/* * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.nio; import jdk.internal.access.JavaLangRefAccess; import jdk.internal.access.SharedSecrets; import jdk.internal.misc.Unsafe; import jdk.internal.misc.VM; import jdk.internal.misc.VM.BufferPool; import java.util.concurrent.atomic.AtomicLong; /** * Access to bits, native and otherwise. */ class Bits { // package-private private Bits() { } // -- Swapping -- static short swap(short x) { return Short.reverseBytes(x); } static char swap(char x) { return Character.reverseBytes(x); } static int swap(int x) { return Integer.reverseBytes(x); } static long swap(long x) { return Long.reverseBytes(x); } // -- Unsafe access -- private static final Unsafe UNSAFE = Unsafe.getUnsafe(); // -- Processor and memory-system properties -- private static int PAGE_SIZE = -1; static int pageSize() { if (PAGE_SIZE == -1) PAGE_SIZE = UNSAFE.pageSize(); return PAGE_SIZE; } static int pageCount(long size) { return (int)(size + (long)pageSize() - 1L) / pageSize(); } private static boolean UNALIGNED = UNSAFE.unalignedAccess(); static boolean unaligned() { return UNALIGNED; } // -- Direct memory management -- // A user-settable upper limit on the maximum amount of allocatable // direct buffer memory. This value may be changed during VM // initialization if it is launched with "-XX:MaxDirectMemorySize=". private static volatile long MAX_MEMORY = VM.maxDirectMemory(); private static final AtomicLong RESERVED_MEMORY = new AtomicLong(); private static final AtomicLong TOTAL_CAPACITY = new AtomicLong(); private static final AtomicLong COUNT = new AtomicLong(); private static volatile boolean MEMORY_LIMIT_SET; // max. number of sleeps during try-reserving with exponentially // increasing delay before throwing OutOfMemoryError: // 1, 2, 4, 8, 16, 32, 64, 128, 256 (total 511 ms ~ 0.5 s) // which means that OOME will be thrown after 0.5 s of trying private static final int MAX_SLEEPS = 9; // These methods should be called whenever direct memory is allocated or // freed. They allow the user to control the amount of direct memory // which a process may access. All sizes are specified in bytes. static void reserveMemory(long size, int cap) { if (!MEMORY_LIMIT_SET && VM.initLevel() >= 1) { MAX_MEMORY = VM.maxDirectMemory(); MEMORY_LIMIT_SET = true; } // optimist! if (tryReserveMemory(size, cap)) { return; } final JavaLangRefAccess jlra = SharedSecrets.getJavaLangRefAccess(); boolean interrupted = false; try { // Retry allocation until success or there are no more // references (including Cleaners that might free direct // buffer memory) to process and allocation still fails. boolean refprocActive; do { try { refprocActive = jlra.waitForReferenceProcessing(); } catch (InterruptedException e) { // Defer interrupts and keep trying. interrupted = true; refprocActive = true; } if (tryReserveMemory(size, cap)) { return; } } while (refprocActive); // trigger VM's Reference processing System.gc(); // A retry loop with exponential back-off delays. // Sometimes it would suffice to give up once reference // processing is complete. But if there are many threads // competing for memory, this gives more opportunities for // any given thread to make progress. In particular, this // seems to be enough for a stress test like // DirectBufferAllocTest to (usually) succeed, while // without it that test likely fails. Since failure here // ends in OOME, there's no need to hurry. long sleepTime = 1; int sleeps = 0; while (true) { if (tryReserveMemory(size, cap)) { return; } if (sleeps >= MAX_SLEEPS) { break; } try { if (!jlra.waitForReferenceProcessing()) { Thread.sleep(sleepTime); sleepTime <<= 1; sleeps++; } } catch (InterruptedException e) { interrupted = true; } } // no luck throw new OutOfMemoryError ("Cannot reserve " + size + " bytes of direct buffer memory (allocated: " + RESERVED_MEMORY.get() + ", limit: " + MAX_MEMORY +")"); } finally { if (interrupted) { // don't swallow interrupts Thread.currentThread().interrupt(); } } } private static boolean tryReserveMemory(long size, int cap) { // -XX:MaxDirectMemorySize limits the total capacity rather than the // actual memory usage, which will differ when buffers are page // aligned. long totalCap; while (cap <= MAX_MEMORY - (totalCap = TOTAL_CAPACITY.get())) { if (TOTAL_CAPACITY.compareAndSet(totalCap, totalCap + cap)) { RESERVED_MEMORY.addAndGet(size); COUNT.incrementAndGet(); return true; } } return false; } static void unreserveMemory(long size, int cap) { long cnt = COUNT.decrementAndGet(); long reservedMem = RESERVED_MEMORY.addAndGet(-size); long totalCap = TOTAL_CAPACITY.addAndGet(-cap); assert cnt >= 0 && reservedMem >= 0 && totalCap >= 0; } static final BufferPool BUFFER_POOL = new BufferPool() { @Override public String getName() { return "direct"; } @Override public long getCount() { return Bits.COUNT.get(); } @Override public long getTotalCapacity() { return Bits.TOTAL_CAPACITY.get(); } @Override public long getMemoryUsed() { return Bits.RESERVED_MEMORY.get(); } }; // These numbers represent the point at which we have empirically // determined that the average cost of a JNI call exceeds the expense // of an element by element copy. These numbers may change over time. static final int JNI_COPY_TO_ARRAY_THRESHOLD = 6; static final int JNI_COPY_FROM_ARRAY_THRESHOLD = 6; }