1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "opto/compile.hpp"
  27 #include "opto/regmask.hpp"
  28 #if defined AD_MD_HPP
  29 # include AD_MD_HPP
  30 #elif defined TARGET_ARCH_MODEL_x86_32
  31 # include "adfiles/ad_x86_32.hpp"
  32 #elif defined TARGET_ARCH_MODEL_x86_64
  33 # include "adfiles/ad_x86_64.hpp"
  34 #elif defined TARGET_ARCH_MODEL_sparc
  35 # include "adfiles/ad_sparc.hpp"
  36 #elif defined TARGET_ARCH_MODEL_zero
  37 # include "adfiles/ad_zero.hpp"
  38 #elif defined TARGET_ARCH_MODEL_ppc_64
  39 # include "adfiles/ad_ppc_64.hpp"
  40 #endif
  41 
  42 #define RM_SIZE _RM_SIZE /* a constant private to the class RegMask */
  43 
  44 //-------------Non-zero bit search methods used by RegMask---------------------
  45 // Find lowest 1, or return 32 if empty
  46 int find_lowest_bit( uint32 mask ) {
  47   int n = 0;
  48   if( (mask & 0xffff) == 0 ) {
  49     mask >>= 16;
  50     n += 16;
  51   }
  52   if( (mask & 0xff) == 0 ) {
  53     mask >>= 8;
  54     n += 8;
  55   }
  56   if( (mask & 0xf) == 0 ) {
  57     mask >>= 4;
  58     n += 4;
  59   }
  60   if( (mask & 0x3) == 0 ) {
  61     mask >>= 2;
  62     n += 2;
  63   }
  64   if( (mask & 0x1) == 0 ) {
  65     mask >>= 1;
  66      n += 1;
  67   }
  68   if( mask == 0 ) {
  69     n = 32;
  70   }
  71   return n;
  72 }
  73 
  74 // Find highest 1, or return 32 if empty
  75 int find_hihghest_bit( uint32 mask ) {
  76   int n = 0;
  77   if( mask > 0xffff ) {
  78     mask >>= 16;
  79     n += 16;
  80   }
  81   if( mask > 0xff ) {
  82     mask >>= 8;
  83     n += 8;
  84   }
  85   if( mask > 0xf ) {
  86     mask >>= 4;
  87     n += 4;
  88   }
  89   if( mask > 0x3 ) {
  90     mask >>= 2;
  91     n += 2;
  92   }
  93   if( mask > 0x1 ) {
  94     mask >>= 1;
  95     n += 1;
  96   }
  97   if( mask == 0 ) {
  98     n = 32;
  99   }
 100   return n;
 101 }
 102 
 103 //------------------------------dump-------------------------------------------
 104 
 105 #ifndef PRODUCT
 106 void OptoReg::dump(int r, outputStream *st) {
 107   switch (r) {
 108   case Special: st->print("r---"); break;
 109   case Bad:     st->print("rBAD"); break;
 110   default:
 111     if (r < _last_Mach_Reg) st->print("%s", Matcher::regName[r]);
 112     else st->print("rS%d",r);
 113     break;
 114   }
 115 }
 116 #endif
 117 
 118 
 119 //=============================================================================
 120 const RegMask RegMask::Empty(
 121 # define BODY(I) 0,
 122   FORALL_BODY
 123 # undef BODY
 124   0
 125 );
 126 
 127 //=============================================================================
 128 bool RegMask::is_vector(uint ireg) {
 129   return (ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY);
 130 }
 131 
 132 int RegMask::num_registers(uint ireg) {
 133     switch(ireg) {
 134       case Op_VecY:
 135         return 8;
 136       case Op_VecX:
 137         return 4;
 138       case Op_VecD:
 139       case Op_RegD:
 140       case Op_RegL:
 141 #ifdef _LP64
 142       case Op_RegP:
 143 #endif
 144         return 2;
 145     }
 146     // Op_VecS and the rest ideal registers.
 147     return 1;
 148 }
 149 
 150 //------------------------------find_first_pair--------------------------------
 151 // Find the lowest-numbered register pair in the mask.  Return the
 152 // HIGHEST register number in the pair, or BAD if no pairs.
