodeEmitInfo* info = state_for(x, x->state());
1152   LIR_Opr reg = result_register_for(x->type());
1153   new_instance(reg, x->klass(), x->is_unresolved(),
1154                        FrameMap::r2_oop_opr,
1155                        FrameMap::r5_oop_opr,
1156                        FrameMap::r4_oop_opr,
1157                        LIR_OprFact::illegalOpr,
1158                        FrameMap::r3_metadata_opr, info);
1159   LIR_Opr result = rlock_result(x);
1160   __ move(reg, result);
1161 }
1162 
1163 void LIRGenerator::do_NewValueTypeInstance  (NewValueTypeInstance* x) {
1164   // Mapping to do_NewInstance (same code)
1165   CodeEmitInfo* info = state_for(x, x->state());
1166   x->set_to_object_type();
1167   LIR_Opr reg = result_register_for(x->type());
1168   new_instance(reg, x->klass(), x->is_unresolved(),
1169              FrameMap::r2_oop_opr,
1170              FrameMap::r5_oop_opr,
1171              FrameMap::r4_oop_opr,
1172              LIR_OprFact::illegalOpr,
1173              FrameMap::r3_metadata_opr, info);
1174   LIR_Opr result = rlock_result(x);
1175   __ move(reg, result);
1176 
1177 }
1178 
1179 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1180   CodeEmitInfo* info = state_for(x, x->state());
1181 
1182   LIRItem length(x->length(), this);
1183   length.load_item_force(FrameMap::r19_opr);
1184 
1185   LIR_Opr reg = result_register_for(x->type());
1186   LIR_Opr tmp1 = FrameMap::r2_oop_opr;
1187   LIR_Opr tmp2 = FrameMap::r4_oop_opr;
1188   LIR_Opr tmp3 = FrameMap::r5_oop_opr;
1189   LIR_Opr tmp4 = reg;
1190   LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
1191   LIR_Opr len = length.result();
1192   BasicType elem_type = x->elt_type();
1193 
1194   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1195 
1196   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1197   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1198 
1199   LIR_Opr result = rlock_result(x);
1200   __ move(reg, result);
1201 }
1202 
1203 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1204   LIRItem length(x->length(), this);
1205   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1206   // and therefore provide the state before the parameters have been consumed
1207   CodeEmitInfo* patching_info = NULL;
1208   if (!x->klass()->is_loaded() || PatchALot) {
1209     patching_info =  state_for(x, x->state_before());
1210   }
1211 
1212   CodeEmitInfo* info = state_for(x, x->state());
1213 
1214   LIR_Opr reg = result_register_for(x->type());
1215   LIR_Opr tmp1 = FrameMap::r2_oop_opr;
1216   LIR_Opr tmp2 = FrameMap::r4_oop_opr;
1217   LIR_Opr tmp3 = FrameMap::r5_oop_opr;
1218   LIR_Opr tmp4 = reg;
1219   LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
1220 
1221   length.load_item_force(FrameMap::r19_opr);
1222   LIR_Opr len = length.result();
1223 
1224   // DMS CHECK: Should we allocate slow path after BAILOUT?
1225   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info, false); 
1226 
1227   ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
1228   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1229     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1230   }
1231   klass2reg_with_patching(klass_reg, obj, patching_info);
1232 
1233   if (obj->is_value_array_klass()) {
1234     __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_VALUETYPE, klass_reg, slow_path);
1235   } else {
1236     __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1237   }
1238 
1239   LIR_Opr result = rlock_result(x);
1240   __ move(reg, result);
1241 }
1242 
1243 
1244 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1245   Values* dims = x->dims();
1246   int i = dims->length();
1247   LIRItemList* items = new LIRItemList(i, i, NULL);
1248   while (i-- > 0) {
1249     LIRItem* size = new LIRItem(dims->at(i), this);
1250     items->at_put(i, size);
1251   }
1252 
1253   // Evaluate state_for early since it may emit code.
1254   CodeEmitInfo* patching_info = NULL;
1255   if (!x->klass()->is_loaded() || PatchALot) {
1256     patching_info = state_for(x, x->state_before());
1257 
1258     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1259     // clone all handlers (NOTE: Usually this is handled transparently
1260     // by the CodeEmitInfo cloning logic in CodeStub constructors but
1261     // is done explicitly here because a stub isn't being used).
