1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/moduleEntry.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/gcId.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "gc/shared/workgroup.hpp"
  39 #include "interpreter/interpreter.hpp"
  40 #include "interpreter/linkResolver.hpp"
  41 #include "interpreter/oopMapCache.hpp"
  42 #include "jvmtifiles/jvmtiEnv.hpp"
  43 #include "logging/log.hpp"
  44 #include "logging/logConfiguration.hpp"
  45 #include "logging/logStream.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.inline.hpp"
  50 #include "oops/instanceKlass.hpp"
  51 #include "oops/objArrayOop.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "oops/symbol.hpp"
  54 #include "oops/verifyOopClosure.hpp"
  55 #include "prims/jvm_misc.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "prims/jvmtiThreadState.hpp"
  58 #include "prims/privilegedStack.hpp"
  59 #include "runtime/arguments.hpp"
  60 #include "runtime/atomic.hpp"
  61 #include "runtime/biasedLocking.hpp"
  62 #include "runtime/commandLineFlagConstraintList.hpp"
  63 #include "runtime/commandLineFlagWriteableList.hpp"
  64 #include "runtime/commandLineFlagRangeList.hpp"
  65 #include "runtime/deoptimization.hpp"
  66 #include "runtime/frame.inline.hpp"
  67 #include "runtime/globals.hpp"
  68 #include "runtime/handshake.hpp"
  69 #include "runtime/init.hpp"
  70 #include "runtime/interfaceSupport.hpp"
  71 #include "runtime/java.hpp"
  72 #include "runtime/javaCalls.hpp"
  73 #include "runtime/jniPeriodicChecker.hpp"
  74 #include "runtime/memprofiler.hpp"
  75 #include "runtime/mutexLocker.hpp"
  76 #include "runtime/objectMonitor.hpp"
  77 #include "runtime/orderAccess.inline.hpp"
  78 #include "runtime/osThread.hpp"
  79 #include "runtime/prefetch.inline.hpp"
  80 #include "runtime/safepoint.hpp"
  81 #include "runtime/safepointMechanism.inline.hpp"
  82 #include "runtime/sharedRuntime.hpp"
  83 #include "runtime/statSampler.hpp"
  84 #include "runtime/stubRoutines.hpp"
  85 #include "runtime/sweeper.hpp"
  86 #include "runtime/task.hpp"
  87 #include "runtime/thread.inline.hpp"
  88 #include "runtime/threadCritical.hpp"
  89 #include "runtime/threadSMR.inline.hpp"
  90 #include "runtime/timer.hpp"
  91 #include "runtime/timerTrace.hpp"
  92 #include "runtime/vframe.hpp"
  93 #include "runtime/vframeArray.hpp"
  94 #include "runtime/vframe_hp.hpp"
  95 #include "runtime/vmThread.hpp"
  96 #include "runtime/vm_operations.hpp"
  97 #include "runtime/vm_version.hpp"
  98 #include "services/attachListener.hpp"
  99 #include "services/management.hpp"
 100 #include "services/memTracker.hpp"
 101 #include "services/threadService.hpp"
 102 #include "trace/traceMacros.hpp"
 103 #include "trace/tracing.hpp"
 104 #include "utilities/align.hpp"
 105 #include "utilities/defaultStream.hpp"
 106 #include "utilities/dtrace.hpp"
 107 #include "utilities/events.hpp"
 108 #include "utilities/macros.hpp"
 109 #include "utilities/preserveException.hpp"
 110 #include "utilities/resourceHash.hpp"
 111 #include "utilities/vmError.hpp"
 112 #if INCLUDE_ALL_GCS
 113 #include "gc/cms/concurrentMarkSweepThread.hpp"
 114 #include "gc/g1/concurrentMarkThread.inline.hpp"
 115 #include "gc/parallel/pcTasks.hpp"
 116 #endif // INCLUDE_ALL_GCS
 117 #if INCLUDE_JVMCI
 118 #include "jvmci/jvmciCompiler.hpp"
 119 #include "jvmci/jvmciRuntime.hpp"
 120 #include "logging/logHandle.hpp"
 121 #endif
 122 #ifdef COMPILER1
 123 #include "c1/c1_Compiler.hpp"
 124 #endif
 125 #ifdef COMPILER2
 126 #include "opto/c2compiler.hpp"
 127 #include "opto/idealGraphPrinter.hpp"
 128 #endif
 129 #if INCLUDE_RTM_OPT
 130 #include "runtime/rtmLocking.hpp"
 131 #endif
 132 
 133 // Initialization after module runtime initialization
 134 void universe_post_module_init();  // must happen after call_initPhase2
 135 
 136 #ifdef DTRACE_ENABLED
 137 
 138 // Only bother with this argument setup if dtrace is available
 139 
 140   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 141   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 142 
 143   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 144     {                                                                      \
 145       ResourceMark rm(this);                                               \
 146       int len = 0;                                                         \
 147       const char* name = (javathread)->get_thread_name();                  \
 148       len = strlen(name);                                                  \
 149       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 150         (char *) name, len,                                                \
 151         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 152         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 153         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 154     }
 155 
 156 #else //  ndef DTRACE_ENABLED
 157 
 158   #define DTRACE_THREAD_PROBE(probe, javathread)
 159 
 160 #endif // ndef DTRACE_ENABLED
 161 
 162 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 163 // Current thread is maintained as a thread-local variable
 164 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 165 #endif
 166 // Class hierarchy
 167 // - Thread
 168 //   - VMThread
 169 //   - WatcherThread
 170 //   - ConcurrentMarkSweepThread
 171 //   - JavaThread
 172 //     - CompilerThread
 173 
 174 // ======= Thread ========
 175 // Support for forcing alignment of thread objects for biased locking
 176 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 177   if (UseBiasedLocking) {
 178     const int alignment = markOopDesc::biased_lock_alignment;
 179     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 180     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 181                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 182                                                          AllocFailStrategy::RETURN_NULL);
 183     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 184     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 185            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 186            "JavaThread alignment code overflowed allocated storage");
 187     if (aligned_addr != real_malloc_addr) {
 188       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 189                               p2i(real_malloc_addr),
 190                               p2i(aligned_addr));
 191     }
 192     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 193     return aligned_addr;
 194   } else {
 195     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 196                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 197   }
 198 }
 199 
 200 void Thread::operator delete(void* p) {
 201   if (UseBiasedLocking) {
 202     FreeHeap(((Thread*) p)->_real_malloc_address);
 203   } else {
 204     FreeHeap(p);
 205   }
 206 }
 207 
 208 void JavaThread::smr_delete() {
 209   if (_on_thread_list) {
 210     Threads::smr_delete(this);
 211   } else {
 212     delete this;
 213   }
 214 }
 215 
 216 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 217 // JavaThread
 218 
 219 
 220 Thread::Thread() {
 221   // stack and get_thread
 222   set_stack_base(NULL);
 223   set_stack_size(0);
 224   set_self_raw_id(0);
 225   set_lgrp_id(-1);
 226   DEBUG_ONLY(clear_suspendible_thread();)
 227 
 228   // allocated data structures
 229   set_osthread(NULL);
 230   set_resource_area(new (mtThread)ResourceArea());
 231   DEBUG_ONLY(_current_resource_mark = NULL;)
 232   set_handle_area(new (mtThread) HandleArea(NULL));
 233   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 234   set_active_handles(NULL);
 235   set_free_handle_block(NULL);
 236   set_last_handle_mark(NULL);
 237 
 238   // This initial value ==> never claimed.
 239   _oops_do_parity = 0;
 240   _threads_hazard_ptr = NULL;
 241   _nested_threads_hazard_ptr = NULL;
 242   _nested_threads_hazard_ptr_cnt = 0;
 243 
 244   // the handle mark links itself to last_handle_mark
 245   new HandleMark(this);
 246 
 247   // plain initialization
 248   debug_only(_owned_locks = NULL;)
 249   debug_only(_allow_allocation_count = 0;)
 250   NOT_PRODUCT(_allow_safepoint_count = 0;)
 251   NOT_PRODUCT(_skip_gcalot = false;)
 252   _jvmti_env_iteration_count = 0;
 253   set_allocated_bytes(0);
 254   _vm_operation_started_count = 0;
 255   _vm_operation_completed_count = 0;
 256   _current_pending_monitor = NULL;
 257   _current_pending_monitor_is_from_java = true;
 258   _current_waiting_monitor = NULL;
 259   _num_nested_signal = 0;
 260   omFreeList = NULL;
 261   omFreeCount = 0;
 262   omFreeProvision = 32;
 263   omInUseList = NULL;
 264   omInUseCount = 0;
 265 
 266 #ifdef ASSERT
 267   _visited_for_critical_count = false;
 268 #endif
 269 
 270   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 271                          Monitor::_safepoint_check_sometimes);
 272   _suspend_flags = 0;
 273 
 274   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 275   _hashStateX = os::random();
 276   _hashStateY = 842502087;
 277   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 278   _hashStateW = 273326509;
 279 
 280   _OnTrap   = 0;
 281   _schedctl = NULL;
 282   _Stalled  = 0;
 283   _TypeTag  = 0x2BAD;
 284 
 285   // Many of the following fields are effectively final - immutable
 286   // Note that nascent threads can't use the Native Monitor-Mutex
 287   // construct until the _MutexEvent is initialized ...
 288   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 289   // we might instead use a stack of ParkEvents that we could provision on-demand.
 290   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 291   // and ::Release()
 292   _ParkEvent   = ParkEvent::Allocate(this);
 293   _SleepEvent  = ParkEvent::Allocate(this);
 294   _MutexEvent  = ParkEvent::Allocate(this);
 295   _MuxEvent    = ParkEvent::Allocate(this);
 296 
 297 #ifdef CHECK_UNHANDLED_OOPS
 298   if (CheckUnhandledOops) {
 299     _unhandled_oops = new UnhandledOops(this);
 300   }
 301 #endif // CHECK_UNHANDLED_OOPS
 302 #ifdef ASSERT
 303   if (UseBiasedLocking) {
 304     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 305     assert(this == _real_malloc_address ||
 306            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 307            "bug in forced alignment of thread objects");
 308   }
 309 #endif // ASSERT
 310 }
 311 
 312 void Thread::initialize_thread_current() {
 313 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 314   assert(_thr_current == NULL, "Thread::current already initialized");
 315   _thr_current = this;
 316 #endif
 317   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 318   ThreadLocalStorage::set_thread(this);
 319   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 320 }
 321 
 322 void Thread::clear_thread_current() {
 323   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 324 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 325   _thr_current = NULL;
 326 #endif
 327   ThreadLocalStorage::set_thread(NULL);
 328 }
 329 
 330 void Thread::record_stack_base_and_size() {
 331   set_stack_base(os::current_stack_base());
 332   set_stack_size(os::current_stack_size());
 333   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 334   // in initialize_thread(). Without the adjustment, stack size is
 335   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 336   // So far, only Solaris has real implementation of initialize_thread().
 337   //
 338   // set up any platform-specific state.
 339   os::initialize_thread(this);
 340 
 341   // Set stack limits after thread is initialized.
 342   if (is_Java_thread()) {
 343     ((JavaThread*) this)->set_stack_overflow_limit();
 344     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 345   }
 346 #if INCLUDE_NMT
 347   // record thread's native stack, stack grows downward
 348   MemTracker::record_thread_stack(stack_end(), stack_size());
 349 #endif // INCLUDE_NMT
 350   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 351     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 352     os::current_thread_id(), p2i(stack_base() - stack_size()),
 353     p2i(stack_base()), stack_size()/1024);
 354 }
 355 
 356 
 357 Thread::~Thread() {
 358   EVENT_THREAD_DESTRUCT(this);
 359 
 360   // stack_base can be NULL if the thread is never started or exited before
 361   // record_stack_base_and_size called. Although, we would like to ensure
 362   // that all started threads do call record_stack_base_and_size(), there is
 363   // not proper way to enforce that.
 364 #if INCLUDE_NMT
 365   if (_stack_base != NULL) {
 366     MemTracker::release_thread_stack(stack_end(), stack_size());
 367 #ifdef ASSERT
 368     set_stack_base(NULL);
 369 #endif
 370   }
 371 #endif // INCLUDE_NMT
 372 
 373   // deallocate data structures
 374   delete resource_area();
 375   // since the handle marks are using the handle area, we have to deallocated the root
 376   // handle mark before deallocating the thread's handle area,
 377   assert(last_handle_mark() != NULL, "check we have an element");
 378   delete last_handle_mark();
 379   assert(last_handle_mark() == NULL, "check we have reached the end");
 380 
 381   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 382   // We NULL out the fields for good hygiene.
 383   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 384   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 385   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 386   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 387 
 388   delete handle_area();
 389   delete metadata_handles();
 390 
 391   // SR_handler uses this as a termination indicator -
 392   // needs to happen before os::free_thread()
 393   delete _SR_lock;
 394   _SR_lock = NULL;
 395 
 396   // osthread() can be NULL, if creation of thread failed.
 397   if (osthread() != NULL) os::free_thread(osthread());
 398 
 399   // clear Thread::current if thread is deleting itself.
 400   // Needed to ensure JNI correctly detects non-attached threads.
 401   if (this == Thread::current()) {
 402     clear_thread_current();
 403   }
 404 
 405   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 406 }
 407 
 408 // NOTE: dummy function for assertion purpose.
 409 void Thread::run() {
 410   ShouldNotReachHere();
 411 }
 412 
 413 #ifdef ASSERT
 414 // A JavaThread is considered "dangling" if it is not the current
 415 // thread, has been added the Threads list, the system is not at a
 416 // safepoint and the Thread is not "protected".
 417 //
 418 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 419   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 420          !((JavaThread *) thread)->on_thread_list() ||
 421          SafepointSynchronize::is_at_safepoint() ||
 422          Threads::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 423          "possibility of dangling Thread pointer");
 424 }
 425 #endif
 426 
 427 ThreadPriority Thread::get_priority(const Thread* const thread) {
 428   ThreadPriority priority;
 429   // Can return an error!
 430   (void)os::get_priority(thread, priority);
 431   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 432   return priority;
 433 }
 434 
 435 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 436   debug_only(check_for_dangling_thread_pointer(thread);)
 437   // Can return an error!
 438   (void)os::set_priority(thread, priority);
 439 }
 440 
 441 
 442 void Thread::start(Thread* thread) {
 443   // Start is different from resume in that its safety is guaranteed by context or
 444   // being called from a Java method synchronized on the Thread object.
 445   if (!DisableStartThread) {
 446     if (thread->is_Java_thread()) {
 447       // Initialize the thread state to RUNNABLE before starting this thread.
 448       // Can not set it after the thread started because we do not know the
 449       // exact thread state at that time. It could be in MONITOR_WAIT or
 450       // in SLEEPING or some other state.
 451       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 452                                           java_lang_Thread::RUNNABLE);
 453     }
 454     os::start_thread(thread);
 455   }
 456 }
 457 
 458 // Enqueue a VM_Operation to do the job for us - sometime later
 459 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 460   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 461   VMThread::execute(vm_stop);
 462 }
 463 
 464 
 465 // Check if an external suspend request has completed (or has been
 466 // cancelled). Returns true if the thread is externally suspended and
 467 // false otherwise.
 468 //
 469 // The bits parameter returns information about the code path through
 470 // the routine. Useful for debugging:
 471 //
 472 // set in is_ext_suspend_completed():
 473 // 0x00000001 - routine was entered
 474 // 0x00000010 - routine return false at end
 475 // 0x00000100 - thread exited (return false)
 476 // 0x00000200 - suspend request cancelled (return false)
 477 // 0x00000400 - thread suspended (return true)
 478 // 0x00001000 - thread is in a suspend equivalent state (return true)
 479 // 0x00002000 - thread is native and walkable (return true)
 480 // 0x00004000 - thread is native_trans and walkable (needed retry)
 481 //
 482 // set in wait_for_ext_suspend_completion():
 483 // 0x00010000 - routine was entered
 484 // 0x00020000 - suspend request cancelled before loop (return false)
 485 // 0x00040000 - thread suspended before loop (return true)
 486 // 0x00080000 - suspend request cancelled in loop (return false)
 487 // 0x00100000 - thread suspended in loop (return true)
 488 // 0x00200000 - suspend not completed during retry loop (return false)
 489 
 490 // Helper class for tracing suspend wait debug bits.
 491 //
 492 // 0x00000100 indicates that the target thread exited before it could
 493 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 494 // 0x00080000 each indicate a cancelled suspend request so they don't
 495 // count as wait failures either.
 496 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 497 
 498 class TraceSuspendDebugBits : public StackObj {
 499  private:
 500   JavaThread * jt;
 501   bool         is_wait;
 502   bool         called_by_wait;  // meaningful when !is_wait
 503   uint32_t *   bits;
 504 
 505  public:
 506   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 507                         uint32_t *_bits) {
 508     jt             = _jt;
 509     is_wait        = _is_wait;
 510     called_by_wait = _called_by_wait;
 511     bits           = _bits;
 512   }
 513 
 514   ~TraceSuspendDebugBits() {
 515     if (!is_wait) {
 516 #if 1
 517       // By default, don't trace bits for is_ext_suspend_completed() calls.
 518       // That trace is very chatty.
 519       return;
 520 #else
 521       if (!called_by_wait) {
 522         // If tracing for is_ext_suspend_completed() is enabled, then only
 523         // trace calls to it from wait_for_ext_suspend_completion()
 524         return;
 525       }
 526 #endif
 527     }
 528 
 529     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 530       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 531         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 532         ResourceMark rm;
 533 
 534         tty->print_cr(
 535                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 536                       jt->get_thread_name(), *bits);
 537 
 538         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 539       }
 540     }
 541   }
 542 };
 543 #undef DEBUG_FALSE_BITS
 544 
 545 
 546 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 547                                           uint32_t *bits) {
 548   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 549 
 550   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 551   bool do_trans_retry;           // flag to force the retry
 552 
 553   *bits |= 0x00000001;
 554 
 555   do {
 556     do_trans_retry = false;
 557 
 558     if (is_exiting()) {
 559       // Thread is in the process of exiting. This is always checked
 560       // first to reduce the risk of dereferencing a freed JavaThread.
 561       *bits |= 0x00000100;
 562       return false;
 563     }
 564 
 565     if (!is_external_suspend()) {
 566       // Suspend request is cancelled. This is always checked before
 567       // is_ext_suspended() to reduce the risk of a rogue resume
 568       // confusing the thread that made the suspend request.
 569       *bits |= 0x00000200;
 570       return false;
 571     }
 572 
 573     if (is_ext_suspended()) {
 574       // thread is suspended
 575       *bits |= 0x00000400;
 576       return true;
 577     }
 578 
 579     // Now that we no longer do hard suspends of threads running
 580     // native code, the target thread can be changing thread state
 581     // while we are in this routine:
 582     //
 583     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 584     //
 585     // We save a copy of the thread state as observed at this moment
 586     // and make our decision about suspend completeness based on the
 587     // copy. This closes the race where the thread state is seen as
 588     // _thread_in_native_trans in the if-thread_blocked check, but is
 589     // seen as _thread_blocked in if-thread_in_native_trans check.
 590     JavaThreadState save_state = thread_state();
 591 
 592     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 593       // If the thread's state is _thread_blocked and this blocking
 594       // condition is known to be equivalent to a suspend, then we can
 595       // consider the thread to be externally suspended. This means that
 596       // the code that sets _thread_blocked has been modified to do
 597       // self-suspension if the blocking condition releases. We also
 598       // used to check for CONDVAR_WAIT here, but that is now covered by
 599       // the _thread_blocked with self-suspension check.
 600       //
 601       // Return true since we wouldn't be here unless there was still an
 602       // external suspend request.
 603       *bits |= 0x00001000;
 604       return true;
 605     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 606       // Threads running native code will self-suspend on native==>VM/Java
 607       // transitions. If its stack is walkable (should always be the case
 608       // unless this function is called before the actual java_suspend()
 609       // call), then the wait is done.
 610       *bits |= 0x00002000;
 611       return true;
 612     } else if (!called_by_wait && !did_trans_retry &&
 613                save_state == _thread_in_native_trans &&
 614                frame_anchor()->walkable()) {
 615       // The thread is transitioning from thread_in_native to another
 616       // thread state. check_safepoint_and_suspend_for_native_trans()
 617       // will force the thread to self-suspend. If it hasn't gotten
 618       // there yet we may have caught the thread in-between the native
 619       // code check above and the self-suspend. Lucky us. If we were
 620       // called by wait_for_ext_suspend_completion(), then it
 621       // will be doing the retries so we don't have to.
 622       //
 623       // Since we use the saved thread state in the if-statement above,
 624       // there is a chance that the thread has already transitioned to
 625       // _thread_blocked by the time we get here. In that case, we will
 626       // make a single unnecessary pass through the logic below. This
 627       // doesn't hurt anything since we still do the trans retry.
 628 
 629       *bits |= 0x00004000;
 630 
 631       // Once the thread leaves thread_in_native_trans for another
 632       // thread state, we break out of this retry loop. We shouldn't
 633       // need this flag to prevent us from getting back here, but
 634       // sometimes paranoia is good.
 635       did_trans_retry = true;
 636 
 637       // We wait for the thread to transition to a more usable state.
 638       for (int i = 1; i <= SuspendRetryCount; i++) {
 639         // We used to do an "os::yield_all(i)" call here with the intention
 640         // that yielding would increase on each retry. However, the parameter
 641         // is ignored on Linux which means the yield didn't scale up. Waiting
 642         // on the SR_lock below provides a much more predictable scale up for
 643         // the delay. It also provides a simple/direct point to check for any
 644         // safepoint requests from the VMThread
 645 
 646         // temporarily drops SR_lock while doing wait with safepoint check
 647         // (if we're a JavaThread - the WatcherThread can also call this)
 648         // and increase delay with each retry
 649         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 650 
 651         // check the actual thread state instead of what we saved above
 652         if (thread_state() != _thread_in_native_trans) {
 653           // the thread has transitioned to another thread state so
 654           // try all the checks (except this one) one more time.
 655           do_trans_retry = true;
 656           break;
 657         }
 658       } // end retry loop
 659 
 660 
 661     }
 662   } while (do_trans_retry);
 663 
 664   *bits |= 0x00000010;
 665   return false;
 666 }
 667 
 668 // Wait for an external suspend request to complete (or be cancelled).
 669 // Returns true if the thread is externally suspended and false otherwise.
 670 //
 671 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 672                                                  uint32_t *bits) {
 673   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 674                              false /* !called_by_wait */, bits);
 675 
 676   // local flag copies to minimize SR_lock hold time
 677   bool is_suspended;
 678   bool pending;
 679   uint32_t reset_bits;
 680 
 681   // set a marker so is_ext_suspend_completed() knows we are the caller
 682   *bits |= 0x00010000;
 683 
 684   // We use reset_bits to reinitialize the bits value at the top of
 685   // each retry loop. This allows the caller to make use of any
 686   // unused bits for their own marking purposes.
 687   reset_bits = *bits;
 688 
 689   {
 690     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 691     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 692                                             delay, bits);
 693     pending = is_external_suspend();
 694   }
 695   // must release SR_lock to allow suspension to complete
 696 
 697   if (!pending) {
 698     // A cancelled suspend request is the only false return from
 699     // is_ext_suspend_completed() that keeps us from entering the
 700     // retry loop.
 701     *bits |= 0x00020000;
 702     return false;
 703   }
 704 
 705   if (is_suspended) {
 706     *bits |= 0x00040000;
 707     return true;
 708   }
 709 
 710   for (int i = 1; i <= retries; i++) {
 711     *bits = reset_bits;  // reinit to only track last retry
 712 
 713     // We used to do an "os::yield_all(i)" call here with the intention
 714     // that yielding would increase on each retry. However, the parameter
 715     // is ignored on Linux which means the yield didn't scale up. Waiting
 716     // on the SR_lock below provides a much more predictable scale up for
 717     // the delay. It also provides a simple/direct point to check for any
 718     // safepoint requests from the VMThread
 719 
 720     {
 721       MutexLocker ml(SR_lock());
 722       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 723       // can also call this)  and increase delay with each retry
 724       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 725 
 726       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 727                                               delay, bits);
 728 
 729       // It is possible for the external suspend request to be cancelled
 730       // (by a resume) before the actual suspend operation is completed.
 731       // Refresh our local copy to see if we still need to wait.
 732       pending = is_external_suspend();
 733     }
 734 
 735     if (!pending) {
 736       // A cancelled suspend request is the only false return from
 737       // is_ext_suspend_completed() that keeps us from staying in the
 738       // retry loop.
 739       *bits |= 0x00080000;
 740       return false;
 741     }
 742 
 743     if (is_suspended) {
 744       *bits |= 0x00100000;
 745       return true;
 746     }
 747   } // end retry loop
 748 
 749   // thread did not suspend after all our retries
 750   *bits |= 0x00200000;
 751   return false;
 752 }
 753 
 754 // Called from API entry points which perform stack walking. If the
 755 // associated JavaThread is the current thread, then wait_for_suspend
 756 // is not used. Otherwise, it determines if we should wait for the
 757 // "other" thread to complete external suspension. (NOTE: in future
 758 // releases the suspension mechanism should be reimplemented so this
 759 // is not necessary.)
 760 //
 761 bool
 762 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 763   if (this != JavaThread::current()) {
 764     // "other" threads require special handling.
 765     if (wait_for_suspend) {
 766       // We are allowed to wait for the external suspend to complete
 767       // so give the other thread a chance to get suspended.
 768       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 769                                            SuspendRetryDelay, bits)) {
 770         // Didn't make it so let the caller know.
 771         return false;
 772       }
 773     }
 774     // We aren't allowed to wait for the external suspend to complete
 775     // so if the other thread isn't externally suspended we need to
 776     // let the caller know.
 777     else if (!is_ext_suspend_completed_with_lock(bits)) {
 778       return false;
 779     }
 780   }
 781 
 782   return true;
 783 }
 784 
 785 #ifndef PRODUCT
 786 void JavaThread::record_jump(address target, address instr, const char* file,
 787                              int line) {
 788 
 789   // This should not need to be atomic as the only way for simultaneous
 790   // updates is via interrupts. Even then this should be rare or non-existent
 791   // and we don't care that much anyway.