 153 OptoReg::Name RegMask::find_first_pair() const {
 154   verify_pairs();
 155   for( int i = 0; i < RM_SIZE; i++ ) {
 156     if( _A[i] ) {               // Found some bits
 157       int bit = _A[i] & -_A[i]; // Extract low bit
 158       // Convert to bit number, return hi bit in pair
 159       return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+1);
 160     }
 161   }
 162   return OptoReg::Bad;
 163 }
 164 
 165 //------------------------------ClearToPairs-----------------------------------
 166 // Clear out partial bits; leave only bit pairs
 167 void RegMask::clear_to_pairs() {
 168   for( int i = 0; i < RM_SIZE; i++ ) {
 169     int bits = _A[i];
 170     bits &= ((bits & 0x55555555)<<1); // 1 hi-bit set for each pair
 171     bits |= (bits>>1);          // Smear 1 hi-bit into a pair
 172     _A[i] = bits;
 173   }
 174   verify_pairs();
 175 }
 176 
 177 //------------------------------SmearToPairs-----------------------------------
 178 // Smear out partial bits; leave only bit pairs
 179 void RegMask::smear_to_pairs() {
 180   for( int i = 0; i < RM_SIZE; i++ ) {
 181     int bits = _A[i];
 182     bits |= ((bits & 0x55555555)<<1); // Smear lo bit hi per pair
 183     bits |= ((bits & 0xAAAAAAAA)>>1); // Smear hi bit lo per pair
 184     _A[i] = bits;
 185   }
 186   verify_pairs();
 187 }
 188 
 189 //------------------------------is_aligned_pairs-------------------------------
 190 bool RegMask::is_aligned_pairs() const {
 191   // Assert that the register mask contains only bit pairs.
 192   for( int i = 0; i < RM_SIZE; i++ ) {
 193     int bits = _A[i];
 194     while( bits ) {             // Check bits for pairing
 195       int bit = bits & -bits;   // Extract low bit
 196       // Low bit is not odd means its mis-aligned.
 197       if( (bit & 0x55555555) == 0 ) return false;
 198       bits -= bit;              // Remove bit from mask
 199       // Check for aligned adjacent bit
 200       if( (bits & (bit<<1)) == 0 ) return false;
 201       bits -= (bit<<1);         // Remove other halve of pair
 202     }
 203   }
 204   return true;
 205 }
 206 
 207 //------------------------------is_bound1--------------------------------------
 208 // Return TRUE if the mask contains a single bit
 209 int RegMask::is_bound1() const {
 210   if( is_AllStack() ) return false;
 211   int bit = -1;                 // Set to hold the one bit allowed
 212   for( int i = 0; i < RM_SIZE; i++ ) {
 213     if( _A[i] ) {               // Found some bits
 214       if( bit != -1 ) return false; // Already had bits, so fail
 215       bit = _A[i] & -_A[i];     // Extract 1 bit from mask
 216       if( bit != _A[i] ) return false; // Found many bits, so fail
 217     }
 218   }
 219   // True for both the empty mask and for a single bit
 220   return true;
 221 }
 222 
 223 //------------------------------is_bound2--------------------------------------
 224 // Return TRUE if the mask contains an adjacent pair of bits and no other bits.
 225 int RegMask::is_bound_pair() const {
 226   if( is_AllStack() ) return false;
 227 
 228   int bit = -1;                 // Set to hold the one bit allowed
 229   for( int i = 0; i < RM_SIZE; i++ ) {
 230     if( _A[i] ) {               // Found some bits
 231       if( bit != -1 ) return false; // Already had bits, so fail
 232       bit = _A[i] & -(_A[i]);   // Extract 1 bit from mask
 233       if( (bit << 1) != 0 ) {   // Bit pair stays in same word?
 234         if( (bit | (bit<<1)) != _A[i] )
 235           return false;         // Require adjacent bit pair and no more bits
 236       } else {                  // Else its a split-pair case
 237         if( bit != _A[i] ) return false; // Found many bits, so fail
 238         i++;                    // Skip iteration forward
 239         if( i >= RM_SIZE || _A[i] != 1 )
 240           return false; // Require 1 lo bit in next word
 241       }
 242     }
 243   }
 244   // True for both the empty mask and for a bit pair
 245   return true;
 246 }
 247 
 248 static int low_bits[3] = { 0x55555555, 0x11111111, 0x01010101 };
 249 //------------------------------find_first_set---------------------------------
 250 // Find the lowest-numbered register set in the mask.  Return the
 251 // HIGHEST register number in the set, or BAD if no sets.
 252 // Works also for size 1.
