1 /* 2 * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_VM_OOPS_CPCACHEOOP_HPP 26 #define SHARE_VM_OOPS_CPCACHEOOP_HPP 27 28 #include "interpreter/bytecodes.hpp" 29 #include "memory/allocation.hpp" 30 #include "runtime/orderAccess.hpp" 31 #include "utilities/array.hpp" 32 33 class PSPromotionManager; 34 35 // The ConstantPoolCache is not a cache! It is the resolution table that the 36 // interpreter uses to avoid going into the runtime and a way to access resolved 37 // values. 38 39 // A ConstantPoolCacheEntry describes an individual entry of the constant 40 // pool cache. There's 2 principal kinds of entries: field entries for in- 41 // stance & static field access, and method entries for invokes. Some of 42 // the entry layout is shared and looks as follows: 43 // 44 // bit number |31 0| 45 // bit length |-8--|-8--|---16----| 46 // -------------------------------- 47 // _indices [ b2 | b1 | index ] index = constant_pool_index 48 // _f1 [ entry specific ] metadata ptr (method or klass) 49 // _f2 [ entry specific ] vtable or res_ref index, or vfinal method ptr 50 // _flags [tos|0|F=1|0|0|0|f|v|0 |0000|field_index] (for field entries) 51 // bit length [ 4 |1| 1 |1|1|1|1|1|1 |-4--|----16-----] 52 // _flags [tos|0|F=0|M|A|I|f|0|vf|0000|00000|psize] (for method entries) 53 // bit length [ 4 |1| 1 |1|1|1|1|1|1 |-4--|--8--|--8--] 54 55 // -------------------------------- 56 // 57 // with: 58 // index = original constant pool index 59 // b1 = bytecode 1 60 // b2 = bytecode 2 61 // psize = parameters size (method entries only) 62 // field_index = index into field information in holder InstanceKlass 63 // The index max is 0xffff (max number of fields in constant pool) 64 // and is multiplied by (InstanceKlass::next_offset) when accessing. 65 // tos = TosState 66 // F = the entry is for a field (or F=0 for a method) 67 // A = call site has an appendix argument (loaded from resolved references) 68 // I = interface call is forced virtual (must use a vtable index or vfinal) 69 // f = field or method is final 70 // v = field is volatile 71 // vf = virtual but final (method entries only: is_vfinal()) 72 // 73 // The flags after TosState have the following interpretation: 74 // bit 27: 0 for fields, 1 for methods 75 // f flag true if field is marked final 76 // v flag true if field is volatile (only for fields) 77 // f2 flag true if f2 contains an oop (e.g., virtual final method) 78 // fv flag true if invokeinterface used for method in class Object 79 // 80 // The flags 31, 30, 29, 28 together build a 4 bit number 0 to 8 with the 81 // following mapping to the TosState states: 82 // 83 // btos: 0 84 // ctos: 1 85 // stos: 2 86 // itos: 3 87 // ltos: 4 88 // ftos: 5 89 // dtos: 6 90 // atos: 7 91 // vtos: 8 92 // 93 // Entry specific: field entries: 94 // _indices = get (b1 section) and put (b2 section) bytecodes, original constant pool index 95 // _f1 = field holder (as a java.lang.Class, not a Klass*) 96 // _f2 = field offset in bytes 97 // _flags = field type information, original FieldInfo index in field holder 98 // (field_index section) 99 // 100 // Entry specific: method entries: 101 // _indices = invoke code for f1 (b1 section), invoke code for f2 (b2 section), 102 // original constant pool index 103 // _f1 = Method* for non-virtual calls, unused by virtual calls. 104 // for interface calls, which are essentially virtual but need a klass, 105 // contains Klass* for the corresponding interface. 106 // for invokedynamic and invokehandle, f1 contains the adapter method which 107 // manages the actual call. The appendix is stored in the ConstantPool 108 // resolved_references array. 109 // (upcoming metadata changes will move the appendix to a separate array) 110 // _f2 = vtable/itable index (or final Method*) for virtual calls only, 111 // unused by non-virtual. The is_vfinal flag indicates this is a 112 // method pointer for a final method, not an index. 113 // _flags = method type info (t section), 114 // virtual final bit (vfinal), 115 // parameter size (psize section) 116 // 117 // Note: invokevirtual & invokespecial bytecodes can share the same constant 118 // pool entry and thus the same constant pool cache entry. All invoke 119 // bytecodes but invokevirtual use only _f1 and the corresponding b1 120 // bytecode, while invokevirtual uses only _f2 and the corresponding 121 // b2 bytecode. The value of _flags is shared for both types of entries. 