 792 
 793   int index = _jmp_ring_index;
 794   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 795   _jmp_ring[index]._target = (intptr_t) target;
 796   _jmp_ring[index]._instruction = (intptr_t) instr;
 797   _jmp_ring[index]._file = file;
 798   _jmp_ring[index]._line = line;
 799 }
 800 #endif // PRODUCT
 801 
 802 void Thread::interrupt(Thread* thread) {
 803   debug_only(check_for_dangling_thread_pointer(thread);)
 804   os::interrupt(thread);
 805 }
 806 
 807 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 808   debug_only(check_for_dangling_thread_pointer(thread);)
 809   // Note:  If clear_interrupted==false, this simply fetches and
 810   // returns the value of the field osthread()->interrupted().
 811   return os::is_interrupted(thread, clear_interrupted);
 812 }
 813 
 814 
 815 // GC Support
 816 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 817   int thread_parity = _oops_do_parity;
 818   if (thread_parity != strong_roots_parity) {
 819     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 820     if (res == thread_parity) {
 821       return true;
 822     } else {
 823       guarantee(res == strong_roots_parity, "Or else what?");
 824       return false;
 825     }
 826   }
 827   return false;
 828 }
 829 
 830 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 831   active_handles()->oops_do(f);
 832   // Do oop for ThreadShadow
 833   f->do_oop((oop*)&_pending_exception);
 834   handle_area()->oops_do(f);
 835 
 836   if (MonitorInUseLists) {
 837     // When using thread local monitor lists, we scan them here,
 838     // and the remaining global monitors in ObjectSynchronizer::oops_do().
 839     ObjectSynchronizer::thread_local_used_oops_do(this, f);
 840   }
 841 }
 842 
 843 void Thread::metadata_handles_do(void f(Metadata*)) {
 844   // Only walk the Handles in Thread.
 845   if (metadata_handles() != NULL) {
 846     for (int i = 0; i< metadata_handles()->length(); i++) {
 847       f(metadata_handles()->at(i));
 848     }
 849   }
 850 }
 851 
 852 void Thread::print_on(outputStream* st) const {
 853   // get_priority assumes osthread initialized
 854   if (osthread() != NULL) {
 855     int os_prio;
 856     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 857       st->print("os_prio=%d ", os_prio);
 858     }
 859     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 860     ext().print_on(st);
 861     osthread()->print_on(st);
 862   }
 863   if (_threads_hazard_ptr != NULL) {
 864     st->print("_threads_hazard_ptr=" INTPTR_FORMAT, p2i(_threads_hazard_ptr));
 865   }
 866   if (_nested_threads_hazard_ptr != NULL) {
 867     print_nested_threads_hazard_ptrs_on(st);
 868   }
 869   st->print(" ");
 870   debug_only(if (WizardMode) print_owned_locks_on(st);)
 871 }
 872 
 873 void Thread::print_nested_threads_hazard_ptrs_on(outputStream* st) const {
 874   assert(_nested_threads_hazard_ptr != NULL, "must be set to print");
 875 
 876   if (EnableThreadSMRStatistics) {
 877     st->print(", _nested_threads_hazard_ptr_cnt=%u", _nested_threads_hazard_ptr_cnt);
 878   }
 879   st->print(", _nested_threads_hazard_ptrs=");
 880   for (NestedThreadsList* node = _nested_threads_hazard_ptr; node != NULL;
 881        node = node->next()) {
 882     if (node != _nested_threads_hazard_ptr) {
 883       // First node does not need a comma-space separator.
 884       st->print(", ");
 885     }
 886     st->print(INTPTR_FORMAT, p2i(node->t_list()));
 887   }
 888 }
 889 
 890 // Thread::print_on_error() is called by fatal error handler. Don't use
 891 // any lock or allocate memory.
 892 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 893   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 894 
 895   if (is_VM_thread())                 { st->print("VMThread"); }
 896   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 897   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 898   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 899   else                                { st->print("Thread"); }
 900 
 901   if (is_Named_thread()) {
 902     st->print(" \"%s\"", name());
 903   }
 904 
 905   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 906             p2i(stack_end()), p2i(stack_base()));
 907 
 908   if (osthread()) {
 909     st->print(" [id=%d]", osthread()->thread_id());
 910   }
 911 
 912   if (_threads_hazard_ptr != NULL) {
 913     st->print(" _threads_hazard_ptr=" INTPTR_FORMAT, p2i(_threads_hazard_ptr));
 914   }
 915   if (_nested_threads_hazard_ptr != NULL) {
 916     print_nested_threads_hazard_ptrs_on(st);
 917   }
 918 }
 919 
 920 void Thread::print_value_on(outputStream* st) const {
 921   if (is_Named_thread()) {
 922     st->print(" \"%s\" ", name());
 923   }
 924   st->print(INTPTR_FORMAT, p2i(this));   // print address
 925 }
 926 
 927 #ifdef ASSERT
 928 void Thread::print_owned_locks_on(outputStream* st) const {
 929   Monitor *cur = _owned_locks;
 930   if (cur == NULL) {
 931     st->print(" (no locks) ");
 932   } else {
 933     st->print_cr(" Locks owned:");
 934     while (cur) {
 935       cur->print_on(st);
 936       cur = cur->next();
 937     }
 938   }
 939 }
 940 
 941 static int ref_use_count  = 0;
 942 
 943 bool Thread::owns_locks_but_compiled_lock() const {
 944   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 945     if (cur != Compile_lock) return true;
 946   }
 947   return false;
 948 }
 949 
 950 
 951 #endif
 952 
 953 #ifndef PRODUCT
 954 
 955 // The flag: potential_vm_operation notifies if this particular safepoint state could potentially
 956 // invoke the vm-thread (e.g., an oop allocation). In that case, we also have to make sure that
 957 // no threads which allow_vm_block's are held
 958 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 959   // Check if current thread is allowed to block at a safepoint
 960   if (!(_allow_safepoint_count == 0)) {
 961     fatal("Possible safepoint reached by thread that does not allow it");
 962   }
 963   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 964     fatal("LEAF method calling lock?");
 965   }
 966 
 967 #ifdef ASSERT
 968   if (potential_vm_operation && is_Java_thread()
 969       && !Universe::is_bootstrapping()) {
 970     // Make sure we do not hold any locks that the VM thread also uses.
 971     // This could potentially lead to deadlocks
 972     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 973       // Threads_lock is special, since the safepoint synchronization will not start before this is
 974       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 975       // since it is used to transfer control between JavaThreads and the VMThread
 976       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 977       if ((cur->allow_vm_block() &&
 978            cur != Threads_lock &&
 979            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 980            cur != VMOperationRequest_lock &&
 981            cur != VMOperationQueue_lock) ||
 982            cur->rank() == Mutex::special) {
 983         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 984       }
 985     }
 986   }
 987 
 988   if (GCALotAtAllSafepoints) {
 989     // We could enter a safepoint here and thus have a gc
 990     InterfaceSupport::check_gc_alot();
 991   }
 992 #endif
 993 }
 994 #endif
 995 
 996 bool Thread::is_in_stack(address adr) const {
 997   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 998   address end = os::current_stack_pointer();
 999   // Allow non Java threads to call this without stack_base
1000   if (_stack_base == NULL) return true;
1001   if (stack_base() >= adr && adr >= end) return true;
1002 
1003   return false;
1004 }
1005 
1006 bool Thread::is_in_usable_stack(address adr) const {
1007   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1008   size_t usable_stack_size = _stack_size - stack_guard_size;
1009 
1010   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1011 }
1012 
1013 
1014 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1015 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1016 // used for compilation in the future. If that change is made, the need for these methods
1017 // should be revisited, and they should be removed if possible.
1018 
1019 bool Thread::is_lock_owned(address adr) const {
1020   return on_local_stack(adr);
1021 }
1022 
1023 bool Thread::set_as_starting_thread() {
1024   // NOTE: this must be called inside the main thread.
1025   return os::create_main_thread((JavaThread*)this);
1026 }
1027 
1028 static void initialize_class(Symbol* class_name, TRAPS) {
1029   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1030   InstanceKlass::cast(klass)->initialize(CHECK);
1031 }
1032 
1033 
1034 // Creates the initial ThreadGroup
1035 static Handle create_initial_thread_group(TRAPS) {
1036   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
1037   InstanceKlass* ik = InstanceKlass::cast(k);
1038 
1039   Handle system_instance = ik->allocate_instance_handle(CHECK_NH);
1040   {
1041     JavaValue result(T_VOID);
1042     JavaCalls::call_special(&result,
1043                             system_instance,
1044                             ik,
1045                             vmSymbols::object_initializer_name(),
1046                             vmSymbols::void_method_signature(),
1047                             CHECK_NH);
1048   }
1049   Universe::set_system_thread_group(system_instance());
1050 
1051   Handle main_instance = ik->allocate_instance_handle(CHECK_NH);
1052   {
1053     JavaValue result(T_VOID);
1054     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1055     JavaCalls::call_special(&result,
1056                             main_instance,
1057                             ik,
1058                             vmSymbols::object_initializer_name(),
1059                             vmSymbols::threadgroup_string_void_signature(),
1060                             system_instance,
1061                             string,
1062                             CHECK_NH);
1063   }
1064   return main_instance;
1065 }
1066 
1067 // Creates the initial Thread
1068 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1069                                  TRAPS) {
1070   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1071   InstanceKlass* ik = InstanceKlass::cast(k);
1072   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1073 
1074   java_lang_Thread::set_thread(thread_oop(), thread);
1075   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1076   thread->set_threadObj(thread_oop());
1077 
1078   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1079 
1080   JavaValue result(T_VOID);
1081   JavaCalls::call_special(&result, thread_oop,
1082                           ik,
1083                           vmSymbols::object_initializer_name(),
1084                           vmSymbols::threadgroup_string_void_signature(),
1085                           thread_group,
1086                           string,
1087                           CHECK_NULL);
1088   return thread_oop();
1089 }
1090 
1091 char java_runtime_name[128] = "";
1092 char java_runtime_version[128] = "";
1093 
1094 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1095 static const char* get_java_runtime_name(TRAPS) {
1096   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1097                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1098   fieldDescriptor fd;
1099   bool found = k != NULL &&
1100                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1101                                                         vmSymbols::string_signature(), &fd);
1102   if (found) {
1103     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1104     if (name_oop == NULL) {
1105       return NULL;
1106     }
1107     const char* name = java_lang_String::as_utf8_string(name_oop,
1108                                                         java_runtime_name,
1109                                                         sizeof(java_runtime_name));
1110     return name;
1111   } else {
1112     return NULL;
1113   }
1114 }
1115 
1116 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1117 static const char* get_java_runtime_version(TRAPS) {
1118   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1119                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1120   fieldDescriptor fd;
1121   bool found = k != NULL &&
1122                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1123                                                         vmSymbols::string_signature(), &fd);
1124   if (found) {
1125     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1126     if (name_oop == NULL) {
1127       return NULL;
1128     }
1129     const char* name = java_lang_String::as_utf8_string(name_oop,
1130                                                         java_runtime_version,
1131                                                         sizeof(java_runtime_version));
1132     return name;
1133   } else {
1134     return NULL;
1135   }
1136 }
1137 
1138 // General purpose hook into Java code, run once when the VM is initialized.
1139 // The Java library method itself may be changed independently from the VM.
1140 static void call_postVMInitHook(TRAPS) {
1141   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1142   if (klass != NULL) {
1143     JavaValue result(T_VOID);
1144     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1145                            vmSymbols::void_method_signature(),
1146                            CHECK);
1147   }
1148 }
1149 
1150 static void reset_vm_info_property(TRAPS) {
1151   // the vm info string
1152   ResourceMark rm(THREAD);
1153   const char *vm_info = VM_Version::vm_info_string();
1154 
1155   // java.lang.System class
1156   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1157 
1158   // setProperty arguments
1159   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1160   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1161 
1162   // return value
1163   JavaValue r(T_OBJECT);
1164 
1165   // public static String setProperty(String key, String value);
1166   JavaCalls::call_static(&r,
1167                          klass,
1168                          vmSymbols::setProperty_name(),
1169                          vmSymbols::string_string_string_signature(),
1170                          key_str,
1171                          value_str,
1172                          CHECK);
1173 }
1174 
1175 
1176 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1177                                     bool daemon, TRAPS) {
1178   assert(thread_group.not_null(), "thread group should be specified");
1179   assert(threadObj() == NULL, "should only create Java thread object once");
1180 
1181   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1182   InstanceKlass* ik = InstanceKlass::cast(k);
1183   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1184 
1185   java_lang_Thread::set_thread(thread_oop(), this);
1186   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1187   set_threadObj(thread_oop());
1188 
1189   JavaValue result(T_VOID);
1190   if (thread_name != NULL) {
1191     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1192     // Thread gets assigned specified name and null target
1193     JavaCalls::call_special(&result,
1194                             thread_oop,
1195                             ik,
1196                             vmSymbols::object_initializer_name(),
1197                             vmSymbols::threadgroup_string_void_signature(),
1198                             thread_group, // Argument 1
1199                             name,         // Argument 2
1200                             THREAD);
1201   } else {
1202     // Thread gets assigned name "Thread-nnn" and null target
1203     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1204     JavaCalls::call_special(&result,
1205                             thread_oop,
1206                             ik,
1207                             vmSymbols::object_initializer_name(),
1208                             vmSymbols::threadgroup_runnable_void_signature(),
1209                             thread_group, // Argument 1
1210                             Handle(),     // Argument 2
1211                             THREAD);
1212   }
1213 
1214 
1215   if (daemon) {
1216     java_lang_Thread::set_daemon(thread_oop());
1217   }
1218 
1219   if (HAS_PENDING_EXCEPTION) {
1220     return;
1221   }
1222 
1223   Klass* group =  SystemDictionary::ThreadGroup_klass();
1224   Handle threadObj(THREAD, this->threadObj());
1225 
1226   JavaCalls::call_special(&result,
1227                           thread_group,
1228                           group,
1229                           vmSymbols::add_method_name(),
1230                           vmSymbols::thread_void_signature(),
1231                           threadObj,          // Arg 1
1232                           THREAD);
1233 }
1234 
1235 // NamedThread --  non-JavaThread subclasses with multiple
1236 // uniquely named instances should derive from this.
1237 NamedThread::NamedThread() : Thread() {
1238   _name = NULL;
1239   _processed_thread = NULL;
1240   _gc_id = GCId::undefined();
1241 }
1242 
1243 NamedThread::~NamedThread() {
1244   if (_name != NULL) {
1245     FREE_C_HEAP_ARRAY(char, _name);
1246     _name = NULL;
1247   }
1248 }
1249 
1250 void NamedThread::set_name(const char* format, ...) {
1251   guarantee(_name == NULL, "Only get to set name once.");
1252   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1253   guarantee(_name != NULL, "alloc failure");
1254   va_list ap;
1255   va_start(ap, format);
1256   jio_vsnprintf(_name, max_name_len, format, ap);
1257   va_end(ap);
1258 }
1259 
1260 void NamedThread::initialize_named_thread() {
1261   set_native_thread_name(name());
1262 }
1263 
1264 void NamedThread::print_on(outputStream* st) const {
1265   st->print("\"%s\" ", name());
1266   Thread::print_on(st);
1267   st->cr();
1268 }
1269 
1270 
1271 // ======= WatcherThread ========
1272 
1273 // The watcher thread exists to simulate timer interrupts.  It should
1274 // be replaced by an abstraction over whatever native support for
1275 // timer interrupts exists on the platform.
1276 
1277 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1278 bool WatcherThread::_startable = false;
1279 volatile bool  WatcherThread::_should_terminate = false;
1280 
1281 WatcherThread::WatcherThread() : Thread() {
1282   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1283   if (os::create_thread(this, os::watcher_thread)) {
1284     _watcher_thread = this;
1285 
1286     // Set the watcher thread to the highest OS priority which should not be
1287     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1288     // is created. The only normal thread using this priority is the reference
1289     // handler thread, which runs for very short intervals only.
1290     // If the VMThread's priority is not lower than the WatcherThread profiling
1291     // will be inaccurate.
1292     os::set_priority(this, MaxPriority);
1293     if (!DisableStartThread) {
1294       os::start_thread(this);
1295     }
1296   }
1297 }
1298 
1299 int WatcherThread::sleep() const {
1300   // The WatcherThread does not participate in the safepoint protocol
1301   // for the PeriodicTask_lock because it is not a JavaThread.
1302   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1303 
1304   if (_should_terminate) {
1305     // check for termination before we do any housekeeping or wait
1306     return 0;  // we did not sleep.
1307   }
1308 
1309   // remaining will be zero if there are no tasks,
1310   // causing the WatcherThread to sleep until a task is
1311   // enrolled
1312   int remaining = PeriodicTask::time_to_wait();
1313   int time_slept = 0;
1314 
1315   // we expect this to timeout - we only ever get unparked when
1316   // we should terminate or when a new task has been enrolled
1317   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1318 
1319   jlong time_before_loop = os::javaTimeNanos();
1320 
1321   while (true) {
1322     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1323                                             remaining);
1324     jlong now = os::javaTimeNanos();
1325 
1326     if (remaining == 0) {
1327       // if we didn't have any tasks we could have waited for a long time
1328       // consider the time_slept zero and reset time_before_loop
1329       time_slept = 0;
1330       time_before_loop = now;
1331     } else {
1332       // need to recalculate since we might have new tasks in _tasks
1333       time_slept = (int) ((now - time_before_loop) / 1000000);
1334     }
1335 
1336     // Change to task list or spurious wakeup of some kind
1337     if (timedout || _should_terminate) {
1338       break;
1339     }
1340 
1341     remaining = PeriodicTask::time_to_wait();
1342     if (remaining == 0) {
1343       // Last task was just disenrolled so loop around and wait until
1344       // another task gets enrolled
1345       continue;
1346     }
1347 
1348     remaining -= time_slept;
1349     if (remaining <= 0) {
1350       break;
1351     }
1352   }
1353 
1354   return time_slept;
1355 }
1356 
1357 void WatcherThread::run() {
1358   assert(this == watcher_thread(), "just checking");
1359 
1360   this->record_stack_base_and_size();
1361   this->set_native_thread_name(this->name());
1362   this->set_active_handles(JNIHandleBlock::allocate_block());
1363   while (true) {
1364     assert(watcher_thread() == Thread::current(), "thread consistency check");
1365     assert(watcher_thread() == this, "thread consistency check");
1366 
1367     // Calculate how long it'll be until the next PeriodicTask work
1368     // should be done, and sleep that amount of time.
1369     int time_waited = sleep();
1370 
1371     if (VMError::is_error_reported()) {
1372       // A fatal error has happened, the error handler(VMError::report_and_die)
1373       // should abort JVM after creating an error log file. However in some
1374       // rare cases, the error handler itself might deadlock. Here periodically
1375       // check for error reporting timeouts, and if it happens, just proceed to
1376       // abort the VM.
1377 
1378       // This code is in WatcherThread because WatcherThread wakes up
1379       // periodically so the fatal error handler doesn't need to do anything;
1380       // also because the WatcherThread is less likely to crash than other
1381       // threads.
1382 
1383       for (;;) {
1384         // Note: we use naked sleep in this loop because we want to avoid using
1385         // any kind of VM infrastructure which may be broken at this point.
1386         if (VMError::check_timeout()) {
1387           // We hit error reporting timeout. Error reporting was interrupted and
1388           // will be wrapping things up now (closing files etc). Give it some more
1389           // time, then quit the VM.
1390           os::naked_short_sleep(200);
1391           // Print a message to stderr.
1392           fdStream err(defaultStream::output_fd());
1393           err.print_raw_cr("# [ timer expired, abort... ]");
1394           // skip atexit/vm_exit/vm_abort hooks
1395           os::die();
1396         }
1397 
1398         // Wait a second, then recheck for timeout.
1399         os::naked_short_sleep(999);
1400       }
1401     }
1402 
1403     if (_should_terminate) {
1404       // check for termination before posting the next tick
1405       break;
1406     }
1407 
1408     PeriodicTask::real_time_tick(time_waited);
1409   }
1410 
1411   // Signal that it is terminated
1412   {
1413     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1414     _watcher_thread = NULL;
1415     Terminator_lock->notify();
1416   }
1417 }
1418 
1419 void WatcherThread::start() {
1420   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1421 
1422   if (watcher_thread() == NULL && _startable) {
1423     _should_terminate = false;
1424     // Create the single instance of WatcherThread
1425     new WatcherThread();
1426   }
1427 }
1428 
1429 void WatcherThread::make_startable() {
1430   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1431   _startable = true;
1432 }
1433 
1434 void WatcherThread::stop() {
1435   {
1436     // Follow normal safepoint aware lock enter protocol since the
1437     // WatcherThread is stopped by another JavaThread.
1438     MutexLocker ml(PeriodicTask_lock);
1439     _should_terminate = true;
1440 
1441     WatcherThread* watcher = watcher_thread();
1442     if (watcher != NULL) {
1443       // unpark the WatcherThread so it can see that it should terminate
1444       watcher->unpark();
1445     }
1446   }
1447 
1448   MutexLocker mu(Terminator_lock);
1449 
1450   while (watcher_thread() != NULL) {
1451     // This wait should make safepoint checks, wait without a timeout,
1452     // and wait as a suspend-equivalent condition.
1453     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1454                           Mutex::_as_suspend_equivalent_flag);
1455   }
1456 }
1457 
1458 void WatcherThread::unpark() {
1459   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1460   PeriodicTask_lock->notify();
1461 }
1462 
1463 void WatcherThread::print_on(outputStream* st) const {
1464   st->print("\"%s\" ", name());
1465   Thread::print_on(st);
1466   st->cr();
1467 }
1468 
1469 // ======= JavaThread ========
1470 
1471 #if INCLUDE_JVMCI
1472 
1473 jlong* JavaThread::_jvmci_old_thread_counters;
1474 
1475 bool jvmci_counters_include(JavaThread* thread) {
1476   oop threadObj = thread->threadObj();
1477   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1478 }
1479 
1480 void JavaThread::collect_counters(typeArrayOop array) {
1481   if (JVMCICounterSize > 0) {
1482     MutexLocker tl(Threads_lock);
1483     JavaThreadIteratorWithHandle jtiwh;
1484     for (int i = 0; i < array->length(); i++) {
1485       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1486     }
1487     for (; JavaThread *tp = jtiwh.next(); ) {
1488       if (jvmci_counters_include(tp)) {
1489         for (int i = 0; i < array->length(); i++) {
1490           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1491         }
1492       }
1493     }
1494   }
1495 }
1496 
1497 #endif // INCLUDE_JVMCI
1498 
1499 // A JavaThread is a normal Java thread
1500 
1501 void JavaThread::initialize() {
1502   // Initialize fields
1503 
1504   set_saved_exception_pc(NULL);
1505   set_threadObj(NULL);
1506   _anchor.clear();
1507   set_entry_point(NULL);
1508   set_jni_functions(jni_functions());
1509   set_callee_target(NULL);
1510   set_vm_result(NULL);
1511   set_vm_result_2(NULL);
1512   set_vframe_array_head(NULL);
1513   set_vframe_array_last(NULL);
1514   set_deferred_locals(NULL);
1515   set_deopt_mark(NULL);
1516   set_deopt_compiled_method(NULL);
1517   clear_must_deopt_id();
1518   set_monitor_chunks(NULL);
1519   set_next(NULL);
1520   _on_thread_list = false;
1521   set_thread_state(_thread_new);
1522   _terminated = _not_terminated;
1523   _privileged_stack_top = NULL;
1524   _array_for_gc = NULL;
1525   _suspend_equivalent = false;
1526   _in_deopt_handler = 0;
1527   _doing_unsafe_access = false;
1528   _stack_guard_state = stack_guard_unused;
1529 #if INCLUDE_JVMCI
1530   _pending_monitorenter = false;
1531   _pending_deoptimization = -1;
1532   _pending_failed_speculation = NULL;
1533   _pending_transfer_to_interpreter = false;
1534   _adjusting_comp_level = false;
1535   _jvmci._alternate_call_target = NULL;
1536   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1537   if (JVMCICounterSize > 0) {
1538     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1539     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1540   } else {
1541     _jvmci_counters = NULL;
1542   }
1543 #endif // INCLUDE_JVMCI
1544   _reserved_stack_activation = NULL;  // stack base not known yet
1545   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1546   _exception_pc  = 0;
1547   _exception_handler_pc = 0;
1548   _is_method_handle_return = 0;
1549   _jvmti_thread_state= NULL;
1550   _should_post_on_exceptions_flag = JNI_FALSE;
1551   _jvmti_get_loaded_classes_closure = NULL;
1552   _interp_only_mode    = 0;
1553   _special_runtime_exit_condition = _no_async_condition;
1554   _pending_async_exception = NULL;
1555   _thread_stat = NULL;
1556   _thread_stat = new ThreadStatistics();
1557   _blocked_on_compilation = false;
1558   _jni_active_critical = 0;
1559   _pending_jni_exception_check_fn = NULL;
1560   _do_not_unlock_if_synchronized = false;
1561   _cached_monitor_info = NULL;
1562   _parker = Parker::Allocate(this);
1563 
1564 #ifndef PRODUCT
1565   _jmp_ring_index = 0;
1566   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1567     record_jump(NULL, NULL, NULL, 0);
1568   }
1569 #endif // PRODUCT
1570 
1571   // Setup safepoint state info for this thread
1572   ThreadSafepointState::create(this);
1573 
1574   debug_only(_java_call_counter = 0);
1575 
1576   // JVMTI PopFrame support
1577   _popframe_condition = popframe_inactive;
1578   _popframe_preserved_args = NULL;
1579   _popframe_preserved_args_size = 0;
1580   _frames_to_pop_failed_realloc = 0;
1581 
1582   if (SafepointMechanism::uses_thread_local_poll()) {
1583     SafepointMechanism::initialize_header(this);
1584   }
1585 
1586   pd_initialize();
1587 }
1588 
1589 #if INCLUDE_ALL_GCS
1590 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1591 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1592 #endif // INCLUDE_ALL_GCS
1593 
1594 JavaThread::JavaThread(bool is_attaching_via_jni) :
1595                        Thread()
1596 #if INCLUDE_ALL_GCS
1597                        , _satb_mark_queue(&_satb_mark_queue_set),
1598                        _dirty_card_queue(&_dirty_card_queue_set)
1599 #endif // INCLUDE_ALL_GCS
1600 {
1601   initialize();
1602   if (is_attaching_via_jni) {
1603     _jni_attach_state = _attaching_via_jni;
1604   } else {
1605     _jni_attach_state = _not_attaching_via_jni;
1606   }
1607   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1608 }
1609 
1610 bool JavaThread::reguard_stack(address cur_sp) {
1611   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1612       && _stack_guard_state != stack_guard_reserved_disabled) {
1613     return true; // Stack already guarded or guard pages not needed.
