1 /*
   2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compilerOracle.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc_implementation/g1/heapRegion.hpp"
  39 #include "gc_interface/collectedHeap.hpp"
  40 #include "interpreter/bytecode.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "memory/barrierSet.hpp"
  44 #include "memory/gcLocker.inline.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "oops/objArrayKlass.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "opto/addnode.hpp"
  49 #include "opto/callnode.hpp"
  50 #include "opto/cfgnode.hpp"
  51 #include "opto/connode.hpp"
  52 #include "opto/graphKit.hpp"
  53 #include "opto/machnode.hpp"
  54 #include "opto/matcher.hpp"
  55 #include "opto/memnode.hpp"
  56 #include "opto/mulnode.hpp"
  57 #include "opto/runtime.hpp"
  58 #include "opto/subnode.hpp"
  59 #include "runtime/fprofiler.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/interfaceSupport.hpp"
  62 #include "runtime/javaCalls.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/signature.hpp"
  65 #include "runtime/threadCritical.hpp"
  66 #include "runtime/vframe.hpp"
  67 #include "runtime/vframeArray.hpp"
  68 #include "runtime/vframe_hp.hpp"
  69 #include "utilities/copy.hpp"
  70 #include "utilities/preserveException.hpp"
  71 #ifdef TARGET_ARCH_MODEL_x86_32
  72 # include "adfiles/ad_x86_32.hpp"
  73 #endif
  74 #ifdef TARGET_ARCH_MODEL_x86_64
  75 # include "adfiles/ad_x86_64.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_MODEL_sparc
  78 # include "adfiles/ad_sparc.hpp"
  79 #endif
  80 #ifdef TARGET_ARCH_MODEL_zero
  81 # include "adfiles/ad_zero.hpp"
  82 #endif
  83 #ifdef TARGET_ARCH_MODEL_arm
  84 # include "adfiles/ad_arm.hpp"
  85 #endif
  86 #ifdef TARGET_ARCH_MODEL_ppc_32
  87 # include "adfiles/ad_ppc_32.hpp"
  88 #endif
  89 #ifdef TARGET_ARCH_MODEL_ppc_64
  90 # include "adfiles/ad_ppc_64.hpp"
  91 #endif
  92 
  93 
  94 // For debugging purposes:
  95 //  To force FullGCALot inside a runtime function, add the following two lines
  96 //
  97 //  Universe::release_fullgc_alot_dummy();
  98 //  MarkSweep::invoke(0, "Debugging");
  99 //
 100 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
 101 
 102 
 103 
 104 
 105 // Compiled code entry points
 106 address OptoRuntime::_new_instance_Java                           = NULL;
 107 address OptoRuntime::_new_array_Java                              = NULL;
 108 address OptoRuntime::_new_array_nozero_Java                       = NULL;
 109 address OptoRuntime::_multianewarray2_Java                        = NULL;
 110 address OptoRuntime::_multianewarray3_Java                        = NULL;
 111 address OptoRuntime::_multianewarray4_Java                        = NULL;
 112 address OptoRuntime::_multianewarray5_Java                        = NULL;
 113 address OptoRuntime::_multianewarrayN_Java                        = NULL;
 114 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
 115 address OptoRuntime::_g1_wb_post_Java                             = NULL;
 116 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
 117 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 118 address OptoRuntime::_rethrow_Java                                = NULL;
 119 
 120 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 121 address OptoRuntime::_register_finalizer_Java                     = NULL;
 122 
 123 # ifdef ENABLE_ZAP_DEAD_LOCALS
 124 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
 125 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
 126 # endif
 127 
 128 ExceptionBlob* OptoRuntime::_exception_blob;
 129 
 130 // This should be called in an assertion at the start of OptoRuntime routines
 131 // which are entered from compiled code (all of them)
 132 #ifdef ASSERT
 133 static bool check_compiled_frame(JavaThread* thread) {
 134   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 135   RegisterMap map(thread, false);
 136   frame caller = thread->last_frame().sender(&map);
 137   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 138   return true;
 139 }
 140 #endif // ASSERT
 141 
 142 
 143 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 144   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 145   if (var == NULL) { return false; }
 146 
 147 bool OptoRuntime::generate(ciEnv* env) {
 148 
 149   generate_exception_blob();
 150 
 151   // Note: tls: Means fetching the return oop out of the thread-local storage
 152   //
 153   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 154   // -------------------------------------------------------------------------------------------------------------------------------
 155   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 156   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 157   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 158   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 159   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 160   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 161   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 162   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 163   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 164   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 165   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 166   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 167 
 168   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 169   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 170 
 171 # ifdef ENABLE_ZAP_DEAD_LOCALS
 172   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
 173   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
 174 # endif
 175   return true;
 176 }
 177 
 178 #undef gen
 179 
 180 
 181 // Helper method to do generation of RunTimeStub's
 182 address OptoRuntime::generate_stub( ciEnv* env,
 183                                     TypeFunc_generator gen, address C_function,
 184                                     const char *name, int is_fancy_jump,
 185                                     bool pass_tls,
 186                                     bool save_argument_registers,
 187                                     bool return_pc ) {
 188   ResourceMark rm;
 189   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
 190   return  C.stub_entry_point();
 191 }
 192 
 193 const char* OptoRuntime::stub_name(address entry) {
 194 #ifndef PRODUCT
 195   CodeBlob* cb = CodeCache::find_blob(entry);
 196   RuntimeStub* rs =(RuntimeStub *)cb;
 197   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 198   return rs->name();
 199 #else
 200   // Fast implementation for product mode (maybe it should be inlined too)
 201   return "runtime stub";
 202 #endif
 203 }
 204 
 205 
 206 //=============================================================================
 207 // Opto compiler runtime routines
 208 //=============================================================================
 209 
 210 
 211 //=============================allocation======================================
 212 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 213 // and try allocation again.
