1 /* 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "ci/bcEscapeAnalyzer.hpp" 28 #include "compiler/oopMap.hpp" 29 #include "opto/callGenerator.hpp" 30 #include "opto/callnode.hpp" 31 #include "opto/castnode.hpp" 32 #include "opto/convertnode.hpp" 33 #include "opto/escape.hpp" 34 #include "opto/locknode.hpp" 35 #include "opto/machnode.hpp" 36 #include "opto/matcher.hpp" 37 #include "opto/parse.hpp" 38 #include "opto/regalloc.hpp" 39 #include "opto/regmask.hpp" 40 #include "opto/rootnode.hpp" 41 #include "opto/runtime.hpp" 42 43 // Portions of code courtesy of Clifford Click 44 45 // Optimization - Graph Style 46 47 //============================================================================= 48 uint StartNode::size_of() const { return sizeof(*this); } 49 uint StartNode::cmp( const Node &n ) const 50 { return _domain == ((StartNode&)n)._domain; } 51 const Type *StartNode::bottom_type() const { return _domain; } 52 const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; } 53 #ifndef PRODUCT 54 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);} 55 #endif 56 57 //------------------------------Ideal------------------------------------------ 58 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){ 59 return remove_dead_region(phase, can_reshape) ? this : NULL; 60 } 61 62 //------------------------------calling_convention----------------------------- 63 void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const { 64 Matcher::calling_convention( sig_bt, parm_regs, argcnt, false ); 65 } 66 67 //------------------------------Registers-------------------------------------- 68 const RegMask &StartNode::in_RegMask(uint) const { 69 return RegMask::Empty; 70 } 71 72 //------------------------------match------------------------------------------ 73 // Construct projections for incoming parameters, and their RegMask info 74 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) { 75 switch (proj->_con) { 76 case TypeFunc::Control: 77 case TypeFunc::I_O: 78 case TypeFunc::Memory: 79 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); 80 case TypeFunc::FramePtr: 81 return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP); 82 case TypeFunc::ReturnAdr: 83 return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP); 84 case TypeFunc::Parms: 85 default: { 86 uint parm_num = proj->_con - TypeFunc::Parms; 87 const Type *t = _domain->field_at(proj->_con); 88 if (t->base() == Type::Half) // 2nd half of Longs and Doubles 89 return new ConNode(Type::TOP); 90 uint ideal_reg = t->ideal_reg(); 91 RegMask &rm = match->_calling_convention_mask[parm_num]; 92 return new MachProjNode(this,proj->_con,rm,ideal_reg); 93 } 94 } 95 return NULL; 96 } 97 98 //------------------------------StartOSRNode---------------------------------- 99 // The method start node for an on stack replacement adapter 100 101 //------------------------------osr_domain----------------------------- 102 const TypeTuple *StartOSRNode::osr_domain() { 103 const Type **fields = TypeTuple::fields(2); 104 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // address of osr buffer 105 106 return TypeTuple::make(TypeFunc::Parms+1, fields); 107 } 108 109 //============================================================================= 110 const char * const ParmNode::names[TypeFunc::Parms+1] = { 111 "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms" 112 }; 113 114 #ifndef PRODUCT 115 void ParmNode::dump_spec(outputStream *st) const { 116 if( _con < TypeFunc::Parms ) { 117 st->print("%s", names[_con]); 118 } else { 119 st->print("Parm%d: ",_con-TypeFunc::Parms); 120 // Verbose and WizardMode dump bottom_type for all nodes 121 if( !Verbose && !WizardMode ) bottom_type()->dump_on(st); 122 } 123 } 124 #endif 125 126 uint ParmNode::ideal_reg() const { 127 switch( _con ) { 128 case TypeFunc::Control : // fall through 129 case TypeFunc::I_O : // fall through 130 case TypeFunc::Memory : return 0; 131 case TypeFunc::FramePtr : // fall through 132 case TypeFunc::ReturnAdr: return Op_RegP; 133 default : assert( _con > TypeFunc::Parms, "" ); 134 // fall through 135 case TypeFunc::Parms : { 136 // Type of argument being passed 137 const Type *t = in(0)->as_Start()->_domain->field_at(_con); 138 return t->ideal_reg(); 139 } 140 } 141 ShouldNotReachHere(); 142 return 0; 143 } 144 145 //============================================================================= 146 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) { 147 init_req(TypeFunc::Control,cntrl); 148 init_req(TypeFunc::I_O,i_o); 149 init_req(TypeFunc::Memory,memory); 150 init_req(TypeFunc::FramePtr,frameptr); 151 init_req(TypeFunc::ReturnAdr,retadr); 152 } 153 154 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){ 155 return remove_dead_region(phase, can_reshape) ? this : NULL; 156 } 157 158 const Type *ReturnNode::Value( PhaseTransform *phase ) const { 159 return ( phase->type(in(TypeFunc::Control)) == Type::TOP) 160 ? Type::TOP 161 : Type::BOTTOM; 162 } 163 164 // Do we Match on this edge index or not? No edges on return nodes 165 uint ReturnNode::match_edge(uint idx) const { 166 return 0; 167 } 168 169 170 #ifndef PRODUCT 171 void ReturnNode::dump_req(outputStream *st) const { 172 // Dump the required inputs, enclosed in '(' and ')' 173 uint i; // Exit value of loop 174 for (i = 0; i < req(); i++) { // For all required inputs 175 if (i == TypeFunc::Parms) st->print("returns"); 176 if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx); 177 else st->print("_ "); 178 } 179 } 180 #endif 181 182 //============================================================================= 183 RethrowNode::RethrowNode( 184 Node* cntrl, 185 Node* i_o, 186 Node* memory, 187 Node* frameptr, 188 Node* ret_adr, 189 Node* exception 190 ) : Node(TypeFunc::Parms + 1) { 191 init_req(TypeFunc::Control , cntrl ); 192 init_req(TypeFunc::I_O , i_o ); 193 init_req(TypeFunc::Memory , memory ); 194 init_req(TypeFunc::FramePtr , frameptr ); 195 init_req(TypeFunc::ReturnAdr, ret_adr); 196 init_req(TypeFunc::Parms , exception); 197 } 198 199 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){ 200 return remove_dead_region(phase, can_reshape) ? this : NULL; 201 } 202 203 const Type *RethrowNode::Value( PhaseTransform *phase ) const { 204 return (phase->type(in(TypeFunc::Control)) == Type::TOP) 205 ? Type::TOP 206 : Type::BOTTOM; 207 } 208 209 uint RethrowNode::match_edge(uint idx) const { 210 return 0; 211 } 212 213 #ifndef PRODUCT 214 void RethrowNode::dump_req(outputStream *st) const { 215 // Dump the required inputs, enclosed in '(' and ')' 216 uint i; // Exit value of loop 217 for (i = 0; i < req(); i++) { // For all required inputs 218 if (i == TypeFunc::Parms) st->print("exception"); 219 if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx); 220 else st->print("_ "); 221 } 222 } 223 #endif 224 225 //============================================================================= 226 // Do we Match on this edge index or not? Match only target address & method 227 uint TailCallNode::match_edge(uint idx) const { 228 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1; 229 } 230 231 //============================================================================= 232 // Do we Match on this edge index or not? Match only target address & oop 233 uint TailJumpNode::match_edge(uint idx) const { 234 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1; 235 } 236 237 //============================================================================= 238 JVMState::JVMState(ciMethod* method, JVMState* caller) : 239 _method(method) { 240 assert(method != NULL, "must be valid call site"); 241 _reexecute = Reexecute_Undefined; 242 debug_only(_bci = -99); // random garbage value 243 debug_only(_map = (SafePointNode*)-1); 244 _caller = caller; 245 _depth = 1 + (caller == NULL ? 