1614   }
1615 
1616   if (register_stack_overflow()) {
1617     // For those architectures which have separate register and
1618     // memory stacks, we must check the register stack to see if
1619     // it has overflowed.
1620     return false;
1621   }
1622 
1623   // Java code never executes within the yellow zone: the latter is only
1624   // there to provoke an exception during stack banging.  If java code
1625   // is executing there, either StackShadowPages should be larger, or
1626   // some exception code in c1, c2 or the interpreter isn't unwinding
1627   // when it should.
1628   guarantee(cur_sp > stack_reserved_zone_base(),
1629             "not enough space to reguard - increase StackShadowPages");
1630   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1631     enable_stack_yellow_reserved_zone();
1632     if (reserved_stack_activation() != stack_base()) {
1633       set_reserved_stack_activation(stack_base());
1634     }
1635   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1636     set_reserved_stack_activation(stack_base());
1637     enable_stack_reserved_zone();
1638   }
1639   return true;
1640 }
1641 
1642 bool JavaThread::reguard_stack(void) {
1643   return reguard_stack(os::current_stack_pointer());
1644 }
1645 
1646 
1647 void JavaThread::block_if_vm_exited() {
1648   if (_terminated == _vm_exited) {
1649     // _vm_exited is set at safepoint, and Threads_lock is never released
1650     // we will block here forever
1651     Threads_lock->lock_without_safepoint_check();
1652     ShouldNotReachHere();
1653   }
1654 }
1655 
1656 
1657 // Remove this ifdef when C1 is ported to the compiler interface.
1658 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1659 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1660 
1661 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1662                        Thread()
1663 #if INCLUDE_ALL_GCS
1664                        , _satb_mark_queue(&_satb_mark_queue_set),
1665                        _dirty_card_queue(&_dirty_card_queue_set)
1666 #endif // INCLUDE_ALL_GCS
1667 {
1668   initialize();
1669   _jni_attach_state = _not_attaching_via_jni;
1670   set_entry_point(entry_point);
1671   // Create the native thread itself.
1672   // %note runtime_23
1673   os::ThreadType thr_type = os::java_thread;
1674   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1675                                                      os::java_thread;
1676   os::create_thread(this, thr_type, stack_sz);
1677   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1678   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1679   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1680   // the exception consists of creating the exception object & initializing it, initialization
1681   // will leave the VM via a JavaCall and then all locks must be unlocked).
1682   //
1683   // The thread is still suspended when we reach here. Thread must be explicit started
1684   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1685   // by calling Threads:add. The reason why this is not done here, is because the thread
1686   // object must be fully initialized (take a look at JVM_Start)
1687 }
1688 
1689 JavaThread::~JavaThread() {
1690 
1691   // JSR166 -- return the parker to the free list
1692   Parker::Release(_parker);
1693   _parker = NULL;
1694 
1695   // Free any remaining  previous UnrollBlock
1696   vframeArray* old_array = vframe_array_last();
1697 
1698   if (old_array != NULL) {
1699     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1700     old_array->set_unroll_block(NULL);
1701     delete old_info;
1702     delete old_array;
1703   }
1704 
1705   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1706   if (deferred != NULL) {
1707     // This can only happen if thread is destroyed before deoptimization occurs.
1708     assert(deferred->length() != 0, "empty array!");
1709     do {
1710       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1711       deferred->remove_at(0);
1712       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1713       delete dlv;
1714     } while (deferred->length() != 0);
1715     delete deferred;
1716   }
1717 
1718   // All Java related clean up happens in exit
1719   ThreadSafepointState::destroy(this);
1720   if (_thread_stat != NULL) delete _thread_stat;
1721 
1722 #if INCLUDE_JVMCI
1723   if (JVMCICounterSize > 0) {
1724     if (jvmci_counters_include(this)) {
1725       for (int i = 0; i < JVMCICounterSize; i++) {
1726         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1727       }
1728     }
1729     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1730   }
1731 #endif // INCLUDE_JVMCI
1732 }
1733 
1734 
1735 // The first routine called by a new Java thread
1736 void JavaThread::run() {
1737   // initialize thread-local alloc buffer related fields
1738   this->initialize_tlab();
1739 
1740   // used to test validity of stack trace backs
1741   this->record_base_of_stack_pointer();
1742 
1743   // Record real stack base and size.
1744   this->record_stack_base_and_size();
1745 
1746   this->create_stack_guard_pages();
1747 
1748   this->cache_global_variables();
1749 
1750   // Thread is now sufficient initialized to be handled by the safepoint code as being
1751   // in the VM. Change thread state from _thread_new to _thread_in_vm
1752   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1753 
1754   assert(JavaThread::current() == this, "sanity check");
1755   assert(!Thread::current()->owns_locks(), "sanity check");
1756 
1757   DTRACE_THREAD_PROBE(start, this);
1758 
1759   // This operation might block. We call that after all safepoint checks for a new thread has
1760   // been completed.
1761   this->set_active_handles(JNIHandleBlock::allocate_block());
1762 
1763   if (JvmtiExport::should_post_thread_life()) {
1764     JvmtiExport::post_thread_start(this);
1765   }
1766 
1767   EventThreadStart event;
1768   if (event.should_commit()) {
1769     event.set_thread(THREAD_TRACE_ID(this));
1770     event.commit();
1771   }
1772 
1773   // We call another function to do the rest so we are sure that the stack addresses used
1774   // from there will be lower than the stack base just computed
1775   thread_main_inner();
1776 
1777   // Note, thread is no longer valid at this point!
1778 }
1779 
1780 
1781 void JavaThread::thread_main_inner() {
1782   assert(JavaThread::current() == this, "sanity check");
1783   assert(this->threadObj() != NULL, "just checking");
1784 
1785   // Execute thread entry point unless this thread has a pending exception
1786   // or has been stopped before starting.
1787   // Note: Due to JVM_StopThread we can have pending exceptions already!
1788   if (!this->has_pending_exception() &&
1789       !java_lang_Thread::is_stillborn(this->threadObj())) {
1790     {
1791       ResourceMark rm(this);
1792       this->set_native_thread_name(this->get_thread_name());
1793     }
1794     HandleMark hm(this);
1795     this->entry_point()(this, this);
1796   }
1797 
1798   DTRACE_THREAD_PROBE(stop, this);
1799 
1800   this->exit(false);
1801   this->smr_delete();
1802 }
1803 
1804 
1805 static void ensure_join(JavaThread* thread) {
1806   // We do not need to grab the Threads_lock, since we are operating on ourself.
1807   Handle threadObj(thread, thread->threadObj());
1808   assert(threadObj.not_null(), "java thread object must exist");
1809   ObjectLocker lock(threadObj, thread);
1810   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1811   thread->clear_pending_exception();
1812   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1813   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1814   // Clear the native thread instance - this makes isAlive return false and allows the join()
1815   // to complete once we've done the notify_all below
1816   java_lang_Thread::set_thread(threadObj(), NULL);
1817   lock.notify_all(thread);
1818   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1819   thread->clear_pending_exception();
1820 }
1821 
1822 
1823 // For any new cleanup additions, please check to see if they need to be applied to
1824 // cleanup_failed_attach_current_thread as well.
1825 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1826   assert(this == JavaThread::current(), "thread consistency check");
1827 
1828   elapsedTimer _timer_exit_phase1;
1829   elapsedTimer _timer_exit_phase2;
1830   elapsedTimer _timer_exit_phase3;
1831   elapsedTimer _timer_exit_phase4;
1832 
1833   if (log_is_enabled(Debug, os, thread, timer)) {
1834     _timer_exit_phase1.start();
1835   }
1836 
1837   HandleMark hm(this);
1838   Handle uncaught_exception(this, this->pending_exception());
1839   this->clear_pending_exception();
1840   Handle threadObj(this, this->threadObj());
1841   assert(threadObj.not_null(), "Java thread object should be created");
1842 
1843   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1844   {
1845     EXCEPTION_MARK;
1846 
1847     CLEAR_PENDING_EXCEPTION;
1848   }
1849   if (!destroy_vm) {
1850     if (uncaught_exception.not_null()) {
1851       EXCEPTION_MARK;
1852       // Call method Thread.dispatchUncaughtException().
1853       Klass* thread_klass = SystemDictionary::Thread_klass();
1854       JavaValue result(T_VOID);
1855       JavaCalls::call_virtual(&result,
1856                               threadObj, thread_klass,
1857                               vmSymbols::dispatchUncaughtException_name(),
1858                               vmSymbols::throwable_void_signature(),
1859                               uncaught_exception,
1860                               THREAD);
1861       if (HAS_PENDING_EXCEPTION) {
1862         ResourceMark rm(this);
1863         jio_fprintf(defaultStream::error_stream(),
1864                     "\nException: %s thrown from the UncaughtExceptionHandler"
1865                     " in thread \"%s\"\n",
1866                     pending_exception()->klass()->external_name(),
1867                     get_thread_name());
1868         CLEAR_PENDING_EXCEPTION;
1869       }
1870     }
1871 
1872     // Called before the java thread exit since we want to read info
1873     // from java_lang_Thread object
1874     EventThreadEnd event;
1875     if (event.should_commit()) {
1876       event.set_thread(THREAD_TRACE_ID(this));
1877       event.commit();
1878     }
1879 
1880     // Call after last event on thread
1881     EVENT_THREAD_EXIT(this);
1882 
1883     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1884     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1885     // is deprecated anyhow.
1886     if (!is_Compiler_thread()) {
1887       int count = 3;
1888       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1889         EXCEPTION_MARK;
1890         JavaValue result(T_VOID);
1891         Klass* thread_klass = SystemDictionary::Thread_klass();
1892         JavaCalls::call_virtual(&result,
1893                                 threadObj, thread_klass,
1894                                 vmSymbols::exit_method_name(),
1895                                 vmSymbols::void_method_signature(),
1896                                 THREAD);
1897         CLEAR_PENDING_EXCEPTION;
1898       }
1899     }
1900     // notify JVMTI
1901     if (JvmtiExport::should_post_thread_life()) {
1902       JvmtiExport::post_thread_end(this);
1903     }
1904 
1905     // We have notified the agents that we are exiting, before we go on,
1906     // we must check for a pending external suspend request and honor it
1907     // in order to not surprise the thread that made the suspend request.
1908     while (true) {
1909       {
1910         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1911         if (!is_external_suspend()) {
1912           set_terminated(_thread_exiting);
1913           ThreadService::current_thread_exiting(this);
1914           break;
1915         }
1916         // Implied else:
1917         // Things get a little tricky here. We have a pending external
1918         // suspend request, but we are holding the SR_lock so we
1919         // can't just self-suspend. So we temporarily drop the lock
1920         // and then self-suspend.
1921       }
1922 
1923       ThreadBlockInVM tbivm(this);
1924       java_suspend_self();
1925 
1926       // We're done with this suspend request, but we have to loop around
1927       // and check again. Eventually we will get SR_lock without a pending
1928       // external suspend request and will be able to mark ourselves as
1929       // exiting.
1930     }
1931     // no more external suspends are allowed at this point
1932   } else {
1933     // before_exit() has already posted JVMTI THREAD_END events
1934   }
1935 
1936   if (log_is_enabled(Debug, os, thread, timer)) {
1937     _timer_exit_phase1.stop();
1938     _timer_exit_phase2.start();
1939   }
1940   // Notify waiters on thread object. This has to be done after exit() is called
1941   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1942   // group should have the destroyed bit set before waiters are notified).
1943   ensure_join(this);
1944   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1945 
1946   if (log_is_enabled(Debug, os, thread, timer)) {
1947     _timer_exit_phase2.stop();
1948     _timer_exit_phase3.start();
1949   }
1950   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1951   // held by this thread must be released. The spec does not distinguish
1952   // between JNI-acquired and regular Java monitors. We can only see
1953   // regular Java monitors here if monitor enter-exit matching is broken.
1954   //
1955   // Optionally release any monitors for regular JavaThread exits. This
1956   // is provided as a work around for any bugs in monitor enter-exit
1957   // matching. This can be expensive so it is not enabled by default.
1958   //
1959   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1960   // ObjectSynchronizer::release_monitors_owned_by_thread().
1961   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1962     // Sanity check even though JNI DetachCurrentThread() would have
1963     // returned JNI_ERR if there was a Java frame. JavaThread exit
1964     // should be done executing Java code by the time we get here.
1965     assert(!this->has_last_Java_frame(),
1966            "should not have a Java frame when detaching or exiting");
1967     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1968     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1969   }
1970 
1971   // These things needs to be done while we are still a Java Thread. Make sure that thread
1972   // is in a consistent state, in case GC happens
1973   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1974 
1975   if (active_handles() != NULL) {
1976     JNIHandleBlock* block = active_handles();
1977     set_active_handles(NULL);
1978     JNIHandleBlock::release_block(block);
1979   }
1980 
1981   if (free_handle_block() != NULL) {
1982     JNIHandleBlock* block = free_handle_block();
1983     set_free_handle_block(NULL);
1984     JNIHandleBlock::release_block(block);
1985   }
1986 
1987   // These have to be removed while this is still a valid thread.
1988   remove_stack_guard_pages();
1989 
1990   if (UseTLAB) {
1991     tlab().make_parsable(true);  // retire TLAB
1992   }
1993 
1994   if (JvmtiEnv::environments_might_exist()) {
1995     JvmtiExport::cleanup_thread(this);
1996   }
1997 
1998   // We must flush any deferred card marks before removing a thread from
1999   // the list of active threads.
2000   Universe::heap()->flush_deferred_store_barrier(this);
2001   assert(deferred_card_mark().is_empty(), "Should have been flushed");
2002 
2003 #if INCLUDE_ALL_GCS
2004   // We must flush the G1-related buffers before removing a thread
2005   // from the list of active threads. We must do this after any deferred
2006   // card marks have been flushed (above) so that any entries that are
2007   // added to the thread's dirty card queue as a result are not lost.
2008   if (UseG1GC) {
2009     flush_barrier_queues();
2010   }
2011 #endif // INCLUDE_ALL_GCS
2012 
2013   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2014     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2015     os::current_thread_id());
2016 
2017   if (log_is_enabled(Debug, os, thread, timer)) {
2018     _timer_exit_phase3.stop();
2019     _timer_exit_phase4.start();
2020   }
2021   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2022   Threads::remove(this);
2023 
2024   if (log_is_enabled(Debug, os, thread, timer)) {
2025     _timer_exit_phase4.stop();
2026     ResourceMark rm(this);
2027     log_debug(os, thread, timer)("name='%s'"
2028                                  ", exit-phase1=" JLONG_FORMAT
2029                                  ", exit-phase2=" JLONG_FORMAT
2030                                  ", exit-phase3=" JLONG_FORMAT
2031                                  ", exit-phase4=" JLONG_FORMAT,
2032                                  get_thread_name(),
2033                                  _timer_exit_phase1.milliseconds(),
2034                                  _timer_exit_phase2.milliseconds(),
2035                                  _timer_exit_phase3.milliseconds(),
2036                                  _timer_exit_phase4.milliseconds());
2037   }
2038 }
2039 
2040 #if INCLUDE_ALL_GCS
2041 // Flush G1-related queues.
2042 void JavaThread::flush_barrier_queues() {
2043   satb_mark_queue().flush();
2044   dirty_card_queue().flush();
2045 }
2046 
2047 void JavaThread::initialize_queues() {
2048   assert(!SafepointSynchronize::is_at_safepoint(),
2049          "we should not be at a safepoint");
2050 
2051   SATBMarkQueue& satb_queue = satb_mark_queue();
2052   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
2053   // The SATB queue should have been constructed with its active
2054   // field set to false.
2055   assert(!satb_queue.is_active(), "SATB queue should not be active");
2056   assert(satb_queue.is_empty(), "SATB queue should be empty");
2057   // If we are creating the thread during a marking cycle, we should
2058   // set the active field of the SATB queue to true.
2059   if (satb_queue_set.is_active()) {
2060     satb_queue.set_active(true);
2061   }
2062 
2063   DirtyCardQueue& dirty_queue = dirty_card_queue();
2064   // The dirty card queue should have been constructed with its
2065   // active field set to true.
2066   assert(dirty_queue.is_active(), "dirty card queue should be active");
2067 }
2068 #endif // INCLUDE_ALL_GCS
2069 
2070 void JavaThread::cleanup_failed_attach_current_thread() {
2071   if (active_handles() != NULL) {
2072     JNIHandleBlock* block = active_handles();
2073     set_active_handles(NULL);
2074     JNIHandleBlock::release_block(block);
2075   }
2076 
2077   if (free_handle_block() != NULL) {
2078     JNIHandleBlock* block = free_handle_block();
2079     set_free_handle_block(NULL);
2080     JNIHandleBlock::release_block(block);
2081   }
2082 
2083   // These have to be removed while this is still a valid thread.
2084   remove_stack_guard_pages();
2085 
2086   if (UseTLAB) {
2087     tlab().make_parsable(true);  // retire TLAB, if any
2088   }
2089 
2090 #if INCLUDE_ALL_GCS
2091   if (UseG1GC) {
2092     flush_barrier_queues();
2093   }
2094 #endif // INCLUDE_ALL_GCS
2095 
2096   Threads::remove(this);
2097   this->smr_delete();
2098 }
2099 
2100 
2101 
2102 
2103 JavaThread* JavaThread::active() {
2104   Thread* thread = Thread::current();
2105   if (thread->is_Java_thread()) {
2106     return (JavaThread*) thread;
2107   } else {
2108     assert(thread->is_VM_thread(), "this must be a vm thread");
2109     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2110     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2111     assert(ret->is_Java_thread(), "must be a Java thread");
2112     return ret;
2113   }
2114 }
2115 
2116 bool JavaThread::is_lock_owned(address adr) const {
2117   if (Thread::is_lock_owned(adr)) return true;
2118 
2119   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2120     if (chunk->contains(adr)) return true;
2121   }
2122 
2123   return false;
2124 }
2125 
2126 
2127 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2128   chunk->set_next(monitor_chunks());
2129   set_monitor_chunks(chunk);
2130 }
2131 
2132 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2133   guarantee(monitor_chunks() != NULL, "must be non empty");
2134   if (monitor_chunks() == chunk) {
2135     set_monitor_chunks(chunk->next());
2136   } else {
2137     MonitorChunk* prev = monitor_chunks();
2138     while (prev->next() != chunk) prev = prev->next();
2139     prev->set_next(chunk->next());
2140   }
2141 }
2142 
2143 // JVM support.
2144 
2145 // Note: this function shouldn't block if it's called in
2146 // _thread_in_native_trans state (such as from
2147 // check_special_condition_for_native_trans()).
2148 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2149 
2150   if (has_last_Java_frame() && has_async_condition()) {
2151     // If we are at a polling page safepoint (not a poll return)
2152     // then we must defer async exception because live registers
2153     // will be clobbered by the exception path. Poll return is
2154     // ok because the call we a returning from already collides
2155     // with exception handling registers and so there is no issue.
2156     // (The exception handling path kills call result registers but
2157     //  this is ok since the exception kills the result anyway).
2158 
2159     if (is_at_poll_safepoint()) {
2160       // if the code we are returning to has deoptimized we must defer
2161       // the exception otherwise live registers get clobbered on the
2162       // exception path before deoptimization is able to retrieve them.
2163       //
2164       RegisterMap map(this, false);
2165       frame caller_fr = last_frame().sender(&map);
2166       assert(caller_fr.is_compiled_frame(), "what?");
2167       if (caller_fr.is_deoptimized_frame()) {
2168         log_info(exceptions)("deferred async exception at compiled safepoint");
2169         return;
2170       }
2171     }
2172   }
2173 
2174   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2175   if (condition == _no_async_condition) {
2176     // Conditions have changed since has_special_runtime_exit_condition()
2177     // was called:
2178     // - if we were here only because of an external suspend request,
2179     //   then that was taken care of above (or cancelled) so we are done
2180     // - if we were here because of another async request, then it has
2181     //   been cleared between the has_special_runtime_exit_condition()
2182     //   and now so again we are done
2183     return;
2184   }
2185 
2186   // Check for pending async. exception
2187   if (_pending_async_exception != NULL) {
2188     // Only overwrite an already pending exception, if it is not a threadDeath.
2189     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2190 
2191       // We cannot call Exceptions::_throw(...) here because we cannot block
2192       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2193 
2194       LogTarget(Info, exceptions) lt;
2195       if (lt.is_enabled()) {
2196         ResourceMark rm;
2197         LogStream ls(lt);
2198         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2199           if (has_last_Java_frame()) {
2200             frame f = last_frame();
2201            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2202           }
2203         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2204       }
2205       _pending_async_exception = NULL;
2206       clear_has_async_exception();
2207     }
2208   }
2209 
2210   if (check_unsafe_error &&
2211       condition == _async_unsafe_access_error && !has_pending_exception()) {
2212     condition = _no_async_condition;  // done
2213     switch (thread_state()) {
2214     case _thread_in_vm: {
2215       JavaThread* THREAD = this;
2216       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2217     }
2218     case _thread_in_native: {
2219       ThreadInVMfromNative tiv(this);
2220       JavaThread* THREAD = this;
2221       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2222     }
2223     case _thread_in_Java: {
2224       ThreadInVMfromJava tiv(this);
2225       JavaThread* THREAD = this;
2226       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2227     }
2228     default:
2229       ShouldNotReachHere();
2230     }
2231   }
2232 
2233   assert(condition == _no_async_condition || has_pending_exception() ||
2234          (!check_unsafe_error && condition == _async_unsafe_access_error),
2235          "must have handled the async condition, if no exception");
2236 }
2237 
2238 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2239   //
2240   // Check for pending external suspend. Internal suspend requests do
2241   // not use handle_special_runtime_exit_condition().
2242   // If JNIEnv proxies are allowed, don't self-suspend if the target
2243   // thread is not the current thread. In older versions of jdbx, jdbx
2244   // threads could call into the VM with another thread's JNIEnv so we
2245   // can be here operating on behalf of a suspended thread (4432884).
2246   bool do_self_suspend = is_external_suspend_with_lock();
2247   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2248     //
2249     // Because thread is external suspended the safepoint code will count
2250     // thread as at a safepoint. This can be odd because we can be here
2251     // as _thread_in_Java which would normally transition to _thread_blocked
2252     // at a safepoint. We would like to mark the thread as _thread_blocked
2253     // before calling java_suspend_self like all other callers of it but
2254     // we must then observe proper safepoint protocol. (We can't leave
2255     // _thread_blocked with a safepoint in progress). However we can be
2256     // here as _thread_in_native_trans so we can't use a normal transition
2257     // constructor/destructor pair because they assert on that type of
2258     // transition. We could do something like:
2259     //
2260     // JavaThreadState state = thread_state();
2261     // set_thread_state(_thread_in_vm);
2262     // {
2263     //   ThreadBlockInVM tbivm(this);
2264     //   java_suspend_self()
2265     // }
2266     // set_thread_state(_thread_in_vm_trans);
2267     // if (safepoint) block;
2268     // set_thread_state(state);
2269     //
2270     // but that is pretty messy. Instead we just go with the way the
2271     // code has worked before and note that this is the only path to
2272     // java_suspend_self that doesn't put the thread in _thread_blocked
2273     // mode.
2274 
2275     frame_anchor()->make_walkable(this);
2276     java_suspend_self();
2277 
2278     // We might be here for reasons in addition to the self-suspend request
2279     // so check for other async requests.
2280   }
2281 
2282   if (check_asyncs) {
2283     check_and_handle_async_exceptions();
2284   }
2285 #if INCLUDE_TRACE
2286   if (is_trace_suspend()) {
2287     TRACE_SUSPEND_THREAD(this);
2288   }
2289 #endif
2290 }
2291 
2292 void JavaThread::send_thread_stop(oop java_throwable)  {
2293   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2294   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2295   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2296 
2297   // Do not throw asynchronous exceptions against the compiler thread
2298   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2299   if (!can_call_java()) return;
2300 
2301   {
2302     // Actually throw the Throwable against the target Thread - however
2303     // only if there is no thread death exception installed already.
2304     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2305       // If the topmost frame is a runtime stub, then we are calling into
2306       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2307       // must deoptimize the caller before continuing, as the compiled  exception handler table
2308       // may not be valid
2309       if (has_last_Java_frame()) {
2310         frame f = last_frame();
2311         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2312           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2313           RegisterMap reg_map(this, UseBiasedLocking);
2314           frame compiled_frame = f.sender(&reg_map);
2315           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2316             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2317           }
2318         }
2319       }
2320 
2321       // Set async. pending exception in thread.
2322       set_pending_async_exception(java_throwable);
2323 
2324       if (log_is_enabled(Info, exceptions)) {
2325          ResourceMark rm;
2326         log_info(exceptions)("Pending Async. exception installed of type: %s",
2327                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2328       }
2329       // for AbortVMOnException flag
2330       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2331     }
2332   }
2333 
2334 
2335   // Interrupt thread so it will wake up from a potential wait()
2336   Thread::interrupt(this);
2337 }
2338 
2339 // External suspension mechanism.
