1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/debugInfoRec.hpp"
  28 #include "code/nmethod.hpp"
  29 #include "code/pcDesc.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "interpreter/bytecode.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/oopMapCache.hpp"
  34 #include "memory/allocation.inline.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/method.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/jvmtiThreadState.hpp"
  40 #include "runtime/biasedLocking.hpp"
  41 #include "runtime/compilationPolicy.hpp"
  42 #include "runtime/deoptimization.hpp"
  43 #include "runtime/interfaceSupport.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/signature.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/thread.hpp"
  48 #include "runtime/vframe.hpp"
  49 #include "runtime/vframeArray.hpp"
  50 #include "runtime/vframe_hp.hpp"
  51 #include "utilities/events.hpp"
  52 #include "utilities/xmlstream.hpp"
  53 #ifdef TARGET_ARCH_x86
  54 # include "vmreg_x86.inline.hpp"
  55 #endif
  56 #ifdef TARGET_ARCH_sparc
  57 # include "vmreg_sparc.inline.hpp"
  58 #endif
  59 #ifdef TARGET_ARCH_zero
  60 # include "vmreg_zero.inline.hpp"
  61 #endif
  62 #ifdef TARGET_ARCH_arm
  63 # include "vmreg_arm.inline.hpp"
  64 #endif
  65 #ifdef TARGET_ARCH_ppc
  66 # include "vmreg_ppc.inline.hpp"
  67 #endif
  68 #ifdef COMPILER2
  69 #ifdef TARGET_ARCH_MODEL_x86_32
  70 # include "adfiles/ad_x86_32.hpp"
  71 #endif
  72 #ifdef TARGET_ARCH_MODEL_x86_64
  73 # include "adfiles/ad_x86_64.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_MODEL_sparc
  76 # include "adfiles/ad_sparc.hpp"
  77 #endif
  78 #ifdef TARGET_ARCH_MODEL_zero
  79 # include "adfiles/ad_zero.hpp"
  80 #endif
  81 #ifdef TARGET_ARCH_MODEL_arm
  82 # include "adfiles/ad_arm.hpp"
  83 #endif
  84 #ifdef TARGET_ARCH_MODEL_ppc_32
  85 # include "adfiles/ad_ppc_32.hpp"
  86 #endif
  87 #ifdef TARGET_ARCH_MODEL_ppc_64
  88 # include "adfiles/ad_ppc_64.hpp"
  89 #endif
  90 #endif // COMPILER2
  91 
  92 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  93 
  94 bool DeoptimizationMarker::_is_active = false;
  95 
  96 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  97                                          int  caller_adjustment,
  98                                          int  caller_actual_parameters,
  99                                          int  number_of_frames,
 100                                          intptr_t* frame_sizes,
 101                                          address* frame_pcs,
 102                                          BasicType return_type) {
 103   _size_of_deoptimized_frame = size_of_deoptimized_frame;
 104   _caller_adjustment         = caller_adjustment;
 105   _caller_actual_parameters  = caller_actual_parameters;
 106   _number_of_frames          = number_of_frames;
 107   _frame_sizes               = frame_sizes;
 108   _frame_pcs                 = frame_pcs;
 109   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
 110   _return_type               = return_type;
 111   _initial_info              = 0;
 112   // PD (x86 only)
 113   _counter_temp              = 0;
 114   _unpack_kind               = 0;
 115   _sender_sp_temp            = 0;
 116 
 117   _total_frame_sizes         = size_of_frames();
 118 }
 119 
 120 
 121 Deoptimization::UnrollBlock::~UnrollBlock() {
 122   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes, mtCompiler);
 123   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs, mtCompiler);
 124   FREE_C_HEAP_ARRAY(intptr_t, _register_block, mtCompiler);
 125 }
 126 
 127 
 128 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 129   assert(register_number < RegisterMap::reg_count, "checking register number");
 130   return &_register_block[register_number * 2];
 131 }
 132 
 133 
 134 
 135 int Deoptimization::UnrollBlock::size_of_frames() const {
 136   // Acount first for the adjustment of the initial frame
 137   int result = _caller_adjustment;
 138   for (int index = 0; index < number_of_frames(); index++) {
 139     result += frame_sizes()[index];
 140   }
 141   return result;
 142 }
 143 
 144 
 145 void Deoptimization::UnrollBlock::print() {
 146   ttyLocker ttyl;
 147   tty->print_cr("UnrollBlock");
 148   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 149   tty->print(   "  frame_sizes: ");
 150   for (int index = 0; index < number_of_frames(); index++) {
 151     tty->print("%d ", frame_sizes()[index]);
 152   }
 153   tty->cr();
 154 }
 155 
 156 
 157 // In order to make fetch_unroll_info work properly with escape
 158 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 159 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 160 // of previously eliminated objects occurs in realloc_objects, which is
 161 // called from the method fetch_unroll_info_helper below.
 162 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
 163   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 164   // but makes the entry a little slower. There is however a little dance we have to
 165   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 166 
 167   // fetch_unroll_info() is called at the beginning of the deoptimization
 168   // handler. Note this fact before we start generating temporary frames
 169   // that can confuse an asynchronous stack walker. This counter is
 170   // decremented at the end of unpack_frames().
 171   thread->inc_in_deopt_handler();
 172 
 173   return fetch_unroll_info_helper(thread);
 174 JRT_END
 175 
 176 
 177 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 178 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
 179 
 180   // Note: there is a safepoint safety issue here. No matter whether we enter
 181   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 182   // the vframeArray is created.
 183   //
 184 
 185   // Allocate our special deoptimization ResourceMark
 186   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 187   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 188   thread->set_deopt_mark(dmark);
 189 
 190   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 191   RegisterMap map(thread, true);
 192   RegisterMap dummy_map(thread, false);
 193   // Now get the deoptee with a valid map
 194   frame deoptee = stub_frame.sender(&map);
 195   // Set the deoptee nmethod
 196   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
 197   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
 198 
 199   if (VerifyStack) {
 200     thread->validate_frame_layout();
 201   }
 202 
 203   // Create a growable array of VFrames where each VFrame represents an inlined
 204   // Java frame.  This storage is allocated with the usual system arena.
 205   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 206   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 207   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 208   while (!vf->is_top()) {
 209     assert(vf->is_compiled_frame(), "Wrong frame type");
 210     chunk->push(compiledVFrame::cast(vf));
 211     vf = vf->sender();
 212   }
 213   assert(vf->is_compiled_frame(), "Wrong frame type");
 214   chunk->push(compiledVFrame::cast(vf));
 215 
 216   bool realloc_failures = false;
 217 
 218 #ifdef COMPILER2
 219   // Reallocate the non-escaping objects and restore their fields. Then
 220   // relock objects if synchronization on them was eliminated.
 221   if (DoEscapeAnalysis || EliminateNestedLocks) {
 222     if (EliminateAllocations) {
 223       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 224       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 225 
 226       // The flag return_oop() indicates call sites which return oop
 227       // in compiled code. Such sites include java method calls,
 228       // runtime calls (for example, used to allocate new objects/arrays
 229       // on slow code path) and any other calls generated in compiled code.
 230       // It is not guaranteed that we can get such information here only
 231       // by analyzing bytecode in deoptimized frames. This is why this flag
 232       // is set during method compilation (see Compile::Process_OopMap_Node()).
 233       // If the previous frame was popped, we don't have a result.
 234       bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution();
 235       Handle return_value;
 236       if (save_oop_result) {
 237         // Reallocation may trigger GC. If deoptimization happened on return from
 238         // call which returns oop we need to save it since it is not in oopmap.
 239         oop result = deoptee.saved_oop_result(&map);
 240         assert(result == NULL || result->is_oop(), "must be oop");
 241         return_value = Handle(thread, result);
 242         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 243         if (TraceDeoptimization) {
 244           ttyLocker ttyl;
 245           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, (void *)result, thread);
 246         }
 247       }
 248       if (objects != NULL) {
 249         JRT_BLOCK
 250           realloc_failures = realloc_objects(thread, &deoptee, objects, THREAD);
 251         JRT_END
 252         reassign_fields(&deoptee, &map, objects, realloc_failures);
 253 #ifndef PRODUCT
 254         if (TraceDeoptimization) {
 255           ttyLocker ttyl;
 256           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
 257           print_objects(objects, realloc_failures);
 258         }
 259 #endif
 260       }
 261       if (save_oop_result) {
 262         // Restore result.
