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Disclaimer 

• This is not an academically rigorous discussion of memory models 

– In particular, terminology may be “loose” and differ from other sources 

– Will avoid extreme subjects, like causality, or things which allow/require time-travel 
to explain them 

• This is an engineering overview for practicing software developers 
– I am not an expert on theoretical memory models or specific machine architectures 

• There may be judicious use of “hand waving” and (over-)simplification 
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Introduction to Data Races 

• Paradigm: Shared-memory based multi-threading 

– Threads  communicate by modifying locations (variables) in shared memory 

• Concurrent operations on a variable can conflict e.g. x++; 

– Need to provide ways to perform atomic actions with no conflict 
• Locking,  atomic ops 

• If two or more threads access a variable concurrently and at least one 
access is a write then we have a data race 
– Outcome depends on order of execution: it’s a race 

• Locking prevents concurrent access through mutual exclusion 

• Programs that always use locks are data-race free (DRF) 
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Sequential Consistency 

• If the observed memory state matches some interleaving of all the actions 
executing in every thread then we have a sequentially consistent execution 

– You can reason about the observed result by looking at the sequential code executed 
by each thread 

• Actual executions with modern compilers and modern hardware are not 
sequentially consistent 

– Why not? Performance, performance, performance! 

• Data-Race Free programs may be guaranteed to be sequentially consistent 

– Java, C++11 
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Order! Order! 

• Source order – how you write the code 

– Naïve expectation that everything happens exactly as written 

• Program order – generated machine code presented to the CPU 

– “Any resemblance to source order is purely coincidental” 

– It’s all about performance! As long as you can’t tell the difference 

• Execution order – how the hardware actually executes the code 

– Speculative execution, instruction reordering, caching, pipeline stalls 

– It’s all about performance! As long as you can’t tell the difference 

• Observation order – how things appear to happen for a given observer 
– Different observers can see things happen in a different order 
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• Data-race free programming 

– Sequential; or 

– Concurrency with locks 

• “Simple” Lock-free programming 
– Controlled data-races 

– Well-defined “synchronization” actions 

• “Relaxed” Lock-free programming 

– Uncontrolled data-races 

– “heuristic” algorithms 

• Newtonian mechanics 

– Easy enough to understand 

– Good enough for most purposes 

• Quantum mechanics 
– Hard to understand or reason about 

– Sometimes a necessary evil 

• Special Theory of Relativity 

– You are on your own here! 
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Memory Models 

• In simplistic terms a “memory model” defines the allowed ordering of 
memory accesses based on how specific constructs are used 

• Hardware/Architectural Memory Model 

– Defines allowed reordering of memory accesses (few: TSO; many: RMO) 

– Uses specialized instructions to enforce order: barriers, fences, acquire/release 

• Java Memory Model 
– Defines program actions, synchronization actions and the happens-before ordering 

– Uses language constructs: volatile variables, synchronized blocks 

• C++ Memory model (as in hotspot today) 

– No language constructs: uses OrderAccess to instruct both compiler and hardware 
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Data Race Example: The importance of ordering 

• Total Store Ordering (TSO) – seems good! 

– But what about the compiler? What about load reordering? 

• Relaxed Memory ordering (RMO) – not good on all fronts 

• Required ordering has to be enforced using the tools provided by the 
memory model 
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// Thread 1 

data = produce(); 

dataReady = true; 

    int data = -1; 

    bool dataReady = false; 

// Thread 2 

if (dataReady) { 

  assert(data != -1); 

  consume(data); 
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Acquire/Release Memory Ordering Semantics 

• Terminology comes from requirements for lock-based synchronization 

– “A thread that acquires the lock, must see all stores that occurred before the previous 
owner released the lock” 

– The acquire is associated with the load that sees the lock is free: hence: load_acquire 

– The release is associated with the store that marks the lock free: hence: release_store  
• Unfortunately also referred to as store-release by some 

– Implicit constraint: no loads/stores in the locked region can move out of it! 
• But others can move in! (“roach motel”) 

• Generalization: If a load_acquire sees the value written by a release_store 
then all values written before that release_store are also visible 

– load_acquire/release_store should always operate as matching pairs 
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Data Race Example: Using Acquire/Release 

• Assertion now guaranteed not to fail 

• Internally load_acquire/release_store have to provide: 

– Compiler barrier 

– Hardware barrier 
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// Thread 1 

data = produce(); 

release_store(&dataReady, true); 

    int data = -1; 

    bool dataReady = false; 

// Thread 2 

if (load_acquire(&dataReady)) { 

  assert(data != -1); 

  consume(data); 
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Architectural Support for Acquire/Release 

• Itanium (IA64) 

– ld.acq, st.rel 

– Original reason for introducing OrderAccess! 

• ARMv8 (Aarch64) 
– LDAx : load with acquire semantics 

– STLx: store with release semantics 

– Referred to as load-acquire and store-release 
• Semantics are expressed in terms of relation of other loads/stores to the flagged load/store 

14 
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Fences and Barriers: what’s in a name? 

