1 /* 2 * Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.lang.invoke; 27 28 import jdk.internal.misc.JavaLangAccess; 29 import jdk.internal.misc.SharedSecrets; 30 import jdk.internal.module.IllegalAccessLogger; 31 import jdk.internal.org.objectweb.asm.ClassReader; 32 import jdk.internal.reflect.CallerSensitive; 33 import jdk.internal.reflect.Reflection; 34 import jdk.internal.vm.annotation.ForceInline; 35 import sun.invoke.util.ValueConversions; 36 import sun.invoke.util.VerifyAccess; 37 import sun.invoke.util.Wrapper; 38 import sun.reflect.misc.ReflectUtil; 39 import sun.security.util.SecurityConstants; 40 41 import java.lang.invoke.LambdaForm.BasicType; 42 import java.lang.reflect.Constructor; 43 import java.lang.reflect.Field; 44 import java.lang.reflect.Member; 45 import java.lang.reflect.Method; 46 import java.lang.reflect.Modifier; 47 import java.lang.reflect.ReflectPermission; 48 import java.nio.ByteOrder; 49 import java.security.ProtectionDomain; 50 import java.util.ArrayList; 51 import java.util.Arrays; 52 import java.util.BitSet; 53 import java.util.Iterator; 54 import java.util.List; 55 import java.util.Objects; 56 import java.util.Set; 57 import java.util.WeakHashMap; 58 import java.util.concurrent.ConcurrentHashMap; 59 import java.util.stream.Collectors; 60 import java.util.stream.Stream; 61 62 import static java.lang.invoke.MethodHandles.Lookup.ClassProperty.*; 63 import static java.lang.invoke.MethodHandleImpl.Intrinsic; 64 import static java.lang.invoke.MethodHandleNatives.Constants.*; 65 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException; 66 import static java.lang.invoke.MethodType.methodType; 67 68 /** 69 * This class consists exclusively of static methods that operate on or return 70 * method handles. They fall into several categories: 71 * <ul> 72 * <li>Lookup methods which help create method handles for methods and fields. 73 * <li>Combinator methods, which combine or transform pre-existing method handles into new ones. 74 * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns. 75 * </ul> 76 * A lookup, combinator, or factory method will fail and throw an 77 * {@code IllegalArgumentException} if the created method handle's type 78 * would have <a href="MethodHandle.html#maxarity">too many parameters</a>. 79 * 80 * @author John Rose, JSR 292 EG 81 * @since 1.7 82 */ 83 public class MethodHandles { 84 85 private MethodHandles() { } // do not instantiate 86 87 static final MemberName.Factory IMPL_NAMES = MemberName.getFactory(); 88 89 // See IMPL_LOOKUP below. 90 91 //// Method handle creation from ordinary methods. 92 93 /** 94 * Returns a {@link Lookup lookup object} with 95 * full capabilities to emulate all supported bytecode behaviors of the caller. 96 * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller. 97 * Factory methods on the lookup object can create 98 * <a href="MethodHandleInfo.html#directmh">direct method handles</a> 99 * for any member that the caller has access to via bytecodes, 100 * including protected and private fields and methods. 101 * This lookup object is a <em>capability</em> which may be delegated to trusted agents. 102 * Do not store it in place where untrusted code can access it. 103 * <p> 104 * This method is caller sensitive, which means that it may return different 105 * values to different callers. 106 * @return a lookup object for the caller of this method, with private access 107 */ 108 @CallerSensitive 109 @ForceInline // to ensure Reflection.getCallerClass optimization 110 public static Lookup lookup() { 111 return new Lookup(Reflection.getCallerClass()); 112 } 113 114 /** 115 * This reflected$lookup method is the alternate implementation of 116 * the lookup method when being invoked by reflection. 117 */ 118 @CallerSensitive 119 private static Lookup reflected$lookup() { 120 Class<?> caller = Reflection.getCallerClass(); 121 if (caller.getClassLoader() == null) { 122 throw newIllegalArgumentException("illegal lookupClass: "+caller); 123 } 124 return new Lookup(caller); 125 } 126 127 /** 128 * Returns a {@link Lookup lookup object} which is trusted minimally. 129 * The lookup has the {@code PUBLIC} and {@code UNCONDITIONAL} modes. 130 * It can only be used to create method handles to public members of 131 * public classes in packages that are exported unconditionally. 132 * <p> 133 * As a matter of pure convention, the {@linkplain Lookup#lookupClass() lookup class} 134 * of this lookup object will be {@link java.lang.Object}. 135 * 136 * @apiNote The use of Object is conventional, and because the lookup modes are 137 * limited, there is no special access provided to the internals of Object, its package 138 * or its module. Consequently, the lookup context of this lookup object will be the 139 * bootstrap class loader, which means it cannot find user classes. 140 * 141 * <p style="font-size:smaller;"> 142 * <em>Discussion:</em> 143 * The lookup class can be changed to any other class {@code C} using an expression of the form 144 * {@link Lookup#in publicLookup().in(C.class)}. 145 * but may change the lookup context by virtue of changing the class loader. 146 * A public lookup object is always subject to 147 * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>. 148 * Also, it cannot access 149 * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>. 150 * @return a lookup object which is trusted minimally 151 * 152 * @revised 9 153 * @spec JPMS 154 */ 155 public static Lookup publicLookup() { 156 return Lookup.PUBLIC_LOOKUP; 157 } 158 159 /** 160 * Returns a {@link Lookup lookup object} with full capabilities to emulate all 161 * supported bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc"> 162 * private access</a>, on a target class. 163 * This method checks that a caller, specified as a {@code Lookup} object, is allowed to 164 * do <em>deep reflection</em> on the target class. If {@code m1} is the module containing 165 * the {@link Lookup#lookupClass() lookup class}, and {@code m2} is the module containing 166 * the target class, then this check ensures that 167 * <ul> 168 * <li>{@code m1} {@link Module#canRead reads} {@code m2}.</li> 169 * <li>{@code m2} {@link Module#isOpen(String,Module) opens} the package containing 170 * the target class to at least {@code m1}.</li> 171 * <li>The lookup has the {@link Lookup#MODULE MODULE} lookup mode.</li> 172 * </ul> 173 * <p> 174 * If there is a security manager, its {@code checkPermission} method is called to 175 * check {@code ReflectPermission("suppressAccessChecks")}. 176 * @apiNote The {@code MODULE} lookup mode serves to authenticate that the lookup object 177 * was created by code in the caller module (or derived from a lookup object originally 178 * created by the caller). A lookup object with the {@code MODULE} lookup mode can be 179 * shared with trusted parties without giving away {@code PRIVATE} and {@code PACKAGE} 180 * access to the caller. 181 * @param targetClass the target class 182 * @param lookup the caller lookup object 183 * @return a lookup object for the target class, with private access 184 * @throws IllegalArgumentException if {@code targetClass} is a primitive type or array class 185 * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null} 186 * @throws IllegalAccessException if the access check specified above fails 187 * @throws SecurityException if denied by the security manager 188 * @since 9 189 * @spec JPMS 190 * @see Lookup#dropLookupMode 191 */ 192 public static Lookup privateLookupIn(Class<?> targetClass, Lookup lookup) throws IllegalAccessException { 193 if (lookup.allowedModes == Lookup.TRUSTED) { 194 return new Lookup(targetClass); 195 } 196 197 SecurityManager sm = System.getSecurityManager(); 198 if (sm != null) sm.checkPermission(ACCESS_PERMISSION); 199 if (targetClass.isPrimitive()) 200 throw new IllegalArgumentException(targetClass + " is a primitive class"); 201 if (targetClass.isArray()) 202 throw new IllegalArgumentException(targetClass + " is an array class"); 203 Module targetModule = targetClass.getModule(); 204 Module callerModule = lookup.lookupClass().getModule(); 205 if (!callerModule.canRead(targetModule)) 206 throw new IllegalAccessException(callerModule + " does not read " + targetModule); 207 if (targetModule.isNamed()) { 208 String pn = targetClass.getPackageName(); 209 assert pn.length() > 0 : "unnamed package cannot be in named module"; 210 if (!targetModule.isOpen(pn, callerModule)) 211 throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule); 212 } 213 if ((lookup.lookupModes() & Lookup.MODULE) == 0) 214 throw new IllegalAccessException("lookup does not have MODULE lookup mode"); 215 if (!callerModule.isNamed() && targetModule.isNamed()) { 216 IllegalAccessLogger logger = IllegalAccessLogger.illegalAccessLogger(); 217 if (logger != null) { 218 logger.logIfOpenedForIllegalAccess(lookup, targetClass); 219 } 220 } 221 return new Lookup(targetClass); 222 } 223 224 /** 225 * Performs an unchecked "crack" of a 226 * <a href="MethodHandleInfo.html#directmh">direct method handle</a>. 227 * The result is as if the user had obtained a lookup object capable enough 228 * to crack the target method handle, called 229 * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect} 230 * on the target to obtain its symbolic reference, and then called 231 * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs} 232 * to resolve the symbolic reference to a member. 233 * <p> 234 * If there is a security manager, its {@code checkPermission} method 235 * is called with a {@code ReflectPermission("suppressAccessChecks")} permission. 236 * @param <T> the desired type of the result, either {@link Member} or a subtype 237 * @param target a direct method handle to crack into symbolic reference components 238 * @param expected a class object representing the desired result type {@code T} 239 * @return a reference to the method, constructor, or field object 240 * @exception SecurityException if the caller is not privileged to call {@code setAccessible} 241 * @exception NullPointerException if either argument is {@code null} 242 * @exception IllegalArgumentException if the target is not a direct method handle 243 * @exception ClassCastException if the member is not of the expected type 244 * @since 1.8 245 */ 246 public static <T extends Member> T 247 reflectAs(Class<T> expected, MethodHandle target) { 248 SecurityManager smgr = System.getSecurityManager(); 249 if (smgr != null) smgr.checkPermission(ACCESS_PERMISSION); 250 Lookup lookup = Lookup.IMPL_LOOKUP; // use maximally privileged lookup 251 return lookup.revealDirect(target).reflectAs(expected, lookup); 252 } 253 // Copied from AccessibleObject, as used by Method.setAccessible, etc.: 254 private static final java.security.Permission ACCESS_PERMISSION = 255 new ReflectPermission("suppressAccessChecks"); 256 257 /** 258 * A <em>lookup object</em> is a factory for creating method handles, 259 * when the creation requires access checking. 260 * Method handles do not perform 261 * access checks when they are called, but rather when they are created. 262 * Therefore, method handle access 263 * restrictions must be enforced when a method handle is created. 264 * The caller class against which those restrictions are enforced 265 * is known as the {@linkplain #lookupClass() lookup class}. 266 * <p> 267 * A lookup class which needs to create method handles will call 268 * {@link MethodHandles#lookup() MethodHandles.lookup} to create a factory for itself. 269 * When the {@code Lookup} factory object is created, the identity of the lookup class is 270 * determined, and securely stored in the {@code Lookup} object. 271 * The lookup class (or its delegates) may then use factory methods 272 * on the {@code Lookup} object to create method handles for access-checked members. 273 * This includes all methods, constructors, and fields which are allowed to the lookup class, 274 * even private ones. 275 * 276 * <h1><a id="lookups"></a>Lookup Factory Methods</h1> 277 * The factory methods on a {@code Lookup} object correspond to all major 278 * use cases for methods, constructors, and fields. 279 * Each method handle created by a factory method is the functional 280 * equivalent of a particular <em>bytecode behavior</em>. 281 * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.) 282 * Here is a summary of the correspondence between these factory methods and 283 * the behavior of the resulting method handles: 284 * <table class="striped"> 285 * <caption style="display:none">lookup method behaviors</caption> 286 * <thead> 287 * <tr> 288 * <th scope="col"><a id="equiv"></a>lookup expression</th> 289 * <th scope="col">member</th> 290 * <th scope="col">bytecode behavior</th> 291 * </tr> 292 * </thead> 293 * <tbody> 294 * <tr> 295 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</th> 296 * <td>{@code FT f;}</td><td>{@code (T) this.f;}</td> 297 * </tr> 298 * <tr> 299 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</th> 300 * <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td> 301 * </tr> 302 * <tr> 303 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</th> 304 * <td>{@code FT f;}</td><td>{@code this.f = x;}</td> 305 * </tr> 306 * <tr> 307 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</th> 308 * <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td> 309 * </tr> 310 * <tr> 311 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</th> 312 * <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td> 313 * </tr> 314 * <tr> 315 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</th> 316 * <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td> 317 * </tr> 318 * <tr> 319 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</th> 320 * <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td> 321 * </tr> 322 * <tr> 323 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</th> 324 * <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td> 325 * </tr> 326 * <tr> 327 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</th> 328 * <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td> 329 * </tr> 330 * <tr> 331 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</th> 332 * <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td> 333 * </tr> 334 * <tr> 335 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th> 336 * <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td> 337 * </tr> 338 * <tr> 339 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</th> 340 * <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td> 341 * </tr> 342 * <tr> 343 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th> 344 * <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td> 345 * </tr> 346 * <tr> 347 * <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</th> 348 * <td>{@code class C { ... }}</td><td>{@code C.class;}</td> 349 * </tr> 350 * </tbody> 351 * </table> 352 * 353 * Here, the type {@code C} is the class or interface being searched for a member, 354 * documented as a parameter named {@code refc} in the lookup methods. 355 * The method type {@code MT} is composed from the return type {@code T} 356 * and the sequence of argument types {@code A*}. 357 * The constructor also has a sequence of argument types {@code A*} and 358 * is deemed to return the newly-created object of type {@code C}. 359 * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}. 360 * The formal parameter {@code this} stands for the self-reference of type {@code C}; 361 * if it is present, it is always the leading argument to the method handle invocation. 362 * (In the case of some {@code protected} members, {@code this} may be 363 * restricted in type to the lookup class; see below.) 364 * The name {@code arg} stands for all the other method handle arguments. 365 * In the code examples for the Core Reflection API, the name {@code thisOrNull} 366 * stands for a null reference if the accessed method or field is static, 367 * and {@code this} otherwise. 368 * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand 369 * for reflective objects corresponding to the given members. 370 * <p> 371 * The bytecode behavior for a {@code findClass} operation is a load of a constant class, 372 * as if by {@code ldc CONSTANT_Class}. 373 * The behavior is represented, not as a method handle, but directly as a {@code Class} constant. 374 * <p> 375 * In cases where the given member is of variable arity (i.e., a method or constructor) 376 * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}. 377 * In all other cases, the returned method handle will be of fixed arity. 378 * <p style="font-size:smaller;"> 379 * <em>Discussion:</em> 380 * The equivalence between looked-up method handles and underlying 381 * class members and bytecode behaviors 382 * can break down in a few ways: 383 * <ul style="font-size:smaller;"> 384 * <li>If {@code C} is not symbolically accessible from the lookup class's loader, 385 * the lookup can still succeed, even when there is no equivalent 386 * Java expression or bytecoded constant. 387 * <li>Likewise, if {@code T} or {@code MT} 388 * is not symbolically accessible from the lookup class's loader, 389 * the lookup can still succeed. 390 * For example, lookups for {@code MethodHandle.invokeExact} and 391 * {@code MethodHandle.invoke} will always succeed, regardless of requested type. 392 * <li>If there is a security manager installed, it can forbid the lookup 393 * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>). 394 * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle} 395 * constant is not subject to security manager checks. 396 * <li>If the looked-up method has a 397 * <a href="MethodHandle.html#maxarity">very large arity</a>, 398 * the method handle creation may fail with an 399 * {@code IllegalArgumentException}, due to the method handle type having 400 * <a href="MethodHandle.html#maxarity">too many parameters.</a> 401 * </ul> 402 * 403 * <h1><a id="access"></a>Access checking</h1> 404 * Access checks are applied in the factory methods of {@code Lookup}, 405 * when a method handle is created. 406 * This is a key difference from the Core Reflection API, since 407 * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} 408 * performs access checking against every caller, on every call. 409 * <p> 410 * All access checks start from a {@code Lookup} object, which 411 * compares its recorded lookup class against all requests to 412 * create method handles. 413 * A single {@code Lookup} object can be used to create any number 414 * of access-checked method handles, all checked against a single 415 * lookup class. 416 * <p> 417 * A {@code Lookup} object can be shared with other trusted code, 418 * such as a metaobject protocol. 419 * A shared {@code Lookup} object delegates the capability 420 * to create method handles on private members of the lookup class. 421 * Even if privileged code uses the {@code Lookup} object, 422 * the access checking is confined to the privileges of the 423 * original lookup class. 424 * <p> 425 * A lookup can fail, because 426 * the containing class is not accessible to the lookup class, or 427 * because the desired class member is missing, or because the 428 * desired class member is not accessible to the lookup class, or 429 * because the lookup object is not trusted enough to access the member. 430 * In any of these cases, a {@code ReflectiveOperationException} will be 431 * thrown from the attempted lookup. The exact class will be one of 432 * the following: 433 * <ul> 434 * <li>NoSuchMethodException — if a method is requested but does not exist 435 * <li>NoSuchFieldException — if a field is requested but does not exist 436 * <li>IllegalAccessException — if the member exists but an access check fails 437 * </ul> 438 * <p> 439 * In general, the conditions under which a method handle may be 440 * looked up for a method {@code M} are no more restrictive than the conditions 441 * under which the lookup class could have compiled, verified, and resolved a call to {@code M}. 442 * Where the JVM would raise exceptions like {@code NoSuchMethodError}, 443 * a method handle lookup will generally raise a corresponding 444 * checked exception, such as {@code NoSuchMethodException}. 445 * And the effect of invoking the method handle resulting from the lookup 446 * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a> 447 * to executing the compiled, verified, and resolved call to {@code M}. 448 * The same point is true of fields and constructors. 449 * <p style="font-size:smaller;"> 450 * <em>Discussion:</em> 451 * Access checks only apply to named and reflected methods, 452 * constructors, and fields. 453 * Other method handle creation methods, such as 454 * {@link MethodHandle#asType MethodHandle.asType}, 455 * do not require any access checks, and are used 456 * independently of any {@code Lookup} object. 457 * <p> 458 * If the desired member is {@code protected}, the usual JVM rules apply, 459 * including the requirement that the lookup class must either be in the 460 * same package as the desired member, or must inherit that member. 461 * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.) 462 * In addition, if the desired member is a non-static field or method 463 * in a different package, the resulting method handle may only be applied 464 * to objects of the lookup class or one of its subclasses. 465 * This requirement is enforced by narrowing the type of the leading 466 * {@code this} parameter from {@code C} 467 * (which will necessarily be a superclass of the lookup class) 468 * to the lookup class itself. 469 * <p> 470 * The JVM imposes a similar requirement on {@code invokespecial} instruction, 471 * that the receiver argument must match both the resolved method <em>and</em> 472 * the current class. Again, this requirement is enforced by narrowing the 473 * type of the leading parameter to the resulting method handle. 474 * (See the Java Virtual Machine Specification, section 4.10.1.9.) 475 * <p> 476 * The JVM represents constructors and static initializer blocks as internal methods 477 * with special names ({@code "<init>"} and {@code "<clinit>"}). 478 * The internal syntax of invocation instructions allows them to refer to such internal 479 * methods as if they were normal methods, but the JVM bytecode verifier rejects them. 480 * A lookup of such an internal method will produce a {@code NoSuchMethodException}. 481 * <p> 482 * If the relationship between nested types is expressed directly through the 483 * {@code NestHost} and {@code NestMembers} attributes 484 * (see the Java Virtual Machine Specification, sections 4.7.28 and 4.7.29), 485 * then the associated {@code Lookup} object provides direct access to 486 * the lookup class and all of its nestmates 487 * (see {@link java.lang.Class#getNestHost Class.getNestHost}). 488 * Otherwise, access between nested classes is obtained by the Java compiler creating 489 * a wrapper method to access a private method of another class in the same nest. 490 * For example, a nested class {@code C.D} 491 * can access private members within other related classes such as 492 * {@code C}, {@code C.D.E}, or {@code C.B}, 493 * but the Java compiler may need to generate wrapper methods in 494 * those related classes. In such cases, a {@code Lookup} object on 495 * {@code C.E} would be unable to access those private members. 496 * A workaround for this limitation is the {@link Lookup#in Lookup.in} method, 497 * which can transform a lookup on {@code C.E} into one on any of those other 498 * classes, without special elevation of privilege. 499 * <p> 500 * The accesses permitted to a given lookup object may be limited, 501 * according to its set of {@link #lookupModes lookupModes}, 502 * to a subset of members normally accessible to the lookup class. 503 * For example, the {@link MethodHandles#publicLookup publicLookup} 504 * method produces a lookup object which is only allowed to access 505 * public members in public classes of exported packages. 506 * The caller sensitive method {@link MethodHandles#lookup lookup} 507 * produces a lookup object with full capabilities relative to 508 * its caller class, to emulate all supported bytecode behaviors. 509 * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object 510 * with fewer access modes than the original lookup object. 511 * 512 * <p style="font-size:smaller;"> 513 * <a id="privacc"></a> 514 * <em>Discussion of private access:</em> 515 * We say that a lookup has <em>private access</em> 516 * if its {@linkplain #lookupModes lookup modes} 517 * include the possibility of accessing {@code private} members 518 * (which includes the private members of nestmates). 519 * As documented in the relevant methods elsewhere, 520 * only lookups with private access possess the following capabilities: 521 * <ul style="font-size:smaller;"> 522 * <li>access private fields, methods, and constructors of the lookup class and its nestmates 523 * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods, 524 * such as {@code Class.forName} 525 * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions 526 * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a> 527 * for classes accessible to the lookup class 528 * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes 529 * within the same package member 530 * </ul> 531 * <p style="font-size:smaller;"> 532 * Each of these permissions is a consequence of the fact that a lookup object 533 * with private access can be securely traced back to an originating class, 534 * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions 535 * can be reliably determined and emulated by method handles. 536 * 537 * <h1><a id="secmgr"></a>Security manager interactions</h1> 538 * Although bytecode instructions can only refer to classes in 539 * a related class loader, this API can search for methods in any 540 * class, as long as a reference to its {@code Class} object is 541 * available. Such cross-loader references are also possible with the 542 * Core Reflection API, and are impossible to bytecode instructions 543 * such as {@code invokestatic} or {@code getfield}. 544 * There is a {@linkplain java.lang.SecurityManager security manager API} 545 * to allow applications to check such cross-loader references. 546 * These checks apply to both the {@code MethodHandles.Lookup} API 547 * and the Core Reflection API 548 * (as found on {@link java.lang.Class Class}). 549 * <p> 550 * If a security manager is present, member and class lookups are subject to 551 * additional checks. 552 * From one to three calls are made to the security manager. 553 * Any of these calls can refuse access by throwing a 554 * {@link java.lang.SecurityException SecurityException}. 555 * Define {@code smgr} as the security manager, 556 * {@code lookc} as the lookup class of the current lookup object, 557 * {@code refc} as the containing class in which the member 558 * is being sought, and {@code defc} as the class in which the 559 * member is actually defined. 560 * (If a class or other type is being accessed, 561 * the {@code refc} and {@code defc} values are the class itself.) 562 * The value {@code lookc} is defined as <em>not present</em> 563 * if the current lookup object does not have 564 * <a href="MethodHandles.Lookup.html#privacc">private access</a>. 565 * The calls are made according to the following rules: 566 * <ul> 567 * <li><b>Step 1:</b> 568 * If {@code lookc} is not present, or if its class loader is not 569 * the same as or an ancestor of the class loader of {@code refc}, 570 * then {@link SecurityManager#checkPackageAccess 571 * smgr.checkPackageAccess(refcPkg)} is called, 572 * where {@code refcPkg} is the package of {@code refc}. 573 * <li><b>Step 2a:</b> 574 * If the retrieved member is not public and 575 * {@code lookc} is not present, then 576 * {@link SecurityManager#checkPermission smgr.checkPermission} 577 * with {@code RuntimePermission("accessDeclaredMembers")} is called. 578 * <li><b>Step 2b:</b> 579 * If the retrieved class has a {@code null} class loader, 580 * and {@code lookc} is not present, then 581 * {@link SecurityManager#checkPermission smgr.checkPermission} 582 * with {@code RuntimePermission("getClassLoader")} is called. 583 * <li><b>Step 3:</b> 584 * If the retrieved member is not public, 585 * and if {@code lookc} is not present, 586 * and if {@code defc} and {@code refc} are different, 587 * then {@link SecurityManager#checkPackageAccess 588 * smgr.checkPackageAccess(defcPkg)} is called, 589 * where {@code defcPkg} is the package of {@code defc}. 590 * </ul> 591 * Security checks are performed after other access checks have passed. 592 * Therefore, the above rules presuppose a member or class that is public, 593 * or else that is being accessed from a lookup class that has 594 * rights to access the member or class. 595 * 596 * <h1><a id="callsens"></a>Caller sensitive methods</h1> 597 * A small number of Java methods have a special property called caller sensitivity. 598 * A <em>caller-sensitive</em> method can behave differently depending on the 599 * identity of its immediate caller. 600 * <p> 601 * If a method handle for a caller-sensitive method is requested, 602 * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply, 603 * but they take account of the lookup class in a special way. 604 * The resulting method handle behaves as if it were called 605 * from an instruction contained in the lookup class, 606 * so that the caller-sensitive method detects the lookup class. 607 * (By contrast, the invoker of the method handle is disregarded.) 608 * Thus, in the case of caller-sensitive methods, 609 * different lookup classes may give rise to 610 * differently behaving method handles. 611 * <p> 612 * In cases where the lookup object is 613 * {@link MethodHandles#publicLookup() publicLookup()}, 614 * or some other lookup object without 615 * <a href="MethodHandles.Lookup.html#privacc">private access</a>, 616 * the lookup class is disregarded. 617 * In such cases, no caller-sensitive method handle can be created, 618 * access is forbidden, and the lookup fails with an 619 * {@code IllegalAccessException}. 620 * <p style="font-size:smaller;"> 621 * <em>Discussion:</em> 622 * For example, the caller-sensitive method 623 * {@link java.lang.Class#forName(String) Class.forName(x)} 624 * can return varying classes or throw varying exceptions, 625 * depending on the class loader of the class that calls it. 626 * A public lookup of {@code Class.forName} will fail, because 627 * there is no reasonable way to determine its bytecode behavior. 628 * <p style="font-size:smaller;"> 629 * If an application caches method handles for broad sharing, 630 * it should use {@code publicLookup()} to create them. 631 * If there is a lookup of {@code Class.forName}, it will fail, 632 * and the application must take appropriate action in that case. 633 * It may be that a later lookup, perhaps during the invocation of a 634 * bootstrap method, can incorporate the specific identity 635 * of the caller, making the method accessible. 636 * <p style="font-size:smaller;"> 637 * The function {@code MethodHandles.lookup} is caller sensitive 638 * so that there can be a secure foundation for lookups. 639 * Nearly all other methods in the JSR 292 API rely on lookup 640 * objects to check access requests. 641 * 642 * @revised 9 643 */ 644 public static final 645 class Lookup { 646 /** The class on behalf of whom the lookup is being performed. */ 647 private final Class<?> lookupClass; 648 649 /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */ 650 private final int allowedModes; 651 652 static { 653 Reflection.registerFieldsToFilter(Lookup.class, Set.of("lookupClass", "allowedModes")); 654 } 655 656 /** A single-bit mask representing {@code public} access, 657 * which may contribute to the result of {@link #lookupModes lookupModes}. 658 * The value, {@code 0x01}, happens to be the same as the value of the 659 * {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}. 660 */ 661 public static final int PUBLIC = Modifier.PUBLIC; 662 663 /** A single-bit mask representing {@code private} access, 664 * which may contribute to the result of {@link #lookupModes lookupModes}. 665 * The value, {@code 0x02}, happens to be the same as the value of the 666 * {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}. 667 */ 668 public static final int PRIVATE = Modifier.PRIVATE; 669 670 /** A single-bit mask representing {@code protected} access, 671 * which may contribute to the result of {@link #lookupModes lookupModes}. 672 * The value, {@code 0x04}, happens to be the same as the value of the 673 * {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}. 674 */ 675 public static final int PROTECTED = Modifier.PROTECTED; 676 677 /** A single-bit mask representing {@code package} access (default access), 678 * which may contribute to the result of {@link #lookupModes lookupModes}. 679 * The value is {@code 0x08}, which does not correspond meaningfully to 680 * any particular {@linkplain java.lang.reflect.Modifier modifier bit}. 681 */ 682 public static final int PACKAGE = Modifier.STATIC; 683 684 /** A single-bit mask representing {@code module} access (default access), 685 * which may contribute to the result of {@link #lookupModes lookupModes}. 686 * The value is {@code 0x10}, which does not correspond meaningfully to 687 * any particular {@linkplain java.lang.reflect.Modifier modifier bit}. 688 * In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup} 689 * with this lookup mode can access all public types in the module of the 690 * lookup class and public types in packages exported by other modules 691 * to the module of the lookup class. 692 * @since 9 693 * @spec JPMS 694 */ 695 public static final int MODULE = PACKAGE << 1; 696 697 /** A single-bit mask representing {@code unconditional} access 698 * which may contribute to the result of {@link #lookupModes lookupModes}. 699 * The value is {@code 0x20}, which does not correspond meaningfully to 700 * any particular {@linkplain java.lang.reflect.Modifier modifier bit}. 701 * A {@code Lookup} with this lookup mode assumes {@linkplain 702 * java.lang.Module#canRead(java.lang.Module) readability}. 703 * In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup} 704 * with this lookup mode can access all public members of public types 705 * of all modules where the type is in a package that is {@link 706 * java.lang.Module#isExported(String) exported unconditionally}. 707 * @since 9 708 * @spec JPMS 709 * @see #publicLookup() 710 */ 711 public static final int UNCONDITIONAL = PACKAGE << 2; 712 713 private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE | UNCONDITIONAL); 714 private static final int FULL_POWER_MODES = (ALL_MODES & ~UNCONDITIONAL); 715 private static final int TRUSTED = -1; 716 717 private static int fixmods(int mods) { 718 mods &= (ALL_MODES - PACKAGE - MODULE - UNCONDITIONAL); 719 return (mods != 0) ? mods : (PACKAGE | MODULE | UNCONDITIONAL); 720 } 721 722 /** Tells which class is performing the lookup. It is this class against 723 * which checks are performed for visibility and access permissions. 724 * <p> 725 * The class implies a maximum level of access permission, 726 * but the permissions may be additionally limited by the bitmask 727 * {@link #lookupModes lookupModes}, which controls whether non-public members 728 * can be accessed. 729 * @return the lookup class, on behalf of which this lookup object finds members 730 */ 731 public Class<?> lookupClass() { 732 return lookupClass; 733 } 734 735 // This is just for calling out to MethodHandleImpl. 736 private Class<?> lookupClassOrNull() { 737 return (allowedModes == TRUSTED) ? null : lookupClass; 738 } 739 740 /** Tells which access-protection classes of members this lookup object can produce. 741 * The result is a bit-mask of the bits 742 * {@linkplain #PUBLIC PUBLIC (0x01)}, 743 * {@linkplain #PRIVATE PRIVATE (0x02)}, 744 * {@linkplain #PROTECTED PROTECTED (0x04)}, 745 * {@linkplain #PACKAGE PACKAGE (0x08)}, 746 * {@linkplain #MODULE MODULE (0x10)}, 747 * and {@linkplain #UNCONDITIONAL UNCONDITIONAL (0x20)}. 748 * <p> 749 * A freshly-created lookup object 750 * on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} has 751 * all possible bits set, except {@code UNCONDITIONAL}. 752 * A lookup object on a new lookup class 753 * {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object} 754 * may have some mode bits set to zero. 755 * Mode bits can also be 756 * {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}. 757 * Once cleared, mode bits cannot be restored from the downgraded lookup object. 758 * The purpose of this is to restrict access via the new lookup object, 759 * so that it can access only names which can be reached by the original 760 * lookup object, and also by the new lookup class. 761 * @return the lookup modes, which limit the kinds of access performed by this lookup object 762 * @see #in 763 * @see #dropLookupMode 764 * 765 * @revised 9 766 * @spec JPMS 767 */ 768 public int lookupModes() { 769 return allowedModes & ALL_MODES; 770 } 771 772 /** Embody the current class (the lookupClass) as a lookup class 773 * for method handle creation. 774 * Must be called by from a method in this package, 775 * which in turn is called by a method not in this package. 776 */ 777 Lookup(Class<?> lookupClass) { 778 this(lookupClass, FULL_POWER_MODES); 779 } 780 781 private Lookup(Class<?> lookupClass, int allowedModes) { 782 this.lookupClass = lookupClass; 783 this.allowedModes = allowedModes; 784 assert !lookupClass.isPrimitive() && !lookupClass.isArray(); 785 } 786 787 /** 788 * Creates a lookup on the specified new lookup class. 789 * The resulting object will report the specified 790 * class as its own {@link #lookupClass() lookupClass}. 791 * <p> 792 * However, the resulting {@code Lookup} object is guaranteed 793 * to have no more access capabilities than the original. 794 * In particular, access capabilities can be lost as follows:<ul> 795 * <li>If the old lookup class is in a {@link Module#isNamed() named} module, and 796 * the new lookup class is in a different module {@code M}, then no members, not 797 * even public members in {@code M}'s exported packages, will be accessible. 