 263         deoptee.set_saved_oop_result(&map, return_value());
 264       }
 265     }
 266     if (EliminateLocks) {
 267 #ifndef PRODUCT
 268       bool first = true;
 269 #endif
 270       for (int i = 0; i < chunk->length(); i++) {
 271         compiledVFrame* cvf = chunk->at(i);
 272         assert (cvf->scope() != NULL,"expect only compiled java frames");
 273         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 274         if (monitors->is_nonempty()) {
 275           relock_objects(monitors, thread, realloc_failures);
 276 #ifndef PRODUCT
 277           if (TraceDeoptimization) {
 278             ttyLocker ttyl;
 279             for (int j = 0; j < monitors->length(); j++) {
 280               MonitorInfo* mi = monitors->at(j);
 281               if (mi->eliminated()) {
 282                 if (first) {
 283                   first = false;
 284                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
 285                 }
 286                 if (mi->owner_is_scalar_replaced()) {
 287                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 288                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
 289                 } else {
 290                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", (void *)mi->owner());
 291                 }
 292               }
 293             }
 294           }
 295 #endif
 296         }
 297       }
 298     }
 299   }
 300 #endif // COMPILER2
 301   // Ensure that no safepoint is taken after pointers have been stored
 302   // in fields of rematerialized objects.  If a safepoint occurs from here on
 303   // out the java state residing in the vframeArray will be missed.
 304   No_Safepoint_Verifier no_safepoint;
 305 
 306   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 307 #ifdef COMPILER2
 308   if (realloc_failures) {
 309     pop_frames_failed_reallocs(thread, array);
 310   }
 311 #endif
 312 
 313   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 314   thread->set_vframe_array_head(array);
 315 
 316   // Now that the vframeArray has been created if we have any deferred local writes
 317   // added by jvmti then we can free up that structure as the data is now in the
 318   // vframeArray
 319 
 320   if (thread->deferred_locals() != NULL) {
 321     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 322     int i = 0;
 323     do {
 324       // Because of inlining we could have multiple vframes for a single frame
 325       // and several of the vframes could have deferred writes. Find them all.
 326       if (list->at(i)->id() == array->original().id()) {
 327         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 328         list->remove_at(i);
 329         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 330         delete dlv;
 331       } else {
 332         i++;
 333       }
 334     } while ( i < list->length() );
 335     if (list->length() == 0) {
 336       thread->set_deferred_locals(NULL);
 337       // free the list and elements back to C heap.
 338       delete list;
 339     }
 340 
 341   }
 342 
 343 #ifndef SHARK
 344   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 345   CodeBlob* cb = stub_frame.cb();
 346   // Verify we have the right vframeArray
 347   assert(cb->frame_size() >= 0, "Unexpected frame size");
 348   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 349 
 350   // If the deopt call site is a MethodHandle invoke call site we have
 351   // to adjust the unpack_sp.
 352   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 353   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 354     unpack_sp = deoptee.unextended_sp();
 355 
 356 #ifdef ASSERT
 357   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
 358 #endif
 359 #else
 360   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 361 #endif // !SHARK
 362 
 363   // This is a guarantee instead of an assert because if vframe doesn't match
 364   // we will unpack the wrong deoptimized frame and wind up in strange places
 365   // where it will be very difficult to figure out what went wrong. Better
 366   // to die an early death here than some very obscure death later when the
 367   // trail is cold.
 368   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 369   // in that it will fail to detect a problem when there is one. This needs
 370   // more work in tiger timeframe.
 371   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 372 
 373   int number_of_frames = array->frames();
 374 
 375   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 376   // virtual activation, which is the reverse of the elements in the vframes array.
 377   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 378   // +1 because we always have an interpreter return address for the final slot.
 379   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 380   int popframe_extra_args = 0;
 381   // Create an interpreter return address for the stub to use as its return
 382   // address so the skeletal frames are perfectly walkable
 383   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 384 
 385   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 386   // activation be put back on the expression stack of the caller for reexecution
 387   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 388     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 389   }
 390 
 391   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 392   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 393   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 394   //
 395   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 396   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 397 
 398   // It's possible that the number of paramters at the call site is
 399   // different than number of arguments in the callee when method
 400   // handles are used.  If the caller is interpreted get the real
 401   // value so that the proper amount of space can be added to it's
 402   // frame.
 403   bool caller_was_method_handle = false;
 404   if (deopt_sender.is_interpreted_frame()) {
 405     methodHandle method = deopt_sender.interpreter_frame_method();
 406     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 407     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 408       // Method handle invokes may involve fairly arbitrary chains of
 409       // calls so it's impossible to know how much actual space the
 410       // caller has for locals.
 411       caller_was_method_handle = true;
 412     }
 413   }
 414 
 415   //
 416   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 417   // frame_sizes/frame_pcs[1] next oldest frame (int)
 418   // frame_sizes/frame_pcs[n] youngest frame (int)
 419   //
 420   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 421   // owns the space for the return address to it's caller).  Confusing ain't it.
 422   //
 423   // The vframe array can address vframes with indices running from
 424   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 425   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 426   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 427   // so things look a little strange in this loop.
 428   //
 429   int callee_parameters = 0;
 430   int callee_locals = 0;
 431   for (int index = 0; index < array->frames(); index++ ) {
 432     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 433     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 434     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 435     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 436                                                                                                     callee_locals,
 437                                                                                                     index == 0,
 438                                                                                                     popframe_extra_args);
 439     // This pc doesn't have to be perfect just good enough to identify the frame
 440     // as interpreted so the skeleton frame will be walkable
 441     // The correct pc will be set when the skeleton frame is completely filled out
 442     // The final pc we store in the loop is wrong and will be overwritten below
 443     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 444 
 445     callee_parameters = array->element(index)->method()->size_of_parameters();
 446     callee_locals = array->element(index)->method()->max_locals();
 447     popframe_extra_args = 0;
 448   }
 449 
 450   // Compute whether the root vframe returns a float or double value.
 451   BasicType return_type;
 452   {
 453     HandleMark hm;
 454     methodHandle method(thread, array->element(0)->method());
 455     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 456     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 457   }
 458 
 459   // Compute information for handling adapters and adjusting the frame size of the caller.
 460   int caller_adjustment = 0;
 461 
 462   // Compute the amount the oldest interpreter frame will have to adjust
 463   // its caller's stack by. If the caller is a compiled frame then
 464   // we pretend that the callee has no parameters so that the
 465   // extension counts for the full amount of locals and not just
 466   // locals-parms. This is because without a c2i adapter the parm
 467   // area as created by the compiled frame will not be usable by
 468   // the interpreter. (Depending on the calling convention there
 469   // may not even be enough space).
 470 
 471   // QQQ I'd rather see this pushed down into last_frame_adjust
 472   // and have it take the sender (aka caller).
 473 
 474   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 475     caller_adjustment = last_frame_adjust(0, callee_locals);
 476   } else if (callee_locals > callee_parameters) {
 477     // The caller frame may need extending to accommodate
 478     // non-parameter locals of the first unpacked interpreted frame.
 479     // Compute that adjustment.
 480     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 481   }
 482 
 483   // If the sender is deoptimized the we must retrieve the address of the handler
 484   // since the frame will "magically" show the original pc before the deopt
 485   // and we'd undo the deopt.
 486 
 487   frame_pcs[0] = deopt_sender.raw_pc();
 488 
 489 #ifndef SHARK
 490   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 491 #endif // SHARK
 492 
 493   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 494                                       caller_adjustment * BytesPerWord,
 495                                       caller_was_method_handle ? 0 : callee_parameters,
 496                                       number_of_frames,
 497                                       frame_sizes,
 498                                       frame_pcs,
 499                                       return_type);
 500   // On some platforms, we need a way to pass some platform dependent
 501   // information to the unpacking code so the skeletal frames come out
 502   // correct (initial fp value, unextended sp, ...)
 503   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 504 
 505   if (array->frames() > 1) {
 506     if (VerifyStack && TraceDeoptimization) {
 507       ttyLocker ttyl;
 508       tty->print_cr("Deoptimizing method containing inlining");
 509     }
 510   }
 511 
 512   array->set_unroll_block(info);
 513   return info;
 514 }
 515 
 516 // Called to cleanup deoptimization data structures in normal case
 517 // after unpacking to stack and when stack overflow error occurs
 518 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 519                                         vframeArray *array) {
 520 
 521   // Get array if coming from exception
 522   if (array == NULL) {
 523     array = thread->vframe_array_head();
 524   }
 525   thread->set_vframe_array_head(NULL);
 526 
 527   // Free the previous UnrollBlock
 528   vframeArray* old_array = thread->vframe_array_last();
 529   thread->set_vframe_array_last(array);
 530 
 531   if (old_array != NULL) {
 532     UnrollBlock* old_info = old_array->unroll_block();
 533     old_array->set_unroll_block(NULL);
 534     delete old_info;
 535     delete old_array;
 536   }
 537 
 538   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 539   // inside the vframeArray (StackValueCollections)
 540 
 541   delete thread->deopt_mark();
 542   thread->set_deopt_mark(NULL);
 543   thread->set_deopt_nmethod(NULL);
 544 
 545 
 546   if (JvmtiExport::can_pop_frame()) {
 547 #ifndef CC_INTERP
 548     // Regardless of whether we entered this routine with the pending
 549     // popframe condition bit set, we should always clear it now
 550     thread->clear_popframe_condition();
 551 #else
 552     // C++ interpeter will clear has_pending_popframe when it enters
 553     // with method_resume. For deopt_resume2 we clear it now.