1262     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1263   }
1264   CodeEmitInfo* info = state_for(x, x->state());
1265 
1266   i = dims->length();
1267   while (i-- > 0) {
1268     LIRItem* size = items->at(i);
1269     size->load_item();
1270 
1271     store_stack_parameter(size->result(), in_ByteSize(i*4));
1272   }
1273 
1274   LIR_Opr klass_reg = FrameMap::r0_metadata_opr;
1275   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1276 
1277   LIR_Opr rank = FrameMap::r19_opr;
1278   __ move(LIR_OprFact::intConst(x->rank()), rank);
1279   LIR_Opr varargs = FrameMap::r2_opr;
1280   __ move(FrameMap::sp_opr, varargs);
1281   LIR_OprList* args = new LIR_OprList(3);
1282   args->append(klass_reg);
1283   args->append(rank);
1284   args->append(varargs);
1285   LIR_Opr reg = result_register_for(x->type());
1286   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1287                   LIR_OprFact::illegalOpr,
1288                   reg, args, info);
1289 
1290   LIR_Opr result = rlock_result(x);
1291   __ move(reg, result);
1292 }
1293 
1294 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1295   // nothing to do for now
1296 }
1297 
1298 void LIRGenerator::do_CheckCast(CheckCast* x) {
1299   LIRItem obj(x->obj(), this);
1300 
1301   CodeEmitInfo* patching_info = NULL;
1302   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) {
1303     // must do this before locking the destination register as an oop register,
1304     // and before the obj is loaded (the latter is for deoptimization)
1305     patching_info = state_for(x, x->state_before());
1306   }
1307   obj.load_item();
1308 
1309   // info for exceptions
1310   CodeEmitInfo* info_for_exception =
1311       (x->needs_exception_state() ? state_for(x) :
1312                                     state_for(x, x->state_before(), true /*ignore_xhandler*/));
1313 
1314   CodeStub* stub;
1315   if (x->is_incompatible_class_change_check()) {
1316     assert(patching_info == NULL, "can't patch this");
1317     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1318   } else if (x->is_invokespecial_receiver_check()) {
1319     assert(patching_info == NULL, "can't patch this");
1320     stub = new DeoptimizeStub(info_for_exception,
1321                               Deoptimization::Reason_class_check,
1322                               Deoptimization::Action_none);
1323   } else {
1324     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1325   }
1326   LIR_Opr reg = rlock_result(x);
1327   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1328   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1329     tmp3 = new_register(objectType);
1330   }
1331 
1332 
1333   __ checkcast(reg, obj.result(), x->klass(),
1334                new_register(objectType), new_register(objectType), tmp3,
1335                x->direct_compare(), info_for_exception, patching_info, stub,
1336                x->profiled_method(), x->profiled_bci(), x->is_never_null());
1337 
1338 }
1339 
1340 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1341   LIRItem obj(x->obj(), this);
1342 
1343   // result and test object may not be in same register
1344   LIR_Opr reg = rlock_result(x);
1345   CodeEmitInfo* patching_info = NULL;
1346   if ((!x->klass()->is_loaded() || PatchALot)) {
1347     // must do this before locking the destination register as an oop register
1348     patching_info = state_for(x, x->state_before());
1349   }
1350   obj.load_item();
1351   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1352   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1353     tmp3 = new_register(objectType);
1354   }
1355   __ instanceof(reg, obj.result(), x->klass(),
1356                 new_register(objectType), new_register(objectType), tmp3,
1357                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1358 }
1359 
1360 void LIRGenerator::do_If(If* x) {
1361   assert(x->number_of_sux() == 2, "inconsistency");
1362   ValueTag tag = x->x()->type()->tag();
1363   bool is_safepoint = x->is_safepoint();
1364 
1365   If::Condition cond = x->cond();
1366 
1367   LIRItem xitem(x->x(), this);
1368   LIRItem yitem(x->y(), this);
1369   LIRItem* xin = &xitem;
1370   LIRItem* yin = &yitem;
1371 
1372   if (tag == longTag) {
1373     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1374     // mirror for other conditions
1375     if (cond == If::gtr || cond == If::leq) {
1376       cond = Instruction::mirror(cond);
1377       xin = &yitem;
1378       yin = &xitem;
1379     }
1380     xin->set_destroys_register();
1381   }
1382   xin->load_item();
1383 
1384   if (tag == longTag) {
1385     if (yin->is_constant()
1386         && Assembler::operand_valid_for_add_sub_immediate(yin->get_jlong_constant())) {
1387       yin->dont_load_item();
1388     } else {
1389       yin->load_item();
1390     }
1391   } else if (tag == intTag) {
1392     if (yin->is_constant()
1393         && Assembler::operand_valid_for_add_sub_immediate(yin->get_jint_constant()))  {
1394       yin->dont_load_item();
1395     } else {
1396       yin->load_item();
1397     }
1398   } else {
1399     yin->load_item();
1400   }
1401 
1402   set_no_result(x);
1403 
1404   LIR_Opr left = xin->result();
1405   LIR_Opr right = yin->result();
1406 
1407   // add safepoint before generating condition code so it can be recomputed
1408   if (x->is_safepoint()) {
1409     // increment backedge counter if needed
1410     increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()),
1411         x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci());
1412     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1413   }
1414 
1415   __ cmp(lir_cond(cond), left, right);
1416   // Generate branch profiling. Profiling code doesn't kill flags.
1417   profile_branch(x, cond);
1418   move_to_phi(x->state());
1419   if (x->x()->type()->is_float_kind()) {
1420     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1421   } else {
1422     __ branch(lir_cond(cond), right->type(), x->tsux());
1423   }
1424   assert(x->default_sux() == x->fsux(), "wrong destination above");
1425   __ jump(x->default_sux());
1426 }
1427 
1428 LIR_Opr LIRGenerator::getThreadPointer() {
1429    return FrameMap::as_pointer_opr(rthread);
1430 }
1431 
1432 void LIRGenerator::trace_block_entry(BlockBegin* block) { Unimplemented(); }
1433 
1434 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1435                                         CodeEmitInfo* info) {
1436   __ volatile_store_mem_reg(value, address, info);
1437 }
1438 
1439 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1440                                        CodeEmitInfo* info) {
1441   // 8179954: We need to make sure that the code generated for
1442   // volatile accesses forms a sequentially-consistent set of
1443   // operations when combined with STLR and LDAR.  Without a leading
1444   // membar it's possible for a simple Dekker test to fail if loads
1445   // use LD;DMB but stores use STLR.  This can happen if C2 compiles
1446   // the stores in one method and C1 compiles the loads in another.
1447   if (! UseBarriersForVolatile) {
1448     __ membar();
1449   }
1450 
1451   __ volatile_load_mem_reg(address, result, info);
1452 }