 214 
 215 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 216   // After any safepoint, just before going back to compiled code,
 217   // we inform the GC that we will be doing initializing writes to
 218   // this object in the future without emitting card-marks, so
 219   // GC may take any compensating steps.
 220   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 221 
 222   oop new_obj = thread->vm_result();
 223   if (new_obj == NULL)  return;
 224 
 225   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 226          "compiler must check this first");
 227   // GC may decide to give back a safer copy of new_obj.
 228   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 229   thread->set_vm_result(new_obj);
 230 }
 231 
 232 // object allocation
 233 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 234   JRT_BLOCK;
 235 #ifndef PRODUCT
 236   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 237 #endif
 238   assert(check_compiled_frame(thread), "incorrect caller");
 239 
 240   // These checks are cheap to make and support reflective allocation.
 241   int lh = klass->layout_helper();
 242   if (Klass::layout_helper_needs_slow_path(lh)
 243       || !InstanceKlass::cast(klass)->is_initialized()) {
 244     KlassHandle kh(THREAD, klass);
 245     kh->check_valid_for_instantiation(false, THREAD);
 246     if (!HAS_PENDING_EXCEPTION) {
 247       InstanceKlass::cast(kh())->initialize(THREAD);
 248     }
 249     if (!HAS_PENDING_EXCEPTION) {
 250       klass = kh();
 251     } else {
 252       klass = NULL;
 253     }
 254   }
 255 
 256   if (klass != NULL) {
 257     // Scavenge and allocate an instance.
 258     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 259     thread->set_vm_result(result);
 260 
 261     // Pass oops back through thread local storage.  Our apparent type to Java
 262     // is that we return an oop, but we can block on exit from this routine and
 263     // a GC can trash the oop in C's return register.  The generated stub will
 264     // fetch the oop from TLS after any possible GC.
 265   }
 266 
 267   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 268   JRT_BLOCK_END;
 269 
 270   if (GraphKit::use_ReduceInitialCardMarks()) {
 271     // inform GC that we won't do card marks for initializing writes.
 272     new_store_pre_barrier(thread);
 273   }
 274 JRT_END
 275 
 276 
 277 // array allocation
 278 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 279   JRT_BLOCK;
 280 #ifndef PRODUCT
 281   SharedRuntime::_new_array_ctr++;            // new array requires GC
 282 #endif
 283   assert(check_compiled_frame(thread), "incorrect caller");
 284 
 285   // Scavenge and allocate an instance.
 286   oop result;
 287 
 288   if (array_type->oop_is_typeArray()) {
 289     // The oopFactory likes to work with the element type.
 290     // (We could bypass the oopFactory, since it doesn't add much value.)
 291     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 292     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 293   } else {
 294     // Although the oopFactory likes to work with the elem_type,
 295     // the compiler prefers the array_type, since it must already have
 296     // that latter value in hand for the fast path.
 297     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 298     result = oopFactory::new_objArray(elem_type, len, THREAD);
 299   }
 300 
 301   // Pass oops back through thread local storage.  Our apparent type to Java
 302   // is that we return an oop, but we can block on exit from this routine and
 303   // a GC can trash the oop in C's return register.  The generated stub will
 304   // fetch the oop from TLS after any possible GC.
 305   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 306   thread->set_vm_result(result);
 307   JRT_BLOCK_END;
 308 
 309   if (GraphKit::use_ReduceInitialCardMarks()) {
 310     // inform GC that we won't do card marks for initializing writes.
 311     new_store_pre_barrier(thread);
 312   }
 313 JRT_END
 314 
 315 // array allocation without zeroing
 316 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 317   JRT_BLOCK;
 318 #ifndef PRODUCT
 319   SharedRuntime::_new_array_ctr++;            // new array requires GC
 320 #endif
 321   assert(check_compiled_frame(thread), "incorrect caller");
 322 
 323   // Scavenge and allocate an instance.
 324   oop result;
 325 
 326   assert(array_type->oop_is_typeArray(), "should be called only for type array");
 327   // The oopFactory likes to work with the element type.
 328   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 329   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 330 
 331   // Pass oops back through thread local storage.  Our apparent type to Java
 332   // is that we return an oop, but we can block on exit from this routine and
 333   // a GC can trash the oop in C's return register.  The generated stub will
 334   // fetch the oop from TLS after any possible GC.
 335   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 336   thread->set_vm_result(result);
 337   JRT_BLOCK_END;
 338 
 339   if (GraphKit::use_ReduceInitialCardMarks()) {
 340     // inform GC that we won't do card marks for initializing writes.
 341     new_store_pre_barrier(thread);
 342   }
 343 
 344   oop result = thread->vm_result();
 345   if ((len > 0) && (result != NULL) &&
 346       is_deoptimized_caller_frame(thread)) {
 347     // Zero array here if the caller is deoptimized.
 348     int size = ((typeArrayOop)result)->object_size();
 349     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 350     const size_t hs = arrayOopDesc::header_size(elem_type);
 351     // Align to next 8 bytes to avoid trashing arrays's length.
 352     const size_t aligned_hs = align_object_offset(hs);
 353     HeapWord* obj = (HeapWord*)result;
 354     if (aligned_hs > hs) {
 355       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 356     }
 357     // Optimized zeroing.