2340 //
2341 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2342 // to any VM_locks and it is at a transition
2343 // Self-suspension will happen on the transition out of the vm.
2344 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2345 //
2346 // Guarantees on return:
2347 //   + Target thread will not execute any new bytecode (that's why we need to
2348 //     force a safepoint)
2349 //   + Target thread will not enter any new monitors
2350 //
2351 void JavaThread::java_suspend() {
2352   ThreadsListHandle tlh;
2353   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2354     return;
2355   }
2356 
2357   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2358     if (!is_external_suspend()) {
2359       // a racing resume has cancelled us; bail out now
2360       return;
2361     }
2362 
2363     // suspend is done
2364     uint32_t debug_bits = 0;
2365     // Warning: is_ext_suspend_completed() may temporarily drop the
2366     // SR_lock to allow the thread to reach a stable thread state if
2367     // it is currently in a transient thread state.
2368     if (is_ext_suspend_completed(false /* !called_by_wait */,
2369                                  SuspendRetryDelay, &debug_bits)) {
2370       return;
2371     }
2372   }
2373 
2374   VM_ThreadSuspend vm_suspend;
2375   VMThread::execute(&vm_suspend);
2376 }
2377 
2378 // Part II of external suspension.
2379 // A JavaThread self suspends when it detects a pending external suspend
2380 // request. This is usually on transitions. It is also done in places
2381 // where continuing to the next transition would surprise the caller,
2382 // e.g., monitor entry.
2383 //
2384 // Returns the number of times that the thread self-suspended.
2385 //
2386 // Note: DO NOT call java_suspend_self() when you just want to block current
2387 //       thread. java_suspend_self() is the second stage of cooperative
2388 //       suspension for external suspend requests and should only be used
2389 //       to complete an external suspend request.
2390 //
2391 int JavaThread::java_suspend_self() {
2392   int ret = 0;
2393 
2394   // we are in the process of exiting so don't suspend
2395   if (is_exiting()) {
2396     clear_external_suspend();
2397     return ret;
2398   }
2399 
2400   assert(_anchor.walkable() ||
2401          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2402          "must have walkable stack");
2403 
2404   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2405 
2406   assert(!this->is_ext_suspended(),
2407          "a thread trying to self-suspend should not already be suspended");
2408 
2409   if (this->is_suspend_equivalent()) {
2410     // If we are self-suspending as a result of the lifting of a
2411     // suspend equivalent condition, then the suspend_equivalent
2412     // flag is not cleared until we set the ext_suspended flag so
2413     // that wait_for_ext_suspend_completion() returns consistent
2414     // results.
2415     this->clear_suspend_equivalent();
2416   }
2417 
2418   // A racing resume may have cancelled us before we grabbed SR_lock
2419   // above. Or another external suspend request could be waiting for us
2420   // by the time we return from SR_lock()->wait(). The thread
2421   // that requested the suspension may already be trying to walk our
2422   // stack and if we return now, we can change the stack out from under
2423   // it. This would be a "bad thing (TM)" and cause the stack walker
2424   // to crash. We stay self-suspended until there are no more pending
2425   // external suspend requests.
2426   while (is_external_suspend()) {
2427     ret++;
2428     this->set_ext_suspended();
2429 
2430     // _ext_suspended flag is cleared by java_resume()
2431     while (is_ext_suspended()) {
2432       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2433     }
2434   }
2435 
2436   return ret;
2437 }
2438 
2439 #ifdef ASSERT
2440 // verify the JavaThread has not yet been published in the Threads::list, and
2441 // hence doesn't need protection from concurrent access at this stage
2442 void JavaThread::verify_not_published() {
2443   ThreadsListHandle tlh;
2444   assert(!tlh.includes(this), "JavaThread shouldn't have been published yet!");
2445 }
2446 #endif
2447 
2448 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2449 // progress or when _suspend_flags is non-zero.
2450 // Current thread needs to self-suspend if there is a suspend request and/or
2451 // block if a safepoint is in progress.
2452 // Async exception ISN'T checked.
2453 // Note only the ThreadInVMfromNative transition can call this function
2454 // directly and when thread state is _thread_in_native_trans
2455 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2456   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2457 
2458   JavaThread *curJT = JavaThread::current();
2459   bool do_self_suspend = thread->is_external_suspend();
2460 
2461   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2462 
2463   // If JNIEnv proxies are allowed, don't self-suspend if the target
2464   // thread is not the current thread. In older versions of jdbx, jdbx
2465   // threads could call into the VM with another thread's JNIEnv so we
2466   // can be here operating on behalf of a suspended thread (4432884).
2467   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2468     JavaThreadState state = thread->thread_state();
2469 
2470     // We mark this thread_blocked state as a suspend-equivalent so
2471     // that a caller to is_ext_suspend_completed() won't be confused.
2472     // The suspend-equivalent state is cleared by java_suspend_self().
2473     thread->set_suspend_equivalent();
2474 
2475     // If the safepoint code sees the _thread_in_native_trans state, it will
2476     // wait until the thread changes to other thread state. There is no
2477     // guarantee on how soon we can obtain the SR_lock and complete the
2478     // self-suspend request. It would be a bad idea to let safepoint wait for
2479     // too long. Temporarily change the state to _thread_blocked to
2480     // let the VM thread know that this thread is ready for GC. The problem
2481     // of changing thread state is that safepoint could happen just after
2482     // java_suspend_self() returns after being resumed, and VM thread will
2483     // see the _thread_blocked state. We must check for safepoint
2484     // after restoring the state and make sure we won't leave while a safepoint
2485     // is in progress.
2486     thread->set_thread_state(_thread_blocked);
2487     thread->java_suspend_self();
2488     thread->set_thread_state(state);
2489 
2490     InterfaceSupport::serialize_thread_state_with_handler(thread);
2491   }
2492 
2493   SafepointMechanism::block_if_requested(curJT);
2494 
2495   if (thread->is_deopt_suspend()) {
2496     thread->clear_deopt_suspend();
2497     RegisterMap map(thread, false);
2498     frame f = thread->last_frame();
2499     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2500       f = f.sender(&map);
2501     }
2502     if (f.id() == thread->must_deopt_id()) {
2503       thread->clear_must_deopt_id();
2504       f.deoptimize(thread);
2505     } else {
2506       fatal("missed deoptimization!");
2507     }
2508   }
2509 #if INCLUDE_TRACE
2510   if (thread->is_trace_suspend()) {
2511     TRACE_SUSPEND_THREAD(thread);
2512   }
2513 #endif
2514 }
2515 
2516 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2517 // progress or when _suspend_flags is non-zero.
2518 // Current thread needs to self-suspend if there is a suspend request and/or
2519 // block if a safepoint is in progress.
2520 // Also check for pending async exception (not including unsafe access error).
2521 // Note only the native==>VM/Java barriers can call this function and when
2522 // thread state is _thread_in_native_trans.
2523 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2524   check_safepoint_and_suspend_for_native_trans(thread);
2525 
2526   if (thread->has_async_exception()) {
2527     // We are in _thread_in_native_trans state, don't handle unsafe
2528     // access error since that may block.
2529     thread->check_and_handle_async_exceptions(false);
2530   }
2531 }
2532 
2533 // This is a variant of the normal
2534 // check_special_condition_for_native_trans with slightly different
2535 // semantics for use by critical native wrappers.  It does all the
2536 // normal checks but also performs the transition back into
2537 // thread_in_Java state.  This is required so that critical natives
2538 // can potentially block and perform a GC if they are the last thread
2539 // exiting the GCLocker.
2540 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2541   check_special_condition_for_native_trans(thread);
2542 
2543   // Finish the transition
2544   thread->set_thread_state(_thread_in_Java);
2545 
2546   if (thread->do_critical_native_unlock()) {
2547     ThreadInVMfromJavaNoAsyncException tiv(thread);
2548     GCLocker::unlock_critical(thread);
2549     thread->clear_critical_native_unlock();
2550   }
2551 }
2552 
2553 // We need to guarantee the Threads_lock here, since resumes are not
2554 // allowed during safepoint synchronization
2555 // Can only resume from an external suspension
2556 void JavaThread::java_resume() {
2557   assert_locked_or_safepoint(Threads_lock);
2558 
2559   // Sanity check: thread is gone, has started exiting or the thread
2560   // was not externally suspended.
2561   ThreadsListHandle tlh;
2562   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2563     return;
2564   }
2565 
2566   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2567 
2568   clear_external_suspend();
2569 
2570   if (is_ext_suspended()) {
2571     clear_ext_suspended();
2572     SR_lock()->notify_all();
2573   }
2574 }
2575 
2576 size_t JavaThread::_stack_red_zone_size = 0;
2577 size_t JavaThread::_stack_yellow_zone_size = 0;
2578 size_t JavaThread::_stack_reserved_zone_size = 0;
2579 size_t JavaThread::_stack_shadow_zone_size = 0;
2580 
2581 void JavaThread::create_stack_guard_pages() {
2582   if (!os::uses_stack_guard_pages() ||
2583       _stack_guard_state != stack_guard_unused ||
2584       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2585       log_info(os, thread)("Stack guard page creation for thread "
2586                            UINTX_FORMAT " disabled", os::current_thread_id());
2587     return;
2588   }
2589   address low_addr = stack_end();
2590   size_t len = stack_guard_zone_size();
2591 
2592   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2593   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2594 
2595   int must_commit = os::must_commit_stack_guard_pages();
2596   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2597 
2598   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2599     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2600     return;
2601   }
2602 
2603   if (os::guard_memory((char *) low_addr, len)) {
2604     _stack_guard_state = stack_guard_enabled;
2605   } else {
2606     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2607       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2608     if (os::uncommit_memory((char *) low_addr, len)) {
2609       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2610     }
2611     return;
2612   }
2613 
2614   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2615     PTR_FORMAT "-" PTR_FORMAT ".",
2616     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2617 }
2618 
2619 void JavaThread::remove_stack_guard_pages() {
2620   assert(Thread::current() == this, "from different thread");
2621   if (_stack_guard_state == stack_guard_unused) return;
2622   address low_addr = stack_end();
2623   size_t len = stack_guard_zone_size();
2624 
2625   if (os::must_commit_stack_guard_pages()) {
2626     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2627       _stack_guard_state = stack_guard_unused;
2628     } else {
2629       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2630         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2631       return;
2632     }
2633   } else {
2634     if (_stack_guard_state == stack_guard_unused) return;
2635     if (os::unguard_memory((char *) low_addr, len)) {
2636       _stack_guard_state = stack_guard_unused;
2637     } else {
2638       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2639         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2640       return;
2641     }
2642   }
2643 
2644   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2645     PTR_FORMAT "-" PTR_FORMAT ".",
2646     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2647 }
2648 
2649 void JavaThread::enable_stack_reserved_zone() {
2650   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2651   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2652 
2653   // The base notation is from the stack's point of view, growing downward.
2654   // We need to adjust it to work correctly with guard_memory()
2655   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2656 
2657   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2658   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2659 
2660   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2661     _stack_guard_state = stack_guard_enabled;
2662   } else {
2663     warning("Attempt to guard stack reserved zone failed.");
2664   }
2665   enable_register_stack_guard();
2666 }
2667 
2668 void JavaThread::disable_stack_reserved_zone() {
2669   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2670   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2671 
2672   // Simply return if called for a thread that does not use guard pages.
2673   if (_stack_guard_state == stack_guard_unused) return;
2674 
2675   // The base notation is from the stack's point of view, growing downward.
2676   // We need to adjust it to work correctly with guard_memory()
2677   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2678 
2679   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2680     _stack_guard_state = stack_guard_reserved_disabled;
2681   } else {
2682     warning("Attempt to unguard stack reserved zone failed.");
2683   }
2684   disable_register_stack_guard();
2685 }
2686 
2687 void JavaThread::enable_stack_yellow_reserved_zone() {
2688   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2689   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2690 
2691   // The base notation is from the stacks point of view, growing downward.
2692   // We need to adjust it to work correctly with guard_memory()
2693   address base = stack_red_zone_base();
2694 
2695   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2696   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2697 
2698   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2699     _stack_guard_state = stack_guard_enabled;
2700   } else {
2701     warning("Attempt to guard stack yellow zone failed.");
2702   }
2703   enable_register_stack_guard();
2704 }
2705 
2706 void JavaThread::disable_stack_yellow_reserved_zone() {
2707   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2708   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2709 
2710   // Simply return if called for a thread that does not use guard pages.
2711   if (_stack_guard_state == stack_guard_unused) return;
2712 
2713   // The base notation is from the stacks point of view, growing downward.
2714   // We need to adjust it to work correctly with guard_memory()
2715   address base = stack_red_zone_base();
2716 
2717   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2718     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2719   } else {
2720     warning("Attempt to unguard stack yellow zone failed.");
2721   }
2722   disable_register_stack_guard();
2723 }
2724 
2725 void JavaThread::enable_stack_red_zone() {
2726   // The base notation is from the stacks point of view, growing downward.
2727   // We need to adjust it to work correctly with guard_memory()
2728   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2729   address base = stack_red_zone_base() - stack_red_zone_size();
2730 
2731   guarantee(base < stack_base(), "Error calculating stack red zone");
2732   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2733 
2734   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2735     warning("Attempt to guard stack red zone failed.");
2736   }
2737 }
2738 
2739 void JavaThread::disable_stack_red_zone() {
2740   // The base notation is from the stacks point of view, growing downward.
2741   // We need to adjust it to work correctly with guard_memory()
2742   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2743   address base = stack_red_zone_base() - stack_red_zone_size();
2744   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2745     warning("Attempt to unguard stack red zone failed.");
2746   }
2747 }
2748 
2749 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2750   // ignore is there is no stack
2751   if (!has_last_Java_frame()) return;
2752   // traverse the stack frames. Starts from top frame.
2753   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2754     frame* fr = fst.current();
2755     f(fr, fst.register_map());
2756   }
2757 }
2758 
2759 
2760 #ifndef PRODUCT
2761 // Deoptimization
2762 // Function for testing deoptimization
2763 void JavaThread::deoptimize() {
2764   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2765   StackFrameStream fst(this, UseBiasedLocking);
2766   bool deopt = false;           // Dump stack only if a deopt actually happens.
2767   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2768   // Iterate over all frames in the thread and deoptimize
2769   for (; !fst.is_done(); fst.next()) {
2770     if (fst.current()->can_be_deoptimized()) {
2771 
2772       if (only_at) {
2773         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2774         // consists of comma or carriage return separated numbers so
2775         // search for the current bci in that string.
2776         address pc = fst.current()->pc();
2777         nmethod* nm =  (nmethod*) fst.current()->cb();
2778         ScopeDesc* sd = nm->scope_desc_at(pc);
2779         char buffer[8];
2780         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2781         size_t len = strlen(buffer);
2782         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2783         while (found != NULL) {
2784           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2785               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2786             // Check that the bci found is bracketed by terminators.
2787             break;
2788           }
2789           found = strstr(found + 1, buffer);
2790         }
2791         if (!found) {
2792           continue;
2793         }
2794       }
2795 
2796       if (DebugDeoptimization && !deopt) {
2797         deopt = true; // One-time only print before deopt
2798         tty->print_cr("[BEFORE Deoptimization]");
2799         trace_frames();
2800         trace_stack();
2801       }
2802       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2803     }
2804   }
2805 
2806   if (DebugDeoptimization && deopt) {
2807     tty->print_cr("[AFTER Deoptimization]");
2808     trace_frames();
2809   }
2810 }
2811 
2812 
2813 // Make zombies
2814 void JavaThread::make_zombies() {
2815   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2816     if (fst.current()->can_be_deoptimized()) {
2817       // it is a Java nmethod
2818       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2819       nm->make_not_entrant();
2820     }
2821   }
2822 }
2823 #endif // PRODUCT
2824 
2825 
2826 void JavaThread::deoptimized_wrt_marked_nmethods() {
2827   if (!has_last_Java_frame()) return;
2828   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2829   StackFrameStream fst(this, UseBiasedLocking);
2830   for (; !fst.is_done(); fst.next()) {
2831     if (fst.current()->should_be_deoptimized()) {
2832       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2833     }
2834   }
2835 }
2836 
2837 
2838 // If the caller is a NamedThread, then remember, in the current scope,
2839 // the given JavaThread in its _processed_thread field.
2840 class RememberProcessedThread: public StackObj {
2841   NamedThread* _cur_thr;
2842  public:
2843   RememberProcessedThread(JavaThread* jthr) {
2844     Thread* thread = Thread::current();
2845     if (thread->is_Named_thread()) {
2846       _cur_thr = (NamedThread *)thread;
2847       _cur_thr->set_processed_thread(jthr);
2848     } else {
2849       _cur_thr = NULL;
2850     }
2851   }
2852 
2853   ~RememberProcessedThread() {
2854     if (_cur_thr) {
2855       _cur_thr->set_processed_thread(NULL);
2856     }
2857   }
2858 };
2859 
2860 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2861   // Verify that the deferred card marks have been flushed.
2862   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2863 
2864   // Traverse the GCHandles
2865   Thread::oops_do(f, cf);
2866 
2867   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2868 
2869   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2870          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2871 
2872   if (has_last_Java_frame()) {
2873     // Record JavaThread to GC thread
2874     RememberProcessedThread rpt(this);
2875 
2876     // Traverse the privileged stack
2877     if (_privileged_stack_top != NULL) {
2878       _privileged_stack_top->oops_do(f);
2879     }
2880 
2881     // traverse the registered growable array
2882     if (_array_for_gc != NULL) {
2883       for (int index = 0; index < _array_for_gc->length(); index++) {
2884         f->do_oop(_array_for_gc->adr_at(index));
2885       }
2886     }
2887 
2888     // Traverse the monitor chunks
2889     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2890       chunk->oops_do(f);
2891     }
2892 
2893     // Traverse the execution stack
2894     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2895       fst.current()->oops_do(f, cf, fst.register_map());
2896     }
2897   }
2898 
2899   // callee_target is never live across a gc point so NULL it here should
2900   // it still contain a methdOop.
2901 
2902   set_callee_target(NULL);
2903 
2904   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2905   // If we have deferred set_locals there might be oops waiting to be
2906   // written
2907   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2908   if (list != NULL) {
2909     for (int i = 0; i < list->length(); i++) {
2910       list->at(i)->oops_do(f);
2911     }
2912   }
2913 
2914   // Traverse instance variables at the end since the GC may be moving things
2915   // around using this function
2916   f->do_oop((oop*) &_threadObj);
2917   f->do_oop((oop*) &_vm_result);
2918   f->do_oop((oop*) &_exception_oop);
2919   f->do_oop((oop*) &_pending_async_exception);
2920 
2921   if (jvmti_thread_state() != NULL) {
2922     jvmti_thread_state()->oops_do(f);
2923   }
2924 }
2925 
2926 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2927   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2928          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2929 
2930   if (has_last_Java_frame()) {
2931     // Traverse the execution stack
2932     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2933       fst.current()->nmethods_do(cf);
2934     }
2935   }
2936 }
2937 
2938 void JavaThread::metadata_do(void f(Metadata*)) {
2939   if (has_last_Java_frame()) {
2940     // Traverse the execution stack to call f() on the methods in the stack
2941     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2942       fst.current()->metadata_do(f);
2943     }
2944   } else if (is_Compiler_thread()) {
2945     // need to walk ciMetadata in current compile tasks to keep alive.
2946     CompilerThread* ct = (CompilerThread*)this;
2947     if (ct->env() != NULL) {
2948       ct->env()->metadata_do(f);
2949     }
2950     if (ct->task() != NULL) {
2951       ct->task()->metadata_do(f);
2952     }
2953   }
2954 }
2955 
2956 // Printing
2957 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2958   switch (_thread_state) {
2959   case _thread_uninitialized:     return "_thread_uninitialized";
2960   case _thread_new:               return "_thread_new";
2961   case _thread_new_trans:         return "_thread_new_trans";
2962   case _thread_in_native:         return "_thread_in_native";
2963   case _thread_in_native_trans:   return "_thread_in_native_trans";
2964   case _thread_in_vm:             return "_thread_in_vm";
2965   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2966   case _thread_in_Java:           return "_thread_in_Java";
2967   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2968   case _thread_blocked:           return "_thread_blocked";
2969   case _thread_blocked_trans:     return "_thread_blocked_trans";
2970   default:                        return "unknown thread state";
2971   }
2972 }
2973 
2974 #ifndef PRODUCT
2975 void JavaThread::print_thread_state_on(outputStream *st) const {
2976   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2977 };
2978 void JavaThread::print_thread_state() const {
2979   print_thread_state_on(tty);
2980 }
2981 #endif // PRODUCT
2982 
2983 // Called by Threads::print() for VM_PrintThreads operation
2984 void JavaThread::print_on(outputStream *st) const {
2985   st->print_raw("\"");
2986   st->print_raw(get_thread_name());
2987   st->print_raw("\" ");
2988   oop thread_oop = threadObj();
2989   if (thread_oop != NULL) {
2990     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
2991     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2992     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2993   }
2994   Thread::print_on(st);
2995   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2996   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2997   if (thread_oop != NULL) {
2998     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2999   }
3000 #ifndef PRODUCT
3001   print_thread_state_on(st);
3002   _safepoint_state->print_on(st);
3003 #endif // PRODUCT
3004   if (is_Compiler_thread()) {
3005     CompilerThread* ct = (CompilerThread*)this;
3006     if (ct->task() != NULL) {
3007       st->print("   Compiling: ");
3008       ct->task()->print(st, NULL, true, false);
3009     } else {
3010       st->print("   No compile task");
3011     }
3012     st->cr();
3013   }
3014 }
3015 
3016 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3017   st->print("%s", get_thread_name_string(buf, buflen));
3018 }
3019 
3020 // Called by fatal error handler. The difference between this and
3021 // JavaThread::print() is that we can't grab lock or allocate memory.
3022 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3023   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3024   oop thread_obj = threadObj();
3025   if (thread_obj != NULL) {
3026     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3027   }
3028   st->print(" [");
3029   st->print("%s", _get_thread_state_name(_thread_state));
3030   if (osthread()) {
3031     st->print(", id=%d", osthread()->thread_id());
3032   }
3033   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3034             p2i(stack_end()), p2i(stack_base()));
3035   st->print("]");
3036 
3037   if (_threads_hazard_ptr != NULL) {
3038     st->print(" _threads_hazard_ptr=" INTPTR_FORMAT, p2i(_threads_hazard_ptr));
3039   }
3040   if (_nested_threads_hazard_ptr != NULL) {
3041     print_nested_threads_hazard_ptrs_on(st);
3042   }
3043   return;
3044 }
3045 
3046 // Verification
3047 
3048 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3049 
3050 void JavaThread::verify() {
3051   // Verify oops in the thread.
3052   oops_do(&VerifyOopClosure::verify_oop, NULL);
3053 
3054   // Verify the stack frames.
3055   frames_do(frame_verify);
3056 }
3057 
3058 // CR 6300358 (sub-CR 2137150)
3059 // Most callers of this method assume that it can't return NULL but a
3060 // thread may not have a name whilst it is in the process of attaching to
3061 // the VM - see CR 6412693, and there are places where a JavaThread can be
3062 // seen prior to having it's threadObj set (eg JNI attaching threads and
3063 // if vm exit occurs during initialization). These cases can all be accounted
3064 // for such that this method never returns NULL.
3065 const char* JavaThread::get_thread_name() const {
3066 #ifdef ASSERT
3067   // early safepoints can hit while current thread does not yet have TLS
3068   if (!SafepointSynchronize::is_at_safepoint()) {
3069     Thread *cur = Thread::current();
3070     if (!(cur->is_Java_thread() && cur == this)) {
3071       // Current JavaThreads are allowed to get their own name without
3072       // the Threads_lock.
3073       assert_locked_or_safepoint(Threads_lock);
3074     }
3075   }
3076 #endif // ASSERT
3077   return get_thread_name_string();
3078 }
3079 
3080 // Returns a non-NULL representation of this thread's name, or a suitable
3081 // descriptive string if there is no set name
3082 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3083   const char* name_str;
3084   oop thread_obj = threadObj();
3085   if (thread_obj != NULL) {
3086     oop name = java_lang_Thread::name(thread_obj);
3087     if (name != NULL) {
3088       if (buf == NULL) {
3089         name_str = java_lang_String::as_utf8_string(name);
3090       } else {
3091         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3092       }
3093     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3094       name_str = "<no-name - thread is attaching>";
3095     } else {
3096       name_str = Thread::name();
3097     }
3098   } else {
3099     name_str = Thread::name();
3100   }
3101   assert(name_str != NULL, "unexpected NULL thread name");
3102   return name_str;
3103 }
3104 
3105 
3106 const char* JavaThread::get_threadgroup_name() const {
3107   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3108   oop thread_obj = threadObj();
3109   if (thread_obj != NULL) {
3110     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3111     if (thread_group != NULL) {
3112       // ThreadGroup.name can be null
3113       return java_lang_ThreadGroup::name(thread_group);
3114     }
3115   }
3116   return NULL;
3117 }
3118 
3119 const char* JavaThread::get_parent_name() const {
3120   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3121   oop thread_obj = threadObj();
3122   if (thread_obj != NULL) {
3123     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3124     if (thread_group != NULL) {
3125       oop parent = java_lang_ThreadGroup::parent(thread_group);
3126       if (parent != NULL) {
3127         // ThreadGroup.name can be null
3128         return java_lang_ThreadGroup::name(parent);
3129       }
3130     }
3131   }
3132   return NULL;
3133 }
3134 
3135 ThreadPriority JavaThread::java_priority() const {
3136   oop thr_oop = threadObj();
3137   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3138   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3139   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3140   return priority;
3141 }
3142 
3143 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3144 
3145   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3146   // Link Java Thread object <-> C++ Thread
3147 
3148   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3149   // and put it into a new Handle.  The Handle "thread_oop" can then
3150   // be used to pass the C++ thread object to other methods.
3151 
3152   // Set the Java level thread object (jthread) field of the
3153   // new thread (a JavaThread *) to C++ thread object using the
3154   // "thread_oop" handle.
