
Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Understanding OrderAccess
Managing Data Races in a Hostile Environment

David Holmes
Consulting Member of Technical Staff
JVM Runtime Group

Version 1.1

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Disclaimer

• This is not an academically rigorous discussion of memory models

– In particular, terminology may be “loose” and differ from other sources

– Will avoid extreme subjects, like causality, or things which allow/require time-travel
to explain them

• This is an engineering overview for practicing software developers
– I am not an expert on theoretical memory models or specific machine architectures

• There may be judicious use of “hand waving” and (over-)simplification

2

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

Memory Models

Acquire/Release

Fences and Barriers

OrderAccess

Atomics and Memory Ordering

1

2

3

4

5

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

Memory Models

Acquire/Release

Fences and Barriers

OrderAccess

Atomics and Memory Ordering

1

2

3

4

5

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Introduction to Data Races

• Paradigm: Shared-memory based multi-threading

– Threads communicate by modifying locations (variables) in shared memory

• Concurrent operations on a variable can conflict e.g. x++;

– Need to provide ways to perform atomic actions with no conflict
• Locking, atomic ops

• If two or more threads access a variable concurrently and at least one
access is a write then we have a data race
– Outcome depends on order of execution: it’s a race

• Locking prevents concurrent access through mutual exclusion

• Programs that always use locks are data-race free (DRF)

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Sequential Consistency

• If the observed memory state matches some interleaving of all the actions
executing in every thread then we have a sequentially consistent execution

– You can reason about the observed result by looking at the sequential code executed
by each thread

• Actual executions with modern compilers and modern hardware are not
sequentially consistent

– Why not? Performance, performance, performance!

• Data-Race Free programs may be guaranteed to be sequentially consistent

– Java, C++11

6

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Order! Order!

• Source order – how you write the code

– Naïve expectation that everything happens exactly as written

• Program order – generated machine code presented to the CPU

– “Any resemblance to source order is purely coincidental”

– It’s all about performance! As long as you can’t tell the difference

• Execution order – how the hardware actually executes the code

– Speculative execution, instruction reordering, caching, pipeline stalls

– It’s all about performance! As long as you can’t tell the difference

• Observation order – how things appear to happen for a given observer
– Different observers can see things happen in a different order

7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

• Data-race free programming

– Sequential; or

– Concurrency with locks

• “Simple” Lock-free programming
– Controlled data-races

– Well-defined “synchronization” actions

• “Relaxed” Lock-free programming

– Uncontrolled data-races

– “heuristic” algorithms

• Newtonian mechanics

– Easy enough to understand

– Good enough for most purposes

• Quantum mechanics
– Hard to understand or reason about

– Sometimes a necessary evil

• Special Theory of Relativity

– You are on your own here!

8

Concurrent Programming is like Physics

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Memory Models

• In simplistic terms a “memory model” defines the allowed ordering of
memory accesses based on how specific constructs are used

• Hardware/Architectural Memory Model

– Defines allowed reordering of memory accesses (few: TSO; many: RMO)

– Uses specialized instructions to enforce order: barriers, fences, acquire/release

• Java Memory Model
– Defines program actions, synchronization actions and the happens-before ordering

– Uses language constructs: volatile variables, synchronized blocks

• C++ Memory model (as in hotspot today)

– No language constructs: uses OrderAccess to instruct both compiler and hardware

9

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Data Race Example: The importance of ordering

• Total Store Ordering (TSO) – seems good!

– But what about the compiler? What about load reordering?

• Relaxed Memory ordering (RMO) – not good on all fronts

• Required ordering has to be enforced using the tools provided by the
memory model

10

// Thread 1

data = produce();

dataReady = true;

 int data = -1;

 bool dataReady = false;

// Thread 2

if (dataReady) {

 assert(data != -1);

 consume(data);

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

Memory Models

Acquire/Release

Fences and Barriers

OrderAccess

Atomics and Memory Ordering

1

2

3

4

5

11

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Acquire/Release Memory Ordering Semantics

• Terminology comes from requirements for lock-based synchronization

– “A thread that acquires the lock, must see all stores that occurred before the previous
owner released the lock”

– The acquire is associated with the load that sees the lock is free: hence: load_acquire