798 * The exception to this is when this lookup is {@link #publicLookup() 799 * publicLookup}, in which case {@code PUBLIC} access is not lost. 800 * <li>If the old lookup class is in an unnamed module, and the new lookup class 801 * is a different module then {@link #MODULE MODULE} access is lost. 802 * <li>If the new lookup class differs from the old one then {@code UNCONDITIONAL} is lost. 803 * <li>If the new lookup class is in a different package 804 * than the old one, protected and default (package) members will not be accessible. 805 * <li>If the new lookup class is not within the same package member 806 * as the old one, private members will not be accessible, and protected members 807 * will not be accessible by virtue of inheritance. 808 * (Protected members may continue to be accessible because of package sharing.) 809 * <li>If the new lookup class is not accessible to the old lookup class, 810 * then no members, not even public members, will be accessible. 811 * (In all other cases, public members will continue to be accessible.) 812 * </ul> 813 * <p> 814 * The resulting lookup's capabilities for loading classes 815 * (used during {@link #findClass} invocations) 816 * are determined by the lookup class' loader, 817 * which may change due to this operation. 818 * 819 * @param requestedLookupClass the desired lookup class for the new lookup object 820 * @return a lookup object which reports the desired lookup class, or the same object 821 * if there is no change 822 * @throws IllegalArgumentException if {@code requestedLookupClass} is 823 * a primitive type or array class 824 * @throws NullPointerException if the argument is null 825 * 826 * @revised 9 827 * @spec JPMS 828 */ 829 public Lookup in(Class<?> requestedLookupClass) { 830 Objects.requireNonNull(requestedLookupClass); 831 if (requestedLookupClass.isPrimitive()) 832 throw new IllegalArgumentException(requestedLookupClass + " is a primitive class"); 833 if (requestedLookupClass.isArray()) 834 throw new IllegalArgumentException(requestedLookupClass + " is an array class"); 835 836 if (allowedModes == TRUSTED) // IMPL_LOOKUP can make any lookup at all 837 return new Lookup(requestedLookupClass, FULL_POWER_MODES); 838 if (requestedLookupClass == this.lookupClass) 839 return this; // keep same capabilities 840 int newModes = (allowedModes & FULL_POWER_MODES); 841 if (!VerifyAccess.isSameModule(this.lookupClass, requestedLookupClass)) { 842 // Need to drop all access when teleporting from a named module to another 843 // module. The exception is publicLookup where PUBLIC is not lost. 844 if (this.lookupClass.getModule().isNamed() 845 && (this.allowedModes & UNCONDITIONAL) == 0) 846 newModes = 0; 847 else 848 newModes &= ~(MODULE|PACKAGE|PRIVATE|PROTECTED); 849 } 850 if ((newModes & PACKAGE) != 0 851 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) { 852 newModes &= ~(PACKAGE|PRIVATE|PROTECTED); 853 } 854 // Allow nestmate lookups to be created without special privilege: 855 if ((newModes & PRIVATE) != 0 856 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) { 857 newModes &= ~(PRIVATE|PROTECTED); 858 } 859 if ((newModes & PUBLIC) != 0 860 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) { 861 // The requested class it not accessible from the lookup class. 862 // No permissions. 863 newModes = 0; 864 } 865 866 checkUnprivilegedlookupClass(requestedLookupClass); 867 return new Lookup(requestedLookupClass, newModes); 868 } 869 870 871 /** 872 * Creates a lookup on the same lookup class which this lookup object 873 * finds members, but with a lookup mode that has lost the given lookup mode. 874 * The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE 875 * MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED} or {@link #PRIVATE PRIVATE}. 876 * {@link #PROTECTED PROTECTED} and {@link #UNCONDITIONAL UNCONDITIONAL} are always 877 * dropped and so the resulting lookup mode will never have these access capabilities. 878 * When dropping {@code PACKAGE} then the resulting lookup will not have {@code PACKAGE} 879 * or {@code PRIVATE} access. When dropping {@code MODULE} then the resulting lookup will 880 * not have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access. If {@code PUBLIC} 881 * is dropped then the resulting lookup has no access. 882 * @param modeToDrop the lookup mode to drop 883 * @return a lookup object which lacks the indicated mode, or the same object if there is no change 884 * @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC}, 885 * {@code MODULE}, {@code PACKAGE}, {@code PROTECTED}, {@code PRIVATE} or {@code UNCONDITIONAL} 886 * @see MethodHandles#privateLookupIn 887 * @since 9 888 */ 889 public Lookup dropLookupMode(int modeToDrop) { 890 int oldModes = lookupModes(); 891 int newModes = oldModes & ~(modeToDrop | PROTECTED | UNCONDITIONAL); 892 switch (modeToDrop) { 893 case PUBLIC: newModes &= ~(ALL_MODES); break; 894 case MODULE: newModes &= ~(PACKAGE | PRIVATE); break; 895 case PACKAGE: newModes &= ~(PRIVATE); break; 896 case PROTECTED: 897 case PRIVATE: 898 case UNCONDITIONAL: break; 899 default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop"); 900 } 901 if (newModes == oldModes) return this; // return self if no change 902 return new Lookup(lookupClass(), newModes); 903 } 904 905 /** 906 * Defines a class to the same class loader and in the same runtime package and 907 * {@linkplain java.security.ProtectionDomain protection domain} as this lookup's 908 * {@linkplain #lookupClass() lookup class}. 909 * 910 * This method is equivalent to calling 911 * {@link #defineClass(byte[], ClassProperty[]) 912 * defineClass(bytes, (ClassProperty[])null)}. 913 * 914 * <p> The {@linkplain #lookupModes() lookup modes} for this lookup must include 915 * {@link #PACKAGE PACKAGE} access as default (package) members will be 916 * accessible to the class. The {@code PACKAGE} lookup mode serves to authenticate 917 * that the lookup object was created by a caller in the runtime package (or derived 918 * from a lookup originally created by suitably privileged code to a target class in 919 * the runtime package). </p> 920 * 921 * <p> The {@code bytes} parameter is the class bytes of a valid class file (as defined 922 * by the <em>The Java Virtual Machine Specification</em>) with a class name in the 923 * same package as the lookup class. </p> 924 * 925 * <p> This method does not run the class initializer. The class initializer may 926 * run at a later time, as detailed in section 12.4 of the <em>The Java Language 927 * Specification</em>. </p> 928 * 929 * <p> If there is a security manager, its {@code checkPermission} method is first called 930 * to check {@code RuntimePermission("defineClass")}. </p> 931 * 932 * @param bytes the class bytes 933 * @return the {@code Class} object for the class 934 * @throws IllegalArgumentException the bytes are for a class in a different package 935 * to the lookup class 936 * @throws IllegalAccessException if this lookup does not have {@code PACKAGE} access 937 * @throws LinkageError if the class is malformed ({@code ClassFormatError}), cannot be 938 * verified ({@code VerifyError}), is already defined, or another linkage error occurs 939 * @throws SecurityException if denied by the security manager 940 * @throws NullPointerException if {@code bytes} is {@code null} 941 * @since 9 942 * @spec JPMS 943 * @see Lookup#privateLookupIn 944 * @see Lookup#dropLookupMode 945 * @see ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain) 946 */ 947 public Class<?> defineClass(byte[] bytes) throws IllegalAccessException { 948 return defineClass(bytes, (ClassProperty[])null); 949 } 950 951 /** 952 * Defines a class to the same class loader and in the same runtime package 953 * and {@linkplain java.security.ProtectionDomain protection domain} as 954 * this lookup's {@linkplain #lookupClass() lookup class}. 955 * The {@code props} parameter specifies the properties of the class. 956 * 957 * <p> A class can be defined with the following properties: 958 * <ul> 959 * <li>A {@linkplain ClassProperty#NESTMATE <em>nestmate</em>} of the lookup class, 960 * i.e. in the same {@linkplain Class#getNestHost nest} 961 * of the lookup class. The class will have access to the private members 962 * of all classes and interfaces in the same nest. 963 * </li> 964 * <li>A {@linkplain ClassProperty#HIDDEN <em>hidden</em>} class, 965 * i.e. a class cannot be referenced by other classes. 966 * A hidden class has the following properties: 967 * <ul> 968 * <li>Naming: 969 * The name of this class is derived from the name of 970 * the class in the class bytes so that the class name does not 971 * collide with other classes defined to the same class loader. 972 * <li>Class resolution: 973 * The Java virtual machine does not find a hidden class with 974 * its name. A hidden class can reference its members 975 * locally with the name of the class in the class bytes as if 976 * a non-hidden class. The name returned by {@link Class#getName()} 977 * is not known when the class bytes are generated. 978 * <li>Class retransformation: 979 * The class is not modifiable by Java agents or tool agents using 980 * the <a href="{@docRoot}/../specs/jvmti.html">JVM Tool Interface</a>. 981 * </ul> 982 * </li> 983 * <li>A {@linkplain ClassProperty#WEAK <em>weak</em>} class, 984 * i.e. a class may be unloaded even if its defining class loader is 985 * <a href="../ref/package.html#reachability">reachable</a>, 986 * as if the defining class loader would only hold a 987 * {@linkplain java.lang.ref.WeakReference weak reference} of 988 * the class. 989 * A weak class is hidden. If the {@code WEAK} property is set, 990 * then it implies that {@code HIDDEN} property is also set.</li> 991 * </ul> 992 * 993 * <p> The {@linkplain #lookupModes() lookup modes} for this lookup must 994 * include {@link #PACKAGE PACKAGE} access as default (package) members 995 * will be accessible to the class. The {@code PACKAGE} lookup mode serves 996 * to authenticate that the lookup object was created by a caller in 997 * the runtime package (or derived from a lookup originally created by 998 * suitably privileged code to a target class in the runtime package). 999 * If the class is defined as a {@linkplain ClassProperty#NESTMATE nestmate} 1000 * then the {@linkplain #lookupModes() lookup modes} for this lookup must 1001 * include {@link #PRIVATE PRIVATE} access. </p> 1002 * 1003 * <p> The {@code bytes} parameter is the class bytes of a valid class file 1004 * (as defined by the <em>The Java Virtual Machine Specification</em>) 1005 * with a class name in the same package as the lookup class. 1006 * The class bytes of a nestmate class must not contain 1007 * the {@code NestHost} attribute nor the {@code NestMembers} attribute. </p> 1008 * 1009 * <p> If there is a security manager, its {@code checkPermission} method is first called 1010 * to check {@code RuntimePermission("defineClass")}. </p> 1011 * 1012 * <p> This method does not run the class initializer. The class initializer 1013 * may run at a later time, as detailed in section 12.4 of the The Java Language Specification. 1014 * 1015 * <p> The class can obtain {@code classData} by calling 1016 * the {@link Lookup#classData()} method of its {@code Lookup} object. 1017 * 1018 * @apiNote An implementation of the Java Progamming Language may 1019 * unload classes as specified in section 12.7 of the Java Language Specification. 1020 * A class or interface may be unloaded if and only if 1021 * its defining class loader may be reclaimed by the garbage collector. 1022 * If the implementation supports class loading, a weak class 1023 * may become weakly reachable as if the defining class loader would 1024 * only hold a {@linkplain java.lang.ref.WeakReference weak reference} 1025 * of the class. 1026 * 1027 * @param bytes the class bytes 1028 * @param props {@linkplain ClassProperty class properties} 1029 * @return the {@code Class} object for the class 1030 * 1031 * @throws IllegalArgumentException the bytes are for a class in a different package 1032 * to the lookup class 1033 * @throws IllegalAccessException if this lookup does not have {@code PACKAGE} access, or 1034 * if {@code properties} contains {@code NESTMATE} but this lookup 1035 * does not have {@code PRIVATE} access 1036 * @throws LinkageError if the class is malformed ({@code ClassFormatError}), cannot be 1037 * verified ({@code VerifyError}), is already defined, 1038 * or another linkage error occurs 1039 * @throws SecurityException if denied by the security manager 1040 * @throws NullPointerException if {@code bytes} is {@code null} 1041 * 1042 * @since 12 1043 * @jls 12.7 Unloading of Classes and Interfaces 1044 * @see Lookup#privateLookupIn(Class, Lookup) 1045 * @see Lookup#dropLookupMode(int) 1046 */ 1047 public Class<?> defineClass(byte[] bytes, ClassProperty... props) throws IllegalAccessException { 1048 Objects.requireNonNull(bytes); 1049 1050 // clone the properties before access 1051 Set<ClassProperty> properties; 1052 if (props == null || props.length == 0) { 1053 properties = EMPTY_PROPS; 1054 } else { 1055 properties = Set.of(props); 1056 } 1057 1058 // Is it ever possible to create Lookup for int.class or Object[].class? 1059 assert !lookupClass.isPrimitive() && !lookupClass.isArray(); 1060 1061 if ((lookupModes() & PACKAGE) == 0){ 1062 throw new IllegalAccessException("Lookup does not have PACKAGE access"); 1063 } 1064 1065 if (properties.contains(NESTMATE) && (lookupModes() & PRIVATE) == 0){ 1066 throw new IllegalAccessException("Lookup does not have PRIVATE access"); 1067 } 1068 1069 assert (lookupModes() & (MODULE | PUBLIC)) != 0; 1070 1071 SecurityManager sm = System.getSecurityManager(); 1072 if (sm != null) 1073 sm.checkPermission(new RuntimePermission("defineClass")); 1074 1075 return defineClassWithNoCheck(bytes, classPropertiesToFlags(properties)); 1076 } 1077 1078 /** 1079 * Defines a class to the same class loader and in the same runtime package 1080 * and {@linkplain java.security.ProtectionDomain protection domain} as 1081 * this lookup's {@linkplain #lookupClass() lookup class} with 1082 * the given class properties and {@code classData}. 1083 * 1084 * <p> This method defines a class as if calling 1085 * {@link #defineClass(byte[], ClassProperty...) defineClass(bytes, props)} 1086 * and then the class initializer with an injected the {@code classData} 1087 * as a pre-initialized static unnamed field. 1088 * The injected pre-initialized static unnamed field can be 1089 * obtained by calling the {@link Lookup#classData()} method of 1090 * its {@code Lookup} object. 1091 * 1092 * <p> If there is a security manager, its {@code checkPermission} method is first called 1093 * to check {@code RuntimePermission("defineClass")}. </p> 1094 * 1095 * @apiNote 1096 * This method initializes the class, as opposed to the {@link #defineClass(byte[], ClassProperty...)} 1097 * method which does not invoke {@code <clinit>}, because the returned {@code Class} 1098 * is as if it contains a private static unnamed field that is initialized to 1099 * the given {@code classData} along with other declared static fields 1100 * via {@code <clinit>}. 1101 * 1102 * @param bytes the class bytes 1103 * @param classData pre-initialized class data 1104 * @param props {@linkplain ClassProperty class properties} 1105 * @return the {@code Class} object for the class 1106 * 1107 * @throws IllegalArgumentException the bytes are for a class in a different package 1108 * to the lookup class 1109 * @throws IllegalAccessException if this lookup does not have {@code PACKAGE} access, or 1110 * if {@code properties} contains {@code NESTMATE} but this lookup 1111 * does not have {@code PRIVATE} access 1112 * @throws LinkageError if the class is malformed ({@code ClassFormatError}), cannot be 1113 * verified ({@code VerifyError}), is already defined, 1114 * or another linkage error occurs 1115 * @throws SecurityException if denied by the security manager 1116 * @throws NullPointerException if {@code bytes} or {@code classData} is {@code null} 1117 * 1118 * @since 12 1119 * @jls 12.7 Unloading of Classes and Interfaces 1120 * @see Lookup#privateLookupIn(Class, Lookup) 1121 * @see Lookup#dropLookupMode(int) 1122 */ 1123 public Class<?> defineClassWithClassData(byte[] bytes, Object classData, ClassProperty... props) 1124 throws IllegalAccessException 1125 { 1126 Objects.requireNonNull(bytes); 1127 Objects.requireNonNull(classData); 1128 1129 // Is it ever possible to create Lookup for int.class or Object[].class? 1130 assert !lookupClass.isPrimitive() && !lookupClass.isArray(); 1131 1132 if ((lookupModes() & PACKAGE) == 0){ 1133 throw new IllegalAccessException("Lookup does not have PACKAGE access"); 1134 } 1135 1136 Set<ClassProperty> properties; 1137 if (props == null || props.length == 0) { 1138 properties = EMPTY_PROPS; 1139 } else { 1140 properties = Set.of(props); 1141 } 1142 1143 if (properties.contains(NESTMATE) && (lookupModes() & PRIVATE) == 0){ 1144 throw new IllegalAccessException("Lookup does not have PRIVATE access"); 1145 } 1146 1147 assert (lookupModes() & (MODULE | PUBLIC)) != 0; 1148 1149 SecurityManager sm = System.getSecurityManager(); 1150 if (sm != null) 1151 sm.checkPermission(new RuntimePermission("defineClass")); 1152 1153 return defineClassWithNoCheck(bytes, classPropertiesToFlags(properties), classData); 1154 } 1155 1156 private static int classPropertiesToFlags(Set<ClassProperty> props) { 1157 if (props.isEmpty()) return 0; 1158 1159 int flags = 0; 1160 for (ClassProperty cp : props) { 1161 flags |= cp.flag; 1162 if (cp == WEAK) { 1163 // weak class property implies hidden 1164 flags |= HIDDEN.flag; 1165 } 1166 } 1167 return flags; 1168 } 1169 1170 /** 1171 * Returns the class data associated with this lookup class. 1172 * If this lookup class was defined via 1173 * {@link #defineClassWithClassData(byte[], Object, ClassProperty...) 1174 * defineClassWithClassData(bytes, classData, properties)} 1175 * then the supplied {@code classData} object is returned; otherwise, 1176 * {@code null}. 1177 * 1178 * <p> This method will invoke the static class initializer of 1179 * this lookup class if it has not been initialized. 1180 * 1181 * @apiNote 1182 * A class data can be considered as 1183 * private static unnamed field that has been pre-initialized 1184 * and supplied at define class time. 1185 * 1186 * <p> For example a class can pack one or more pre-initialized objects 1187 * in a {@code List} as the class data and at class initialization 1188 * time unpack them for subsequent access. 1189 * The class data is {@code List.of(o1, o2, o3....)} 1190 * passed to {@link #defineClassWithClassData(byte[], Object, ClassProperty...)} where 1191 * {@code <clinit>} of the class bytes does the following: 1192 * 1193 * <pre>{@code 1194 * private static final T t; 1195 * private static final R r; 1196 * static { 1197 * List<Object> data = (List<Object>) MethodHandles.lookup().classData(); 1198 * t = (T)data.get(0); 1199 * r = (R)data.get(1); 1200 * } 1201 *}</pre> 1202 * 1203 * @return the class data if this lookup class was defined via 1204 * {@link #defineClassWithClassData(byte[], Object, ClassProperty...)}; otherwise {@code null}. 1205 * 1206 * @throws IllegalAccessException if this lookup does not have {@code PRIVATE} access 1207 * @since 12 1208 */ 1209 public Object classData() throws IllegalAccessException { 1210 if ((lookupModes() & PRIVATE) == 0){ 1211 throw new IllegalAccessException("Lookup does not have PRIVATE access"); 1212 } 1213 1214 // should we allow clearing? getAndClearClassData 1215 return CLASS_DATA_MAP.get(lookupClass); 1216 } 1217 1218 // package-private 1219 static final int HIDDEN_NESTMATE = NESTMATE_CLASS|NONFINDABLE_CLASS|ACCESS_VM_ANNOTATIONS; 1220 static final int WEAK_HIDDEN_NESTMATE = WEAK_CLASS|NESTMATE_CLASS|NONFINDABLE_CLASS|ACCESS_VM_ANNOTATIONS; 1221 static final Set<ClassProperty> EMPTY_PROPS = Set.of(); 1222 1223 Class<?> defineClassWithNoCheck(byte[] bytes, int flags) { 1224 return defineClassWithNoCheck(bytes, flags, null); 1225 } 1226 1227 Class<?> defineClassWithNoCheck(byte[] bytes, int flags, Object classData) { 1228 // Can't use lambda during bootstrapping 1229 // parse class bytes to get class name (in internal form) 1230 bytes = bytes.clone(); 1231 String name; 1232 try { 1233 ClassReader reader = new ClassReader(bytes); 1234 name = reader.getClassName(); 1235 } catch (RuntimeException e) { 1236 // ASM exceptions are poorly specified 1237 ClassFormatError cfe = new ClassFormatError(); 1238 cfe.initCause(e); 1239 throw cfe; 1240 } 1241 1242 // get package and class name in binary form 1243 String cn, pn; 1244 int index = name.lastIndexOf('/'); 1245 if (index == -1) { 1246 cn = name; 1247 pn = ""; 1248 } else { 1249 cn = name.replace('/', '.'); 1250 pn = cn.substring(0, index); 1251 } 1252 if (!pn.equals(lookupClass.getPackageName())) { 1253 throw new IllegalArgumentException(cn + " not in same package as lookup class: " + lookupClass.getName()); 1254 } 1255 1256 Class<?> host = lookupClass; 1257 if ((flags & NESTMATE_CLASS) != 0) { 1258 // cached in the Class object 1259 host = lookupClass.getNestHost(); 1260 } 1261 1262 if ((flags & NONFINDABLE_CLASS) != 0) { 1263 // assign a new name 1264 // cn = cn + "\\" + ++seq; 1265 cn = null; 1266 } 1267 1268 // invoke the class loader's defineClass method 1269 ClassLoader loader = lookupClass.getClassLoader(); 1270 ProtectionDomain pd = (loader != null) ? lookupClassProtectionDomain() : null; 1271 Class<?> clazz = JLA.defineClass(loader, host, cn, bytes, pd, flags, classData); 1272 assert clazz.getClassLoader() == lookupClass.getClassLoader() 1273 && clazz.getPackageName().equals(lookupClass.getPackageName()); 1274 1275 // ## TBD what if multiple threads defining this same class?? 1276 // may need VM to inject the classData in a Class itself at define class time 1277 if (classData != null) { 1278 CLASS_DATA_MAP.putIfAbsent(clazz, classData); 1279 } 1280 return clazz; 1281 } 1282 1283 private static volatile int seq = 0; 1284 1285 private ProtectionDomain lookupClassProtectionDomain() { 1286 ProtectionDomain pd = cachedProtectionDomain; 1287 if (pd == null) { 1288 cachedProtectionDomain = pd = JLA.protectionDomain(lookupClass); 1289 } 1290 return pd; 1291 } 1292 1293 // cached protection domain 1294 private volatile ProtectionDomain cachedProtectionDomain; 1295 1296 // don't see the need to use ClassValue 1297 private static final WeakHashMap<Class<?>, Object> CLASS_DATA_MAP = new WeakHashMap<>(); 1298 1299 // Make sure outer class is initialized first. 1300 static { IMPL_NAMES.getClass(); } 1301 1302 /** Package-private version of lookup which is trusted. */ 1303 static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED); 1304 1305 /** Version of lookup which is trusted minimally. 1306 * It can only be used to create method handles to publicly accessible 1307 * members in packages that are exported unconditionally. 1308 */ 1309 static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, (PUBLIC|UNCONDITIONAL)); 1310 1311 static final JavaLangAccess JLA = SharedSecrets.getJavaLangAccess(); 1312 1313 private static void checkUnprivilegedlookupClass(Class<?> lookupClass) { 1314 String name = lookupClass.getName(); 1315 if (name.startsWith("java.lang.invoke.")) 1316 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass); 1317 } 1318 1319 /** 1320 * Displays the name of the class from which lookups are to be made. 1321 * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.) 1322 * If there are restrictions on the access permitted to this lookup, 1323 * this is indicated by adding a suffix to the class name, consisting 1324 * of a slash and a keyword. The keyword represents the strongest 1325 * allowed access, and is chosen as follows: 1326 * <ul> 1327 * <li>If no access is allowed, the suffix is "/noaccess". 1328 * <li>If only public access to types in exported packages is allowed, the suffix is "/public". 1329 * <li>If only public access and unconditional access are allowed, the suffix is "/publicLookup". 1330 * <li>If only public and module access are allowed, the suffix is "/module". 1331 * <li>If only public, module and package access are allowed, the suffix is "/package". 1332 * <li>If only public, module, package, and private access are allowed, the suffix is "/private". 1333 * </ul> 1334 * If none of the above cases apply, it is the case that full 1335 * access (public, module, package, private, and protected) is allowed. 1336 * In this case, no suffix is added. 1337 * This is true only of an object obtained originally from 1338 * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}. 1339 * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in} 1340 * always have restricted access, and will display a suffix. 1341 * <p> 1342 * (It may seem strange that protected access should be 1343 * stronger than private access. Viewed independently from 1344 * package access, protected access is the first to be lost, 1345 * because it requires a direct subclass relationship between 1346 * caller and callee.) 1347 * @see #in 1348 * 1349 * @revised 9 1350 * @spec JPMS 1351 */ 1352 @Override 1353 public String toString() { 1354 String cname = lookupClass.getName(); 1355 switch (allowedModes) { 1356 case 0: // no privileges 1357 return cname + "/noaccess"; 1358 case PUBLIC: 1359 return cname + "/public"; 1360 case PUBLIC|UNCONDITIONAL: 1361 return cname + "/publicLookup"; 1362 case PUBLIC|MODULE: 1363 return cname + "/module"; 1364 case PUBLIC|MODULE|PACKAGE: 1365 return cname + "/package"; 1366 case FULL_POWER_MODES & ~PROTECTED: 1367 return cname + "/private"; 1368 case FULL_POWER_MODES: 1369 return cname; 1370 case TRUSTED: 1371 return "/trusted"; // internal only; not exported 1372 default: // Should not happen, but it's a bitfield... 1373 cname = cname + "/" + Integer.toHexString(allowedModes); 1374 assert(false) : cname; 1375 return cname; 1376 } 1377 } 1378 1379 /** 1380 * Produces a method handle for a static method. 1381 * The type of the method handle will be that of the method. 1382 * (Since static methods do not take receivers, there is no 1383 * additional receiver argument inserted into the method handle type, 1384 * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.) 1385 * The method and all its argument types must be accessible to the lookup object. 1386 * <p> 1387 * The returned method handle will have 1388 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 1389 * the method's variable arity modifier bit ({@code 0x0080}) is set. 1390 * <p> 1391 * If the returned method handle is invoked, the method's class will 1392 * be initialized, if it has not already been initialized. 1393 * <p><b>Example:</b> 1394 * <blockquote><pre>{@code 1395 import static java.lang.invoke.MethodHandles.*; 1396 import static java.lang.invoke.MethodType.*; 1397 ... 1398 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class, 1399 "asList", methodType(List.class, Object[].class)); 1400 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString()); 1401 * }</pre></blockquote> 1402 * @param refc the class from which the method is accessed 1403 * @param name the name of the method 1404 * @param type the type of the method 1405 * @return the desired method handle 1406 * @throws NoSuchMethodException if the method does not exist 1407 * @throws IllegalAccessException if access checking fails, 1408 * or if the method is not {@code static}, 1409 * or if the method's variable arity modifier bit 1410 * is set and {@code asVarargsCollector} fails 1411 * @exception SecurityException if a security manager is present and it 1412 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1413 * @throws NullPointerException if any argument is null 1414 */ 1415 public 1416 MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { 1417 MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type); 1418 return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method)); 1419 } 1420 1421 /** 1422 * Produces a method handle for a virtual method. 1423 * The type of the method handle will be that of the method, 1424 * with the receiver type (usually {@code refc}) prepended. 1425 * The method and all its argument types must be accessible to the lookup object. 1426 * <p> 1427 * When called, the handle will treat the first argument as a receiver 1428 * and, for non-private methods, dispatch on the receiver's type to determine which method 1429 * implementation to enter. 1430 * For private methods the named method in {@code refc} will be invoked on the receiver. 1431 * (The dispatching action is identical with that performed by an 1432 * {@code invokevirtual} or {@code invokeinterface} instruction.) 1433 * <p> 1434 * The first argument will be of type {@code refc} if the lookup 1435 * class has full privileges to access the member. Otherwise 1436 * the member must be {@code protected} and the first argument 1437 * will be restricted in type to the lookup class. 1438 * <p> 1439 * The returned method handle will have 1440 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 1441 * the method's variable arity modifier bit ({@code 0x0080}) is set. 1442 * <p> 1443 * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual} 1444 * instructions and method handles produced by {@code findVirtual}, 1445 * if the class is {@code MethodHandle} and the name string is 1446 * {@code invokeExact} or {@code invoke}, the resulting 1447 * method handle is equivalent to one produced by 1448 * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or 1449 * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker} 1450 * with the same {@code type} argument. 1451 * <p> 1452 * If the class is {@code VarHandle} and the name string corresponds to 1453 * the name of a signature-polymorphic access mode method, the resulting 1454 * method handle is equivalent to one produced by 1455 * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with 1456 * the access mode corresponding to the name string and with the same 1457 * {@code type} arguments. 1458 * <p> 1459 * <b>Example:</b> 1460 * <blockquote><pre>{@code 1461 import static java.lang.invoke.MethodHandles.*; 1462 import static java.lang.invoke.MethodType.*; 1463 ... 1464 MethodHandle MH_concat = publicLookup().findVirtual(String.class, 1465 "concat", methodType(String.class, String.class)); 1466 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class, 1467 "hashCode", methodType(int.class)); 1468 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class, 1469 "hashCode", methodType(int.class)); 1470 assertEquals("xy", (String) MH_concat.invokeExact("x", "y")); 1471 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy")); 1472 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy")); 1473 // interface method: 1474 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class, 1475 "subSequence", methodType(CharSequence.class, int.class, int.class)); 1476 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString()); 1477 // constructor "internal method" must be accessed differently: 1478 MethodType MT_newString = methodType(void.class); //()V for new String() 1479 try { assertEquals("impossible", lookup() 1480 .findVirtual(String.class, "<init>", MT_newString)); 1481 } catch (NoSuchMethodException ex) { } // OK 1482 MethodHandle MH_newString = publicLookup() 1483 .findConstructor(String.class, MT_newString); 1484 assertEquals("", (String) MH_newString.invokeExact()); 1485 * }</pre></blockquote> 1486 * 1487 * @param refc the class or interface from which the method is accessed 1488 * @param name the name of the method 1489 * @param type the type of the method, with the receiver argument omitted 1490 * @return the desired method handle 1491 * @throws NoSuchMethodException if the method does not exist 1492 * @throws IllegalAccessException if access checking fails, 1493 * or if the method is {@code static}, 1494 * or if the method's variable arity modifier bit 1495 * is set and {@code asVarargsCollector} fails 1496 * @exception SecurityException if a security manager is present and it 1497 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1498 * @throws NullPointerException if any argument is null 1499 */ 1500 public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { 1501 if (refc == MethodHandle.class) { 1502 MethodHandle mh = findVirtualForMH(name, type); 1503 if (mh != null) return mh; 1504 } else if (refc == VarHandle.class) { 1505 MethodHandle mh = findVirtualForVH(name, type); 1506 if (mh != null) return mh; 1507 } 1508 byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual); 1509 MemberName method = resolveOrFail(refKind, refc, name, type); 1510 return getDirectMethod(refKind, refc, method, findBoundCallerClass(method)); 1511 } 1512 private MethodHandle findVirtualForMH(String name, MethodType type) { 1513 // these names require special lookups because of the implicit MethodType argument 1514 if ("invoke".equals(name)) 1515 return invoker(type); 1516 if ("invokeExact".equals(name)) 1517 return exactInvoker(type); 1518 assert(!MemberName.isMethodHandleInvokeName(name)); 1519 return null; 1520 } 1521 private MethodHandle findVirtualForVH(String name, MethodType type) { 1522 try { 1523 return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type); 1524 } catch (IllegalArgumentException e) { 1525 return null; 1526 } 1527 } 1528 1529 /** 1530 * Produces a method handle which creates an object and initializes it, using 1531 * the constructor of the specified type. 1532 * The parameter types of the method handle will be those of the constructor, 1533 * while the return type will be a reference to the constructor's class. 1534 * The constructor and all its argument types must be accessible to the lookup object. 1535 * <p> 1536 * The requested type must have a return type of {@code void}. 1537 * (This is consistent with the JVM's treatment of constructor type descriptors.) 1538 * <p> 1539 * The returned method handle will have 1540 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 1541 * the constructor's variable arity modifier bit ({@code 0x0080}) is set. 1542 * <p> 1543 * If the returned method handle is invoked, the constructor's class will 1544 * be initialized, if it has not already been initialized. 1545 * <p><b>Example:</b> 1546 * <blockquote><pre>{@code 1547 import static java.lang.invoke.MethodHandles.*; 1548 import static java.lang.invoke.MethodType.*; 1549 ... 1550 MethodHandle MH_newArrayList = publicLookup().findConstructor( 1551 ArrayList.class, methodType(void.class, Collection.class)); 1552 Collection orig = Arrays.asList("x", "y"); 1553 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig); 1554 assert(orig != copy); 1555 assertEquals(orig, copy); 1556 // a variable-arity constructor: 1557 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor( 1558 ProcessBuilder.class, methodType(void.class, String[].class)); 1559 ProcessBuilder pb = (ProcessBuilder) 1560 MH_newProcessBuilder.invoke("x", "y", "z"); 1561 assertEquals("[x, y, z]", pb.command().toString()); 1562 * }</pre></blockquote> 1563 * @param refc the class or interface from which the method is accessed 1564 * @param type the type of the method, with the receiver argument omitted, and a void return type 1565 * @return the desired method handle 1566 * @throws NoSuchMethodException if the constructor does not exist 1567 * @throws IllegalAccessException if access checking fails 1568 * or if the method's variable arity modifier bit 1569 * is set and {@code asVarargsCollector} fails 1570 * @exception SecurityException if a security manager is present and it 1571 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1572 * @throws NullPointerException if any argument is null 1573 */ 1574 public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException { 1575 if (refc.isArray()) { 1576 throw new NoSuchMethodException("no constructor for array class: " + refc.getName()); 1577 } 1578 String name = "<init>"; 1579 MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type); 1580 return getDirectConstructor(refc, ctor); 1581 } 1582 1583 /** 1584 * Looks up a class by name from the lookup context defined by this {@code Lookup} object. The static 1585 * initializer of the class is not run. 1586 * <p> 1587 * The lookup context here is determined by the {@linkplain #lookupClass() lookup class}, its class 1588 * loader, and the {@linkplain #lookupModes() lookup modes}. In particular, the method first attempts to 1589 * load the requested class, and then determines whether the class is accessible to this lookup object. 1590 * 1591 * @param targetName the fully qualified name of the class to be looked up. 1592 * @return the requested class. 1593 * @exception SecurityException if a security manager is present and it 1594 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1595 * @throws LinkageError if the linkage fails 1596 * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader 1597 * or the class is not {@linkplain Class#isHidden hidden} 1598 * @throws IllegalAccessException if the class is not accessible, using the allowed access modes. 1599 1600 * @since 9 1601 * @see Class#isHidden 1602 */ 1603 public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException { 1604 Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader()); 1605 return accessClass(targetClass); 1606 } 1607 1608 /** 1609 * Determines if a class can be accessed from the lookup context defined by this {@code Lookup} object. The 1610 * static initializer of the class is not run. 1611 * <p> 1612 * The lookup context here is determined by the {@linkplain #lookupClass() lookup class} and the 1613 * {@linkplain #lookupModes() lookup modes}. 1614 * 1615 * @param targetClass the class to be access-checked 1616 * 1617 * @return the class that has been access-checked 1618 * 1619 * @throws IllegalAccessException if the class is not accessible from the lookup class, using the allowed access 1620 * modes. 