122 // 123 // The fields are volatile so that they are stored in the order written in the 124 // source code. The _indices field with the bytecode must be written last. 125 126 class CallInfo; 127 128 class ConstantPoolCacheEntry VALUE_OBJ_CLASS_SPEC { 129 friend class VMStructs; 130 friend class constantPoolCacheKlass; 131 friend class ConstantPool; 132 friend class InterpreterRuntime; 133 134 private: 135 volatile intx _indices; // constant pool index & rewrite bytecodes 136 volatile Metadata* _f1; // entry specific metadata field 137 volatile intx _f2; // entry specific int/metadata field 138 volatile intx _flags; // flags 139 140 141 void set_bytecode_1(Bytecodes::Code code); 142 void set_bytecode_2(Bytecodes::Code code); 143 void set_f1(Metadata* f1) { 144 Metadata* existing_f1 = (Metadata*)_f1; // read once 145 assert(existing_f1 == NULL || existing_f1 == f1, "illegal field change"); 146 _f1 = f1; 147 } 148 void release_set_f1(Metadata* f1); 149 void set_f2(intx f2) { 150 intx existing_f2 = _f2; // read once 151 assert(existing_f2 == 0 || existing_f2 == f2, "illegal field change"); 152 _f2 = f2; 153 } 154 void set_f2_as_vfinal_method(Method* f2) { 155 assert(is_vfinal(), "flags must be set"); 156 set_f2((intx)f2); 157 } 158 int make_flags(TosState state, int option_bits, int field_index_or_method_params); 159 void set_flags(intx flags) { _flags = flags; } 160 bool init_flags_atomic(intx flags); 161 void set_field_flags(TosState field_type, int option_bits, int field_index) { 162 assert((field_index & field_index_mask) == field_index, "field_index in range"); 163 set_flags(make_flags(field_type, option_bits | (1 << is_field_entry_shift), field_index)); 164 } 165 void set_method_flags(TosState return_type, int option_bits, int method_params) { 166 assert((method_params & parameter_size_mask) == method_params, "method_params in range"); 167 set_flags(make_flags(return_type, option_bits, method_params)); 168 } 169 bool init_method_flags_atomic(TosState return_type, int option_bits, int method_params) { 170 assert((method_params & parameter_size_mask) == method_params, "method_params in range"); 171 return init_flags_atomic(make_flags(return_type, option_bits, method_params)); 172 } 173 174 public: 175 // specific bit definitions for the flags field: 176 // (Note: the interpreter must use these definitions to access the CP cache.) 177 enum { 178 // high order bits are the TosState corresponding to field type or method return type 179 tos_state_bits = 4, 180 tos_state_mask = right_n_bits(tos_state_bits), 181 tos_state_shift = BitsPerInt - tos_state_bits, // see verify_tos_state_shift below 182 // misc. option bits; can be any bit position in [16..27] 183 is_field_entry_shift = 26, // (F) is it a field or a method? 184 has_method_type_shift = 25, // (M) does the call site have a MethodType? 185 has_appendix_shift = 24, // (A) does the call site have an appendix argument? 186 is_forced_virtual_shift = 23, // (I) is the interface reference forced to virtual mode? 187 is_final_shift = 22, // (f) is the field or method final? 188 is_volatile_shift = 21, // (v) is the field volatile? 189 is_vfinal_shift = 20, // (vf) did the call resolve to a final method? 190 // low order bits give field index (for FieldInfo) or method parameter size: 191 field_index_bits = 16, 192 field_index_mask = right_n_bits(field_index_bits), 193 parameter_size_bits = 8, // subset of field_index_mask, range is 0..255 194 parameter_size_mask = right_n_bits(parameter_size_bits), 195 option_bits_mask = ~(((-1) << tos_state_shift) | (field_index_mask | parameter_size_mask)) 196 }; 197 198 // specific bit definitions for the indices field: 199 enum { 200 cp_index_bits = 2*BitsPerByte, 201 cp_index_mask = right_n_bits(cp_index_bits), 202 bytecode_1_shift = cp_index_bits, 203 bytecode_1_mask = right_n_bits(BitsPerByte), // == (u1)0xFF 204 bytecode_2_shift = cp_index_bits + BitsPerByte, 205 bytecode_2_mask = right_n_bits(BitsPerByte) // == (u1)0xFF 206 }; 207 208 209 // Initialization 210 void initialize_entry(int original_index); // initialize primary entry 211 void initialize_resolved_reference_index(int ref_index) { 212 assert(_f2 == 0, "set once"); // note: ref_index might be zero also 213 _f2 = ref_index; 214 } 215 216 void set_field( // sets entry to resolved field state 217 Bytecodes::Code get_code, // the bytecode used