 358     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 359   }
 360 
 361 JRT_END
 362 
 363 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 364 
 365 // multianewarray for 2 dimensions
 366 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 367 #ifndef PRODUCT
 368   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 369 #endif
 370   assert(check_compiled_frame(thread), "incorrect caller");
 371   assert(elem_type->is_klass(), "not a class");
 372   jint dims[2];
 373   dims[0] = len1;
 374   dims[1] = len2;
 375   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 376   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 377   thread->set_vm_result(obj);
 378 JRT_END
 379 
 380 // multianewarray for 3 dimensions
 381 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 382 #ifndef PRODUCT
 383   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 384 #endif
 385   assert(check_compiled_frame(thread), "incorrect caller");
 386   assert(elem_type->is_klass(), "not a class");
 387   jint dims[3];
 388   dims[0] = len1;
 389   dims[1] = len2;
 390   dims[2] = len3;
 391   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 392   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 393   thread->set_vm_result(obj);
 394 JRT_END
 395 
 396 // multianewarray for 4 dimensions
 397 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 398 #ifndef PRODUCT
 399   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 400 #endif
 401   assert(check_compiled_frame(thread), "incorrect caller");
 402   assert(elem_type->is_klass(), "not a class");
 403   jint dims[4];
 404   dims[0] = len1;
 405   dims[1] = len2;
 406   dims[2] = len3;
 407   dims[3] = len4;
 408   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 409   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 410   thread->set_vm_result(obj);
 411 JRT_END
 412 
 413 // multianewarray for 5 dimensions
 414 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 415 #ifndef PRODUCT
 416   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 417 #endif
 418   assert(check_compiled_frame(thread), "incorrect caller");
 419   assert(elem_type->is_klass(), "not a class");
 420   jint dims[5];
 421   dims[0] = len1;
 422   dims[1] = len2;
 423   dims[2] = len3;
 424   dims[3] = len4;
 425   dims[4] = len5;
 426   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 427   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 428   thread->set_vm_result(obj);
 429 JRT_END
 430 
 431 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 432   assert(check_compiled_frame(thread), "incorrect caller");
 433   assert(elem_type->is_klass(), "not a class");
 434   assert(oop(dims)->is_typeArray(), "not an array");
 435 
 436   ResourceMark rm;
 437   jint len = dims->length();
 438   assert(len > 0, "Dimensions array should contain data");
 439   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 440   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 441   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 442 
 443   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 444   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 445   thread->set_vm_result(obj);
 446 JRT_END
 447 
 448 
 449 const TypeFunc *OptoRuntime::new_instance_Type() {
 450   // create input type (domain)
 451   const Type **fields = TypeTuple::fields(1);
 452   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 453   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 454 
 455   // create result type (range)
 456   fields = TypeTuple::fields(1);
 457   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 458 
 459   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 460 
 461   return TypeFunc::make(domain, range);
 462 }
 463 
 464 
 465 const TypeFunc *OptoRuntime::athrow_Type() {
 466   // create input type (domain)
 467   const Type **fields = TypeTuple::fields(1);
 468   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 469   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 470 
 471   // create result type (range)
 472   fields = TypeTuple::fields(0);
 473 
 474   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 475 
 476   return TypeFunc::make(domain, range);
 477 }
 478 
 479 
 480 const TypeFunc *OptoRuntime::new_array_Type() {
 481   // create input type (domain)
 482   const Type **fields = TypeTuple::fields(2);
 483   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 484   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 485   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 486 
 487   // create result type (range)
 488   fields = TypeTuple::fields(1);
 489   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 490 
 491   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 492 
 493   return TypeFunc::make(domain, range);
 494 }
 495 
 496 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 497   // create input type (domain)
 498   const int nargs = ndim + 1;
 499   const Type **fields = TypeTuple::fields(nargs);
 500   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 501   for( int i = 1; i < nargs; i++ )
 502     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 503   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 504 
 505   // create result type (range)
 506   fields = TypeTuple::fields(1);
 507   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 508   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 509 
 510   return TypeFunc::make(domain, range);
 511 }
 512 
 513 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 514   return multianewarray_Type(2);
 515 }
 516 
 517 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 518   return multianewarray_Type(3);
 519 }
 520 
 521 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 522   return multianewarray_Type(4);
 523 }
 524 
 525 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 526   return multianewarray_Type(5);
 527 }
 528 
 529 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 530   // create input type (domain)
 531   const Type **fields = TypeTuple::fields(2);
 532   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 533   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 534   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 535 
 536   // create result type (range)
 537   fields = TypeTuple::fields(1);
 538   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 539   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 540 
 541   return TypeFunc::make(domain, range);
 542 }
 543 
 544 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 545   const Type **fields = TypeTuple::fields(2);
 546   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 547   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 548   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 549 
 550   // create result type (range)
 551   fields = TypeTuple::fields(0);
 552   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 553 
 554   return TypeFunc::make(domain, range);
 555 }
 556 
 557 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 558 
 559   const Type **fields = TypeTuple::fields(2);
 560   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 561   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 562   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 563 
 564   // create result type (range)
 565   fields = TypeTuple::fields(0);
 566   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 567 
 568   return TypeFunc::make(domain, range);
 569 }
 570 
 571 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 572   // create input type (domain)
 573   const Type **fields = TypeTuple::fields(1);
 574   // Symbol* name of class to be loaded
 575   fields[TypeFunc::Parms+0] = TypeInt::INT;
 576   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 577 
 578   // create result type (range)
 579   fields = TypeTuple::fields(0);
 580   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 581 
 582   return TypeFunc::make(domain, range);
 583 }
 584 
 585 # ifdef ENABLE_ZAP_DEAD_LOCALS
 586 // Type used for stub generation for zap_dead_locals.
