1 /* 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoader.hpp" 27 #include "classfile/javaClasses.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "code/codeCache.hpp" 31 #include "code/scopeDesc.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "interpreter/interpreter.hpp" 34 #include "interpreter/linkResolver.hpp" 35 #include "interpreter/oopMapCache.hpp" 36 #include "jvmtifiles/jvmtiEnv.hpp" 37 #include "memory/gcLocker.inline.hpp" 38 #include "memory/metaspaceShared.hpp" 39 #include "memory/oopFactory.hpp" 40 #include "memory/universe.inline.hpp" 41 #include "oops/instanceKlass.hpp" 42 #include "oops/objArrayOop.hpp" 43 #include "oops/oop.inline.hpp" 44 #include "oops/symbol.hpp" 45 #include "oops/verifyOopClosure.hpp" 46 #include "prims/jvm_misc.hpp" 47 #include "prims/jvmtiExport.hpp" 48 #include "prims/jvmtiThreadState.hpp" 49 #include "prims/privilegedStack.hpp" 50 #include "runtime/arguments.hpp" 51 #include "runtime/atomic.inline.hpp" 52 #include "runtime/biasedLocking.hpp" 53 #include "runtime/deoptimization.hpp" 54 #include "runtime/fprofiler.hpp" 55 #include "runtime/frame.inline.hpp" 56 #include "runtime/init.hpp" 57 #include "runtime/interfaceSupport.hpp" 58 #include "runtime/java.hpp" 59 #include "runtime/javaCalls.hpp" 60 #include "runtime/jniPeriodicChecker.hpp" 61 #include "runtime/memprofiler.hpp" 62 #include "runtime/mutexLocker.hpp" 63 #include "runtime/objectMonitor.hpp" 64 #include "runtime/orderAccess.inline.hpp" 65 #include "runtime/osThread.hpp" 66 #include "runtime/safepoint.hpp" 67 #include "runtime/sharedRuntime.hpp" 68 #include "runtime/statSampler.hpp" 69 #include "runtime/stubRoutines.hpp" 70 #include "runtime/sweeper.hpp" 71 #include "runtime/task.hpp" 72 #include "runtime/thread.inline.hpp" 73 #include "runtime/threadCritical.hpp" 74 #include "runtime/threadLocalStorage.hpp" 75 #include "runtime/vframe.hpp" 76 #include "runtime/vframeArray.hpp" 77 #include "runtime/vframe_hp.hpp" 78 #include "runtime/vmThread.hpp" 79 #include "runtime/vm_operations.hpp" 80 #include "runtime/vm_version.hpp" 81 #include "services/attachListener.hpp" 82 #include "services/management.hpp" 83 #include "services/memTracker.hpp" 84 #include "services/threadService.hpp" 85 #include "trace/tracing.hpp" 86 #include "trace/traceMacros.hpp" 87 #include "utilities/defaultStream.hpp" 88 #include "utilities/dtrace.hpp" 89 #include "utilities/events.hpp" 90 #include "utilities/preserveException.hpp" 91 #include "utilities/macros.hpp" 92 #if INCLUDE_ALL_GCS 93 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp" 94 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp" 95 #include "gc_implementation/parallelScavenge/pcTasks.hpp" 96 #endif // INCLUDE_ALL_GCS 97 #ifdef COMPILER1 98 #include "c1/c1_Compiler.hpp" 99 #endif 100 #ifdef COMPILER2 101 #include "opto/c2compiler.hpp" 102 #include "opto/idealGraphPrinter.hpp" 103 #endif 104 #if INCLUDE_RTM_OPT 105 #include "runtime/rtmLocking.hpp" 106 #endif 107 108 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC 109 110 #ifdef DTRACE_ENABLED 111 112 // Only bother with this argument setup if dtrace is available 113 114 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START 115 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP 116 117 #define DTRACE_THREAD_PROBE(probe, javathread) \ 118 { \ 119 ResourceMark rm(this); \ 120 int len = 0; \ 121 const char* name = (javathread)->get_thread_name(); \ 122 len = strlen(name); \ 123 HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */ \ 124 (char *) name, len, \ 125 java_lang_Thread::thread_id((javathread)->threadObj()), \ 126 (uintptr_t) (javathread)->osthread()->thread_id(), \ 127 java_lang_Thread::is_daemon((javathread)->threadObj())); \ 128 } 129 130 #else // ndef DTRACE_ENABLED 131 132 #define DTRACE_THREAD_PROBE(probe, javathread) 133 134 #endif // ndef DTRACE_ENABLED 135 136 137 // Class hierarchy 138 // - Thread 139 // - VMThread 140 // - WatcherThread 141 // - ConcurrentMarkSweepThread 142 // - JavaThread 143 // - CompilerThread 144 145 // ======= Thread ======== 146 // Support for forcing alignment of thread objects for biased locking 147 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) { 148 if (UseBiasedLocking) { 149 const int alignment = markOopDesc::biased_lock_alignment; 150 size_t aligned_size = size + (alignment - sizeof(intptr_t)); 151 void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC) 152 : AllocateHeap(aligned_size, flags, CURRENT_PC, 153 AllocFailStrategy::RETURN_NULL); 154 void* aligned_addr = (void*) align_size_up((intptr_t) real_malloc_addr, alignment); 155 assert(((uintptr_t) aligned_addr + (uintptr_t) size) <= 156 ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size), 157 "JavaThread alignment code overflowed allocated storage"); 158 if (TraceBiasedLocking) { 159 if (aligned_addr != real_malloc_addr) { 160 tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT, 161 real_malloc_addr, aligned_addr); 162 } 163 } 164 ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr; 165 return aligned_addr; 166 } else { 167 return throw_excpt? AllocateHeap(size, flags, CURRENT_PC) 168 : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL); 169 } 170 } 171 172 void Thread::operator delete(void* p) { 173 if (UseBiasedLocking) { 174 void* real_malloc_addr = ((Thread*) p)->_real_malloc_address; 175 FreeHeap(real_malloc_addr); 176 } else { 177 FreeHeap(p); 178 } 179 } 180 181 182 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread, 183 // JavaThread 184 185 186 Thread::Thread() { 187 // stack and get_thread 188 set_stack_base(NULL); 189 set_stack_size(0); 190 set_self_raw_id(0); 191 set_lgrp_id(-1); 192 193 // allocated data structures 194 set_osthread(NULL); 195 set_resource_area(new (mtThread)ResourceArea()); 196 DEBUG_ONLY(_current_resource_mark = NULL;) 197 set_handle_area(new (mtThread) HandleArea(NULL)); 198 set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true)); 199 set_active_handles(NULL); 200 set_free_handle_block(NULL); 201 set_last_handle_mark(NULL); 202 203 // This initial value ==> never claimed. 