0 : caller->depth()); 246 _locoff = TypeFunc::Parms; 247 _stkoff = _locoff + _method->max_locals(); 248 _monoff = _stkoff + _method->max_stack(); 249 _scloff = _monoff; 250 _endoff = _monoff; 251 _sp = 0; 252 } 253 JVMState::JVMState(int stack_size) : 254 _method(NULL) { 255 _bci = InvocationEntryBci; 256 _reexecute = Reexecute_Undefined; 257 debug_only(_map = (SafePointNode*)-1); 258 _caller = NULL; 259 _depth = 1; 260 _locoff = TypeFunc::Parms; 261 _stkoff = _locoff; 262 _monoff = _stkoff + stack_size; 263 _scloff = _monoff; 264 _endoff = _monoff; 265 _sp = 0; 266 } 267 268 //--------------------------------of_depth------------------------------------- 269 JVMState* JVMState::of_depth(int d) const { 270 const JVMState* jvmp = this; 271 assert(0 < d && (uint)d <= depth(), "oob"); 272 for (int skip = depth() - d; skip > 0; skip--) { 273 jvmp = jvmp->caller(); 274 } 275 assert(jvmp->depth() == (uint)d, "found the right one"); 276 return (JVMState*)jvmp; 277 } 278 279 //-----------------------------same_calls_as----------------------------------- 280 bool JVMState::same_calls_as(const JVMState* that) const { 281 if (this == that) return true; 282 if (this->depth() != that->depth()) return false; 283 const JVMState* p = this; 284 const JVMState* q = that; 285 for (;;) { 286 if (p->_method != q->_method) return false; 287 if (p->_method == NULL) return true; // bci is irrelevant 288 if (p->_bci != q->_bci) return false; 289 if (p->_reexecute != q->_reexecute) return false; 290 p = p->caller(); 291 q = q->caller(); 292 if (p == q) return true; 293 assert(p != NULL && q != NULL, "depth check ensures we don't run off end"); 294 } 295 } 296 297 //------------------------------debug_start------------------------------------ 298 uint JVMState::debug_start() const { 299 debug_only(JVMState* jvmroot = of_depth(1)); 300 assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last"); 301 return of_depth(1)->locoff(); 302 } 303 304 //-------------------------------debug_end------------------------------------- 305 uint JVMState::debug_end() const { 306 debug_only(JVMState* jvmroot = of_depth(1)); 307 assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last"); 308 return endoff(); 309 } 310 311 //------------------------------debug_depth------------------------------------ 312 uint JVMState::debug_depth() const { 313 uint total = 0; 314 for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) { 315 total += jvmp->debug_size(); 316 } 317 return total; 318 } 319 320 #ifndef PRODUCT 321 322 //------------------------------format_helper---------------------------------- 323 // Given an allocation (a Chaitin object) and a Node decide if the Node carries 324 // any defined value or not. If it does, print out the register or constant. 325 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) { 326 if (n == NULL) { st->print(" NULL"); return; } 327 if (n->is_SafePointScalarObject()) { 328 // Scalar replacement. 329 SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject(); 330 scobjs->append_if_missing(spobj); 331 int sco_n = scobjs->find(spobj); 332 assert(sco_n >= 0, ""); 333 st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n); 334 return; 335 } 336 if (regalloc->node_regs_max_index() > 0 && 337 OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined 338 char buf[50]; 339 regalloc->dump_register(n,buf); 340 st->print(" %s%d]=%s",msg,i,buf); 341 } else { // No register, but might be constant 342 const Type *t = n->bottom_type(); 343 switch (t->base()) { 344 case Type::Int: 345 st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con()); 346 break; 347 case Type::AnyPtr: 348 assert( t == TypePtr::NULL_PTR || n->in_dump(), "" ); 349 st->print(" %s%d]=#NULL",msg,i); 350 break; 351 case Type::AryPtr: 352 case Type::InstPtr: 353 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop())); 354 break; 355 case Type::KlassPtr: 356 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->klass())); 357 break; 358 case Type::MetadataPtr: 359 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata())); 360 break; 361 case Type::NarrowOop: 362 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop())); 363 break; 364 case Type::RawPtr: 365 st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr())); 366 break; 367 case Type::DoubleCon: 368 st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d); 369 break; 370 case Type::FloatCon: 371 st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f); 372 break; 373 case Type::Long: 374 st->print(" %s%d]=#"INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con())); 375 break; 376 case Type::Half: 377 case Type::Top: 378 st->print(" %s%d]=_",msg,i); 379 break; 380 default: ShouldNotReachHere(); 381 } 382 } 383 } 384 385 //------------------------------format----------------------------------------- 386 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const { 387 st->print(" #"); 388 if (_method) { 389 _method->print_short_name(st); 390 st->print(" @ bci:%d ",_bci); 391 } else { 392 st->print_cr(" runtime stub "); 393 return; 394 } 395 if (n->is_MachSafePoint()) { 396 GrowableArray<SafePointScalarObjectNode*> scobjs; 397 MachSafePointNode *mcall = n->as_MachSafePoint(); 398 uint i; 399 // Print locals 400 for (i = 0; i < (uint)loc_size(); i++) 401 format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs); 402 // Print stack 403 for (i = 0; i < (uint)stk_size(); i++) { 404 if ((uint)(_stkoff + i) >= mcall->len()) 405 st->print(" oob "); 406 else 407 format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs); 408 } 409 for (i = 0; (int)i < nof_monitors(); i++) { 410 Node *box = mcall->monitor_box(this, i); 411 Node *obj = mcall->monitor_obj(this, i); 412 if (regalloc->node_regs_max_index() > 0 && 413 OptoReg::is_valid(regalloc->get_reg_first(box))) { 414 box = BoxLockNode::box_node(box); 415 format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs); 416 } else { 417 OptoReg::Name box_reg = BoxLockNode::reg(box); 418 st->print(" MON-BOX%d=%s+%d", 419 i, 420 OptoReg::regname(OptoReg::c_frame_pointer), 421 regalloc->reg2offset(box_reg)); 422 } 423 const char* obj_msg = "MON-OBJ["; 424 if (EliminateLocks) { 425 if (BoxLockNode::box_node(box)->is_eliminated()) 426 obj_msg = "MON-OBJ(LOCK ELIMINATED)["; 427 } 428 format_helper(regalloc, st, obj, obj_msg, i, &scobjs); 429 } 430 431 for (i = 0; i < (uint)scobjs.length(); i++) { 432 // Scalar replaced objects. 433 st->cr(); 434 st->print(" # ScObj" INT32_FORMAT " ", i); 435 SafePointScalarObjectNode* spobj = scobjs.at(i); 436 ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass(); 437 assert(cik->is_instance_klass() || 438 cik->is_array_klass(), "Not supported allocation."); 439 ciInstanceKlass *iklass = NULL; 440 if (cik->is_instance_klass()) { 441 cik->print_name_on(st); 442 iklass = cik->as_instance_klass(); 443 } else if (cik->is_type_array_klass()) { 444 cik->as_array_klass()->base_element_type()->print_name_on(st); 445 st->print("[%d]", spobj->n_fields()); 446 } else if (cik->is_obj_array_klass()) { 447 ciKlass* cie = cik->as_obj_array_klass()->base_element_klass(); 448 if (cie->is_instance_klass()) { 449 cie->print_name_on(st); 450 } else if (cie->is_type_array_klass()) { 451 cie->as_array_klass()->base_element_type()->print_name_on(st); 452 } else { 453 ShouldNotReachHere(); 454 } 455 st->print("[%d]", spobj->n_fields()); 456 int ndim = cik->as_array_klass()->dimension() - 1; 457 while (ndim-- > 0) { 458 st->print("[]"); 459 } 460 } 461 st->print("={"); 462 uint nf = spobj->n_fields(); 463 if (nf > 0) { 464 uint first_ind = spobj->first_index(mcall->jvms()); 465 Node* fld_node = mcall->in(first_ind); 466 ciField* cifield; 467 if (iklass != NULL) { 468 st->print(" ["); 469 cifield = iklass->nonstatic_field_at(0); 470 cifield->print_name_on(st); 471 format_helper(regalloc, st, fld_node, ":", 0, &scobjs); 472 } else { 473 format_helper(regalloc, st, fld_node, "[", 0, &scobjs); 474 } 475 for (uint j = 1; j < nf; j++) { 476 fld_node = mcall->in(first_ind+j); 477 if (iklass != NULL) { 478 st->print(", ["); 479 cifield = iklass->nonstatic_field_at(j); 480 cifield->print_name_on(st); 481 format_helper(regalloc, st, fld_node, ":", j, &scobjs); 482 } else { 483 format_helper(regalloc, st, fld_node, ", [", j, &scobjs); 484 } 485 } 486 } 487 st->print(" }"); 488 } 489 } 490 st->cr(); 491 if (caller() != NULL) caller()->format(regalloc, n, st); 492 } 493 494 495 void JVMState::dump_spec(outputStream *st) const { 496 if (_method != NULL) { 497 bool printed = false; 498 if (!Verbose) { 499 // The JVMS dumps make really, really long lines. 500 // Take out the most boring parts, which are the package prefixes. 501 char buf[500]; 502 stringStream namest(buf, sizeof(buf)); 503 _method->print_short_name(&namest); 504 if (namest.count() < sizeof(buf)) { 505 const char* name = namest.base(); 506 if (name[0] == ' ') ++name; 507 const char* endcn = strchr(name, ':'); // end of class name 508 if (endcn == NULL) endcn = strchr(name, '('); 509 if (endcn == NULL) endcn = name + strlen(name); 510 while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/') 511 --endcn; 512 st->print(" %s", endcn); 513 printed = true; 514 } 515 } 516 if (!printed) 517 _method->print_short_name(st); 518 st->print(" @ bci:%d",_bci); 519 if(_reexecute == Reexecute_True) 520 st->print(" reexecute"); 521 } else { 522 st->print(" runtime stub"); 523 } 524 if (caller() != NULL) caller()->dump_spec(st); 525 } 526 527 528 void JVMState::dump_on(outputStream* st) const { 529 bool print_map = _map && !((uintptr_t)_map & 1) && 530 ((caller() == NULL) || (caller()->map() != _map)); 531 if (print_map) { 532 if (_map->len() > _map->req()) { // _map->has_exceptions() 533 Node* ex = _map->in(_map->req()); // _map->next_exception() 534 // skip the first one; it's already being printed 535 while (ex != NULL && ex->len() > ex->req()) { 536 ex = ex->in(ex->req()); // ex->next_exception() 537 ex->dump(1); 538 } 539 } 540 _map->dump(Verbose ? 