 587 // No inputs or outputs
 588 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
 589   // create input type (domain)
 590   const Type **fields = TypeTuple::fields(0);
 591   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
 592 
 593   // create result type (range)
 594   fields = TypeTuple::fields(0);
 595   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
 596 
 597   return TypeFunc::make(domain,range);
 598 }
 599 # endif
 600 
 601 
 602 //-----------------------------------------------------------------------------
 603 // Monitor Handling
 604 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 605   // create input type (domain)
 606   const Type **fields = TypeTuple::fields(2);
 607   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 608   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 609   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 610 
 611   // create result type (range)
 612   fields = TypeTuple::fields(0);
 613 
 614   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 615 
 616   return TypeFunc::make(domain,range);
 617 }
 618 
 619 
 620 //-----------------------------------------------------------------------------
 621 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 622   // create input type (domain)
 623   const Type **fields = TypeTuple::fields(2);
 624   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 625   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 626   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 627 
 628   // create result type (range)
 629   fields = TypeTuple::fields(0);
 630 
 631   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 632 
 633   return TypeFunc::make(domain,range);
 634 }
 635 
 636 const TypeFunc* OptoRuntime::flush_windows_Type() {
 637   // create input type (domain)
 638   const Type** fields = TypeTuple::fields(1);
 639   fields[TypeFunc::Parms+0] = NULL; // void
 640   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 641 
 642   // create result type
 643   fields = TypeTuple::fields(1);
 644   fields[TypeFunc::Parms+0] = NULL; // void
 645   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 646 
 647   return TypeFunc::make(domain, range);
 648 }
 649 
 650 const TypeFunc* OptoRuntime::l2f_Type() {
 651   // create input type (domain)
 652   const Type **fields = TypeTuple::fields(2);
 653   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 654   fields[TypeFunc::Parms+1] = Type::HALF;
 655   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 656 
 657   // create result type (range)
 658   fields = TypeTuple::fields(1);
 659   fields[TypeFunc::Parms+0] = Type::FLOAT;
 660   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 661 
 662   return TypeFunc::make(domain, range);
 663 }
 664 
 665 const TypeFunc* OptoRuntime::modf_Type() {
 666   const Type **fields = TypeTuple::fields(2);
 667   fields[TypeFunc::Parms+0] = Type::FLOAT;
 668   fields[TypeFunc::Parms+1] = Type::FLOAT;
 669   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 670 
 671   // create result type (range)
 672   fields = TypeTuple::fields(1);
 673   fields[TypeFunc::Parms+0] = Type::FLOAT;
 674 
 675   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 676 
 677   return TypeFunc::make(domain, range);
 678 }
 679 
 680 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 681   // create input type (domain)
 682   const Type **fields = TypeTuple::fields(2);
 683   // Symbol* name of class to be loaded
 684   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 685   fields[TypeFunc::Parms+1] = Type::HALF;
 686   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 687 
 688   // create result type (range)
 689   fields = TypeTuple::fields(2);
 690   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 691   fields[TypeFunc::Parms+1] = Type::HALF;
 692   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 693 
 694   return TypeFunc::make(domain, range);
 695 }
 696 
 697 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 698   const Type **fields = TypeTuple::fields(4);
 699   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 700   fields[TypeFunc::Parms+1] = Type::HALF;
 701   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 702   fields[TypeFunc::Parms+3] = Type::HALF;
 703   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 704 
 705   // create result type (range)
 706   fields = TypeTuple::fields(2);
 707   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 708   fields[TypeFunc::Parms+1] = Type::HALF;
 709   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 710 
 711   return TypeFunc::make(domain, range);
 712 }
 713 
 714 //-------------- currentTimeMillis, currentTimeNanos, etc
 715 
 716 const TypeFunc* OptoRuntime::void_long_Type() {
 717   // create input type (domain)
 718   const Type **fields = TypeTuple::fields(0);
 719   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 720 
 721   // create result type (range)
 722   fields = TypeTuple::fields(2);
 723   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 724   fields[TypeFunc::Parms+1] = Type::HALF;
 725   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 726 
 727   return TypeFunc::make(domain, range);
 728 }
 729 
 730 // arraycopy stub variations:
 731 enum ArrayCopyType {
 732   ac_fast,                      // void(ptr, ptr, size_t)
 733   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 734   ac_slow,                      // void(ptr, int, ptr, int, int)
 735   ac_generic                    //  int(ptr, int, ptr, int, int)
 736 };
 737 
 738 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 739   // create input type (domain)
 740   int num_args      = (act == ac_fast ? 3 : 5);
 741   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 742   int argcnt = num_args;
 743   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 744   const Type** fields = TypeTuple::fields(argcnt);
 745   int argp = TypeFunc::Parms;
 746   fields[argp++] = TypePtr::NOTNULL;    // src
 747   if (num_size_args == 0) {
 748     fields[argp++] = TypeInt::INT;      // src_pos
 749   }
 750   fields[argp++] = TypePtr::NOTNULL;    // dest
 751   if (num_size_args == 0) {
 752     fields[argp++] = TypeInt::INT;      // dest_pos
 753     fields[argp++] = TypeInt::INT;      // length
 754   }
 755   while (num_size_args-- > 0) {
 756     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 757     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 758   }
 759   if (act == ac_checkcast) {
 760     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 761   }
 762   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 763   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 764 
 765   // create result type if needed
 766   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 767   fields = TypeTuple::fields(1);
 768   if (retcnt == 0)
 769     fields[TypeFunc::Parms+0] = NULL; // void
 770   else
 771     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 772   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 773   return TypeFunc::make(domain, range);
 774 }
 775 
 776 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 777   // This signature is simple:  Two base pointers and a size_t.
 778   return make_arraycopy_Type(ac_fast);
 779 }
 780 
 781 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 782   // An extension of fast_arraycopy_Type which adds type checking.
 783   return make_arraycopy_Type(ac_checkcast);
 784 }
 785 
 786 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 787   // This signature is exactly the same as System.arraycopy.
 788   // There are no intptr_t (int/long) arguments.