204 _oops_do_parity = 0; 205 206 _metadata_on_stack_buffer = NULL; 207 208 // the handle mark links itself to last_handle_mark 209 new HandleMark(this); 210 211 // plain initialization 212 debug_only(_owned_locks = NULL;) 213 debug_only(_allow_allocation_count = 0;) 214 NOT_PRODUCT(_allow_safepoint_count = 0;) 215 NOT_PRODUCT(_skip_gcalot = false;) 216 _jvmti_env_iteration_count = 0; 217 set_allocated_bytes(0); 218 _vm_operation_started_count = 0; 219 _vm_operation_completed_count = 0; 220 _current_pending_monitor = NULL; 221 _current_pending_monitor_is_from_java = true; 222 _current_waiting_monitor = NULL; 223 _num_nested_signal = 0; 224 omFreeList = NULL; 225 omFreeCount = 0; 226 omFreeProvision = 32; 227 omInUseList = NULL; 228 omInUseCount = 0; 229 230 #ifdef ASSERT 231 _visited_for_critical_count = false; 232 #endif 233 234 _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true, 235 Monitor::_safepoint_check_sometimes); 236 _suspend_flags = 0; 237 238 // thread-specific hashCode stream generator state - Marsaglia shift-xor form 239 _hashStateX = os::random(); 240 _hashStateY = 842502087; 241 _hashStateZ = 0x8767; // (int)(3579807591LL & 0xffff) ; 242 _hashStateW = 273326509; 243 244 _OnTrap = 0; 245 _schedctl = NULL; 246 _Stalled = 0; 247 _TypeTag = 0x2BAD; 248 249 // Many of the following fields are effectively final - immutable 250 // Note that nascent threads can't use the Native Monitor-Mutex 251 // construct until the _MutexEvent is initialized ... 252 // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents 253 // we might instead use a stack of ParkEvents that we could provision on-demand. 254 // The stack would act as a cache to avoid calls to ParkEvent::Allocate() 255 // and ::Release() 256 _ParkEvent = ParkEvent::Allocate(this); 257 _SleepEvent = ParkEvent::Allocate(this); 258 _MutexEvent = ParkEvent::Allocate(this); 259 _MuxEvent = ParkEvent::Allocate(this); 260 261 #ifdef CHECK_UNHANDLED_OOPS 262 if (CheckUnhandledOops) { 263 _unhandled_oops = new UnhandledOops(this); 264 } 265 #endif // CHECK_UNHANDLED_OOPS 266 #ifdef ASSERT 267 if (UseBiasedLocking) { 268 assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed"); 269 assert(this == _real_malloc_address || 270 this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment), 271 "bug in forced alignment of thread objects"); 272 } 273 #endif // ASSERT 274 } 275 276 void Thread::initialize_thread_local_storage() { 277 // Note: Make sure this method only calls 278 // non-blocking operations. Otherwise, it might not work 279 // with the thread-startup/safepoint interaction. 280 281 // During Java thread startup, safepoint code should allow this 282 // method to complete because it may need to allocate memory to 283 // store information for the new thread. 284 285 // initialize structure dependent on thread local storage 286 ThreadLocalStorage::set_thread(this); 287 } 288 289 void Thread::record_stack_base_and_size() { 290 set_stack_base(os::current_stack_base()); 291 set_stack_size(os::current_stack_size()); 292 if (is_Java_thread()) { 293 ((JavaThread*) this)->set_stack_overflow_limit(); 294 } 295 // CR 7190089: on Solaris, primordial thread's stack is adjusted 296 // in initialize_thread(). Without the adjustment, stack size is 297 // incorrect if stack is set to unlimited (ulimit -s unlimited). 298 // So far, only Solaris has real implementation of initialize_thread(). 299 // 300 // set up any platform-specific state. 301 os::initialize_thread(this); 302 303 #if INCLUDE_NMT 304 // record thread's native stack, stack grows downward 305 address stack_low_addr = stack_base() - stack_size(); 306 MemTracker::record_thread_stack(stack_low_addr, stack_size()); 307 #endif // INCLUDE_NMT 308 } 309 310 311 Thread::~Thread() { 312 // Reclaim the objectmonitors from the omFreeList of the moribund thread. 313 ObjectSynchronizer::omFlush(this); 314 315 EVENT_THREAD_DESTRUCT(this); 316 317 // stack_base can be NULL if the thread is never started or exited before 318 // record_stack_base_and_size called. Although, we would like to ensure 319 // that all started threads do call record_stack_base_and_size(), there is 320 // not proper way to enforce that. 321 #if INCLUDE_NMT 322 if (_stack_base != NULL) { 323 address low_stack_addr = stack_base() - stack_size(); 324 MemTracker::release_thread_stack(low_stack_addr, stack_size()); 325 #ifdef ASSERT 326 set_stack_base(NULL); 327 #endif 328 } 329 #endif // INCLUDE_NMT 330 331 // deallocate data structures 332 delete resource_area(); 333 // since the handle marks are using the handle area, we have to deallocated the root 334 // handle mark before deallocating the thread's handle area, 335 assert(last_handle_mark() != NULL, "check we have an element"); 336 delete last_handle_mark(); 337 assert(last_handle_mark() == NULL, "check we have reached the end"); 338 339 // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads. 340 // We NULL out the fields for good hygiene. 