3155 
3156   // Set the thread field (a JavaThread *) of the
3157   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3158 
3159   Handle thread_oop(Thread::current(),
3160                     JNIHandles::resolve_non_null(jni_thread));
3161   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3162          "must be initialized");
3163   set_threadObj(thread_oop());
3164   java_lang_Thread::set_thread(thread_oop(), this);
3165 
3166   if (prio == NoPriority) {
3167     prio = java_lang_Thread::priority(thread_oop());
3168     assert(prio != NoPriority, "A valid priority should be present");
3169   }
3170 
3171   // Push the Java priority down to the native thread; needs Threads_lock
3172   Thread::set_priority(this, prio);
3173 
3174   prepare_ext();
3175 
3176   // Add the new thread to the Threads list and set it in motion.
3177   // We must have threads lock in order to call Threads::add.
3178   // It is crucial that we do not block before the thread is
3179   // added to the Threads list for if a GC happens, then the java_thread oop
3180   // will not be visited by GC.
3181   Threads::add(this);
3182 }
3183 
3184 oop JavaThread::current_park_blocker() {
3185   // Support for JSR-166 locks
3186   oop thread_oop = threadObj();
3187   if (thread_oop != NULL &&
3188       JDK_Version::current().supports_thread_park_blocker()) {
3189     return java_lang_Thread::park_blocker(thread_oop);
3190   }
3191   return NULL;
3192 }
3193 
3194 
3195 void JavaThread::print_stack_on(outputStream* st) {
3196   if (!has_last_Java_frame()) return;
3197   ResourceMark rm;
3198   HandleMark   hm;
3199 
3200   RegisterMap reg_map(this);
3201   vframe* start_vf = last_java_vframe(&reg_map);
3202   int count = 0;
3203   for (vframe* f = start_vf; f; f = f->sender()) {
3204     if (f->is_java_frame()) {
3205       javaVFrame* jvf = javaVFrame::cast(f);
3206       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3207 
3208       // Print out lock information
3209       if (JavaMonitorsInStackTrace) {
3210         jvf->print_lock_info_on(st, count);
3211       }
3212     } else {
3213       // Ignore non-Java frames
3214     }
3215 
3216     // Bail-out case for too deep stacks
3217     count++;
3218     if (MaxJavaStackTraceDepth == count) return;
3219   }
3220 }
3221 
3222 
3223 // JVMTI PopFrame support
3224 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3225   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3226   if (in_bytes(size_in_bytes) != 0) {
3227     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3228     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3229     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3230   }
3231 }
3232 
3233 void* JavaThread::popframe_preserved_args() {
3234   return _popframe_preserved_args;
3235 }
3236 
3237 ByteSize JavaThread::popframe_preserved_args_size() {
3238   return in_ByteSize(_popframe_preserved_args_size);
3239 }
3240 
3241 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3242   int sz = in_bytes(popframe_preserved_args_size());
3243   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3244   return in_WordSize(sz / wordSize);
3245 }
3246 
3247 void JavaThread::popframe_free_preserved_args() {
3248   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3249   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3250   _popframe_preserved_args = NULL;
3251   _popframe_preserved_args_size = 0;
3252 }
3253 
3254 #ifndef PRODUCT
3255 
3256 void JavaThread::trace_frames() {
3257   tty->print_cr("[Describe stack]");
3258   int frame_no = 1;
3259   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3260     tty->print("  %d. ", frame_no++);
3261     fst.current()->print_value_on(tty, this);
3262     tty->cr();
3263   }
3264 }
3265 
3266 class PrintAndVerifyOopClosure: public OopClosure {
3267  protected:
3268   template <class T> inline void do_oop_work(T* p) {
3269     oop obj = oopDesc::load_decode_heap_oop(p);
3270     if (obj == NULL) return;
3271     tty->print(INTPTR_FORMAT ": ", p2i(p));
3272     if (oopDesc::is_oop_or_null(obj)) {
3273       if (obj->is_objArray()) {
3274         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3275       } else {
3276         obj->print();
3277       }
3278     } else {
3279       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3280     }
3281     tty->cr();
3282   }
3283  public:
3284   virtual void do_oop(oop* p) { do_oop_work(p); }
3285   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3286 };
3287 
3288 
3289 static void oops_print(frame* f, const RegisterMap *map) {
3290   PrintAndVerifyOopClosure print;
3291   f->print_value();
3292   f->oops_do(&print, NULL, (RegisterMap*)map);
3293 }
3294 
3295 // Print our all the locations that contain oops and whether they are
3296 // valid or not.  This useful when trying to find the oldest frame
3297 // where an oop has gone bad since the frame walk is from youngest to
3298 // oldest.
3299 void JavaThread::trace_oops() {
3300   tty->print_cr("[Trace oops]");
3301   frames_do(oops_print);
3302 }
3303 
3304 
3305 #ifdef ASSERT
3306 // Print or validate the layout of stack frames
3307 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3308   ResourceMark rm;
3309   PRESERVE_EXCEPTION_MARK;
3310   FrameValues values;
3311   int frame_no = 0;
3312   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3313     fst.current()->describe(values, ++frame_no);
3314     if (depth == frame_no) break;
3315   }
3316   if (validate_only) {
3317     values.validate();
3318   } else {
3319     tty->print_cr("[Describe stack layout]");
3320     values.print(this);
3321   }
3322 }
3323 #endif
3324 
3325 void JavaThread::trace_stack_from(vframe* start_vf) {
3326   ResourceMark rm;
3327   int vframe_no = 1;
3328   for (vframe* f = start_vf; f; f = f->sender()) {
3329     if (f->is_java_frame()) {
3330       javaVFrame::cast(f)->print_activation(vframe_no++);
3331     } else {
3332       f->print();
3333     }
3334     if (vframe_no > StackPrintLimit) {
3335       tty->print_cr("...<more frames>...");
3336       return;
3337     }
3338   }
3339 }
3340 
3341 
3342 void JavaThread::trace_stack() {
3343   if (!has_last_Java_frame()) return;
3344   ResourceMark rm;
3345   HandleMark   hm;
3346   RegisterMap reg_map(this);
3347   trace_stack_from(last_java_vframe(&reg_map));
3348 }
3349 
3350 
3351 #endif // PRODUCT
3352 
3353 
3354 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3355   assert(reg_map != NULL, "a map must be given");
3356   frame f = last_frame();
3357   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3358     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3359   }
3360   return NULL;
3361 }
3362 
3363 
3364 Klass* JavaThread::security_get_caller_class(int depth) {
3365   vframeStream vfst(this);
3366   vfst.security_get_caller_frame(depth);
3367   if (!vfst.at_end()) {
3368     return vfst.method()->method_holder();
3369   }
3370   return NULL;
3371 }
3372 
3373 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3374   assert(thread->is_Compiler_thread(), "must be compiler thread");
3375   CompileBroker::compiler_thread_loop();
3376 }
3377 
3378 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3379   NMethodSweeper::sweeper_loop();
3380 }
3381 
3382 // Create a CompilerThread
3383 CompilerThread::CompilerThread(CompileQueue* queue,
3384                                CompilerCounters* counters)
3385                                : JavaThread(&compiler_thread_entry) {
3386   _env   = NULL;
3387   _log   = NULL;
3388   _task  = NULL;
3389   _queue = queue;
3390   _counters = counters;
3391   _buffer_blob = NULL;
3392   _compiler = NULL;
3393 
3394   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3395   resource_area()->bias_to(mtCompiler);
3396 
3397 #ifndef PRODUCT
3398   _ideal_graph_printer = NULL;
3399 #endif
3400 }
3401 
3402 bool CompilerThread::can_call_java() const {
3403   return _compiler != NULL && _compiler->is_jvmci();
3404 }
3405 
3406 // Create sweeper thread
3407 CodeCacheSweeperThread::CodeCacheSweeperThread()
3408 : JavaThread(&sweeper_thread_entry) {
3409   _scanned_compiled_method = NULL;
3410 }
3411 
3412 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3413   JavaThread::oops_do(f, cf);
3414   if (_scanned_compiled_method != NULL && cf != NULL) {
3415     // Safepoints can occur when the sweeper is scanning an nmethod so
3416     // process it here to make sure it isn't unloaded in the middle of
3417     // a scan.
3418     cf->do_code_blob(_scanned_compiled_method);
3419   }
3420 }
3421 
3422 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3423   JavaThread::nmethods_do(cf);
3424   if (_scanned_compiled_method != NULL && cf != NULL) {
3425     // Safepoints can occur when the sweeper is scanning an nmethod so
3426     // process it here to make sure it isn't unloaded in the middle of
3427     // a scan.
3428     cf->do_code_blob(_scanned_compiled_method);
3429   }
3430 }
3431 
3432 
3433 // ======= Threads ========
3434 
3435 // The Threads class links together all active threads, and provides
3436 // operations over all threads. It is protected by the Threads_lock,
3437 // which is also used in other global contexts like safepointing.
3438 // ThreadsListHandles are used to safely perform operations on one
3439 // or more threads without the risk of the thread exiting during the
3440 // operation.
3441 //
3442 // Note: The Threads_lock is currently more widely used than we
3443 // would like. We are actively migrating Threads_lock uses to other
3444 // mechanisms in order to reduce Threads_lock contention.
3445 
3446 JavaThread*           Threads::_thread_list = NULL;
3447 int                   Threads::_number_of_threads = 0;
3448 int                   Threads::_number_of_non_daemon_threads = 0;
3449 int                   Threads::_return_code = 0;
3450 int                   Threads::_thread_claim_parity = 0;
3451 size_t                JavaThread::_stack_size_at_create = 0;
3452 // Safe Memory Reclamation (SMR) support:
3453 Monitor*              Threads::_smr_delete_lock =
3454                           new Monitor(Monitor::special, "smr_delete_lock",
3455                                       false /* allow_vm_block */,
3456                                       Monitor::_safepoint_check_never);
3457 // The '_cnt', '_max' and '_times" fields are enabled via
3458 // -XX:+EnableThreadSMRStatistics:
3459 
3460 // # of parallel threads in _smr_delete_lock->wait().
3461 // Impl note: Hard to imagine > 64K waiting threads so this could be 16-bit,
3462 // but there is no nice 16-bit _FORMAT support.
3463 uint                  Threads::_smr_delete_lock_wait_cnt = 0;
3464 
3465 // Max # of parallel threads in _smr_delete_lock->wait().
3466 // Impl note: See _smr_delete_lock_wait_cnt note.
3467 uint                  Threads::_smr_delete_lock_wait_max = 0;
3468 
3469 // Flag to indicate when an _smr_delete_lock->notify() is needed.
3470 // Impl note: See _smr_delete_lock_wait_cnt note.
3471 volatile uint         Threads::_smr_delete_notify = 0;
3472 
3473 // # of threads deleted over VM lifetime.
3474 // Impl note: Atomically incremented over VM lifetime so use unsigned for more
3475 // range. Unsigned 64-bit would be more future proof, but 64-bit atomic inc
3476 // isn't available everywhere (or is it?).
3477 volatile uint         Threads::_smr_deleted_thread_cnt = 0;
3478 
3479 // Max time in millis to delete a thread.
3480 // Impl note: 16-bit might be too small on an overloaded machine. Use
3481 // unsigned since this is a time value. Set via Atomic::cmpxchg() in a
3482 // loop for correctness.
3483 volatile uint         Threads::_smr_deleted_thread_time_max = 0;
3484 
3485 // Cumulative time in millis to delete threads.
3486 // Impl note: Atomically added to over VM lifetime so use unsigned for more
3487 // range. Unsigned 64-bit would be more future proof, but 64-bit atomic inc
3488 // isn't available everywhere (or is it?).
3489 volatile uint         Threads::_smr_deleted_thread_times = 0;
3490 
3491 ThreadsList* volatile Threads::_smr_java_thread_list = new ThreadsList(0);
3492 
3493 // # of ThreadsLists allocated over VM lifetime.
3494 // Impl note: We allocate a new ThreadsList for every thread create and
3495 // every thread delete so we need a bigger type than the
3496 // _smr_deleted_thread_cnt field.
3497 uint64_t              Threads::_smr_java_thread_list_alloc_cnt = 1;
3498 
3499 // # of ThreadsLists freed over VM lifetime.
3500 // Impl note: See _smr_java_thread_list_alloc_cnt note.
3501 uint64_t              Threads::_smr_java_thread_list_free_cnt = 0;
3502 
3503 // Max size ThreadsList allocated.
3504 // Impl note: Max # of threads alive at one time should fit in unsigned 32-bit.
3505 uint                  Threads::_smr_java_thread_list_max = 0;
3506 
3507 // Max # of nested ThreadsLists for a thread.
3508 // Impl note: Hard to imagine > 64K nested ThreadsLists so this could be
3509 // 16-bit, but there is no nice 16-bit _FORMAT support.
3510 uint                  Threads::_smr_nested_thread_list_max = 0;
3511 
3512 // # of ThreadsListHandles deleted over VM lifetime.
3513 // Impl note: Atomically incremented over VM lifetime so use unsigned for
3514 // more range. There will be fewer ThreadsListHandles than threads so
3515 // unsigned 32-bit should be fine.
3516 volatile uint         Threads::_smr_tlh_cnt = 0;
3517 
3518 // Max time in millis to delete a ThreadsListHandle.
3519 // Impl note: 16-bit might be too small on an overloaded machine. Use
3520 // unsigned since this is a time value. Set via Atomic::cmpxchg() in a
3521 // loop for correctness.
3522 volatile uint         Threads::_smr_tlh_time_max = 0;
3523 
3524 // Cumulative time in millis to delete ThreadsListHandles.
3525 // Impl note: Atomically added to over VM lifetime so use unsigned for more
3526 // range. Unsigned 64-bit would be more future proof, but 64-bit atomic inc
3527 // isn't available everywhere (or is it?).
3528 volatile uint         Threads::_smr_tlh_times = 0;
3529 
3530 ThreadsList*          Threads::_smr_to_delete_list = NULL;
3531 
3532 // # of parallel ThreadsLists on the to-delete list.
3533 // Impl note: Hard to imagine > 64K ThreadsLists needing to be deleted so
3534 // this could be 16-bit, but there is no nice 16-bit _FORMAT support.
3535 uint                  Threads::_smr_to_delete_list_cnt = 0;
3536 
3537 // Max # of parallel ThreadsLists on the to-delete list.
3538 // Impl note: See _smr_to_delete_list_cnt note.
3539 uint                  Threads::_smr_to_delete_list_max = 0;
3540 
3541 #ifdef ASSERT
3542 bool                  Threads::_vm_complete = false;
3543 #endif
3544 
3545 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3546   Prefetch::read((void*)addr, prefetch_interval);
3547   return *addr;
3548 }
3549 
3550 // Possibly the ugliest for loop the world has seen. C++ does not allow
3551 // multiple types in the declaration section of the for loop. In this case
3552 // we are only dealing with pointers and hence can cast them. It looks ugly
3553 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3554 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3555     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3556              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3557              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3558              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3559              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3560          MACRO_current_p != MACRO_end;                                                                                    \
3561          MACRO_current_p++,                                                                                               \
3562              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3563 
3564 inline ThreadsList* Threads::get_smr_java_thread_list() {
3565   return (ThreadsList*)OrderAccess::load_acquire(&_smr_java_thread_list);
3566 }
3567 
3568 // All JavaThreads
3569 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(get_smr_java_thread_list(), X)
3570 
3571 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3572 void Threads::threads_do(ThreadClosure* tc) {
3573   assert_locked_or_safepoint(Threads_lock);
3574   // ALL_JAVA_THREADS iterates through all JavaThreads
3575   ALL_JAVA_THREADS(p) {
3576     tc->do_thread(p);
3577   }
3578   // Someday we could have a table or list of all non-JavaThreads.
3579   // For now, just manually iterate through them.
3580   tc->do_thread(VMThread::vm_thread());
3581   Universe::heap()->gc_threads_do(tc);
3582   WatcherThread *wt = WatcherThread::watcher_thread();
3583   // Strictly speaking, the following NULL check isn't sufficient to make sure
3584   // the data for WatcherThread is still valid upon being examined. However,
3585   // considering that WatchThread terminates when the VM is on the way to
3586   // exit at safepoint, the chance of the above is extremely small. The right
3587   // way to prevent termination of WatcherThread would be to acquire
3588   // Terminator_lock, but we can't do that without violating the lock rank
3589   // checking in some cases.
3590   if (wt != NULL) {
3591     tc->do_thread(wt);
3592   }
3593 
3594   // If CompilerThreads ever become non-JavaThreads, add them here
3595 }
3596 
3597 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3598   int cp = Threads::thread_claim_parity();
3599   ALL_JAVA_THREADS(p) {
3600     if (p->claim_oops_do(is_par, cp)) {
3601       tc->do_thread(p);
3602     }
3603   }
3604   VMThread* vmt = VMThread::vm_thread();
3605   if (vmt->claim_oops_do(is_par, cp)) {
3606     tc->do_thread(vmt);
3607   }
3608 }
3609 
3610 // The system initialization in the library has three phases.
3611 //
3612 // Phase 1: java.lang.System class initialization
3613 //     java.lang.System is a primordial class loaded and initialized
3614 //     by the VM early during startup.  java.lang.System.<clinit>
3615 //     only does registerNatives and keeps the rest of the class
3616 //     initialization work later until thread initialization completes.
3617 //
3618 //     System.initPhase1 initializes the system properties, the static
3619 //     fields in, out, and err. Set up java signal handlers, OS-specific
3620 //     system settings, and thread group of the main thread.
3621 static void call_initPhase1(TRAPS) {
3622   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3623   JavaValue result(T_VOID);
3624   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3625                                          vmSymbols::void_method_signature(), CHECK);
3626 }
3627 
3628 // Phase 2. Module system initialization
3629 //     This will initialize the module system.  Only java.base classes
3630 //     can be loaded until phase 2 completes.
3631 //
3632 //     Call System.initPhase2 after the compiler initialization and jsr292
3633 //     classes get initialized because module initialization runs a lot of java
3634 //     code, that for performance reasons, should be compiled.  Also, this will
3635 //     enable the startup code to use lambda and other language features in this
3636 //     phase and onward.
3637 //
3638 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3639 static void call_initPhase2(TRAPS) {
3640   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3641 
3642   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3643 
3644   JavaValue result(T_INT);
3645   JavaCallArguments args;
3646   args.push_int(DisplayVMOutputToStderr);
3647   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3648   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3649                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3650   if (result.get_jint() != JNI_OK) {
3651     vm_exit_during_initialization(); // no message or exception
3652   }
3653 
3654   universe_post_module_init();
3655 }
3656 
3657 // Phase 3. final setup - set security manager, system class loader and TCCL
3658 //
3659 //     This will instantiate and set the security manager, set the system class
3660 //     loader as well as the thread context class loader.  The security manager
3661 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3662 //     other modules or the application's classpath.
3663 static void call_initPhase3(TRAPS) {
3664   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3665   JavaValue result(T_VOID);
3666   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3667                                          vmSymbols::void_method_signature(), CHECK);
3668 }
3669 
3670 // Safe Memory Reclamation (SMR) support:
3671 //
3672 
3673 // Acquire a stable ThreadsList.
3674 //
3675 ThreadsList *Threads::acquire_stable_list(Thread *self, bool is_ThreadsListSetter) {
3676   assert(self != NULL, "sanity check");
3677   // acquire_stable_list_nested_path() will grab the Threads_lock
3678   // so let's make sure the ThreadsListHandle is in a safe place.
3679   // ThreadsListSetter cannot make this check on this code path.
3680   debug_only(if (!is_ThreadsListSetter && StrictSafepointChecks) self->check_for_valid_safepoint_state(/* potential_vm_operation */ false);)
3681 
3682   if (self->get_threads_hazard_ptr() == NULL) {
3683     // The typical case is first.
3684     return acquire_stable_list_fast_path(self);
3685   }
3686 
3687   // The nested case is rare.
3688   return acquire_stable_list_nested_path(self);
3689 }
3690 
3691 // Fast path (and lock free) way to acquire a stable ThreadsList.
3692 //
3693 ThreadsList *Threads::acquire_stable_list_fast_path(Thread *self) {
3694   assert(self != NULL, "sanity check");
3695   assert(self->get_threads_hazard_ptr() == NULL, "sanity check");
3696   assert(self->get_nested_threads_hazard_ptr() == NULL,
3697          "cannot have a nested hazard ptr with a NULL regular hazard ptr");
3698 
3699   ThreadsList* threads;
3700 
3701   // Stable recording of a hazard ptr for SMR. This code does not use
3702   // locks so its use of the _smr_java_thread_list & _threads_hazard_ptr
3703   // fields is racy relative to code that uses those fields with locks.
3704   // OrderAccess and Atomic functions are used to deal with those races.
3705   //
3706   while (true) {
3707     threads = get_smr_java_thread_list();
3708 
3709     // Publish a tagged hazard ptr to denote that the hazard ptr is not
3710     // yet verified as being stable. Due to the fence after the hazard
3711     // ptr write, it will be sequentially consistent w.r.t. the
3712     // sequentially consistent writes of the ThreadsList, even on
3713     // non-multiple copy atomic machines where stores can be observed
3714     // in different order from different observer threads.
3715     ThreadsList* unverified_threads = Thread::tag_hazard_ptr(threads);
3716     self->set_threads_hazard_ptr(unverified_threads);
3717 
3718     // If _smr_java_thread_list has changed, we have lost a race with
3719     // Threads::add() or Threads::remove() and have to try again.
3720     if (get_smr_java_thread_list() != threads) {
3721       continue;
3722     }
3723 
3724     // We try to remove the tag which will verify the hazard ptr as
3725     // being stable. This exchange can race with a scanning thread
3726     // which might invalidate the tagged hazard ptr to keep it from
3727     // being followed to access JavaThread ptrs. If we lose the race,
3728     // we simply retry. If we win the race, then the stable hazard
3729     // ptr is officially published.
3730     if (self->cmpxchg_threads_hazard_ptr(threads, unverified_threads) == unverified_threads) {
3731       break;
3732     }
3733   }
3734 
3735   // A stable hazard ptr has been published letting other threads know
3736   // that the ThreadsList and the JavaThreads reachable from this list
3737   // are protected and hence they should not be deleted until everyone
3738   // agrees it is safe to do so.
3739 
3740   return threads;
3741 }
3742 
3743 // Acquire a nested stable ThreadsList; this is rare so it uses
3744 // Threads_lock.
3745 //
3746 ThreadsList *Threads::acquire_stable_list_nested_path(Thread *self) {
3747   assert(self != NULL, "sanity check");
3748   assert(self->get_threads_hazard_ptr() != NULL,
3749          "cannot have a NULL regular hazard ptr when acquiring a nested hazard ptr");
3750 
3751   // The thread already has a hazard ptr (ThreadsList ref) so we need
3752   // to create a nested ThreadsListHandle with the current ThreadsList
3753   // since it might be different than our current hazard ptr. The need
3754   // for a nested ThreadsListHandle is rare so we do this while holding
3755   // the Threads_lock so we don't race with the scanning code; the code
3756   // is so much simpler this way.
3757 
3758   NestedThreadsList* node;
3759   {
3760     // Only grab the Threads_lock if we don't already own it.
3761     MutexLockerEx ml(Threads_lock->owned_by_self() ? NULL : Threads_lock);
3762     node = new NestedThreadsList(get_smr_java_thread_list());
3763     // We insert at the front of the list to match up with the delete
3764     // in release_stable_list().
3765     node->set_next(self->get_nested_threads_hazard_ptr());
3766     self->set_nested_threads_hazard_ptr(node);
3767     if (EnableThreadSMRStatistics) {
3768       self->inc_nested_threads_hazard_ptr_cnt();
3769       if (self->nested_threads_hazard_ptr_cnt() > _smr_nested_thread_list_max) {
3770         _smr_nested_thread_list_max = self->nested_threads_hazard_ptr_cnt();
3771       }
3772     }
3773   }
3774   log_debug(thread, smr)("tid=" UINTX_FORMAT ": Threads::acquire_stable_list: add NestedThreadsList node containing ThreadsList=" INTPTR_FORMAT, os::current_thread_id(), p2i(node->t_list()));
3775 
3776   return node->t_list();
3777 }
3778 
3779 inline void Threads::add_smr_deleted_thread_times(uint add_value) {
3780   Atomic::add(add_value, &_smr_deleted_thread_times);
3781 }
3782 
3783 inline void Threads::inc_smr_deleted_thread_cnt() {
3784   Atomic::inc(&_smr_deleted_thread_cnt);
3785 }
3786 
3787 // Release a stable ThreadsList.
3788 //
3789 void Threads::release_stable_list(Thread *self) {
3790   assert(self != NULL, "sanity check");
3791   // release_stable_list_nested_path() will grab the Threads_lock
3792   // so let's make sure the ThreadsListHandle is in a safe place.
3793   debug_only(if (StrictSafepointChecks) self->check_for_valid_safepoint_state(/* potential_vm_operation */ false);)
3794 
3795   if (self->get_nested_threads_hazard_ptr() == NULL) {
3796     // The typical case is first.
3797     release_stable_list_fast_path(self);
3798     return;
3799   }
3800 
3801   // The nested case is rare.
3802   release_stable_list_nested_path(self);
3803 }
3804 
3805 // Fast path way to release a stable ThreadsList. The release portion
3806 // is lock-free, but the wake up portion is not.
3807 //
3808 void Threads::release_stable_list_fast_path(Thread *self) {
3809   assert(self != NULL, "sanity check");
3810   assert(self->get_threads_hazard_ptr() != NULL, "sanity check");
3811   assert(self->get_nested_threads_hazard_ptr() == NULL,
3812          "cannot have a nested hazard ptr when releasing a regular hazard ptr");
3813 
3814   // After releasing the hazard ptr, other threads may go ahead and
3815   // free up some memory temporarily used by a ThreadsList snapshot.
3816   self->set_threads_hazard_ptr(NULL);
3817 
3818   // We use double-check locking to reduce traffic on the system
3819   // wide smr_delete_lock.
3820   if (Threads::smr_delete_notify()) {
3821     // An exiting thread might be waiting in smr_delete(); we need to
3822     // check with smr_delete_lock to be sure.