 554     if (thread->popframe_forcing_deopt_reexecution())
 555         thread->clear_popframe_condition();
 556 #endif /* CC_INTERP */
 557   }
 558 
 559   // unpack_frames() is called at the end of the deoptimization handler
 560   // and (in C2) at the end of the uncommon trap handler. Note this fact
 561   // so that an asynchronous stack walker can work again. This counter is
 562   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 563   // the beginning of uncommon_trap().
 564   thread->dec_in_deopt_handler();
 565 }
 566 
 567 
 568 // Return BasicType of value being returned
 569 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 570 
 571   // We are already active int he special DeoptResourceMark any ResourceObj's we
 572   // allocate will be freed at the end of the routine.
 573 
 574   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 575   // but makes the entry a little slower. There is however a little dance we have to
 576   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 577   ResetNoHandleMark rnhm; // No-op in release/product versions
 578   HandleMark hm;
 579 
 580   frame stub_frame = thread->last_frame();
 581 
 582   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 583   // must point to the vframeArray for the unpack frame.
 584   vframeArray* array = thread->vframe_array_head();
 585 
 586 #ifndef PRODUCT
 587   if (TraceDeoptimization) {
 588     ttyLocker ttyl;
 589     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
 590   }
 591 #endif
 592   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 593               stub_frame.pc(), stub_frame.sp(), exec_mode);
 594 
 595   UnrollBlock* info = array->unroll_block();
 596 
 597   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 598   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 599 
 600   BasicType bt = info->return_type();
 601 
 602   // If we have an exception pending, claim that the return type is an oop
 603   // so the deopt_blob does not overwrite the exception_oop.
 604 
 605   if (exec_mode == Unpack_exception)
 606     bt = T_OBJECT;
 607 
 608   // Cleanup thread deopt data
 609   cleanup_deopt_info(thread, array);
 610 
 611 #ifndef PRODUCT
 612   if (VerifyStack) {
 613     ResourceMark res_mark;
 614 
 615     thread->validate_frame_layout();
 616 
 617     // Verify that the just-unpacked frames match the interpreter's
 618     // notions of expression stack and locals
 619     vframeArray* cur_array = thread->vframe_array_last();
 620     RegisterMap rm(thread, false);
 621     rm.set_include_argument_oops(false);
 622     bool is_top_frame = true;
 623     int callee_size_of_parameters = 0;
 624     int callee_max_locals = 0;
 625     for (int i = 0; i < cur_array->frames(); i++) {
 626       vframeArrayElement* el = cur_array->element(i);
 627       frame* iframe = el->iframe();
 628       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 629 
 630       // Get the oop map for this bci
 631       InterpreterOopMap mask;
 632       int cur_invoke_parameter_size = 0;
 633       bool try_next_mask = false;
 634       int next_mask_expression_stack_size = -1;
 635       int top_frame_expression_stack_adjustment = 0;
 636       methodHandle mh(thread, iframe->interpreter_frame_method());
 637       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 638       BytecodeStream str(mh);
 639       str.set_start(iframe->interpreter_frame_bci());
 640       int max_bci = mh->code_size();
 641       // Get to the next bytecode if possible
 642       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 643       // Check to see if we can grab the number of outgoing arguments
 644       // at an uncommon trap for an invoke (where the compiler
 645       // generates debug info before the invoke has executed)
 646       Bytecodes::Code cur_code = str.next();
 647       if (cur_code == Bytecodes::_invokevirtual   ||
 648           cur_code == Bytecodes::_invokespecial   ||
 649           cur_code == Bytecodes::_invokestatic    ||
 650           cur_code == Bytecodes::_invokeinterface ||
 651           cur_code == Bytecodes::_invokedynamic) {
 652         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 653         Symbol* signature = invoke.signature();
 654         ArgumentSizeComputer asc(signature);
 655         cur_invoke_parameter_size = asc.size();
 656         if (invoke.has_receiver()) {
 657           // Add in receiver
 658           ++cur_invoke_parameter_size;
 659         }
 660         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 661           callee_size_of_parameters++;
 662         }
 663       }
 664       if (str.bci() < max_bci) {
 665         Bytecodes::Code bc = str.next();
 666         if (bc >= 0) {
 667           // The interpreter oop map generator reports results before
 668           // the current bytecode has executed except in the case of
 669           // calls. It seems to be hard to tell whether the compiler
 670           // has emitted debug information matching the "state before"
 671           // a given bytecode or the state after, so we try both
 672           switch (cur_code) {
 673             case Bytecodes::_invokevirtual:
 674             case Bytecodes::_invokespecial:
 675             case Bytecodes::_invokestatic:
 676             case Bytecodes::_invokeinterface:
 677             case Bytecodes::_invokedynamic:
 678             case Bytecodes::_athrow:
 679               break;
 680             default: {
 681               InterpreterOopMap next_mask;
 682               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 683               next_mask_expression_stack_size = next_mask.expression_stack_size();
 684               // Need to subtract off the size of the result type of
 685               // the bytecode because this is not described in the
 686               // debug info but returned to the interpreter in the TOS
 687               // caching register
 688               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 689               if (bytecode_result_type != T_ILLEGAL) {
 690                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 691               }
 692               assert(top_frame_expression_stack_adjustment >= 0, "");
 693               try_next_mask = true;
 694               break;
 695             }
 696           }
 697         }
 698       }
 699 
 700       // Verify stack depth and oops in frame
 701       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 702       if (!(
 703             /* SPARC */
 704             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 705             /* x86 */
 706             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 707             (try_next_mask &&
 708              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 709                                                                     top_frame_expression_stack_adjustment))) ||
 710             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 711             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 712              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 713             )) {
 714         ttyLocker ttyl;
 715 
 716         // Print out some information that will help us debug the problem
 717         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 718         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 719         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 720                       iframe->interpreter_frame_expression_stack_size());
 721         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 722         tty->print_cr("  try_next_mask = %d", try_next_mask);
 723         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 724         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 725         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 726         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 727         tty->print_cr("  exec_mode = %d", exec_mode);
 728         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 729         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
 730         tty->print_cr("  Interpreted frames:");
 731         for (int k = 0; k < cur_array->frames(); k++) {
 732           vframeArrayElement* el = cur_array->element(k);
 733           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 734         }
 735         cur_array->print_on_2(tty);
 736         guarantee(false, "wrong number of expression stack elements during deopt");
 737       }
 738       VerifyOopClosure verify;
 739       iframe->oops_interpreted_do(&verify, NULL, &rm, false);
 740       callee_size_of_parameters = mh->size_of_parameters();
 741       callee_max_locals = mh->max_locals();
 742       is_top_frame = false;
 743     }
 744   }
 745 #endif /* !PRODUCT */
 746 
 747 
 748   return bt;
 749 JRT_END
 750 
 751 
 752 int Deoptimization::deoptimize_dependents() {
 753   Threads::deoptimized_wrt_marked_nmethods();
 754   return 0;
 755 }
 756 
 757 
 758 #ifdef COMPILER2
 759 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 760   Handle pending_exception(thread->pending_exception());
 761   const char* exception_file = thread->exception_file();
 762   int exception_line = thread->exception_line();
 763   thread->clear_pending_exception();
 764 
 765   bool failures = false;
 766 
 767   for (int i = 0; i < objects->length(); i++) {
 768     assert(objects->at(i)->is_object(), "invalid debug information");
 769     ObjectValue* sv = (ObjectValue*) objects->at(i);
 770 
 771     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 772     oop obj = NULL;
 773 
 774     if (k->oop_is_instance()) {
 775       InstanceKlass* ik = InstanceKlass::cast(k());
 776       obj = ik->allocate_instance(THREAD);
 777     } else if (k->oop_is_typeArray()) {
 778       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
 779       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 780       int len = sv->field_size() / type2size[ak->element_type()];
 781       obj = ak->allocate(len, THREAD);
 782     } else if (k->oop_is_objArray()) {
 783       ObjArrayKlass* ak = ObjArrayKlass::cast(k());
 784       obj = ak->allocate(sv->field_size(), THREAD);
 785     }
 786 
 787     if (obj == NULL) {
 788       failures = true;
 789     }
 790 
 791     assert(sv->value().is_null(), "redundant reallocation");
 792     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
 793     CLEAR_PENDING_EXCEPTION;
 794     sv->set_value(obj);
 795   }
 796 
 797   if (failures) {
 798     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
 799   } else if (pending_exception.not_null()) {
 800     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 801   }
 802 
 803   return failures;
 804 }
 805 
 806 // This assumes that the fields are stored in ObjectValue in the same order
 807 // they are yielded by do_nonstatic_fields.