– The release is associated with the store that marks the lock free: hence: release_store
• Unfortunately also referred to as store-release by some

– Implicit constraint: no loads/stores in the locked region can move out of it!
• But others can move in! (“roach motel”)

• Generalization: If a load_acquire sees the value written by a release_store
then all values written before that release_store are also visible

– load_acquire/release_store should always operate as matching pairs

12

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Data Race Example: Using Acquire/Release

• Assertion now guaranteed not to fail

• Internally load_acquire/release_store have to provide:

– Compiler barrier

– Hardware barrier

13

// Thread 1

data = produce();

release_store(&dataReady, true);

 int data = -1;

 bool dataReady = false;

// Thread 2

if (load_acquire(&dataReady)) {

 assert(data != -1);

 consume(data);

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Architectural Support for Acquire/Release

• Itanium (IA64)

– ld.acq, st.rel

– Original reason for introducing OrderAccess!

• ARMv8 (Aarch64)
– LDAx : load with acquire semantics

– STLx: store with release semantics

– Referred to as load-acquire and store-release
• Semantics are expressed in terms of relation of other loads/stores to the flagged load/store

14

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

Memory Models

Acquire/Release

Fences and Barriers

OrderAccess

Atomics and Memory Ordering

1

2

3

4

5

15

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Fences and Barriers: what’s in a name?

• Fence, barrier, memory barrier, membar

– Used loosely and often interchangeably

– They prevent certain kinds of code motion and so allow explicit expression of
ordering constraints

– Specific orderings imply visibility/observability of stores

• Fine-grained barriers:

– XY: all X preceding the barrier must complete before all Y following it

– I.e. storeLoad, storeStore, loadLoad, loadStore

• Coarse-grained:
– “fence”: All four fine-grained barriers combined gives “full bi-directional fence”

16

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Data Race Example: Using Barriers

• Assertion now guaranteed not to fail

• Internally the barriers have to provide:

– Compiler barrier

– Hardware barrier

17

// Thread 1

data = produce();

storeStore();

dataReady = true;

 int data = -1;

 bool dataReady = false;

// Thread 2

if (dataReady) {

 loadLoad();

 assert(data != -1);

 consume(data);

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Architectural Support for Barriers

• Details are extremely complicated!

– Can be affected by type of memory, system configuration, caching policies etc.

– OS can further constrain possibilities by how it configures the hardware

• SPARC
– Membar loadLoad | loadStore | storeLoad | storeStore

– Hmmm – isn’t SPARC TSO??
• The architecture can be TSO or RMO. Solaris executes in TSO mode. Ultra3 only supports TSO.

– Store barriers ensure visibility of store before barrier completes

• X86
– mfence

18

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Architectural Support for Barriers (cont)

• ARM

– Data Memory Barrier (DMB): orders all memory accesses (fence)
• ARMv7+ adds “dmb st”: acts like storeStore

• ARMv8 adds “dmb ld”: acts like loadStore|loadLoad

– Data Synchronization barrier (DSB): orders all memory accesses and the instruction
stream
• Heavyweight: used by OS when need to synchronize i-cache and d-cache

• Power/PPC
– Heavy-weight sync (hwsync or sync): orders instructions and all memory accesses

– Light-weight sync (lwsync): orders instructions and some memory accesses
• Specifically it does not provide storeLoad barrier

19

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Implicit (partial) Barriers

• Data dependencies, control dependencies, address dependencies

– Details differ from architecture to architecture!

– Only guarantees order of the accesses with the dependencies!

– Most often used to elide real barriers to get acquire semantics
• Can introduce artificial dependencies to get desired affect e.g. address dependency on ARMv8

if (dataReady) { // pseudo-code: needs to happen at asm level

 int* data_addr = &data + (dataReady & 0); // fake dependency

 y = *data_addr; // can’t be reordered with load of dataReady

• X86 locked instructions act as storeLoad barrier

• Relying on implicit barriers in shared code requires detailed analysis!

– Beware! These are hardware level conditions – the compiler may have already
reordered things!