1621 * @exception SecurityException if a security manager is present and it 1622 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1623 * @since 9 1624 */ 1625 public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException { 1626 if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, allowedModes)) { 1627 throw new MemberName(targetClass).makeAccessException("access violation", this); 1628 } 1629 checkSecurityManager(targetClass, null); 1630 return targetClass; 1631 } 1632 1633 /** 1634 * Produces an early-bound method handle for a virtual method. 1635 * It will bypass checks for overriding methods on the receiver, 1636 * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial} 1637 * instruction from within the explicitly specified {@code specialCaller}. 1638 * The type of the method handle will be that of the method, 1639 * with a suitably restricted receiver type prepended. 1640 * (The receiver type will be {@code specialCaller} or a subtype.) 1641 * The method and all its argument types must be accessible 1642 * to the lookup object. 1643 * <p> 1644 * Before method resolution, 1645 * if the explicitly specified caller class is not identical with the 1646 * lookup class, or if this lookup object does not have 1647 * <a href="MethodHandles.Lookup.html#privacc">private access</a> 1648 * privileges, the access fails. 1649 * <p> 1650 * The returned method handle will have 1651 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 1652 * the method's variable arity modifier bit ({@code 0x0080}) is set. 1653 * <p style="font-size:smaller;"> 1654 * <em>(Note: JVM internal methods named {@code "<init>"} are not visible to this API, 1655 * even though the {@code invokespecial} instruction can refer to them 1656 * in special circumstances. Use {@link #findConstructor findConstructor} 1657 * to access instance initialization methods in a safe manner.)</em> 1658 * <p><b>Example:</b> 1659 * <blockquote><pre>{@code 1660 import static java.lang.invoke.MethodHandles.*; 1661 import static java.lang.invoke.MethodType.*; 1662 ... 1663 static class Listie extends ArrayList { 1664 public String toString() { return "[wee Listie]"; } 1665 static Lookup lookup() { return MethodHandles.lookup(); } 1666 } 1667 ... 1668 // no access to constructor via invokeSpecial: 1669 MethodHandle MH_newListie = Listie.lookup() 1670 .findConstructor(Listie.class, methodType(void.class)); 1671 Listie l = (Listie) MH_newListie.invokeExact(); 1672 try { assertEquals("impossible", Listie.lookup().findSpecial( 1673 Listie.class, "<init>", methodType(void.class), Listie.class)); 1674 } catch (NoSuchMethodException ex) { } // OK 1675 // access to super and self methods via invokeSpecial: 1676 MethodHandle MH_super = Listie.lookup().findSpecial( 1677 ArrayList.class, "toString" , methodType(String.class), Listie.class); 1678 MethodHandle MH_this = Listie.lookup().findSpecial( 1679 Listie.class, "toString" , methodType(String.class), Listie.class); 1680 MethodHandle MH_duper = Listie.lookup().findSpecial( 1681 Object.class, "toString" , methodType(String.class), Listie.class); 1682 assertEquals("[]", (String) MH_super.invokeExact(l)); 1683 assertEquals(""+l, (String) MH_this.invokeExact(l)); 1684 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method 1685 try { assertEquals("inaccessible", Listie.lookup().findSpecial( 1686 String.class, "toString", methodType(String.class), Listie.class)); 1687 } catch (IllegalAccessException ex) { } // OK 1688 Listie subl = new Listie() { public String toString() { return "[subclass]"; } }; 1689 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method 1690 * }</pre></blockquote> 1691 * 1692 * @param refc the class or interface from which the method is accessed 1693 * @param name the name of the method (which must not be "<init>") 1694 * @param type the type of the method, with the receiver argument omitted 1695 * @param specialCaller the proposed calling class to perform the {@code invokespecial} 1696 * @return the desired method handle 1697 * @throws NoSuchMethodException if the method does not exist 1698 * @throws IllegalAccessException if access checking fails, 1699 * or if the method is {@code static}, 1700 * or if the method's variable arity modifier bit 1701 * is set and {@code asVarargsCollector} fails 1702 * @exception SecurityException if a security manager is present and it 1703 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1704 * @throws NullPointerException if any argument is null 1705 */ 1706 public MethodHandle findSpecial(Class<?> refc, String name, MethodType type, 1707 Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException { 1708 checkSpecialCaller(specialCaller, refc); 1709 Lookup specialLookup = this.in(specialCaller); 1710 MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type); 1711 return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method)); 1712 } 1713 1714 /** 1715 * Produces a method handle giving read access to a non-static field. 1716 * The type of the method handle will have a return type of the field's 1717 * value type. 1718 * The method handle's single argument will be the instance containing 1719 * the field. 1720 * Access checking is performed immediately on behalf of the lookup class. 1721 * @param refc the class or interface from which the method is accessed 1722 * @param name the field's name 1723 * @param type the field's type 1724 * @return a method handle which can load values from the field 1725 * @throws NoSuchFieldException if the field does not exist 1726 * @throws IllegalAccessException if access checking fails, or if the field is {@code static} 1727 * @exception SecurityException if a security manager is present and it 1728 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1729 * @throws NullPointerException if any argument is null 1730 * @see #findVarHandle(Class, String, Class) 1731 */ 1732 public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 1733 MemberName field = resolveOrFail(REF_getField, refc, name, type); 1734 return getDirectField(REF_getField, refc, field); 1735 } 1736 1737 /** 1738 * Produces a method handle giving write access to a non-static field. 1739 * The type of the method handle will have a void return type. 1740 * The method handle will take two arguments, the instance containing 1741 * the field, and the value to be stored. 1742 * The second argument will be of the field's value type. 1743 * Access checking is performed immediately on behalf of the lookup class. 1744 * @param refc the class or interface from which the method is accessed 1745 * @param name the field's name 1746 * @param type the field's type 1747 * @return a method handle which can store values into the field 1748 * @throws NoSuchFieldException if the field does not exist 1749 * @throws IllegalAccessException if access checking fails, or if the field is {@code static} 1750 * @exception SecurityException if a security manager is present and it 1751 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1752 * @throws NullPointerException if any argument is null 1753 * @see #findVarHandle(Class, String, Class) 1754 */ 1755 public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 1756 MemberName field = resolveOrFail(REF_putField, refc, name, type); 1757 return getDirectField(REF_putField, refc, field); 1758 } 1759 1760 /** 1761 * Produces a VarHandle giving access to a non-static field {@code name} 1762 * of type {@code type} declared in a class of type {@code recv}. 1763 * The VarHandle's variable type is {@code type} and it has one 1764 * coordinate type, {@code recv}. 1765 * <p> 1766 * Access checking is performed immediately on behalf of the lookup 1767 * class. 1768 * <p> 1769 * Certain access modes of the returned VarHandle are unsupported under 1770 * the following conditions: 1771 * <ul> 1772 * <li>if the field is declared {@code final}, then the write, atomic 1773 * update, numeric atomic update, and bitwise atomic update access 1774 * modes are unsupported. 1775 * <li>if the field type is anything other than {@code byte}, 1776 * {@code short}, {@code char}, {@code int}, {@code long}, 1777 * {@code float}, or {@code double} then numeric atomic update 1778 * access modes are unsupported. 1779 * <li>if the field type is anything other than {@code boolean}, 1780 * {@code byte}, {@code short}, {@code char}, {@code int} or 1781 * {@code long} then bitwise atomic update access modes are 1782 * unsupported. 1783 * </ul> 1784 * <p> 1785 * If the field is declared {@code volatile} then the returned VarHandle 1786 * will override access to the field (effectively ignore the 1787 * {@code volatile} declaration) in accordance to its specified 1788 * access modes. 1789 * <p> 1790 * If the field type is {@code float} or {@code double} then numeric 1791 * and atomic update access modes compare values using their bitwise 1792 * representation (see {@link Float#floatToRawIntBits} and 1793 * {@link Double#doubleToRawLongBits}, respectively). 1794 * @apiNote 1795 * Bitwise comparison of {@code float} values or {@code double} values, 1796 * as performed by the numeric and atomic update access modes, differ 1797 * from the primitive {@code ==} operator and the {@link Float#equals} 1798 * and {@link Double#equals} methods, specifically with respect to 1799 * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. 1800 * Care should be taken when performing a compare and set or a compare 1801 * and exchange operation with such values since the operation may 1802 * unexpectedly fail. 1803 * There are many possible NaN values that are considered to be 1804 * {@code NaN} in Java, although no IEEE 754 floating-point operation 1805 * provided by Java can distinguish between them. Operation failure can 1806 * occur if the expected or witness value is a NaN value and it is 1807 * transformed (perhaps in a platform specific manner) into another NaN 1808 * value, and thus has a different bitwise representation (see 1809 * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more 1810 * details). 1811 * The values {@code -0.0} and {@code +0.0} have different bitwise 1812 * representations but are considered equal when using the primitive 1813 * {@code ==} operator. Operation failure can occur if, for example, a 1814 * numeric algorithm computes an expected value to be say {@code -0.0} 1815 * and previously computed the witness value to be say {@code +0.0}. 1816 * @param recv the receiver class, of type {@code R}, that declares the 1817 * non-static field 1818 * @param name the field's name 1819 * @param type the field's type, of type {@code T} 1820 * @return a VarHandle giving access to non-static fields. 1821 * @throws NoSuchFieldException if the field does not exist 1822 * @throws IllegalAccessException if access checking fails, or if the field is {@code static} 1823 * @exception SecurityException if a security manager is present and it 1824 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1825 * @throws NullPointerException if any argument is null 1826 * @since 9 1827 */ 1828 public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 1829 MemberName getField = resolveOrFail(REF_getField, recv, name, type); 1830 MemberName putField = resolveOrFail(REF_putField, recv, name, type); 1831 return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField); 1832 } 1833 1834 /** 1835 * Produces a method handle giving read access to a static field. 1836 * The type of the method handle will have a return type of the field's 1837 * value type. 1838 * The method handle will take no arguments. 1839 * Access checking is performed immediately on behalf of the lookup class. 1840 * <p> 1841 * If the returned method handle is invoked, the field's class will 1842 * be initialized, if it has not already been initialized. 1843 * @param refc the class or interface from which the method is accessed 1844 * @param name the field's name 1845 * @param type the field's type 1846 * @return a method handle which can load values from the field 1847 * @throws NoSuchFieldException if the field does not exist 1848 * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} 1849 * @exception SecurityException if a security manager is present and it 1850 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1851 * @throws NullPointerException if any argument is null 1852 */ 1853 public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 1854 MemberName field = resolveOrFail(REF_getStatic, refc, name, type); 1855 return getDirectField(REF_getStatic, refc, field); 1856 } 1857 1858 /** 1859 * Produces a method handle giving write access to a static field. 1860 * The type of the method handle will have a void return type. 1861 * The method handle will take a single 1862 * argument, of the field's value type, the value to be stored. 1863 * Access checking is performed immediately on behalf of the lookup class. 1864 * <p> 1865 * If the returned method handle is invoked, the field's class will 1866 * be initialized, if it has not already been initialized. 1867 * @param refc the class or interface from which the method is accessed 1868 * @param name the field's name 1869 * @param type the field's type 1870 * @return a method handle which can store values into the field 1871 * @throws NoSuchFieldException if the field does not exist 1872 * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} 1873 * @exception SecurityException if a security manager is present and it 1874 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1875 * @throws NullPointerException if any argument is null 1876 */ 1877 public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 1878 MemberName field = resolveOrFail(REF_putStatic, refc, name, type); 1879 return getDirectField(REF_putStatic, refc, field); 1880 } 1881 1882 /** 1883 * Produces a VarHandle giving access to a static field {@code name} of 1884 * type {@code type} declared in a class of type {@code decl}. 1885 * The VarHandle's variable type is {@code type} and it has no 1886 * coordinate types. 1887 * <p> 1888 * Access checking is performed immediately on behalf of the lookup 1889 * class. 1890 * <p> 1891 * If the returned VarHandle is operated on, the declaring class will be 1892 * initialized, if it has not already been initialized. 1893 * <p> 1894 * Certain access modes of the returned VarHandle are unsupported under 1895 * the following conditions: 1896 * <ul> 1897 * <li>if the field is declared {@code final}, then the write, atomic 1898 * update, numeric atomic update, and bitwise atomic update access 1899 * modes are unsupported. 1900 * <li>if the field type is anything other than {@code byte}, 1901 * {@code short}, {@code char}, {@code int}, {@code long}, 1902 * {@code float}, or {@code double}, then numeric atomic update 1903 * access modes are unsupported. 1904 * <li>if the field type is anything other than {@code boolean}, 1905 * {@code byte}, {@code short}, {@code char}, {@code int} or 1906 * {@code long} then bitwise atomic update access modes are 1907 * unsupported. 1908 * </ul> 1909 * <p> 1910 * If the field is declared {@code volatile} then the returned VarHandle 1911 * will override access to the field (effectively ignore the 1912 * {@code volatile} declaration) in accordance to its specified 1913 * access modes. 1914 * <p> 1915 * If the field type is {@code float} or {@code double} then numeric 1916 * and atomic update access modes compare values using their bitwise 1917 * representation (see {@link Float#floatToRawIntBits} and 1918 * {@link Double#doubleToRawLongBits}, respectively). 1919 * @apiNote 1920 * Bitwise comparison of {@code float} values or {@code double} values, 1921 * as performed by the numeric and atomic update access modes, differ 1922 * from the primitive {@code ==} operator and the {@link Float#equals} 1923 * and {@link Double#equals} methods, specifically with respect to 1924 * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. 1925 * Care should be taken when performing a compare and set or a compare 1926 * and exchange operation with such values since the operation may 1927 * unexpectedly fail. 1928 * There are many possible NaN values that are considered to be 1929 * {@code NaN} in Java, although no IEEE 754 floating-point operation 1930 * provided by Java can distinguish between them. Operation failure can 1931 * occur if the expected or witness value is a NaN value and it is 1932 * transformed (perhaps in a platform specific manner) into another NaN 1933 * value, and thus has a different bitwise representation (see 1934 * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more 1935 * details). 1936 * The values {@code -0.0} and {@code +0.0} have different bitwise 1937 * representations but are considered equal when using the primitive 1938 * {@code ==} operator. Operation failure can occur if, for example, a 1939 * numeric algorithm computes an expected value to be say {@code -0.0} 1940 * and previously computed the witness value to be say {@code +0.0}. 1941 * @param decl the class that declares the static field 1942 * @param name the field's name 1943 * @param type the field's type, of type {@code T} 1944 * @return a VarHandle giving access to a static field 1945 * @throws NoSuchFieldException if the field does not exist 1946 * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} 1947 * @exception SecurityException if a security manager is present and it 1948 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 1949 * @throws NullPointerException if any argument is null 1950 * @since 9 1951 */ 1952 public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 1953 MemberName getField = resolveOrFail(REF_getStatic, decl, name, type); 1954 MemberName putField = resolveOrFail(REF_putStatic, decl, name, type); 1955 return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField); 1956 } 1957 1958 /** 1959 * Produces an early-bound method handle for a non-static method. 1960 * The receiver must have a supertype {@code defc} in which a method 1961 * of the given name and type is accessible to the lookup class. 1962 * The method and all its argument types must be accessible to the lookup object. 1963 * The type of the method handle will be that of the method, 1964 * without any insertion of an additional receiver parameter. 1965 * The given receiver will be bound into the method handle, 1966 * so that every call to the method handle will invoke the 1967 * requested method on the given receiver. 1968 * <p> 1969 * The returned method handle will have 1970 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 1971 * the method's variable arity modifier bit ({@code 0x0080}) is set 1972 * <em>and</em> the trailing array argument is not the only argument. 1973 * (If the trailing array argument is the only argument, 1974 * the given receiver value will be bound to it.) 1975 * <p> 1976 * This is almost equivalent to the following code, with some differences noted below: 1977 * <blockquote><pre>{@code 1978 import static java.lang.invoke.MethodHandles.*; 1979 import static java.lang.invoke.MethodType.*; 1980 ... 1981 MethodHandle mh0 = lookup().findVirtual(defc, name, type); 1982 MethodHandle mh1 = mh0.bindTo(receiver); 1983 mh1 = mh1.withVarargs(mh0.isVarargsCollector()); 1984 return mh1; 1985 * }</pre></blockquote> 1986 * where {@code defc} is either {@code receiver.getClass()} or a super 1987 * type of that class, in which the requested method is accessible 1988 * to the lookup class. 1989 * (Unlike {@code bind}, {@code bindTo} does not preserve variable arity. 1990 * Also, {@code bindTo} may throw a {@code ClassCastException} in instances where {@code bind} would 1991 * throw an {@code IllegalAccessException}, as in the case where the member is {@code protected} and 1992 * the receiver is restricted by {@code findVirtual} to the lookup class.) 1993 * @param receiver the object from which the method is accessed 1994 * @param name the name of the method 1995 * @param type the type of the method, with the receiver argument omitted 1996 * @return the desired method handle 1997 * @throws NoSuchMethodException if the method does not exist 1998 * @throws IllegalAccessException if access checking fails 1999 * or if the method's variable arity modifier bit 2000 * is set and {@code asVarargsCollector} fails 2001 * @exception SecurityException if a security manager is present and it 2002 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 2003 * @throws NullPointerException if any argument is null 2004 * @see MethodHandle#bindTo 2005 * @see #findVirtual 2006 */ 2007 public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { 2008 Class<? extends Object> refc = receiver.getClass(); // may get NPE 2009 MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type); 2010 MethodHandle mh = getDirectMethodNoRestrictInvokeSpecial(refc, method, findBoundCallerClass(method)); 2011 if (!mh.type().leadingReferenceParameter().isAssignableFrom(receiver.getClass())) { 2012 throw new IllegalAccessException("The restricted defining class " + 2013 mh.type().leadingReferenceParameter().getName() + 2014 " is not assignable from receiver class " + 2015 receiver.getClass().getName()); 2016 } 2017 return mh.bindArgumentL(0, receiver).setVarargs(method); 2018 } 2019 2020 /** 2021 * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a> 2022 * to <i>m</i>, if the lookup class has permission. 2023 * If <i>m</i> is non-static, the receiver argument is treated as an initial argument. 2024 * If <i>m</i> is virtual, overriding is respected on every call. 2025 * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped. 2026 * The type of the method handle will be that of the method, 2027 * with the receiver type prepended (but only if it is non-static). 2028 * If the method's {@code accessible} flag is not set, 2029 * access checking is performed immediately on behalf of the lookup class. 2030 * If <i>m</i> is not public, do not share the resulting handle with untrusted parties. 2031 * <p> 2032 * The returned method handle will have 2033 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 2034 * the method's variable arity modifier bit ({@code 0x0080}) is set. 2035 * <p> 2036 * If <i>m</i> is static, and 2037 * if the returned method handle is invoked, the method's class will 2038 * be initialized, if it has not already been initialized. 2039 * @param m the reflected method 2040 * @return a method handle which can invoke the reflected method 2041 * @throws IllegalAccessException if access checking fails 2042 * or if the method's variable arity modifier bit 2043 * is set and {@code asVarargsCollector} fails 2044 * @throws NullPointerException if the argument is null 2045 */ 2046 public MethodHandle unreflect(Method m) throws IllegalAccessException { 2047 if (m.getDeclaringClass() == MethodHandle.class) { 2048 MethodHandle mh = unreflectForMH(m); 2049 if (mh != null) return mh; 2050 } 2051 if (m.getDeclaringClass() == VarHandle.class) { 2052 MethodHandle mh = unreflectForVH(m); 2053 if (mh != null) return mh; 2054 } 2055 MemberName method = new MemberName(m); 2056 byte refKind = method.getReferenceKind(); 2057 if (refKind == REF_invokeSpecial) 2058 refKind = REF_invokeVirtual; 2059 assert(method.isMethod()); 2060 @SuppressWarnings("deprecation") 2061 Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this; 2062 return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method)); 2063 } 2064 private MethodHandle unreflectForMH(Method m) { 2065 // these names require special lookups because they throw UnsupportedOperationException 2066 if (MemberName.isMethodHandleInvokeName(m.getName())) 2067 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m)); 2068 return null; 2069 } 2070 private MethodHandle unreflectForVH(Method m) { 2071 // these names require special lookups because they throw UnsupportedOperationException 2072 if (MemberName.isVarHandleMethodInvokeName(m.getName())) 2073 return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m)); 2074 return null; 2075 } 2076 2077 /** 2078 * Produces a method handle for a reflected method. 2079 * It will bypass checks for overriding methods on the receiver, 2080 * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial} 2081 * instruction from within the explicitly specified {@code specialCaller}. 2082 * The type of the method handle will be that of the method, 2083 * with a suitably restricted receiver type prepended. 2084 * (The receiver type will be {@code specialCaller} or a subtype.) 2085 * If the method's {@code accessible} flag is not set, 2086 * access checking is performed immediately on behalf of the lookup class, 2087 * as if {@code invokespecial} instruction were being linked. 2088 * <p> 2089 * Before method resolution, 2090 * if the explicitly specified caller class is not identical with the 2091 * lookup class, or if this lookup object does not have 2092 * <a href="MethodHandles.Lookup.html#privacc">private access</a> 2093 * privileges, the access fails. 2094 * <p> 2095 * The returned method handle will have 2096 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 2097 * the method's variable arity modifier bit ({@code 0x0080}) is set. 2098 * @param m the reflected method 2099 * @param specialCaller the class nominally calling the method 2100 * @return a method handle which can invoke the reflected method 2101 * @throws IllegalAccessException if access checking fails, 2102 * or if the method is {@code static}, 2103 * or if the method's variable arity modifier bit 2104 * is set and {@code asVarargsCollector} fails 2105 * @throws NullPointerException if any argument is null 2106 */ 2107 public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException { 2108 checkSpecialCaller(specialCaller, null); 2109 Lookup specialLookup = this.in(specialCaller); 2110 MemberName method = new MemberName(m, true); 2111 assert(method.isMethod()); 2112 // ignore m.isAccessible: this is a new kind of access 2113 return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method)); 2114 } 2115 2116 /** 2117 * Produces a method handle for a reflected constructor. 2118 * The type of the method handle will be that of the constructor, 2119 * with the return type changed to the declaring class. 2120 * The method handle will perform a {@code newInstance} operation, 2121 * creating a new instance of the constructor's class on the 2122 * arguments passed to the method handle. 2123 * <p> 2124 * If the constructor's {@code accessible} flag is not set, 2125 * access checking is performed immediately on behalf of the lookup class. 2126 * <p> 2127 * The returned method handle will have 2128 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if 2129 * the constructor's variable arity modifier bit ({@code 0x0080}) is set. 2130 * <p> 2131 * If the returned method handle is invoked, the constructor's class will 2132 * be initialized, if it has not already been initialized. 2133 * @param c the reflected constructor 2134 * @return a method handle which can invoke the reflected constructor 2135 * @throws IllegalAccessException if access checking fails 2136 * or if the method's variable arity modifier bit 2137 * is set and {@code asVarargsCollector} fails 2138 * @throws NullPointerException if the argument is null 2139 */ 2140 public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException { 2141 MemberName ctor = new MemberName(c); 2142 assert(ctor.isConstructor()); 2143 @SuppressWarnings("deprecation") 2144 Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this; 2145 return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor); 2146 } 2147 2148 /** 2149 * Produces a method handle giving read access to a reflected field. 2150 * The type of the method handle will have a return type of the field's 2151 * value type. 2152 * If the field is static, the method handle will take no arguments. 2153 * Otherwise, its single argument will be the instance containing 2154 * the field. 2155 * If the field's {@code accessible} flag is not set, 2156 * access checking is performed immediately on behalf of the lookup class. 2157 * <p> 2158 * If the field is static, and 2159 * if the returned method handle is invoked, the field's class will 2160 * be initialized, if it has not already been initialized. 2161 * @param f the reflected field 2162 * @return a method handle which can load values from the reflected field 2163 * @throws IllegalAccessException if access checking fails 2164 * @throws NullPointerException if the argument is null 2165 */ 2166 public MethodHandle unreflectGetter(Field f) throws IllegalAccessException { 2167 return unreflectField(f, false); 2168 } 2169 private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException { 2170 MemberName field = new MemberName(f, isSetter); 2171 assert(isSetter 2172 ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind()) 2173 : MethodHandleNatives.refKindIsGetter(field.getReferenceKind())); 2174 @SuppressWarnings("deprecation") 2175 Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this; 2176 return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field); 2177 } 2178 2179 /** 2180 * Produces a method handle giving write access to a reflected field. 2181 * The type of the method handle will have a void return type. 2182 * If the field is static, the method handle will take a single 2183 * argument, of the field's value type, the value to be stored. 2184 * Otherwise, the two arguments will be the instance containing 2185 * the field, and the value to be stored. 2186 * If the field's {@code accessible} flag is not set, 2187 * access checking is performed immediately on behalf of the lookup class. 2188 * <p> 2189 * If the field is static, and 2190 * if the returned method handle is invoked, the field's class will 2191 * be initialized, if it has not already been initialized. 2192 * @param f the reflected field 2193 * @return a method handle which can store values into the reflected field 2194 * @throws IllegalAccessException if access checking fails 2195 * @throws NullPointerException if the argument is null 2196 */ 2197 public MethodHandle unreflectSetter(Field f) throws IllegalAccessException { 2198 return unreflectField(f, true); 2199 } 2200 2201 /** 2202 * Produces a VarHandle giving access to a reflected field {@code f} 2203 * of type {@code T} declared in a class of type {@code R}. 2204 * The VarHandle's variable type is {@code T}. 2205 * If the field is non-static the VarHandle has one coordinate type, 2206 * {@code R}. Otherwise, the field is static, and the VarHandle has no 2207 * coordinate types. 2208 * <p> 2209 * Access checking is performed immediately on behalf of the lookup 2210 * class, regardless of the value of the field's {@code accessible} 2211 * flag. 2212 * <p> 2213 * If the field is static, and if the returned VarHandle is operated 2214 * on, the field's declaring class will be initialized, if it has not 2215 * already been initialized. 2216 * <p> 2217 * Certain access modes of the returned VarHandle are unsupported under 2218 * the following conditions: 2219 * <ul> 2220 * <li>if the field is declared {@code final}, then the write, atomic 2221 * update, numeric atomic update, and bitwise atomic update access 2222 * modes are unsupported. 2223 * <li>if the field type is anything other than {@code byte}, 2224 * {@code short}, {@code char}, {@code int}, {@code long}, 2225 * {@code float}, or {@code double} then numeric atomic update 2226 * access modes are unsupported. 2227 * <li>if the field type is anything other than {@code boolean}, 2228 * {@code byte}, {@code short}, {@code char}, {@code int} or 2229 * {@code long} then bitwise atomic update access modes are 2230 * unsupported. 2231 * </ul> 2232 * <p> 2233 * If the field is declared {@code volatile} then the returned VarHandle 2234 * will override access to the field (effectively ignore the 2235 * {@code volatile} declaration) in accordance to its specified 2236 * access modes. 2237 * <p> 2238 * If the field type is {@code float} or {@code double} then numeric 2239 * and atomic update access modes compare values using their bitwise 2240 * representation (see {@link Float#floatToRawIntBits} and 2241 * {@link Double#doubleToRawLongBits}, respectively). 2242 * @apiNote 2243 * Bitwise comparison of {@code float} values or {@code double} values, 2244 * as performed by the numeric and atomic update access modes, differ 2245 * from the primitive {@code ==} operator and the {@link Float#equals} 2246 * and {@link Double#equals} methods, specifically with respect to 2247 * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. 2248 * Care should be taken when performing a compare and set or a compare 2249 * and exchange operation with such values since the operation may 2250 * unexpectedly fail. 2251 * There are many possible NaN values that are considered to be 2252 * {@code NaN} in Java, although no IEEE 754 floating-point operation 2253 * provided by Java can distinguish between them. Operation failure can 2254 * occur if the expected or witness value is a NaN value and it is 2255 * transformed (perhaps in a platform specific manner) into another NaN 2256 * value, and thus has a different bitwise representation (see 2257 * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more 2258 * details). 2259 * The values {@code -0.0} and {@code +0.0} have different bitwise 2260 * representations but are considered equal when using the primitive 2261 * {@code ==} operator. Operation failure can occur if, for example, a 2262 * numeric algorithm computes an expected value to be say {@code -0.0} 2263 * and previously computed the witness value to be say {@code +0.0}. 2264 * @param f the reflected field, with a field of type {@code T}, and 2265 * a declaring class of type {@code R} 2266 * @return a VarHandle giving access to non-static fields or a static 2267 * field 2268 * @throws IllegalAccessException if access checking fails 2269 * @throws NullPointerException if the argument is null 2270 * @since 9 2271 */ 2272 public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException { 2273 MemberName getField = new MemberName(f, false); 2274 MemberName putField = new MemberName(f, true); 2275 return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(), 2276 f.getDeclaringClass(), getField, putField); 2277 } 2278 2279 /** 2280 * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a> 2281 * created by this lookup object or a similar one. 2282 * Security and access checks are performed to ensure that this lookup object 2283 * is capable of reproducing the target method handle. 2284 * This means that the cracking may fail if target is a direct method handle 2285 * but was created by an unrelated lookup object. 2286 * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> 2287 * and was created by a lookup object for a different class. 2288 * @param target a direct method handle to crack into symbolic reference components 2289 * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object 2290 * @exception SecurityException if a security manager is present and it 2291 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> 2292 * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails 2293 * @exception NullPointerException if the target is {@code null} 2294 * @see MethodHandleInfo 2295 * @since 1.8 2296 */ 2297 public MethodHandleInfo revealDirect(MethodHandle target) { 2298 MemberName member = target.internalMemberName(); 2299 if (member == null || (!member.isResolved() && 2300 !member.isMethodHandleInvoke() && 2301 !member.isVarHandleMethodInvoke())) 2302 throw newIllegalArgumentException("not a direct method handle"); 2303 Class<?> defc = member.getDeclaringClass(); 2304 byte refKind = member.getReferenceKind(); 2305 assert(MethodHandleNatives.refKindIsValid(refKind)); 2306 if (refKind == REF_invokeSpecial && !target.isInvokeSpecial()) 2307 // Devirtualized method invocation is usually formally virtual. 2308 // To avoid creating extra MemberName objects for this common case, 2309 // we encode this extra degree of freedom using MH.isInvokeSpecial. 2310 refKind = REF_invokeVirtual; 2311 if (refKind == REF_invokeVirtual && defc.isInterface()) 2312 // Symbolic reference is through interface but resolves to Object method (toString, etc.) 2313 refKind = REF_invokeInterface; 2314 // Check SM permissions and member access before cracking. 2315 try { 2316 checkAccess(refKind, defc, member); 2317 checkSecurityManager(defc, member); 2318 } catch (IllegalAccessException ex) { 2319 throw new IllegalArgumentException(ex); 2320 } 2321 if (allowedModes != TRUSTED && member.isCallerSensitive()) { 2322 Class<?> callerClass = target.internalCallerClass(); 2323 if (!hasPrivateAccess() || callerClass != lookupClass()) 2324 throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass); 2325 } 2326 // Produce the handle to the results. 2327 return new InfoFromMemberName(this, member, refKind); 2328 } 2329 2330 /// Helper methods, all package-private. 2331 2332 MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { 2333 checkSymbolicClass(refc); // do this before attempting to resolve 2334 Objects.requireNonNull(name); 2335 Objects.requireNonNull(type); 2336 return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(), 2337 NoSuchFieldException.class); 2338 } 2339 2340 MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { 2341 checkSymbolicClass(refc); // do this before attempting to resolve 2342 Objects.requireNonNull(name); 2343 Objects.requireNonNull(type); 2344 checkMethodName(refKind, name); // NPE check on name 2345 return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(), 2346 NoSuchMethodException.class); 2347 } 2348 2349 MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException { 2350 checkSymbolicClass(member.getDeclaringClass()); // do this before attempting to resolve 2351 Objects.requireNonNull(member.getName()); 2352 Objects.requireNonNull(member.getType()); 2353 return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(), 2354 ReflectiveOperationException.class); 2355 } 2356 2357 MemberName resolveOrNull(byte refKind, MemberName member) { 2358 // do this before attempting to resolve 2359 if (!isClassAccessible(member.getDeclaringClass())) { 2360 return null; 2361 } 2362 Objects.requireNonNull(member.getName()); 2363 Objects.requireNonNull(member.getType()); 2364 return IMPL_NAMES.resolveOrNull(refKind, member, lookupClassOrNull()); 2365 } 2366 2367 void checkSymbolicClass(Class<?