 808 class FieldReassigner: public FieldClosure {
 809   frame* _fr;
 810   RegisterMap* _reg_map;
 811   ObjectValue* _sv;
 812   InstanceKlass* _ik;
 813   oop _obj;
 814 
 815   int _i;
 816 public:
 817   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
 818     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
 819 
 820   int i() const { return _i; }
 821 
 822 
 823   void do_field(fieldDescriptor* fd) {
 824     intptr_t val;
 825     StackValue* value =
 826       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
 827     int offset = fd->offset();
 828     switch (fd->field_type()) {
 829     case T_OBJECT: case T_ARRAY:
 830       assert(value->type() == T_OBJECT, "Agreement.");
 831       _obj->obj_field_put(offset, value->get_obj()());
 832       break;
 833 
 834     case T_LONG: case T_DOUBLE: {
 835       assert(value->type() == T_INT, "Agreement.");
 836       StackValue* low =
 837         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
 838 #ifdef _LP64
 839       jlong res = (jlong)low->get_int();
 840 #else
 841 #ifdef SPARC
 842       // For SPARC we have to swap high and low words.
 843       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 844 #else
 845       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 846 #endif //SPARC
 847 #endif
 848       _obj->long_field_put(offset, res);
 849       break;
 850     }
 851     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 852     case T_INT: case T_FLOAT: // 4 bytes.
 853       assert(value->type() == T_INT, "Agreement.");
 854       val = value->get_int();
 855       _obj->int_field_put(offset, (jint)*((jint*)&val));
 856       break;
 857 
 858     case T_SHORT: case T_CHAR: // 2 bytes
 859       assert(value->type() == T_INT, "Agreement.");
 860       val = value->get_int();
 861       _obj->short_field_put(offset, (jshort)*((jint*)&val));
 862       break;
 863 
 864     case T_BOOLEAN: case T_BYTE: // 1 byte
 865       assert(value->type() == T_INT, "Agreement.");
 866       val = value->get_int();
 867       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
 868       break;
 869 
 870     default:
 871       ShouldNotReachHere();
 872     }
 873     _i++;
 874   }
 875 };
 876 
 877 // restore elements of an eliminated type array
 878 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 879   int index = 0;
 880   intptr_t val;
 881 
 882   for (int i = 0; i < sv->field_size(); i++) {
 883     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 884     switch(type) {
 885     case T_LONG: case T_DOUBLE: {
 886       assert(value->type() == T_INT, "Agreement.");
 887       StackValue* low =
 888         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 889 #ifdef _LP64
 890       jlong res = (jlong)low->get_int();
 891 #else
 892 #ifdef SPARC
 893       // For SPARC we have to swap high and low words.
 894       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 895 #else
 896       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 897 #endif //SPARC
 898 #endif
 899       obj->long_at_put(index, res);
 900       break;
 901     }
 902 
 903     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 904     case T_INT: case T_FLOAT: // 4 bytes.
 905       assert(value->type() == T_INT, "Agreement.");
 906       val = value->get_int();
 907       obj->int_at_put(index, (jint)*((jint*)&val));
 908       break;
 909 
 910     case T_SHORT: case T_CHAR: // 2 bytes
 911       assert(value->type() == T_INT, "Agreement.");
 912       val = value->get_int();
 913       obj->short_at_put(index, (jshort)*((jint*)&val));
 914       break;
 915 
 916     case T_BOOLEAN: case T_BYTE: // 1 byte
 917       assert(value->type() == T_INT, "Agreement.");
 918       val = value->get_int();
 919       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 920       break;
 921 
 922       default:
 923         ShouldNotReachHere();
 924     }
 925     index++;
 926   }
 927 }
 928 
 929 
 930 // restore fields of an eliminated object array
 931 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 932   for (int i = 0; i < sv->field_size(); i++) {
 933     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 934     assert(value->type() == T_OBJECT, "object element expected");
 935     obj->obj_at_put(i, value->get_obj()());
 936   }
 937 }
 938 
 939 
 940 // restore fields of all eliminated objects and arrays
 941 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
 942   for (int i = 0; i < objects->length(); i++) {
 943     ObjectValue* sv = (ObjectValue*) objects->at(i);
 944     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 945     Handle obj = sv->value();
 946     assert(obj.not_null() || realloc_failures, "reallocation was missed");
 947     if (obj.is_null()) {
 948       continue;
 949     }
 950 
 951     if (k->oop_is_instance()) {
 952       InstanceKlass* ik = InstanceKlass::cast(k());
 953       FieldReassigner reassign(fr, reg_map, sv, obj());
 954       ik->do_nonstatic_fields(&reassign);
 955     } else if (k->oop_is_typeArray()) {
 956       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
 957       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
 958     } else if (k->oop_is_objArray()) {
 959       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
 960     }
 961   }
 962 }
 963 
 964 
 965 // relock objects for which synchronization was eliminated
 966 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
 967   for (int i = 0; i < monitors->length(); i++) {
 968     MonitorInfo* mon_info = monitors->at(i);
 969     if (mon_info->eliminated()) {
 970       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
 971       if (!mon_info->owner_is_scalar_replaced()) {
 972         Handle obj = Handle(mon_info->owner());
 973         markOop mark = obj->mark();
 974         if (UseBiasedLocking && mark->has_bias_pattern()) {
 975           // New allocated objects may have the mark set to anonymously biased.
 976           // Also the deoptimized method may called methods with synchronization
 977           // where the thread-local object is bias locked to the current thread.
 978           assert(mark->is_biased_anonymously() ||
 979                  mark->biased_locker() == thread, "should be locked to current thread");
 980           // Reset mark word to unbiased prototype.
 981           markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
 982           obj->set_mark(unbiased_prototype);
 983         }
 984         BasicLock* lock = mon_info->lock();
 985         ObjectSynchronizer::slow_enter(obj, lock, thread);
 986         assert(mon_info->owner()->is_locked(), "object must be locked now");
 987       }
 988     }
 989   }
 990 }
 991 
 992 
 993 #ifndef PRODUCT
 994 // print information about reallocated objects
 995 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
 996   fieldDescriptor fd;
 997 
 998   for (int i = 0; i < objects->length(); i++) {
 999     ObjectValue* sv = (ObjectValue*) objects->at(i);
1000     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
1001     Handle obj = sv->value();
1002 
1003     tty->print("     object <" INTPTR_FORMAT "> of type ", (void *)sv->value()());
1004     k->print_value();
1005     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1006     if (obj.is_null()) {
1007       tty->print(" allocation failed");
1008     } else {
1009       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1010     }
1011     tty->cr();
1012 
1013     if (Verbose && !obj.is_null()) {
1014       k->oop_print_on(obj(), tty);
1015     }
1016   }
1017 }
1018 #endif
1019 #endif // COMPILER2
1020 
1021 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1022   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, fr.pc(), fr.sp());
1023 
1024 #ifndef PRODUCT
1025   if (TraceDeoptimization) {
1026     ttyLocker ttyl;
1027     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
1028     fr.print_on(tty);
1029     tty->print_cr("     Virtual frames (innermost first):");
1030     for (int index = 0; index < chunk->length(); index++) {
1031       compiledVFrame* vf = chunk->at(index);
1032       tty->print("       %2d - ", index);
1033       vf->print_value();
1034       int bci = chunk->at(index)->raw_bci();
1035       const char* code_name;
1036       if (bci == SynchronizationEntryBCI) {
1037         code_name = "sync entry";
1038       } else {
1039         Bytecodes::Code code = vf->method()->code_at(bci);
1040         code_name = Bytecodes::name(code);
1041       }
1042       tty->print(" - %s", code_name);
1043       tty->print_cr(" @ bci %d ", bci);
1044       if (Verbose) {
1045         vf->print();
1046         tty->cr();
1047       }
1048     }
1049   }
1050 #endif
1051 
1052   // Register map for next frame (used for stack crawl).  We capture
1053   // the state of the deopt'ing frame's caller.  Thus if we need to
1054   // stuff a C2I adapter we can properly fill in the callee-save
1055   // register locations.
1056   frame caller = fr.sender(reg_map);
1057   int frame_size = caller.sp() - fr.sp();
1058 
1059   frame sender = caller;
1060 
1061   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1062   // the vframeArray containing the unpacking information is allocated in the C heap.