for reading the field 218 Bytecodes::Code put_code, // the bytecode used for writing the field 219 KlassHandle field_holder, // the object/klass holding the field 220 int orig_field_index, // the original field index in the field holder 221 int field_offset, // the field offset in words in the field holder 222 TosState field_type, // the (machine) field type 223 bool is_final, // the field is final 224 bool is_volatile, // the field is volatile 225 Klass* root_klass // needed by the GC to dirty the klass 226 ); 227 228 private: 229 void set_direct_or_vtable_call( 230 Bytecodes::Code invoke_code, // the bytecode used for invoking the method 231 methodHandle method, // the method/prototype if any (NULL, otherwise) 232 int vtable_index // the vtable index if any, else negative 233 ); 234 235 public: 236 void set_direct_call( // sets entry to exact concrete method entry 237 Bytecodes::Code invoke_code, // the bytecode used for invoking the method 238 methodHandle method // the method to call 239 ); 240 241 void set_vtable_call( // sets entry to vtable index 242 Bytecodes::Code invoke_code, // the bytecode used for invoking the method 243 methodHandle method, // resolved method which declares the vtable index 244 int vtable_index // the vtable index 245 ); 246 247 void set_itable_call( 248 Bytecodes::Code invoke_code, // the bytecode used; must be invokeinterface 249 methodHandle method, // the resolved interface method 250 int itable_index // index into itable for the method 251 ); 252 253 void set_method_handle( 254 constantPoolHandle cpool, // holding constant pool (required for locking) 255 const CallInfo &call_info // Call link information 256 ); 257 258 void set_dynamic_call( 259 constantPoolHandle cpool, // holding constant pool (required for locking) 260 const CallInfo &call_info // Call link information 261 ); 262 263 // Common code for invokedynamic and MH invocations. 264 265 // The "appendix" is an optional call-site-specific parameter which is 266 // pushed by the JVM at the end of the argument list. This argument may 267 // be a MethodType for the MH.invokes and a CallSite for an invokedynamic 268 // instruction. However, its exact type and use depends on the Java upcall, 269 // which simply returns a compiled LambdaForm along with any reference 270 // that LambdaForm needs to complete the call. If the upcall returns a 271 // null appendix, the argument is not passed at all. 272 // 273 // The appendix is *not* represented in the signature of the symbolic 274 // reference for the call site, but (if present) it *is* represented in 275 // the Method* bound to the site. This means that static and dynamic 276 // resolution logic needs to make slightly different assessments about the 277 // number and types of arguments. 278 void set_method_handle_common( 279 constantPoolHandle cpool, // holding constant pool (required for locking) 280 Bytecodes::Code invoke_code, // _invokehandle or _invokedynamic 281 const CallInfo &call_info // Call link information 282 ); 283 284 // invokedynamic and invokehandle call sites have two entries in the 285 // resolved references array: 286 // appendix (at index+0) 287 // MethodType (at index+1) 288 enum { 289 _indy_resolved_references_appendix_offset = 0, 290 _indy_resolved_references_method_type_offset = 1, 291 _indy_resolved_references_entries 292 }; 293 294 Method* method_if_resolved(constantPoolHandle cpool); 295 oop appendix_if_resolved(constantPoolHandle cpool); 296 oop method_type_if_resolved(constantPoolHandle cpool); 297 298 void set_parameter_size(int value); 299 300 // Which bytecode number (1 or 2) in the index field is valid for this bytecode? 301 // Returns -1 if neither is valid. 302 static int bytecode_number(Bytecodes::Code code) { 303 switch (code) { 304 case Bytecodes::_getstatic : // fall through 305 case Bytecodes::_getfield : // fall through 306 case Bytecodes::_invokespecial : // fall through 307 case Bytecodes::_invokestatic : // fall through 308 case Bytecodes::_invokehandle : // fall through 309 case Bytecodes::_invokedynamic : // fall through 310 case Bytecodes::_invokeinterface : return 1; 311 case Bytecodes::_putstatic : // fall through 312 case Bytecodes::_putfield : // fall through 313 case Bytecodes::_invokevirtual : return 2; 314 default : break; 315 } 316 return -1; 317 } 318 319 // Has this bytecode been resolved? Only valid for invokes and get/put field/static. 