2 : 1); 541 } 542 if (caller() != NULL) { 543 caller()->dump_on(st); 544 } 545 st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=", 546 depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false"); 547 if (_method == NULL) { 548 st->print_cr("(none)"); 549 } else { 550 _method->print_name(st); 551 st->cr(); 552 if (bci() >= 0 && bci() < _method->code_size()) { 553 st->print(" bc: "); 554 _method->print_codes_on(bci(), bci()+1, st); 555 } 556 } 557 } 558 559 // Extra way to dump a jvms from the debugger, 560 // to avoid a bug with C++ member function calls. 561 void dump_jvms(JVMState* jvms) { 562 jvms->dump(); 563 } 564 #endif 565 566 //--------------------------clone_shallow-------------------------------------- 567 JVMState* JVMState::clone_shallow(Compile* C) const { 568 JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0); 569 n->set_bci(_bci); 570 n->_reexecute = _reexecute; 571 n->set_locoff(_locoff); 572 n->set_stkoff(_stkoff); 573 n->set_monoff(_monoff); 574 n->set_scloff(_scloff); 575 n->set_endoff(_endoff); 576 n->set_sp(_sp); 577 n->set_map(_map); 578 return n; 579 } 580 581 //---------------------------clone_deep---------------------------------------- 582 JVMState* JVMState::clone_deep(Compile* C) const { 583 JVMState* n = clone_shallow(C); 584 for (JVMState* p = n; p->_caller != NULL; p = p->_caller) { 585 p->_caller = p->_caller->clone_shallow(C); 586 } 587 assert(n->depth() == depth(), "sanity"); 588 assert(n->debug_depth() == debug_depth(), "sanity"); 589 return n; 590 } 591 592 /** 593 * Reset map for all callers 594 */ 595 void JVMState::set_map_deep(SafePointNode* map) { 596 for (JVMState* p = this; p->_caller != NULL; p = p->_caller) { 597 p->set_map(map); 598 } 599 } 600 601 // Adapt offsets in in-array after adding or removing an edge. 602 // Prerequisite is that the JVMState is used by only one node. 603 void JVMState::adapt_position(int delta) { 604 for (JVMState* jvms = this; jvms != NULL; jvms = jvms->caller()) { 605 jvms->set_locoff(jvms->locoff() + delta); 606 jvms->set_stkoff(jvms->stkoff() + delta); 607 jvms->set_monoff(jvms->monoff() + delta); 608 jvms->set_scloff(jvms->scloff() + delta); 609 jvms->set_endoff(jvms->endoff() + delta); 610 } 611 } 612 613 // Mirror the stack size calculation in the deopt code 614 // How much stack space would we need at this point in the program in 615 // case of deoptimization? 616 int JVMState::interpreter_frame_size() const { 617 const JVMState* jvms = this; 618 int size = 0; 619 int callee_parameters = 0; 620 int callee_locals = 0; 621 int extra_args = method()->max_stack() - stk_size(); 622 623 while (jvms != NULL) { 624 int locks = jvms->nof_monitors(); 625 int temps = jvms->stk_size(); 626 bool is_top_frame = (jvms == this); 627 ciMethod* method = jvms->method(); 628 629 int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(), 630 temps + callee_parameters, 631 extra_args, 632 locks, 633 callee_parameters, 634 callee_locals, 635 is_top_frame); 636 size += frame_size; 637 638 callee_parameters = method->size_of_parameters(); 639 callee_locals = method->max_locals(); 640 extra_args = 0; 641 jvms = jvms->caller(); 642 } 643 return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord; 644 } 645 646 //============================================================================= 647 uint CallNode::cmp( const Node &n ) const 648 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; } 649 #ifndef PRODUCT 650 void CallNode::dump_req(outputStream *st) const { 651 // Dump the required inputs, enclosed in '(' and ')' 652 uint i; // Exit value of loop 653 for (i = 0; i < req(); i++) { // For all required inputs 654 if (i == TypeFunc::Parms) st->print("("); 655 if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx); 656 else st->print("_ "); 657 } 658 st->print(")"); 659 } 660 661 void CallNode::dump_spec(outputStream *st) const { 662 st->print(" "); 663 if (tf() != NULL) tf()->dump_on(st); 664 if (_cnt != COUNT_UNKNOWN) st->print(" C=%f",_cnt); 665 if (jvms() != NULL) jvms()->dump_spec(st); 666 } 667 #endif 668 669 const Type *CallNode::bottom_type() const { return tf()->range(); } 670 const Type *CallNode::Value(PhaseTransform *phase) const { 671 if (phase->type(in(0)) == Type::TOP) return Type::TOP; 672 return tf()->range(); 673 } 674 675 //------------------------------calling_convention----------------------------- 676 void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const { 677 // Use the standard compiler calling convention 678 Matcher::calling_convention( sig_bt, parm_regs, argcnt, true ); 679 } 680 681 682 //------------------------------match------------------------------------------ 683 // Construct projections for control, I/O, memory-fields, ..., and 684 // return result(s) along with their RegMask info 685 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) { 686 switch (proj->_con) { 687 case TypeFunc::Control: 688 case TypeFunc::I_O: 689 case TypeFunc::Memory: 690 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); 691 692 case TypeFunc::Parms+1: // For LONG & DOUBLE returns 693 assert(tf()->range()->field_at(TypeFunc::Parms+1) == Type::HALF, ""); 694 // 2nd half of doubles and longs 695 return new MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad); 696 697 case TypeFunc::Parms: { // Normal returns 698 uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg(); 699 OptoRegPair regs = is_CallRuntime() 700 ? match->c_return_value(ideal_reg,true) // Calls into C runtime 701 : match-> return_value(ideal_reg,true); // Calls into compiled Java code 702 RegMask rm = RegMask(regs.first()); 703 if( OptoReg::is_valid(regs.second()) ) 704 rm.Insert( regs.second() ); 705 return new MachProjNode(this,proj->_con,rm,ideal_reg); 706 } 707 708 case TypeFunc::ReturnAdr: 709 case TypeFunc::FramePtr: 710 default: 711 ShouldNotReachHere(); 712 } 713 return NULL; 714 } 715 716 // Do we Match on this edge index or not? Match no edges 717 uint CallNode::match_edge(uint idx) const { 718 return 0; 719 } 720 721 // 722 // Determine whether the call could modify the field of the specified 723 // instance at the specified offset. 724 // 725 bool CallNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { 726 assert((t_oop != NULL), "sanity"); 727 if (t_oop->is_known_instance()) { 728 // The instance_id is set only for scalar-replaceable allocations which 729 // are not passed as arguments according to Escape Analysis. 730 return false; 731 } 732 if (t_oop->is_ptr_to_boxed_value()) { 733 ciKlass* boxing_klass = t_oop->klass(); 734 if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) { 735 // Skip unrelated boxing methods. 736 Node* proj = proj_out(TypeFunc::Parms); 737 if ((proj == NULL) || (phase->type(proj)->is_instptr()->klass() != boxing_klass)) { 738 return false; 739 } 740 } 741 if (is_CallJava() && as_CallJava()->method() != NULL) { 742 ciMethod* meth = as_CallJava()->method(); 743 if (meth->is_accessor()) { 744 return false; 745 } 746 // May modify (by reflection) if an boxing object is passed 747 // as argument or returned. 748 if (returns_pointer() && (proj_out(TypeFunc::Parms) != NULL)) { 749 Node* proj = proj_out(TypeFunc::Parms); 750 const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr(); 751 if ((inst_t != NULL) && (!inst_t->klass_is_exact() || 752 (inst_t->klass() == boxing_klass))) { 753 return true; 754 } 755 } 756 const TypeTuple* d = tf()->domain(); 757 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 758 const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr(); 759 if ((inst_t != NULL) && (!inst_t->klass_is_exact() || 760 (inst_t->klass() == boxing_klass))) { 761 return true; 762 } 763 } 764 return false; 765 } 766 } 767 return true; 768 } 769 770 // Does this call have a direct reference to n other than debug information? 771 bool CallNode::has_non_debug_use(Node *n) { 772 const TypeTuple * d = tf()->domain(); 773 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 774 Node *arg = in(i); 775 if (arg == n) { 776 return true; 777 } 778 } 779 return false; 780 } 781 782 // Returns the unique CheckCastPP of a call 783 // or 'this' if there are several CheckCastPP or unexpected uses 784 // or returns NULL if there is no one. 785 Node *CallNode::result_cast() { 786 Node *cast = NULL; 787 788 Node *p = proj_out(TypeFunc::Parms); 789 if (p == NULL) 790 return NULL; 791 792 for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) { 793 Node *use = p->fast_out(i); 794 if (use->is_CheckCastPP()) { 795 if (cast != NULL) { 796 return this; // more than 1 CheckCastPP 797 } 798 cast = use; 799 } else if (!use->is_Initialize() && 800 !use->is_AddP()) { 801 // Expected uses are restricted to a CheckCastPP, an Initialize 802 // node, and AddP nodes. If we encounter any other use (a Phi 803 // node can be seen in rare cases) return this to prevent 804 // incorrect optimizations. 