341 ParkEvent::Release(_ParkEvent); _ParkEvent = NULL; 342 ParkEvent::Release(_SleepEvent); _SleepEvent = NULL; 343 ParkEvent::Release(_MutexEvent); _MutexEvent = NULL; 344 ParkEvent::Release(_MuxEvent); _MuxEvent = NULL; 345 346 delete handle_area(); 347 delete metadata_handles(); 348 349 // osthread() can be NULL, if creation of thread failed. 350 if (osthread() != NULL) os::free_thread(osthread()); 351 352 delete _SR_lock; 353 354 // clear thread local storage if the Thread is deleting itself 355 if (this == Thread::current()) { 356 ThreadLocalStorage::set_thread(NULL); 357 } else { 358 // In the case where we're not the current thread, invalidate all the 359 // caches in case some code tries to get the current thread or the 360 // thread that was destroyed, and gets stale information. 361 ThreadLocalStorage::invalidate_all(); 362 } 363 CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();) 364 } 365 366 // NOTE: dummy function for assertion purpose. 367 void Thread::run() { 368 ShouldNotReachHere(); 369 } 370 371 #ifdef ASSERT 372 // Private method to check for dangling thread pointer 373 void check_for_dangling_thread_pointer(Thread *thread) { 374 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(), 375 "possibility of dangling Thread pointer"); 376 } 377 #endif 378 379 ThreadPriority Thread::get_priority(const Thread* const thread) { 380 ThreadPriority priority; 381 // Can return an error! 382 (void)os::get_priority(thread, priority); 383 assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found"); 384 return priority; 385 } 386 387 void Thread::set_priority(Thread* thread, ThreadPriority priority) { 388 debug_only(check_for_dangling_thread_pointer(thread);) 389 // Can return an error! 390 (void)os::set_priority(thread, priority); 391 } 392 393 394 void Thread::start(Thread* thread) { 395 // Start is different from resume in that its safety is guaranteed by context or 396 // being called from a Java method synchronized on the Thread object. 397 if (!DisableStartThread) { 398 if (thread->is_Java_thread()) { 399 // Initialize the thread state to RUNNABLE before starting this thread. 400 // Can not set it after the thread started because we do not know the 401 // exact thread state at that time. It could be in MONITOR_WAIT or 402 // in SLEEPING or some other state. 403 java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(), 404 java_lang_Thread::RUNNABLE); 405 } 406 os::start_thread(thread); 407 } 408 } 409 410 // Enqueue a VM_Operation to do the job for us - sometime later 411 void Thread::send_async_exception(oop java_thread, oop java_throwable) { 412 VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable); 413 VMThread::execute(vm_stop); 414 } 415 416 417 // Check if an external suspend request has completed (or has been 418 // cancelled). Returns true if the thread is externally suspended and 419 // false otherwise. 420 // 421 // The bits parameter returns information about the code path through 422 // the routine. Useful for debugging: 423 // 424 // set in is_ext_suspend_completed(): 425 // 0x00000001 - routine was entered 426 // 0x00000010 - routine return false at end 427 // 0x00000100 - thread exited (return false) 428 // 0x00000200 - suspend request cancelled (return false) 429 // 0x00000400 - thread suspended (return true) 430 // 0x00001000 - thread is in a suspend equivalent state (return true) 431 // 0x00002000 - thread is native and walkable (return true) 432 // 0x00004000 - thread is native_trans and walkable (needed retry) 433 // 434 // set in wait_for_ext_suspend_completion(): 435 // 0x00010000 - routine was entered 436 // 0x00020000 - suspend request cancelled before loop (return false) 437 // 0x00040000 - thread suspended before loop (return true) 438 // 0x00080000 - suspend request cancelled in loop (return false) 439 // 0x00100000 - thread suspended in loop (return true) 440 // 0x00200000 - suspend not completed during retry loop (return false) 441 442 // Helper class for tracing suspend wait debug bits. 443 // 444 // 0x00000100 indicates that the target thread exited before it could 445 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and 446 // 0x00080000 each indicate a cancelled suspend request so they don't 447 // count as wait failures either. 448 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000) 449 450 class TraceSuspendDebugBits : public StackObj { 451 private: 452 JavaThread * jt; 453 bool is_wait; 454 bool called_by_wait; // meaningful when !is_wait 455 uint32_t * bits; 456 457 public: 458 TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait, 459 uint32_t *_bits) { 460 jt = _jt; 461 is_wait = _is_wait; 462 called_by_wait = _called_by_wait; 463 bits = _bits; 464 } 465 466 ~TraceSuspendDebugBits() { 467 if (!is_wait) { 468 #if 1 469 // By default, don't trace bits for is_ext_suspend_completed() calls. 470 // That trace is very chatty. 471 return; 472 #else 473 if (!called_by_wait) { 474 // If tracing for is_ext_suspend_completed() is enabled, then only 475 // trace calls to it from wait_for_ext_suspend_completion() 476 return; 477 } 478 #endif 479 } 480 481 if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) { 482 if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) { 483 MutexLocker ml(Threads_lock); // needed for get_thread_name() 484 ResourceMark rm; 485 486 tty->print_cr( 487 "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)", 488 jt->get_thread_name(), *bits); 489 490 guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed"); 491 } 492 } 493 } 494 }; 495 #undef DEBUG_FALSE_BITS 496 497 498 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, 499 uint32_t *bits) { 500 TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits); 501 502 bool did_trans_retry = false; // only do thread_in_native_trans retry once 503 bool do_trans_retry; // flag to force the retry 504 505 *bits |= 0x00000001; 506 507 do { 508 do_trans_retry = false; 509 510 if (is_exiting()) { 511 // Thread is in the process of exiting. This is always checked 512 // first to reduce the risk of dereferencing a freed JavaThread. 