320 bool is_resolved(Bytecodes::Code code) const { 321 switch (bytecode_number(code)) { 322 case 1: return (bytecode_1() == code); 323 case 2: return (bytecode_2() == code); 324 } 325 return false; // default: not resolved 326 } 327 328 // Accessors 329 int indices() const { return _indices; } 330 int indices_ord() const { return (intx)OrderAccess::load_ptr_acquire(&_indices); } 331 int constant_pool_index() const { return (indices() & cp_index_mask); } 332 Bytecodes::Code bytecode_1() const { return Bytecodes::cast((indices_ord() >> bytecode_1_shift) & bytecode_1_mask); } 333 Bytecodes::Code bytecode_2() const { return Bytecodes::cast((indices_ord() >> bytecode_2_shift) & bytecode_2_mask); } 334 Metadata* f1_ord() const { return (Metadata *)OrderAccess::load_ptr_acquire(&_f1); } 335 Method* f1_as_method() const { Metadata* f1 = f1_ord(); assert(f1 == NULL || f1->is_method(), ""); return (Method*)f1; } 336 Klass* f1_as_klass() const { Metadata* f1 = f1_ord(); assert(f1 == NULL || f1->is_klass(), ""); return (Klass*)f1; } 337 // Use the accessor f1() to acquire _f1's value. This is needed for 338 // example in BytecodeInterpreter::run(), where is_f1_null() is 339 // called to check if an invokedynamic call is resolved. This load 340 // of _f1 must be ordered with the loads performed by 341 // cache->main_entry_index(). 342 bool is_f1_null() const { Metadata* f1 = f1_ord(); return f1 == NULL; } // classifies a CPC entry as unbound 343 int f2_as_index() const { assert(!is_vfinal(), ""); return (int) _f2; } 344 Method* f2_as_vfinal_method() const { assert(is_vfinal(), ""); return (Method*)_f2; } 345 int field_index() const { assert(is_field_entry(), ""); return (_flags & field_index_mask); } 346 int parameter_size() const { assert(is_method_entry(), ""); return (_flags & parameter_size_mask); } 347 bool is_volatile() const { return (_flags & (1 << is_volatile_shift)) != 0; } 348 bool is_final() const { return (_flags & (1 << is_final_shift)) != 0; } 349 bool is_forced_virtual() const { return (_flags & (1 << is_forced_virtual_shift)) != 0; } 350 bool is_vfinal() const { return (_flags & (1 << is_vfinal_shift)) != 0; } 351 bool has_appendix() const { return (_flags & (1 << has_appendix_shift)) != 0; } 352 bool has_method_type() const { return (_flags & (1 << has_method_type_shift)) != 0; } 353 bool is_method_entry() const { return (_flags & (1 << is_field_entry_shift)) == 0; } 354 bool is_field_entry() const { return (_flags & (1 << is_field_entry_shift)) != 0; } 355 bool is_byte() const { return flag_state() == btos; } 356 bool is_char() const { return flag_state() == ctos; } 357 bool is_short() const { return flag_state() == stos; } 358 bool is_int() const { return flag_state() == itos; } 359 bool is_long() const { return flag_state() == ltos; } 360 bool is_float() const { return flag_state() == ftos; } 361 bool is_double() const { return flag_state() == dtos; } 362 bool is_object() const { return flag_state() == atos; } 363 TosState flag_state() const { assert((uint)number_of_states <= (uint)tos_state_mask+1, ""); 364 return (TosState)((_flags >> tos_state_shift) & tos_state_mask); } 365 366 // Code generation support 367 static WordSize size() { return in_WordSize(sizeof(ConstantPoolCacheEntry) / HeapWordSize); } 368 static ByteSize size_in_bytes() { return in_ByteSize(sizeof(ConstantPoolCacheEntry)); } 369 static ByteSize indices_offset() { return byte_offset_of(ConstantPoolCacheEntry, _indices); } 370 static ByteSize f1_offset() { return byte_offset_of(ConstantPoolCacheEntry, _f1); } 371 static ByteSize f2_offset() { return byte_offset_of(ConstantPoolCacheEntry, _f2); } 372 static ByteSize flags_offset() { return byte_offset_of(ConstantPoolCacheEntry, _flags); } 373 374 #if INCLUDE_JVMTI 375 // RedefineClasses() API support: 376 // If this ConstantPoolCacheEntry refers to old_method then update it 377 // to refer to new_method. 