20

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

Memory Models

Acquire/Release

Fences and Barriers

OrderAccess

Atomics and Memory Ordering

1

2

3

4

5

21

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

OrderAccess Background

• Long history

– Introduced as part of the IA64 port

• Mixes acquire/release semantics and barrier APIs

• Some problems with semantics over time

• Had a very recent clean up of semantics and implementation

– 7143664: Clean up OrderAccess implementations and usage

– Thanks to Erik Österlund

22

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

OrderAccess API

• Defines a model that allows mapping from acquire/release to barrier APIs

– Simplifies implementation on platforms that only support one form

– Results in more constrained behaviour in some cases

• Defines simple barriers:
– loadload(), loadstore(), storeload(), storestore()

• Defines a full bi-directional barrier:

– fence()

• Defines bound acquire/release:

– load_acquire(), release_store()

23

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Order Access API (cont)

• Defines unbound acquire/release in terms of barriers

– acquire() == loadLoad|loadStore

– release() == loadStore|storeStore

– Allows bound forms to be implemented using unbound forms (default)
• release_store(&x, 1) → release(); x = 1;

• y = load_acquire(&x) → y = x; acquire();

– Unbound forms should still be associated with specific loads and stores
• Unbound forms exist for where we can’t access raw variables directly e.g. accessors

– But we are addressing that by defining accessors/setters with acquire/release semantics

• Unbound forms may result in less efficient hardware level barriers

• Defines composite release_store_fence() for convenience & efficiency
• release_store_fence(&x, 1) → release(); x = 1; fence();

24

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

OrderAccess Implementation Notes

• OS+CPU specific implementations: linux_x86, solaris_sparc, linux_arm etc

• Abstract barriers etc. mapped to:

– Hardware instructions using inline assembly that also defines a “compiler barrier”

– Compiler “barrier” prevents any reordering of statements around it
– E.g. gcc: void compiler_barrier() { __asm__ volatile ("" : : : "memory"); }

• On strongly ordered systems many barriers are no-ops at hardware level
– E.g. only storeLoad needs to be explicitly defined on x86 and SPARC

• Beware of loose terminology: “need fence aka storeLoad” means “need fence so add in storeLoad”!

– On many platforms storeLoad implementation subsumes all other barriers
• Don’t confuse implementation with semantics!

25

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

OrderAccess Programming Guidelines for Shared Code

• Use locks where possible and keep things Data Race Free!

• Partially lock-free data structures need barriers in locked & unlocked code

– Prefer acquire/release APIs over barrier APIs – shows link between reader and writer!

– But only need barriers between accesses – so no load_acquire(x) to assert x != NULL

• Ensure you can identify lock-free code and understand protocols involved
– Need to understand the big picture – can’t just look at methods in isolation!

– Understand if/where safepoints may be involved
• If data / dataReady are set at a safepoint and only used by JavaThreads no barriers are needed

• Always think/code in terms of the most relaxed memory model possible

– But unnecessary barriers cause confusion when reasoning about code!

26

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Example: Monitor code recent bug fix (8166197)

– IUnlock: (slightly modified)
if (_EntryList != NULL) { // unlink head

 ParkEvent * const w = _EntryList;

 _EntryList = w->ListNext;

 OrderAccess::release_store_ptr(&_OnDeck, w);

– ILock:
while (OrderAccess::load_ptr_acquire(&_OnDeck) != ESelf) {

 ParkCommon(ESelf, 0);

}

• When “w” becomes “onDeck” it must not find itself in _Entrylist!

– NOTE: the load of _EntryList by “w” can’t even be seen locally in this method! It’s in IUnlock!

– IUnlock:
ParkEvent * const w = _OnDeck; // no load_acquire as we don’t access

if (w != NULL) // any other state in the monitor

 return;

27

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Wait a Minute!!!

• First you said:

– “Note the load of _EntryList can’t be seen locally” but we need a load-acquire

• Then you said:

– “no need for a load-acquire as no other accesses to monitor state”

• But what if that access happens later like the first case?

• This is where you need to understand the protocols involved in the code
– In the second case we leave the Monitor code completely and we will not access

_EntryList again until we acquire a Monitor, execute our critical section and then start
to unlock the Monitor!
• In that code path we encounter numerous synchronization points

28

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Wait a Minute 2: Efficiency vs. Correctness

• If the load_acquire guards against load reordering; and

• The load of _onDeck and the load of _EntryList are “miles apart”; then

• Surely we don’t need the load_acquire as they will never be reordered?