 789   return make_arraycopy_Type(ac_slow);
 790 }
 791 
 792 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 793   // This signature is like System.arraycopy, except that it returns status.
 794   return make_arraycopy_Type(ac_generic);
 795 }
 796 
 797 
 798 const TypeFunc* OptoRuntime::array_fill_Type() {
 799   const Type** fields;
 800   int argp = TypeFunc::Parms;
 801   if (CCallingConventionRequiresIntsAsLongs) {
 802   // create input type (domain): pointer, int, size_t
 803     fields = TypeTuple::fields(3 LP64_ONLY( + 2));
 804     fields[argp++] = TypePtr::NOTNULL;
 805     fields[argp++] = TypeLong::LONG;
 806     fields[argp++] = Type::HALF;
 807   } else {
 808     // create input type (domain): pointer, int, size_t
 809     fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 810     fields[argp++] = TypePtr::NOTNULL;
 811     fields[argp++] = TypeInt::INT;
 812   }
 813   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 814   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 815   const TypeTuple *domain = TypeTuple::make(argp, fields);
 816 
 817   // create result type
 818   fields = TypeTuple::fields(1);
 819   fields[TypeFunc::Parms+0] = NULL; // void
 820   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 821 
 822   return TypeFunc::make(domain, range);
 823 }
 824 
 825 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 826 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 827   // create input type (domain)
 828   int num_args      = 3;
 829   if (Matcher::pass_original_key_for_aes()) {
 830     num_args = 4;
 831   }
 832   int argcnt = num_args;
 833   const Type** fields = TypeTuple::fields(argcnt);
 834   int argp = TypeFunc::Parms;
 835   fields[argp++] = TypePtr::NOTNULL;    // src
 836   fields[argp++] = TypePtr::NOTNULL;    // dest
 837   fields[argp++] = TypePtr::NOTNULL;    // k array
 838   if (Matcher::pass_original_key_for_aes()) {
 839     fields[argp++] = TypePtr::NOTNULL;    // original k array
 840   }
 841   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 842   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 843 
 844   // no result type needed
 845   fields = TypeTuple::fields(1);
 846   fields[TypeFunc::Parms+0] = NULL; // void
 847   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 848   return TypeFunc::make(domain, range);
 849 }
 850 
 851 /**
 852  * int updateBytesCRC32(int crc, byte* b, int len)
 853  */
 854 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 855   // create input type (domain)
 856   int num_args      = 3;
 857   int argcnt = num_args;
 858   const Type** fields = TypeTuple::fields(argcnt);
 859   int argp = TypeFunc::Parms;
 860   fields[argp++] = TypeInt::INT;        // crc
 861   fields[argp++] = TypePtr::NOTNULL;    // src
 862   fields[argp++] = TypeInt::INT;        // len
 863   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 864   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 865 
 866   // result type needed
 867   fields = TypeTuple::fields(1);
 868   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 869   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 870   return TypeFunc::make(domain, range);
 871 }
 872 
 873 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 874 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 875   // create input type (domain)
 876   int num_args      = 5;
 877   if (Matcher::pass_original_key_for_aes()) {
 878     num_args = 6;
 879   }
 880   int argcnt = num_args;
 881   const Type** fields = TypeTuple::fields(argcnt);
 882   int argp = TypeFunc::Parms;
 883   fields[argp++] = TypePtr::NOTNULL;    // src
 884   fields[argp++] = TypePtr::NOTNULL;    // dest
 885   fields[argp++] = TypePtr::NOTNULL;    // k array
 886   fields[argp++] = TypePtr::NOTNULL;    // r array
 887   fields[argp++] = TypeInt::INT;        // src len
 888   if (Matcher::pass_original_key_for_aes()) {
 889     fields[argp++] = TypePtr::NOTNULL;    // original k array
 890   }
 891   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 892   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 893 
 894   // returning cipher len (int)
 895   fields = TypeTuple::fields(1);
 896   fields[TypeFunc::Parms+0] = TypeInt::INT;
 897   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 898   return TypeFunc::make(domain, range);
 899 }
 900 
 901 /*
 902  * void implCompress(byte[] buf, int ofs)
 903  */
 904 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 905   // create input type (domain)
 906   int num_args = 2;
 907   int argcnt = num_args;
 908   const Type** fields = TypeTuple::fields(argcnt);
 909   int argp = TypeFunc::Parms;
 910   fields[argp++] = TypePtr::NOTNULL; // buf
 911   fields[argp++] = TypePtr::NOTNULL; // state
 912   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 913   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 914 
 915   // no result type needed
 916   fields = TypeTuple::fields(1);
 917   fields[TypeFunc::Parms+0] = NULL; // void
 918   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 919   return TypeFunc::make(domain, range);
 920 }
 921 
 922 /*
 923  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
 924  */
 925 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
 926   // create input type (domain)
 927   int num_args = 4;
 928   int argcnt = num_args;
 929   const Type** fields = TypeTuple::fields(argcnt);
 930   int argp = TypeFunc::Parms;
 931   fields[argp++] = TypePtr::NOTNULL; // buf
 932   fields[argp++] = TypePtr::NOTNULL; // state
 933   fields[argp++] = TypeInt::INT;     // ofs
 934   fields[argp++] = TypeInt::INT;     // limit
 935   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 936   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 937 
 938   // returning ofs (int)
 939   fields = TypeTuple::fields(1);
 940   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
 941   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 942   return TypeFunc::make(domain, range);
 943 }
 944 
 945 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
 946   // create input type (domain)
 947   int num_args      = 6;
 948   int argcnt = num_args;
 949   const Type** fields = TypeTuple::fields(argcnt);
 950   int argp = TypeFunc::Parms;
 951   fields[argp++] = TypePtr::NOTNULL;    // x
 952   fields[argp++] = TypeInt::INT;        // xlen
 953   fields[argp++] = TypePtr::NOTNULL;    // y
 954   fields[argp++] = TypeInt::INT;        // ylen
 955   fields[argp++] = TypePtr::NOTNULL;    // z
 956   fields[argp++] = TypeInt::INT;        // zlen
 957   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 958   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 959 
 960   // no result type needed
 961   fields = TypeTuple::fields(1);
 962   fields[TypeFunc::Parms+0] = NULL;