• Fence, barrier, memory barrier, membar 

– Used loosely and often interchangeably 

– They prevent certain kinds of code motion and so allow explicit expression of 
ordering constraints 

– Specific orderings imply visibility/observability of stores 

• Fine-grained barriers: 

– XY: all X preceding the barrier must  complete before all Y following it 

– I.e. storeLoad, storeStore, loadLoad, loadStore 

• Coarse-grained: 
– “fence”: All four fine-grained barriers combined gives “full bi-directional fence” 
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Data Race Example: Using Barriers 

• Assertion now guaranteed not to fail 

• Internally the barriers have to provide: 

– Compiler barrier 

– Hardware barrier 
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// Thread 1 

data = produce(); 

storeStore(); 

dataReady = true; 

    int data = -1; 

    bool dataReady = false; 

// Thread 2 

if (dataReady) { 

  loadLoad(); 

  assert(data != -1); 

  consume(data); 
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Architectural Support for Barriers 

• Details are extremely complicated! 

– Can be affected by type of memory, system configuration, caching policies etc. 

– OS can further constrain possibilities by how it configures the hardware 

• SPARC 
– Membar loadLoad | loadStore | storeLoad | storeStore 

– Hmmm – isn’t SPARC TSO?? 
• The architecture can be TSO or RMO. Solaris executes in TSO mode. Ultra3 only supports TSO. 

– Store barriers ensure visibility of store before barrier completes 

• X86 
– mfence 
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Architectural Support for Barriers (cont) 

• ARM 

– Data Memory Barrier (DMB): orders all memory accesses (fence) 
• ARMv7+ adds “dmb st”: acts like storeStore 

• ARMv8 adds  “dmb ld”: acts like loadStore|loadLoad 

– Data Synchronization barrier (DSB): orders all memory accesses and the instruction  
stream 
• Heavyweight: used by OS when need to synchronize i-cache and d-cache 

• Power/PPC 
– Heavy-weight sync  (hwsync or sync): orders instructions and all memory accesses 

– Light-weight sync  (lwsync): orders instructions and some memory accesses 
• Specifically it does not provide storeLoad barrier 
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Implicit (partial) Barriers 

• Data dependencies, control dependencies, address dependencies 

– Details differ from architecture to architecture! 

– Only guarantees order of the accesses with the dependencies! 

– Most often used to elide real barriers to get acquire semantics 
• Can introduce artificial dependencies to get desired affect e.g. address dependency on ARMv8 

if (dataReady) { // pseudo-code: needs to happen at asm level 

  int* data_addr = &data + (dataReady & 0); // fake dependency 

  y = *data_addr; // can’t be reordered with load of dataReady 

• X86 locked instructions act as storeLoad barrier 

• Relying on implicit barriers in shared code requires detailed analysis! 

– Beware! These are hardware level conditions – the compiler may have already 
reordered things! 
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OrderAccess Background 

• Long history 

– Introduced as part of the IA64 port 

• Mixes acquire/release semantics and barrier APIs 

• Some problems with semantics over time 

• Had a very recent clean up of semantics and implementation 

– 7143664: Clean up OrderAccess implementations and usage 

– Thanks to Erik Österlund 
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OrderAccess API 

• Defines a model that allows mapping from acquire/release to barrier APIs 

– Simplifies implementation on platforms that only support one form 

– Results in more constrained behaviour in some cases 

• Defines simple barriers: 
– loadload(), loadstore(), storeload(), storestore() 

• Defines a full bi-directional barrier: 

– fence() 

• Defines bound acquire/release: 

– load_acquire(), release_store() 
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Order Access API (cont) 

• Defines unbound acquire/release in terms of barriers 

– acquire() == loadLoad|loadStore 

– release() == loadStore|storeStore 

– Allows bound forms to be implemented using unbound forms (default) 
• release_store(&x, 1) → release(); x = 1; 

• y = load_acquire(&x) → y = x; acquire(); 

– Unbound forms should still be associated with specific loads and stores 
• Unbound forms exist for where we can’t access raw variables directly e.g. accessors 

– But we are addressing that by defining accessors/setters with acquire/release semantics 

• Unbound forms may result in less efficient hardware level barriers 

• Defines composite release_store_fence() for convenience & efficiency 
• release_store_fence(&x, 1) → release(); x = 1; fence(); 
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OrderAccess Implementation Notes 

• OS+CPU specific implementations: linux_x86, solaris_sparc, linux_arm etc 

• Abstract barriers etc. mapped to: 

– Hardware instructions using inline assembly that also defines a “compiler barrier” 

– Compiler “barrier” prevents any reordering of statements around it 
– E.g. gcc: void compiler_barrier() {  __asm__ volatile ("" : : : "memory"); } 

• On strongly ordered systems many barriers are no-ops at hardware level 
– E.g. only storeLoad needs to be explicitly defined on x86 and SPARC 

• Beware of loose terminology: “need fence aka storeLoad” means “need fence so add in storeLoad”! 

– On many platforms storeLoad implementation subsumes all other barriers 
• Don’t confuse implementation with semantics! 
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OrderAccess Programming Guidelines for Shared Code 

• Use locks where possible and keep things Data Race Free! 