> refc) throws IllegalAccessException { 2368 if (!isClassAccessible(refc)) { 2369 throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this); 2370 } 2371 } 2372 2373 boolean isClassAccessible(Class<?> refc) { 2374 Objects.requireNonNull(refc); 2375 Class<?> caller = lookupClassOrNull(); 2376 return caller == null || VerifyAccess.isClassAccessible(refc, caller, allowedModes); 2377 } 2378 2379 /** Check name for an illegal leading "<" character. */ 2380 void checkMethodName(byte refKind, String name) throws NoSuchMethodException { 2381 if (name.startsWith("<") && refKind != REF_newInvokeSpecial) 2382 throw new NoSuchMethodException("illegal method name: "+name); 2383 } 2384 2385 2386 /** 2387 * Find my trustable caller class if m is a caller sensitive method. 2388 * If this lookup object has private access, then the caller class is the lookupClass. 2389 * Otherwise, if m is caller-sensitive, throw IllegalAccessException. 2390 */ 2391 Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException { 2392 Class<?> callerClass = null; 2393 if (MethodHandleNatives.isCallerSensitive(m)) { 2394 // Only lookups with private access are allowed to resolve caller-sensitive methods 2395 if (hasPrivateAccess()) { 2396 callerClass = lookupClass; 2397 } else { 2398 throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object"); 2399 } 2400 } 2401 return callerClass; 2402 } 2403 2404 /** 2405 * Returns {@code true} if this lookup has {@code PRIVATE} access. 2406 * @return {@code true} if this lookup has {@code PRIVATE} access. 2407 * @since 9 2408 */ 2409 public boolean hasPrivateAccess() { 2410 return (allowedModes & PRIVATE) != 0; 2411 } 2412 2413 /** 2414 * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>. 2415 * Determines a trustable caller class to compare with refc, the symbolic reference class. 2416 * If this lookup object has private access, then the caller class is the lookupClass. 2417 */ 2418 void checkSecurityManager(Class<?> refc, MemberName m) { 2419 SecurityManager smgr = System.getSecurityManager(); 2420 if (smgr == null) return; 2421 if (allowedModes == TRUSTED) return; 2422 2423 // Step 1: 2424 boolean fullPowerLookup = hasPrivateAccess(); 2425 if (!fullPowerLookup || 2426 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) { 2427 ReflectUtil.checkPackageAccess(refc); 2428 } 2429 2430 if (m == null) { // findClass or accessClass 2431 // Step 2b: 2432 if (!fullPowerLookup) { 2433 smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION); 2434 } 2435 return; 2436 } 2437 2438 // Step 2a: 2439 if (m.isPublic()) return; 2440 if (!fullPowerLookup) { 2441 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION); 2442 } 2443 2444 // Step 3: 2445 Class<?> defc = m.getDeclaringClass(); 2446 if (!fullPowerLookup && defc != refc) { 2447 ReflectUtil.checkPackageAccess(defc); 2448 } 2449 } 2450 2451 void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException { 2452 boolean wantStatic = (refKind == REF_invokeStatic); 2453 String message; 2454 if (m.isConstructor()) 2455 message = "expected a method, not a constructor"; 2456 else if (!m.isMethod()) 2457 message = "expected a method"; 2458 else if (wantStatic != m.isStatic()) 2459 message = wantStatic ? "expected a static method" : "expected a non-static method"; 2460 else 2461 { checkAccess(refKind, refc, m); return; } 2462 throw m.makeAccessException(message, this); 2463 } 2464 2465 void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException { 2466 boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind); 2467 String message; 2468 if (wantStatic != m.isStatic()) 2469 message = wantStatic ? "expected a static field" : "expected a non-static field"; 2470 else 2471 { checkAccess(refKind, refc, m); return; } 2472 throw m.makeAccessException(message, this); 2473 } 2474 2475 /** Check public/protected/private bits on the symbolic reference class and its member. */ 2476 void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException { 2477 assert(m.referenceKindIsConsistentWith(refKind) && 2478 MethodHandleNatives.refKindIsValid(refKind) && 2479 (MethodHandleNatives.refKindIsField(refKind) == m.isField())); 2480 int allowedModes = this.allowedModes; 2481 if (allowedModes == TRUSTED) return; 2482 int mods = m.getModifiers(); 2483 if (Modifier.isProtected(mods) && 2484 refKind == REF_invokeVirtual && 2485 m.getDeclaringClass() == Object.class && 2486 m.getName().equals("clone") && 2487 refc.isArray()) { 2488 // The JVM does this hack also. 2489 // (See ClassVerifier::verify_invoke_instructions 2490 // and LinkResolver::check_method_accessability.) 2491 // Because the JVM does not allow separate methods on array types, 2492 // there is no separate method for int[].clone. 2493 // All arrays simply inherit Object.clone. 2494 // But for access checking logic, we make Object.clone 2495 // (normally protected) appear to be public. 2496 // Later on, when the DirectMethodHandle is created, 2497 // its leading argument will be restricted to the 2498 // requested array type. 2499 // N.B. The return type is not adjusted, because 2500 // that is *not* the bytecode behavior. 2501 mods ^= Modifier.PROTECTED | Modifier.PUBLIC; 2502 } 2503 if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) { 2504 // cannot "new" a protected ctor in a different package 2505 mods ^= Modifier.PROTECTED; 2506 } 2507 if (Modifier.isFinal(mods) && 2508 MethodHandleNatives.refKindIsSetter(refKind)) 2509 throw m.makeAccessException("unexpected set of a final field", this); 2510 int requestedModes = fixmods(mods); // adjust 0 => PACKAGE 2511 if ((requestedModes & allowedModes) != 0) { 2512 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(), 2513 mods, lookupClass(), allowedModes)) 2514 return; 2515 } else { 2516 // Protected members can also be checked as if they were package-private. 2517 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0 2518 && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass())) 2519 return; 2520 } 2521 throw m.makeAccessException(accessFailedMessage(refc, m), this); 2522 } 2523 2524 String accessFailedMessage(Class<?> refc, MemberName m) { 2525 Class<?> defc = m.getDeclaringClass(); 2526 int mods = m.getModifiers(); 2527 // check the class first: 2528 boolean classOK = (Modifier.isPublic(defc.getModifiers()) && 2529 (defc == refc || 2530 Modifier.isPublic(refc.getModifiers()))); 2531 if (!classOK && (allowedModes & PACKAGE) != 0) { 2532 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), FULL_POWER_MODES) && 2533 (defc == refc || 2534 VerifyAccess.isClassAccessible(refc, lookupClass(), FULL_POWER_MODES))); 2535 } 2536 if (!classOK) 2537 return "class is not public"; 2538 if (Modifier.isPublic(mods)) 2539 return "access to public member failed"; // (how?, module not readable?) 2540 if (Modifier.isPrivate(mods)) 2541 return "member is private"; 2542 if (Modifier.isProtected(mods)) 2543 return "member is protected"; 2544 return "member is private to package"; 2545 } 2546 2547 private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException { 2548 int allowedModes = this.allowedModes; 2549 if (allowedModes == TRUSTED) return; 2550 if (!hasPrivateAccess() 2551 || (specialCaller != lookupClass() 2552 // ensure non-abstract methods in superinterfaces can be special-invoked 2553 && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller)))) 2554 throw new MemberName(specialCaller). 2555 makeAccessException("no private access for invokespecial", this); 2556 } 2557 2558 private boolean restrictProtectedReceiver(MemberName method) { 2559 // The accessing class only has the right to use a protected member 2560 // on itself or a subclass. Enforce that restriction, from JVMS 5.4.4, etc. 2561 if (!method.isProtected() || method.isStatic() 2562 || allowedModes == TRUSTED 2563 || method.getDeclaringClass() == lookupClass() 2564 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass())) 2565 return false; 2566 return true; 2567 } 2568 private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException { 2569 assert(!method.isStatic()); 2570 // receiver type of mh is too wide; narrow to caller 2571 if (!method.getDeclaringClass().isAssignableFrom(caller)) { 2572 throw method.makeAccessException("caller class must be a subclass below the method", caller); 2573 } 2574 MethodType rawType = mh.type(); 2575 if (caller.isAssignableFrom(rawType.parameterType(0))) return mh; // no need to restrict; already narrow 2576 MethodType narrowType = rawType.changeParameterType(0, caller); 2577 assert(!mh.isVarargsCollector()); // viewAsType will lose varargs-ness 2578 assert(mh.viewAsTypeChecks(narrowType, true)); 2579 return mh.copyWith(narrowType, mh.form); 2580 } 2581 2582 /** Check access and get the requested method. */ 2583 private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException { 2584 final boolean doRestrict = true; 2585 final boolean checkSecurity = true; 2586 return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, boundCallerClass); 2587 } 2588 /** Check access and get the requested method, for invokespecial with no restriction on the application of narrowing rules. */ 2589 private MethodHandle getDirectMethodNoRestrictInvokeSpecial(Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException { 2590 final boolean doRestrict = false; 2591 final boolean checkSecurity = true; 2592 return getDirectMethodCommon(REF_invokeSpecial, refc, method, checkSecurity, doRestrict, boundCallerClass); 2593 } 2594 /** Check access and get the requested method, eliding security manager checks. */ 2595 private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException { 2596 final boolean doRestrict = true; 2597 final boolean checkSecurity = false; // not needed for reflection or for linking CONSTANT_MH constants 2598 return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, boundCallerClass); 2599 } 2600 /** Common code for all methods; do not call directly except from immediately above. */ 2601 private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method, 2602 boolean checkSecurity, 2603 boolean doRestrict, Class<?> boundCallerClass) throws IllegalAccessException { 2604 2605 checkMethod(refKind, refc, method); 2606 // Optionally check with the security manager; this isn't needed for unreflect* calls. 2607 if (checkSecurity) 2608 checkSecurityManager(refc, method); 2609 assert(!method.isMethodHandleInvoke()); 2610 2611 if (refKind == REF_invokeSpecial && 2612 refc != lookupClass() && 2613 !refc.isInterface() && 2614 refc != lookupClass().getSuperclass() && 2615 refc.isAssignableFrom(lookupClass())) { 2616 assert(!method.getName().equals("<init>")); // not this code path 2617 2618 // Per JVMS 6.5, desc. of invokespecial instruction: 2619 // If the method is in a superclass of the LC, 2620 // and if our original search was above LC.super, 2621 // repeat the search (symbolic lookup) from LC.super 2622 // and continue with the direct superclass of that class, 2623 // and so forth, until a match is found or no further superclasses exist. 2624 // FIXME: MemberName.resolve should handle this instead. 2625 Class<?> refcAsSuper = lookupClass(); 2626 MemberName m2; 2627 do { 2628 refcAsSuper = refcAsSuper.getSuperclass(); 2629 m2 = new MemberName(refcAsSuper, 2630 method.getName(), 2631 method.getMethodType(), 2632 REF_invokeSpecial); 2633 m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull()); 2634 } while (m2 == null && // no method is found yet 2635 refc != refcAsSuper); // search up to refc 2636 if (m2 == null) throw new InternalError(method.toString()); 2637 method = m2; 2638 refc = refcAsSuper; 2639 // redo basic checks 2640 checkMethod(refKind, refc, method); 2641 } 2642 2643 DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method, lookupClass()); 2644 MethodHandle mh = dmh; 2645 // Optionally narrow the receiver argument to lookupClass using restrictReceiver. 2646 if ((doRestrict && refKind == REF_invokeSpecial) || 2647 (MethodHandleNatives.refKindHasReceiver(refKind) && restrictProtectedReceiver(method))) { 2648 mh = restrictReceiver(method, dmh, lookupClass()); 2649 } 2650 mh = maybeBindCaller(method, mh, boundCallerClass); 2651 mh = mh.setVarargs(method); 2652 return mh; 2653 } 2654 private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh, 2655 Class<?> boundCallerClass) 2656 throws IllegalAccessException { 2657 if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method)) 2658 return mh; 2659 Class<?> hostClass = lookupClass; 2660 if (!hasPrivateAccess()) // caller must have private access 2661 hostClass = boundCallerClass; // boundCallerClass came from a security manager style stack walk 2662 MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass); 2663 // Note: caller will apply varargs after this step happens. 2664 return cbmh; 2665 } 2666 /** Check access and get the requested field. */ 2667 private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException { 2668 final boolean checkSecurity = true; 2669 return getDirectFieldCommon(refKind, refc, field, checkSecurity); 2670 } 2671 /** Check access and get the requested field, eliding security manager checks. */ 2672 private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException { 2673 final boolean checkSecurity = false; // not needed for reflection or for linking CONSTANT_MH constants 2674 return getDirectFieldCommon(refKind, refc, field, checkSecurity); 2675 } 2676 /** Common code for all fields; do not call directly except from immediately above. */ 2677 private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field, 2678 boolean checkSecurity) throws IllegalAccessException { 2679 checkField(refKind, refc, field); 2680 // Optionally check with the security manager; this isn't needed for unreflect* calls. 2681 if (checkSecurity) 2682 checkSecurityManager(refc, field); 2683 DirectMethodHandle dmh = DirectMethodHandle.make(refc, field); 2684 boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) && 2685 restrictProtectedReceiver(field)); 2686 if (doRestrict) 2687 return restrictReceiver(field, dmh, lookupClass()); 2688 return dmh; 2689 } 2690 private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind, 2691 Class<?> refc, MemberName getField, MemberName putField) 2692 throws IllegalAccessException { 2693 final boolean checkSecurity = true; 2694 return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity); 2695 } 2696 private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind, 2697 Class<?> refc, MemberName getField, MemberName putField) 2698 throws IllegalAccessException { 2699 final boolean checkSecurity = false; 2700 return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity); 2701 } 2702 private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind, 2703 Class<?> refc, MemberName getField, MemberName putField, 2704 boolean checkSecurity) throws IllegalAccessException { 2705 assert getField.isStatic() == putField.isStatic(); 2706 assert getField.isGetter() && putField.isSetter(); 2707 assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind); 2708 assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind); 2709 2710 checkField(getRefKind, refc, getField); 2711 if (checkSecurity) 2712 checkSecurityManager(refc, getField); 2713 2714 if (!putField.isFinal()) { 2715 // A VarHandle does not support updates to final fields, any 2716 // such VarHandle to a final field will be read-only and 2717 // therefore the following write-based accessibility checks are 2718 // only required for non-final fields 2719 checkField(putRefKind, refc, putField); 2720 if (checkSecurity) 2721 checkSecurityManager(refc, putField); 2722 } 2723 2724 boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) && 2725 restrictProtectedReceiver(getField)); 2726 if (doRestrict) { 2727 assert !getField.isStatic(); 2728 // receiver type of VarHandle is too wide; narrow to caller 2729 if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) { 2730 throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass()); 2731 } 2732 refc = lookupClass(); 2733 } 2734 return VarHandles.makeFieldHandle(getField, refc, getField.getFieldType(), this.allowedModes == TRUSTED); 2735 } 2736 /** Check access and get the requested constructor. */ 2737 private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException { 2738 final boolean checkSecurity = true; 2739 return getDirectConstructorCommon(refc, ctor, checkSecurity); 2740 } 2741 /** Check access and get the requested constructor, eliding security manager checks. */ 2742 private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException { 2743 final boolean checkSecurity = false; // not needed for reflection or for linking CONSTANT_MH constants 2744 return getDirectConstructorCommon(refc, ctor, checkSecurity); 2745 } 2746 /** Common code for all constructors; do not call directly except from immediately above. */ 2747 private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor, 2748 boolean checkSecurity) throws IllegalAccessException { 2749 assert(ctor.isConstructor()); 2750 checkAccess(REF_newInvokeSpecial, refc, ctor); 2751 // Optionally check with the security manager; this isn't needed for unreflect* calls. 2752 if (checkSecurity) 2753 checkSecurityManager(refc, ctor); 2754 assert(!MethodHandleNatives.isCallerSensitive(ctor)); // maybeBindCaller not relevant here 2755 return DirectMethodHandle.make(ctor).setVarargs(ctor); 2756 } 2757 2758 /** Hook called from the JVM (via MethodHandleNatives) to link MH constants: 2759 */ 2760 /*non-public*/ 2761 MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) throws ReflectiveOperationException { 2762 if (!(type instanceof Class || type instanceof MethodType)) 2763 throw new InternalError("unresolved MemberName"); 2764 MemberName member = new MemberName(refKind, defc, name, type); 2765 MethodHandle mh = LOOKASIDE_TABLE.get(member); 2766 if (mh != null) { 2767 checkSymbolicClass(defc); 2768 return mh; 2769 } 2770 if (defc == MethodHandle.class && refKind == REF_invokeVirtual) { 2771 // Treat MethodHandle.invoke and invokeExact specially. 2772 mh = findVirtualForMH(member.getName(), member.getMethodType()); 2773 if (mh != null) { 2774 return mh; 2775 } 2776 } else if (defc == VarHandle.class && refKind == REF_invokeVirtual) { 2777 // Treat signature-polymorphic methods on VarHandle specially. 2778 mh = findVirtualForVH(member.getName(), member.getMethodType()); 2779 if (mh != null) { 2780 return mh; 2781 } 2782 } 2783 MemberName resolved = resolveOrFail(refKind, member); 2784 mh = getDirectMethodForConstant(refKind, defc, resolved); 2785 if (mh instanceof DirectMethodHandle 2786 && canBeCached(refKind, defc, resolved)) { 2787 MemberName key = mh.internalMemberName(); 2788 if (key != null) { 2789 key = key.asNormalOriginal(); 2790 } 2791 if (member.equals(key)) { // better safe than sorry 2792 LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh); 2793 } 2794 } 2795 return mh; 2796 } 2797 private 2798 boolean canBeCached(byte refKind, Class<?> defc, MemberName member) { 2799 if (refKind == REF_invokeSpecial) { 2800 return false; 2801 } 2802 if (!Modifier.isPublic(defc.getModifiers()) || 2803 !Modifier.isPublic(member.getDeclaringClass().getModifiers()) || 2804 !member.isPublic() || 2805 member.isCallerSensitive()) { 2806 return false; 2807 } 2808 ClassLoader loader = defc.getClassLoader(); 2809 if (loader != null) { 2810 ClassLoader sysl = ClassLoader.getSystemClassLoader(); 2811 boolean found = false; 2812 while (sysl != null) { 2813 if (loader == sysl) { found = true; break; } 2814 sysl = sysl.getParent(); 2815 } 2816 if (!found) { 2817 return false; 2818 } 2819 } 2820 try { 2821 MemberName resolved2 = publicLookup().resolveOrNull(refKind, 2822 new MemberName(refKind, defc, member.getName(), member.getType())); 2823 if (resolved2 == null) { 2824 return false; 2825 } 2826 checkSecurityManager(defc, resolved2); 2827 } catch (SecurityException ex) { 2828 return false; 2829 } 2830 return true; 2831 } 2832 private 2833 MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member) 2834 throws ReflectiveOperationException { 2835 if (MethodHandleNatives.refKindIsField(refKind)) { 2836 return getDirectFieldNoSecurityManager(refKind, defc, member); 2837 } else if (MethodHandleNatives.refKindIsMethod(refKind)) { 2838 return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass); 2839 } else if (refKind == REF_newInvokeSpecial) { 2840 return getDirectConstructorNoSecurityManager(defc, member); 2841 } 2842 // oops 2843 throw newIllegalArgumentException("bad MethodHandle constant #"+member); 2844 } 2845 2846 static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>(); 2847 2848 /** 2849 * Property of a class to be defined via the 2850 * {@link Lookup#defineClass(byte[], ClassProperty[]) Lookup.defineClass} method. 2851 * 2852 * @since 12 2853 * @see Lookup#defineClass(byte[], ClassProperty[]) 2854 * @see Lookup#defineClassWithClassData(byte[], Object, ClassProperty[]) 2855 */ 2856 public enum ClassProperty { 2857 /** 2858 * A nestmate is a class that is in the same {@linkplain Class#getNestHost nest} 2859 * of a lookup class. It has access to the private members of all 2860 * classes and interfaces in the same nest. 2861 * 2862 * @see Class#getNestHost() 2863 */ 2864 NESTMATE(NESTMATE_CLASS), 2865 2866 /** 2867 * A hidden class is a class that cannot be referenced by other 2868 * classes. A Java Virtual Machine implementation may hide 2869 * the hidden frames from {@linkplain Throwable#getStackTrace() 2870 * stack traces}. 2871 * 2872 * @see Class#isHidden() 2873 * @see StackWalker.Option#SHOW_HIDDEN_FRAMES 2874 */ 2875 HIDDEN(NONFINDABLE_CLASS), 2876 2877 /** 2878 * A weak class is a class that may be unloaded even if 2879 * its defining class loader is 2880 * <a href="../ref/package.html#reachability">reachable</a>. 2881 * A weak class is {@linkplain #HIDDEN hidden}. 2882 * 2883 * @jls 12.7 Unloading of Classes and Interfaces 2884 */ 2885 WEAK(WEAK_CLASS); 2886 2887 /* the flag value is used by VM at define class time */ 2888 final int flag; 2889 ClassProperty(int flag) { 2890 this.flag = flag; 2891 } 2892 } 2893 } 2894 2895 /** 2896 * Produces a method handle constructing arrays of a desired type, 2897 * as if by the {@code anewarray} bytecode. 2898 * The return type of the method handle will be the array type. 2899 * The type of its sole argument will be {@code int}, which specifies the size of the array. 2900 * 2901 * <p> If the returned method handle is invoked with a negative 2902 * array size, a {@code NegativeArraySizeException} will be thrown. 2903 * 2904 * @param arrayClass an array type 2905 * @return a method handle which can create arrays of the given type 2906 * @throws NullPointerException if the argument is {@code null} 2907 * @throws IllegalArgumentException if {@code arrayClass} is not an array type 2908 * @see java.lang.reflect.Array#newInstance(Class, int) 2909 * @jvms 6.5 {@code anewarray} Instruction 2910 * @since 9 2911 */ 2912 public static 2913 MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException { 2914 if (!arrayClass.isArray()) { 2915 throw newIllegalArgumentException("not an array class: " + arrayClass.getName()); 2916 } 2917 MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance). 2918 bindTo(arrayClass.getComponentType()); 2919 return ani.asType(ani.type().changeReturnType(arrayClass)); 2920 } 2921 2922 /** 2923 * Produces a method handle returning the length of an array, 2924 * as if by the {@code arraylength} bytecode. 2925 * The type of the method handle will have {@code int} as return type, 2926 * and its sole argument will be the array type. 2927 * 2928 * <p> If the returned method handle is invoked with a {@code null} 2929 * array reference, a {@code NullPointerException} will be thrown. 2930 * 2931 * @param arrayClass an array type 2932 * @return a method handle which can retrieve the length of an array of the given array type 2933 * @throws NullPointerException if the argument is {@code null} 2934 * @throws IllegalArgumentException if arrayClass is not an array type 2935 * @jvms 6.5 {@code arraylength} Instruction 2936 * @since 9 2937 */ 2938 public static 2939 MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException { 2940 return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH); 2941 } 2942 2943 /** 2944 * Produces a method handle giving read access to elements of an array, 2945 * as if by the {@code aaload} bytecode. 2946 * The type of the method handle will have a return type of the array's 2947 * element type. Its first argument will be the array type, 2948 * and the second will be {@code int}. 2949 * 2950 * <p> When the returned method handle is invoked, 2951 * the array reference and array index are checked. 2952 * A {@code NullPointerException} will be thrown if the array reference 2953 * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be 2954 * thrown if the index is negative or if it is greater than or equal to 2955 * the length of the array. 2956 * 2957 * @param arrayClass an array type 2958 * @return a method handle which can load values from the given array type 2959 * @throws NullPointerException if the argument is null 2960 * @throws IllegalArgumentException if arrayClass is not an array type 2961 * @jvms 6.5 {@code aaload} Instruction 2962 */ 2963 public static 2964 MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException { 2965 return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET); 2966 } 2967 2968 /** 2969 * Produces a method handle giving write access to elements of an array, 2970 * as if by the {@code astore} bytecode. 2971 * The type of the method handle will have a void return type. 2972 * Its last argument will be the array's element type. 2973 * The first and second arguments will be the array type and int. 2974 * 2975 * <p> When the returned method handle is invoked, 2976 * the array reference and array index are checked. 2977 * A {@code NullPointerException} will be thrown if the array reference 2978 * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be 2979 * thrown if the index is negative or if it is greater than or equal to 2980 * the length of the array. 2981 * 2982 * @param arrayClass the class of an array 2983 * @return a method handle which can store values into the array type 2984 * @throws NullPointerException if the argument is null 2985 * @throws IllegalArgumentException if arrayClass is not an array type 2986 * @jvms 6.5 {@code aastore} Instruction 2987 */ 2988 public static 2989 MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException { 2990 return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET); 2991 } 2992 2993 /** 2994 * Produces a VarHandle giving access to elements of an array of type 2995 * {@code arrayClass}. The VarHandle's variable type is the component type 2996 * of {@code arrayClass} and the list of coordinate types is 2997 * {@code (arrayClass, int)}, where the {@code int} coordinate type 2998 * corresponds to an argument that is an index into an array. 2999 * <p> 3000 * Certain access modes of the returned VarHandle are unsupported under 3001 * the following conditions: 3002 * <ul> 3003 * <li>if the component type is anything other than {@code byte}, 3004 * {@code short}, {@code char}, {@code int}, {@code long}, 3005 * {@code float}, or {@code double} then numeric atomic update access 3006 * modes are unsupported. 3007 * <li>if the field type is anything other than {@code boolean}, 3008 * {@code byte}, {@code short}, {@code char}, {@code int} or 3009 * {@code long} then bitwise atomic update access modes are 3010 * unsupported. 3011 * </ul> 3012 * <p> 3013 * If the component type is {@code float} or {@code double} then numeric 3014 * and atomic update access modes compare values using their bitwise 3015 * representation (see {@link Float#floatToRawIntBits} and 3016 * {@link Double#doubleToRawLongBits}, respectively). 3017 * 3018 * <p> When the returned {@code VarHandle} is invoked, 3019 * the array reference and array index are checked. 3020 * A {@code NullPointerException} will be thrown if the array reference 3021 * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be 3022 * thrown if the index is negative or if it is greater than or equal to 3023 * the length of the array. 3024 * 3025 * @apiNote 3026 * Bitwise comparison of {@code float} values or {@code double} values, 3027 * as performed by the numeric and atomic update access modes, differ 3028 * from the primitive {@code ==} operator and the {@link Float#equals} 3029 * and {@link Double#equals} methods, specifically with respect to 3030 * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. 3031 * Care should be taken when performing a compare and set or a compare 3032 * and exchange operation with such values since the operation may 3033 * unexpectedly fail. 3034 * There are many possible NaN values that are considered to be 3035 * {@code NaN} in Java, although no IEEE 754 floating-point operation 3036 * provided by Java can distinguish between them. Operation failure can 3037 * occur if the expected or witness value is a NaN value and it is 3038 * transformed (perhaps in a platform specific manner) into another NaN 3039 * value, and thus has a different bitwise representation (see 3040 * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more 3041 * details). 3042 * The values {@code -0.0} and {@code +0.0} have different bitwise 3043 * representations but are considered equal when using the primitive 3044 * {@code ==} operator. Operation failure can occur if, for example, a 3045 * numeric algorithm computes an expected value to be say {@code -0.0} 3046 * and previously computed the witness value to be say {@code +0.0}. 3047 * @param arrayClass the class of an array, of type {@code T[]} 3048 * @return a VarHandle giving access to elements of an array 3049 * @throws NullPointerException if the arrayClass is null 3050 * @throws IllegalArgumentException if arrayClass is not an array type 3051 * @since 9 3052 */ 3053 public static 3054 VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException { 3055 return VarHandles.makeArrayElementHandle(arrayClass); 3056 } 3057 3058 /** 3059 * Produces a VarHandle giving access to elements of a {@code byte[]} array 3060 * viewed as if it were a different primitive array type, such as 3061 * {@code int[]} or {@code long[]}. 3062 * The VarHandle's variable type is the component type of 3063 * {@code viewArrayClass} and the list of coordinate types is 3064 * {@code (byte[], int)}, where the {@code int} coordinate type 3065 * corresponds to an argument that is an index into a {@code byte[]} array. 3066 * The returned VarHandle accesses bytes at an index in a {@code byte[]} 3067 * array, composing bytes to or from a value of the component type of 3068 * {@code viewArrayClass} according to the given endianness. 3069 * <p> 3070 * The supported component types (variables types) are {@code short}, 3071 * {@code char}, {@code int}, {@code long}, {@code float} and 3072 * {@code double}. 3073 * <p> 3074 * Access of bytes at a given index will result in an 3075 * {@code IndexOutOfBoundsException} if the index is less than {@code 0} 3076 * or greater than the {@code byte[]} array length minus the size (in bytes) 3077 * of {@code T}. 3078 * <p> 3079 * Access of bytes at an index may be aligned or misaligned for {@code T}, 3080 * with respect to the underlying memory address, {@code A} say, associated 3081 * with the array and index. 3082 * If access is misaligned then access for anything other than the 3083 * {@code get} and {@code set} access modes will result in an 3084 * {@code IllegalStateException}. In such cases atomic access is only 3085 * guaranteed with respect to the largest power of two that divides the GCD 3086 * of {@code A} and the size (in bytes) of {@code T}. 3087 * If access is aligned then following access modes are supported and are 3088 * guaranteed to support atomic access: 3089 * <ul> 3090 * <li>read write access modes for all {@code T}, with the exception of 3091 * access modes {@code get} and {@code set} for {@code long} and 3092 * {@code double} on 32-bit platforms. 3093 * <li>atomic update access modes for {@code int}, {@code long}, 3094 * {@code float} or {@code double}. 3095 * (Future major platform releases of the JDK may support additional 3096 * types for certain currently unsupported access modes.) 3097 * <li>numeric atomic update access modes for {@code int} and {@code long}. 3098 * (Future major platform releases of the JDK may support additional 3099 * numeric types for certain currently unsupported access modes.) 3100 * <li>bitwise atomic update access modes for {@code int} and {@code long}. 3101 * (Future major platform releases of the JDK may support additional 3102 * numeric types for certain currently unsupported access modes.) 3103 * </ul> 3104 * <p> 3105 * Misaligned access, and therefore atomicity guarantees, may be determined 3106 * for {@code byte[]} arrays without operating on a specific array. Given 3107 * an {@code index}, {@code T} and it's corresponding boxed type, 3108 * {@code T_BOX}, misalignment may be determined as follows: 3109 * <pre>{@code 3110 * int sizeOfT = T_BOX.BYTES; // size in bytes of T 3111 * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]). 3112 * alignmentOffset(0, sizeOfT); 3113 * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT; 3114 * boolean isMisaligned = misalignedAtIndex != 0; 3115 * }</pre> 3116 * <p> 3117 * If the variable type is {@code float} or {@code double} then atomic 3118 * update access modes compare values using their bitwise representation 3119 * (see {@link Float#floatToRawIntBits} and 3120 * {@link Double#doubleToRawLongBits}, respectively). 3121 * @param viewArrayClass the view array class, with a component type of 3122 * type {@code T} 3123 * @param byteOrder the endianness of the view array elements, as 3124 * stored in the underlying {@code byte} array 3125 * @return a VarHandle giving access to elements of a {@code byte[]} array 3126 * viewed as if elements corresponding to the components type of the view 3127 * array class 3128 * @throws NullPointerException if viewArrayClass or byteOrder is null 3129 * @throws IllegalArgumentException if viewArrayClass is not an array type 3130 * @throws UnsupportedOperationException if the component type of 3131 * viewArrayClass is not supported as a variable type 3132 * @since 9 3133 */ 3134 public static 3135 VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass, 3136 ByteOrder byteOrder) throws IllegalArgumentException { 3137 Objects.requireNonNull(byteOrder); 3138 return VarHandles.byteArrayViewHandle(viewArrayClass, 3139 byteOrder == ByteOrder.BIG_ENDIAN); 3140 } 3141 3142 /** 3143 * Produces a VarHandle giving access to elements of a {@code ByteBuffer} 3144 * viewed as if it were an array of elements of a different primitive 3145 * component type to that of {@code byte}, such as {@code int[]} or 3146 * {@code long[]}. 3147 * The VarHandle's variable type is the component type of 3148 * {@code viewArrayClass} and the list of coordinate types is 3149 * {@code (ByteBuffer, int)}, where the {@code int} coordinate type 3150 * corresponds to an argument that is an index into a {@code byte[]} array. 3151 * The returned VarHandle accesses bytes at an index in a 3152 * {@code ByteBuffer}, composing bytes to or from a value of the component 3153 * type of {@code viewArrayClass} according to the given endianness. 3154 * <p> 3155 * The supported component types (variables types) are {@code short}, 3156 * {@code char}, {@code int}, {@code long}, {@code float} and 3157 * {@code double}. 3158 * <p> 3159 * Access will result in a {@code ReadOnlyBufferException} for anything 3160 * other than the read access modes if the {@code ByteBuffer} is read-only. 3161 * <p> 3162 * Access of bytes at a given index will result in an 3163 * {@code IndexOutOfBoundsException} if the index is less than {@code 0} 3164 * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of 3165 * {@code T}. 3166 * <p> 3167 * Access of bytes at an index may be aligned or misaligned for {@code T}, 3168 * with respect to the underlying memory address, {@code A} say, associated 3169 * with the {@code ByteBuffer} and index. 3170 * If access is misaligned then access for anything other than the 3171 * {@code get} and {@code set} access modes will result in an 3172 * {@code IllegalStateException}. In such cases atomic access is only 3173 * guaranteed with respect to the largest power of two that divides the GCD 3174 * of {@code A} and the size (in bytes) of {@code T}. 3175 * If access is aligned then following access modes are supported and are 3176 * guaranteed to support atomic access: 3177 * <ul> 3178 * <li>read write access modes for all {@code T}, with the exception of 3179 * access modes {@code get} and {@code set} for {@code long} and 3180 * {@code double} on 32-bit platforms. 3181 * <li>atomic update access modes for {@code int}, {@code long}, 3182 * {@code float} or {@code double}. 3183 * (Future major platform releases of the JDK may support additional 3184 * types for certain currently unsupported access modes.) 3185 * <li>numeric atomic update access modes for {@code int} and {@code long}. 3186 * (Future major platform releases of the JDK may support additional 3187 * numeric types for certain currently unsupported access modes.) 3188 * <li>bitwise atomic update access modes for {@code int} and {@code long}. 3189 * (Future major platform releases of the JDK may support additional 3190 * numeric types for certain currently unsupported access modes.) 3191 * </ul> 3192 * <p> 3193 * Misaligned access, and therefore atomicity guarantees, may be determined 3194 * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an 3195 * {@code index}, {@code T} and it's corresponding boxed type, 3196 * {@code T_BOX}, as follows: 3197 * <pre>{@code 3198 * int sizeOfT = T_BOX.BYTES; // size in bytes of T 3199 * ByteBuffer bb = ... 