 963   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 964   return TypeFunc::make(domain, range);
 965 }
 966 
 967 
 968 
 969 //------------- Interpreter state access for on stack replacement
 970 const TypeFunc* OptoRuntime::osr_end_Type() {
 971   // create input type (domain)
 972   const Type **fields = TypeTuple::fields(1);
 973   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
 974   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 975 
 976   // create result type
 977   fields = TypeTuple::fields(1);
 978   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
 979   fields[TypeFunc::Parms+0] = NULL; // void
 980   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 981   return TypeFunc::make(domain, range);
 982 }
 983 
 984 //-------------- methodData update helpers
 985 
 986 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
 987   // create input type (domain)
 988   const Type **fields = TypeTuple::fields(2);
 989   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
 990   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
 991   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 992 
 993   // create result type
 994   fields = TypeTuple::fields(1);
 995   fields[TypeFunc::Parms+0] = NULL; // void
 996   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 997   return TypeFunc::make(domain,range);
 998 }
 999 
1000 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1001   if (receiver == NULL) return;
1002   Klass* receiver_klass = receiver->klass();
1003 
1004   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1005   int empty_row = -1;           // free row, if any is encountered
1006 
1007   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1008   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1009     // if (vc->receiver(row) == receiver_klass)
1010     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1011     intptr_t row_recv = *(mdp + receiver_off);
1012     if (row_recv == (intptr_t) receiver_klass) {
1013       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1014       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1015       *(mdp + count_off) += DataLayout::counter_increment;
1016       return;
1017     } else if (row_recv == 0) {
1018       // else if (vc->receiver(row) == NULL)
1019       empty_row = (int) row;
1020     }
1021   }
1022 
1023   if (empty_row != -1) {
1024     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1025     // vc->set_receiver(empty_row, receiver_klass);
1026     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1027     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1028     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1029     *(mdp + count_off) = DataLayout::counter_increment;
1030   } else {
1031     // Receiver did not match any saved receiver and there is no empty row for it.
1032     // Increment total counter to indicate polymorphic case.
1033     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
1034     *count_p += DataLayout::counter_increment;
1035   }
1036 JRT_END
1037 
1038 //-------------------------------------------------------------------------------------
1039 // register policy
1040 
1041 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1042   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1043   switch (register_save_policy[reg]) {
1044     case 'C': return false; //SOC
1045     case 'E': return true ; //SOE
1046     case 'N': return false; //NS
1047     case 'A': return false; //AS
1048   }
1049   ShouldNotReachHere();
1050   return false;
1051 }
1052 
1053 //-----------------------------------------------------------------------
1054 // Exceptions
1055 //
1056 
1057 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
1058 
1059 // The method is an entry that is always called by a C++ method not
1060 // directly from compiled code. Compiled code will call the C++ method following.
1061 // We can't allow async exception to be installed during  exception processing.
1062 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1063 
1064   // Do not confuse exception_oop with pending_exception. The exception_oop
1065   // is only used to pass arguments into the method. Not for general
1066   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1067   // the runtime stubs checks this on exit.
1068   assert(thread->exception_oop() != NULL, "exception oop is found");
1069   address handler_address = NULL;
1070 
1071   Handle exception(thread, thread->exception_oop());
1072   address pc = thread->exception_pc();
1073 
1074   // Clear out the exception oop and pc since looking up an
1075   // exception handler can cause class loading, which might throw an
1076   // exception and those fields are expected to be clear during
1077   // normal bytecode execution.
1078   thread->clear_exception_oop_and_pc();
1079 
1080   if (TraceExceptions) {
1081     trace_exception(exception(), pc, "");
1082   }
1083 
1084   // for AbortVMOnException flag
1085   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
1086 
1087 #ifdef ASSERT
1088   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1089     // should throw an exception here
1090     ShouldNotReachHere();
1091   }
1092 #endif
1093 
1094   // new exception handling: this method is entered only from adapters
1095   // exceptions from compiled java methods are handled in compiled code
1096   // using rethrow node
1097 
1098   nm = CodeCache::find_nmethod(pc);
1099   assert(nm != NULL, "No NMethod found");
1100   if (nm->is_native_method()) {
1101     fatal("Native method should not have path to exception handling");
1102   } else {
1103     // we are switching to old paradigm: search for exception handler in caller_frame
1104     // instead in exception handler of caller_frame.sender()
1105 
1106     if (JvmtiExport::can_post_on_exceptions()) {
1107       // "Full-speed catching" is not necessary here,
1108       // since we're notifying the VM on every catch.
1109       // Force deoptimization and the rest of the lookup
1110       // will be fine.
1111       deoptimize_caller_frame(thread);
1112     }
1113 
1114     // Check the stack guard pages.  If enabled, look for handler in this frame;
1115     // otherwise, forcibly unwind the frame.
1116     //
1117     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1118     bool force_unwind = !thread->reguard_stack();
1119     bool deopting = false;
1120     if (nm->is_deopt_pc(pc)) {
1121       deopting = true;
1122       RegisterMap map(thread, false);
1123       frame deoptee = thread->last_frame().sender(&map);
1124       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1125       // Adjust the pc back to the original throwing pc
1126       pc = deoptee.pc();
1127     }
1128 
1129     // If we are forcing an unwind because of stack overflow then deopt is
1130     // irrelevant since we are throwing the frame away anyway.