805 return this; 806 } 807 } 808 return cast; 809 } 810 811 812 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj) { 813 projs->fallthrough_proj = NULL; 814 projs->fallthrough_catchproj = NULL; 815 projs->fallthrough_ioproj = NULL; 816 projs->catchall_ioproj = NULL; 817 projs->catchall_catchproj = NULL; 818 projs->fallthrough_memproj = NULL; 819 projs->catchall_memproj = NULL; 820 projs->resproj = NULL; 821 projs->exobj = NULL; 822 823 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 824 ProjNode *pn = fast_out(i)->as_Proj(); 825 if (pn->outcnt() == 0) continue; 826 switch (pn->_con) { 827 case TypeFunc::Control: 828 { 829 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj 830 projs->fallthrough_proj = pn; 831 DUIterator_Fast jmax, j = pn->fast_outs(jmax); 832 const Node *cn = pn->fast_out(j); 833 if (cn->is_Catch()) { 834 ProjNode *cpn = NULL; 835 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) { 836 cpn = cn->fast_out(k)->as_Proj(); 837 assert(cpn->is_CatchProj(), "must be a CatchProjNode"); 838 if (cpn->_con == CatchProjNode::fall_through_index) 839 projs->fallthrough_catchproj = cpn; 840 else { 841 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index."); 842 projs->catchall_catchproj = cpn; 843 } 844 } 845 } 846 break; 847 } 848 case TypeFunc::I_O: 849 if (pn->_is_io_use) 850 projs->catchall_ioproj = pn; 851 else 852 projs->fallthrough_ioproj = pn; 853 for (DUIterator j = pn->outs(); pn->has_out(j); j++) { 854 Node* e = pn->out(j); 855 if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) { 856 assert(projs->exobj == NULL, "only one"); 857 projs->exobj = e; 858 } 859 } 860 break; 861 case TypeFunc::Memory: 862 if (pn->_is_io_use) 863 projs->catchall_memproj = pn; 864 else 865 projs->fallthrough_memproj = pn; 866 break; 867 case TypeFunc::Parms: 868 projs->resproj = pn; 869 break; 870 default: 871 assert(false, "unexpected projection from allocation node."); 872 } 873 } 874 875 // The resproj may not exist because the result couuld be ignored 876 // and the exception object may not exist if an exception handler 877 // swallows the exception but all the other must exist and be found. 878 assert(projs->fallthrough_proj != NULL, "must be found"); 879 assert(Compile::current()->inlining_incrementally() || projs->fallthrough_catchproj != NULL, "must be found"); 880 assert(Compile::current()->inlining_incrementally() || projs->fallthrough_memproj != NULL, "must be found"); 881 assert(Compile::current()->inlining_incrementally() || projs->fallthrough_ioproj != NULL, "must be found"); 882 assert(Compile::current()->inlining_incrementally() || projs->catchall_catchproj != NULL, "must be found"); 883 if (separate_io_proj) { 884 assert(Compile::current()->inlining_incrementally() || projs->catchall_memproj != NULL, "must be found"); 885 assert(Compile::current()->inlining_incrementally() || projs->catchall_ioproj != NULL, "must be found"); 886 } 887 } 888 889 Node *CallNode::Ideal(PhaseGVN *phase, bool can_reshape) { 890 CallGenerator* cg = generator(); 891 if (can_reshape && cg != NULL && cg->is_mh_late_inline() && !cg->already_attempted()) { 892 // Check whether this MH handle call becomes a candidate for inlining 893 ciMethod* callee = cg->method(); 894 vmIntrinsics::ID iid = callee->intrinsic_id(); 895 if (iid == vmIntrinsics::_invokeBasic) { 896 if (in(TypeFunc::Parms)->Opcode() == Op_ConP) { 897 phase->C->prepend_late_inline(cg); 898 set_generator(NULL); 899 } 900 } else { 901 assert(callee->has_member_arg(), "wrong type of call?"); 902 if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) { 903 phase->C->prepend_late_inline(cg); 904 set_generator(NULL); 905 } 906 } 907 } 908 return SafePointNode::Ideal(phase, can_reshape); 909 } 910 911 912 //============================================================================= 913 uint CallJavaNode::size_of() const { return sizeof(*this); } 914 uint CallJavaNode::cmp( const Node &n ) const { 915 CallJavaNode &call = (CallJavaNode&)n; 916 return CallNode::cmp(call) && _method == call._method; 917 } 918 #ifndef PRODUCT 919 void CallJavaNode::dump_spec(outputStream *st) const { 920 if( _method ) _method->print_short_name(st); 921 CallNode::dump_spec(st); 922 } 923 #endif 924 925 //============================================================================= 926 uint CallStaticJavaNode::size_of() const { return sizeof(*this); } 927 uint CallStaticJavaNode::cmp( const Node &n ) const { 928 CallStaticJavaNode &call = (CallStaticJavaNode&)n; 929 return CallJavaNode::cmp(call); 930 } 931 932 //----------------------------uncommon_trap_request---------------------------- 933 // If this is an uncommon trap, return the request code, else zero. 934 int CallStaticJavaNode::uncommon_trap_request() const { 935 if (_name != NULL && !strcmp(_name, "uncommon_trap")) { 936 return extract_uncommon_trap_request(this); 937 } 938 return 0; 939 } 940 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) { 941 #ifndef PRODUCT 942 if (!(call->req() > TypeFunc::Parms && 943 call->in(TypeFunc::Parms) != NULL && 944 call->in(TypeFunc::Parms)->is_Con() && 945 call->in(TypeFunc::Parms)->bottom_type()->isa_int())) { 946 assert(in_dump() != 0, "OK if dumping"); 947 tty->print("[bad uncommon trap]"); 948 return 0; 949 } 950 #endif 951 return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con(); 952 } 953 954 #ifndef PRODUCT 955 void CallStaticJavaNode::dump_spec(outputStream *st) const { 956 st->print("# Static "); 957 if (_name != NULL) { 958 st->print("%s", _name); 959 int trap_req = uncommon_trap_request(); 960 if (trap_req != 0) { 961 char buf[100]; 962 st->print("(%s)", 963 Deoptimization::format_trap_request(buf, sizeof(buf), 964 trap_req)); 965 } 966 st->print(" "); 967 } 968 CallJavaNode::dump_spec(st); 969 } 970 #endif 971 972 //============================================================================= 973 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); } 974 uint CallDynamicJavaNode::cmp( const Node &n ) const { 975 CallDynamicJavaNode &call = (CallDynamicJavaNode&)n; 976 return CallJavaNode::cmp(call); 977 } 978 #ifndef PRODUCT 979 void CallDynamicJavaNode::dump_spec(outputStream *st) const { 980 st->print("# Dynamic "); 981 CallJavaNode::dump_spec(st); 982 } 983 #endif 984 985 //============================================================================= 986 uint CallRuntimeNode::size_of() const { return sizeof(*this); } 987 uint CallRuntimeNode::cmp( const Node &n ) const { 988 CallRuntimeNode &call = (CallRuntimeNode&)n; 989 return CallNode::cmp(call) && !strcmp(_name,call._name); 990 } 991 #ifndef PRODUCT 992 void CallRuntimeNode::dump_spec(outputStream *st) const { 993 st->print("# "); 994 st->print("%s", _name); 995 CallNode::dump_spec(st); 996 } 997 #endif 998 999 //------------------------------calling_convention----------------------------- 1000 void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const { 1001 Matcher::c_calling_convention( sig_bt, parm_regs, argcnt ); 1002 } 1003 1004 //============================================================================= 1005 //------------------------------calling_convention----------------------------- 1006 1007 1008 //============================================================================= 1009 #ifndef PRODUCT 1010 void CallLeafNode::dump_spec(outputStream *st) const { 1011 st->print("# "); 1012 st->print("%s", _name); 1013 CallNode::dump_spec(st); 1014 } 1015 #endif 1016 1017 //============================================================================= 1018 1019 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) { 1020 assert(verify_jvms(jvms), "jvms must match"); 1021 int loc = jvms->locoff() + idx; 1022 if (in(loc)->is_top() && idx > 0 && !c->is_top() ) { 1023 // If current local idx is top then local idx - 1 could 1024 // be a long/double that needs to be killed since top could 1025 // represent the 2nd half ofthe long/double. 