378 // trace_name_printed is set to true if the current call has 379 // printed the klass name so that other routines in the adjust_* 380 // group don't print the klass name. 381 bool adjust_method_entry(Method* old_method, Method* new_method, 382 bool * trace_name_printed); 383 bool check_no_old_or_obsolete_entries(); 384 bool is_interesting_method_entry(Klass* k); 385 #endif // INCLUDE_JVMTI 386 387 // Debugging & Printing 388 void print (outputStream* st, int index) const; 389 void verify(outputStream* st) const; 390 391 static void verify_tos_state_shift() { 392 // When shifting flags as a 32-bit int, make sure we don't need an extra mask for tos_state: 393 assert((((u4)-1 >> tos_state_shift) & ~tos_state_mask) == 0, "no need for tos_state mask"); 394 } 395 }; 396 397 398 // A constant pool cache is a runtime data structure set aside to a constant pool. The cache 399 // holds interpreter runtime information for all field access and invoke bytecodes. The cache 400 // is created and initialized before a class is actively used (i.e., initialized), the indivi- 401 // dual cache entries are filled at resolution (i.e., "link") time (see also: rewriter.*). 402 403 class ConstantPoolCache: public MetaspaceObj { 404 friend class VMStructs; 405 friend class MetadataFactory; 406 private: 407 int _length; 408 ConstantPool* _constant_pool; // the corresponding constant pool 409 410 // Sizing 411 debug_only(friend class ClassVerifier;) 412 413 // Constructor 414 ConstantPoolCache(int length, 415 const intStack& inverse_index_map, 416 const intStack& invokedynamic_inverse_index_map, 417 const intStack& invokedynamic_references_map) : 418 _length(length), 419 _constant_pool(NULL) { 420 initialize(inverse_index_map, invokedynamic_inverse_index_map, 421 invokedynamic_references_map); 422 for (int i = 0; i < length; i++) { 423 assert(entry_at(i)->is_f1_null(), "Failed to clear?"); 424 } 425 } 426 427 // Initialization 428 void initialize(const intArray& inverse_index_map, 429 const intArray& invokedynamic_inverse_index_map, 430 const intArray& invokedynamic_references_map); 431 public: 432 static ConstantPoolCache* allocate(ClassLoaderData* loader_data, 433 const intStack& cp_cache_map, 434 const intStack& invokedynamic_cp_cache_map, 435 const intStack& invokedynamic_references_map, TRAPS); 436 bool is_constantPoolCache() const { return true; } 437 438 int length() const { return _length; } 439 private: 440 void set_length(int length) { _length = length; } 441 442 static int header_size() { return sizeof(ConstantPoolCache) / HeapWordSize; } 443 static int size(int length) { return align_object_size(header_size() + length * in_words(ConstantPoolCacheEntry::size())); } 444 public: 445 int size() const { return size(length()); } 446 private: 447 448 // Helpers 449 ConstantPool** constant_pool_addr() { return &_constant_pool; } 450 ConstantPoolCacheEntry* base() const { return (ConstantPoolCacheEntry*)((address)this + in_bytes(base_offset())); } 451 452 friend class constantPoolCacheKlass; 453 friend class ConstantPoolCacheEntry; 454 455 public: 456 // Accessors 457 void set_constant_pool(ConstantPool* pool) { _constant_pool = pool; } 458 ConstantPool* constant_pool() const { return _constant_pool; } 459 // Fetches the entry at the given index. 460 // In either case the index must not be encoded or byte-swapped in any way. 461 ConstantPoolCacheEntry* entry_at(int i) const { 462 assert(0 <= i && i < length(), "index out of bounds"); 463 return base() + i; 464 } 465 466 // Code generation 467 static ByteSize base_offset() { return in_ByteSize(sizeof(ConstantPoolCache)); } 468 static ByteSize entry_offset(int raw_index) { 469 int index = raw_index; 470 return (base_offset() + ConstantPoolCacheEntry::size_in_bytes() * index); 471 } 472 473 #if INCLUDE_JVMTI 474 // RedefineClasses() API support: 475 // If any entry of this ConstantPoolCache points to any of 476 // old_methods, replace it with the corresponding new_method. 477 // trace_name_printed is set to true if the current call has 478 // printed the klass name so that other routines in the adjust_* 479 // group don't print the klass name. 480 void adjust_method_entries(Method** old_methods, Method** new_methods, 481 int methods_length, bool * trace_name_printed); 482 bool check_no_old_or_obsolete_entries(); 483 void dump_cache(); 484 #endif // INCLUDE_JVMTI 485 486 // Deallocate - no fields to deallocate 487 DEBUG_ONLY(bool on_stack() { return false; }) 488 void deallocate_contents(ClassLoaderData* data) {} 489 bool is_klass() const { return false; } 490 491 // Printing 492 void print_on(outputStream* st) const; 493 void print_value_on(outputStream* st) const; 494 495 const char* internal_name() const { return "{constant pool cache}"; } 496 497 // Verify 498 void verify_on(outputStream* st); 499 }; 500 501 #endif // SHARE_VM_OOPS_CPCACHEOOP_HPP --- EOF ---