1063   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1064   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1065 
1066   // Compare the vframeArray to the collected vframes
1067   assert(array->structural_compare(thread, chunk), "just checking");
1068 
1069 #ifndef PRODUCT
1070   if (TraceDeoptimization) {
1071     ttyLocker ttyl;
1072     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
1073   }
1074 #endif // PRODUCT
1075 
1076   return array;
1077 }
1078 
1079 #ifdef COMPILER2
1080 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1081   // Reallocation of some scalar replaced objects failed. Record
1082   // that we need to pop all the interpreter frames for the
1083   // deoptimized compiled frame.
1084   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1085   thread->set_frames_to_pop_failed_realloc(array->frames());
1086   // Unlock all monitors here otherwise the interpreter will see a
1087   // mix of locked and unlocked monitors (because of failed
1088   // reallocations of synchronized objects) and be confused.
1089   for (int i = 0; i < array->frames(); i++) {
1090     MonitorChunk* monitors = array->element(i)->monitors();
1091     if (monitors != NULL) {
1092       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1093         BasicObjectLock* src = monitors->at(j);
1094         if (src->obj() != NULL) {
1095           ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
1096         }
1097       }
1098       array->element(i)->free_monitors(thread);
1099 #ifdef ASSERT
1100       array->element(i)->set_removed_monitors();
1101 #endif
1102     }
1103   }
1104 }
1105 #endif
1106 
1107 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1108   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1109   for (int i = 0; i < monitors->length(); i++) {
1110     MonitorInfo* mon_info = monitors->at(i);
1111     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1112       objects_to_revoke->append(Handle(mon_info->owner()));
1113     }
1114   }
1115 }
1116 
1117 
1118 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1119   if (!UseBiasedLocking) {
1120     return;
1121   }
1122 
1123   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1124 
1125   // Unfortunately we don't have a RegisterMap available in most of
1126   // the places we want to call this routine so we need to walk the
1127   // stack again to update the register map.
1128   if (map == NULL || !map->update_map()) {
1129     StackFrameStream sfs(thread, true);
1130     bool found = false;
1131     while (!found && !sfs.is_done()) {
1132       frame* cur = sfs.current();
1133       sfs.next();
1134       found = cur->id() == fr.id();
1135     }
1136     assert(found, "frame to be deoptimized not found on target thread's stack");
1137     map = sfs.register_map();
1138   }
1139 
1140   vframe* vf = vframe::new_vframe(&fr, map, thread);
1141   compiledVFrame* cvf = compiledVFrame::cast(vf);
1142   // Revoke monitors' biases in all scopes
1143   while (!cvf->is_top()) {
1144     collect_monitors(cvf, objects_to_revoke);
1145     cvf = compiledVFrame::cast(cvf->sender());
1146   }
1147   collect_monitors(cvf, objects_to_revoke);
1148 
1149   if (SafepointSynchronize::is_at_safepoint()) {
1150     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1151   } else {
1152     BiasedLocking::revoke(objects_to_revoke);
1153   }
1154 }
1155 
1156 
1157 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1158   if (!UseBiasedLocking) {
1159     return;
1160   }
1161 
1162   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1163   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1164   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1165     if (jt->has_last_Java_frame()) {
1166       StackFrameStream sfs(jt, true);
1167       while (!sfs.is_done()) {
1168         frame* cur = sfs.current();
1169         if (cb->contains(cur->pc())) {
1170           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1171           compiledVFrame* cvf = compiledVFrame::cast(vf);
1172           // Revoke monitors' biases in all scopes
1173           while (!cvf->is_top()) {
1174             collect_monitors(cvf, objects_to_revoke);
1175             cvf = compiledVFrame::cast(cvf->sender());
1176           }
1177           collect_monitors(cvf, objects_to_revoke);
1178         }
1179         sfs.next();
1180       }
1181     }
1182   }
1183   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1184 }
1185 
1186 
1187 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
1188   assert(fr.can_be_deoptimized(), "checking frame type");
1189 
1190   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
1191 
1192   // Patch the nmethod so that when execution returns to it we will
1193   // deopt the execution state and return to the interpreter.
1194   fr.deoptimize(thread);
1195 }
1196 
1197 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1198   // Deoptimize only if the frame comes from compile code.
1199   // Do not deoptimize the frame which is already patched
1200   // during the execution of the loops below.
1201   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1202     return;
1203   }
1204   ResourceMark rm;
1205   DeoptimizationMarker dm;
1206   if (UseBiasedLocking) {
1207     revoke_biases_of_monitors(thread, fr, map);
1208   }
1209   deoptimize_single_frame(thread, fr);
1210 
1211 }
1212 
1213 
1214 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
1215   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1216          "can only deoptimize other thread at a safepoint");
1217   // Compute frame and register map based on thread and sp.
1218   RegisterMap reg_map(thread, UseBiasedLocking);
1219   frame fr = thread->last_frame();
1220   while (fr.id() != id) {
1221     fr = fr.sender(&reg_map);
1222   }
1223   deoptimize(thread, fr, &reg_map);
1224 }
1225 
1226 
1227 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1228   if (thread == Thread::current()) {
1229     Deoptimization::deoptimize_frame_internal(thread, id);
1230   } else {
1231     VM_DeoptimizeFrame deopt(thread, id);
1232     VMThread::execute(&deopt);
1233   }
1234 }
1235 
1236 
1237 // JVMTI PopFrame support
1238 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1239 {
1240   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1241 }
1242 JRT_END
1243 
1244 
1245 #if defined(COMPILER2) || defined(SHARK)
1246 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
1247   // in case of an unresolved klass entry, load the class.
1248   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1249     Klass* tk = constant_pool->klass_at(index, CHECK);
1250     return;
1251   }
1252 
1253   if (!constant_pool->tag_at(index).is_symbol()) return;
1254 
1255   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1256   Symbol*  symbol  = constant_pool->symbol_at(index);
1257 
1258   // class name?
1259   if (symbol->byte_at(0) != '(') {
1260     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1261     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1262     return;
1263   }
1264 
1265   // then it must be a signature!
1266   ResourceMark rm(THREAD);
1267   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1268     if (ss.is_object()) {
1269       Symbol* class_name = ss.as_symbol(CHECK);
1270       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1271       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1272     }
1273   }
1274 }
1275 
1276 
1277 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
1278   EXCEPTION_MARK;
1279   load_class_by_index(constant_pool, index, THREAD);
1280   if (HAS_PENDING_EXCEPTION) {
1281     // Exception happened during classloading. We ignore the exception here, since it
1282     // is going to be rethrown since the current activation is going to be deoptimized and
1283     // the interpreter will re-execute the bytecode.
1284     CLEAR_PENDING_EXCEPTION;
1285     // Class loading called java code which may have caused a stack
1286     // overflow. If the exception was thrown right before the return
1287     // to the runtime the stack is no longer guarded. Reguard the
1288     // stack otherwise if we return to the uncommon trap blob and the
1289     // stack bang causes a stack overflow we crash.
1290     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1291     JavaThread* thread = (JavaThread*)THREAD;
1292     bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
1293     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1294     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1295   }
1296 }
1297 
1298 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1299   HandleMark hm;
1300 
1301   // uncommon_trap() is called at the beginning of the uncommon trap
1302   // handler. Note this fact before we start generating temporary frames
1303   // that can confuse an asynchronous stack walker. This counter is
1304   // decremented at the end of unpack_frames().
1305   thread->inc_in_deopt_handler();
1306 
1307   // We need to update the map if we have biased locking.
1308   RegisterMap reg_map(thread, UseBiasedLocking);
1309   frame stub_frame = thread->last_frame();
1310   frame fr = stub_frame.sender(&reg_map);
1311   // Make sure the calling nmethod is not getting deoptimized and removed
1312   // before we are done with it.
1313   nmethodLocker nl(fr.pc());
1314 
1315   // Log a message
1316   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT,
1317               trap_request, fr.pc());
1318 
1319   {
1320     ResourceMark rm;
1321 
1322     // Revoke biases of any monitors in the frame to ensure we can migrate them
1323     revoke_biases_of_monitors(thread, fr, &reg_map);
1324 
1325     DeoptReason reason = trap_request_reason(trap_request);
1326     DeoptAction action = trap_request_action(trap_request);
1327     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1328 
1329     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1330     compiledVFrame* cvf = compiledVFrame::cast(vf);
1331 
1332     nmethod* nm = cvf->code();
1333 
1334     ScopeDesc*      trap_scope  = cvf->scope();
1335     methodHandle    trap_method = trap_scope->method();
1336     int             trap_bci    = trap_scope->bci();
1337     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1338 
1339     // Record this event in the histogram.