1026 uint ideal = in(loc -1)->ideal_reg(); 1027 if (ideal == Op_RegD || ideal == Op_RegL) { 1028 // set other (low index) half to top 1029 set_req(loc - 1, in(loc)); 1030 } 1031 } 1032 set_req(loc, c); 1033 } 1034 1035 uint SafePointNode::size_of() const { return sizeof(*this); } 1036 uint SafePointNode::cmp( const Node &n ) const { 1037 return (&n == this); // Always fail except on self 1038 } 1039 1040 //-------------------------set_next_exception---------------------------------- 1041 void SafePointNode::set_next_exception(SafePointNode* n) { 1042 assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception"); 1043 if (len() == req()) { 1044 if (n != NULL) add_prec(n); 1045 } else { 1046 set_prec(req(), n); 1047 } 1048 } 1049 1050 1051 //----------------------------next_exception----------------------------------- 1052 SafePointNode* SafePointNode::next_exception() const { 1053 if (len() == req()) { 1054 return NULL; 1055 } else { 1056 Node* n = in(req()); 1057 assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges"); 1058 return (SafePointNode*) n; 1059 } 1060 } 1061 1062 1063 //------------------------------Ideal------------------------------------------ 1064 // Skip over any collapsed Regions 1065 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1066 return remove_dead_region(phase, can_reshape) ? this : NULL; 1067 } 1068 1069 //------------------------------Identity--------------------------------------- 1070 // Remove obviously duplicate safepoints 1071 Node *SafePointNode::Identity( PhaseTransform *phase ) { 1072 1073 // If you have back to back safepoints, remove one 1074 if( in(TypeFunc::Control)->is_SafePoint() ) 1075 return in(TypeFunc::Control); 1076 1077 if( in(0)->is_Proj() ) { 1078 Node *n0 = in(0)->in(0); 1079 // Check if he is a call projection (except Leaf Call) 1080 if( n0->is_Catch() ) { 1081 n0 = n0->in(0)->in(0); 1082 assert( n0->is_Call(), "expect a call here" ); 1083 } 1084 if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) { 1085 // Useless Safepoint, so remove it 1086 return in(TypeFunc::Control); 1087 } 1088 } 1089 1090 return this; 1091 } 1092 1093 //------------------------------Value------------------------------------------ 1094 const Type *SafePointNode::Value( PhaseTransform *phase ) const { 1095 if( phase->type(in(0)) == Type::TOP ) return Type::TOP; 1096 if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop 1097 return Type::CONTROL; 1098 } 1099 1100 #ifndef PRODUCT 1101 void SafePointNode::dump_spec(outputStream *st) const { 1102 st->print(" SafePoint "); 1103 _replaced_nodes.dump(st); 1104 } 1105 #endif 1106 1107 const RegMask &SafePointNode::in_RegMask(uint idx) const { 1108 if( idx < TypeFunc::Parms ) return RegMask::Empty; 1109 // Values outside the domain represent debug info 1110 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]); 1111 } 1112 const RegMask &SafePointNode::out_RegMask() const { 1113 return RegMask::Empty; 1114 } 1115 1116 1117 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) { 1118 assert((int)grow_by > 0, "sanity"); 1119 int monoff = jvms->monoff(); 1120 int scloff = jvms->scloff(); 1121 int endoff = jvms->endoff(); 1122 assert(endoff == (int)req(), "no other states or debug info after me"); 1123 Node* top = Compile::current()->top(); 1124 for (uint i = 0; i < grow_by; i++) { 1125 ins_req(monoff, top); 1126 } 1127 jvms->set_monoff(monoff + grow_by); 1128 jvms->set_scloff(scloff + grow_by); 1129 jvms->set_endoff(endoff + grow_by); 1130 } 1131 1132 void SafePointNode::push_monitor(const FastLockNode *lock) { 1133 // Add a LockNode, which points to both the original BoxLockNode (the 1134 // stack space for the monitor) and the Object being locked. 1135 const int MonitorEdges = 2; 1136 assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges"); 1137 assert(req() == jvms()->endoff(), "correct sizing"); 1138 int nextmon = jvms()->scloff(); 1139 if (GenerateSynchronizationCode) { 1140 ins_req(nextmon, lock->box_node()); 1141 ins_req(nextmon+1, lock->obj_node()); 1142 } else { 1143 Node* top = Compile::current()->top(); 1144 ins_req(nextmon, top); 1145 ins_req(nextmon, top); 1146 } 1147 jvms()->set_scloff(nextmon + MonitorEdges); 1148 jvms()->set_endoff(req()); 1149 } 1150 1151 void SafePointNode::pop_monitor() { 1152 // Delete last monitor from debug info 1153 debug_only(int num_before_pop = jvms()->nof_monitors()); 1154 const int MonitorEdges = 2; 1155 assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges"); 1156 int scloff = jvms()->scloff(); 1157 int endoff = jvms()->endoff(); 1158 int new_scloff = scloff - MonitorEdges; 1159 int new_endoff = endoff - MonitorEdges; 1160 jvms()->set_scloff(new_scloff); 1161 jvms()->set_endoff(new_endoff); 1162 while (scloff > new_scloff) del_req_ordered(--scloff); 1163 assert(jvms()->nof_monitors() == num_before_pop-1, ""); 1164 } 1165 1166 Node *SafePointNode::peek_monitor_box() const { 1167 int mon = jvms()->nof_monitors() - 1; 1168 assert(mon >= 0, "most have a monitor"); 1169 return monitor_box(jvms(), mon); 1170 } 1171 1172 Node *SafePointNode::peek_monitor_obj() const { 1173 int mon = jvms()->nof_monitors() - 1; 1174 assert(mon >= 0, "most have a monitor"); 1175 return monitor_obj(jvms(), mon); 1176 } 1177 1178 // Do we Match on this edge index or not? Match no edges 1179 uint SafePointNode::match_edge(uint idx) const { 1180 if( !needs_polling_address_input() ) 1181 return 0; 1182 1183 return (TypeFunc::Parms == idx); 1184 } 1185 1186 //============== SafePointScalarObjectNode ============== 1187 1188 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, 1189 #ifdef ASSERT 1190 AllocateNode* alloc, 1191 #endif 1192 uint first_index, 1193 uint n_fields) : 1194 TypeNode(tp, 1), // 1 control input -- seems required. Get from root. 1195 #ifdef ASSERT 1196 _alloc(alloc), 1197 #endif 1198 _first_index(first_index), 1199 _n_fields(n_fields) 1200 { 1201 init_class_id(Class_SafePointScalarObject); 1202 } 1203 1204 // Do not allow value-numbering for SafePointScalarObject node. 1205 uint SafePointScalarObjectNode::hash() const { return NO_HASH; } 1206 uint SafePointScalarObjectNode::cmp( const Node &n ) const { 1207 return (&n == this); // Always fail except on self 1208 } 1209 1210 uint SafePointScalarObjectNode::ideal_reg() const { 1211 return 0; // No matching to machine instruction 1212 } 1213 1214 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const { 1215 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]); 1216 } 1217 1218 const RegMask &SafePointScalarObjectNode::out_RegMask() const { 1219 return RegMask::Empty; 1220 } 1221 1222 uint SafePointScalarObjectNode::match_edge(uint idx) const { 1223 return 0; 1224 } 1225 1226 SafePointScalarObjectNode* 1227 SafePointScalarObjectNode::clone(Dict* sosn_map) const { 1228 void* cached = (*sosn_map)[(void*)this]; 1229 if (cached != NULL) { 1230 return (SafePointScalarObjectNode*)cached; 1231 } 1232 SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone(); 1233 sosn_map->Insert((void*)this, (void*)res); 1234 return res; 1235 } 1236 1237 1238 #ifndef PRODUCT 1239 void SafePointScalarObjectNode::dump_spec(outputStream *st) const { 1240 st->print(" # fields@[%d..%d]", first_index(), 1241 first_index() + n_fields() - 1); 1242 } 1243 1244 #endif 1245 1246 //============================================================================= 1247 uint AllocateNode::size_of() const { return sizeof(*this); } 1248 1249 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype, 1250 Node *ctrl, Node *mem, Node *abio, 1251 Node *size, Node *klass_node, Node *initial_test) 1252 : CallNode(atype, NULL, TypeRawPtr::BOTTOM) 1253 { 1254 init_class_id(Class_Allocate); 1255 init_flags(Flag_is_macro); 1256 _is_scalar_replaceable = false; 1257 _is_non_escaping = false; 1258 Node *topnode = C->top(); 1259 1260 init_req( TypeFunc::Control , ctrl ); 1261 init_req( TypeFunc::I_O , abio ); 1262 init_req( TypeFunc::Memory , mem ); 1263 init_req( TypeFunc::ReturnAdr, topnode ); 1264 init_req( TypeFunc::FramePtr , topnode ); 1265 init_req( AllocSize , size); 1266 init_req( KlassNode , klass_node); 1267 init_req( InitialTest , initial_test); 1268 init_req( ALength , topnode); 1269 C->add_macro_node(this); 1270 } 1271 1272 //============================================================================= 1273 Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1274 if (remove_dead_region(phase, can_reshape)) return this; 1275 // Don't bother trying to transform a dead node 1276 if (in(0) && in(0)->is_top()) return NULL; 1277 1278 const Type* type = phase->type(Ideal_length()); 1279 if (type->isa_int() && type->is_int()->_hi < 0) { 1280 if (can_reshape) { 1281 PhaseIterGVN *igvn = phase->is_IterGVN(); 1282 // Unreachable fall through path (negative array length), 1283 // the allocation can only throw so disconnect it. 1284 Node* proj = proj_out(TypeFunc::Control); 1285 Node* catchproj = NULL; 1286 if (proj != NULL) { 1287 for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) { 1288 Node *cn = proj->fast_out(i); 1289 if (cn->is_Catch()) { 1290 catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index); 1291 break; 1292 } 1293 } 1294 } 1295 if (catchproj != NULL && catchproj->outcnt() > 0 && 1296 (catchproj->outcnt() > 1 || 1297 catchproj->unique_out()->Opcode() != Op_Halt)) { 1298 assert(catchproj->is_CatchProj(), "must be a CatchProjNode"); 1299 Node* nproj = catchproj->clone(); 1300 igvn->register_new_node_with_optimizer(nproj); 1301 1302 Node *frame = new ParmNode( phase->C->start(), TypeFunc::FramePtr ); 1303 frame = phase->transform(frame); 1304 // Halt & Catch Fire 1305 Node *halt = new HaltNode( nproj, frame ); 1306 phase->C->root()->add_req(halt); 1307 phase->transform(halt); 1308 1309 igvn->replace_node(catchproj, phase->C->top()); 1310 return this; 1311 } 1312 } else { 1313 // Can't correct it during regular GVN so register for IGVN 1314 phase->C->record_for_igvn(this); 1315 } 1316 } 1317 return NULL; 1318 } 1319 1320 // Retrieve the length from the AllocateArrayNode. Narrow the type with a 1321 // CastII, if appropriate. If we are not allowed to create new nodes, and 1322 // a CastII is appropriate, return NULL. 1323 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) { 1324 Node *length = in(AllocateNode::ALength); 1325 assert(length != NULL, "length is not null"); 1326 1327 const TypeInt* length_type = phase->find_int_type(length); 1328 const TypeAryPtr* ary_type = oop_type->isa_aryptr(); 1329 1330 if (ary_type != NULL && length_type != NULL) { 1331 const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type); 1332 if (narrow_length_type != length_type) { 1333 // Assert one of: 1334 // - the narrow_length is 0 1335 // - the narrow_length is not wider than length 1336 assert(narrow_length_type == TypeInt::ZERO || 1337 length_type->is_con() && narrow_length_type->is_con() && 1338 (narrow_length_type->_hi <= length_type->_lo) || 1339 (narrow_length_type->_hi <= length_type->_hi && 1340 narrow_length_type->_lo >= length_type->_lo), 1341 "narrow type must be narrower than length type"); 1342 1343 // Return NULL if new nodes are not allowed 1344 if (!allow_new_nodes) return NULL; 1345 // Create a cast which is control dependent on the initialization to 1346 // propagate the fact that the array length must be positive. 