1131 
1132     if (deopting && !force_unwind) {
1133       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1134     } else {
1135 
1136       handler_address =
1137         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1138 
1139       if (handler_address == NULL) {
1140         Handle original_exception(thread, exception());
1141         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1142         assert (handler_address != NULL, "must have compiled handler");
1143         // Update the exception cache only when the unwind was not forced
1144         // and there didn't happen another exception during the computation of the
1145         // compiled exception handler.
1146         if (!force_unwind && original_exception() == exception()) {
1147           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1148         }
1149       } else {
1150         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1151       }
1152     }
1153 
1154     thread->set_exception_pc(pc);
1155     thread->set_exception_handler_pc(handler_address);
1156 
1157     // Check if the exception PC is a MethodHandle call site.
1158     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1159   }
1160 
1161   // Restore correct return pc.  Was saved above.
1162   thread->set_exception_oop(exception());
1163   return handler_address;
1164 
1165 JRT_END
1166 
1167 // We are entering here from exception_blob
1168 // If there is a compiled exception handler in this method, we will continue there;
1169 // otherwise we will unwind the stack and continue at the caller of top frame method
1170 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1171 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1172 // we looked up the handler for has been deoptimized in the meantime. If it has been
1173 // we must not use the handler and instead return the deopt blob.
1174 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1175 //
1176 // We are in Java not VM and in debug mode we have a NoHandleMark
1177 //
1178 #ifndef PRODUCT
1179   SharedRuntime::_find_handler_ctr++;          // find exception handler
1180 #endif
1181   debug_only(NoHandleMark __hm;)
1182   nmethod* nm = NULL;
1183   address handler_address = NULL;
1184   {
1185     // Enter the VM
1186 
1187     ResetNoHandleMark rnhm;
1188     handler_address = handle_exception_C_helper(thread, nm);
1189   }
1190 
1191   // Back in java: Use no oops, DON'T safepoint
1192 
1193   // Now check to see if the handler we are returning is in a now
1194   // deoptimized frame
1195 
1196   if (nm != NULL) {
1197     RegisterMap map(thread, false);
1198     frame caller = thread->last_frame().sender(&map);
1199 #ifdef ASSERT
1200     assert(caller.is_compiled_frame(), "must be");
1201 #endif // ASSERT
1202     if (caller.is_deoptimized_frame()) {
1203       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1204     }
1205   }
1206   return handler_address;
1207 }
1208 
1209 //------------------------------rethrow----------------------------------------
1210 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1211 // is either throwing or rethrowing an exception.  The callee-save registers
1212 // have been restored, synchronized objects have been unlocked and the callee
1213 // stack frame has been removed.  The return address was passed in.
1214 // Exception oop is passed as the 1st argument.  This routine is then called
1215 // from the stub.  On exit, we know where to jump in the caller's code.
1216 // After this C code exits, the stub will pop his frame and end in a jump
1217 // (instead of a return).  We enter the caller's default handler.
1218 //
1219 // This must be JRT_LEAF:
1220 //     - caller will not change its state as we cannot block on exit,
1221 //       therefore raw_exception_handler_for_return_address is all it takes
1222 //       to handle deoptimized blobs
1223 //
1224 // However, there needs to be a safepoint check in the middle!  So compiled
1225 // safepoints are completely watertight.
1226 //
1227 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1228 //
1229 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1230 //
1231 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1232 #ifndef PRODUCT
1233   SharedRuntime::_rethrow_ctr++;               // count rethrows
1234 #endif
1235   assert (exception != NULL, "should have thrown a NULLPointerException");
1236 #ifdef ASSERT
1237   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1238     // should throw an exception here
1239     ShouldNotReachHere();
1240   }
1241 #endif
1242 
1243   thread->set_vm_result(exception);
1244   // Frame not compiled (handles deoptimization blob)
1245   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1246 }
1247 
1248 
1249 const TypeFunc *OptoRuntime::rethrow_Type() {
1250   // create input type (domain)
1251   const Type **fields = TypeTuple::fields(1);
1252   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1253   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1254 
1255   // create result type (range)
1256   fields = TypeTuple::fields(1);
1257   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1258   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1259 
1260   return TypeFunc::make(domain, range);
1261 }
1262 
1263 
1264 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1265   // Deoptimize the caller before continuing, as the compiled
1266   // exception handler table may not be valid.
1267   if (!StressCompiledExceptionHandlers && doit) {
1268     deoptimize_caller_frame(thread);
1269   }
1270 }
1271 
1272 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1273   // Called from within the owner thread, so no need for safepoint
1274   RegisterMap reg_map(thread);
1275   frame stub_frame = thread->last_frame();
1276   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1277   frame caller_frame = stub_frame.sender(&reg_map);
1278 
1279   // Deoptimize the caller frame.
1280   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1281 }
1282 
1283 
1284 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1285   // Called from within the owner thread, so no need for safepoint
1286   RegisterMap reg_map(thread);
1287   frame stub_frame = thread->last_frame();
1288   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1289   frame caller_frame = stub_frame.sender(&reg_map);
1290   return caller_frame.is_deoptimized_frame();
1291 }
1292 
1293 
1294 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1295   // create input type (domain)
1296   const Type **fields = TypeTuple::fields(1);
1297   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1298   // // The JavaThread* is passed to each routine as the last argument
1299   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1300   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1301 
1302   // create result type (range)
1303   fields = TypeTuple::fields(0);
1304 
1305   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1306 
1307   return TypeFunc::make(domain,range);
1308 }
1309 
1310 
1311 //-----------------------------------------------------------------------------
1312 // Dtrace support.  entry and exit probes have the same signature
1313 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1314   // create input type (domain)
1315   const Type **fields = TypeTuple::fields(2);
1316   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1317   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1318   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1319 
1320   // create result type (range)
1321   fields = TypeTuple::fields(0);
1322 
1323   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1324 
1325   return TypeFunc::make(domain,range);
1326 }
1327 
1328 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1329   // create input type (domain)
1330   const Type **fields = TypeTuple::fields(2);
1331   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1332   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1333 
1334   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1335 
1336   // create result type (range)
1337   fields = TypeTuple::fields(0);
1338 
1339   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1340 
1341   return TypeFunc::make(domain,range);
1342 }
1343 
1344 
1345 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1346   assert(obj->is_oop(), "must be a valid oop");
1347   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1348   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1349 JRT_END
1350 
1351 //-----------------------------------------------------------------------------
1352 
1353 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1354 
1355 //
1356 // dump the collected NamedCounters.