513 *bits |= 0x00000100; 514 return false; 515 } 516 517 if (!is_external_suspend()) { 518 // Suspend request is cancelled. This is always checked before 519 // is_ext_suspended() to reduce the risk of a rogue resume 520 // confusing the thread that made the suspend request. 521 *bits |= 0x00000200; 522 return false; 523 } 524 525 if (is_ext_suspended()) { 526 // thread is suspended 527 *bits |= 0x00000400; 528 return true; 529 } 530 531 // Now that we no longer do hard suspends of threads running 532 // native code, the target thread can be changing thread state 533 // while we are in this routine: 534 // 535 // _thread_in_native -> _thread_in_native_trans -> _thread_blocked 536 // 537 // We save a copy of the thread state as observed at this moment 538 // and make our decision about suspend completeness based on the 539 // copy. This closes the race where the thread state is seen as 540 // _thread_in_native_trans in the if-thread_blocked check, but is 541 // seen as _thread_blocked in if-thread_in_native_trans check. 542 JavaThreadState save_state = thread_state(); 543 544 if (save_state == _thread_blocked && is_suspend_equivalent()) { 545 // If the thread's state is _thread_blocked and this blocking 546 // condition is known to be equivalent to a suspend, then we can 547 // consider the thread to be externally suspended. This means that 548 // the code that sets _thread_blocked has been modified to do 549 // self-suspension if the blocking condition releases. We also 550 // used to check for CONDVAR_WAIT here, but that is now covered by 551 // the _thread_blocked with self-suspension check. 552 // 553 // Return true since we wouldn't be here unless there was still an 554 // external suspend request. 555 *bits |= 0x00001000; 556 return true; 557 } else if (save_state == _thread_in_native && frame_anchor()->walkable()) { 558 // Threads running native code will self-suspend on native==>VM/Java 559 // transitions. If its stack is walkable (should always be the case 560 // unless this function is called before the actual java_suspend() 561 // call), then the wait is done. 562 *bits |= 0x00002000; 563 return true; 564 } else if (!called_by_wait && !did_trans_retry && 565 save_state == _thread_in_native_trans && 566 frame_anchor()->walkable()) { 567 // The thread is transitioning from thread_in_native to another 568 // thread state. check_safepoint_and_suspend_for_native_trans() 569 // will force the thread to self-suspend. If it hasn't gotten 570 // there yet we may have caught the thread in-between the native 571 // code check above and the self-suspend. Lucky us. If we were 572 // called by wait_for_ext_suspend_completion(), then it 573 // will be doing the retries so we don't have to. 574 // 575 // Since we use the saved thread state in the if-statement above, 576 // there is a chance that the thread has already transitioned to 577 // _thread_blocked by the time we get here. In that case, we will 578 // make a single unnecessary pass through the logic below. This 579 // doesn't hurt anything since we still do the trans retry. 580 581 *bits |= 0x00004000; 582 583 // Once the thread leaves thread_in_native_trans for another 584 // thread state, we break out of this retry loop. We shouldn't 585 // need this flag to prevent us from getting back here, but 586 // sometimes paranoia is good. 587 did_trans_retry = true; 588 589 // We wait for the thread to transition to a more usable state. 590 for (int i = 1; i <= SuspendRetryCount; i++) { 591 // We used to do an "os::yield_all(i)" call here with the intention 592 // that yielding would increase on each retry. However, the parameter 593 // is ignored on Linux which means the yield didn't scale up. Waiting 594 // on the SR_lock below provides a much more predictable scale up for 595 // the delay. It also provides a simple/direct point to check for any 596 // safepoint requests from the VMThread 597 598 // temporarily drops SR_lock while doing wait with safepoint check 599 // (if we're a JavaThread - the WatcherThread can also call this) 600 // and increase delay with each retry 601 SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay); 602 603 // check the actual thread state instead of what we saved above 604 if (thread_state() != _thread_in_native_trans) { 605 // the thread has transitioned to another thread state so 606 // try all the checks (except this one) one more time. 607 do_trans_retry = true; 608 break; 609 } 610 } // end retry loop 611 612 613 } 614 } while (do_trans_retry); 615 616 *bits |= 0x00000010; 617 return false; 618 } 619 620 // Wait for an external suspend request to complete (or be cancelled). 621 // Returns true if the thread is externally suspended and false otherwise. 622 // 623 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay, 624 uint32_t *bits) { 625 TraceSuspendDebugBits tsdb(this, true /* is_wait */, 626 false /* !called_by_wait */, bits); 627 628 // local flag copies to minimize SR_lock hold time 629 bool is_suspended; 630 bool pending; 631 uint32_t reset_bits; 632 633 // set a marker so is_ext_suspend_completed() knows we are the caller 634 *bits |= 0x00010000; 635 636 // We use reset_bits to reinitialize the bits value at the top of 637 // each retry loop. This allows the caller to make use of any 638 // unused bits for their own marking purposes. 