 253 OptoReg::Name RegMask::find_first_set(const int size) const {
 254   verify_sets(size);
 255   for (int i = 0; i < RM_SIZE; i++) {
 256     if (_A[i]) {                // Found some bits
 257       int bit = _A[i] & -_A[i]; // Extract low bit
 258       // Convert to bit number, return hi bit in pair
 259       return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+(size-1));
 260     }
 261   }
 262   return OptoReg::Bad;
 263 }
 264 
 265 //------------------------------clear_to_sets----------------------------------
 266 // Clear out partial bits; leave only aligned adjacent bit pairs
 267 void RegMask::clear_to_sets(const int size) {
 268   if (size == 1) return;
 269   assert(2 <= size && size <= 8, "update low bits table");
 270   assert(is_power_of_2(size), "sanity");
 271   int low_bits_mask = low_bits[size>>2];
 272   for (int i = 0; i < RM_SIZE; i++) {
 273     int bits = _A[i];
 274     int sets = (bits & low_bits_mask);
 275     for (int j = 1; j < size; j++) {
 276       sets = (bits & (sets<<1)); // filter bits which produce whole sets
 277     }
 278     sets |= (sets>>1);           // Smear 1 hi-bit into a set
 279     if (size > 2) {
 280       sets |= (sets>>2);         // Smear 2 hi-bits into a set
 281       if (size > 4) {
 282         sets |= (sets>>4);       // Smear 4 hi-bits into a set
 283       }
 284     }
 285     _A[i] = sets;
 286   }
 287   verify_sets(size);
 288 }
 289 
 290 //------------------------------smear_to_sets----------------------------------
 291 // Smear out partial bits to aligned adjacent bit sets
 292 void RegMask::smear_to_sets(const int size) {
 293   if (size == 1) return;
 294   assert(2 <= size && size <= 8, "update low bits table");
 295   assert(is_power_of_2(size), "sanity");
 296   int low_bits_mask = low_bits[size>>2];
 297   for (int i = 0; i < RM_SIZE; i++) {
 298     int bits = _A[i];
 299     int sets = 0;
 300     for (int j = 0; j < size; j++) {
 301       sets |= (bits & low_bits_mask);  // collect partial bits
 302       bits  = bits>>1;
 303     }
 304     sets |= (sets<<1);           // Smear 1 lo-bit  into a set
 305     if (size > 2) {
 306       sets |= (sets<<2);         // Smear 2 lo-bits into a set
 307       if (size > 4) {
 308         sets |= (sets<<4);       // Smear 4 lo-bits into a set
 309       }
 310     }
 311     _A[i] = sets;
 312   }
 313   verify_sets(size);
 314 }
 315 
 316 //------------------------------is_aligned_set--------------------------------
 317 bool RegMask::is_aligned_sets(const int size) const {
 318   if (size == 1) return true;
 319   assert(2 <= size && size <= 8, "update low bits table");
 320   assert(is_power_of_2(size), "sanity");
 321   int low_bits_mask = low_bits[size>>2];
 322   // Assert that the register mask contains only bit sets.
 323   for (int i = 0; i < RM_SIZE; i++) {
 324     int bits = _A[i];
 325     while (bits) {              // Check bits for pairing
 326       int bit = bits & -bits;   // Extract low bit
 327       // Low bit is not odd means its mis-aligned.
 328       if ((bit & low_bits_mask) == 0) return false;
 329       // Do extra work since (bit << size) may overflow.
 330       int hi_bit = bit << (size-1); // high bit
 331       int set = hi_bit + ((hi_bit-1) & ~(bit-1));
 332       // Check for aligned adjacent bits in this set
 333       if ((bits & set) != set) return false;
 334       bits -= set;  // Remove this set
 335     }
 336   }
 337   return true;
 338 }
 339 
 340 //------------------------------is_bound_set-----------------------------------
 341 // Return TRUE if the mask contains one adjacent set of bits and no other bits.
 342 // Works also for size 1.
 343 int RegMask::is_bound_set(const int size) const {
 344   if( is_AllStack() ) return false;
 345   assert(1 <= size && size <= 8, "update low bits table");
 346   int bit = -1;                 // Set to hold the one bit allowed
 347   for (int i = 0; i < RM_SIZE; i++) {
 348     if (_A[i] ) {               // Found some bits
 349       if (bit != -1)
 350        return false;            // Already had bits, so fail
 351       bit = _A[i] & -_A[i];     // Extract low bit from mask
 352       int hi_bit = bit << (size-1); // high bit
 353       if (hi_bit != 0) {        // Bit set stays in same word?