1347 length = new CastIINode(length, narrow_length_type); 1348 length->set_req(0, initialization()->proj_out(0)); 1349 } 1350 } 1351 1352 return length; 1353 } 1354 1355 //============================================================================= 1356 uint LockNode::size_of() const { return sizeof(*this); } 1357 1358 // Redundant lock elimination 1359 // 1360 // There are various patterns of locking where we release and 1361 // immediately reacquire a lock in a piece of code where no operations 1362 // occur in between that would be observable. In those cases we can 1363 // skip releasing and reacquiring the lock without violating any 1364 // fairness requirements. Doing this around a loop could cause a lock 1365 // to be held for a very long time so we concentrate on non-looping 1366 // control flow. We also require that the operations are fully 1367 // redundant meaning that we don't introduce new lock operations on 1368 // some paths so to be able to eliminate it on others ala PRE. This 1369 // would probably require some more extensive graph manipulation to 1370 // guarantee that the memory edges were all handled correctly. 1371 // 1372 // Assuming p is a simple predicate which can't trap in any way and s 1373 // is a synchronized method consider this code: 1374 // 1375 // s(); 1376 // if (p) 1377 // s(); 1378 // else 1379 // s(); 1380 // s(); 1381 // 1382 // 1. The unlocks of the first call to s can be eliminated if the 1383 // locks inside the then and else branches are eliminated. 1384 // 1385 // 2. The unlocks of the then and else branches can be eliminated if 1386 // the lock of the final call to s is eliminated. 1387 // 1388 // Either of these cases subsumes the simple case of sequential control flow 1389 // 1390 // Addtionally we can eliminate versions without the else case: 1391 // 1392 // s(); 1393 // if (p) 1394 // s(); 1395 // s(); 1396 // 1397 // 3. In this case we eliminate the unlock of the first s, the lock 1398 // and unlock in the then case and the lock in the final s. 1399 // 1400 // Note also that in all these cases the then/else pieces don't have 1401 // to be trivial as long as they begin and end with synchronization 1402 // operations. 1403 // 1404 // s(); 1405 // if (p) 1406 // s(); 1407 // f(); 1408 // s(); 1409 // s(); 1410 // 1411 // The code will work properly for this case, leaving in the unlock 1412 // before the call to f and the relock after it. 1413 // 1414 // A potentially interesting case which isn't handled here is when the 1415 // locking is partially redundant. 1416 // 1417 // s(); 1418 // if (p) 1419 // s(); 1420 // 1421 // This could be eliminated putting unlocking on the else case and 1422 // eliminating the first unlock and the lock in the then side. 1423 // Alternatively the unlock could be moved out of the then side so it 1424 // was after the merge and the first unlock and second lock 1425 // eliminated. This might require less manipulation of the memory 1426 // state to get correct. 1427 // 1428 // Additionally we might allow work between a unlock and lock before 1429 // giving up eliminating the locks. The current code disallows any 1430 // conditional control flow between these operations. A formulation 1431 // similar to partial redundancy elimination computing the 1432 // availability of unlocking and the anticipatability of locking at a 1433 // program point would allow detection of fully redundant locking with 1434 // some amount of work in between. I'm not sure how often I really 1435 // think that would occur though. Most of the cases I've seen 1436 // indicate it's likely non-trivial work would occur in between. 1437 // There may be other more complicated constructs where we could 1438 // eliminate locking but I haven't seen any others appear as hot or 1439 // interesting. 1440 // 1441 // Locking and unlocking have a canonical form in ideal that looks 1442 // roughly like this: 1443 // 1444 // <obj> 1445 // | \\------+ 1446 // | \ \ 1447 // | BoxLock \ 1448 // | | | \ 1449 // | | \ \ 1450 // | | FastLock 1451 // | | / 1452 // | | / 1453 // | | | 1454 // 1455 // Lock 1456 // | 1457 // Proj #0 1458 // | 1459 // MembarAcquire 1460 // | 1461 // Proj #0 1462 // 1463 // MembarRelease 1464 // | 1465 // Proj #0 1466 // | 1467 // Unlock 1468 // | 1469 // Proj #0 1470 // 1471 // 1472 // This code proceeds by processing Lock nodes during PhaseIterGVN 1473 // and searching back through its control for the proper code 1474 // patterns. Once it finds a set of lock and unlock operations to 1475 // eliminate they are marked as eliminatable which causes the 1476 // expansion of the Lock and Unlock macro nodes to make the operation a NOP 1477 // 1478 //============================================================================= 1479 1480 // 1481 // Utility function to skip over uninteresting control nodes. Nodes skipped are: 1482 // - copy regions. (These may not have been optimized away yet.) 1483 // - eliminated locking nodes 1484 // 1485 static Node *next_control(Node *ctrl) { 1486 if (ctrl == NULL) 1487 return NULL; 1488 while (1) { 1489 if (ctrl->is_Region()) { 1490 RegionNode *r = ctrl->as_Region(); 1491 Node *n = r->is_copy(); 1492 if (n == NULL) 1493 break; // hit a region, return it 1494 else 1495 ctrl = n; 1496 } else if (ctrl->is_Proj()) { 1497 Node *in0 = ctrl->in(0); 1498 if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) { 1499 ctrl = in0->in(0); 1500 } else { 1501 break; 1502 } 1503 } else { 1504 break; // found an interesting control 1505 } 1506 } 1507 return ctrl; 1508 } 1509 // 1510 // Given a control, see if it's the control projection of an Unlock which 1511 // operating on the same object as lock. 1512 // 1513 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock, 1514 GrowableArray<AbstractLockNode*> &lock_ops) { 1515 ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL; 1516 if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) { 1517 Node *n = ctrl_proj->in(0); 1518 if (n != NULL && n->is_Unlock()) { 1519 UnlockNode *unlock = n->as_Unlock(); 1520 if (lock->obj_node()->eqv_uncast(unlock->obj_node()) && 1521 BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) && 1522 !unlock->is_eliminated()) { 1523 lock_ops.append(unlock); 1524 return true; 1525 } 1526 } 1527 } 1528 return false; 1529 } 1530 1531 // 1532 // Find the lock matching an unlock. Returns null if a safepoint 1533 // or complicated control is encountered first. 1534 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) { 1535 LockNode *lock_result = NULL; 1536 // find the matching lock, or an intervening safepoint 1537 Node *ctrl = next_control(unlock->in(0)); 1538 while (1) { 1539 assert(ctrl != NULL, "invalid control graph"); 1540 assert(!ctrl->is_Start(), "missing lock for unlock"); 1541 if (ctrl->is_top()) break; // dead control path 1542 if (ctrl->is_Proj()) ctrl = ctrl->in(0); 1543 if (ctrl->is_SafePoint()) { 1544 break; // found a safepoint (may be the lock we are searching for) 1545 } else if (ctrl->is_Region()) { 1546 // Check for a simple diamond pattern. Punt on anything more complicated 1547 if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) { 1548 Node *in1 = next_control(ctrl->in(1)); 1549 Node *in2 = next_control(ctrl->in(2)); 1550 if (((in1->is_IfTrue() && in2->is_IfFalse()) || 1551 (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) { 1552 ctrl = next_control(in1->in(0)->in(0)); 1553 } else { 1554 break; 1555 } 1556 } else { 1557 break; 1558 } 1559 } else { 1560 ctrl = next_control(ctrl->in(0)); // keep searching 1561 } 1562 } 1563 if (ctrl->is_Lock()) { 1564 LockNode *lock = ctrl->as_Lock(); 1565 if (lock->obj_node()->eqv_uncast(unlock->obj_node()) && 1566 BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) { 1567 lock_result = lock; 1568 } 1569 } 1570 return lock_result; 1571 } 1572 1573 // This code corresponds to case 3 above. 