3200 * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT); 3201 * boolean isMisaligned = misalignedAtIndex != 0; 3202 * }</pre> 3203 * <p> 3204 * If the variable type is {@code float} or {@code double} then atomic 3205 * update access modes compare values using their bitwise representation 3206 * (see {@link Float#floatToRawIntBits} and 3207 * {@link Double#doubleToRawLongBits}, respectively). 3208 * @param viewArrayClass the view array class, with a component type of 3209 * type {@code T} 3210 * @param byteOrder the endianness of the view array elements, as 3211 * stored in the underlying {@code ByteBuffer} (Note this overrides the 3212 * endianness of a {@code ByteBuffer}) 3213 * @return a VarHandle giving access to elements of a {@code ByteBuffer} 3214 * viewed as if elements corresponding to the components type of the view 3215 * array class 3216 * @throws NullPointerException if viewArrayClass or byteOrder is null 3217 * @throws IllegalArgumentException if viewArrayClass is not an array type 3218 * @throws UnsupportedOperationException if the component type of 3219 * viewArrayClass is not supported as a variable type 3220 * @since 9 3221 */ 3222 public static 3223 VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass, 3224 ByteOrder byteOrder) throws IllegalArgumentException { 3225 Objects.requireNonNull(byteOrder); 3226 return VarHandles.makeByteBufferViewHandle(viewArrayClass, 3227 byteOrder == ByteOrder.BIG_ENDIAN); 3228 } 3229 3230 3231 /// method handle invocation (reflective style) 3232 3233 /** 3234 * Produces a method handle which will invoke any method handle of the 3235 * given {@code type}, with a given number of trailing arguments replaced by 3236 * a single trailing {@code Object[]} array. 3237 * The resulting invoker will be a method handle with the following 3238 * arguments: 3239 * <ul> 3240 * <li>a single {@code MethodHandle} target 3241 * <li>zero or more leading values (counted by {@code leadingArgCount}) 3242 * <li>an {@code Object[]} array containing trailing arguments 3243 * </ul> 3244 * <p> 3245 * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with 3246 * the indicated {@code type}. 3247 * That is, if the target is exactly of the given {@code type}, it will behave 3248 * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType} 3249 * is used to convert the target to the required {@code type}. 3250 * <p> 3251 * The type of the returned invoker will not be the given {@code type}, but rather 3252 * will have all parameters except the first {@code leadingArgCount} 3253 * replaced by a single array of type {@code Object[]}, which will be 3254 * the final parameter. 3255 * <p> 3256 * Before invoking its target, the invoker will spread the final array, apply 3257 * reference casts as necessary, and unbox and widen primitive arguments. 3258 * If, when the invoker is called, the supplied array argument does 3259 * not have the correct number of elements, the invoker will throw 3260 * an {@link IllegalArgumentException} instead of invoking the target. 3261 * <p> 3262 * This method is equivalent to the following code (though it may be more efficient): 3263 * <blockquote><pre>{@code 3264 MethodHandle invoker = MethodHandles.invoker(type); 3265 int spreadArgCount = type.parameterCount() - leadingArgCount; 3266 invoker = invoker.asSpreader(Object[].class, spreadArgCount); 3267 return invoker; 3268 * }</pre></blockquote> 3269 * This method throws no reflective or security exceptions. 3270 * @param type the desired target type 3271 * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target 3272 * @return a method handle suitable for invoking any method handle of the given type 3273 * @throws NullPointerException if {@code type} is null 3274 * @throws IllegalArgumentException if {@code leadingArgCount} is not in 3275 * the range from 0 to {@code type.parameterCount()} inclusive, 3276 * or if the resulting method handle's type would have 3277 * <a href="MethodHandle.html#maxarity">too many parameters</a> 3278 */ 3279 public static 3280 MethodHandle spreadInvoker(MethodType type, int leadingArgCount) { 3281 if (leadingArgCount < 0 || leadingArgCount > type.parameterCount()) 3282 throw newIllegalArgumentException("bad argument count", leadingArgCount); 3283 type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount); 3284 return type.invokers().spreadInvoker(leadingArgCount); 3285 } 3286 3287 /** 3288 * Produces a special <em>invoker method handle</em> which can be used to 3289 * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}. 3290 * The resulting invoker will have a type which is 3291 * exactly equal to the desired type, except that it will accept 3292 * an additional leading argument of type {@code MethodHandle}. 3293 * <p> 3294 * This method is equivalent to the following code (though it may be more efficient): 3295 * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)} 3296 * 3297 * <p style="font-size:smaller;"> 3298 * <em>Discussion:</em> 3299 * Invoker method handles can be useful when working with variable method handles 3300 * of unknown types. 3301 * For example, to emulate an {@code invokeExact} call to a variable method 3302 * handle {@code M}, extract its type {@code T}, 3303 * look up the invoker method {@code X} for {@code T}, 3304 * and call the invoker method, as {@code X.invoke(T, A...)}. 3305 * (It would not work to call {@code X.invokeExact}, since the type {@code T} 3306 * is unknown.) 3307 * If spreading, collecting, or other argument transformations are required, 3308 * they can be applied once to the invoker {@code X} and reused on many {@code M} 3309 * method handle values, as long as they are compatible with the type of {@code X}. 3310 * <p style="font-size:smaller;"> 3311 * <em>(Note: The invoker method is not available via the Core Reflection API. 3312 * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} 3313 * on the declared {@code invokeExact} or {@code invoke} method will raise an 3314 * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em> 3315 * <p> 3316 * This method throws no reflective or security exceptions. 3317 * @param type the desired target type 3318 * @return a method handle suitable for invoking any method handle of the given type 3319 * @throws IllegalArgumentException if the resulting method handle's type would have 3320 * <a href="MethodHandle.html#maxarity">too many parameters</a> 3321 */ 3322 public static 3323 MethodHandle exactInvoker(MethodType type) { 3324 return type.invokers().exactInvoker(); 3325 } 3326 3327 /** 3328 * Produces a special <em>invoker method handle</em> which can be used to 3329 * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}. 3330 * The resulting invoker will have a type which is 3331 * exactly equal to the desired type, except that it will accept 3332 * an additional leading argument of type {@code MethodHandle}. 3333 * <p> 3334 * Before invoking its target, if the target differs from the expected type, 3335 * the invoker will apply reference casts as 3336 * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}. 3337 * Similarly, the return value will be converted as necessary. 3338 * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle}, 3339 * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}. 3340 * <p> 3341 * This method is equivalent to the following code (though it may be more efficient): 3342 * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)} 3343 * <p style="font-size:smaller;"> 3344 * <em>Discussion:</em> 3345 * A {@linkplain MethodType#genericMethodType general method type} is one which 3346 * mentions only {@code Object} arguments and return values. 3347 * An invoker for such a type is capable of calling any method handle 3348 * of the same arity as the general type. 3349 * <p style="font-size:smaller;"> 3350 * <em>(Note: The invoker method is not available via the Core Reflection API. 3351 * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} 3352 * on the declared {@code invokeExact} or {@code invoke} method will raise an 3353 * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em> 3354 * <p> 3355 * This method throws no reflective or security exceptions. 3356 * @param type the desired target type 3357 * @return a method handle suitable for invoking any method handle convertible to the given type 3358 * @throws IllegalArgumentException if the resulting method handle's type would have 3359 * <a href="MethodHandle.html#maxarity">too many parameters</a> 3360 */ 3361 public static 3362 MethodHandle invoker(MethodType type) { 3363 return type.invokers().genericInvoker(); 3364 } 3365 3366 /** 3367 * Produces a special <em>invoker method handle</em> which can be used to 3368 * invoke a signature-polymorphic access mode method on any VarHandle whose 3369 * associated access mode type is compatible with the given type. 3370 * The resulting invoker will have a type which is exactly equal to the 3371 * desired given type, except that it will accept an additional leading 3372 * argument of type {@code VarHandle}. 3373 * 3374 * @param accessMode the VarHandle access mode 3375 * @param type the desired target type 3376 * @return a method handle suitable for invoking an access mode method of 3377 * any VarHandle whose access mode type is of the given type. 3378 * @since 9 3379 */ 3380 static public 3381 MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) { 3382 return type.invokers().varHandleMethodExactInvoker(accessMode); 3383 } 3384 3385 /** 3386 * Produces a special <em>invoker method handle</em> which can be used to 3387 * invoke a signature-polymorphic access mode method on any VarHandle whose 3388 * associated access mode type is compatible with the given type. 3389 * The resulting invoker will have a type which is exactly equal to the 3390 * desired given type, except that it will accept an additional leading 3391 * argument of type {@code VarHandle}. 3392 * <p> 3393 * Before invoking its target, if the access mode type differs from the 3394 * desired given type, the invoker will apply reference casts as necessary 3395 * and box, unbox, or widen primitive values, as if by 3396 * {@link MethodHandle#asType asType}. Similarly, the return value will be 3397 * converted as necessary. 3398 * <p> 3399 * This method is equivalent to the following code (though it may be more 3400 * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)} 3401 * 3402 * @param accessMode the VarHandle access mode 3403 * @param type the desired target type 3404 * @return a method handle suitable for invoking an access mode method of 3405 * any VarHandle whose access mode type is convertible to the given 3406 * type. 3407 * @since 9 3408 */ 3409 static public 3410 MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) { 3411 return type.invokers().varHandleMethodInvoker(accessMode); 3412 } 3413 3414 static /*non-public*/ 3415 MethodHandle basicInvoker(MethodType type) { 3416 return type.invokers().basicInvoker(); 3417 } 3418 3419 /// method handle modification (creation from other method handles) 3420 3421 /** 3422 * Produces a method handle which adapts the type of the 3423 * given method handle to a new type by pairwise argument and return type conversion. 3424 * The original type and new type must have the same number of arguments. 3425 * The resulting method handle is guaranteed to report a type 3426 * which is equal to the desired new type. 3427 * <p> 3428 * If the original type and new type are equal, returns target. 3429 * <p> 3430 * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType}, 3431 * and some additional conversions are also applied if those conversions fail. 3432 * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied 3433 * if possible, before or instead of any conversions done by {@code asType}: 3434 * <ul> 3435 * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type, 3436 * then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast. 3437 * (This treatment of interfaces follows the usage of the bytecode verifier.) 3438 * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive, 3439 * the boolean is converted to a byte value, 1 for true, 0 for false. 3440 * (This treatment follows the usage of the bytecode verifier.) 3441 * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive, 3442 * <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5), 3443 * and the low order bit of the result is tested, as if by {@code (x & 1) != 0}. 3444 * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean, 3445 * then a Java casting conversion (JLS 5.5) is applied. 3446 * (Specifically, <em>T0</em> will convert to <em>T1</em> by 3447 * widening and/or narrowing.) 3448 * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing 3449 * conversion will be applied at runtime, possibly followed 3450 * by a Java casting conversion (JLS 5.5) on the primitive value, 3451 * possibly followed by a conversion from byte to boolean by testing 3452 * the low-order bit. 3453 * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, 3454 * and if the reference is null at runtime, a zero value is introduced. 3455 * </ul> 3456 * @param target the method handle to invoke after arguments are retyped 3457 * @param newType the expected type of the new method handle 3458 * @return a method handle which delegates to the target after performing 3459 * any necessary argument conversions, and arranges for any 3460 * necessary return value conversions 3461 * @throws NullPointerException if either argument is null 3462 * @throws WrongMethodTypeException if the conversion cannot be made 3463 * @see MethodHandle#asType 3464 */ 3465 public static 3466 MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) { 3467 explicitCastArgumentsChecks(target, newType); 3468 // use the asTypeCache when possible: 3469 MethodType oldType = target.type(); 3470 if (oldType == newType) return target; 3471 if (oldType.explicitCastEquivalentToAsType(newType)) { 3472 return target.asFixedArity().asType(newType); 3473 } 3474 return MethodHandleImpl.makePairwiseConvert(target, newType, false); 3475 } 3476 3477 private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) { 3478 if (target.type().parameterCount() != newType.parameterCount()) { 3479 throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType); 3480 } 3481 } 3482 3483 /** 3484 * Produces a method handle which adapts the calling sequence of the 3485 * given method handle to a new type, by reordering the arguments. 3486 * The resulting method handle is guaranteed to report a type 3487 * which is equal to the desired new type. 3488 * <p> 3489 * The given array controls the reordering. 3490 * Call {@code #I} the number of incoming parameters (the value 3491 * {@code newType.parameterCount()}, and call {@code #O} the number 3492 * of outgoing parameters (the value {@code target.type().parameterCount()}). 3493 * Then the length of the reordering array must be {@code #O}, 3494 * and each element must be a non-negative number less than {@code #I}. 3495 * For every {@code N} less than {@code #O}, the {@code N}-th 3496 * outgoing argument will be taken from the {@code I}-th incoming 3497 * argument, where {@code I} is {@code reorder[N]}. 3498 * <p> 3499 * No argument or return value conversions are applied. 3500 * The type of each incoming argument, as determined by {@code newType}, 3501 * must be identical to the type of the corresponding outgoing parameter 3502 * or parameters in the target method handle. 3503 * The return type of {@code newType} must be identical to the return 3504 * type of the original target. 3505 * <p> 3506 * The reordering array need not specify an actual permutation. 3507 * An incoming argument will be duplicated if its index appears 3508 * more than once in the array, and an incoming argument will be dropped 3509 * if its index does not appear in the array. 3510 * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments}, 3511 * incoming arguments which are not mentioned in the reordering array 3512 * may be of any type, as determined only by {@code newType}. 3513 * <blockquote><pre>{@code 3514 import static java.lang.invoke.MethodHandles.*; 3515 import static java.lang.invoke.MethodType.*; 3516 ... 3517 MethodType intfn1 = methodType(int.class, int.class); 3518 MethodType intfn2 = methodType(int.class, int.class, int.class); 3519 MethodHandle sub = ... (int x, int y) -> (x-y) ...; 3520 assert(sub.type().equals(intfn2)); 3521 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1); 3522 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0); 3523 assert((int)rsub.invokeExact(1, 100) == 99); 3524 MethodHandle add = ... (int x, int y) -> (x+y) ...; 3525 assert(add.type().equals(intfn2)); 3526 MethodHandle twice = permuteArguments(add, intfn1, 0, 0); 3527 assert(twice.type().equals(intfn1)); 3528 assert((int)twice.invokeExact(21) == 42); 3529 * }</pre></blockquote> 3530 * <p> 3531 * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector 3532 * variable-arity method handle}, even if the original target method handle was. 3533 * @param target the method handle to invoke after arguments are reordered 3534 * @param newType the expected type of the new method handle 3535 * @param reorder an index array which controls the reordering 3536 * @return a method handle which delegates to the target after it 3537 * drops unused arguments and moves and/or duplicates the other arguments 3538 * @throws NullPointerException if any argument is null 3539 * @throws IllegalArgumentException if the index array length is not equal to 3540 * the arity of the target, or if any index array element 3541 * not a valid index for a parameter of {@code newType}, 3542 * or if two corresponding parameter types in 3543 * {@code target.type()} and {@code newType} are not identical, 3544 */ 3545 public static 3546 MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) { 3547 reorder = reorder.clone(); // get a private copy 3548 MethodType oldType = target.type(); 3549 permuteArgumentChecks(reorder, newType, oldType); 3550 // first detect dropped arguments and handle them separately 3551 int[] originalReorder = reorder; 3552 BoundMethodHandle result = target.rebind(); 3553 LambdaForm form = result.form; 3554 int newArity = newType.parameterCount(); 3555 // Normalize the reordering into a real permutation, 3556 // by removing duplicates and adding dropped elements. 3557 // This somewhat improves lambda form caching, as well 3558 // as simplifying the transform by breaking it up into steps. 3559 for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) { 3560 if (ddIdx > 0) { 3561 // We found a duplicated entry at reorder[ddIdx]. 3562 // Example: (x,y,z)->asList(x,y,z) 3563 // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1) 3564 // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0) 3565 // The starred element corresponds to the argument 3566 // deleted by the dupArgumentForm transform. 3567 int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos]; 3568 boolean killFirst = false; 3569 for (int val; (val = reorder[--dstPos]) != dupVal; ) { 3570 // Set killFirst if the dup is larger than an intervening position. 3571 // This will remove at least one inversion from the permutation. 3572 if (dupVal > val) killFirst = true; 3573 } 3574 if (!killFirst) { 3575 srcPos = dstPos; 3576 dstPos = ddIdx; 3577 } 3578 form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos); 3579 assert (reorder[srcPos] == reorder[dstPos]); 3580 oldType = oldType.dropParameterTypes(dstPos, dstPos + 1); 3581 // contract the reordering by removing the element at dstPos 3582 int tailPos = dstPos + 1; 3583 System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos); 3584 reorder = Arrays.copyOf(reorder, reorder.length - 1); 3585 } else { 3586 int dropVal = ~ddIdx, insPos = 0; 3587 while (insPos < reorder.length && reorder[insPos] < dropVal) { 3588 // Find first element of reorder larger than dropVal. 3589 // This is where we will insert the dropVal. 3590 insPos += 1; 3591 } 3592 Class<?> ptype = newType.parameterType(dropVal); 3593 form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype)); 3594 oldType = oldType.insertParameterTypes(insPos, ptype); 3595 // expand the reordering by inserting an element at insPos 3596 int tailPos = insPos + 1; 3597 reorder = Arrays.copyOf(reorder, reorder.length + 1); 3598 System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos); 3599 reorder[insPos] = dropVal; 3600 } 3601 assert (permuteArgumentChecks(reorder, newType, oldType)); 3602 } 3603 assert (reorder.length == newArity); // a perfect permutation 3604 // Note: This may cache too many distinct LFs. Consider backing off to varargs code. 3605 form = form.editor().permuteArgumentsForm(1, reorder); 3606 if (newType == result.type() && form == result.internalForm()) 3607 return result; 3608 return result.copyWith(newType, form); 3609 } 3610 3611 /** 3612 * Return an indication of any duplicate or omission in reorder. 3613 * If the reorder contains a duplicate entry, return the index of the second occurrence. 3614 * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder. 3615 * Otherwise, return zero. 3616 * If an element not in [0..newArity-1] is encountered, return reorder.length. 3617 */ 3618 private static int findFirstDupOrDrop(int[] reorder, int newArity) { 3619 final int BIT_LIMIT = 63; // max number of bits in bit mask 3620 if (newArity < BIT_LIMIT) { 3621 long mask = 0; 3622 for (int i = 0; i < reorder.length; i++) { 3623 int arg = reorder[i]; 3624 if (arg >= newArity) { 3625 return reorder.length; 3626 } 3627 long bit = 1L << arg; 3628 if ((mask & bit) != 0) { 3629 return i; // >0 indicates a dup 3630 } 3631 mask |= bit; 3632 } 3633 if (mask == (1L << newArity) - 1) { 3634 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity); 3635 return 0; 3636 } 3637 // find first zero 3638 long zeroBit = Long.lowestOneBit(~mask); 3639 int zeroPos = Long.numberOfTrailingZeros(zeroBit); 3640 assert(zeroPos <= newArity); 3641 if (zeroPos == newArity) { 3642 return 0; 3643 } 3644 return ~zeroPos; 3645 } else { 3646 // same algorithm, different bit set 3647 BitSet mask = new BitSet(newArity); 3648 for (int i = 0; i < reorder.length; i++) { 3649 int arg = reorder[i]; 3650 if (arg >= newArity) { 3651 return reorder.length; 3652 } 3653 if (mask.get(arg)) { 3654 return i; // >0 indicates a dup 3655 } 3656 mask.set(arg); 3657 } 3658 int zeroPos = mask.nextClearBit(0); 3659 assert(zeroPos <= newArity); 3660 if (zeroPos == newArity) { 3661 return 0; 3662 } 3663 return ~zeroPos; 3664 } 3665 } 3666 3667 private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) { 3668 if (newType.returnType() != oldType.returnType()) 3669 throw newIllegalArgumentException("return types do not match", 3670 oldType, newType); 3671 if (reorder.length == oldType.parameterCount()) { 3672 int limit = newType.parameterCount(); 3673 boolean bad = false; 3674 for (int j = 0; j < reorder.length; j++) { 3675 int i = reorder[j]; 3676 if (i < 0 || i >= limit) { 3677 bad = true; break; 3678 } 3679 Class<?> src = newType.parameterType(i); 3680 Class<?> dst = oldType.parameterType(j); 3681 if (src != dst) 3682 throw newIllegalArgumentException("parameter types do not match after reorder", 3683 oldType, newType); 3684 } 3685 if (!bad) return true; 3686 } 3687 throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder)); 3688 } 3689 3690 /** 3691 * Produces a method handle of the requested return type which returns the given 3692 * constant value every time it is invoked. 3693 * <p> 3694 * Before the method handle is returned, the passed-in value is converted to the requested type. 3695 * If the requested type is primitive, widening primitive conversions are attempted, 3696 * else reference conversions are attempted. 3697 * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}. 3698 * @param type the return type of the desired method handle 3699 * @param value the value to return 3700 * @return a method handle of the given return type and no arguments, which always returns the given value 3701 * @throws NullPointerException if the {@code type} argument is null 3702 * @throws ClassCastException if the value cannot be converted to the required return type 3703 * @throws IllegalArgumentException if the given type is {@code void.class} 3704 */ 3705 public static 3706 MethodHandle constant(Class<?> type, Object value) { 3707 if (type.isPrimitive()) { 3708 if (type == void.class) 3709 throw newIllegalArgumentException("void type"); 3710 Wrapper w = Wrapper.forPrimitiveType(type); 3711 value = w.convert(value, type); 3712 if (w.zero().equals(value)) 3713 return zero(w, type); 3714 return insertArguments(identity(type), 0, value); 3715 } else { 3716 if (value == null) 3717 return zero(Wrapper.OBJECT, type); 3718 return identity(type).bindTo(value); 3719 } 3720 } 3721 3722 /** 3723 * Produces a method handle which returns its sole argument when invoked. 3724 * @param type the type of the sole parameter and return value of the desired method handle 3725 * @return a unary method handle which accepts and returns the given type 3726 * @throws NullPointerException if the argument is null 3727 * @throws IllegalArgumentException if the given type is {@code void.class} 3728 */ 3729 public static 3730 MethodHandle identity(Class<?> type) { 3731 Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT); 3732 int pos = btw.ordinal(); 3733 MethodHandle ident = IDENTITY_MHS[pos]; 3734 if (ident == null) { 3735 ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType())); 3736 } 3737 if (ident.type().returnType() == type) 3738 return ident; 3739 // something like identity(Foo.class); do not bother to intern these 3740 assert (btw == Wrapper.OBJECT); 3741 return makeIdentity(type); 3742 } 3743 3744 /** 3745 * Produces a constant method handle of the requested return type which 3746 * returns the default value for that type every time it is invoked. 3747 * The resulting constant method handle will have no side effects. 3748 * <p>The returned method handle is equivalent to {@code empty(methodType(type))}. 3749 * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))}, 3750 * since {@code explicitCastArguments} converts {@code null} to default values. 3751 * @param type the expected return type of the desired method handle 3752 * @return a constant method handle that takes no arguments 3753 * and returns the default value of the given type (or void, if the type is void) 3754 * @throws NullPointerException if the argument is null 3755 * @see MethodHandles#constant 3756 * @see MethodHandles#empty 3757 * @see MethodHandles#explicitCastArguments 3758 * @since 9 3759 */ 3760 public static MethodHandle zero(Class<?> type) { 3761 Objects.requireNonNull(type); 3762 return type.isPrimitive() ? zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type); 3763 } 3764 3765 private static MethodHandle identityOrVoid(Class<?> type) { 3766 return type == void.class ? zero(type) : identity(type); 3767 } 3768 3769 /** 3770 * Produces a method handle of the requested type which ignores any arguments, does nothing, 3771 * and returns a suitable default depending on the return type. 3772 * That is, it returns a zero primitive value, a {@code null}, or {@code void}. 3773 * <p>The returned method handle is equivalent to 3774 * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}. 3775 * 3776 * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as 3777 * {@code guardWithTest(pred, target, empty(target.type())}. 3778 * @param type the type of the desired method handle 3779 * @return a constant method handle of the given type, which returns a default value of the given return type 3780 * @throws NullPointerException if the argument is null 3781 * @see MethodHandles#zero 3782 * @see MethodHandles#constant 3783 * @since 9 3784 */ 3785 public static MethodHandle empty(MethodType type) { 3786 Objects.requireNonNull(type); 3787 return dropArguments(zero(type.returnType()), 0, type.parameterList()); 3788 } 3789 3790 private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT]; 3791 private static MethodHandle makeIdentity(Class<?> ptype) { 3792 MethodType mtype = methodType(ptype, ptype); 3793 LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype)); 3794 return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY); 3795 } 3796 3797 private static MethodHandle zero(Wrapper btw, Class<?> rtype) { 3798 int pos = btw.ordinal(); 3799 MethodHandle zero = ZERO_MHS[pos]; 3800 if (zero == null) { 3801 zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType())); 3802 } 3803 if (zero.type().returnType() == rtype) 3804 return zero; 3805 assert(btw == Wrapper.OBJECT); 3806 return makeZero(rtype); 3807 } 3808 private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT]; 3809 private static MethodHandle makeZero(Class<?> rtype) { 3810 MethodType mtype = methodType(rtype); 3811 LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype)); 3812 return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO); 3813 } 3814 3815 private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) { 3816 // Simulate a CAS, to avoid racy duplication of results. 3817 MethodHandle prev = cache[pos]; 3818 if (prev != null) return prev; 3819 return cache[pos] = value; 3820 } 3821 3822 /** 3823 * Provides a target method handle with one or more <em>bound arguments</em> 3824 * in advance of the method handle's invocation. 3825 * The formal parameters to the target corresponding to the bound 3826 * arguments are called <em>bound parameters</em>. 3827 * Returns a new method handle which saves away the bound arguments. 3828 * When it is invoked, it receives arguments for any non-bound parameters, 3829 * binds the saved arguments to their corresponding parameters, 3830 * and calls the original target. 3831 * <p> 3832 * The type of the new method handle will drop the types for the bound 3833 * parameters from the original target type, since the new method handle 3834 * will no longer require those arguments to be supplied by its callers. 3835 * <p> 3836 * Each given argument object must match the corresponding bound parameter type. 3837 * If a bound parameter type is a primitive, the argument object 3838 * must be a wrapper, and will be unboxed to produce the primitive value. 3839 * <p> 3840 * The {@code pos} argument selects which parameters are to be bound. 3841 * It may range between zero and <i>N-L</i> (inclusively), 3842 * where <i>N</i> is the arity of the target method handle 3843 * and <i>L</i> is the length of the values array. 3844 * <p> 3845 * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector 3846 * variable-arity method handle}, even if the original target method handle was. 3847 * @param target the method handle to invoke after the argument is inserted 3848 * @param pos where to insert the argument (zero for the first) 3849 * @param values the series of arguments to insert 3850 * @return a method handle which inserts an additional argument, 3851 * before calling the original method handle 3852 * @throws NullPointerException if the target or the {@code values} array is null 3853 * @throws IllegalArgumentException if (@code pos) is less than {@code 0} or greater than 3854 * {@code N - L} where {@code N} is the arity of the target method handle and {@code L} 3855 * is the length of the values array. 3856 * @throws ClassCastException if an argument does not match the corresponding bound parameter 3857 * type. 3858 * @see MethodHandle#bindTo 3859 */ 3860 public static 3861 MethodHandle insertArguments(MethodHandle target, int pos, Object... values) { 3862 int insCount = values.length; 3863 Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos); 3864 if (insCount == 0) return target; 3865 BoundMethodHandle result = target.rebind(); 3866 for (int i = 0; i < insCount; i++) { 3867 Object value = values[i]; 3868 Class<?> ptype = ptypes[pos+i]; 3869 if (ptype.isPrimitive()) { 3870 result = insertArgumentPrimitive(result, pos, ptype, value); 3871 } else { 3872 value = ptype.cast(value); // throw CCE if needed 3873 result = result.bindArgumentL(pos, value); 3874 } 3875 } 3876 return result; 3877 } 3878 3879 private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos, 3880 Class<?> ptype, Object value) { 3881 Wrapper w = Wrapper.forPrimitiveType(ptype); 3882 // perform unboxing and/or primitive conversion 3883 value = w.convert(value, ptype); 3884 switch (w) { 3885 case INT: return result.bindArgumentI(pos, (int)value); 3886 case LONG: return result.bindArgumentJ(pos, (long)value); 3887 case FLOAT: return result.bindArgumentF(pos, (float)value); 3888 case DOUBLE: return result.bindArgumentD(pos, (double)value); 3889 default: return result.bindArgumentI(pos, ValueConversions.widenSubword(value)); 3890 } 3891 } 3892 3893 private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException { 3894 MethodType oldType = target.type(); 3895 int outargs = oldType.parameterCount(); 3896 int inargs = outargs - insCount; 3897 if (inargs < 0) 3898 throw newIllegalArgumentException("too many values to insert"); 3899 if (pos < 0 || pos > inargs) 3900 throw newIllegalArgumentException("no argument type to append"); 3901 return oldType.ptypes(); 3902 } 3903 3904 /** 3905 * Produces a method handle which will discard some dummy arguments 3906 * before calling some other specified <i>target</i> method handle. 3907 * The type of the new method handle will be the same as the target's type, 3908 * except it will also include the dummy argument types, 3909 * at some given position. 3910 * <p> 3911 * The {@code pos} argument may range between zero and <i>N</i>, 3912 * where <i>N</i> is the arity of the target. 3913 * If {@code pos} is zero, the dummy arguments will precede 3914 * the target's real arguments; if {@code pos} is <i>N</i> 3915 * they will come after. 3916 * <p> 3917 * <b>Example:</b> 3918 * <blockquote><pre>{@code 3919 import static java.lang.invoke.MethodHandles.*; 3920 import static java.lang.invoke.MethodType.*; 3921 ... 3922 MethodHandle cat = lookup().findVirtual(String.class, 3923 "concat", methodType(String.class, String.class)); 3924 assertEquals("xy", (String) cat.invokeExact("x", "y")); 3925 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class); 3926 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2)); 3927 assertEquals(bigType, d0.type()); 3928 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z")); 3929 * }</pre></blockquote> 3930 * <p> 3931 * This method is also equivalent to the following code: 3932 * <blockquote><pre> 3933 * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))} 3934 * </pre></blockquote> 3935 * @param target the method handle to invoke after the arguments are dropped 3936 * @param valueTypes the type(s) of the argument(s) to drop 3937 * @param pos position of first argument to drop (zero for the leftmost) 3938 * @return a method handle which drops arguments of the given types, 3939 * before calling the original method handle 3940 * @throws NullPointerException if the target is null, 3941 * or if the {@code valueTypes} list or any of its elements is null 3942 * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class}, 3943 * or if {@code pos} is negative or greater than the arity of the target, 3944 * or if the new method handle's type would have too many parameters 3945 */ 3946 public static 3947 MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) { 3948 return dropArguments0(target, pos, copyTypes(valueTypes.toArray())); 3949 } 3950 3951 private static List<Class<?>> copyTypes(Object[] array) { 3952 return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class)); 3953 } 3954 3955 private static 3956 MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) { 3957 MethodType oldType = target.type(); // get NPE 3958 int dropped = dropArgumentChecks(oldType, pos, valueTypes); 3959 MethodType newType = oldType.insertParameterTypes(pos, valueTypes); 3960 if (dropped == 0) return target; 3961 BoundMethodHandle result = target.rebind(); 3962 LambdaForm lform = result.form; 3963 int insertFormArg = 1 + pos; 3964 for (Class<?> ptype : valueTypes) { 3965 lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype)); 3966 } 3967 result = result.copyWith(newType, lform); 3968 return result; 3969 } 3970 3971 private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) { 3972 int dropped = valueTypes.size(); 3973 MethodType.checkSlotCount(dropped); 3974 int outargs = oldType.parameterCount(); 3975 int inargs = outargs + dropped; 3976 if (pos < 0 || pos > outargs) 3977 throw newIllegalArgumentException("no argument type to remove" 3978 + Arrays.asList(oldType, pos, valueTypes, inargs, outargs) 3979 ); 3980 return dropped; 3981 } 3982 3983 /** 3984 * Produces a method handle which will discard some dummy arguments 3985 * before calling some other specified <i>target</i> method handle. 3986 * The type of the new method handle will be the same as the target's type, 3987 * except it will also include the dummy argument types, 3988 * at some given position. 3989 * <p> 3990 * The {@code pos} argument may range between zero and <i>N</i>, 3991 * where <i>N</i> is the arity of the target. 3992 * If {@code pos} is zero, the dummy arguments will precede 3993 * the target's real arguments; if {@code pos} is <i>N</i> 3994 * they will come after. 3995 * @apiNote 3996 * <blockquote><pre>{@code 3997 import static java.lang.invoke.MethodHandles.*; 3998 import static java.lang.invoke.MethodType.*; 3999 ... 