 354         int set = hi_bit + ((hi_bit-1) & ~(bit-1));
 355         if (set != _A[i])
 356           return false;         // Require adjacent bit set and no more bits
 357       } else {                  // Else its a split-set case
 358         if (((-1) & ~(bit-1)) != _A[i])
 359           return false;         // Found many bits, so fail
 360         i++;                    // Skip iteration forward and check high part
 361         // The lower 24 bits should be 0 since it is split case and size <= 8.
 362         int set = bit>>24;
 363         set = set & -set; // Remove sign extension.
 364         set = (((set << size) - 1) >> 8);
 365         if (i >= RM_SIZE || _A[i] != set)
 366           return false; // Require expected low bits in next word
 367       }
 368     }
 369   }
 370   // True for both the empty mask and for a bit set
 371   return true;
 372 }
 373 
 374 //------------------------------is_UP------------------------------------------
 375 // UP means register only, Register plus stack, or stack only is DOWN
 376 bool RegMask::is_UP() const {
 377   // Quick common case check for DOWN (any stack slot is legal)
 378   if( is_AllStack() )
 379     return false;
 380   // Slower check for any stack bits set (also DOWN)
 381   if( overlap(Matcher::STACK_ONLY_mask) )
 382     return false;
 383   // Not DOWN, so must be UP
 384   return true;
 385 }
 386 
 387 //------------------------------Size-------------------------------------------
 388 // Compute size of register mask in bits
 389 uint RegMask::Size() const {
 390   extern uint8 bitsInByte[256];
 391   uint sum = 0;
 392   for( int i = 0; i < RM_SIZE; i++ )
 393     sum +=
 394       bitsInByte[(_A[i]>>24) & 0xff] +
 395       bitsInByte[(_A[i]>>16) & 0xff] +
 396       bitsInByte[(_A[i]>> 8) & 0xff] +
 397       bitsInByte[ _A[i]      & 0xff];
 398   return sum;
 399 }
 400 
 401 #ifndef PRODUCT
 402 //------------------------------print------------------------------------------
 403 void RegMask::dump(outputStream *st) const {
 404   st->print("[");
 405   RegMask rm = *this;           // Structure copy into local temp
 406 
 407   OptoReg::Name start = rm.find_first_elem(); // Get a register
 408   if (OptoReg::is_valid(start)) { // Check for empty mask
 409     rm.Remove(start);           // Yank from mask
 410     OptoReg::dump(start, st);   // Print register
 411     OptoReg::Name last = start;
 412 
 413     // Now I have printed an initial register.
 414     // Print adjacent registers as "rX-rZ" instead of "rX,rY,rZ".
 415     // Begin looping over the remaining registers.
 416     while (1) {                 //
 417       OptoReg::Name reg = rm.find_first_elem(); // Get a register
 418       if (!OptoReg::is_valid(reg))
 419         break;                  // Empty mask, end loop
 420       rm.Remove(reg);           // Yank from mask
 421 
 422       if (last+1 == reg) {      // See if they are adjacent
 423         // Adjacent registers just collect into long runs, no printing.
 424         last = reg;
 425       } else {                  // Ending some kind of run
 426         if (start == last) {    // 1-register run; no special printing
 427         } else if (start+1 == last) {
 428           st->print(",");       // 2-register run; print as "rX,rY"
 429           OptoReg::dump(last, st);
 430         } else {                // Multi-register run; print as "rX-rZ"
 431           st->print("-");
 432           OptoReg::dump(last, st);
 433         }
 434         st->print(",");         // Seperate start of new run
 435         start = last = reg;     // Start a new register run
 436         OptoReg::dump(start, st); // Print register
 437       } // End of if ending a register run or not
 438     } // End of while regmask not empty
 439 
 440     if (start == last) {        // 1-register run; no special printing
 441     } else if (start+1 == last) {
 442       st->print(",");           // 2-register run; print as "rX,rY"
 443       OptoReg::dump(last, st);
 444     } else {                    // Multi-register run; print as "rX-rZ"
 445       st->print("-");
 446       OptoReg::dump(last, st);
 447     }
 448     if (rm.is_AllStack()) st->print("...");
 449   }
 450   st->print("]");
 451 }
 452 #endif