3823     release_stable_list_wake_up((char *) "regular hazard ptr");
3824   }
3825 }
3826 
3827 // Release a nested stable ThreadsList; this is rare so it uses
3828 // Threads_lock.
3829 //
3830 void Threads::release_stable_list_nested_path(Thread *self) {
3831   assert(self != NULL, "sanity check");
3832   assert(self->get_nested_threads_hazard_ptr() != NULL, "sanity check");
3833   assert(self->get_threads_hazard_ptr() != NULL,
3834          "must have a regular hazard ptr to have nested hazard ptrs");
3835 
3836   // We have a nested ThreadsListHandle so we have to release it first.
3837   // The need for a nested ThreadsListHandle is rare so we do this while
3838   // holding the Threads_lock so we don't race with the scanning code;
3839   // the code is so much simpler this way.
3840 
3841   NestedThreadsList *node;
3842   {
3843     // Only grab the Threads_lock if we don't already own it.
3844     MutexLockerEx ml(Threads_lock->owned_by_self() ? NULL : Threads_lock);
3845     // We remove from the front of the list to match up with the insert
3846     // in acquire_stable_list().
3847     node = self->get_nested_threads_hazard_ptr();
3848     self->set_nested_threads_hazard_ptr(node->next());
3849     if (EnableThreadSMRStatistics) {
3850       self->dec_nested_threads_hazard_ptr_cnt();
3851     }
3852   }
3853 
3854   // An exiting thread might be waiting in smr_delete(); we need to
3855   // check with smr_delete_lock to be sure.
3856   release_stable_list_wake_up((char *) "nested hazard ptr");
3857 
3858   log_debug(thread, smr)("tid=" UINTX_FORMAT ": Threads::release_stable_list: delete NestedThreadsList node containing ThreadsList=" INTPTR_FORMAT, os::current_thread_id(), p2i(node->t_list()));
3859 
3860   delete node;
3861 }
3862 
3863 // Wake up portion of the release stable ThreadsList protocol;
3864 // uses the smr_delete_lock().
3865 //
3866 void Threads::release_stable_list_wake_up(char *log_str) {
3867   assert(log_str != NULL, "sanity check");
3868 
3869   // Note: smr_delete_lock is held in smr_delete() for the entire
3870   // hazard ptr search so that we do not lose this notify() if
3871   // the exiting thread has to wait. That code path also holds
3872   // Threads_lock (which was grabbed before smr_delete_lock) so that
3873   // threads_do() can be called. This means the system can't start a
3874   // safepoint which means this thread can't take too long to get to
3875   // a safepoint because of being blocked on smr_delete_lock.
3876   //
3877   MonitorLockerEx ml(Threads::smr_delete_lock(), Monitor::_no_safepoint_check_flag);
3878   if (Threads::smr_delete_notify()) {
3879     // Notify any exiting JavaThreads that are waiting in smr_delete()
3880     // that we've released a ThreadsList.
3881     ml.notify_all();
3882     log_debug(thread, smr)("tid=" UINTX_FORMAT ": Threads::release_stable_list notified %s", os::current_thread_id(), log_str);
3883   }
3884 }
3885 
3886 inline void Threads::update_smr_deleted_thread_time_max(uint new_value) {
3887   while (true) {
3888     uint cur_value = _smr_deleted_thread_time_max;
3889     if (new_value <= cur_value) {
3890       // No need to update max value so we're done.
3891       break;
3892     }
3893     if (Atomic::cmpxchg(new_value, &_smr_deleted_thread_time_max, cur_value) == cur_value) {
3894       // Updated max value so we're done. Otherwise try it all again.
3895       break;
3896     }
3897   }
3898 }
3899 
3900 inline ThreadsList* Threads::xchg_smr_java_thread_list(ThreadsList* new_list) {
3901   return (ThreadsList*)Atomic::xchg(new_list, &_smr_java_thread_list);
3902 }
3903 
3904 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3905   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3906 
3907   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3908     create_vm_init_libraries();
3909   }
3910 
3911   initialize_class(vmSymbols::java_lang_String(), CHECK);
3912 
3913   // Inject CompactStrings value after the static initializers for String ran.
3914   java_lang_String::set_compact_strings(CompactStrings);
3915 
3916   // Initialize java_lang.System (needed before creating the thread)
3917   initialize_class(vmSymbols::java_lang_System(), CHECK);
3918   // The VM creates & returns objects of this class. Make sure it's initialized.
3919   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3920   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3921   Handle thread_group = create_initial_thread_group(CHECK);
3922   Universe::set_main_thread_group(thread_group());
3923   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3924   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3925   main_thread->set_threadObj(thread_object);
3926   // Set thread status to running since main thread has
3927   // been started and running.
3928   java_lang_Thread::set_thread_status(thread_object,
3929                                       java_lang_Thread::RUNNABLE);
3930 
3931   // The VM creates objects of this class.
3932   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3933 
3934   // The VM preresolves methods to these classes. Make sure that they get initialized
3935   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3936   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3937 
3938   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3939   call_initPhase1(CHECK);
3940 
3941   // get the Java runtime name after java.lang.System is initialized
3942   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3943   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3944 
3945   // an instance of OutOfMemory exception has been allocated earlier
3946   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3947   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3948   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3949   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3950   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3951   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3952   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3953   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3954 }
3955 
3956 void Threads::initialize_jsr292_core_classes(TRAPS) {
3957   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3958 
3959   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3960   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3961   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3962   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3963 }
3964 
3965 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3966   extern void JDK_Version_init();
3967 
3968   // Preinitialize version info.
3969   VM_Version::early_initialize();
3970 
3971   // Check version
3972   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3973 
3974   // Initialize library-based TLS
3975   ThreadLocalStorage::init();
3976 
3977   // Initialize the output stream module
3978   ostream_init();
3979 
3980   // Process java launcher properties.
3981   Arguments::process_sun_java_launcher_properties(args);
3982 
3983   // Initialize the os module
3984   os::init();
3985 
3986   // Record VM creation timing statistics
3987   TraceVmCreationTime create_vm_timer;
3988   create_vm_timer.start();
3989 
3990   // Initialize system properties.
3991   Arguments::init_system_properties();
3992 
3993   // So that JDK version can be used as a discriminator when parsing arguments
3994   JDK_Version_init();
3995 
3996   // Update/Initialize System properties after JDK version number is known
3997   Arguments::init_version_specific_system_properties();
3998 
3999   // Make sure to initialize log configuration *before* parsing arguments
4000   LogConfiguration::initialize(create_vm_timer.begin_time());
4001 
4002   // Parse arguments
4003   // Note: this internally calls os::init_container_support()
4004   jint parse_result = Arguments::parse(args);
4005   if (parse_result != JNI_OK) return parse_result;
4006 
4007   os::init_before_ergo();
4008 
4009   jint ergo_result = Arguments::apply_ergo();
4010   if (ergo_result != JNI_OK) return ergo_result;
4011 
4012   // Final check of all ranges after ergonomics which may change values.
4013   if (!CommandLineFlagRangeList::check_ranges()) {
4014     return JNI_EINVAL;
4015   }
4016 
4017   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
4018   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
4019   if (!constraint_result) {
4020     return JNI_EINVAL;
4021   }
4022 
4023   CommandLineFlagWriteableList::mark_startup();
4024 
4025   if (PauseAtStartup) {
4026     os::pause();
4027   }
4028 
4029   HOTSPOT_VM_INIT_BEGIN();
4030 
4031   // Timing (must come after argument parsing)
4032   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
4033 
4034   // Initialize the os module after parsing the args
4035   jint os_init_2_result = os::init_2();
4036   if (os_init_2_result != JNI_OK) return os_init_2_result;
4037 
4038   SafepointMechanism::initialize();
4039 
4040   jint adjust_after_os_result = Arguments::adjust_after_os();
4041   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
4042 
4043   // Initialize output stream logging
4044   ostream_init_log();
4045 
4046   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
4047   // Must be before create_vm_init_agents()
4048   if (Arguments::init_libraries_at_startup()) {
4049     convert_vm_init_libraries_to_agents();
4050   }
4051 
4052   // Launch -agentlib/-agentpath and converted -Xrun agents
4053   if (Arguments::init_agents_at_startup()) {
4054     create_vm_init_agents();
4055   }
4056 
4057   // Initialize Threads state
4058   _thread_list = NULL;
4059   _number_of_threads = 0;
4060   _number_of_non_daemon_threads = 0;
4061 
4062   // Initialize global data structures and create system classes in heap
4063   vm_init_globals();
4064 
4065 #if INCLUDE_JVMCI
4066   if (JVMCICounterSize > 0) {
4067     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
4068     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
4069   } else {
4070     JavaThread::_jvmci_old_thread_counters = NULL;
4071   }
4072 #endif // INCLUDE_JVMCI
4073 
4074   // Attach the main thread to this os thread
4075   JavaThread* main_thread = new JavaThread();
4076   main_thread->set_thread_state(_thread_in_vm);
4077   main_thread->initialize_thread_current();
4078   // must do this before set_active_handles
4079   main_thread->record_stack_base_and_size();
4080   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
4081 
4082   if (!main_thread->set_as_starting_thread()) {
4083     vm_shutdown_during_initialization(
4084                                       "Failed necessary internal allocation. Out of swap space");
4085     main_thread->smr_delete();
4086     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
4087     return JNI_ENOMEM;
4088   }
4089 
4090   // Enable guard page *after* os::create_main_thread(), otherwise it would
4091   // crash Linux VM, see notes in os_linux.cpp.
4092   main_thread->create_stack_guard_pages();
4093 
4094   // Initialize Java-Level synchronization subsystem
4095   ObjectMonitor::Initialize();
4096 
4097   // Initialize global modules
4098   jint status = init_globals();
4099   if (status != JNI_OK) {
4100     main_thread->smr_delete();
4101     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
4102     return status;
4103   }
4104 
4105   if (TRACE_INITIALIZE() != JNI_OK) {
4106     vm_exit_during_initialization("Failed to initialize tracing backend");
4107   }
4108 
4109   // Should be done after the heap is fully created
4110   main_thread->cache_global_variables();
4111 
4112   HandleMark hm;
4113 
4114   { MutexLocker mu(Threads_lock);
4115     Threads::add(main_thread);
4116   }
4117 
4118   // Any JVMTI raw monitors entered in onload will transition into
4119   // real raw monitor. VM is setup enough here for raw monitor enter.
4120   JvmtiExport::transition_pending_onload_raw_monitors();
4121 
4122   // Create the VMThread
4123   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
4124 
4125   VMThread::create();
4126     Thread* vmthread = VMThread::vm_thread();
4127 
4128     if (!os::create_thread(vmthread, os::vm_thread)) {
4129       vm_exit_during_initialization("Cannot create VM thread. "
4130                                     "Out of system resources.");
4131     }
4132 
4133     // Wait for the VM thread to become ready, and VMThread::run to initialize
4134     // Monitors can have spurious returns, must always check another state flag
4135     {
4136       MutexLocker ml(Notify_lock);
4137       os::start_thread(vmthread);
4138       while (vmthread->active_handles() == NULL) {
4139         Notify_lock->wait();
4140       }
4141     }
4142   }
4143 
4144   assert(Universe::is_fully_initialized(), "not initialized");
4145   if (VerifyDuringStartup) {
4146     // Make sure we're starting with a clean slate.
4147     VM_Verify verify_op;
4148     VMThread::execute(&verify_op);
4149   }
4150 
4151   Thread* THREAD = Thread::current();
4152 
4153   // Always call even when there are not JVMTI environments yet, since environments
4154   // may be attached late and JVMTI must track phases of VM execution
4155   JvmtiExport::enter_early_start_phase();
4156 
4157   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
4158   JvmtiExport::post_early_vm_start();
4159 
4160   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
4161 
4162   // We need this for ClassDataSharing - the initial vm.info property is set
4163   // with the default value of CDS "sharing" which may be reset through
4164   // command line options.
4165   reset_vm_info_property(CHECK_JNI_ERR);
4166 
4167   quicken_jni_functions();
4168 
4169   // No more stub generation allowed after that point.
4170   StubCodeDesc::freeze();
4171 
4172   // Set flag that basic initialization has completed. Used by exceptions and various
4173   // debug stuff, that does not work until all basic classes have been initialized.
4174   set_init_completed();
4175 
4176   LogConfiguration::post_initialize();
4177   Metaspace::post_initialize();
4178 
4179   HOTSPOT_VM_INIT_END();
4180 
4181   // record VM initialization completion time
4182 #if INCLUDE_MANAGEMENT
4183   Management::record_vm_init_completed();
4184 #endif // INCLUDE_MANAGEMENT
4185 
4186   // Signal Dispatcher needs to be started before VMInit event is posted
4187   os::signal_init(CHECK_JNI_ERR);
4188 
4189   // Start Attach Listener if +StartAttachListener or it can't be started lazily
4190   if (!DisableAttachMechanism) {
4191     AttachListener::vm_start();
4192     if (StartAttachListener || AttachListener::init_at_startup()) {
4193       AttachListener::init();
4194     }
4195   }
4196 
4197   // Launch -Xrun agents
4198   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
4199   // back-end can launch with -Xdebug -Xrunjdwp.
4200   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
4201     create_vm_init_libraries();
4202   }
4203 
4204   if (CleanChunkPoolAsync) {
4205     Chunk::start_chunk_pool_cleaner_task();
4206   }
4207 
4208   // initialize compiler(s)
4209 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
4210   CompileBroker::compilation_init(CHECK_JNI_ERR);
4211 #endif
4212 
4213   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
4214   // It is done after compilers are initialized, because otherwise compilations of
4215   // signature polymorphic MH intrinsics can be missed
4216   // (see SystemDictionary::find_method_handle_intrinsic).
4217   initialize_jsr292_core_classes(CHECK_JNI_ERR);
4218 
4219   // This will initialize the module system.  Only java.base classes can be
4220   // loaded until phase 2 completes
4221   call_initPhase2(CHECK_JNI_ERR);
4222 
4223   // Always call even when there are not JVMTI environments yet, since environments
4224   // may be attached late and JVMTI must track phases of VM execution
4225   JvmtiExport::enter_start_phase();
4226 
4227   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
4228   JvmtiExport::post_vm_start();
4229 
4230   // Final system initialization including security manager and system class loader
4231   call_initPhase3(CHECK_JNI_ERR);
4232 
4233   // cache the system and platform class loaders
4234   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
4235 
4236 #if INCLUDE_JVMCI
4237   if (EnableJVMCI) {
4238     // Initialize JVMCI eagerly if JVMCIPrintProperties is enabled.
4239     // The JVMCI Java initialization code will read this flag and
4240     // do the printing if it's set.
4241     bool init = JVMCIPrintProperties;
4242 
4243     if (!init) {
4244       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
4245       // compilations via JVMCI will not actually block until JVMCI is initialized.
4246       init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
4247     }
4248 
4249     if (init) {
4250       JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
4251     }
4252   }
4253 #endif
4254 
4255   // Always call even when there are not JVMTI environments yet, since environments
4256   // may be attached late and JVMTI must track phases of VM execution
4257   JvmtiExport::enter_live_phase();
4258 
4259   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
4260   JvmtiExport::post_vm_initialized();
4261 
4262   if (TRACE_START() != JNI_OK) {
4263     vm_exit_during_initialization("Failed to start tracing backend.");
4264   }
4265 
4266 #if INCLUDE_MANAGEMENT
4267   Management::initialize(THREAD);
4268 
4269   if (HAS_PENDING_EXCEPTION) {
4270     // management agent fails to start possibly due to
4271     // configuration problem and is responsible for printing
4272     // stack trace if appropriate. Simply exit VM.
4273     vm_exit(1);
4274   }
4275 #endif // INCLUDE_MANAGEMENT
4276 
4277   if (MemProfiling)                   MemProfiler::engage();
4278   StatSampler::engage();
4279   if (CheckJNICalls)                  JniPeriodicChecker::engage();
4280 
4281   BiasedLocking::init();
4282 
4283 #if INCLUDE_RTM_OPT
4284   RTMLockingCounters::init();
4285 #endif
4286 
4287   if (JDK_Version::current().post_vm_init_hook_enabled()) {
4288     call_postVMInitHook(THREAD);
4289     // The Java side of PostVMInitHook.run must deal with all
4290     // exceptions and provide means of diagnosis.
4291     if (HAS_PENDING_EXCEPTION) {
4292       CLEAR_PENDING_EXCEPTION;
4293     }
4294   }
4295 
4296   {
4297     MutexLocker ml(PeriodicTask_lock);
4298     // Make sure the WatcherThread can be started by WatcherThread::start()
4299     // or by dynamic enrollment.
4300     WatcherThread::make_startable();
4301     // Start up the WatcherThread if there are any periodic tasks
4302     // NOTE:  All PeriodicTasks should be registered by now. If they
4303     //   aren't, late joiners might appear to start slowly (we might
4304     //   take a while to process their first tick).
4305     if (PeriodicTask::num_tasks() > 0) {
4306       WatcherThread::start();
4307     }
4308   }
4309 
4310   create_vm_timer.end();
4311 #ifdef ASSERT
4312   _vm_complete = true;
4313 #endif
4314 
4315   if (DumpSharedSpaces) {
4316     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4317     ShouldNotReachHere();
4318   }
4319 
4320   return JNI_OK;
4321 }
4322 
4323 // type for the Agent_OnLoad and JVM_OnLoad entry points
4324 extern "C" {
4325   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4326 }
4327 // Find a command line agent library and return its entry point for
4328 //         -agentlib:  -agentpath:   -Xrun
4329 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4330 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4331                                     const char *on_load_symbols[],
4332                                     size_t num_symbol_entries) {
4333   OnLoadEntry_t on_load_entry = NULL;
4334   void *library = NULL;
4335 
4336   if (!agent->valid()) {
4337     char buffer[JVM_MAXPATHLEN];
4338     char ebuf[1024] = "";
4339     const char *name = agent->name();
4340     const char *msg = "Could not find agent library ";
4341 
4342     // First check to see if agent is statically linked into executable
4343     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4344       library = agent->os_lib();
4345     } else if (agent->is_absolute_path()) {
4346       library = os::dll_load(name, ebuf, sizeof ebuf);
4347       if (library == NULL) {
4348         const char *sub_msg = " in absolute path, with error: ";
4349         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4350         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4351         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4352         // If we can't find the agent, exit.
4353         vm_exit_during_initialization(buf, NULL);
4354         FREE_C_HEAP_ARRAY(char, buf);
4355       }
4356     } else {
4357       // Try to load the agent from the standard dll directory
4358       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4359                              name)) {
4360         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4361       }
4362       if (library == NULL) { // Try the library path directory.
4363         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4364           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4365         }
4366         if (library == NULL) {
4367           const char *sub_msg = " on the library path, with error: ";
4368           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4369           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4370           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4371           // If we can't find the agent, exit.
4372           vm_exit_during_initialization(buf, NULL);
4373           FREE_C_HEAP_ARRAY(char, buf);
4374         }
4375       }
4376     }
4377     agent->set_os_lib(library);
4378     agent->set_valid();
4379   }
4380 
4381   // Find the OnLoad function.
4382   on_load_entry =
4383     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4384                                                           false,
4385                                                           on_load_symbols,
4386                                                           num_symbol_entries));
4387   return on_load_entry;
4388 }
4389 
4390 // Find the JVM_OnLoad entry point
4391 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4392   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4393   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4394 }
4395 
4396 // Find the Agent_OnLoad entry point
4397 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4398   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4399   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4400 }
4401 
4402 // For backwards compatibility with -Xrun
4403 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4404 // treated like -agentpath:
4405 // Must be called before agent libraries are created
4406 void Threads::convert_vm_init_libraries_to_agents() {
4407   AgentLibrary* agent;
4408   AgentLibrary* next;
4409 
4410   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4411     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4412     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4413 
4414     // If there is an JVM_OnLoad function it will get called later,
4415     // otherwise see if there is an Agent_OnLoad
4416     if (on_load_entry == NULL) {
4417       on_load_entry = lookup_agent_on_load(agent);
4418       if (on_load_entry != NULL) {
4419         // switch it to the agent list -- so that Agent_OnLoad will be called,
4420         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4421         Arguments::convert_library_to_agent(agent);
4422       } else {
4423         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4424       }
4425     }
4426   }
4427 }
4428 
4429 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4430 // Invokes Agent_OnLoad
4431 // Called very early -- before JavaThreads exist
4432 void Threads::create_vm_init_agents() {
4433   extern struct JavaVM_ main_vm;
4434   AgentLibrary* agent;
4435 
4436   JvmtiExport::enter_onload_phase();
4437 
4438   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4439     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4440 
4441     if (on_load_entry != NULL) {
4442       // Invoke the Agent_OnLoad function
4443       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4444       if (err != JNI_OK) {
4445         vm_exit_during_initialization("agent library failed to init", agent->name());
4446       }
4447     } else {
4448       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4449     }
4450   }
4451   JvmtiExport::enter_primordial_phase();
4452 }
4453 
4454 extern "C" {
4455   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4456 }
4457 
4458 void Threads::shutdown_vm_agents() {
4459   // Send any Agent_OnUnload notifications
4460   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4461   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4462   extern struct JavaVM_ main_vm;
4463   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4464 
4465     // Find the Agent_OnUnload function.
4466     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4467                                                    os::find_agent_function(agent,
4468                                                    false,
4469                                                    on_unload_symbols,
4470                                                    num_symbol_entries));
4471 
4472     // Invoke the Agent_OnUnload function
4473     if (unload_entry != NULL) {
4474       JavaThread* thread = JavaThread::current();
4475       ThreadToNativeFromVM ttn(thread);
4476       HandleMark hm(thread);
4477       (*unload_entry)(&main_vm);
4478     }
4479   }
4480 }
4481 
4482 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4483 // Invokes JVM_OnLoad
4484 void Threads::create_vm_init_libraries() {
4485   extern struct JavaVM_ main_vm;
4486   AgentLibrary* agent;
4487 
4488   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4489     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4490 
4491     if (on_load_entry != NULL) {
4492       // Invoke the JVM_OnLoad function
4493       JavaThread* thread = JavaThread::current();
4494       ThreadToNativeFromVM ttn(thread);
4495       HandleMark hm(thread);
4496       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4497       if (err != JNI_OK) {
4498         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4499       }
4500     } else {
4501       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4502     }
4503   }
4504 }
4505 
4506 
4507 // Last thread running calls java.lang.Shutdown.shutdown()
4508 void JavaThread::invoke_shutdown_hooks() {
4509   HandleMark hm(this);
4510 
4511   // We could get here with a pending exception, if so clear it now.
4512   if (this->has_pending_exception()) {
4513     this->clear_pending_exception();
4514   }
4515 
4516   EXCEPTION_MARK;
4517   Klass* shutdown_klass =
4518     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4519                                       THREAD);
4520   if (shutdown_klass != NULL) {
4521     // SystemDictionary::resolve_or_null will return null if there was
4522     // an exception.  If we cannot load the Shutdown class, just don't
4523     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4524     // and finalizers (if runFinalizersOnExit is set) won't be run.
4525     // Note that if a shutdown hook was registered or runFinalizersOnExit
4526     // was called, the Shutdown class would have already been loaded
4527     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4528     JavaValue result(T_VOID);
4529     JavaCalls::call_static(&result,
4530                            shutdown_klass,
4531                            vmSymbols::shutdown_method_name(),
4532                            vmSymbols::void_method_signature(),
4533                            THREAD);
4534   }
4535   CLEAR_PENDING_EXCEPTION;
4536 }
4537 
4538 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4539 // the program falls off the end of main(). Another VM exit path is through
4540 // vm_exit() when the program calls System.exit() to return a value or when
4541 // there is a serious error in VM. The two shutdown paths are not exactly
4542 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4543 // and VM_Exit op at VM level.
4544 //
4545 // Shutdown sequence:
4546 //   + Shutdown native memory tracking if it is on
4547 //   + Wait until we are the last non-daemon thread to execute
4548 //     <-- every thing is still working at this moment -->
4549 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4550 //        shutdown hooks, run finalizers if finalization-on-exit
4551 //   + Call before_exit(), prepare for VM exit
4552 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4553 //        currently the only user of this mechanism is File.deleteOnExit())
4554 //      > stop StatSampler, watcher thread, CMS threads,
4555 //        post thread end and vm death events to JVMTI,
4556 //        stop signal thread
4557 //   + Call JavaThread::exit(), it will:
4558 //      > release JNI handle blocks, remove stack guard pages
4559 //      > remove this thread from Threads list
4560 //     <-- no more Java code from this thread after this point -->
4561 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4562 //     the compiler threads at safepoint
4563 //     <-- do not use anything that could get blocked by Safepoint -->
4564 //   + Disable tracing at JNI/JVM barriers
4565 //   + Set _vm_exited flag for threads that are still running native code
4566 //   + Delete this thread
4567 //   + Call exit_globals()
4568 //      > deletes tty
4569 //      > deletes PerfMemory resources
4570 //   + Return to caller
4571 
4572 bool Threads::destroy_vm() {
4573   JavaThread* thread = JavaThread::current();
4574 
4575 #ifdef ASSERT
4576   _vm_complete = false;
4577 #endif
4578   // Wait until we are the last non-daemon thread to execute
4579   { MutexLocker nu(Threads_lock);
4580     while (Threads::number_of_non_daemon_threads() > 1)
4581       // This wait should make safepoint checks, wait without a timeout,
4582       // and wait as a suspend-equivalent condition.
4583       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4584                          Mutex::_as_suspend_equivalent_flag);
4585   }
4586 
4587   // Hang forever on exit if we are reporting an error.
4588   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4589     os::infinite_sleep();
4590   }
4591   os::wait_for_keypress_at_exit();
4592 
4593   // run Java level shutdown hooks
4594   thread->invoke_shutdown_hooks();
4595 
4596   before_exit(thread);
4597 
4598   thread->exit(true);
4599 
4600   // Stop VM thread.
4601   {
4602     // 4945125 The vm thread comes to a safepoint during exit.