4000 MethodHandle cat = lookup().findVirtual(String.class, 4001 "concat", methodType(String.class, String.class)); 4002 assertEquals("xy", (String) cat.invokeExact("x", "y")); 4003 MethodHandle d0 = dropArguments(cat, 0, String.class); 4004 assertEquals("yz", (String) d0.invokeExact("x", "y", "z")); 4005 MethodHandle d1 = dropArguments(cat, 1, String.class); 4006 assertEquals("xz", (String) d1.invokeExact("x", "y", "z")); 4007 MethodHandle d2 = dropArguments(cat, 2, String.class); 4008 assertEquals("xy", (String) d2.invokeExact("x", "y", "z")); 4009 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class); 4010 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z")); 4011 * }</pre></blockquote> 4012 * <p> 4013 * This method is also equivalent to the following code: 4014 * <blockquote><pre> 4015 * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))} 4016 * </pre></blockquote> 4017 * @param target the method handle to invoke after the arguments are dropped 4018 * @param valueTypes the type(s) of the argument(s) to drop 4019 * @param pos position of first argument to drop (zero for the leftmost) 4020 * @return a method handle which drops arguments of the given types, 4021 * before calling the original method handle 4022 * @throws NullPointerException if the target is null, 4023 * or if the {@code valueTypes} array or any of its elements is null 4024 * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class}, 4025 * or if {@code pos} is negative or greater than the arity of the target, 4026 * or if the new method handle's type would have 4027 * <a href="MethodHandle.html#maxarity">too many parameters</a> 4028 */ 4029 public static 4030 MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) { 4031 return dropArguments0(target, pos, copyTypes(valueTypes)); 4032 } 4033 4034 // private version which allows caller some freedom with error handling 4035 private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos, 4036 boolean nullOnFailure) { 4037 newTypes = copyTypes(newTypes.toArray()); 4038 List<Class<?>> oldTypes = target.type().parameterList(); 4039 int match = oldTypes.size(); 4040 if (skip != 0) { 4041 if (skip < 0 || skip > match) { 4042 throw newIllegalArgumentException("illegal skip", skip, target); 4043 } 4044 oldTypes = oldTypes.subList(skip, match); 4045 match -= skip; 4046 } 4047 List<Class<?>> addTypes = newTypes; 4048 int add = addTypes.size(); 4049 if (pos != 0) { 4050 if (pos < 0 || pos > add) { 4051 throw newIllegalArgumentException("illegal pos", pos, newTypes); 4052 } 4053 addTypes = addTypes.subList(pos, add); 4054 add -= pos; 4055 assert(addTypes.size() == add); 4056 } 4057 // Do not add types which already match the existing arguments. 4058 if (match > add || !oldTypes.equals(addTypes.subList(0, match))) { 4059 if (nullOnFailure) { 4060 return null; 4061 } 4062 throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes); 4063 } 4064 addTypes = addTypes.subList(match, add); 4065 add -= match; 4066 assert(addTypes.size() == add); 4067 // newTypes: ( P*[pos], M*[match], A*[add] ) 4068 // target: ( S*[skip], M*[match] ) 4069 MethodHandle adapter = target; 4070 if (add > 0) { 4071 adapter = dropArguments0(adapter, skip+ match, addTypes); 4072 } 4073 // adapter: (S*[skip], M*[match], A*[add] ) 4074 if (pos > 0) { 4075 adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos)); 4076 } 4077 // adapter: (S*[skip], P*[pos], M*[match], A*[add] ) 4078 return adapter; 4079 } 4080 4081 /** 4082 * Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some 4083 * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter 4084 * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The 4085 * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before 4086 * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by 4087 * {@link #dropArguments(MethodHandle, int, Class[])}. 4088 * <p> 4089 * The resulting handle will have the same return type as the target handle. 4090 * <p> 4091 * In more formal terms, assume these two type lists:<ul> 4092 * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as 4093 * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list, 4094 * {@code newTypes}. 4095 * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as 4096 * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's 4097 * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching 4098 * sub-list. 4099 * </ul> 4100 * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type 4101 * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by 4102 * {@link #dropArguments(MethodHandle, int, Class[])}. 4103 * 4104 * @apiNote 4105 * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be 4106 * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows: 4107 * <blockquote><pre>{@code 4108 import static java.lang.invoke.MethodHandles.*; 4109 import static java.lang.invoke.MethodType.*; 4110 ... 4111 ... 4112 MethodHandle h0 = constant(boolean.class, true); 4113 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class)); 4114 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class); 4115 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList()); 4116 if (h1.type().parameterCount() < h2.type().parameterCount()) 4117 h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0); // lengthen h1 4118 else 4119 h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0); // lengthen h2 4120 MethodHandle h3 = guardWithTest(h0, h1, h2); 4121 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c")); 4122 * }</pre></blockquote> 4123 * @param target the method handle to adapt 4124 * @param skip number of targets parameters to disregard (they will be unchanged) 4125 * @param newTypes the list of types to match {@code target}'s parameter type list to 4126 * @param pos place in {@code newTypes} where the non-skipped target parameters must occur 4127 * @return a possibly adapted method handle 4128 * @throws NullPointerException if either argument is null 4129 * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class}, 4130 * or if {@code skip} is negative or greater than the arity of the target, 4131 * or if {@code pos} is negative or greater than the newTypes list size, 4132 * or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position 4133 * {@code pos}. 4134 * @since 9 4135 */ 4136 public static 4137 MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) { 4138 Objects.requireNonNull(target); 4139 Objects.requireNonNull(newTypes); 4140 return dropArgumentsToMatch(target, skip, newTypes, pos, false); 4141 } 4142 4143 /** 4144 * Adapts a target method handle by pre-processing 4145 * one or more of its arguments, each with its own unary filter function, 4146 * and then calling the target with each pre-processed argument 4147 * replaced by the result of its corresponding filter function. 4148 * <p> 4149 * The pre-processing is performed by one or more method handles, 4150 * specified in the elements of the {@code filters} array. 4151 * The first element of the filter array corresponds to the {@code pos} 4152 * argument of the target, and so on in sequence. 4153 * The filter functions are invoked in left to right order. 4154 * <p> 4155 * Null arguments in the array are treated as identity functions, 4156 * and the corresponding arguments left unchanged. 4157 * (If there are no non-null elements in the array, the original target is returned.) 4158 * Each filter is applied to the corresponding argument of the adapter. 4159 * <p> 4160 * If a filter {@code F} applies to the {@code N}th argument of 4161 * the target, then {@code F} must be a method handle which 4162 * takes exactly one argument. The type of {@code F}'s sole argument 4163 * replaces the corresponding argument type of the target 4164 * in the resulting adapted method handle. 4165 * The return type of {@code F} must be identical to the corresponding 4166 * parameter type of the target. 4167 * <p> 4168 * It is an error if there are elements of {@code filters} 4169 * (null or not) 4170 * which do not correspond to argument positions in the target. 4171 * <p><b>Example:</b> 4172 * <blockquote><pre>{@code 4173 import static java.lang.invoke.MethodHandles.*; 4174 import static java.lang.invoke.MethodType.*; 4175 ... 4176 MethodHandle cat = lookup().findVirtual(String.class, 4177 "concat", methodType(String.class, String.class)); 4178 MethodHandle upcase = lookup().findVirtual(String.class, 4179 "toUpperCase", methodType(String.class)); 4180 assertEquals("xy", (String) cat.invokeExact("x", "y")); 4181 MethodHandle f0 = filterArguments(cat, 0, upcase); 4182 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy 4183 MethodHandle f1 = filterArguments(cat, 1, upcase); 4184 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY 4185 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase); 4186 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY 4187 * }</pre></blockquote> 4188 * <p>Here is pseudocode for the resulting adapter. In the code, {@code T} 4189 * denotes the return type of both the {@code target} and resulting adapter. 4190 * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values 4191 * of the parameters and arguments that precede and follow the filter position 4192 * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and 4193 * values of the filtered parameters and arguments; they also represent the 4194 * return types of the {@code filter[i]} handles. The latter accept arguments 4195 * {@code v[i]} of type {@code V[i]}, which also appear in the signature of 4196 * the resulting adapter. 4197 * <blockquote><pre>{@code 4198 * T target(P... p, A[i]... a[i], B... b); 4199 * A[i] filter[i](V[i]); 4200 * T adapter(P... p, V[i]... v[i], B... b) { 4201 * return target(p..., filter[i](v[i])..., b...); 4202 * } 4203 * }</pre></blockquote> 4204 * <p> 4205 * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector 4206 * variable-arity method handle}, even if the original target method handle was. 4207 * 4208 * @param target the method handle to invoke after arguments are filtered 4209 * @param pos the position of the first argument to filter 4210 * @param filters method handles to call initially on filtered arguments 4211 * @return method handle which incorporates the specified argument filtering logic 4212 * @throws NullPointerException if the target is null 4213 * or if the {@code filters} array is null 4214 * @throws IllegalArgumentException if a non-null element of {@code filters} 4215 * does not match a corresponding argument type of target as described above, 4216 * or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()}, 4217 * or if the resulting method handle's type would have 4218 * <a href="MethodHandle.html#maxarity">too many parameters</a> 4219 */ 4220 public static 4221 MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) { 4222 filterArgumentsCheckArity(target, pos, filters); 4223 MethodHandle adapter = target; 4224 // process filters in reverse order so that the invocation of 4225 // the resulting adapter will invoke the filters in left-to-right order 4226 for (int i = filters.length - 1; i >= 0; --i) { 4227 MethodHandle filter = filters[i]; 4228 if (filter == null) continue; // ignore null elements of filters 4229 adapter = filterArgument(adapter, pos + i, filter); 4230 } 4231 return adapter; 4232 } 4233 4234 /*non-public*/ static 4235 MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) { 4236 filterArgumentChecks(target, pos, filter); 4237 MethodType targetType = target.type(); 4238 MethodType filterType = filter.type(); 4239 BoundMethodHandle result = target.rebind(); 4240 Class<?> newParamType = filterType.parameterType(0); 4241 LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType)); 4242 MethodType newType = targetType.changeParameterType(pos, newParamType); 4243 result = result.copyWithExtendL(newType, lform, filter); 4244 return result; 4245 } 4246 4247 private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) { 4248 MethodType targetType = target.type(); 4249 int maxPos = targetType.parameterCount(); 4250 if (pos + filters.length > maxPos) 4251 throw newIllegalArgumentException("too many filters"); 4252 } 4253 4254 private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException { 4255 MethodType targetType = target.type(); 4256 MethodType filterType = filter.type(); 4257 if (filterType.parameterCount() != 1 4258 || filterType.returnType() != targetType.parameterType(pos)) 4259 throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); 4260 } 4261 4262 /** 4263 * Adapts a target method handle by pre-processing 4264 * a sub-sequence of its arguments with a filter (another method handle). 4265 * The pre-processed arguments are replaced by the result (if any) of the 4266 * filter function. 4267 * The target is then called on the modified (usually shortened) argument list. 4268 * <p> 4269 * If the filter returns a value, the target must accept that value as 4270 * its argument in position {@code pos}, preceded and/or followed by 4271 * any arguments not passed to the filter. 4272 * If the filter returns void, the target must accept all arguments 4273 * not passed to the filter. 4274 * No arguments are reordered, and a result returned from the filter 4275 * replaces (in order) the whole subsequence of arguments originally 4276 * passed to the adapter. 4277 * <p> 4278 * The argument types (if any) of the filter 4279 * replace zero or one argument types of the target, at position {@code pos}, 4280 * in the resulting adapted method handle. 4281 * The return type of the filter (if any) must be identical to the 4282 * argument type of the target at position {@code pos}, and that target argument 4283 * is supplied by the return value of the filter. 4284 * <p> 4285 * In all cases, {@code pos} must be greater than or equal to zero, and 4286 * {@code pos} must also be less than or equal to the target's arity. 4287 * <p><b>Example:</b> 4288 * <blockquote><pre>{@code 4289 import static java.lang.invoke.MethodHandles.*; 4290 import static java.lang.invoke.MethodType.*; 4291 ... 4292 MethodHandle deepToString = publicLookup() 4293 .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class)); 4294 4295 MethodHandle ts1 = deepToString.asCollector(String[].class, 1); 4296 assertEquals("[strange]", (String) ts1.invokeExact("strange")); 4297 4298 MethodHandle ts2 = deepToString.asCollector(String[].class, 2); 4299 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down")); 4300 4301 MethodHandle ts3 = deepToString.asCollector(String[].class, 3); 4302 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2); 4303 assertEquals("[top, [up, down], strange]", 4304 (String) ts3_ts2.invokeExact("top", "up", "down", "strange")); 4305 4306 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1); 4307 assertEquals("[top, [up, down], [strange]]", 4308 (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange")); 4309 4310 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3); 4311 assertEquals("[top, [[up, down, strange], charm], bottom]", 4312 (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom")); 4313 * }</pre></blockquote> 4314 * <p>Here is pseudocode for the resulting adapter. In the code, {@code T} 4315 * represents the return type of the {@code target} and resulting adapter. 4316 * {@code V}/{@code v} stand for the return type and value of the 4317 * {@code filter}, which are also found in the signature and arguments of 4318 * the {@code target}, respectively, unless {@code V} is {@code void}. 4319 * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types 4320 * and values preceding and following the collection position, {@code pos}, 4321 * in the {@code target}'s signature. They also turn up in the resulting 4322 * adapter's signature and arguments, where they surround 4323 * {@code B}/{@code b}, which represent the parameter types and arguments 4324 * to the {@code filter} (if any). 4325 * <blockquote><pre>{@code 4326 * T target(A...,V,C...); 4327 * V filter(B...); 4328 * T adapter(A... a,B... b,C... c) { 4329 * V v = filter(b...); 4330 * return target(a...,v,c...); 4331 * } 4332 * // and if the filter has no arguments: 4333 * T target2(A...,V,C...); 4334 * V filter2(); 4335 * T adapter2(A... a,C... c) { 4336 * V v = filter2(); 4337 * return target2(a...,v,c...); 4338 * } 4339 * // and if the filter has a void return: 4340 * T target3(A...,C...); 4341 * void filter3(B...); 4342 * T adapter3(A... a,B... b,C... c) { 4343 * filter3(b...); 4344 * return target3(a...,c...); 4345 * } 4346 * }</pre></blockquote> 4347 * <p> 4348 * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to 4349 * one which first "folds" the affected arguments, and then drops them, in separate 4350 * steps as follows: 4351 * <blockquote><pre>{@code 4352 * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2 4353 * mh = MethodHandles.foldArguments(mh, coll); //step 1 4354 * }</pre></blockquote> 4355 * If the target method handle consumes no arguments besides than the result 4356 * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)} 4357 * is equivalent to {@code filterReturnValue(coll, mh)}. 4358 * If the filter method handle {@code coll} consumes one argument and produces 4359 * a non-void result, then {@code collectArguments(mh, N, coll)} 4360 * is equivalent to {@code filterArguments(mh, N, coll)}. 4361 * Other equivalences are possible but would require argument permutation. 4362 * <p> 4363 * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector 4364 * variable-arity method handle}, even if the original target method handle was. 4365 * 4366 * @param target the method handle to invoke after filtering the subsequence of arguments 4367 * @param pos the position of the first adapter argument to pass to the filter, 4368 * and/or the target argument which receives the result of the filter 4369 * @param filter method handle to call on the subsequence of arguments 4370 * @return method handle which incorporates the specified argument subsequence filtering logic 4371 * @throws NullPointerException if either argument is null 4372 * @throws IllegalArgumentException if the return type of {@code filter} 4373 * is non-void and is not the same as the {@code pos} argument of the target, 4374 * or if {@code pos} is not between 0 and the target's arity, inclusive, 4375 * or if the resulting method handle's type would have 4376 * <a href="MethodHandle.html#maxarity">too many parameters</a> 4377 * @see MethodHandles#foldArguments 4378 * @see MethodHandles#filterArguments 4379 * @see MethodHandles#filterReturnValue 4380 */ 4381 public static 4382 MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) { 4383 MethodType newType = collectArgumentsChecks(target, pos, filter); 4384 MethodType collectorType = filter.type(); 4385 BoundMethodHandle result = target.rebind(); 4386 LambdaForm lform; 4387 if (collectorType.returnType().isArray() && filter.intrinsicName() == Intrinsic.NEW_ARRAY) { 4388 lform = result.editor().collectArgumentArrayForm(1 + pos, filter); 4389 if (lform != null) { 4390 return result.copyWith(newType, lform); 4391 } 4392 } 4393 lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType()); 4394 return result.copyWithExtendL(newType, lform, filter); 4395 } 4396 4397 private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException { 4398 MethodType targetType = target.type(); 4399 MethodType filterType = filter.type(); 4400 Class<?> rtype = filterType.returnType(); 4401 List<Class<?>> filterArgs = filterType.parameterList(); 4402 if (rtype == void.class) { 4403 return targetType.insertParameterTypes(pos, filterArgs); 4404 } 4405 if (rtype != targetType.parameterType(pos)) { 4406 throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); 4407 } 4408 return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs); 4409 } 4410 4411 /** 4412 * Adapts a target method handle by post-processing 4413 * its return value (if any) with a filter (another method handle). 4414 * The result of the filter is returned from the adapter. 4415 * <p> 4416 * If the target returns a value, the filter must accept that value as 4417 * its only argument. 4418 * If the target returns void, the filter must accept no arguments. 4419 * <p> 4420 * The return type of the filter 4421 * replaces the return type of the target 4422 * in the resulting adapted method handle. 4423 * The argument type of the filter (if any) must be identical to the 4424 * return type of the target. 4425 * <p><b>Example:</b> 4426 * <blockquote><pre>{@code 4427 import static java.lang.invoke.MethodHandles.*; 4428 import static java.lang.invoke.MethodType.*; 4429 ... 4430 MethodHandle cat = lookup().findVirtual(String.class, 4431 "concat", methodType(String.class, String.class)); 4432 MethodHandle length = lookup().findVirtual(String.class, 4433 "length", methodType(int.class)); 4434 System.out.println((String) cat.invokeExact("x", "y")); // xy 4435 MethodHandle f0 = filterReturnValue(cat, length); 4436 System.out.println((int) f0.invokeExact("x", "y")); // 2 4437 * }</pre></blockquote> 4438 * <p>Here is pseudocode for the resulting adapter. In the code, 4439 * {@code T}/{@code t} represent the result type and value of the 4440 * {@code target}; {@code V}, the result type of the {@code filter}; and 4441 * {@code A}/{@code a}, the types and values of the parameters and arguments 4442 * of the {@code target} as well as the resulting adapter. 4443 * <blockquote><pre>{@code 4444 * T target(A...); 4445 * V filter(T); 4446 * V adapter(A... a) { 4447 * T t = target(a...); 4448 * return filter(t); 4449 * } 4450 * // and if the target has a void return: 4451 * void target2(A...); 4452 * V filter2(); 4453 * V adapter2(A... a) { 4454 * target2(a...); 4455 * return filter2(); 4456 * } 4457 * // and if the filter has a void return: 4458 * T target3(A...); 4459 * void filter3(V); 4460 * void adapter3(A... a) { 4461 * T t = target3(a...); 4462 * filter3(t); 4463 * } 4464 * }</pre></blockquote> 4465 * <p> 4466 * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector 4467 * variable-arity method handle}, even if the original target method handle was. 4468 * @param target the method handle to invoke before filtering the return value 4469 * @param filter method handle to call on the return value 4470 * @return method handle which incorporates the specified return value filtering logic 4471 * @throws NullPointerException if either argument is null 4472 * @throws IllegalArgumentException if the argument list of {@code filter} 4473 * does not match the return type of target as described above 4474 */ 4475 public static 4476 MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) { 4477 MethodType targetType = target.type(); 4478 MethodType filterType = filter.type(); 4479 filterReturnValueChecks(targetType, filterType); 4480 BoundMethodHandle result = target.rebind(); 4481 BasicType rtype = BasicType.basicType(filterType.returnType()); 4482 LambdaForm lform = result.editor().filterReturnForm(rtype, false); 4483 MethodType newType = targetType.changeReturnType(filterType.returnType()); 4484 result = result.copyWithExtendL(newType, lform, filter); 4485 return result; 4486 } 4487 4488 private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException { 4489 Class<?> rtype = targetType.returnType(); 4490 int filterValues = filterType.parameterCount(); 4491 if (filterValues == 0 4492 ? (rtype != void.class) 4493 : (rtype != filterType.parameterType(0) || filterValues != 1)) 4494 throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); 4495 } 4496 4497 /** 4498 * Adapts a target method handle by pre-processing 4499 * some of its arguments, and then calling the target with 4500 * the result of the pre-processing, inserted into the original 4501 * sequence of arguments. 4502 * <p> 4503 * The pre-processing is performed by {@code combiner}, a second method handle. 4504 * Of the arguments passed to the adapter, the first {@code N} arguments 4505 * are copied to the combiner, which is then called. 4506 * (Here, {@code N} is defined as the parameter count of the combiner.) 4507 * After this, control passes to the target, with any result 4508 * from the combiner inserted before the original {@code N} incoming 4509 * arguments. 4510 * <p> 4511 * If the combiner returns a value, the first parameter type of the target 4512 * must be identical with the return type of the combiner, and the next 4513 * {@code N} parameter types of the target must exactly match the parameters 4514 * of the combiner. 4515 * <p> 4516 * If the combiner has a void return, no result will be inserted, 4517 * and the first {@code N} parameter types of the target 4518 * must exactly match the parameters of the combiner. 4519 * <p> 4520 * The resulting adapter is the same type as the target, except that the 4521 * first parameter type is dropped, 4522 * if it corresponds to the result of the combiner. 4523 * <p> 4524 * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments 4525 * that either the combiner or the target does not wish to receive. 4526 * If some of the incoming arguments are destined only for the combiner, 4527 * consider using {@link MethodHandle#asCollector asCollector} instead, since those 4528 * arguments will not need to be live on the stack on entry to the 4529 * target.) 4530 * <p><b>Example:</b> 4531 * <blockquote><pre>{@code 4532 import static java.lang.invoke.MethodHandles.*; 4533 import static java.lang.invoke.MethodType.*; 4534 ... 4535 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class, 4536 "println", methodType(void.class, String.class)) 4537 .bindTo(System.out); 4538 MethodHandle cat = lookup().findVirtual(String.class, 4539 "concat", methodType(String.class, String.class)); 4540 assertEquals("boojum", (String) cat.invokeExact("boo", "jum")); 4541 MethodHandle catTrace = foldArguments(cat, trace); 4542 // also prints "boo": 4543 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum")); 4544 * }</pre></blockquote> 4545 * <p>Here is pseudocode for the resulting adapter. In the code, {@code T} 4546 * represents the result type of the {@code target} and resulting adapter. 4547 * {@code V}/{@code v} represent the type and value of the parameter and argument 4548 * of {@code target} that precedes the folding position; {@code V} also is 4549 * the result type of the {@code combiner}. {@code A}/{@code a} denote the 4550 * types and values of the {@code N} parameters and arguments at the folding 4551 * position. {@code B}/{@code b} represent the types and values of the 4552 * {@code target} parameters and arguments that follow the folded parameters 4553 * and arguments. 4554 * <blockquote><pre>{@code 4555 * // there are N arguments in A... 4556 * T target(V, A[N]..., B...); 4557 * V combiner(A...); 4558 * T adapter(A... a, B... b) { 4559 * V v = combiner(a...); 4560 * return target(v, a..., b...); 4561 * } 4562 * // and if the combiner has a void return: 4563 * T target2(A[N]..., B...); 4564 * void combiner2(A...); 4565 * T adapter2(A... a, B... b) { 4566 * combiner2(a...); 4567 * return target2(a..., b...); 4568 * } 4569 * }</pre></blockquote> 4570 * <p> 4571 * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector 4572 * variable-arity method handle}, even if the original target method handle was. 4573 * @param target the method handle to invoke after arguments are combined 4574 * @param combiner method handle to call initially on the incoming arguments 4575 * @return method handle which incorporates the specified argument folding logic 4576 * @throws NullPointerException if either argument is null 4577 * @throws IllegalArgumentException if {@code combiner}'s return type 4578 * is non-void and not the same as the first argument type of 4579 * the target, or if the initial {@code N} argument types 4580 * of the target 4581 * (skipping one matching the {@code combiner}'s return type) 4582 * are not identical with the argument types of {@code combiner} 4583 */ 4584 public static 4585 MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) { 4586 return foldArguments(target, 0, combiner); 4587 } 4588 4589 /** 4590 * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then 4591 * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just 4592 * before the folded arguments. 4593 * <p> 4594 * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the 4595 * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a 4596 * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position 4597 * 0. 4598 * 4599 * @apiNote Example: 4600 * <blockquote><pre>{@code 4601 import static java.lang.invoke.MethodHandles.*; 4602 import static java.lang.invoke.MethodType.*; 4603 ... 4604 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class, 4605 "println", methodType(void.class, String.class)) 4606 .bindTo(System.out); 4607 MethodHandle cat = lookup().findVirtual(String.class, 4608 "concat", methodType(String.class, String.class)); 4609 assertEquals("boojum", (String) cat.invokeExact("boo", "jum")); 4610 MethodHandle catTrace = foldArguments(cat, 1, trace); 4611 // also prints "jum": 4612 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum")); 4613 * }</pre></blockquote> 4614 * <p>Here is pseudocode for the resulting adapter. In the code, {@code T} 4615 * represents the result type of the {@code target} and resulting adapter. 4616 * {@code V}/{@code v} represent the type and value of the parameter and argument 4617 * of {@code target} that precedes the folding position; {@code V} also is 4618 * the result type of the {@code combiner}. {@code A}/{@code a} denote the 4619 * types and values of the {@code N} parameters and arguments at the folding 4620 * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types 4621 * and values of the {@code target} parameters and arguments that precede and 4622 * follow the folded parameters and arguments starting at {@code pos}, 4623 * respectively. 4624 * <blockquote><pre>{@code 4625 * // there are N arguments in A... 4626 * T target(Z..., V, A[N]..., B...); 4627 * V combiner(A...); 4628 * T adapter(Z... z, A... a, B... b) { 4629 * V v = combiner(a...); 4630 * return target(z..., v, a..., b...); 4631 * } 4632 * // and if the combiner has a void return: 4633 * T target2(Z..., A[N]..., B...); 4634 * void combiner2(A...); 4635 * T adapter2(Z... z, A... a, B... b) { 4636 * combiner2(a...); 4637 * return target2(z..., a..., b...); 4638 * } 4639 * }</pre></blockquote> 4640 * <p> 4641 * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector 4642 * variable-arity method handle}, even if the original target method handle was. 4643 * 4644 * @param target the method handle to invoke after arguments are combined 4645 * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code 4646 * 0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}. 4647 * @param combiner method handle to call initially on the incoming arguments 4648 * @return method handle which incorporates the specified argument folding logic 4649 * @throws NullPointerException if either argument is null 4650 * @throws IllegalArgumentException if either of the following two conditions holds: 4651 * (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position 4652 * {@code pos} of the target signature; 4653 * (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching 4654 * the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}. 4655 * 4656 * @see #foldArguments(MethodHandle, MethodHandle) 4657 * @since 9 4658 */ 4659 public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) { 4660 MethodType targetType = target.type(); 4661 MethodType combinerType = combiner.type(); 4662 Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType); 4663 BoundMethodHandle result = target.rebind(); 4664 boolean dropResult = rtype == void.class; 4665 LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType()); 4666 MethodType newType = targetType; 4667 if (!dropResult) { 4668 newType = newType.dropParameterTypes(pos, pos + 1); 4669 } 4670 result = result.copyWithExtendL(newType, lform, combiner); 4671 return result; 4672 } 4673 4674 /** 4675 * As {@see foldArguments(MethodHandle, int, MethodHandle)}, but with the 4676 * added capability of selecting the arguments from the targets parameters 4677 * to call the combiner with. This allows us to avoid some simple cases of 4678 * permutations and padding the combiner with dropArguments to select the 4679 * right argument, which may ultimately produce fewer intermediaries. 4680 */ 4681 static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner, int ... argPositions) { 4682 MethodType targetType = target.type(); 4683 MethodType combinerType = combiner.type(); 4684 Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType, argPositions); 4685 BoundMethodHandle result = target.rebind(); 4686 boolean dropResult = rtype == void.class; 4687 LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType(), argPositions); 4688 MethodType newType = targetType; 4689 if (!dropResult) { 4690 newType = newType.dropParameterTypes(pos, pos + 1); 4691 } 4692 result = result.copyWithExtendL(newType, lform, combiner); 4693 return result; 4694 } 4695 4696 private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) { 4697 int foldArgs = combinerType.parameterCount(); 4698 Class<?> rtype = combinerType.returnType(); 4699 int foldVals = rtype == void.class ? 0 : 1; 4700 int afterInsertPos = foldPos + foldVals; 4701 boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs); 4702 if (ok) { 4703 for (int i = 0; i < foldArgs; i++) { 4704 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) { 4705 ok = false; 4706 break; 4707 } 4708 } 4709 } 4710 if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos)) 4711 ok = false; 4712 if (!ok) 4713 throw misMatchedTypes("target and combiner types", targetType, combinerType); 4714 return rtype; 4715 } 4716 4717 private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType, int ... argPos) { 4718 int foldArgs = combinerType.parameterCount(); 4719 if (argPos.length != foldArgs) { 4720 throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length); 4721 } 4722 Class<?> rtype = combinerType.returnType(); 4723 int foldVals = rtype == void.class ? 0 : 1; 4724 boolean ok = true; 4725 for (int i = 0; i < foldArgs; i++) { 4726 int arg = argPos[i]; 4727 if (arg < 0 || arg > targetType.parameterCount()) { 4728 throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg); 4729 } 4730 if (combinerType.parameterType(i) != targetType.parameterType(arg)) { 4731 throw newIllegalArgumentException("target argument type at position " + arg 4732 + " must match combiner argument type at index " + i + ": " + targetType 4733 + " -> " + combinerType + ", map: " + Arrays.toString(argPos)); 4734 } 4735 } 4736 if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos)) { 4737 ok = false; 4738 } 4739 if (!ok) 4740 throw misMatchedTypes("target and combiner types", targetType, combinerType); 4741 return rtype; 4742 } 4743 4744 /** 4745 * Makes a method handle which adapts a target method handle, 4746 * by guarding it with a test, a boolean-valued method handle. 4747 * If the guard fails, a fallback handle is called instead. 4748 * All three method handles must have the same corresponding 4749 * argument and return types, except that the return type 4750 * of the test must be boolean, and the test is allowed 4751 * to have fewer arguments than the other two method handles. 4752 * <p> 4753 * Here is pseudocode for the resulting adapter. In the code, {@code T} 4754 * represents the uniform result type of the three involved handles; 4755 * {@code A}/{@code a}, the types and values of the {@code target} 4756 * parameters and arguments that are consumed by the {@code test}; and 4757 * {@code B}/{@code b}, those types and values of the {@code target} 4758 * parameters and arguments that are not consumed by the {@code test}. 4759 * <blockquote><pre>{@code 4760 * boolean test(A...); 4761 * T target(A...,B...); 4762 * T fallback(A...,B...); 4763 * T adapter(A... a,B... b) { 4764 * if (test(a...)) 4765 * return target(a..., b...); 4766 * else 4767 * return fallback(a..., b...); 4768 * } 4769 * }</pre></blockquote> 4770 * Note that the test arguments ({@code a...} in the pseudocode) cannot 4771 * be modified by execution of the test, and so are passed unchanged 4772 * from the caller to the target or fallback as appropriate. 4773 * @param test method handle used for test, must return boolean 4774 * @param target method handle to call if test passes 4775 * @param fallback method handle to call if test fails 4776 * @return method handle which incorporates the specified if/then/else logic 4777 * @throws NullPointerException if any argument is null 4778 * @throws IllegalArgumentException if {@code test} does not return boolean, 4779 * or if all three method types do not match (with the return 4780 * type of {@code test} changed to match that of the target). 4781 */ 4782 public static 4783 MethodHandle guardWithTest(MethodHandle test, 4784 MethodHandle target, 4785 MethodHandle fallback) { 4786 MethodType gtype = test.type(); 4787 MethodType ttype = target.type(); 4788 MethodType ftype = fallback.type(); 4789 if (!ttype.equals(ftype)) 4790 throw misMatchedTypes("target and fallback types", ttype, ftype); 4791 if (gtype.returnType() != boolean.class) 4792 throw newIllegalArgumentException("guard type is not a predicate "+gtype); 4793 List<Class<?>> targs = ttype.parameterList(); 4794 test = dropArgumentsToMatch(test, 0, targs, 0, true); 4795 if (test == null) { 4796 throw misMatchedTypes("target and test types", ttype, gtype); 4797 } 4798 return MethodHandleImpl.makeGuardWithTest(test, target, fallback); 4799 } 4800 4801 static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) { 4802 return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2); 4803 } 4804 4805 /** 4806 * Makes a method handle which adapts a target method handle, 4807 * by running it inside an exception handler. 4808 * If the target returns normally, the adapter returns that value. 4809 * If an exception matching the specified type is thrown, the fallback 4810 * handle is called instead on the exception, plus the original arguments. 4811 * <p> 4812 * The target and handler must have the same corresponding 4813 * argument and return types, except that handler may omit trailing arguments 4814 * (similarly to the predicate in {@link #guardWithTest guardWithTest}). 4815 * Also, the handler must have an extra leading parameter of {@code exType} or a supertype. 4816 * <p> 4817 * Here is pseudocode for the resulting adapter. In the code, {@code T} 4818 * represents the return type of the {@code target} and {@code handler}, 4819 * and correspondingly that of the resulting adapter; {@code A}/{@code a}, 4820 * the types and values of arguments to the resulting handle consumed by 4821 * {@code handler}; and {@code B}/{@code b}, those of arguments to the 4822 * resulting handle discarded by {@code handler}. 