1357 //
1358 void OptoRuntime::print_named_counters() {
1359   int total_lock_count = 0;
1360   int eliminated_lock_count = 0;
1361 
1362   NamedCounter* c = _named_counters;
1363   while (c) {
1364     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1365       int count = c->count();
1366       if (count > 0) {
1367         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1368         if (Verbose) {
1369           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1370         }
1371         total_lock_count += count;
1372         if (eliminated) {
1373           eliminated_lock_count += count;
1374         }
1375       }
1376     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1377       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1378       if (blc->nonzero()) {
1379         tty->print_cr("%s", c->name());
1380         blc->print_on(tty);
1381       }
1382 #if INCLUDE_RTM_OPT
1383     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1384       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1385       if (rlc->nonzero()) {
1386         tty->print_cr("%s", c->name());
1387         rlc->print_on(tty);
1388       }
1389 #endif
1390     }
1391     c = c->next();
1392   }
1393   if (total_lock_count > 0) {
1394     tty->print_cr("dynamic locks: %d", total_lock_count);
1395     if (eliminated_lock_count) {
1396       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1397                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1398     }
1399   }
1400 }
1401 
1402 //
1403 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1404 //  name which consists of method@line for the inlining tree.
1405 //
1406 
1407 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1408   int max_depth = youngest_jvms->depth();
1409 
1410   // Visit scopes from youngest to oldest.
1411   bool first = true;
1412   stringStream st;
1413   for (int depth = max_depth; depth >= 1; depth--) {
1414     JVMState* jvms = youngest_jvms->of_depth(depth);
1415     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1416     if (!first) {
1417       st.print(" ");
1418     } else {
1419       first = false;
1420     }
1421     int bci = jvms->bci();
1422     if (bci < 0) bci = 0;
1423     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1424     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1425   }
1426   NamedCounter* c;
1427   if (tag == NamedCounter::BiasedLockingCounter) {
1428     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
1429   } else if (tag == NamedCounter::RTMLockingCounter) {
1430     c = new RTMLockingNamedCounter(strdup(st.as_string()));
1431   } else {
1432     c = new NamedCounter(strdup(st.as_string()), tag);
1433   }
1434 
1435   // atomically add the new counter to the head of the list.  We only
1436   // add counters so this is safe.
1437   NamedCounter* head;
1438   do {
1439     c->set_next(NULL);
1440     head = _named_counters;
1441     c->set_next(head);
1442   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1443   return c;
1444 }
1445 
1446 //-----------------------------------------------------------------------------
1447 // Non-product code
1448 #ifndef PRODUCT
1449 
1450 int trace_exception_counter = 0;
1451 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1452   ttyLocker ttyl;
1453   trace_exception_counter++;
1454   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1455   exception_oop->print_value();
1456   tty->print(" in ");
1457   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1458   if (blob->is_nmethod()) {
1459     nmethod* nm = blob->as_nmethod_or_null();
1460     nm->method()->print_value();
1461   } else if (blob->is_runtime_stub()) {
1462     tty->print("<runtime-stub>");
1463   } else {
1464     tty->print("<unknown>");
1465   }
1466   tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1467   tty->print_cr("]");
1468 }
1469 
1470 #endif  // PRODUCT
1471 
1472 
1473 # ifdef ENABLE_ZAP_DEAD_LOCALS
1474 // Called from call sites in compiled code with oop maps (actually safepoints)
1475 // Zaps dead locals in first java frame.
1476 // Is entry because may need to lock to generate oop maps
1477 // Currently, only used for compiler frames, but someday may be used
1478 // for interpreter frames, too.
1479 
1480 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1481 
1482 // avoid pointers to member funcs with these helpers
1483 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1484 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1485 
1486 
1487 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1488                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
1489   assert(JavaThread::current() == thread, "is this needed?");
1490 
1491   if ( !ZapDeadCompiledLocals )  return;
1492 
1493   bool skip = false;
1494 
1495        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1496   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1497   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1498     warning("starting zapping after skipping");
1499 
1500        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1501   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1502   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1503     warning("about to zap last zap");
1504 
1505   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1506 
1507   if ( skip )  return;
1508 
1509   // find java frame and zap it
1510 
1511   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1512     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1513       sfs.current()->zap_dead_locals(thread, sfs.register_map());
1514       return;
1515     }
1516   }
1517   warning("no frame found to zap in zap_dead_Java_locals_C");
1518 }
1519 
1520 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1521   zap_dead_java_or_native_locals(thread, is_java_frame);
1522 JRT_END
1523 
1524 // The following does not work because for one thing, the
1525 // thread state is wrong; it expects java, but it is native.
1526 // Also, the invariants in a native stub are different and
1527 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
1528 // in there.
1529 // So for now, we do not zap in native stubs.
1530 
1531 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1532   zap_dead_java_or_native_locals(thread, is_native_frame);
1533 JRT_END
1534 
1535 # endif