639 reset_bits = *bits; 640 641 { 642 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 643 is_suspended = is_ext_suspend_completed(true /* called_by_wait */, 644 delay, bits); 645 pending = is_external_suspend(); 646 } 647 // must release SR_lock to allow suspension to complete 648 649 if (!pending) { 650 // A cancelled suspend request is the only false return from 651 // is_ext_suspend_completed() that keeps us from entering the 652 // retry loop. 653 *bits |= 0x00020000; 654 return false; 655 } 656 657 if (is_suspended) { 658 *bits |= 0x00040000; 659 return true; 660 } 661 662 for (int i = 1; i <= retries; i++) { 663 *bits = reset_bits; // reinit to only track last retry 664 665 // We used to do an "os::yield_all(i)" call here with the intention 666 // that yielding would increase on each retry. However, the parameter 667 // is ignored on Linux which means the yield didn't scale up. Waiting 668 // on the SR_lock below provides a much more predictable scale up for 669 // the delay. It also provides a simple/direct point to check for any 670 // safepoint requests from the VMThread 671 672 { 673 MutexLocker ml(SR_lock()); 674 // wait with safepoint check (if we're a JavaThread - the WatcherThread 675 // can also call this) and increase delay with each retry 676 SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay); 677 678 is_suspended = is_ext_suspend_completed(true /* called_by_wait */, 679 delay, bits); 680 681 // It is possible for the external suspend request to be cancelled 682 // (by a resume) before the actual suspend operation is completed. 683 // Refresh our local copy to see if we still need to wait. 684 pending = is_external_suspend(); 685 } 686 687 if (!pending) { 688 // A cancelled suspend request is the only false return from 689 // is_ext_suspend_completed() that keeps us from staying in the 690 // retry loop. 691 *bits |= 0x00080000; 692 return false; 693 } 694 695 if (is_suspended) { 696 *bits |= 0x00100000; 697 return true; 698 } 699 } // end retry loop 700 701 // thread did not suspend after all our retries 702 *bits |= 0x00200000; 703 return false; 704 } 705 706 #ifndef PRODUCT 707 void JavaThread::record_jump(address target, address instr, const char* file, 708 int line) { 709 710 // This should not need to be atomic as the only way for simultaneous 711 // updates is via interrupts. Even then this should be rare or non-existent 712 // and we don't care that much anyway. 713 714 int index = _jmp_ring_index; 715 _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1); 716 _jmp_ring[index]._target = (intptr_t) target; 717 _jmp_ring[index]._instruction = (intptr_t) instr; 718 _jmp_ring[index]._file = file; 719 _jmp_ring[index]._line = line; 720 } 721 #endif // PRODUCT 722 723 // Called by flat profiler 724 // Callers have already called wait_for_ext_suspend_completion 725 // The assertion for that is currently too complex to put here: 726 bool JavaThread::profile_last_Java_frame(frame* _fr) { 727 bool gotframe = false; 728 // self suspension saves needed state. 729 if (has_last_Java_frame() && _anchor.walkable()) { 730 *_fr = pd_last_frame(); 731 gotframe = true; 732 } 733 return gotframe; 734 } 735 736 void Thread::interrupt(Thread* thread) { 737 debug_only(check_for_dangling_thread_pointer(thread);) 738 os::interrupt(thread); 739 } 740 741 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) { 742 debug_only(check_for_dangling_thread_pointer(thread);) 743 // Note: If clear_interrupted==false, this simply fetches and 744 // returns the value of the field osthread()->interrupted(). 745 return os::is_interrupted(thread, clear_interrupted); 746 } 747 748 749 // GC Support 750 bool Thread::claim_oops_do_par_case(int strong_roots_parity) { 751 jint thread_parity = _oops_do_parity; 752 if (thread_parity != strong_roots_parity) { 753 jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity); 754 if (res == thread_parity) { 755 return true; 756 } else { 757 guarantee(res == strong_roots_parity, "Or else what?"); 758 assert(SharedHeap::heap()->workers()->active_workers() > 0, 759 "Should only fail when parallel."); 760 return false; 761 } 762 } 763 assert(SharedHeap::heap()->workers()->active_workers() > 0, 764 "Should only fail when parallel."); 765 return false; 766 } 767 768 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) { 769 active_handles()->oops_do(f); 770 // Do oop for ThreadShadow 771 f->do_oop((oop*)&_pending_exception); 772 handle_area()->oops_do(f); 773 } 774 775 void Thread::nmethods_do(CodeBlobClosure* cf) { 776 // no nmethods in a generic thread... 777 } 778 779 void Thread::metadata_do(void f(Metadata*)) { 780 if (metadata_handles() != NULL) { 781 for (int i = 0; i< metadata_handles()->length(); i++) { 782 f(metadata_handles()->at(i)); 783 } 784 } 785 } 786 787 void Thread::print_on(outputStream* st) const { 788 // get_priority assumes osthread initialized 789 if (osthread() != NULL) { 790 int os_prio; 791 if (os::get_native_priority(this, &os_prio) == OS_OK) { 792 st->print("os_prio=%d ", os_prio); 793 } 794 st->print("tid=" INTPTR_FORMAT " ", this); 795 ext().print_on(st); 796 osthread()->print_on(st); 797 } 798 debug_only(if (WizardMode) print_owned_locks_on(st);) 799 } 800 801 // Thread::print_on_error() is called by fatal error handler. Don't use 802 // any lock or allocate memory. 