• That could well be true on current platforms*, but:

– How far apart is far enough apart to avoid reordering?

– How do you capture the fact they must remain “far enough apart”?

• That said:

– Iff it were established that such a barrier was a serious performance bottleneck then
we might relax it for that platform
• With suitable commentary etc

29

*Imagine an architecture with software cache
coherency that had to explicitly pull updates from
main memory

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Program Agenda with Highlight

Memory Models

Acquire/Release

Fences and Barriers

OrderAccess

Atomics and Memory Ordering

1

2

3

4

5

30

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Atomic API

• Atomic:: load, store, add, xchg, cmpxchg …

• Spec: every read-modify-write operation acts as a full bi-directional fence

– i.e. no accesses are allowed to be reordered across such an atomic operation

– Doesn’t mean each operation must be implemented as: fence(); op(); fence() !

– Atomic loads and stores require no memory ordering properties

• C++11 Atomics offer varying memory ordering semantics for operations

– memory_order_relaxed/consume/acquire/release/acq_rel/seq_cst

– Memory order kind gets passed as additional parameter to atomic ops
• Default: memory_order_seq_cst

31

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

JDK-8155949: Support relaxed semantics in cmpxchg

• A first step towards compatibility with, and possible use of, C++11

• intptr_t Atomic::cmpxchg_ptr(intptr_t exchange_value,
 volatile intptr_t* dest,

 intptr_t compare_value,

 cmpxchg_memory_order order);

• enum cmpxchg_memory_order {
 memory_order_relaxed,

 // Use value which doesn't interfere with C++2011. We need to be more

conservative.

 memory_order_conservative = 8

};

• Default is memory_order_conservative

– At time of writing all platforms support only the default and keep the full fence

32

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

JDK-8154736:
enhancement of cmpxchg and copy_to_survivor for ppc64

• A cautionary tale!

• Any kind of relaxed ordering semantics are _very_ hard to reason about!

• See review thread:

– http://mail.openjdk.java.net/pipermail/hotspot-runtime-dev/2016-
October/021452.html

• Suggests more work needed to consider role of dependent loads

– And some means to clearly document them e.g. Linux kernel uses
• Q = READ_ONCE(P); smp_read_barrier_depends(); D = READ_ONCE(*Q);

• http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/Documentation/memory-
barriers.txt?id=HEAD

33

http://mail.openjdk.java.net/pipermail/hotspot-runtime-dev/2016-October/021452.html
http://mail.openjdk.java.net/pipermail/hotspot-runtime-dev/2016-October/021452.html
http://mail.openjdk.java.net/pipermail/hotspot-runtime-dev/2016-October/021452.html
http://mail.openjdk.java.net/pipermail/hotspot-runtime-dev/2016-October/021452.html
http://mail.openjdk.java.net/pipermail/hotspot-runtime-dev/2016-October/021452.html
http://mail.openjdk.java.net/pipermail/hotspot-runtime-dev/2016-October/021452.html
http://mail.openjdk.java.net/pipermail/hotspot-runtime-dev/2016-October/021452.html
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/Documentation/memory-barriers.txt?id=HEAD
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/Documentation/memory-barriers.txt?id=HEAD
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/Documentation/memory-barriers.txt?id=HEAD

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Final word: C/C++ volatile

• Exact meaning of volatile is compiler-specific

• Generally any variable modified concurrently and accessed lock-free should
be declared volatile

– At a minimum prevents optimisations like loop hoisting and general register caching

• Some compilers ensure volatile accesses maintain order w.r.t. other volatile
accesses

– But not necessarily non-volatile accesses

– Though MSVC defines load_acquire/release_store semantics!

• Tl;dr: Don’t depend on C/C++ volatile for ordering!

34

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

References

• The JSR-133 Cookbook for Compiler Writers

– http://g.oswego.edu/dl/jmm/cookbook.html

• A Tutorial Introduction to the ARM and POWER Relaxed Memory Models

– http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf

• C++11 std::memory_order
– http://en.cppreference.com/w/cpp/atomic/memory_order

35

http://g.oswego.edu/dl/jmm/cookbook.html
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
http://en.cppreference.com/w/cpp/atomic/memory_order

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 36