1574 1575 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock, 1576 GrowableArray<AbstractLockNode*> &lock_ops) { 1577 Node* if_node = node->in(0); 1578 bool if_true = node->is_IfTrue(); 1579 1580 if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) { 1581 Node *lock_ctrl = next_control(if_node->in(0)); 1582 if (find_matching_unlock(lock_ctrl, lock, lock_ops)) { 1583 Node* lock1_node = NULL; 1584 ProjNode* proj = if_node->as_If()->proj_out(!if_true); 1585 if (if_true) { 1586 if (proj->is_IfFalse() && proj->outcnt() == 1) { 1587 lock1_node = proj->unique_out(); 1588 } 1589 } else { 1590 if (proj->is_IfTrue() && proj->outcnt() == 1) { 1591 lock1_node = proj->unique_out(); 1592 } 1593 } 1594 if (lock1_node != NULL && lock1_node->is_Lock()) { 1595 LockNode *lock1 = lock1_node->as_Lock(); 1596 if (lock->obj_node()->eqv_uncast(lock1->obj_node()) && 1597 BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) && 1598 !lock1->is_eliminated()) { 1599 lock_ops.append(lock1); 1600 return true; 1601 } 1602 } 1603 } 1604 } 1605 1606 lock_ops.trunc_to(0); 1607 return false; 1608 } 1609 1610 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock, 1611 GrowableArray<AbstractLockNode*> &lock_ops) { 1612 // check each control merging at this point for a matching unlock. 1613 // in(0) should be self edge so skip it. 1614 for (int i = 1; i < (int)region->req(); i++) { 1615 Node *in_node = next_control(region->in(i)); 1616 if (in_node != NULL) { 1617 if (find_matching_unlock(in_node, lock, lock_ops)) { 1618 // found a match so keep on checking. 1619 continue; 1620 } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) { 1621 continue; 1622 } 1623 1624 // If we fall through to here then it was some kind of node we 1625 // don't understand or there wasn't a matching unlock, so give 1626 // up trying to merge locks. 1627 lock_ops.trunc_to(0); 1628 return false; 1629 } 1630 } 1631 return true; 1632 1633 } 1634 1635 #ifndef PRODUCT 1636 // 1637 // Create a counter which counts the number of times this lock is acquired 1638 // 1639 void AbstractLockNode::create_lock_counter(JVMState* state) { 1640 _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter); 1641 } 1642 1643 void AbstractLockNode::set_eliminated_lock_counter() { 1644 if (_counter) { 1645 // Update the counter to indicate that this lock was eliminated. 1646 // The counter update code will stay around even though the 1647 // optimizer will eliminate the lock operation itself. 1648 _counter->set_tag(NamedCounter::EliminatedLockCounter); 1649 } 1650 } 1651 #endif 1652 1653 //============================================================================= 1654 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1655 1656 // perform any generic optimizations first (returns 'this' or NULL) 1657 Node *result = SafePointNode::Ideal(phase, can_reshape); 1658 if (result != NULL) return result; 1659 // Don't bother trying to transform a dead node 1660 if (in(0) && in(0)->is_top()) return NULL; 1661 1662 // Now see if we can optimize away this lock. We don't actually 1663 // remove the locking here, we simply set the _eliminate flag which 1664 // prevents macro expansion from expanding the lock. Since we don't 1665 // modify the graph, the value returned from this function is the 1666 // one computed above. 1667 if (can_reshape && EliminateLocks && !is_non_esc_obj()) { 1668 // 1669 // If we are locking an unescaped object, the lock/unlock is unnecessary 1670 // 1671 ConnectionGraph *cgr = phase->C->congraph(); 1672 if (cgr != NULL && cgr->not_global_escape(obj_node())) { 1673 assert(!is_eliminated() || is_coarsened(), "sanity"); 1674 // The lock could be marked eliminated by lock coarsening 1675 // code during first IGVN before EA. Replace coarsened flag 1676 // to eliminate all associated locks/unlocks. 1677 #ifdef ASSERT 1678 this->log_lock_optimization(phase,"eliminate_lock_set_non_esc1"); 1679 #endif 1680 this->set_non_esc_obj(); 1681 return result; 1682 } 1683 1684 // 1685 // Try lock coarsening 1686 // 1687 PhaseIterGVN* iter = phase->is_IterGVN(); 1688 if (iter != NULL && !is_eliminated()) { 1689 1690 GrowableArray<AbstractLockNode*> lock_ops; 1691 1692 Node *ctrl = next_control(in(0)); 1693 1694 // now search back for a matching Unlock 1695 if (find_matching_unlock(ctrl, this, lock_ops)) { 1696 // found an unlock directly preceding this lock. This is the 1697 // case of single unlock directly control dependent on a 1698 // single lock which is the trivial version of case 1 or 2. 1699 } else if (ctrl->is_Region() ) { 1700 if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) { 1701 // found lock preceded by multiple unlocks along all paths 1702 // joining at this point which is case 3 in description above. 1703 } 1704 } else { 1705 // see if this lock comes from either half of an if and the 1706 // predecessors merges unlocks and the other half of the if 1707 // performs a lock. 1708 if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) { 1709 // found unlock splitting to an if with locks on both branches. 1710 } 1711 } 1712 1713 if (lock_ops.length() > 0) { 1714 // add ourselves to the list of locks to be eliminated. 1715 lock_ops.append(this); 1716 1717 #ifndef PRODUCT 1718 if (PrintEliminateLocks) { 1719 int locks = 0; 1720 int unlocks = 0; 1721 for (int i = 0; i < lock_ops.length(); i++) { 1722 AbstractLockNode* lock = lock_ops.at(i); 1723 if (lock->Opcode() == Op_Lock) 1724 locks++; 1725 else 1726 unlocks++; 1727 if (Verbose) { 1728 lock->dump(1); 1729 } 1730 } 1731 tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks); 1732 } 1733 #endif 1734 1735 // for each of the identified locks, mark them 1736 // as eliminatable 1737 for (int i = 0; i < lock_ops.length(); i++) { 1738 AbstractLockNode* lock = lock_ops.at(i); 1739 1740 // Mark it eliminated by coarsening and update any counters 1741 #ifdef ASSERT 1742 lock->log_lock_optimization(phase, "eliminate_lock_set_coarsened"); 1743 #endif 1744 lock->set_coarsened(); 1745 } 1746 } else if (ctrl->is_Region() && 1747 iter->_worklist.member(ctrl)) { 1748 // We weren't able to find any opportunities but the region this 1749 // lock is control dependent on hasn't been processed yet so put 1750 // this lock back on the worklist so we can check again once any 1751 // region simplification has occurred. 1752 iter->_worklist.push(this); 1753 } 1754 } 1755 } 1756 1757 return result; 1758 } 1759 1760 //============================================================================= 1761 bool LockNode::is_nested_lock_region() { 1762 return is_nested_lock_region(NULL); 1763 } 1764 1765 // p is used for access to compilation log; no logging if NULL 1766 bool LockNode::is_nested_lock_region(Phase * p) { 1767 BoxLockNode* box = box_node()->as_BoxLock(); 1768 int stk_slot = box->stack_slot(); 1769 if (stk_slot <= 0) { 1770 #ifdef ASSERT 1771 this->log_lock_optimization(p, "eliminate_lock_INLR_1"); 1772 #endif 1773 return false; // External lock or it is not Box (Phi node). 1774 } 1775 1776 // Ignore complex cases: merged locks or multiple locks. 1777 Node* obj = obj_node(); 1778 LockNode* unique_lock = NULL; 1779 if (!box->is_simple_lock_region(&unique_lock, obj)) { 1780 #ifdef ASSERT 1781 this->log_lock_optimization(p, "eliminate_lock_INLR_2a"); 1782 #endif 1783 return false; 1784 } 1785 if (unique_lock != this) { 1786 #ifdef ASSERT 1787 this->log_lock_optimization(p, "eliminate_lock_INLR_2b"); 1788 #endif 1789 return false; 1790 } 1791 1792 // Look for external lock for the same object. 1793 SafePointNode* sfn = this->as_SafePoint(); 1794 JVMState* youngest_jvms = sfn->jvms(); 1795 int max_depth = youngest_jvms->depth(); 1796 for (int depth = 1; depth <= max_depth; depth++) { 1797 JVMState* jvms = youngest_jvms->of_depth(depth); 1798 int num_mon = jvms->nof_monitors(); 1799 // Loop over monitors 1800 for (int idx = 0; idx < num_mon; idx++) { 1801 Node* obj_node = sfn->monitor_obj(jvms, idx); 1802 BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock(); 1803 if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) { 1804 return true; 1805 } 1806 } 1807 } 1808 #ifdef ASSERT 1809 this->log_lock_optimization(p, "eliminate_lock_INLR_3"); 1810 #endif 1811 return false; 1812 } 1813 1814 //============================================================================= 1815 uint UnlockNode::size_of() const { return sizeof(*this); } 1816 1817 //============================================================================= 1818 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1819 1820 // perform any generic optimizations first (returns 'this' or NULL) 1821 Node *result = SafePointNode::Ideal(phase, can_reshape); 1822 if (result != NULL) return result; 1823 // Don't bother trying to transform a dead node 1824 if (in(0) && in(0)->is_top()) return NULL; 1825 1826 // Now see if we can optimize away this unlock. We don't actually 1827 // remove the unlocking here, we simply set the _eliminate flag which 1828 // prevents macro expansion from expanding the unlock. Since we don't 1829 // modify the graph, the value returned from this function is the 1830 // one computed above. 