4603     // GC vm_operations can get caught at the safepoint, and the
4604     // heap is unparseable if they are caught. Grab the Heap_lock
4605     // to prevent this. The GC vm_operations will not be able to
4606     // queue until after the vm thread is dead. After this point,
4607     // we'll never emerge out of the safepoint before the VM exits.
4608 
4609     MutexLocker ml(Heap_lock);
4610 
4611     VMThread::wait_for_vm_thread_exit();
4612     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4613     VMThread::destroy();
4614   }
4615 
4616   // clean up ideal graph printers
4617 #if defined(COMPILER2) && !defined(PRODUCT)
4618   IdealGraphPrinter::clean_up();
4619 #endif
4620 
4621   // Now, all Java threads are gone except daemon threads. Daemon threads
4622   // running Java code or in VM are stopped by the Safepoint. However,
4623   // daemon threads executing native code are still running.  But they
4624   // will be stopped at native=>Java/VM barriers. Note that we can't
4625   // simply kill or suspend them, as it is inherently deadlock-prone.
4626 
4627   VM_Exit::set_vm_exited();
4628 
4629   notify_vm_shutdown();
4630 
4631   // We are after VM_Exit::set_vm_exited() so we can't call
4632   // thread->smr_delete() or we will block on the Threads_lock.
4633   // Deleting the shutdown thread here is safe because another
4634   // JavaThread cannot have an active ThreadsListHandle for
4635   // this JavaThread.
4636   delete thread;
4637 
4638 #if INCLUDE_JVMCI
4639   if (JVMCICounterSize > 0) {
4640     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4641   }
4642 #endif
4643 
4644   // exit_globals() will delete tty
4645   exit_globals();
4646 
4647   LogConfiguration::finalize();
4648 
4649   return true;
4650 }
4651 
4652 
4653 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4654   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4655   return is_supported_jni_version(version);
4656 }
4657 
4658 
4659 jboolean Threads::is_supported_jni_version(jint version) {
4660   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4661   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4662   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4663   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4664   if (version == JNI_VERSION_9) return JNI_TRUE;
4665   if (version == JNI_VERSION_10) return JNI_TRUE;
4666   return JNI_FALSE;
4667 }
4668 
4669 // Hash table of pointers found by a scan. Used for collecting hazard
4670 // pointers (ThreadsList references). Also used for collecting JavaThreads
4671 // that are indirectly referenced by hazard ptrs. An instance of this
4672 // class only contains one type of pointer.
4673 //
4674 class ThreadScanHashtable : public CHeapObj<mtThread> {
4675  private:
4676   static bool ptr_equals(void * const& s1, void * const& s2) {
4677     return s1 == s2;
4678   }
4679 
4680   static unsigned int ptr_hash(void * const& s1) {
4681     // 2654435761 = 2^32 * Phi (golden ratio)
4682     return (unsigned int)(((uint32_t)(uintptr_t)s1) * 2654435761u);
4683   }
4684 
4685   int _table_size;
4686   // ResourceHashtable SIZE is specified at compile time so our
4687   // dynamic _table_size is unused for now; 1031 is the first prime
4688   // after 1024.
4689   typedef ResourceHashtable<void *, int, &ThreadScanHashtable::ptr_hash,
4690                             &ThreadScanHashtable::ptr_equals, 1031,
4691                             ResourceObj::C_HEAP, mtThread> PtrTable;
4692   PtrTable * _ptrs;
4693 
4694  public:
4695   // ResourceHashtable is passed to various functions and populated in
4696   // different places so we allocate it using C_HEAP to make it immune
4697   // from any ResourceMarks that happen to be in the code paths.
4698   ThreadScanHashtable(int table_size) : _table_size(table_size), _ptrs(new (ResourceObj::C_HEAP, mtThread) PtrTable()) {}
4699 
4700   ~ThreadScanHashtable() { delete _ptrs; }
4701 
4702   bool has_entry(void *pointer) {
4703     int *val_ptr = _ptrs->get(pointer);
4704     return val_ptr != NULL && *val_ptr == 1;
4705   }
4706 
4707   void add_entry(void *pointer) {
4708     _ptrs->put(pointer, 1);
4709   }
4710 };
4711 
4712 // Closure to gather JavaThreads indirectly referenced by hazard ptrs
4713 // (ThreadsList references) into a hash table. This closure handles part 2
4714 // of the dance - adding all the JavaThreads referenced by the hazard
4715 // pointer (ThreadsList reference) to the hash table.
4716 //
4717 class AddThreadHazardPointerThreadClosure : public ThreadClosure {
4718  private:
4719   ThreadScanHashtable *_table;
4720 
4721  public:
4722   AddThreadHazardPointerThreadClosure(ThreadScanHashtable *table) : _table(table) {}
4723 
4724   virtual void do_thread(Thread *thread) {
4725     if (!_table->has_entry((void*)thread)) {
4726       // The same JavaThread might be on more than one ThreadsList or
4727       // more than one thread might be using the same ThreadsList. In
4728       // either case, we only need a single entry for a JavaThread.
4729       _table->add_entry((void*)thread);
4730     }
4731   }
4732 };
4733 
4734 // Closure to gather JavaThreads indirectly referenced by hazard ptrs
4735 // (ThreadsList references) into a hash table. This closure handles part 1
4736 // of the dance - hazard ptr chain walking and dispatch to another
4737 // closure.
4738 //
4739 class ScanHazardPtrGatherProtectedThreadsClosure : public ThreadClosure {
4740  private:
4741   ThreadScanHashtable *_table;
4742  public:
4743   ScanHazardPtrGatherProtectedThreadsClosure(ThreadScanHashtable *table) : _table(table) {}
4744 
4745   virtual void do_thread(Thread *thread) {
4746     assert_locked_or_safepoint(Threads_lock);
4747 
4748     if (thread == NULL) return;
4749 
4750     // This code races with Threads::acquire_stable_list() which is
4751     // lock-free so we have to handle some special situations.
4752     //
4753     ThreadsList *current_list = NULL;
4754     while (true) {
4755       current_list = thread->get_threads_hazard_ptr();
4756       // No hazard ptr so nothing more to do.
4757       if (current_list == NULL) {
4758         assert(thread->get_nested_threads_hazard_ptr() == NULL,
4759                "cannot have a nested hazard ptr with a NULL regular hazard ptr");
4760         return;
4761       }
4762 
4763       // If the hazard ptr is verified as stable (since it is not tagged),
4764       // then it is safe to use.
4765       if (!Thread::is_hazard_ptr_tagged(current_list)) break;
4766 
4767       // The hazard ptr is tagged as not yet verified as being stable
4768       // so we are racing with acquire_stable_list(). This exchange
4769       // attempts to invalidate the hazard ptr. If we win the race,
4770       // then we can ignore this unstable hazard ptr and the other
4771       // thread will retry the attempt to publish a stable hazard ptr.
4772       // If we lose the race, then we retry our attempt to look at the
4773       // hazard ptr.
4774       if (thread->cmpxchg_threads_hazard_ptr(NULL, current_list) == current_list) return;
4775     }
4776 
4777     // The current JavaThread has a hazard ptr (ThreadsList reference)
4778     // which might be _smr_java_thread_list or it might be an older
4779     // ThreadsList that has been removed but not freed. In either case,
4780     // the hazard ptr is protecting all the JavaThreads on that
4781     // ThreadsList.
4782     AddThreadHazardPointerThreadClosure add_cl(_table);
4783     current_list->threads_do(&add_cl);
4784 
4785     // Any NestedThreadsLists are also protecting JavaThreads so
4786     // gather those also; the ThreadsLists may be different.
4787     for (NestedThreadsList* node = thread->get_nested_threads_hazard_ptr();
4788          node != NULL; node = node->next()) {
4789       node->t_list()->threads_do(&add_cl);
4790     }
4791   }
4792 };
4793 
4794 // Closure to print JavaThreads that have a hazard ptr (ThreadsList
4795 // reference) that contains an indirect reference to a specific JavaThread.
4796 //
4797 class ScanHazardPtrPrintMatchingThreadsClosure : public ThreadClosure {
4798  private:
4799   JavaThread *_thread;
4800  public:
4801   ScanHazardPtrPrintMatchingThreadsClosure(JavaThread *thread) : _thread(thread) {}
4802 
4803   virtual void do_thread(Thread *thread) {
4804     assert_locked_or_safepoint(Threads_lock);
4805 
4806     if (thread == NULL) return;
4807     ThreadsList *current_list = thread->get_threads_hazard_ptr();
4808     if (current_list == NULL) {
4809       assert(thread->get_nested_threads_hazard_ptr() == NULL,
4810              "cannot have a nested hazard ptr with a NULL regular hazard ptr");
4811       return;
4812     }
4813     // If the hazard ptr is unverified, then ignore it.
4814     if (Thread::is_hazard_ptr_tagged(current_list)) return;
4815 
4816     // The current JavaThread has a hazard ptr (ThreadsList reference)
4817     // which might be _smr_java_thread_list or it might be an older
4818     // ThreadsList that has been removed but not freed. In either case,
4819     // the hazard ptr is protecting all the JavaThreads on that
4820     // ThreadsList, but we only care about matching a specific JavaThread.
4821     DO_JAVA_THREADS(current_list, p) {
4822       if (p == _thread) {
4823         log_debug(thread, smr)("tid=" UINTX_FORMAT ": Threads::smr_delete: thread1=" INTPTR_FORMAT " has a hazard pointer for thread2=" INTPTR_FORMAT, os::current_thread_id(), p2i(thread), p2i(_thread));
4824         break;
4825       }
4826     }
4827 
4828     // Any NestedThreadsLists are also protecting JavaThreads so
4829     // check those also; the ThreadsLists may be different.
4830     for (NestedThreadsList* node = thread->get_nested_threads_hazard_ptr();
4831          node != NULL; node = node->next()) {
4832       DO_JAVA_THREADS(node->t_list(), p) {
4833         if (p == _thread) {
4834           log_debug(thread, smr)("tid=" UINTX_FORMAT ": Threads::smr_delete: thread1=" INTPTR_FORMAT " has a nested hazard pointer for thread2=" INTPTR_FORMAT, os::current_thread_id(), p2i(thread), p2i(_thread));
4835           return;
4836         }
4837       }
4838     }
4839   }
4840 };
4841 
4842 // Return true if the specified JavaThread is protected by a hazard
4843 // pointer (ThreadsList reference). Otherwise, returns false.
4844 //
4845 bool Threads::is_a_protected_JavaThread(JavaThread *thread) {
4846   assert_locked_or_safepoint(Threads_lock);
4847 
4848   // Hash table size should be first power of two higher than twice
4849   // the length of the Threads list.
4850   int hash_table_size = MIN2(_number_of_threads, 32) << 1;
4851   hash_table_size--;
4852   hash_table_size |= hash_table_size >> 1;
4853   hash_table_size |= hash_table_size >> 2;
4854   hash_table_size |= hash_table_size >> 4;
4855   hash_table_size |= hash_table_size >> 8;
4856   hash_table_size |= hash_table_size >> 16;
4857   hash_table_size++;
4858 
4859   // Gather a hash table of the JavaThreads indirectly referenced by
4860   // hazard ptrs.
4861   ThreadScanHashtable *scan_table = new ThreadScanHashtable(hash_table_size);
4862   ScanHazardPtrGatherProtectedThreadsClosure scan_cl(scan_table);
4863   Threads::threads_do(&scan_cl);
4864 
4865   bool thread_is_protected = false;
4866   if (scan_table->has_entry((void*)thread)) {
4867     thread_is_protected = true;
4868   }
4869   delete scan_table;
4870   return thread_is_protected;
4871 }
4872 
4873 // Safely delete a JavaThread when it is no longer in use by a
4874 // ThreadsListHandle.
4875 //
4876 void Threads::smr_delete(JavaThread *thread) {
4877   assert(!Threads_lock->owned_by_self(), "sanity");
4878 
4879   bool has_logged_once = false;
4880   elapsedTimer timer;
4881   if (EnableThreadSMRStatistics) {
4882     timer.start();
4883   }
4884 
4885   while (true) {
4886     {
4887       // No safepoint check because this JavaThread is not on the
4888       // Threads list.
4889       MutexLockerEx ml(Threads_lock, Mutex::_no_safepoint_check_flag);
4890       // Cannot use a MonitorLockerEx helper here because we have
4891       // to drop the Threads_lock first if we wait.
4892       Threads::smr_delete_lock()->lock_without_safepoint_check();
4893       // Set the smr_delete_notify flag after we grab smr_delete_lock
4894       // and before we scan hazard ptrs because we're doing
4895       // double-check locking in release_stable_list().
4896       Threads::set_smr_delete_notify();
4897 
4898       if (!is_a_protected_JavaThread(thread)) {
4899         // This is the common case.
4900         Threads::clear_smr_delete_notify();
4901         Threads::smr_delete_lock()->unlock();
4902         break;
4903       }
4904       if (!has_logged_once) {
4905         has_logged_once = true;
4906         log_debug(thread, smr)("tid=" UINTX_FORMAT ": Threads::smr_delete: thread=" INTPTR_FORMAT " is not deleted.", os::current_thread_id(), p2i(thread));
4907         if (log_is_enabled(Debug, os, thread)) {
4908           ScanHazardPtrPrintMatchingThreadsClosure scan_cl(thread);
4909           Threads::threads_do(&scan_cl);
4910         }
4911       }
4912     } // We have to drop the Threads_lock to wait or delete the thread
4913 
4914     if (EnableThreadSMRStatistics) {
4915       _smr_delete_lock_wait_cnt++;
4916       if (_smr_delete_lock_wait_cnt > _smr_delete_lock_wait_max) {
4917         _smr_delete_lock_wait_max = _smr_delete_lock_wait_cnt;
4918       }
4919     }
4920     // Wait for a release_stable_list() call before we check again. No
4921     // safepoint check, no timeout, and not as suspend equivalent flag
4922     // because this JavaThread is not on the Threads list.
4923     Threads::smr_delete_lock()->wait(Mutex::_no_safepoint_check_flag, 0,
4924                                      !Mutex::_as_suspend_equivalent_flag);
4925     if (EnableThreadSMRStatistics) {
4926       _smr_delete_lock_wait_cnt--;
4927     }
4928 
4929     Threads::clear_smr_delete_notify();
4930     Threads::smr_delete_lock()->unlock();
4931     // Retry the whole scenario.
4932   }
4933 
4934   if (ThreadLocalHandshakes) {
4935     // The thread is about to be deleted so cancel any handshake.
4936     thread->cancel_handshake();
4937   }
4938 
4939   delete thread;
4940   if (EnableThreadSMRStatistics) {
4941     timer.stop();
4942     uint millis = (uint)timer.milliseconds();
4943     Threads::inc_smr_deleted_thread_cnt();
4944     Threads::add_smr_deleted_thread_times(millis);
4945     Threads::update_smr_deleted_thread_time_max(millis);
4946   }
4947 
4948   log_debug(thread, smr)("tid=" UINTX_FORMAT ": Threads::smr_delete: thread=" INTPTR_FORMAT " is deleted.", os::current_thread_id(), p2i(thread));
4949 }
4950 
4951 bool Threads::smr_delete_notify() {
4952   // Use load_acquire() in order to see any updates to _smr_delete_notify
4953   // earlier than when smr_delete_lock is grabbed.
4954   return (OrderAccess::load_acquire(&_smr_delete_notify) != 0);
4955 }
4956 
4957 // set_smr_delete_notify() and clear_smr_delete_notify() are called
4958 // under the protection of the smr_delete_lock, but we also use an
4959 // Atomic operation to ensure the memory update is seen earlier than
4960 // when the smr_delete_lock is dropped.
4961 //
4962 void Threads::set_smr_delete_notify() {
4963   Atomic::inc(&_smr_delete_notify);
4964 }
4965 
4966 void Threads::clear_smr_delete_notify() {
4967   Atomic::dec(&_smr_delete_notify);
4968 }
4969 
4970 // Closure to gather hazard ptrs (ThreadsList references) into a hash table.
4971 //
4972 class ScanHazardPtrGatherThreadsListClosure : public ThreadClosure {
4973  private:
4974   ThreadScanHashtable *_table;
4975  public:
4976   ScanHazardPtrGatherThreadsListClosure(ThreadScanHashtable *table) : _table(table) {}
4977 
4978   virtual void do_thread(Thread* thread) {
4979     assert_locked_or_safepoint(Threads_lock);
4980 
4981     if (thread == NULL) return;
4982     ThreadsList *threads = thread->get_threads_hazard_ptr();
4983     if (threads == NULL) {
4984       assert(thread->get_nested_threads_hazard_ptr() == NULL,
4985              "cannot have a nested hazard ptr with a NULL regular hazard ptr");
4986       return;
4987     }
4988     // In this closure we always ignore the tag that might mark this
4989     // hazard ptr as not yet verified. If we happen to catch an
4990     // unverified hazard ptr that is subsequently discarded (not
4991     // published), then the only side effect is that we might keep a
4992     // to-be-deleted ThreadsList alive a little longer.
4993     threads = Thread::untag_hazard_ptr(threads);
4994     if (!_table->has_entry((void*)threads)) {
4995       _table->add_entry((void*)threads);
4996     }
4997 
4998     // Any NestedThreadsLists are also protecting JavaThreads so
4999     // gather those also; the ThreadsLists may be different.
5000     for (NestedThreadsList* node = thread->get_nested_threads_hazard_ptr();
5001          node != NULL; node = node->next()) {
5002       threads = node->t_list();
5003       if (!_table->has_entry((void*)threads)) {
5004         _table->add_entry((void*)threads);
5005       }
5006     }
5007   }
5008 };
5009 
5010 // Safely free a ThreadsList after a Threads::add() or Threads::remove().
5011 // The specified ThreadsList may not get deleted during this call if it
5012 // is still in-use (referenced by a hazard ptr). Other ThreadsLists
5013 // in the chain may get deleted by this call if they are no longer in-use.
5014 void Threads::smr_free_list(ThreadsList* threads) {
5015   assert_locked_or_safepoint(Threads_lock);
5016 
5017   threads->set_next_list(_smr_to_delete_list);
5018   _smr_to_delete_list = threads;
5019   if (EnableThreadSMRStatistics) {
5020     _smr_to_delete_list_cnt++;
5021     if (_smr_to_delete_list_cnt > _smr_to_delete_list_max) {
5022       _smr_to_delete_list_max = _smr_to_delete_list_cnt;
5023     }
5024   }
5025 
5026   // Hash table size should be first power of two higher than twice the length of the ThreadsList
5027   int hash_table_size = MIN2(_number_of_threads, 32) << 1;
5028   hash_table_size--;
5029   hash_table_size |= hash_table_size >> 1;
5030   hash_table_size |= hash_table_size >> 2;
5031   hash_table_size |= hash_table_size >> 4;
5032   hash_table_size |= hash_table_size >> 8;
5033   hash_table_size |= hash_table_size >> 16;
5034   hash_table_size++;
5035 
5036   // Gather a hash table of the current hazard ptrs:
5037   ThreadScanHashtable *scan_table = new ThreadScanHashtable(hash_table_size);
5038   ScanHazardPtrGatherThreadsListClosure scan_cl(scan_table);
5039   Threads::threads_do(&scan_cl);
5040 
5041   // Walk through the linked list of pending freeable ThreadsLists
5042   // and free the ones that are not referenced from hazard ptrs.
5043   ThreadsList* current = _smr_to_delete_list;
5044   ThreadsList* prev = NULL;
5045   ThreadsList* next = NULL;
5046   bool threads_is_freed = false;
5047   while (current != NULL) {
5048     next = current->next_list();
5049     if (!scan_table->has_entry((void*)current)) {
5050       // This ThreadsList is not referenced by a hazard ptr.
5051       if (prev != NULL) {
5052         prev->set_next_list(next);
5053       }
5054       if (_smr_to_delete_list == current) {
5055         _smr_to_delete_list = next;
5056       }
5057 
5058       log_debug(thread, smr)("tid=" UINTX_FORMAT ": Threads::smr_free_list: threads=" INTPTR_FORMAT " is freed.", os::current_thread_id(), p2i(current));
5059       if (current == threads) threads_is_freed = true;
5060       delete current;
5061       if (EnableThreadSMRStatistics) {
5062         _smr_java_thread_list_free_cnt++;
5063         _smr_to_delete_list_cnt--;
5064       }
5065     } else {
5066       prev = current;
5067     }
5068     current = next;
5069   }
5070 
5071   if (!threads_is_freed) {
5072     // Only report "is not freed" on the original call to
5073     // smr_free_list() for this ThreadsList.
5074     log_debug(thread, smr)("tid=" UINTX_FORMAT ": Threads::smr_free_list: threads=" INTPTR_FORMAT " is not freed.", os::current_thread_id(), p2i(threads));
5075   }
5076 
5077   delete scan_table;
5078 }
5079 
5080 // Remove a JavaThread from a ThreadsList. The returned ThreadsList is a
5081 // new copy of the specified ThreadsList with the specified JavaThread
5082 // removed.
5083 ThreadsList *ThreadsList::remove_thread(ThreadsList* list, JavaThread* java_thread) {
5084   assert(list->_length > 0, "sanity");
5085 
5086   uint i = 0;
5087   DO_JAVA_THREADS(list, current) {
5088     if (current == java_thread) {
5089       break;
5090     }
5091     i++;
5092   }
5093   assert(i < list->_length, "did not find JavaThread on the list");
5094   const uint index = i;
5095   const uint new_length = list->_length - 1;
5096   const uint head_length = index;
5097   const uint tail_length = (new_length >= index) ? (new_length - index) : 0;
5098   ThreadsList *const new_list = new ThreadsList(new_length);
5099 
5100   if (head_length > 0) {
5101     Copy::disjoint_words((HeapWord*)list->_threads, (HeapWord*)new_list->_threads, head_length);
5102   }
5103   if (tail_length > 0) {
5104     Copy::disjoint_words((HeapWord*)list->_threads + index + 1, (HeapWord*)new_list->_threads + index, tail_length);
5105   }
5106 
5107   return new_list;
5108 }
5109 
5110 // Add a JavaThread to a ThreadsList. The returned ThreadsList is a
5111 // new copy of the specified ThreadsList with the specified JavaThread
5112 // appended to the end.
5113 ThreadsList *ThreadsList::add_thread(ThreadsList *list, JavaThread *java_thread) {
5114   const uint index = list->_length;
5115   const uint new_length = index + 1;
5116   const uint head_length = index;
5117   ThreadsList *const new_list = new ThreadsList(new_length);
5118 
5119   if (head_length > 0) {
5120     Copy::disjoint_words((HeapWord*)list->_threads, (HeapWord*)new_list->_threads, head_length);
5121   }
5122   *(JavaThread**)(new_list->_threads + index) = java_thread;
5123 
5124   return new_list;
5125 }
5126 
5127 int ThreadsList::find_index_of_JavaThread(JavaThread *target) {
5128   if (target == NULL) {
5129     return -1;
5130   }
5131   for (uint i = 0; i < length(); i++) {
5132     if (target == thread_at(i)) {
5133       return (int)i;
5134     }
5135   }
5136   return -1;
5137 }
5138 
5139 JavaThread* ThreadsList::find_JavaThread_from_java_tid(jlong java_tid) const {
5140   DO_JAVA_THREADS(this, thread) {
5141     oop tobj = thread->threadObj();
5142     // Ignore the thread if it hasn't run yet, has exited
5143     // or is starting to exit.
5144     if (tobj != NULL && !thread->is_exiting() &&
5145         java_tid == java_lang_Thread::thread_id(tobj)) {
5146       // found a match
5147       return thread;
5148     }
5149   }
5150   return NULL;
5151 }
5152 
5153 bool ThreadsList::includes(const JavaThread * const p) const {
5154   if (p == NULL) {
5155     return false;
5156   }
5157   DO_JAVA_THREADS(this, q) {
5158     if (q == p) {
5159       return true;
5160     }
5161   }
5162   return false;
5163 }
5164 
5165 void Threads::add(JavaThread* p, bool force_daemon) {
5166   // The threads lock must be owned at this point
5167   assert_locked_or_safepoint(Threads_lock);
5168 
5169   // See the comment for this method in thread.hpp for its purpose and
5170   // why it is called here.
5171   p->initialize_queues();
5172   p->set_next(_thread_list);
5173   _thread_list = p;
5174 
5175   // Once a JavaThread is added to the Threads list, smr_delete() has
5176   // to be used to delete it. Otherwise we can just delete it directly.
5177   p->set_on_thread_list();
5178 
5179   _number_of_threads++;
5180   oop threadObj = p->threadObj();
5181   bool daemon = true;
5182   // Bootstrapping problem: threadObj can be null for initial
5183   // JavaThread (or for threads attached via JNI)
5184   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
5185     _number_of_non_daemon_threads++;
5186     daemon = false;
5187   }
5188 
5189   ThreadService::add_thread(p, daemon);
5190 
5191   // Maintain fast thread list
5192   ThreadsList *new_list = ThreadsList::add_thread(get_smr_java_thread_list(), p);
5193   if (EnableThreadSMRStatistics) {
5194     _smr_java_thread_list_alloc_cnt++;
5195     if (new_list->length() > _smr_java_thread_list_max) {
5196       _smr_java_thread_list_max = new_list->length();
5197     }
5198   }
5199   // Initial _smr_java_thread_list will not generate a "Threads::add" mesg.
5200   log_debug(thread, smr)("tid=" UINTX_FORMAT ": Threads::add: new ThreadsList=" INTPTR_FORMAT, os::current_thread_id(), p2i(new_list));
5201 
5202   ThreadsList *old_list = xchg_smr_java_thread_list(new_list);
5203   smr_free_list(old_list);
5204 
5205   // Possible GC point.