1340     gather_statistics(reason, action, trap_bc);
1341 
1342     // Ensure that we can record deopt. history:
1343     // Need MDO to record RTM code generation state.
1344     bool create_if_missing = ProfileTraps RTM_OPT_ONLY( || UseRTMLocking );
1345 
1346     MethodData* trap_mdo =
1347       get_method_data(thread, trap_method, create_if_missing);
1348 
1349     // Log a message
1350     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
1351                               trap_reason_name(reason), trap_action_name(action), fr.pc(),
1352                               trap_method->name_and_sig_as_C_string(), trap_bci);
1353 
1354     // Print a bunch of diagnostics, if requested.
1355     if (TraceDeoptimization || LogCompilation) {
1356       ResourceMark rm;
1357       ttyLocker ttyl;
1358       char buf[100];
1359       if (xtty != NULL) {
1360         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
1361                          os::current_thread_id(),
1362                          format_trap_request(buf, sizeof(buf), trap_request));
1363         nm->log_identity(xtty);
1364       }
1365       Symbol* class_name = NULL;
1366       bool unresolved = false;
1367       if (unloaded_class_index >= 0) {
1368         constantPoolHandle constants (THREAD, trap_method->constants());
1369         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1370           class_name = constants->klass_name_at(unloaded_class_index);
1371           unresolved = true;
1372           if (xtty != NULL)
1373             xtty->print(" unresolved='1'");
1374         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1375           class_name = constants->symbol_at(unloaded_class_index);
1376         }
1377         if (xtty != NULL)
1378           xtty->name(class_name);
1379       }
1380       if (xtty != NULL && trap_mdo != NULL) {
1381         // Dump the relevant MDO state.
1382         // This is the deopt count for the current reason, any previous
1383         // reasons or recompiles seen at this point.
1384         int dcnt = trap_mdo->trap_count(reason);
1385         if (dcnt != 0)
1386           xtty->print(" count='%d'", dcnt);
1387         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1388         int dos = (pdata == NULL)? 0: pdata->trap_state();
1389         if (dos != 0) {
1390           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1391           if (trap_state_is_recompiled(dos)) {
1392             int recnt2 = trap_mdo->overflow_recompile_count();
1393             if (recnt2 != 0)
1394               xtty->print(" recompiles2='%d'", recnt2);
1395           }
1396         }
1397       }
1398       if (xtty != NULL) {
1399         xtty->stamp();
1400         xtty->end_head();
1401       }
1402       if (TraceDeoptimization) {  // make noise on the tty
1403         tty->print("Uncommon trap occurred in");
1404         nm->method()->print_short_name(tty);
1405         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d",
1406                    fr.pc(),
1407                    os::current_thread_id(),
1408                    trap_reason_name(reason),
1409                    trap_action_name(action),
1410                    unloaded_class_index);
1411         if (class_name != NULL) {
1412           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1413           class_name->print_symbol_on(tty);
1414         }
1415         tty->cr();
1416       }
1417       if (xtty != NULL) {
1418         // Log the precise location of the trap.
1419         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1420           xtty->begin_elem("jvms bci='%d'", sd->bci());
1421           xtty->method(sd->method());
1422           xtty->end_elem();
1423           if (sd->is_top())  break;
1424         }
1425         xtty->tail("uncommon_trap");
1426       }
1427     }
1428     // (End diagnostic printout.)
1429 
1430     // Load class if necessary
1431     if (unloaded_class_index >= 0) {
1432       constantPoolHandle constants(THREAD, trap_method->constants());
1433       load_class_by_index(constants, unloaded_class_index);
1434     }
1435 
1436     // Flush the nmethod if necessary and desirable.
1437     //
1438     // We need to avoid situations where we are re-flushing the nmethod
1439     // because of a hot deoptimization site.  Repeated flushes at the same
1440     // point need to be detected by the compiler and avoided.  If the compiler
1441     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1442     // module must take measures to avoid an infinite cycle of recompilation
1443     // and deoptimization.  There are several such measures:
1444     //
1445     //   1. If a recompilation is ordered a second time at some site X
1446     //   and for the same reason R, the action is adjusted to 'reinterpret',
1447     //   to give the interpreter time to exercise the method more thoroughly.
1448     //   If this happens, the method's overflow_recompile_count is incremented.
1449     //
1450     //   2. If the compiler fails to reduce the deoptimization rate, then
1451     //   the method's overflow_recompile_count will begin to exceed the set
1452     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1453     //   is adjusted to 'make_not_compilable', and the method is abandoned
1454     //   to the interpreter.  This is a performance hit for hot methods,
1455     //   but is better than a disastrous infinite cycle of recompilations.
1456     //   (Actually, only the method containing the site X is abandoned.)
1457     //
1458     //   3. In parallel with the previous measures, if the total number of
1459     //   recompilations of a method exceeds the much larger set limit
1460     //   PerMethodRecompilationCutoff, the method is abandoned.
1461     //   This should only happen if the method is very large and has
1462     //   many "lukewarm" deoptimizations.  The code which enforces this
1463     //   limit is elsewhere (class nmethod, class Method).
1464     //
1465     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1466     // to recompile at each bytecode independently of the per-BCI cutoff.
1467     //
1468     // The decision to update code is up to the compiler, and is encoded
1469     // in the Action_xxx code.  If the compiler requests Action_none
1470     // no trap state is changed, no compiled code is changed, and the
1471     // computation suffers along in the interpreter.
1472     //
1473     // The other action codes specify various tactics for decompilation
1474     // and recompilation.  Action_maybe_recompile is the loosest, and
1475     // allows the compiled code to stay around until enough traps are seen,
1476     // and until the compiler gets around to recompiling the trapping method.
1477     //
1478     // The other actions cause immediate removal of the present code.
1479 
1480     bool update_trap_state = true;
1481     bool make_not_entrant = false;
1482     bool make_not_compilable = false;
1483     bool reprofile = false;
1484     switch (action) {
1485     case Action_none:
1486       // Keep the old code.
1487       update_trap_state = false;
1488       break;
1489     case Action_maybe_recompile:
1490       // Do not need to invalidate the present code, but we can
1491       // initiate another
1492       // Start compiler without (necessarily) invalidating the nmethod.
1493       // The system will tolerate the old code, but new code should be
1494       // generated when possible.
1495       break;
1496     case Action_reinterpret:
1497       // Go back into the interpreter for a while, and then consider
1498       // recompiling form scratch.
1499       make_not_entrant = true;
1500       // Reset invocation counter for outer most method.
1501       // This will allow the interpreter to exercise the bytecodes
1502       // for a while before recompiling.
1503       // By contrast, Action_make_not_entrant is immediate.
1504       //
1505       // Note that the compiler will track null_check, null_assert,
1506       // range_check, and class_check events and log them as if they
1507       // had been traps taken from compiled code.  This will update
1508       // the MDO trap history so that the next compilation will
1509       // properly detect hot trap sites.
1510       reprofile = true;
1511       break;
1512     case Action_make_not_entrant:
1513       // Request immediate recompilation, and get rid of the old code.
1514       // Make them not entrant, so next time they are called they get
1515       // recompiled.  Unloaded classes are loaded now so recompile before next
1516       // time they are called.  Same for uninitialized.  The interpreter will
1517       // link the missing class, if any.
1518       make_not_entrant = true;
1519       break;
1520     case Action_make_not_compilable:
1521       // Give up on compiling this method at all.
1522       make_not_entrant = true;
1523       make_not_compilable = true;
1524       break;
1525     default:
1526       ShouldNotReachHere();
1527     }
1528 
1529     // Setting +ProfileTraps fixes the following, on all platforms:
1530     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1531     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1532     // recompile relies on a MethodData* to record heroic opt failures.
1533 
1534     // Whether the interpreter is producing MDO data or not, we also need
1535     // to use the MDO to detect hot deoptimization points and control
1536     // aggressive optimization.
1537     bool inc_recompile_count = false;
1538     ProfileData* pdata = NULL;
1539     if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
1540       assert(trap_mdo == get_method_data(thread, trap_method, false), "sanity");
1541       uint this_trap_count = 0;
1542       bool maybe_prior_trap = false;
1543       bool maybe_prior_recompile = false;
1544       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
1545                                    nm->method(),
1546                                    //outputs:
1547                                    this_trap_count,
1548                                    maybe_prior_trap,
1549                                    maybe_prior_recompile);
1550       // Because the interpreter also counts null, div0, range, and class
1551       // checks, these traps from compiled code are double-counted.
1552       // This is harmless; it just means that the PerXTrapLimit values
1553       // are in effect a little smaller than they look.
1554 
1555       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1556       if (per_bc_reason != Reason_none) {
1557         // Now take action based on the partially known per-BCI history.