• Partially lock-free data structures need barriers in locked & unlocked code 

– Prefer acquire/release APIs over barrier APIs – shows link between reader and writer! 

– But only need barriers between accesses – so no load_acquire(x) to assert x != NULL 

• Ensure you can identify lock-free code and understand protocols involved 
– Need to understand the big picture – can’t just look at methods in isolation! 

– Understand if/where safepoints may be involved 
• If  data / dataReady are set at a safepoint and only used by JavaThreads no barriers are needed 

• Always think/code in terms of the most relaxed memory model possible 

– But unnecessary barriers cause confusion when reasoning about code! 
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Example: Monitor code recent bug fix (8166197) 

– IUnlock: (slightly modified) 
if (_EntryList != NULL) {  // unlink head 

    ParkEvent * const w = _EntryList; 

    _EntryList = w->ListNext; 

    OrderAccess::release_store_ptr(&_OnDeck, w); 

– ILock: 
while (OrderAccess::load_ptr_acquire(&_OnDeck) != ESelf) { 

    ParkCommon(ESelf, 0); 

} 

• When “w” becomes “onDeck” it must not find itself in _Entrylist! 

– NOTE:  the load of _EntryList by “w” can’t even be seen locally in this method! It’s in IUnlock! 

– IUnlock: 
ParkEvent * const w = _OnDeck; // no load_acquire as we don’t access 

if (w != NULL)                 // any other state in the monitor 

    return; 
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Wait a Minute!!! 

• First you said: 

– “Note the load of _EntryList can’t be seen locally” but we need a load-acquire 

• Then you said: 

– “no need for a load-acquire as no other accesses to monitor state” 

• But what if that access happens later like the first case? 

• This is where you need to understand the protocols involved in the code 
– In the second case we leave the Monitor code completely and we will not access 

_EntryList again until we acquire a Monitor, execute our critical section and then start 
to unlock the Monitor! 
• In that code path we encounter numerous synchronization points 
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Wait a Minute 2: Efficiency vs. Correctness 

• If the load_acquire guards against load reordering; and 

• The load of _onDeck and the load of _EntryList are “miles apart”; then 

• Surely we don’t need the load_acquire as they will never be reordered? 

• That could well be true on current platforms*, but: 

– How far apart is far enough apart to avoid reordering? 

– How do you capture the fact they must remain “far enough apart”? 

• That said: 

– Iff it were established that such a barrier was a serious performance bottleneck then 
we might relax it for that platform 
• With suitable commentary etc 

29 

*Imagine an architecture with software cache 
coherency that had to explicitly pull updates from 
main memory 
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Atomic API 

• Atomic:: load, store, add, xchg, cmpxchg … 

• Spec: every read-modify-write operation acts as a full bi-directional fence 

– i.e. no accesses are allowed to be reordered across such an atomic operation 

– Doesn’t mean each operation must be implemented as: fence(); op(); fence() ! 

– Atomic loads and stores require no memory ordering properties 

• C++11 Atomics offer varying memory ordering semantics for operations 

– memory_order_relaxed/consume/acquire/release/acq_rel/seq_cst 

– Memory order kind gets passed as additional parameter to atomic ops 
• Default: memory_order_seq_cst 
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JDK-8155949: Support relaxed semantics in cmpxchg 

• A first step towards compatibility with, and possible use of, C++11 

•  intptr_t Atomic::cmpxchg_ptr(intptr_t exchange_value,  
                             volatile intptr_t* dest,  

                             intptr_t compare_value, 

                             cmpxchg_memory_order order); 

•  enum cmpxchg_memory_order {  
  memory_order_relaxed,  

  // Use value which doesn't interfere with C++2011. We need to be more 

conservative. 

  memory_order_conservative = 8 

}; 

• Default is memory_order_conservative 

– At time of writing all platforms support only the default and keep the full fence 
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JDK-8154736:  
enhancement of cmpxchg and copy_to_survivor for ppc64 

• A cautionary tale! 

• Any kind of relaxed ordering semantics are _very_ hard to reason about! 

• See review thread: 

– http://mail.openjdk.java.net/pipermail/hotspot-runtime-dev/2016-
October/021452.html 

• Suggests more work needed to consider role of dependent loads 

– And some means to clearly document them e.g. Linux kernel uses 
• Q = READ_ONCE(P); smp_read_barrier_depends(); D = READ_ONCE(*Q); 

• http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/Documentation/memory-
barriers.txt?id=HEAD 
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Final word: C/C++ volatile 

• Exact meaning of volatile is compiler-specific 

• Generally any variable modified concurrently and accessed lock-free should 
be declared volatile 

– At a minimum prevents optimisations like loop hoisting and general register caching 

• Some compilers ensure volatile accesses maintain order w.r.t. other volatile 
accesses 

– But not necessarily non-volatile accesses 

– Though MSVC defines load_acquire/release_store semantics! 

• Tl;dr: Don’t depend on C/C++ volatile for ordering! 
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