4823 * <blockquote><pre>{@code 4824 * T target(A..., B...); 4825 * T handler(ExType, A...); 4826 * T adapter(A... a, B... b) { 4827 * try { 4828 * return target(a..., b...); 4829 * } catch (ExType ex) { 4830 * return handler(ex, a...); 4831 * } 4832 * } 4833 * }</pre></blockquote> 4834 * Note that the saved arguments ({@code a...} in the pseudocode) cannot 4835 * be modified by execution of the target, and so are passed unchanged 4836 * from the caller to the handler, if the handler is invoked. 4837 * <p> 4838 * The target and handler must return the same type, even if the handler 4839 * always throws. (This might happen, for instance, because the handler 4840 * is simulating a {@code finally} clause). 4841 * To create such a throwing handler, compose the handler creation logic 4842 * with {@link #throwException throwException}, 4843 * in order to create a method handle of the correct return type. 4844 * @param target method handle to call 4845 * @param exType the type of exception which the handler will catch 4846 * @param handler method handle to call if a matching exception is thrown 4847 * @return method handle which incorporates the specified try/catch logic 4848 * @throws NullPointerException if any argument is null 4849 * @throws IllegalArgumentException if {@code handler} does not accept 4850 * the given exception type, or if the method handle types do 4851 * not match in their return types and their 4852 * corresponding parameters 4853 * @see MethodHandles#tryFinally(MethodHandle, MethodHandle) 4854 */ 4855 public static 4856 MethodHandle catchException(MethodHandle target, 4857 Class<? extends Throwable> exType, 4858 MethodHandle handler) { 4859 MethodType ttype = target.type(); 4860 MethodType htype = handler.type(); 4861 if (!Throwable.class.isAssignableFrom(exType)) 4862 throw new ClassCastException(exType.getName()); 4863 if (htype.parameterCount() < 1 || 4864 !htype.parameterType(0).isAssignableFrom(exType)) 4865 throw newIllegalArgumentException("handler does not accept exception type "+exType); 4866 if (htype.returnType() != ttype.returnType()) 4867 throw misMatchedTypes("target and handler return types", ttype, htype); 4868 handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true); 4869 if (handler == null) { 4870 throw misMatchedTypes("target and handler types", ttype, htype); 4871 } 4872 return MethodHandleImpl.makeGuardWithCatch(target, exType, handler); 4873 } 4874 4875 /** 4876 * Produces a method handle which will throw exceptions of the given {@code exType}. 4877 * The method handle will accept a single argument of {@code exType}, 4878 * and immediately throw it as an exception. 4879 * The method type will nominally specify a return of {@code returnType}. 4880 * The return type may be anything convenient: It doesn't matter to the 4881 * method handle's behavior, since it will never return normally. 4882 * @param returnType the return type of the desired method handle 4883 * @param exType the parameter type of the desired method handle 4884 * @return method handle which can throw the given exceptions 4885 * @throws NullPointerException if either argument is null 4886 */ 4887 public static 4888 MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) { 4889 if (!Throwable.class.isAssignableFrom(exType)) 4890 throw new ClassCastException(exType.getName()); 4891 return MethodHandleImpl.throwException(methodType(returnType, exType)); 4892 } 4893 4894 /** 4895 * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each 4896 * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and 4897 * delivers the loop's result, which is the return value of the resulting handle. 4898 * <p> 4899 * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop 4900 * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration 4901 * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in 4902 * terms of method handles, each clause will specify up to four independent actions:<ul> 4903 * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}. 4904 * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}. 4905 * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit. 4906 * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value. 4907 * </ul> 4908 * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}. 4909 * The values themselves will be {@code (v...)}. When we speak of "parameter lists", we will usually 4910 * be referring to types, but in some contexts (describing execution) the lists will be of actual values. 4911 * <p> 4912 * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in 4913 * this case. See below for a detailed description. 4914 * <p> 4915 * <em>Parameters optional everywhere:</em> 4916 * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}. 4917 * As an exception, the init functions cannot take any {@code v} parameters, 4918 * because those values are not yet computed when the init functions are executed. 4919 * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take. 4920 * In fact, any clause function may take no arguments at all. 4921 * <p> 4922 * <em>Loop parameters:</em> 4923 * A clause function may take all the iteration variable values it is entitled to, in which case 4924 * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>, 4925 * with their types and values notated as {@code (A...)} and {@code (a...)}. 4926 * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed. 4927 * (Since init functions do not accept iteration variables {@code v}, any parameter to an 4928 * init function is automatically a loop parameter {@code a}.) 4929 * As with iteration variables, clause functions are allowed but not required to accept loop parameters. 4930 * These loop parameters act as loop-invariant values visible across the whole loop. 4931 * <p> 4932 * <em>Parameters visible everywhere:</em> 4933 * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full 4934 * list {@code (v... a...)} of current iteration variable values and incoming loop parameters. 4935 * The init functions can observe initial pre-loop state, in the form {@code (a...)}. 4936 * Most clause functions will not need all of this information, but they will be formally connected to it 4937 * as if by {@link #dropArguments}. 4938 * <a id="astar"></a> 4939 * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full 4940 * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}). 4941 * In that notation, the general form of an init function parameter list 4942 * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}. 4943 * <p> 4944 * <em>Checking clause structure:</em> 4945 * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the 4946 * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must" 4947 * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not 4948 * met by the inputs to the loop combinator. 4949 * <p> 4950 * <em>Effectively identical sequences:</em> 4951 * <a id="effid"></a> 4952 * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B} 4953 * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}. 4954 * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical" 4955 * as a whole if the set contains a longest list, and all members of the set are effectively identical to 4956 * that longest list. 4957 * For example, any set of type sequences of the form {@code (V*)} is effectively identical, 4958 * and the same is true if more sequences of the form {@code (V... A*)} are added. 4959 * <p> 4960 * <em>Step 0: Determine clause structure.</em><ol type="a"> 4961 * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element. 4962 * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements. 4963 * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length 4964 * four. Padding takes place by appending elements to the array. 4965 * <li>Clauses with all {@code null}s are disregarded. 4966 * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini". 4967 * </ol> 4968 * <p> 4969 * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a"> 4970 * <li>The iteration variable type for each clause is determined using the clause's init and step return types. 4971 * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is 4972 * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's 4973 * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's 4974 * iteration variable type. 4975 * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}. 4976 * <li>This list of types is called the "iteration variable types" ({@code (V...)}). 4977 * </ol> 4978 * <p> 4979 * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul> 4980 * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}). 4981 * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types. 4982 * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.) 4983 * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types. 4984 * (These types will checked in step 2, along with all the clause function types.) 4985 * <li>Omitted clause functions are ignored. (Equivalently, they are deemed to have empty parameter lists.) 4986 * <li>All of the collected parameter lists must be effectively identical. 4987 * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}). 4988 * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence. 4989 * <li>The combined list consisting of iteration variable types followed by the external parameter types is called 4990 * the "internal parameter list". 4991 * </ul> 4992 * <p> 4993 * <em>Step 1C: Determine loop return type.</em><ol type="a"> 4994 * <li>Examine fini function return types, disregarding omitted fini functions. 4995 * <li>If there are no fini functions, the loop return type is {@code void}. 4996 * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return 4997 * type. 4998 * </ol> 4999 * <p> 5000 * <em>Step 1D: Check other types.</em><ol type="a"> 5001 * <li>There must be at least one non-omitted pred function. 5002 * <li>Every non-omitted pred function must have a {@code boolean} return type. 5003 * </ol> 5004 * <p> 5005 * <em>Step 2: Determine parameter lists.</em><ol type="a"> 5006 * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}. 5007 * <li>The parameter list for init functions will be adjusted to the external parameter list. 5008 * (Note that their parameter lists are already effectively identical to this list.) 5009 * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be 5010 * effectively identical to the internal parameter list {@code (V... A...)}. 5011 * </ol> 5012 * <p> 5013 * <em>Step 3: Fill in omitted functions.</em><ol type="a"> 5014 * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable 5015 * type. 5016 * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration 5017 * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void} 5018 * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.) 5019 * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far 5020 * as this clause is concerned. Note that in such cases the corresponding fini function is unreachable.) 5021 * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the 5022 * loop return type. 5023 * </ol> 5024 * <p> 5025 * <em>Step 4: Fill in missing parameter types.</em><ol type="a"> 5026 * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)}, 5027 * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list. 5028 * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter 5029 * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list, 5030 * pad out the end of the list. 5031 * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}. 5032 * </ol> 5033 * <p> 5034 * <em>Final observations.</em><ol type="a"> 5035 * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments. 5036 * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have. 5037 * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have. 5038 * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of 5039 * (non-{@code void}) iteration variables {@code V} followed by loop parameters. 5040 * <li>Each pair of init and step functions agrees in their return type {@code V}. 5041 * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables. 5042 * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters. 5043 * </ol> 5044 * <p> 5045 * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property: 5046 * <ul> 5047 * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}. 5048 * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters. 5049 * (Only one {@code Pn} has to be non-{@code null}.) 5050 * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}. 5051 * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types. 5052 * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}. 5053 * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}. 5054 * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine 5055 * the resulting loop handle's parameter types {@code (A...)}. 5056 * </ul> 5057 * In this example, the loop handle parameters {@code (A...)} were derived from the step functions, 5058 * which is natural if most of the loop computation happens in the steps. For some loops, 5059 * the burden of computation might be heaviest in the pred functions, and so the pred functions 5060 * might need to accept the loop parameter values. For loops with complex exit logic, the fini 5061 * functions might need to accept loop parameters, and likewise for loops with complex entry logic, 5062 * where the init functions will need the extra parameters. For such reasons, the rules for 5063 * determining these parameters are as symmetric as possible, across all clause parts. 5064 * In general, the loop parameters function as common invariant values across the whole 5065 * loop, while the iteration variables function as common variant values, or (if there is 5066 * no step function) as internal loop invariant temporaries. 5067 * <p> 5068 * <em>Loop execution.</em><ol type="a"> 5069 * <li>When the loop is called, the loop input values are saved in locals, to be passed to 5070 * every clause function. These locals are loop invariant. 5071 * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)}) 5072 * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals. 5073 * These locals will be loop varying (unless their steps behave as identity functions, as noted above). 5074 * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of 5075 * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)} 5076 * (in argument order). 5077 * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function 5078 * returns {@code false}. 5079 * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the 5080 * sequence {@code (v...)} of loop variables. 5081 * The updated value is immediately visible to all subsequent function calls. 5082 * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value 5083 * (of type {@code R}) is returned from the loop as a whole. 5084 * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit 5085 * except by throwing an exception. 5086 * </ol> 5087 * <p> 5088 * <em>Usage tips.</em> 5089 * <ul> 5090 * <li>Although each step function will receive the current values of <em>all</em> the loop variables, 5091 * sometimes a step function only needs to observe the current value of its own variable. 5092 * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}. 5093 * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}. 5094 * <li>Loop variables are not required to vary; they can be loop invariant. A clause can create 5095 * a loop invariant by a suitable init function with no step, pred, or fini function. This may be 5096 * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable. 5097 * <li>If some of the clause functions are virtual methods on an instance, the instance 5098 * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause 5099 * like {@code new MethodHandle[]{identity(ObjType.class)}}. In that case, the instance reference 5100 * will be the first iteration variable value, and it will be easy to use virtual 5101 * methods as clause parts, since all of them will take a leading instance reference matching that value. 5102 * </ul> 5103 * <p> 5104 * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types 5105 * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop; 5106 * and {@code R} is the common result type of all finalizers as well as of the resulting loop. 5107 * <blockquote><pre>{@code 5108 * V... init...(A...); 5109 * boolean pred...(V..., A...); 5110 * V... step...(V..., A...); 5111 * R fini...(V..., A...); 5112 * R loop(A... a) { 5113 * V... v... = init...(a...); 5114 * for (;;) { 5115 * for ((v, p, s, f) in (v..., pred..., step..., fini...)) { 5116 * v = s(v..., a...); 5117 * if (!p(v..., a...)) { 5118 * return f(v..., a...); 5119 * } 5120 * } 5121 * } 5122 * } 5123 * }</pre></blockquote> 5124 * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded 5125 * to their full length, even though individual clause functions may neglect to take them all. 5126 * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}. 5127 * 5128 * @apiNote Example: 5129 * <blockquote><pre>{@code 5130 * // iterative implementation of the factorial function as a loop handle 5131 * static int one(int k) { return 1; } 5132 * static int inc(int i, int acc, int k) { return i + 1; } 5133 * static int mult(int i, int acc, int k) { return i * acc; } 5134 * static boolean pred(int i, int acc, int k) { return i < k; } 5135 * static int fin(int i, int acc, int k) { return acc; } 5136 * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods 5137 * // null initializer for counter, should initialize to 0 5138 * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc}; 5139 * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin}; 5140 * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause); 5141 * assertEquals(120, loop.invoke(5)); 5142 * }</pre></blockquote> 5143 * The same example, dropping arguments and using combinators: 5144 * <blockquote><pre>{@code 5145 * // simplified implementation of the factorial function as a loop handle 5146 * static int inc(int i) { return i + 1; } // drop acc, k 5147 * static int mult(int i, int acc) { return i * acc; } //drop k 5148 * static boolean cmp(int i, int k) { return i < k; } 5149 * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods 5150 * // null initializer for counter, should initialize to 0 5151 * MethodHandle MH_one = MethodHandles.constant(int.class, 1); 5152 * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc 5153 * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i 5154 * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc}; 5155 * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin}; 5156 * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause); 5157 * assertEquals(720, loop.invoke(6)); 5158 * }</pre></blockquote> 5159 * A similar example, using a helper object to hold a loop parameter: 5160 * <blockquote><pre>{@code 5161 * // instance-based implementation of the factorial function as a loop handle 5162 * static class FacLoop { 5163 * final int k; 5164 * FacLoop(int k) { this.k = k; } 5165 * int inc(int i) { return i + 1; } 5166 * int mult(int i, int acc) { return i * acc; } 5167 * boolean pred(int i) { return i < k; } 5168 * int fin(int i, int acc) { return acc; } 5169 * } 5170 * // assume MH_FacLoop is a handle to the constructor 5171 * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods 5172 * // null initializer for counter, should initialize to 0 5173 * MethodHandle MH_one = MethodHandles.constant(int.class, 1); 5174 * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop}; 5175 * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc}; 5176 * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin}; 5177 * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause); 5178 * assertEquals(5040, loop.invoke(7)); 5179 * }</pre></blockquote> 5180 * 5181 * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above. 5182 * 5183 * @return a method handle embodying the looping behavior as defined by the arguments. 5184 * 5185 * @throws IllegalArgumentException in case any of the constraints described above is violated. 5186 * 5187 * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle) 5188 * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle) 5189 * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle) 5190 * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle) 5191 * @since 9 5192 */ 5193 public static MethodHandle loop(MethodHandle[]... clauses) { 5194 // Step 0: determine clause structure. 5195 loopChecks0(clauses); 5196 5197 List<MethodHandle> init = new ArrayList<>(); 5198 List<MethodHandle> step = new ArrayList<>(); 5199 List<MethodHandle> pred = new ArrayList<>(); 5200 List<MethodHandle> fini = new ArrayList<>(); 5201 5202 Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> { 5203 init.add(clause[0]); // all clauses have at least length 1 5204 step.add(clause.length <= 1 ? null : clause[1]); 5205 pred.add(clause.length <= 2 ? null : clause[2]); 5206 fini.add(clause.length <= 3 ? null : clause[3]); 5207 }); 5208 5209 assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1; 5210 final int nclauses = init.size(); 5211 5212 // Step 1A: determine iteration variables (V...). 5213 final List<Class<?>> iterationVariableTypes = new ArrayList<>(); 5214 for (int i = 0; i < nclauses; ++i) { 5215 MethodHandle in = init.get(i); 5216 MethodHandle st = step.get(i); 5217 if (in == null && st == null) { 5218 iterationVariableTypes.add(void.class); 5219 } else if (in != null && st != null) { 5220 loopChecks1a(i, in, st); 5221 iterationVariableTypes.add(in.type().returnType()); 5222 } else { 5223 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType()); 5224 } 5225 } 5226 final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class). 5227 collect(Collectors.toList()); 5228 5229 // Step 1B: determine loop parameters (A...). 5230 final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size()); 5231 loopChecks1b(init, commonSuffix); 5232 5233 // Step 1C: determine loop return type. 5234 // Step 1D: check other types. 5235 final Class<?> loopReturnType = fini.stream().filter(Objects::nonNull).map(MethodHandle::type). 5236 map(MethodType::returnType).findFirst().orElse(void.class); 5237 loopChecks1cd(pred, fini, loopReturnType); 5238 5239 // Step 2: determine parameter lists. 5240 final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix); 5241 commonParameterSequence.addAll(commonSuffix); 5242 loopChecks2(step, pred, fini, commonParameterSequence); 5243 5244 // Step 3: fill in omitted functions. 5245 for (int i = 0; i < nclauses; ++i) { 5246 Class<?> t = iterationVariableTypes.get(i); 5247 if (init.get(i) == null) { 5248 init.set(i, empty(methodType(t, commonSuffix))); 5249 } 5250 if (step.get(i) == null) { 5251 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i)); 5252 } 5253 if (pred.get(i) == null) { 5254 pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence)); 5255 } 5256 if (fini.get(i) == null) { 5257 fini.set(i, empty(methodType(t, commonParameterSequence))); 5258 } 5259 } 5260 5261 // Step 4: fill in missing parameter types. 5262 // Also convert all handles to fixed-arity handles. 5263 List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix)); 5264 List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence)); 5265 List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence)); 5266 List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence)); 5267 5268 assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList). 5269 allMatch(pl -> pl.equals(commonSuffix)); 5270 assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList). 5271 allMatch(pl -> pl.equals(commonParameterSequence)); 5272 5273 return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini); 5274 } 5275 5276 private static void loopChecks0(MethodHandle[][] clauses) { 5277 if (clauses == null || clauses.length == 0) { 5278 throw newIllegalArgumentException("null or no clauses passed"); 5279 } 5280 if (Stream.of(clauses).anyMatch(Objects::isNull)) { 5281 throw newIllegalArgumentException("null clauses are not allowed"); 5282 } 5283 if (Stream.of(clauses).anyMatch(c -> c.length > 4)) { 5284 throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements."); 5285 } 5286 } 5287 5288 private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) { 5289 if (in.type().returnType() != st.type().returnType()) { 5290 throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(), 5291 st.type().returnType()); 5292 } 5293 } 5294 5295 private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) { 5296 final List<Class<?>> empty = List.of(); 5297 final List<Class<?>> longest = mhs.filter(Objects::nonNull). 5298 // take only those that can contribute to a common suffix because they are longer than the prefix 5299 map(MethodHandle::type). 5300 filter(t -> t.parameterCount() > skipSize). 5301 map(MethodType::parameterList). 5302 reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty); 5303 return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size()); 5304 } 5305 5306 private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) { 5307 final List<Class<?>> empty = List.of(); 5308 return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty); 5309 } 5310 5311 private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) { 5312 final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize); 5313 final List<Class<?>> longest2 = longestParameterList(init.stream(), 0); 5314 return longestParameterList(Arrays.asList(longest1, longest2)); 5315 } 5316 5317 private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) { 5318 if (init.stream().filter(Objects::nonNull).map(MethodHandle::type). 5319 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) { 5320 throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init + 5321 " (common suffix: " + commonSuffix + ")"); 5322 } 5323 } 5324 5325 private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) { 5326 if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType). 5327 anyMatch(t -> t != loopReturnType)) { 5328 throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " + 5329 loopReturnType + ")"); 5330 } 5331 5332 if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) { 5333 throw newIllegalArgumentException("no predicate found", pred); 5334 } 5335 if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType). 5336 anyMatch(t -> t != boolean.class)) { 5337 throw newIllegalArgumentException("predicates must have boolean return type", pred); 5338 } 5339 } 5340 5341 private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) { 5342 if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type). 5343 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) { 5344 throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step + 5345 "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")"); 5346 } 5347 } 5348 5349 private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) { 5350 return hs.stream().map(h -> { 5351 int pc = h.type().parameterCount(); 5352 int tpsize = targetParams.size(); 5353 return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h; 5354 }).collect(Collectors.toList()); 5355 } 5356 5357 private static List<MethodHandle> fixArities(List<MethodHandle> hs) { 5358 return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList()); 5359 } 5360 5361 /** 5362 * Constructs a {@code while} loop from an initializer, a body, and a predicate. 5363 * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. 5364 * <p> 5365 * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this 5366 * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate 5367 * evaluates to {@code true}). 5368 * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case). 5369 * <p> 5370 * The {@code init} handle describes the initial value of an additional optional loop-local variable. 5371 * In each iteration, this loop-local variable, if present, will be passed to the {@code body} 5372 * and updated with the value returned from its invocation. The result of loop execution will be 5373 * the final value of the additional loop-local variable (if present). 5374 * <p> 5375 * The following rules hold for these argument handles:<ul> 5376 * <li>The {@code body} handle must not be {@code null}; its type must be of the form 5377 * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}. 5378 * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, 5379 * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V} 5380 * is quietly dropped from the parameter list, leaving {@code (A...)V}.) 5381 * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>. 5382 * It will constrain the parameter lists of the other loop parts. 5383 * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter 5384 * list {@code (A...)} is called the <em>external parameter list</em>. 5385 * <li>The body return type {@code V}, if non-{@code void}, determines the type of an 5386 * additional state variable of the loop. 5387 * The body must both accept and return a value of this type {@code V}. 5388 * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. 5389 * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be 5390 * <a href="MethodHandles.html#effid">effectively identical</a> 5391 * to the external parameter list {@code (A...)}. 5392 * <li>If {@code init} is {@code null}, the loop variable will be initialized to its 5393 * {@linkplain #empty default value}. 5394 * <li>The {@code pred} handle must not be {@code null}. It must have {@code boolean} as its return type. 5395 * Its parameter list (either empty or of the form {@code (V A*)}) must be 5396 * effectively identical to the internal parameter list. 5397 * </ul> 5398 * <p> 5399 * The resulting loop handle's result type and parameter signature are determined as follows:<ul> 5400 * <li>The loop handle's result type is the result type {@code V} of the body. 5401 * <li>The loop handle's parameter types are the types {@code (A...)}, 5402 * from the external parameter list. 5403 * </ul> 5404 * <p> 5405 * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of 5406 * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument 5407 * passed to the loop. 5408 * <blockquote><pre>{@code 5409 * V init(A...); 5410 * boolean pred(V, A...); 5411 * V body(V, A...); 5412 * V whileLoop(A... a...) { 5413 * V v = init(a...); 5414 * while (pred(v, a...)) { 5415 * v = body(v, a...); 5416 * } 5417 * return v; 5418 * } 5419 * }</pre></blockquote> 5420 * 5421 * @apiNote Example: 5422 * <blockquote><pre>{@code 5423 * // implement the zip function for lists as a loop handle 5424 * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); } 5425 * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); } 5426 * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) { 5427 * zip.add(a.next()); 5428 * zip.add(b.next()); 5429 * return zip; 5430 * } 5431 * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods 5432 * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep); 5433 * List<String> a = Arrays.asList("a", "b", "c", "d"); 5434 * List<String> b = Arrays.asList("e", "f", "g", "h"); 5435 * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h"); 5436 * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator())); 5437 * }</pre></blockquote> 5438 * 5439 * 5440 * @apiNote The implementation of this method can be expressed as follows: 5441 * <blockquote><pre>{@code 5442 * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) { 5443 * MethodHandle fini = (body.type().returnType() == void.class 5444 * ? null : identity(body.type().returnType())); 5445 * MethodHandle[] 5446 * checkExit = { null, null, pred, fini }, 5447 * varBody = { init, body }; 5448 * return loop(checkExit, varBody); 5449 * } 5450 * }</pre></blockquote> 5451 * 5452 * @param init optional initializer, providing the initial value of the loop variable. 5453 * May be {@code null}, implying a default initial value. See above for other constraints. 5454 * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See 5455 * above for other constraints. 5456 * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type. 5457 * See above for other constraints. 5458 * 5459 * @return a method handle implementing the {@code while} loop as described by the arguments. 5460 * @throws IllegalArgumentException if the rules for the arguments are violated. 5461 * @throws NullPointerException if {@code pred} or {@code body} are {@code null}. 5462 * 5463 * @see #loop(MethodHandle[][]) 5464 * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle) 5465 * @since 9 5466 */ 5467 public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) { 5468 whileLoopChecks(init, pred, body); 5469 MethodHandle fini = identityOrVoid(body.type().returnType()); 5470 MethodHandle[] checkExit = { null, null, pred, fini }; 5471 MethodHandle[] varBody = { init, body }; 5472 return loop(checkExit, varBody); 5473 } 5474 5475 /** 5476 * Constructs a {@code do-while} loop from an initializer, a body, and a predicate. 5477 * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. 5478 * <p> 5479 * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this 5480 * method will, in each iteration, first execute its body and then evaluate the predicate. 5481 * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body. 5482 * <p> 5483 * The {@code init} handle describes the initial value of an additional optional loop-local variable. 5484 * In each iteration, this loop-local variable, if present, will be passed to the {@code body} 5485 * and updated with the value returned from its invocation. The result of loop execution will be 5486 * the final value of the additional loop-local variable (if present). 5487 * <p> 5488 * The following rules hold for these argument handles:<ul> 5489 * <li>The {@code body} handle must not be {@code null}; its type must be of the form 5490 * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}. 5491 * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, 5492 * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V} 5493 * is quietly dropped from the parameter list, leaving {@code (A...)V}.) 5494 * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>. 5495 * It will constrain the parameter lists of the other loop parts. 5496 * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter 5497 * list {@code (A...)} is called the <em>external parameter list</em>. 5498 * <li>The body return type {@code V}, if non-{@code void}, determines the type of an 5499 * additional state variable of the loop. 5500 * The body must both accept and return a value of this type {@code V}. 5501 * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. 5502 * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be 5503 * <a href="MethodHandles.html#effid">effectively identical</a> 5504 * to the external parameter list {@code (A...)}. 5505 * <li>If {@code init} is {@code null}, the loop variable will be initialized to its 5506 * {@linkplain #empty default value}. 5507 * <li>The {@code pred} handle must not be {@code null}. It must have {@code boolean} as its return type. 5508 * Its parameter list (either empty or of the form {@code (V A*)}) must be 5509 * effectively identical to the internal parameter list. 5510 * </ul> 5511 * <p> 5512 * The resulting loop handle's result type and parameter signature are determined as follows:<ul> 5513 * <li>The loop handle's result type is the result type {@code V} of the body. 5514 * <li>The loop handle's parameter types are the types {@code (A...)}, 5515 * from the external parameter list. 5516 * </ul> 5517 * <p> 5518 * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of 5519 * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument 5520 * passed to the loop. 5521 * <blockquote><pre>{@code 5522 * V init(A...); 5523 * boolean pred(V, A...); 5524 * V body(V, A...); 5525 * V doWhileLoop(A... a...) { 5526 * V v = init(a...); 5527 * do { 5528 * v = body(v, a...); 5529 * } while (pred(v, a...)); 5530 * return v; 5531 * } 5532 * }</pre></blockquote> 5533 * 5534 * @apiNote Example: 5535 * <blockquote><pre>{@code 5536 * // int i = 0; while (i < limit) { ++i; } return i; => limit 5537 * static int zero(int limit) { return 0; } 5538 * static int step(int i, int limit) { return i + 1; } 5539 * static boolean pred(int i, int limit) { return i < limit; } 5540 * // assume MH_zero, MH_step, and MH_pred are handles to the above methods 5541 * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred); 5542 * assertEquals(23, loop.invoke(23)); 5543 * }</pre></blockquote> 5544 * 5545 * 5546 * @apiNote The implementation of this method can be expressed as follows: 5547 * <blockquote><pre>{@code 5548 * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) { 5549 * MethodHandle fini = (body.type().returnType() == void.class 5550 * ? null : identity(body.type().returnType())); 5551 * MethodHandle[] clause = { init, body, pred, fini }; 5552 * return loop(clause); 5553 * } 5554 * }</pre></blockquote> 5555 * 5556 * @param init optional initializer, providing the initial value of the loop variable. 5557 * May be {@code null}, implying a default initial value. See above for other constraints. 5558 * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type. 5559 * See above for other constraints. 5560 * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See 5561 * above for other constraints. 5562 * 5563 * @return a method handle implementing the {@code while} loop as described by the arguments. 5564 * @throws IllegalArgumentException if the rules for the arguments are violated. 5565 * @throws NullPointerException if {@code pred} or {@code body} are {@code null}. 5566 * 5567 * @see #loop(MethodHandle[][]) 5568 * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle) 5569 * @since 9 5570 */ 5571 public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) { 5572 whileLoopChecks(init, pred, body); 5573 MethodHandle fini = identityOrVoid(body.type().returnType()); 5574 MethodHandle[] clause = {init, body, pred, fini }; 5575 return loop(clause); 5576 } 5577 5578 private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) { 5579 Objects.requireNonNull(pred); 5580 Objects.requireNonNull(body); 5581 MethodType bodyType = body.type(); 5582 Class<?> returnType = bodyType.returnType(); 5583 List<Class<?>> innerList = bodyType.parameterList(); 5584 List<Class<?