1558         if (maybe_prior_trap
1559             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1560           // If there are too many traps at this BCI, force a recompile.
1561           // This will allow the compiler to see the limit overflow, and
1562           // take corrective action, if possible.  The compiler generally
1563           // does not use the exact PerBytecodeTrapLimit value, but instead
1564           // changes its tactics if it sees any traps at all.  This provides
1565           // a little hysteresis, delaying a recompile until a trap happens
1566           // several times.
1567           //
1568           // Actually, since there is only one bit of counter per BCI,
1569           // the possible per-BCI counts are {0,1,(per-method count)}.
1570           // This produces accurate results if in fact there is only
1571           // one hot trap site, but begins to get fuzzy if there are
1572           // many sites.  For example, if there are ten sites each
1573           // trapping two or more times, they each get the blame for
1574           // all of their traps.
1575           make_not_entrant = true;
1576         }
1577 
1578         // Detect repeated recompilation at the same BCI, and enforce a limit.
1579         if (make_not_entrant && maybe_prior_recompile) {
1580           // More than one recompile at this point.
1581           inc_recompile_count = maybe_prior_trap;
1582         }
1583       } else {
1584         // For reasons which are not recorded per-bytecode, we simply
1585         // force recompiles unconditionally.
1586         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1587         make_not_entrant = true;
1588       }
1589 
1590       // Go back to the compiler if there are too many traps in this method.
1591       if (this_trap_count >= per_method_trap_limit(reason)) {
1592         // If there are too many traps in this method, force a recompile.
1593         // This will allow the compiler to see the limit overflow, and
1594         // take corrective action, if possible.
1595         // (This condition is an unlikely backstop only, because the
1596         // PerBytecodeTrapLimit is more likely to take effect first,
1597         // if it is applicable.)
1598         make_not_entrant = true;
1599       }
1600 
1601       // Here's more hysteresis:  If there has been a recompile at
1602       // this trap point already, run the method in the interpreter
1603       // for a while to exercise it more thoroughly.
1604       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1605         reprofile = true;
1606       }
1607 
1608     }
1609 
1610     // Take requested actions on the method:
1611 
1612     // Recompile
1613     if (make_not_entrant) {
1614       if (!nm->make_not_entrant()) {
1615         return; // the call did not change nmethod's state
1616       }
1617 
1618       if (pdata != NULL) {
1619         // Record the recompilation event, if any.
1620         int tstate0 = pdata->trap_state();
1621         int tstate1 = trap_state_set_recompiled(tstate0, true);
1622         if (tstate1 != tstate0)
1623           pdata->set_trap_state(tstate1);
1624       }
1625 
1626 #if INCLUDE_RTM_OPT
1627       // Restart collecting RTM locking abort statistic if the method
1628       // is recompiled for a reason other than RTM state change.
1629       // Assume that in new recompiled code the statistic could be different,
1630       // for example, due to different inlining.
1631       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1632           UseRTMDeopt && (nm->rtm_state() != ProfileRTM)) {
1633         trap_mdo->atomic_set_rtm_state(ProfileRTM);
1634       }
1635 #endif
1636     }
1637 
1638     if (inc_recompile_count) {
1639       trap_mdo->inc_overflow_recompile_count();
1640       if ((uint)trap_mdo->overflow_recompile_count() >
1641           (uint)PerBytecodeRecompilationCutoff) {
1642         // Give up on the method containing the bad BCI.
1643         if (trap_method() == nm->method()) {
1644           make_not_compilable = true;
1645         } else {
1646           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1647           // But give grace to the enclosing nm->method().
1648         }
1649       }
1650     }
1651 
1652     // Reprofile
1653     if (reprofile) {
1654       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1655     }
1656 
1657     // Give up compiling
1658     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1659       assert(make_not_entrant, "consistent");
1660       nm->method()->set_not_compilable(CompLevel_full_optimization);
1661     }
1662 
1663   } // Free marked resources
1664 
1665 }
1666 JRT_END
1667 
1668 MethodData*
1669 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1670                                 bool create_if_missing) {
1671   Thread* THREAD = thread;
1672   MethodData* mdo = m()->method_data();
1673   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1674     // Build an MDO.  Ignore errors like OutOfMemory;
1675     // that simply means we won't have an MDO to update.
1676     Method::build_interpreter_method_data(m, THREAD);
1677     if (HAS_PENDING_EXCEPTION) {
1678       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1679       CLEAR_PENDING_EXCEPTION;
1680     }
1681     mdo = m()->method_data();
1682   }
1683   return mdo;
1684 }
1685 
1686 ProfileData*
1687 Deoptimization::query_update_method_data(MethodData* trap_mdo,
1688                                          int trap_bci,
1689                                          Deoptimization::DeoptReason reason,
1690                                          Method* compiled_method,
1691                                          //outputs:
1692                                          uint& ret_this_trap_count,
1693                                          bool& ret_maybe_prior_trap,
1694                                          bool& ret_maybe_prior_recompile) {
1695   uint prior_trap_count = trap_mdo->trap_count(reason);
1696   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
1697 
1698   // If the runtime cannot find a place to store trap history,
1699   // it is estimated based on the general condition of the method.
1700   // If the method has ever been recompiled, or has ever incurred
1701   // a trap with the present reason , then this BCI is assumed
1702   // (pessimistically) to be the culprit.
1703   bool maybe_prior_trap      = (prior_trap_count != 0);
1704   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1705   ProfileData* pdata = NULL;
1706 
1707 
1708   // For reasons which are recorded per bytecode, we check per-BCI data.
1709   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1710   if (per_bc_reason != Reason_none) {
1711     // Find the profile data for this BCI.  If there isn't one,
1712     // try to allocate one from the MDO's set of spares.
1713     // This will let us detect a repeated trap at this point.
1714     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
1715 
1716     if (pdata != NULL) {
1717       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
1718         if (LogCompilation && xtty != NULL) {
1719           ttyLocker ttyl;
1720           // no more room for speculative traps in this MDO
1721           xtty->elem("speculative_traps_oom");
1722         }
1723       }
1724       // Query the trap state of this profile datum.
1725       int tstate0 = pdata->trap_state();
1726       if (!trap_state_has_reason(tstate0, per_bc_reason))
1727         maybe_prior_trap = false;
1728       if (!trap_state_is_recompiled(tstate0))
1729         maybe_prior_recompile = false;
1730 
1731       // Update the trap state of this profile datum.
1732       int tstate1 = tstate0;
1733       // Record the reason.
1734       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1735       // Store the updated state on the MDO, for next time.
1736       if (tstate1 != tstate0)
1737         pdata->set_trap_state(tstate1);
1738     } else {
1739       if (LogCompilation && xtty != NULL) {
1740         ttyLocker ttyl;
1741         // Missing MDP?  Leave a small complaint in the log.
1742         xtty->elem("missing_mdp bci='%d'", trap_bci);
1743       }
1744     }
1745   }
1746 
1747   // Return results:
1748   ret_this_trap_count = this_trap_count;
1749   ret_maybe_prior_trap = maybe_prior_trap;
1750   ret_maybe_prior_recompile = maybe_prior_recompile;
1751   return pdata;
1752 }
1753 
1754 void
1755 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
1756   ResourceMark rm;
1757   // Ignored outputs:
1758   uint ignore_this_trap_count;
1759   bool ignore_maybe_prior_trap;
1760   bool ignore_maybe_prior_recompile;
1761   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
1762   query_update_method_data(trap_mdo, trap_bci,
1763                            (DeoptReason)reason,
1764                            NULL,
1765                            ignore_this_trap_count,
1766                            ignore_maybe_prior_trap,
1767                            ignore_maybe_prior_recompile);
1768 }
1769 
1770 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
1771 
1772   // Still in Java no safepoints
1773   {
1774     // This enters VM and may safepoint
1775     uncommon_trap_inner(thread, trap_request);
1776   }
1777   return fetch_unroll_info_helper(thread);
1778 }
1779 
1780 // Local derived constants.
1781 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
1782 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
1783 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
1784 
1785 //---------------------------trap_state_reason---------------------------------
1786 Deoptimization::DeoptReason
1787 Deoptimization::trap_state_reason(int trap_state) {
1788   // This assert provides the link between the width of DataLayout::trap_bits
1789   // and the encoding of "recorded" reasons.  It ensures there are enough
1790   // bits to store all needed reasons in the per-BCI MDO profile.