5206   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
5207 }
5208 
5209 void Threads::remove(JavaThread* p) {
5210 
5211   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
5212   ObjectSynchronizer::omFlush(p);
5213 
5214   // Extra scope needed for Thread_lock, so we can check
5215   // that we do not remove thread without safepoint code notice
5216   { MutexLocker ml(Threads_lock);
5217 
5218     assert(get_smr_java_thread_list()->includes(p), "p must be present");
5219 
5220     // Maintain fast thread list
5221     ThreadsList *new_list = ThreadsList::remove_thread(get_smr_java_thread_list(), p);
5222     if (EnableThreadSMRStatistics) {
5223       _smr_java_thread_list_alloc_cnt++;
5224       // This list is smaller so no need to check for a "longest" update.
5225     }
5226 
5227     // Final _smr_java_thread_list will not generate a "Threads::remove" mesg.
5228     log_debug(thread, smr)("tid=" UINTX_FORMAT ": Threads::remove: new ThreadsList=" INTPTR_FORMAT, os::current_thread_id(), p2i(new_list));
5229 
5230     ThreadsList *old_list = xchg_smr_java_thread_list(new_list);
5231     smr_free_list(old_list);
5232 
5233     JavaThread* current = _thread_list;
5234     JavaThread* prev    = NULL;
5235 
5236     while (current != p) {
5237       prev    = current;
5238       current = current->next();
5239     }
5240 
5241     if (prev) {
5242       prev->set_next(current->next());
5243     } else {
5244       _thread_list = p->next();
5245     }
5246 
5247     _number_of_threads--;
5248     oop threadObj = p->threadObj();
5249     bool daemon = true;
5250     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
5251       _number_of_non_daemon_threads--;
5252       daemon = false;
5253 
5254       // Only one thread left, do a notify on the Threads_lock so a thread waiting
5255       // on destroy_vm will wake up.
5256       if (number_of_non_daemon_threads() == 1) {
5257         Threads_lock->notify_all();
5258       }
5259     }
5260     ThreadService::remove_thread(p, daemon);
5261 
5262     // Make sure that safepoint code disregard this thread. This is needed since
5263     // the thread might mess around with locks after this point. This can cause it
5264     // to do callbacks into the safepoint code. However, the safepoint code is not aware
5265     // of this thread since it is removed from the queue.
5266     p->set_terminated_value();
5267   } // unlock Threads_lock
5268 
5269   // Since Events::log uses a lock, we grab it outside the Threads_lock
5270   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
5271 }
5272 
5273 // Operations on the Threads list for GC.  These are not explicitly locked,
5274 // but the garbage collector must provide a safe context for them to run.
5275 // In particular, these things should never be called when the Threads_lock
5276 // is held by some other thread. (Note: the Safepoint abstraction also
5277 // uses the Threads_lock to guarantee this property. It also makes sure that
5278 // all threads gets blocked when exiting or starting).
5279 
5280 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
5281   ALL_JAVA_THREADS(p) {
5282     p->oops_do(f, cf);
5283   }
5284   VMThread::vm_thread()->oops_do(f, cf);
5285 }
5286 
5287 void Threads::change_thread_claim_parity() {
5288   // Set the new claim parity.
5289   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
5290          "Not in range.");
5291   _thread_claim_parity++;
5292   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
5293   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
5294          "Not in range.");
5295 }
5296 
5297 #ifdef ASSERT
5298 void Threads::assert_all_threads_claimed() {
5299   ALL_JAVA_THREADS(p) {
5300     const int thread_parity = p->oops_do_parity();
5301     assert((thread_parity == _thread_claim_parity),
5302            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
5303   }
5304   VMThread* vmt = VMThread::vm_thread();
5305   const int thread_parity = vmt->oops_do_parity();
5306   assert((thread_parity == _thread_claim_parity),
5307          "VMThread " PTR_FORMAT " has incorrect parity %d != %d", p2i(vmt), thread_parity, _thread_claim_parity);
5308 }
5309 #endif // ASSERT
5310 
5311 class ParallelOopsDoThreadClosure : public ThreadClosure {
5312 private:
5313   OopClosure* _f;
5314   CodeBlobClosure* _cf;
5315 public:
5316   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
5317   void do_thread(Thread* t) {
5318     t->oops_do(_f, _cf);
5319   }
5320 };
5321 
5322 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
5323   ParallelOopsDoThreadClosure tc(f, cf);
5324   possibly_parallel_threads_do(is_par, &tc);
5325 }
5326 
5327 #if INCLUDE_ALL_GCS
5328 // Used by ParallelScavenge
5329 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
5330   ALL_JAVA_THREADS(p) {
5331     q->enqueue(new ThreadRootsTask(p));
5332   }
5333   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
5334 }
5335 
5336 // Used by Parallel Old
5337 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
5338   ALL_JAVA_THREADS(p) {
5339     q->enqueue(new ThreadRootsMarkingTask(p));
5340   }
5341   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
5342 }
5343 #endif // INCLUDE_ALL_GCS
5344 
5345 void Threads::nmethods_do(CodeBlobClosure* cf) {
5346   ALL_JAVA_THREADS(p) {
5347     // This is used by the code cache sweeper to mark nmethods that are active
5348     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
5349     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
5350     if(!p->is_Code_cache_sweeper_thread()) {
5351       p->nmethods_do(cf);
5352     }
5353   }
5354 }
5355 
5356 void Threads::metadata_do(void f(Metadata*)) {
5357   ALL_JAVA_THREADS(p) {
5358     p->metadata_do(f);
5359   }
5360 }
5361 
5362 class ThreadHandlesClosure : public ThreadClosure {
5363   void (*_f)(Metadata*);
5364  public:
5365   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
5366   virtual void do_thread(Thread* thread) {
5367     thread->metadata_handles_do(_f);
5368   }
5369 };
5370 
5371 void Threads::metadata_handles_do(void f(Metadata*)) {
5372   // Only walk the Handles in Thread.
5373   ThreadHandlesClosure handles_closure(f);
5374   threads_do(&handles_closure);
5375 }
5376 
5377 void Threads::deoptimized_wrt_marked_nmethods() {
5378   ALL_JAVA_THREADS(p) {
5379     p->deoptimized_wrt_marked_nmethods();
5380   }
5381 }
5382 
5383 
5384 // Get count Java threads that are waiting to enter the specified monitor.
5385 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
5386                                                          int count,
5387                                                          address monitor) {
5388   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
5389 
5390   int i = 0;
5391   DO_JAVA_THREADS(t_list, p) {
5392     if (!p->can_call_java()) continue;
5393 
5394     address pending = (address)p->current_pending_monitor();
5395     if (pending == monitor) {             // found a match
5396       if (i < count) result->append(p);   // save the first count matches
5397       i++;
5398     }
5399   }
5400 
5401   return result;
5402 }
5403 
5404 
5405 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
5406                                                       address owner) {
5407   // NULL owner means not locked so we can skip the search
5408   if (owner == NULL) return NULL;
5409 
5410   DO_JAVA_THREADS(t_list, p) {
5411     // first, see if owner is the address of a Java thread
5412     if (owner == (address)p) return p;
5413   }
5414 
5415   // Cannot assert on lack of success here since this function may be
5416   // used by code that is trying to report useful problem information
5417   // like deadlock detection.
5418   if (UseHeavyMonitors) return NULL;
5419 
5420   // If we didn't find a matching Java thread and we didn't force use of
5421   // heavyweight monitors, then the owner is the stack address of the
5422   // Lock Word in the owning Java thread's stack.
5423   //
5424   JavaThread* the_owner = NULL;
5425   DO_JAVA_THREADS(t_list, q) {
5426     if (q->is_lock_owned(owner)) {
5427       the_owner = q;
5428       break;
5429     }
5430   }
5431 
5432   // cannot assert on lack of success here; see above comment
5433   return the_owner;
5434 }
5435 
5436 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
5437 void Threads::print_on(outputStream* st, bool print_stacks,
5438                        bool internal_format, bool print_concurrent_locks) {
5439   char buf[32];
5440   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
5441 
5442   st->print_cr("Full thread dump %s (%s %s):",
5443                Abstract_VM_Version::vm_name(),
5444                Abstract_VM_Version::vm_release(),
5445                Abstract_VM_Version::vm_info_string());
5446   st->cr();
5447 
5448 #if INCLUDE_SERVICES
5449   // Dump concurrent locks
5450   ConcurrentLocksDump concurrent_locks;
5451   if (print_concurrent_locks) {
5452     concurrent_locks.dump_at_safepoint();
5453   }
5454 #endif // INCLUDE_SERVICES
5455 
5456   print_smr_info_on(st);
5457   st->cr();
5458 
5459   ALL_JAVA_THREADS(p) {
5460     ResourceMark rm;
5461     p->print_on(st);
5462     if (print_stacks) {
5463       if (internal_format) {
5464         p->trace_stack();
5465       } else {
5466         p->print_stack_on(st);
5467       }
5468     }
5469     st->cr();
5470 #if INCLUDE_SERVICES
5471     if (print_concurrent_locks) {
5472       concurrent_locks.print_locks_on(p, st);
5473     }
5474 #endif // INCLUDE_SERVICES
5475   }
5476 
5477   VMThread::vm_thread()->print_on(st);
5478   st->cr();
5479   Universe::heap()->print_gc_threads_on(st);
5480   WatcherThread* wt = WatcherThread::watcher_thread();
5481   if (wt != NULL) {
5482     wt->print_on(st);
5483     st->cr();
5484   }
5485 
5486   st->flush();
5487 }
5488 
5489 // Log Threads class SMR info.
5490 void Threads::log_smr_statistics() {
5491   LogTarget(Info, thread, smr) log;
5492   if (log.is_enabled()) {
5493     LogStream out(log);
5494     print_smr_info_on(&out);
5495   }
5496 }
5497 
5498 // Print Threads class SMR info.
5499 void Threads::print_smr_info_on(outputStream* st) {
5500   // Only grab the Threads_lock if we don't already own it
5501   // and if we are not reporting an error.
5502   MutexLockerEx ml((Threads_lock->owned_by_self() || VMError::is_error_reported()) ? NULL : Threads_lock);
5503 
5504   st->print_cr("Threads class SMR info:");
5505   st->print_cr("_smr_java_thread_list=" INTPTR_FORMAT ", length=%u, "
5506                "elements={", p2i(_smr_java_thread_list),
5507                _smr_java_thread_list->length());
5508   print_smr_info_elements_on(st, _smr_java_thread_list);
5509   st->print_cr("}");
5510   if (_smr_to_delete_list != NULL) {
5511     st->print_cr("_smr_to_delete_list=" INTPTR_FORMAT ", length=%u, "
5512                  "elements={", p2i(_smr_to_delete_list),
5513                  _smr_to_delete_list->length());
5514     print_smr_info_elements_on(st, _smr_to_delete_list);
5515     st->print_cr("}");
5516     for (ThreadsList *t_list = _smr_to_delete_list->next_list();
5517          t_list != NULL; t_list = t_list->next_list()) {
5518       st->print("next-> " INTPTR_FORMAT ", length=%u, "
5519                 "elements={", p2i(t_list), t_list->length());
5520       print_smr_info_elements_on(st, t_list);
5521       st->print_cr("}");
5522     }
5523   }
5524   if (!EnableThreadSMRStatistics) {
5525     return;
5526   }
5527   st->print_cr("_smr_java_thread_list_alloc_cnt=" UINT64_FORMAT ","
5528                "_smr_java_thread_list_free_cnt=" UINT64_FORMAT ","
5529                "_smr_java_thread_list_max=%u, "
5530                "_smr_nested_thread_list_max=%u",
5531                _smr_java_thread_list_alloc_cnt,
5532                _smr_java_thread_list_free_cnt,
5533                _smr_java_thread_list_max,
5534                _smr_nested_thread_list_max);
5535   if (_smr_tlh_cnt > 0) {
5536     st->print_cr("_smr_tlh_cnt=%u"
5537                  ", _smr_tlh_times=%u"
5538                  ", avg_smr_tlh_time=%0.2f"
5539                  ", _smr_tlh_time_max=%u",
5540                  _smr_tlh_cnt, _smr_tlh_times,
5541                  ((double) _smr_tlh_times / _smr_tlh_cnt),
5542                  _smr_tlh_time_max);
5543   }
5544   if (_smr_deleted_thread_cnt > 0) {
5545     st->print_cr("_smr_deleted_thread_cnt=%u"
5546                  ", _smr_deleted_thread_times=%u"
5547                  ", avg_smr_deleted_thread_time=%0.2f"
5548                  ", _smr_deleted_thread_time_max=%u",
5549                  _smr_deleted_thread_cnt, _smr_deleted_thread_times,
5550                  ((double) _smr_deleted_thread_times / _smr_deleted_thread_cnt),
5551                  _smr_deleted_thread_time_max);
5552   }
5553   st->print_cr("_smr_delete_lock_wait_cnt=%u, _smr_delete_lock_wait_max=%u",
5554                _smr_delete_lock_wait_cnt, _smr_delete_lock_wait_max);
5555   st->print_cr("_smr_to_delete_list_cnt=%u, _smr_to_delete_list_max=%u",
5556                _smr_to_delete_list_cnt, _smr_to_delete_list_max);
5557 }
5558 
5559 // Print ThreadsList elements (4 per line).
5560 void Threads::print_smr_info_elements_on(outputStream* st,
5561                                          ThreadsList* t_list) {
5562   uint cnt = 0;
5563   JavaThreadIterator jti(t_list);
5564   for (JavaThread *jt = jti.first(); jt != NULL; jt = jti.next()) {
5565     st->print(INTPTR_FORMAT, p2i(jt));
5566     if (cnt < t_list->length() - 1) {
5567       // Separate with comma or comma-space except for the last one.
5568       if (((cnt + 1) % 4) == 0) {
5569         // Four INTPTR_FORMAT fit on an 80 column line so end the
5570         // current line with just a comma.
5571         st->print_cr(",");
5572       } else {
5573         // Not the last one on the current line so use comma-space:
5574         st->print(", ");
5575       }
5576     } else {
5577       // Last one so just end the current line.
5578       st->cr();
5579     }
5580     cnt++;
5581   }
5582 }
5583 
5584 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
5585                              int buflen, bool* found_current) {
5586   if (this_thread != NULL) {
5587     bool is_current = (current == this_thread);
5588     *found_current = *found_current || is_current;
5589     st->print("%s", is_current ? "=>" : "  ");
5590 
5591     st->print(PTR_FORMAT, p2i(this_thread));
5592     st->print(" ");
5593     this_thread->print_on_error(st, buf, buflen);
5594     st->cr();
5595   }
5596 }
5597 
5598 class PrintOnErrorClosure : public ThreadClosure {
5599   outputStream* _st;
5600   Thread* _current;
5601   char* _buf;
5602   int _buflen;
5603   bool* _found_current;
5604  public:
5605   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
5606                       int buflen, bool* found_current) :
5607    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
5608 
5609   virtual void do_thread(Thread* thread) {
5610     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
5611   }
5612 };
5613 
5614 // Threads::print_on_error() is called by fatal error handler. It's possible
5615 // that VM is not at safepoint and/or current thread is inside signal handler.
5616 // Don't print stack trace, as the stack may not be walkable. Don't allocate
5617 // memory (even in resource area), it might deadlock the error handler.
5618 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
5619                              int buflen) {
5620   print_smr_info_on(st);
5621   st->cr();
5622 
5623   bool found_current = false;
5624   st->print_cr("Java Threads: ( => current thread )");
5625   ALL_JAVA_THREADS(thread) {
5626     print_on_error(thread, st, current, buf, buflen, &found_current);
5627   }
5628   st->cr();
5629 
5630   st->print_cr("Other Threads:");
5631   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
5632   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
5633 
5634   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
5635   Universe::heap()->gc_threads_do(&print_closure);
5636 
5637   if (!found_current) {
5638     st->cr();
5639     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
5640     current->print_on_error(st, buf, buflen);
5641     st->cr();
5642   }
5643   st->cr();
5644 
5645   st->print_cr("Threads with active compile tasks:");
5646   print_threads_compiling(st, buf, buflen);
5647 }
5648 
5649 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
5650   ALL_JAVA_THREADS(thread) {
5651     if (thread->is_Compiler_thread()) {
5652       CompilerThread* ct = (CompilerThread*) thread;
5653       if (ct->task() != NULL) {
5654         thread->print_name_on_error(st, buf, buflen);
5655         ct->task()->print(st, NULL, true, true);
5656       }
5657     }
5658   }
5659 }
5660 
5661 
5662 // Internal SpinLock and Mutex
5663 // Based on ParkEvent
5664 
5665 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
5666 //
5667 // We employ SpinLocks _only for low-contention, fixed-length
5668 // short-duration critical sections where we're concerned
5669 // about native mutex_t or HotSpot Mutex:: latency.
5670 // The mux construct provides a spin-then-block mutual exclusion
5671 // mechanism.
5672 //
5673 // Testing has shown that contention on the ListLock guarding gFreeList
5674 // is common.  If we implement ListLock as a simple SpinLock it's common
5675 // for the JVM to devolve to yielding with little progress.  This is true
5676 // despite the fact that the critical sections protected by ListLock are
5677 // extremely short.
5678 //
5679 // TODO-FIXME: ListLock should be of type SpinLock.
5680 // We should make this a 1st-class type, integrated into the lock
5681 // hierarchy as leaf-locks.  Critically, the SpinLock structure
5682 // should have sufficient padding to avoid false-sharing and excessive
5683 // cache-coherency traffic.
5684 
5685 
5686 typedef volatile int SpinLockT;
5687 
5688 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
5689   if (Atomic::cmpxchg (1, adr, 0) == 0) {
5690     return;   // normal fast-path return
5691   }
5692 
5693   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
5694   TEVENT(SpinAcquire - ctx);
5695   int ctr = 0;
5696   int Yields = 0;
5697   for (;;) {
5698     while (*adr != 0) {
5699       ++ctr;
5700       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
5701         if (Yields > 5) {
5702           os::naked_short_sleep(1);
5703         } else {
5704           os::naked_yield();
5705           ++Yields;
5706         }
5707       } else {
5708         SpinPause();
5709       }
5710     }
5711     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
5712   }
5713 }
5714 
5715 void Thread::SpinRelease(volatile int * adr) {
5716   assert(*adr != 0, "invariant");
5717   OrderAccess::fence();      // guarantee at least release consistency.
5718   // Roach-motel semantics.
5719   // It's safe if subsequent LDs and STs float "up" into the critical section,
5720   // but prior LDs and STs within the critical section can't be allowed
5721   // to reorder or float past the ST that releases the lock.
5722   // Loads and stores in the critical section - which appear in program
5723   // order before the store that releases the lock - must also appear
5724   // before the store that releases the lock in memory visibility order.
5725   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
5726   // the ST of 0 into the lock-word which releases the lock, so fence
5727   // more than covers this on all platforms.
5728   *adr = 0;
5729 }
5730 
5731 // muxAcquire and muxRelease:
5732 //
5733 // *  muxAcquire and muxRelease support a single-word lock-word construct.
5734 //    The LSB of the word is set IFF the lock is held.
5735 //    The remainder of the word points to the head of a singly-linked list
5736 //    of threads blocked on the lock.
5737 //
5738 // *  The current implementation of muxAcquire-muxRelease uses its own
5739 //    dedicated Thread._MuxEvent instance.  If we're interested in
5740 //    minimizing the peak number of extant ParkEvent instances then
5741 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
5742 //    as certain invariants were satisfied.  Specifically, care would need
5743 //    to be taken with regards to consuming unpark() "permits".
5744 //    A safe rule of thumb is that a thread would never call muxAcquire()
5745 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
5746 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
5747 //    consume an unpark() permit intended for monitorenter, for instance.
5748 //    One way around this would be to widen the restricted-range semaphore
5749 //    implemented in park().  Another alternative would be to provide
5750 //    multiple instances of the PlatformEvent() for each thread.  One
5751 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
5752 //
5753 // *  Usage:
5754 //    -- Only as leaf locks
5755 //    -- for short-term locking only as muxAcquire does not perform
5756 //       thread state transitions.
5757 //
5758 // Alternatives:
5759 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
5760 //    but with parking or spin-then-park instead of pure spinning.
5761 // *  Use Taura-Oyama-Yonenzawa locks.
5762 // *  It's possible to construct a 1-0 lock if we encode the lockword as
5763 //    (List,LockByte).  Acquire will CAS the full lockword while Release
5764 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
5765 //    acquiring threads use timers (ParkTimed) to detect and recover from
5766 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
5767 //    boundaries by using placement-new.
5768 // *  Augment MCS with advisory back-link fields maintained with CAS().
5769 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
5770 //    The validity of the backlinks must be ratified before we trust the value.
5771 //    If the backlinks are invalid the exiting thread must back-track through the
5772 //    the forward links, which are always trustworthy.
5773 // *  Add a successor indication.  The LockWord is currently encoded as
5774 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
5775 //    to provide the usual futile-wakeup optimization.
5776 //    See RTStt for details.
5777 // *  Consider schedctl.sc_nopreempt to cover the critical section.
5778 //
5779 
5780 
5781 const intptr_t LOCKBIT = 1;
5782 
5783 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
5784   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
5785   if (w == 0) return;
5786   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
5787     return;
5788   }
5789 
5790   TEVENT(muxAcquire - Contention);
5791   ParkEvent * const Self = Thread::current()->_MuxEvent;
5792   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
5793   for (;;) {
5794     int its = (os::is_MP() ? 100 : 0) + 1;
5795 
5796     // Optional spin phase: spin-then-park strategy
5797     while (--its >= 0) {
5798       w = *Lock;
5799       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
5800         return;
5801       }
5802     }
5803 
5804     Self->reset();
5805     Self->OnList = intptr_t(Lock);
5806     // The following fence() isn't _strictly necessary as the subsequent
5807     // CAS() both serializes execution and ratifies the fetched *Lock value.
5808     OrderAccess::fence();
5809     for (;;) {
5810       w = *Lock;
5811       if ((w & LOCKBIT) == 0) {
5812         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
5813           Self->OnList = 0;   // hygiene - allows stronger asserts
5814           return;
5815         }
5816         continue;      // Interference -- *Lock changed -- Just retry
5817       }
5818       assert(w & LOCKBIT, "invariant");
5819       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
5820       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
5821     }
5822 
5823     while (Self->OnList != 0) {
5824       Self->park();
5825     }
5826   }
5827 }
5828 
5829 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
5830   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
5831   if (w == 0) return;
5832   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
5833     return;
5834   }
5835 
5836   TEVENT(muxAcquire - Contention);
5837   ParkEvent * ReleaseAfter = NULL;
5838   if (ev == NULL) {
5839     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
5840   }
5841   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
5842   for (;;) {
5843     guarantee(ev->OnList == 0, "invariant");
5844     int its = (os::is_MP() ? 100 : 0) + 1;
5845 
5846     // Optional spin phase: spin-then-park strategy
5847     while (--its >= 0) {
5848       w = *Lock;
5849       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
5850         if (ReleaseAfter != NULL) {
5851           ParkEvent::Release(ReleaseAfter);
5852         }
5853         return;
5854       }
5855     }
5856 
5857     ev->reset();
5858     ev->OnList = intptr_t(Lock);
5859     // The following fence() isn't _strictly necessary as the subsequent
5860     // CAS() both serializes execution and ratifies the fetched *Lock value.
5861     OrderAccess::fence();
5862     for (;;) {
5863       w = *Lock;
5864       if ((w & LOCKBIT) == 0) {
5865         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
5866           ev->OnList = 0;
5867           // We call ::Release while holding the outer lock, thus
5868           // artificially lengthening the critical section.
5869           // Consider deferring the ::Release() until the subsequent unlock(),
5870           // after we've dropped the outer lock.
5871           if (ReleaseAfter != NULL) {
5872             ParkEvent::Release(ReleaseAfter);
5873           }
5874           return;
5875         }
5876         continue;      // Interference -- *Lock changed -- Just retry
5877       }
5878       assert(w & LOCKBIT, "invariant");
5879       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
5880       if (Atomic::cmpxchg(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
5881     }
5882 
5883     while (ev->OnList != 0) {
5884       ev->park();
5885     }
5886   }
5887 }
5888 
5889 // Release() must extract a successor from the list and then wake that thread.
5890 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
5891 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
5892 // Release() would :
5893 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
5894 // (B) Extract a successor from the private list "in-hand"
5895 // (C) attempt to CAS() the residual back into *Lock over null.
5896 //     If there were any newly arrived threads and the CAS() would fail.
5897 //     In that case Release() would detach the RATs, re-merge the list in-hand
5898 //     with the RATs and repeat as needed.  Alternately, Release() might
5899 //     detach and extract a successor, but then pass the residual list to the wakee.
5900 //     The wakee would be responsible for reattaching and remerging before it
5901 //     competed for the lock.
5902 //
5903 // Both "pop" and DMR are immune from ABA corruption -- there can be
5904 // multiple concurrent pushers, but only one popper or detacher.
5905 // This implementation pops from the head of the list.  This is unfair,
5906 // but tends to provide excellent throughput as hot threads remain hot.
5907 // (We wake recently run threads first).
5908 //
5909 // All paths through muxRelease() will execute a CAS.
5910 // Release consistency -- We depend on the CAS in muxRelease() to provide full
5911 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
5912 // executed within the critical section are complete and globally visible before the
5913 // store (CAS) to the lock-word that releases the lock becomes globally visible.
5914 void Thread::muxRelease(volatile intptr_t * Lock)  {
5915   for (;;) {
5916     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
5917     assert(w & LOCKBIT, "invariant");
5918     if (w == LOCKBIT) return;
5919     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5920     assert(List != NULL, "invariant");
5921     assert(List->OnList == intptr_t(Lock), "invariant");
5922     ParkEvent * const nxt = List->ListNext;
5923     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5924 
5925     // The following CAS() releases the lock and pops the head element.
5926     // The CAS() also ratifies the previously fetched lock-word value.
5927     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
5928       continue;
5929     }
5930     List->OnList = 0;
5931     OrderAccess::fence();
5932     List->unpark();
5933     return;
5934   }
5935 }
5936 
5937 
5938 void Threads::verify() {
5939   ALL_JAVA_THREADS(p) {
5940     p->verify();
5941   }
5942   VMThread* thread = VMThread::vm_thread();
5943   if (thread != NULL) thread->verify();
5944 }