1831 // Escape state is defined after Parse phase. 1832 if (can_reshape && EliminateLocks && !is_non_esc_obj()) { 1833 // 1834 // If we are unlocking an unescaped object, the lock/unlock is unnecessary. 1835 // 1836 ConnectionGraph *cgr = phase->C->congraph(); 1837 if (cgr != NULL && cgr->not_global_escape(obj_node())) { 1838 assert(!is_eliminated() || is_coarsened(), "sanity"); 1839 // The lock could be marked eliminated by lock coarsening 1840 // code during first IGVN before EA. Replace coarsened flag 1841 // to eliminate all associated locks/unlocks. 1842 #ifdef ASSERT 1843 this->log_lock_optimization(phase, "eliminate_lock_set_non_esc2"); 1844 #endif 1845 this->set_non_esc_obj(); 1846 } 1847 } 1848 return result; 1849 } 1850 1851 const char * AbstractLockNode::kind_as_string() const { 1852 return is_coarsened() ? "coarsened" : 1853 is_nested() ? "nested" : 1854 is_non_esc_obj() ? "non_escaping" : 1855 "?"; 1856 } 1857 1858 void AbstractLockNode::log_lock_optimization(Phase *phase, const char * tag) const { 1859 if (phase == NULL) { 1860 return; 1861 } 1862 Compile * C = phase->C; 1863 CompileLog* log = C->log(); 1864 if (log != NULL) { 1865 log->begin_head("%s lock='%d' compile_id='%d' class_id='%s' kind='%s'", 1866 tag, is_Lock(), C->compile_id(), 1867 is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?", 1868 kind_as_string()); 1869 log->stamp(); 1870 log->end_head(); 1871 JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms(); 1872 while (p != NULL) { 1873 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 1874 p = p->caller(); 1875 } 1876 log->tail(tag); 1877 } 1878 } 1879 1880 ArrayCopyNode::ArrayCopyNode(Compile* C, bool alloc_tightly_coupled) 1881 : CallNode(arraycopy_type(), NULL, TypeRawPtr::BOTTOM), 1882 _alloc_tightly_coupled(alloc_tightly_coupled), 1883 _kind(None), 1884 _arguments_validated(false) { 1885 init_class_id(Class_ArrayCopy); 1886 init_flags(Flag_is_macro); 1887 C->add_macro_node(this); 1888 } 1889 1890 uint ArrayCopyNode::size_of() const { return sizeof(*this); } 1891 1892 ArrayCopyNode* ArrayCopyNode::make(GraphKit* kit, bool may_throw, 1893 Node* src, Node* src_offset, 1894 Node* dest, Node* dest_offset, 1895 Node* length, 1896 bool alloc_tightly_coupled, 1897 Node* src_klass, Node* dest_klass, 1898 Node* src_length, Node* dest_length) { 1899 1900 ArrayCopyNode* ac = new ArrayCopyNode(kit->C, alloc_tightly_coupled); 1901 Node* prev_mem = kit->set_predefined_input_for_runtime_call(ac); 1902 1903 ac->init_req(ArrayCopyNode::Src, src); 1904 ac->init_req(ArrayCopyNode::SrcPos, src_offset); 1905 ac->init_req(ArrayCopyNode::Dest, dest); 1906 ac->init_req(ArrayCopyNode::DestPos, dest_offset); 1907 ac->init_req(ArrayCopyNode::Length, length); 1908 ac->init_req(ArrayCopyNode::SrcLen, src_length); 1909 ac->init_req(ArrayCopyNode::DestLen, dest_length); 1910 ac->init_req(ArrayCopyNode::SrcKlass, src_klass); 1911 ac->init_req(ArrayCopyNode::DestKlass, dest_klass); 1912 1913 if (may_throw) { 1914 ac->set_req(TypeFunc::I_O , kit->i_o()); 1915 kit->add_safepoint_edges(ac, false); 1916 } 1917 1918 return ac; 1919 } 1920 1921 void ArrayCopyNode::connect_outputs(GraphKit* kit) { 1922 kit->set_all_memory_call(this, true); 1923 kit->set_control(kit->gvn().transform(new ProjNode(this,TypeFunc::Control))); 1924 kit->set_i_o(kit->gvn().transform(new ProjNode(this, TypeFunc::I_O))); 1925 kit->make_slow_call_ex(this, kit->env()->Throwable_klass(), true); 1926 kit->set_all_memory_call(this); 1927 } 1928 1929 #ifndef PRODUCT 1930 const char* ArrayCopyNode::_kind_names[] = {"arraycopy", "arraycopy, validated arguments", "clone", "oop array clone", "CopyOf", "CopyOfRange"}; 1931 void ArrayCopyNode::dump_spec(outputStream *st) const { 1932 CallNode::dump_spec(st); 1933 st->print(" (%s%s)", _kind_names[_kind], _alloc_tightly_coupled ? ", tightly coupled allocation" : ""); 1934 } 1935 #endif 1936 1937 int ArrayCopyNode::get_count(PhaseGVN *phase) const { 1938 Node* src = in(ArrayCopyNode::Src); 1939 const Type* src_type = phase->type(src); 1940 1941 assert(is_clonebasic(), "unexpected arraycopy type"); 1942 if (src_type->isa_instptr()) { 1943 const TypeInstPtr* inst_src = src_type->is_instptr(); 1944 ciInstanceKlass* ik = inst_src->klass()->as_instance_klass(); 1945 // ciInstanceKlass::nof_nonstatic_fields() doesn't take injected 1946 // fields into account. They are rare anyway so easier to simply 1947 // skip instances with injected fields. 1948 if ((!inst_src->klass_is_exact() && (ik->is_interface() || ik->has_subklass())) || ik->has_injected_fields()) { 1949 return -1; 1950 } 1951 int nb_fields = ik->nof_nonstatic_fields(); 1952 return nb_fields; 1953 } 1954 return -1; 1955 } 1956 1957 Node* ArrayCopyNode::try_clone_instance(PhaseGVN *phase, bool can_reshape, int count) { 1958 assert(is_clonebasic(), "unexpected arraycopy type"); 1959 1960 Node* src = in(ArrayCopyNode::Src); 1961 Node* dest = in(ArrayCopyNode::Dest); 1962 Node* ctl = in(TypeFunc::Control); 1963 Node* in_mem = in(TypeFunc::Memory); 1964 1965 const Type* src_type = phase->type(src); 1966 const Type* dest_type = phase->type(dest); 1967 1968 assert(src->is_AddP(), "should be base + off"); 1969 assert(dest->is_AddP(), "should be base + off"); 1970 Node* base_src = src->in(AddPNode::Base); 1971 Node* base_dest = dest->in(AddPNode::Base); 1972 1973 MergeMemNode* mem = MergeMemNode::make(in_mem); 1974 1975 const TypeInstPtr* inst_src = src_type->is_instptr(); 1976 1977 if (!inst_src->klass_is_exact()) { 1978 ciInstanceKlass* ik = inst_src->klass()->as_instance_klass(); 1979 assert(!ik->is_interface() && !ik->has_subklass(), "inconsistent klass hierarchy"); 1980 phase->C->dependencies()->assert_leaf_type(ik); 1981 } 1982 1983 ciInstanceKlass* ik = inst_src->klass()->as_instance_klass(); 1984 assert(ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem, "too many fields"); 1985 1986 for (int i = 0; i < count; i++) { 1987 ciField* field = ik->nonstatic_field_at(i); 1988 int fieldidx = phase->C->alias_type(field)->index(); 1989 const TypePtr* adr_type = phase->C->alias_type(field)->adr_type(); 1990 Node* off = phase->MakeConX(field->offset()); 1991 Node* next_src = phase->transform(new AddPNode(base_src,base_src,off)); 1992 Node* next_dest = phase->transform(new AddPNode(base_dest,base_dest,off)); 1993 BasicType bt = field->layout_type(); 1994 1995 const Type *type; 1996 if (bt == T_OBJECT) { 1997 if (!field->type()->is_loaded()) { 1998 type = TypeInstPtr::BOTTOM; 1999 } else { 2000 ciType* field_klass = field->type(); 2001 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 2002 } 2003 } else { 2004 type = Type::get_const_basic_type(bt); 2005 } 2006 2007 Node* v = LoadNode::make(*phase, ctl, mem->memory_at(fieldidx), next_src, adr_type, type, bt, MemNode::unordered); 2008 v = phase->transform(v); 2009 Node* s = StoreNode::make(*phase, ctl, mem->memory_at(fieldidx), next_dest, adr_type, v, bt, MemNode::unordered); 2010 s = phase->transform(s); 2011 mem->set_memory_at(fieldidx, s); 2012 } 2013 2014 if (!finish_transform(phase, can_reshape, ctl, mem)) { 2015 return NULL; 2016 } 2017 2018 return mem; 2019 } 2020 2021 bool ArrayCopyNode::finish_transform(PhaseGVN *phase, bool can_reshape, 2022 Node* ctl, Node *mem) { 2023 if (can_reshape) { 2024 PhaseIterGVN* igvn = phase->is_IterGVN(); 2025 assert(is_clonebasic(), "unexpected arraycopy type"); 2026 Node* out_mem = proj_out(TypeFunc::Memory); 2027 2028 if (out_mem->outcnt() != 1 || !out_mem->raw_out(0)->is_MergeMem() || 2029 out_mem->raw_out(0)->outcnt() != 1 || !out_mem->raw_out(0)->raw_out(0)->is_MemBar()) { 2030 assert(!GraphKit::use_ReduceInitialCardMarks(), "can only happen with card marking"); 2031 return false; 2032 } 2033 2034 igvn->replace_node(out_mem->raw_out(0), mem); 2035 2036 Node* out_ctl = proj_out(TypeFunc::Control); 2037 igvn->replace_node(out_ctl, ctl); 2038 } 2039 return true; 2040 } 2041 2042 2043 Node *ArrayCopyNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2044 if (remove_dead_region(phase, can_reshape)) return this; 2045 2046 if (StressArrayCopyMacroNode && !can_reshape) return NULL; 2047 2048 // See if it's a small array copy and we can inline it as 2049 // loads/stores 2050 // Here we can only do: 2051 // - clone for which we don't need to do card marking 2052 2053 if (!is_clonebasic()) { 2054 return NULL; 2055 } 2056 2057 if (in(TypeFunc::Control)->is_top() || in(TypeFunc::Memory)->is_top()) { 2058 return NULL; 2059 } 2060 2061 int count = get_count(phase); 2062 2063 if (count < 0 || count > ArrayCopyLoadStoreMaxElem) { 2064 return NULL; 2065 } 2066 2067 Node* mem = try_clone_instance(phase, can_reshape, count); 2068 return mem; 2069 }