1791   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1792   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1793   trap_state -= recompile_bit;
1794   if (trap_state == DS_REASON_MASK) {
1795     return Reason_many;
1796   } else {
1797     assert((int)Reason_none == 0, "state=0 => Reason_none");
1798     return (DeoptReason)trap_state;
1799   }
1800 }
1801 //-------------------------trap_state_has_reason-------------------------------
1802 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1803   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
1804   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1805   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1806   trap_state -= recompile_bit;
1807   if (trap_state == DS_REASON_MASK) {
1808     return -1;  // true, unspecifically (bottom of state lattice)
1809   } else if (trap_state == reason) {
1810     return 1;   // true, definitely
1811   } else if (trap_state == 0) {
1812     return 0;   // false, definitely (top of state lattice)
1813   } else {
1814     return 0;   // false, definitely
1815   }
1816 }
1817 //-------------------------trap_state_add_reason-------------------------------
1818 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
1819   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
1820   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1821   trap_state -= recompile_bit;
1822   if (trap_state == DS_REASON_MASK) {
1823     return trap_state + recompile_bit;     // already at state lattice bottom
1824   } else if (trap_state == reason) {
1825     return trap_state + recompile_bit;     // the condition is already true
1826   } else if (trap_state == 0) {
1827     return reason + recompile_bit;          // no condition has yet been true
1828   } else {
1829     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
1830   }
1831 }
1832 //-----------------------trap_state_is_recompiled------------------------------
1833 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1834   return (trap_state & DS_RECOMPILE_BIT) != 0;
1835 }
1836 //-----------------------trap_state_set_recompiled-----------------------------
1837 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
1838   if (z)  return trap_state |  DS_RECOMPILE_BIT;
1839   else    return trap_state & ~DS_RECOMPILE_BIT;
1840 }
1841 //---------------------------format_trap_state---------------------------------
1842 // This is used for debugging and diagnostics, including LogFile output.
1843 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1844                                               int trap_state) {
1845   DeoptReason reason      = trap_state_reason(trap_state);
1846   bool        recomp_flag = trap_state_is_recompiled(trap_state);
1847   // Re-encode the state from its decoded components.
1848   int decoded_state = 0;
1849   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
1850     decoded_state = trap_state_add_reason(decoded_state, reason);
1851   if (recomp_flag)
1852     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
1853   // If the state re-encodes properly, format it symbolically.
1854   // Because this routine is used for debugging and diagnostics,
1855   // be robust even if the state is a strange value.
1856   size_t len;
1857   if (decoded_state != trap_state) {
1858     // Random buggy state that doesn't decode??
1859     len = jio_snprintf(buf, buflen, "#%d", trap_state);
1860   } else {
1861     len = jio_snprintf(buf, buflen, "%s%s",
1862                        trap_reason_name(reason),
1863                        recomp_flag ? " recompiled" : "");
1864   }
1865   if (len >= buflen)
1866     buf[buflen-1] = '\0';
1867   return buf;
1868 }
1869 
1870 
1871 //--------------------------------statics--------------------------------------
1872 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1873   = Deoptimization::Action_reinterpret;
1874 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
1875   // Note:  Keep this in sync. with enum DeoptReason.
1876   "none",
1877   "null_check",
1878   "null_assert",
1879   "range_check",
1880   "class_check",
1881   "array_check",
1882   "intrinsic",
1883   "bimorphic",
1884   "unloaded",
1885   "uninitialized",
1886   "unreached",
1887   "unhandled",
1888   "constraint",
1889   "div0_check",
1890   "age",
1891   "predicate",
1892   "loop_limit_check",
1893   "speculate_class_check",
1894   "rtm_state_change",
1895   "unstable_if"
1896 };
1897 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
1898   // Note:  Keep this in sync. with enum DeoptAction.
1899   "none",
1900   "maybe_recompile",
1901   "reinterpret",
1902   "make_not_entrant",
1903   "make_not_compilable"
1904 };
1905 
1906 const char* Deoptimization::trap_reason_name(int reason) {
1907   if (reason == Reason_many)  return "many";
1908   if ((uint)reason < Reason_LIMIT)
1909     return _trap_reason_name[reason];
1910   static char buf[20];
1911   sprintf(buf, "reason%d", reason);
1912   return buf;
1913 }
1914 const char* Deoptimization::trap_action_name(int action) {
1915   if ((uint)action < Action_LIMIT)
1916     return _trap_action_name[action];
1917   static char buf[20];
1918   sprintf(buf, "action%d", action);
1919   return buf;
1920 }
1921 
1922 // This is used for debugging and diagnostics, including LogFile output.
1923 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
1924                                                 int trap_request) {
1925   jint unloaded_class_index = trap_request_index(trap_request);
1926   const char* reason = trap_reason_name(trap_request_reason(trap_request));
1927   const char* action = trap_action_name(trap_request_action(trap_request));
1928   size_t len;
1929   if (unloaded_class_index < 0) {
1930     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
1931                        reason, action);
1932   } else {
1933     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
1934                        reason, action, unloaded_class_index);
1935   }
1936   if (len >= buflen)
1937     buf[buflen-1] = '\0';
1938   return buf;
1939 }
1940 
1941 juint Deoptimization::_deoptimization_hist
1942         [Deoptimization::Reason_LIMIT]
1943     [1 + Deoptimization::Action_LIMIT]
1944         [Deoptimization::BC_CASE_LIMIT]
1945   = {0};
1946 
1947 enum {
1948   LSB_BITS = 8,
1949   LSB_MASK = right_n_bits(LSB_BITS)
1950 };
1951 
1952 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1953                                        Bytecodes::Code bc) {
1954   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1955   assert(action >= 0 && action < Action_LIMIT, "oob");
1956   _deoptimization_hist[Reason_none][0][0] += 1;  // total
1957   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
1958   juint* cases = _deoptimization_hist[reason][1+action];
1959   juint* bc_counter_addr = NULL;
1960   juint  bc_counter      = 0;
1961   // Look for an unused counter, or an exact match to this BC.
1962   if (bc != Bytecodes::_illegal) {
1963     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1964       juint* counter_addr = &cases[bc_case];
1965       juint  counter = *counter_addr;
1966       if ((counter == 0 && bc_counter_addr == NULL)
1967           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
1968         // this counter is either free or is already devoted to this BC
1969         bc_counter_addr = counter_addr;
1970         bc_counter = counter | bc;
1971       }
1972     }
1973   }
1974   if (bc_counter_addr == NULL) {
1975     // Overflow, or no given bytecode.
1976     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
1977     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
1978   }
1979   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
1980 }
1981 
1982 jint Deoptimization::total_deoptimization_count() {
1983   return _deoptimization_hist[Reason_none][0][0];
1984 }
1985 
1986 jint Deoptimization::deoptimization_count(DeoptReason reason) {
1987   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1988   return _deoptimization_hist[reason][0][0];
1989 }
1990 
1991 void Deoptimization::print_statistics() {
1992   juint total = total_deoptimization_count();
1993   juint account = total;
1994   if (total != 0) {
1995     ttyLocker ttyl;
1996     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
1997     tty->print_cr("Deoptimization traps recorded:");
1998     #define PRINT_STAT_LINE(name, r) \
1999       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2000     PRINT_STAT_LINE("total", total);
2001     // For each non-zero entry in the histogram, print the reason,
2002     // the action, and (if specifically known) the type of bytecode.
2003     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2004       for (int action = 0; action < Action_LIMIT; action++) {
2005         juint* cases = _deoptimization_hist[reason][1+action];
2006         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2007           juint counter = cases[bc_case];
2008           if (counter != 0) {
2009             char name[1*K];
2010             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2011             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2012               bc = Bytecodes::_illegal;
2013             sprintf(name, "%s/%s/%s",
2014                     trap_reason_name(reason),
2015                     trap_action_name(action),
2016                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2017             juint r = counter >> LSB_BITS;
2018             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2019             account -= r;
2020           }
2021         }
2022       }
2023     }
2024     if (account != 0) {
2025       PRINT_STAT_LINE("unaccounted", account);
2026     }
2027     #undef PRINT_STAT_LINE
2028     if (xtty != NULL)  xtty->tail("statistics");
2029   }
2030 }
2031 #else // COMPILER2 || SHARK
2032 
2033 
2034 // Stubs for C1 only system.
2035 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2036   return false;
2037 }
2038 
2039 const char* Deoptimization::trap_reason_name(int reason) {
2040   return "unknown";
2041 }
2042 
2043 void Deoptimization::print_statistics() {
2044   // no output
2045 }
2046 
2047 void
2048 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2049   // no udpate
2050 }
2051 
2052 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2053   return 0;
2054 }
2055 
2056 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2057                                        Bytecodes::Code bc) {
2058   // no update
2059 }
2060 
2061 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2062                                               int trap_state) {
2063   jio_snprintf(buf, buflen, "#%d", trap_state);
2064   return buf;
2065 }
2066 
2067 #endif // COMPILER2 || SHARK