803 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const { 804 if (is_VM_thread()) st->print("VMThread"); 805 else if (is_Compiler_thread()) st->print("CompilerThread"); 806 else if (is_Java_thread()) st->print("JavaThread"); 807 else if (is_GC_task_thread()) st->print("GCTaskThread"); 808 else if (is_Watcher_thread()) st->print("WatcherThread"); 809 else if (is_ConcurrentGC_thread()) st->print("ConcurrentGCThread"); 810 else st->print("Thread"); 811 812 st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]", 813 _stack_base - _stack_size, _stack_base); 814 815 if (osthread()) { 816 st->print(" [id=%d]", osthread()->thread_id()); 817 } 818 } 819 820 #ifdef ASSERT 821 void Thread::print_owned_locks_on(outputStream* st) const { 822 Monitor *cur = _owned_locks; 823 if (cur == NULL) { 824 st->print(" (no locks) "); 825 } else { 826 st->print_cr(" Locks owned:"); 827 while (cur) { 828 cur->print_on(st); 829 cur = cur->next(); 830 } 831 } 832 } 833 834 static int ref_use_count = 0; 835 836 bool Thread::owns_locks_but_compiled_lock() const { 837 for (Monitor *cur = _owned_locks; cur; cur = cur->next()) { 838 if (cur != Compile_lock) return true; 839 } 840 return false; 841 } 842 843 844 #endif 845 846 #ifndef PRODUCT 847 848 // The flag: potential_vm_operation notifies if this particular safepoint state could potential 849 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that 850 // no threads which allow_vm_block's are held 851 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) { 852 // Check if current thread is allowed to block at a safepoint 853 if (!(_allow_safepoint_count == 0)) { 854 fatal("Possible safepoint reached by thread that does not allow it"); 855 } 856 if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) { 857 fatal("LEAF method calling lock?"); 858 } 859 860 #ifdef ASSERT 861 if (potential_vm_operation && is_Java_thread() 862 && !Universe::is_bootstrapping()) { 863 // Make sure we do not hold any locks that the VM thread also uses. 864 // This could potentially lead to deadlocks 865 for (Monitor *cur = _owned_locks; cur; cur = cur->next()) { 866 // Threads_lock is special, since the safepoint synchronization will not start before this is 867 // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock, 868 // since it is used to transfer control between JavaThreads and the VMThread 869 // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first! 870 if ((cur->allow_vm_block() && 871 cur != Threads_lock && 872 cur != Compile_lock && // Temporary: should not be necessary when we get separate compilation 873 cur != VMOperationRequest_lock && 874 cur != VMOperationQueue_lock) || 875 cur->rank() == Mutex::special) { 876 fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name())); 877 } 878 } 879 } 880 881 if (GCALotAtAllSafepoints) { 882 // We could enter a safepoint here and thus have a gc 883 InterfaceSupport::check_gc_alot(); 884 } 885 #endif 886 } 887 #endif 888 889 bool Thread::is_in_stack(address adr) const { 890 assert(Thread::current() == this, "is_in_stack can only be called from current thread"); 891 address end = os::current_stack_pointer(); 892 // Allow non Java threads to call this without stack_base 893 if (_stack_base == NULL) return true; 894 if (stack_base() >= adr && adr >= end) return true; 895 896 return false; 897 } 898 899 900 bool Thread::is_in_usable_stack(address adr) const { 901 size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0; 902 size_t usable_stack_size = _stack_size - stack_guard_size; 903 904 return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size)); 905 } 906 907 908 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter 909 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being 910 // used for compilation in the future. If that change is made, the need for these methods 911 // should be revisited, and they should be removed if possible. 912 913 bool Thread::is_lock_owned(address adr) const { 914 return on_local_stack(adr); 915 } 916 917 bool Thread::set_as_starting_thread() { 918 // NOTE: this must be called inside the main thread. 919 return os::create_main_thread((JavaThread*)this); 920 } 921 922 static void initialize_class(Symbol* class_name, TRAPS) { 923 Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK); 924 InstanceKlass::cast(klass)->initialize(CHECK); 925 } 926 927 928 // Creates the initial ThreadGroup 929 static Handle create_initial_thread_group(TRAPS) { 930 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH); 931 instanceKlassHandle klass (THREAD, k); 932 933 Handle system_instance = klass->allocate_instance_handle(CHECK_NH); 934 { 935 JavaValue result(T_VOID); 936 JavaCalls::call_special(&result, 937 system_instance, 938 klass, 939 vmSymbols::object_initializer_name(), 940 vmSymbols::void_method_signature(), 941 CHECK_NH); 942 } 943 Universe::set_system_thread_group(system_instance()); 944 945 Handle main_instance = klass->allocate_instance_handle(CHECK_NH); 946 { 947 JavaValue result(T_VOID); 948 Handle string = java_lang_String::create_from_str("main", CHECK_NH); 949 JavaCalls::call_special(&result, 950 main_instance, 951 klass, 952 vmSymbols::object_initializer_name(), 953 vmSymbols::threadgroup_string_void_signature(), 954 system_instance, 955 string, 956 CHECK_NH); 957 } 958 return main_instance; 959 } 960 961 // Creates the initial Thread 962 static oop create_initial_thread(Handle thread_group, JavaThread* thread, 963 TRAPS) { 964 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL); 965 instanceKlassHandle klass (THREAD, k); 966 instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL); 967 968 java_lang_Thread::set_thread(thread_oop(), thread); 969 java_lang_Thread::set_priority(thread_oop(), NormPriority); 970 thread->set_threadObj(thread_oop()); 