>> outerList = innerList; 5585 if (returnType == void.class) { 5586 // OK 5587 } else if (innerList.size() == 0 || innerList.get(0) != returnType) { 5588 // leading V argument missing => error 5589 MethodType expected = bodyType.insertParameterTypes(0, returnType); 5590 throw misMatchedTypes("body function", bodyType, expected); 5591 } else { 5592 outerList = innerList.subList(1, innerList.size()); 5593 } 5594 MethodType predType = pred.type(); 5595 if (predType.returnType() != boolean.class || 5596 !predType.effectivelyIdenticalParameters(0, innerList)) { 5597 throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList)); 5598 } 5599 if (init != null) { 5600 MethodType initType = init.type(); 5601 if (initType.returnType() != returnType || 5602 !initType.effectivelyIdenticalParameters(0, outerList)) { 5603 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList)); 5604 } 5605 } 5606 } 5607 5608 /** 5609 * Constructs a loop that runs a given number of iterations. 5610 * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. 5611 * <p> 5612 * The number of iterations is determined by the {@code iterations} handle evaluation result. 5613 * The loop counter {@code i} is an extra loop iteration variable of type {@code int}. 5614 * It will be initialized to 0 and incremented by 1 in each iteration. 5615 * <p> 5616 * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable 5617 * of that type is also present. This variable is initialized using the optional {@code init} handle, 5618 * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}. 5619 * <p> 5620 * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle. 5621 * A non-{@code void} value returned from the body (of type {@code V}) updates the leading 5622 * iteration variable. 5623 * The result of the loop handle execution will be the final {@code V} value of that variable 5624 * (or {@code void} if there is no {@code V} variable). 5625 * <p> 5626 * The following rules hold for the argument handles:<ul> 5627 * <li>The {@code iterations} handle must not be {@code null}, and must return 5628 * the type {@code int}, referred to here as {@code I} in parameter type lists. 5629 * <li>The {@code body} handle must not be {@code null}; its type must be of the form 5630 * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}. 5631 * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, 5632 * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V} 5633 * is quietly dropped from the parameter list, leaving {@code (I A...)V}.) 5634 * <li>The parameter list {@code (V I A...)} of the body contributes to a list 5635 * of types called the <em>internal parameter list</em>. 5636 * It will constrain the parameter lists of the other loop parts. 5637 * <li>As a special case, if the body contributes only {@code V} and {@code I} types, 5638 * with no additional {@code A} types, then the internal parameter list is extended by 5639 * the argument types {@code A...} of the {@code iterations} handle. 5640 * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter 5641 * list {@code (A...)} is called the <em>external parameter list</em>. 5642 * <li>The body return type {@code V}, if non-{@code void}, determines the type of an 5643 * additional state variable of the loop. 5644 * The body must both accept a leading parameter and return a value of this type {@code V}. 5645 * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. 5646 * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be 5647 * <a href="MethodHandles.html#effid">effectively identical</a> 5648 * to the external parameter list {@code (A...)}. 5649 * <li>If {@code init} is {@code null}, the loop variable will be initialized to its 5650 * {@linkplain #empty default value}. 5651 * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be 5652 * effectively identical to the external parameter list {@code (A...)}. 5653 * </ul> 5654 * <p> 5655 * The resulting loop handle's result type and parameter signature are determined as follows:<ul> 5656 * <li>The loop handle's result type is the result type {@code V} of the body. 5657 * <li>The loop handle's parameter types are the types {@code (A...)}, 5658 * from the external parameter list. 5659 * </ul> 5660 * <p> 5661 * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of 5662 * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent 5663 * arguments passed to the loop. 5664 * <blockquote><pre>{@code 5665 * int iterations(A...); 5666 * V init(A...); 5667 * V body(V, int, A...); 5668 * V countedLoop(A... a...) { 5669 * int end = iterations(a...); 5670 * V v = init(a...); 5671 * for (int i = 0; i < end; ++i) { 5672 * v = body(v, i, a...); 5673 * } 5674 * return v; 5675 * } 5676 * }</pre></blockquote> 5677 * 5678 * @apiNote Example with a fully conformant body method: 5679 * <blockquote><pre>{@code 5680 * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s; 5681 * // => a variation on a well known theme 5682 * static String step(String v, int counter, String init) { return "na " + v; } 5683 * // assume MH_step is a handle to the method above 5684 * MethodHandle fit13 = MethodHandles.constant(int.class, 13); 5685 * MethodHandle start = MethodHandles.identity(String.class); 5686 * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step); 5687 * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!")); 5688 * }</pre></blockquote> 5689 * 5690 * @apiNote Example with the simplest possible body method type, 5691 * and passing the number of iterations to the loop invocation: 5692 * <blockquote><pre>{@code 5693 * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s; 5694 * // => a variation on a well known theme 5695 * static String step(String v, int counter ) { return "na " + v; } 5696 * // assume MH_step is a handle to the method above 5697 * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class); 5698 * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class); 5699 * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step); // (v, i) -> "na " + v 5700 * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!")); 5701 * }</pre></blockquote> 5702 * 5703 * @apiNote Example that treats the number of iterations, string to append to, and string to append 5704 * as loop parameters: 5705 * <blockquote><pre>{@code 5706 * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s; 5707 * // => a variation on a well known theme 5708 * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; } 5709 * // assume MH_step is a handle to the method above 5710 * MethodHandle count = MethodHandles.identity(int.class); 5711 * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class); 5712 * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step); // (v, i, _, pre, _) -> pre + " " + v 5713 * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!")); 5714 * }</pre></blockquote> 5715 * 5716 * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)} 5717 * to enforce a loop type: 5718 * <blockquote><pre>{@code 5719 * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s; 5720 * // => a variation on a well known theme 5721 * static String step(String v, int counter, String pre) { return pre + " " + v; } 5722 * // assume MH_step is a handle to the method above 5723 * MethodType loopType = methodType(String.class, String.class, int.class, String.class); 5724 * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class), 0, loopType.parameterList(), 1); 5725 * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2); 5726 * MethodHandle body = MethodHandles.dropArgumentsToMatch(MH_step, 2, loopType.parameterList(), 0); 5727 * MethodHandle loop = MethodHandles.countedLoop(count, start, body); // (v, i, pre, _, _) -> pre + " " + v 5728 * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!")); 5729 * }</pre></blockquote> 5730 * 5731 * @apiNote The implementation of this method can be expressed as follows: 5732 * <blockquote><pre>{@code 5733 * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) { 5734 * return countedLoop(empty(iterations.type()), iterations, init, body); 5735 * } 5736 * }</pre></blockquote> 5737 * 5738 * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's 5739 * result type must be {@code int}. See above for other constraints. 5740 * @param init optional initializer, providing the initial value of the loop variable. 5741 * May be {@code null}, implying a default initial value. See above for other constraints. 5742 * @param body body of the loop, which may not be {@code null}. 5743 * It controls the loop parameters and result type in the standard case (see above for details). 5744 * It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter), 5745 * and may accept any number of additional types. 5746 * See above for other constraints. 5747 * 5748 * @return a method handle representing the loop. 5749 * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}. 5750 * @throws IllegalArgumentException if any argument violates the rules formulated above. 5751 * 5752 * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle) 5753 * @since 9 5754 */ 5755 public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) { 5756 return countedLoop(empty(iterations.type()), iterations, init, body); 5757 } 5758 5759 /** 5760 * Constructs a loop that counts over a range of numbers. 5761 * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. 5762 * <p> 5763 * The loop counter {@code i} is a loop iteration variable of type {@code int}. 5764 * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive) 5765 * values of the loop counter. 5766 * The loop counter will be initialized to the {@code int} value returned from the evaluation of the 5767 * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1. 5768 * <p> 5769 * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable 5770 * of that type is also present. This variable is initialized using the optional {@code init} handle, 5771 * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}. 5772 * <p> 5773 * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle. 5774 * A non-{@code void} value returned from the body (of type {@code V}) updates the leading 5775 * iteration variable. 5776 * The result of the loop handle execution will be the final {@code V} value of that variable 5777 * (or {@code void} if there is no {@code V} variable). 5778 * <p> 5779 * The following rules hold for the argument handles:<ul> 5780 * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return 5781 * the common type {@code int}, referred to here as {@code I} in parameter type lists. 5782 * <li>The {@code body} handle must not be {@code null}; its type must be of the form 5783 * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}. 5784 * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, 5785 * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V} 5786 * is quietly dropped from the parameter list, leaving {@code (I A...)V}.) 5787 * <li>The parameter list {@code (V I A...)} of the body contributes to a list 5788 * of types called the <em>internal parameter list</em>. 5789 * It will constrain the parameter lists of the other loop parts. 5790 * <li>As a special case, if the body contributes only {@code V} and {@code I} types, 5791 * with no additional {@code A} types, then the internal parameter list is extended by 5792 * the argument types {@code A...} of the {@code end} handle. 5793 * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter 5794 * list {@code (A...)} is called the <em>external parameter list</em>. 5795 * <li>The body return type {@code V}, if non-{@code void}, determines the type of an 5796 * additional state variable of the loop. 5797 * The body must both accept a leading parameter and return a value of this type {@code V}. 5798 * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. 5799 * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be 5800 * <a href="MethodHandles.html#effid">effectively identical</a> 5801 * to the external parameter list {@code (A...)}. 5802 * <li>If {@code init} is {@code null}, the loop variable will be initialized to its 5803 * {@linkplain #empty default value}. 5804 * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be 5805 * effectively identical to the external parameter list {@code (A...)}. 5806 * <li>Likewise, the parameter list of {@code end} must be effectively identical 5807 * to the external parameter list. 5808 * </ul> 5809 * <p> 5810 * The resulting loop handle's result type and parameter signature are determined as follows:<ul> 5811 * <li>The loop handle's result type is the result type {@code V} of the body. 5812 * <li>The loop handle's parameter types are the types {@code (A...)}, 5813 * from the external parameter list. 5814 * </ul> 5815 * <p> 5816 * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of 5817 * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent 5818 * arguments passed to the loop. 5819 * <blockquote><pre>{@code 5820 * int start(A...); 5821 * int end(A...); 5822 * V init(A...); 5823 * V body(V, int, A...); 5824 * V countedLoop(A... a...) { 5825 * int e = end(a...); 5826 * int s = start(a...); 5827 * V v = init(a...); 5828 * for (int i = s; i < e; ++i) { 5829 * v = body(v, i, a...); 5830 * } 5831 * return v; 5832 * } 5833 * }</pre></blockquote> 5834 * 5835 * @apiNote The implementation of this method can be expressed as follows: 5836 * <blockquote><pre>{@code 5837 * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) { 5838 * MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class); 5839 * // assume MH_increment and MH_predicate are handles to implementation-internal methods with 5840 * // the following semantics: 5841 * // MH_increment: (int limit, int counter) -> counter + 1 5842 * // MH_predicate: (int limit, int counter) -> counter < limit 5843 * Class<?> counterType = start.type().returnType(); // int 5844 * Class<?> returnType = body.type().returnType(); 5845 * MethodHandle incr = MH_increment, pred = MH_predicate, retv = null; 5846 * if (returnType != void.class) { // ignore the V variable 5847 * incr = dropArguments(incr, 1, returnType); // (limit, v, i) => (limit, i) 5848 * pred = dropArguments(pred, 1, returnType); // ditto 5849 * retv = dropArguments(identity(returnType), 0, counterType); // ignore limit 5850 * } 5851 * body = dropArguments(body, 0, counterType); // ignore the limit variable 5852 * MethodHandle[] 5853 * loopLimit = { end, null, pred, retv }, // limit = end(); i < limit || return v 5854 * bodyClause = { init, body }, // v = init(); v = body(v, i) 5855 * indexVar = { start, incr }; // i = start(); i = i + 1 5856 * return loop(loopLimit, bodyClause, indexVar); 5857 * } 5858 * }</pre></blockquote> 5859 * 5860 * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}. 5861 * See above for other constraints. 5862 * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to 5863 * {@code end-1}). The result type must be {@code int}. See above for other constraints. 5864 * @param init optional initializer, providing the initial value of the loop variable. 5865 * May be {@code null}, implying a default initial value. See above for other constraints. 5866 * @param body body of the loop, which may not be {@code null}. 5867 * It controls the loop parameters and result type in the standard case (see above for details). 5868 * It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter), 5869 * and may accept any number of additional types. 5870 * See above for other constraints. 5871 * 5872 * @return a method handle representing the loop. 5873 * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}. 5874 * @throws IllegalArgumentException if any argument violates the rules formulated above. 5875 * 5876 * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle) 5877 * @since 9 5878 */ 5879 public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) { 5880 countedLoopChecks(start, end, init, body); 5881 Class<?> counterType = start.type().returnType(); // int, but who's counting? 5882 Class<?> limitType = end.type().returnType(); // yes, int again 5883 Class<?> returnType = body.type().returnType(); 5884 MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep); 5885 MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred); 5886 MethodHandle retv = null; 5887 if (returnType != void.class) { 5888 incr = dropArguments(incr, 1, returnType); // (limit, v, i) => (limit, i) 5889 pred = dropArguments(pred, 1, returnType); // ditto 5890 retv = dropArguments(identity(returnType), 0, counterType); 5891 } 5892 body = dropArguments(body, 0, counterType); // ignore the limit variable 5893 MethodHandle[] 5894 loopLimit = { end, null, pred, retv }, // limit = end(); i < limit || return v 5895 bodyClause = { init, body }, // v = init(); v = body(v, i) 5896 indexVar = { start, incr }; // i = start(); i = i + 1 5897 return loop(loopLimit, bodyClause, indexVar); 5898 } 5899 5900 private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) { 5901 Objects.requireNonNull(start); 5902 Objects.requireNonNull(end); 5903 Objects.requireNonNull(body); 5904 Class<?> counterType = start.type().returnType(); 5905 if (counterType != int.class) { 5906 MethodType expected = start.type().changeReturnType(int.class); 5907 throw misMatchedTypes("start function", start.type(), expected); 5908 } else if (end.type().returnType() != counterType) { 5909 MethodType expected = end.type().changeReturnType(counterType); 5910 throw misMatchedTypes("end function", end.type(), expected); 5911 } 5912 MethodType bodyType = body.type(); 5913 Class<?> returnType = bodyType.returnType(); 5914 List<Class<?>> innerList = bodyType.parameterList(); 5915 // strip leading V value if present 5916 int vsize = (returnType == void.class ? 0 : 1); 5917 if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) { 5918 // argument list has no "V" => error 5919 MethodType expected = bodyType.insertParameterTypes(0, returnType); 5920 throw misMatchedTypes("body function", bodyType, expected); 5921 } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) { 5922 // missing I type => error 5923 MethodType expected = bodyType.insertParameterTypes(vsize, counterType); 5924 throw misMatchedTypes("body function", bodyType, expected); 5925 } 5926 List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size()); 5927 if (outerList.isEmpty()) { 5928 // special case; take lists from end handle 5929 outerList = end.type().parameterList(); 5930 innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList(); 5931 } 5932 MethodType expected = methodType(counterType, outerList); 5933 if (!start.type().effectivelyIdenticalParameters(0, outerList)) { 5934 throw misMatchedTypes("start parameter types", start.type(), expected); 5935 } 5936 if (end.type() != start.type() && 5937 !end.type().effectivelyIdenticalParameters(0, outerList)) { 5938 throw misMatchedTypes("end parameter types", end.type(), expected); 5939 } 5940 if (init != null) { 5941 MethodType initType = init.type(); 5942 if (initType.returnType() != returnType || 5943 !initType.effectivelyIdenticalParameters(0, outerList)) { 5944 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList)); 5945 } 5946 } 5947 } 5948 5949 /** 5950 * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}. 5951 * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. 5952 * <p> 5953 * The iterator itself will be determined by the evaluation of the {@code iterator} handle. 5954 * Each value it produces will be stored in a loop iteration variable of type {@code T}. 5955 * <p> 5956 * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable 5957 * of that type is also present. This variable is initialized using the optional {@code init} handle, 5958 * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}. 5959 * <p> 5960 * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle. 5961 * A non-{@code void} value returned from the body (of type {@code V}) updates the leading 5962 * iteration variable. 5963 * The result of the loop handle execution will be the final {@code V} value of that variable 5964 * (or {@code void} if there is no {@code V} variable). 5965 * <p> 5966 * The following rules hold for the argument handles:<ul> 5967 * <li>The {@code body} handle must not be {@code null}; its type must be of the form 5968 * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}. 5969 * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, 5970 * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V} 5971 * is quietly dropped from the parameter list, leaving {@code (T A...)V}.) 5972 * <li>The parameter list {@code (V T A...)} of the body contributes to a list 5973 * of types called the <em>internal parameter list</em>. 5974 * It will constrain the parameter lists of the other loop parts. 5975 * <li>As a special case, if the body contributes only {@code V} and {@code T} types, 5976 * with no additional {@code A} types, then the internal parameter list is extended by 5977 * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the 5978 * single type {@code Iterable} is added and constitutes the {@code A...} list. 5979 * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter 5980 * list {@code (A...)} is called the <em>external parameter list</em>. 5981 * <li>The body return type {@code V}, if non-{@code void}, determines the type of an 5982 * additional state variable of the loop. 5983 * The body must both accept a leading parameter and return a value of this type {@code V}. 5984 * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. 5985 * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be 5986 * <a href="MethodHandles.html#effid">effectively identical</a> 5987 * to the external parameter list {@code (A...)}. 5988 * <li>If {@code init} is {@code null}, the loop variable will be initialized to its 5989 * {@linkplain #empty default value}. 5990 * <li>If the {@code iterator} handle is non-{@code null}, it must have the return 5991 * type {@code java.util.Iterator} or a subtype thereof. 5992 * The iterator it produces when the loop is executed will be assumed 5993 * to yield values which can be converted to type {@code T}. 5994 * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be 5995 * effectively identical to the external parameter list {@code (A...)}. 5996 * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves 5997 * like {@link java.lang.Iterable#iterator()}. In that case, the internal parameter list 5998 * {@code (V T A...)} must have at least one {@code A} type, and the default iterator 5999 * handle parameter is adjusted to accept the leading {@code A} type, as if by 6000 * the {@link MethodHandle#asType asType} conversion method. 6001 * The leading {@code A} type must be {@code Iterable} or a subtype thereof. 6002 * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}. 6003 * </ul> 6004 * <p> 6005 * The type {@code T} may be either a primitive or reference. 6006 * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator}, 6007 * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object} 6008 * as if by the {@link MethodHandle#asType asType} conversion method. 6009 * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur 6010 * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}. 6011 * <p> 6012 * The resulting loop handle's result type and parameter signature are determined as follows:<ul> 6013 * <li>The loop handle's result type is the result type {@code V} of the body. 6014 * <li>The loop handle's parameter types are the types {@code (A...)}, 6015 * from the external parameter list. 6016 * </ul> 6017 * <p> 6018 * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of 6019 * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the 6020 * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop. 6021 * <blockquote><pre>{@code 6022 * Iterator<T> iterator(A...); // defaults to Iterable::iterator 6023 * V init(A...); 6024 * V body(V,T,A...); 6025 * V iteratedLoop(A... a...) { 6026 * Iterator<T> it = iterator(a...); 6027 * V v = init(a...); 6028 * while (it.hasNext()) { 6029 * T t = it.next(); 6030 * v = body(v, t, a...); 6031 * } 6032 * return v; 6033 * } 6034 * }</pre></blockquote> 6035 * 6036 * @apiNote Example: 6037 * <blockquote><pre>{@code 6038 * // get an iterator from a list 6039 * static List<String> reverseStep(List<String> r, String e) { 6040 * r.add(0, e); 6041 * return r; 6042 * } 6043 * static List<String> newArrayList() { return new ArrayList<>(); } 6044 * // assume MH_reverseStep and MH_newArrayList are handles to the above methods 6045 * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep); 6046 * List<String> list = Arrays.asList("a", "b", "c", "d", "e"); 6047 * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a"); 6048 * assertEquals(reversedList, (List<String>) loop.invoke(list)); 6049 * }</pre></blockquote> 6050 * 6051 * @apiNote The implementation of this method can be expressed approximately as follows: 6052 * <blockquote><pre>{@code 6053 * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) { 6054 * // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable 6055 * Class<?> returnType = body.type().returnType(); 6056 * Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1); 6057 * MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype)); 6058 * MethodHandle retv = null, step = body, startIter = iterator; 6059 * if (returnType != void.class) { 6060 * // the simple thing first: in (I V A...), drop the I to get V 6061 * retv = dropArguments(identity(returnType), 0, Iterator.class); 6062 * // body type signature (V T A...), internal loop types (I V A...) 6063 * step = swapArguments(body, 0, 1); // swap V <-> T 6064 * } 6065 * if (startIter == null) startIter = MH_getIter; 6066 * MethodHandle[] 6067 * iterVar = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext()) 6068 * bodyClause = { init, filterArguments(step, 0, nextVal) }; // v = body(v, t, a) 6069 * return loop(iterVar, bodyClause); 6070 * } 6071 * }</pre></blockquote> 6072 * 6073 * @param iterator an optional handle to return the iterator to start the loop. 6074 * If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype. 6075 * See above for other constraints. 6076 * @param init optional initializer, providing the initial value of the loop variable. 6077 * May be {@code null}, implying a default initial value. See above for other constraints. 6078 * @param body body of the loop, which may not be {@code null}. 6079 * It controls the loop parameters and result type in the standard case (see above for details). 6080 * It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values), 6081 * and may accept any number of additional types. 6082 * See above for other constraints. 6083 * 6084 * @return a method handle embodying the iteration loop functionality. 6085 * @throws NullPointerException if the {@code body} handle is {@code null}. 6086 * @throws IllegalArgumentException if any argument violates the above requirements. 6087 * 6088 * @since 9 6089 */ 6090 public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) { 6091 Class<?> iterableType = iteratedLoopChecks(iterator, init, body); 6092 Class<?> returnType = body.type().returnType(); 6093 MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred); 6094 MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext); 6095 MethodHandle startIter; 6096 MethodHandle nextVal; 6097 { 6098 MethodType iteratorType; 6099 if (iterator == null) { 6100 // derive argument type from body, if available, else use Iterable 6101 startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator); 6102 iteratorType = startIter.type().changeParameterType(0, iterableType); 6103 } else { 6104 // force return type to the internal iterator class 6105 iteratorType = iterator.type().changeReturnType(Iterator.class); 6106 startIter = iterator; 6107 } 6108 Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1); 6109 MethodType nextValType = nextRaw.type().changeReturnType(ttype); 6110 6111 // perform the asType transforms under an exception transformer, as per spec.: 6112 try { 6113 startIter = startIter.asType(iteratorType); 6114 nextVal = nextRaw.asType(nextValType); 6115 } catch (WrongMethodTypeException ex) { 6116 throw new IllegalArgumentException(ex); 6117 } 6118 } 6119 6120 MethodHandle retv = null, step = body; 6121 if (returnType != void.class) { 6122 // the simple thing first: in (I V A...), drop the I to get V 6123 retv = dropArguments(identity(returnType), 0, Iterator.class); 6124 // body type signature (V T A...), internal loop types (I V A...) 6125 step = swapArguments(body, 0, 1); // swap V <-> T 6126 } 6127 6128 MethodHandle[] 6129 iterVar = { startIter, null, hasNext, retv }, 6130 bodyClause = { init, filterArgument(step, 0, nextVal) }; 6131 return loop(iterVar, bodyClause); 6132 } 6133 6134 private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) { 6135 Objects.requireNonNull(body); 6136 MethodType bodyType = body.type(); 6137 Class<?> returnType = bodyType.returnType(); 6138 List<Class<?>> internalParamList = bodyType.parameterList(); 6139 // strip leading V value if present 6140 int vsize = (returnType == void.class ? 0 : 1); 6141 if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) { 6142 // argument list has no "V" => error 6143 MethodType expected = bodyType.insertParameterTypes(0, returnType); 6144 throw misMatchedTypes("body function", bodyType, expected); 6145 } else if (internalParamList.size() <= vsize) { 6146 // missing T type => error 6147 MethodType expected = bodyType.insertParameterTypes(vsize, Object.class); 6148 throw misMatchedTypes("body function", bodyType, expected); 6149 } 6150 List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size()); 6151 Class<?> iterableType = null; 6152 if (iterator != null) { 6153 // special case; if the body handle only declares V and T then 6154 // the external parameter list is obtained from iterator handle 6155 if (externalParamList.isEmpty()) { 6156 externalParamList = iterator.type().parameterList(); 6157 } 6158 MethodType itype = iterator.type(); 6159 if (!Iterator.class.isAssignableFrom(itype.returnType())) { 6160 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type"); 6161 } 6162 if (!itype.effectivelyIdenticalParameters(0, externalParamList)) { 6163 MethodType expected = methodType(itype.returnType(), externalParamList); 6164 throw misMatchedTypes("iterator parameters", itype, expected); 6165 } 6166 } else { 6167 if (externalParamList.isEmpty()) { 6168 // special case; if the iterator handle is null and the body handle 6169 // only declares V and T then the external parameter list consists 6170 // of Iterable 6171 externalParamList = Arrays.asList(Iterable.class); 6172 iterableType = Iterable.class; 6173 } else { 6174 // special case; if the iterator handle is null and the external 6175 // parameter list is not empty then the first parameter must be 6176 // assignable to Iterable 6177 iterableType = externalParamList.get(0); 6178 if (!Iterable.class.isAssignableFrom(iterableType)) { 6179 throw newIllegalArgumentException( 6180 "inferred first loop argument must inherit from Iterable: " + iterableType); 6181 } 6182 } 6183 } 6184 if (init != null) { 6185 MethodType initType = init.type(); 6186 if (initType.returnType() != returnType || 6187 !initType.effectivelyIdenticalParameters(0, externalParamList)) { 6188 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList)); 6189 } 6190 } 6191 return iterableType; // help the caller a bit 6192 } 6193 6194 /*non-public*/ static MethodHandle swapArguments(MethodHandle mh, int i, int j) { 6195 // there should be a better way to uncross my wires 6196 int arity = mh.type().parameterCount(); 6197 int[] order = new int[arity]; 6198 for (int k = 0; k < arity; k++) order[k] = k; 6199 order[i] = j; order[j] = i; 6200 Class<?>[] types = mh.type().parameterArray(); 6201 Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti; 6202 MethodType swapType = methodType(mh.type().returnType(), types); 6203 return permuteArguments(mh, swapType, order); 6204 } 6205 6206 /** 6207 * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block. 6208 * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception 6209 * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The 6210 * exception will be rethrown, unless {@code cleanup} handle throws an exception first. The 6211 * value returned from the {@code cleanup} handle's execution will be the result of the execution of the 6212 * {@code try-finally} handle. 6213 * <p> 6214 * The {@code cleanup} handle will be passed one or two additional leading arguments. 6215 * The first is the exception thrown during the 6216 * execution of the {@code target} handle, or {@code null} if no exception was thrown. 6217 * The second is the result of the execution of the {@code target} handle, or, if it throws an exception, 6218 * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder. 6219 * The second argument is not present if the {@code target} handle has a {@code void} return type. 6220 * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists 6221 * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.) 6222 * <p> 6223 * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except 6224 * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or 6225 * two extra leading parameters:<ul> 6226 * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and 6227 * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry 6228 * the result from the execution of the {@code target} handle. 6229 * This parameter is not present if the {@code target} returns {@code void}. 6230 * </ul> 6231 * <p> 6232 * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of 6233 * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting 6234 * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by 6235 * the cleanup. 6236 * <blockquote><pre>{@code 6237 * V target(A..., B...); 6238 * V cleanup(Throwable, V, A...); 6239 * V adapter(A... a, B... b) { 6240 * V result = (zero value for V); 6241 * Throwable throwable = null; 6242 * try { 6243 * result = target(a..., b...); 6244 * } catch (Throwable t) { 6245 * throwable = t; 6246 * throw t; 6247 * } finally { 6248 * result = cleanup(throwable, result, a...); 6249 * } 6250 * return result; 6251 * } 6252 * }</pre></blockquote> 6253 * <p> 6254 * Note that the saved arguments ({@code a...} in the pseudocode) cannot 6255 * be modified by execution of the target, and so are passed unchanged 6256 * from the caller to the cleanup, if it is invoked. 6257 * <p> 6258 * The target and cleanup must return the same type, even if the cleanup 6259 * always throws. 6260 * To create such a throwing cleanup, compose the cleanup logic 6261 * with {@link #throwException throwException}, 6262 * in order to create a method handle of the correct return type. 6263 * <p> 6264 * Note that {@code tryFinally} never converts exceptions into normal returns. 6265 * In rare cases where exceptions must be converted in that way, first wrap 6266 * the target with {@link #catchException(MethodHandle, Class, MethodHandle)} 6267 * to capture an outgoing exception, and then wrap with {@code tryFinally}. 6268 * <p> 6269 * It is recommended that the first parameter type of {@code cleanup} be 6270 * declared {@code Throwable} rather than a narrower subtype. This ensures 6271 * {@code cleanup} will always be invoked with whatever exception that 6272 * {@code target} throws. Declaring a narrower type may result in a 6273 * {@code ClassCastException} being thrown by the {@code try-finally} 6274 * handle if the type of the exception thrown by {@code target} is not 6275 * assignable to the first parameter type of {@code cleanup}. Note that 6276 * various exception types of {@code VirtualMachineError}, 6277 * {@code LinkageError}, and {@code RuntimeException} can in principle be 6278 * thrown by almost any kind of Java code, and a finally clause that 6279 * catches (say) only {@code IOException} would mask any of the others 6280 * behind a {@code ClassCastException}. 6281 * 6282 * @param target the handle whose execution is to be wrapped in a {@code try} block. 6283 * @param cleanup the handle that is invoked in the finally block. 6284 * 6285 * @return a method handle embodying the {@code try-finally} block composed of the two arguments. 6286 * @throws NullPointerException if any argument is null 6287 * @throws IllegalArgumentException if {@code cleanup} does not accept 6288 * the required leading arguments, or if the method handle types do 6289 * not match in their return types and their 6290 * corresponding trailing parameters 6291 * 6292 * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle) 6293 * @since 9 6294 */ 6295 public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) { 6296 List<Class<?>> targetParamTypes = target.type().parameterList(); 6297 Class<?> rtype = target.type().returnType(); 6298 6299 tryFinallyChecks(target, cleanup); 6300 6301 // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments. 6302 // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the 6303 // target parameter list. 6304 cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0); 6305 6306 // Ensure that the intrinsic type checks the instance thrown by the 6307 // target against the first parameter of cleanup 6308 cleanup = cleanup.asType(cleanup.type().changeParameterType(0, Throwable.class)); 6309 6310 // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case. 6311 return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes); 6312 } 6313 6314 private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) { 6315 Class<?> rtype = target.type().returnType(); 6316 if (rtype != cleanup.type().returnType()) { 6317 throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype); 6318 } 6319 MethodType cleanupType = cleanup.type(); 6320 if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) { 6321 throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class); 6322 } 6323 if (rtype != void.class && cleanupType.parameterType(1) != rtype) { 6324 throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype); 6325 } 6326 // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the 6327 // target parameter list. 6328 int cleanupArgIndex = rtype == void.class ? 1 : 2; 6329 if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) { 6330 throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix", 6331 cleanup.type(), target.type()); 6332 } 6333 } 6334 6335 }