971 972 Handle string = java_lang_String::create_from_str("main", CHECK_NULL); 973 974 JavaValue result(T_VOID); 975 JavaCalls::call_special(&result, thread_oop, 976 klass, 977 vmSymbols::object_initializer_name(), 978 vmSymbols::threadgroup_string_void_signature(), 979 thread_group, 980 string, 981 CHECK_NULL); 982 return thread_oop(); 983 } 984 985 static void call_initializeSystemClass(TRAPS) { 986 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK); 987 instanceKlassHandle klass (THREAD, k); 988 989 JavaValue result(T_VOID); 990 JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(), 991 vmSymbols::void_method_signature(), CHECK); 992 } 993 994 char java_runtime_name[128] = ""; 995 char java_runtime_version[128] = ""; 996 997 // extract the JRE name from sun.misc.Version.java_runtime_name 998 static const char* get_java_runtime_name(TRAPS) { 999 Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(), 1000 Handle(), Handle(), CHECK_AND_CLEAR_NULL); 1001 fieldDescriptor fd; 1002 bool found = k != NULL && 1003 InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(), 1004 vmSymbols::string_signature(), &fd); 1005 if (found) { 1006 oop name_oop = k->java_mirror()->obj_field(fd.offset()); 1007 if (name_oop == NULL) { 1008 return NULL; 1009 } 1010 const char* name = java_lang_String::as_utf8_string(name_oop, 1011 java_runtime_name, 1012 sizeof(java_runtime_name)); 1013 return name; 1014 } else { 1015 return NULL; 1016 } 1017 } 1018 1019 // extract the JRE version from sun.misc.Version.java_runtime_version 1020 static const char* get_java_runtime_version(TRAPS) { 1021 Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(), 1022 Handle(), Handle(), CHECK_AND_CLEAR_NULL); 1023 fieldDescriptor fd; 1024 bool found = k != NULL && 1025 InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(), 1026 vmSymbols::string_signature(), &fd); 1027 if (found) { 1028 oop name_oop = k->java_mirror()->obj_field(fd.offset()); 1029 if (name_oop == NULL) { 1030 return NULL; 1031 } 1032 const char* name = java_lang_String::as_utf8_string(name_oop, 1033 java_runtime_version, 1034 sizeof(java_runtime_version)); 1035 return name; 1036 } else { 1037 return NULL; 1038 } 1039 } 1040 1041 // General purpose hook into Java code, run once when the VM is initialized. 1042 // The Java library method itself may be changed independently from the VM. 1043 static void call_postVMInitHook(TRAPS) { 1044 Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD); 1045 instanceKlassHandle klass (THREAD, k); 1046 if (klass.not_null()) { 1047 JavaValue result(T_VOID); 1048 JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(), 1049 vmSymbols::void_method_signature(), 1050 CHECK); 1051 } 1052 } 1053 1054 static void reset_vm_info_property(TRAPS) { 1055 // the vm info string 1056 ResourceMark rm(THREAD); 1057 const char *vm_info = VM_Version::vm_info_string(); 1058 1059 // java.lang.System class 1060 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK); 1061 instanceKlassHandle klass (THREAD, k); 1062 1063 // setProperty arguments 1064 Handle key_str = java_lang_String::create_from_str("java.vm.info", CHECK); 1065 Handle value_str = java_lang_String::create_from_str(vm_info, CHECK); 1066 1067 // return value 1068 JavaValue r(T_OBJECT); 1069 1070 // public static String setProperty(String key, String value); 1071 JavaCalls::call_static(&r, 1072 klass, 1073 vmSymbols::setProperty_name(), 1074 vmSymbols::string_string_string_signature(), 1075 key_str, 1076 value_str, 1077 CHECK); 1078 } 1079 1080 1081 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name, 1082 bool daemon, TRAPS) { 1083 assert(thread_group.not_null(), "thread group should be specified"); 1084 assert(threadObj() == NULL, "should only create Java thread object once"); 1085 1086 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK); 1087 instanceKlassHandle klass (THREAD, k); 1088 instanceHandle thread_oop = klass->allocate_instance_handle(CHECK); 1089 1090 java_lang_Thread::set_thread(thread_oop(), this); 1091 java_lang_Thread::set_priority(thread_oop(), NormPriority); 1092 set_threadObj(thread_oop()); 1093 1094 JavaValue result(T_VOID); 1095 if (thread_name != NULL) { 1096 Handle name = java_lang_String::create_from_str(thread_name, CHECK); 1097 // Thread gets assigned specified name and null target 1098 JavaCalls::call_special(&result, 1099 thread_oop, 1100 klass, 1101 vmSymbols::object_initializer_name(), 1102 vmSymbols::threadgroup_string_void_signature(), 1103 thread_group, // Argument 1 1104 name, // Argument 2 1105 THREAD); 1106 } else { 1107 // Thread gets assigned name "Thread-nnn" and null target 1108 // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument) 1109 JavaCalls::call_special(&result, 1110 thread_oop, 1111 klass, 1112 vmSymbols::object_initializer_name(), 1113 vmSymbols::threadgroup_runnable_void_signature(), 1114 thread_group, // Argument 1 1115 Handle(), // Argument 2 1116 THREAD); 1117 } 1118 1119 1120 if (daemon) { 1121 java_lang_Thread::set_daemon(thread_oop()); 1122 } 1123 1124 if (HAS_PENDING_EXCEPTION) { 1125 return; 1126 } 1127 1128 KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass()); 1129 Handle threadObj(THREAD, this->threadObj()); 1130 1131 JavaCalls::call_special(&result, 1132 thread_group, 1133 group, 1134 vmSymbols::add_method_name(), 1135 vmSymbols::thread_void_signature(), 1136 threadObj, // Arg 1 1137 THREAD); 1138 } 1139 1140 // NamedThread -- non-JavaThread subclasses with multiple 1141 // uniquely named instances should derive from this. 1142 NamedThread::NamedThread() : Thread() { 1143 _name = NULL; 1144 _processed_thread = NULL; 1145 } 1146 1147 NamedThread::~NamedThread() { 1148 if (_name != NULL) { 1149 FREE_C_HEAP_ARRAY(char, _name); 1150 _name = NULL; 1151 } 1152 } 1153 1154 void NamedThread::set_name(const char* format, ...) { 1155 guarantee(_name == NULL, "Only get to set name once."); 1156 _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread); 1157 guarantee(_name != NULL, "alloc failure"); 1158 va_list ap; 1159 va_start(ap, format); 1160 jio_vsnprintf(_name, max_name_len, format, ap); 1161 va_end(ap); 1162 } 1163 1164 void NamedThread::print_on(outputStream* st) const { 1165 st->print("\"%s\" ", name()); 1166 Thread::print_on(st); 1167 st->cr(); 1168 } 1169 1170 1171 // ======= WatcherThread ======== 1172 1173 // The watcher thread exists to simulate timer interrupts. It should 1174 // be replaced by an abstraction over whatever native support for 1175 // timer interrupts exists on the platform. 1176 1177 WatcherThread* WatcherThread::_watcher_thread = NULL; 1178 bool WatcherThread::_startable = false; 1179 volatile bool WatcherThread::_should_terminate = false; 1180 1181 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) { 1182 assert(watcher_thread() == NULL, "we can only allocate one WatcherThread"); 1183 if (os::create_thread(this, os::watcher_thread)) { 1184 _watcher_thread = this; 1185 1186 // Set the watcher thread to the highest OS priority which should not be 1187 // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY 1188 // is created. The only normal thread using this priority is the reference 1189 // handler thread, which runs for very short intervals only. 1190 // If the VMThread's priority is not lower than the WatcherThread profiling 1191 // will be inaccurate. 1192 os::set_priority(this, MaxPriority); 1193 if (!DisableStartThread) { 1194 os::start_thread(this); 1195 } 1196 } 1197 } 1198 1199 int WatcherThread::sleep() const { 1200 MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag); 1201 1202 // remaining will be zero if there are no tasks, 1203 // causing the WatcherThread to sleep until a task is 1204 // enrolled 1205 int remaining = PeriodicTask::time_to_wait(); 1206 int time_slept = 0; 1207 1208 // we expect this to timeout - we only ever get unparked when 1209 // we should terminate or when a new task has been enrolled 1210 OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */); 1211 1212 jlong time_before_loop = os::javaTimeNanos(); 1213 1214 for (;;) { 1215 bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining); 1216 jlong now = os::javaTimeNanos(); 1217 1218 if (remaining == 0) { 1219 // if we didn't have any tasks we could have waited for a long time 1220 // consider the time_slept zero and reset time_before_loop 1221 time_slept = 0; 1222 time_before_loop = now; 1223 } else { 1224 // need to recalculate since we might have new tasks in _tasks 1225 time_slept = (int) ((now - time_before_loop) / 1000000); 1226 } 1227 1228 // Change to task list or spurious wakeup of some kind 1229 if (timedout || _should_terminate) { 1230 break; 1231 } 1232 1233 remaining = PeriodicTask::time_to_wait(); 1234 if (remaining == 0) { 1235 // Last task was just disenrolled so loop around and wait until 1236 // another task gets enrolled 1237 continue; 1238 } 1239 1240 remaining -= time_slept; 1241 if (remaining <= 0) { 1242 break; 1243 } 1244 } 1245 1246 return time_slept; 1247 } 1248 1249 void WatcherThread::run() { 1250 assert(this == watcher_thread(), "just checking"); 1251 1252 this->record_stack_base_and_size(); 1253 this->initialize_thread_local_storage(); 1254 this->set_native_thread_name(this->name()); 1255 this->set_active_handles(JNIHandleBlock::allocate_block()); 1256 while (!_should_terminate) { 1257 assert(watcher_thread() == Thread::current(), "thread consistency check"); 1258 assert(watcher_thread() == this, "thread consistency check"); 1259 1260 // Calculate how long it'll be until the next PeriodicTask work 1261 // should be done, and sleep that amount of time. 1262 int time_waited = sleep(); 1263 1264 if (is_error_reported()) { 1265 // A fatal error has happened, the error handler(VMError::report_and_die) 1266 // should abort JVM after creating an error log file. However in some 1267 // rare cases, the error handler itself might deadlock. Here we try to 1268 // kill JVM if the fatal error handler fails to abort in 2 minutes. 1269 // 1270 // This code is in WatcherThread because WatcherThread wakes up 1271 // periodically so the fatal error handler doesn't need to do anything; 1272 // also because the WatcherThread is less likely to crash than other 1273 // threads. 1274 1275 for (;;) { 1276 if (!ShowMessageBoxOnError 1277 && (OnError == NULL || OnError[0] == '\0') 1278 && Arguments::abort_hook() == NULL) { 1279 os::sleep(this, 2 * 60 * 1000, false); 1280 fdStream err(defaultStream::output_fd()); 1281 err.print_raw_cr("# [ timer expired, abort... ]"); 1282 // skip atexit/vm_exit/vm_abort hooks 1283 os::die(); 1284 } 1285 1286 // Wake up 5 seconds later, the fatal handler may reset OnError or 1287 // ShowMessageBoxOnError when it is ready to abort. 1288 os::sleep(this, 5 * 1000, false); 1289 } 1290 } 1291 1292 PeriodicTask::real_time_tick(time_waited); 1293 } 1294 1295 // Signal that it is terminated 1296 { 1297 MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag); 1298 _watcher_thread = NULL; 1299 Terminator_lock->notify(); 1300 } 1301 1302 // Thread destructor usually does this.. 1303 ThreadLocalStorage::set_thread(NULL); 1304 } 1305 1306 void WatcherThread::start() { 1307 assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required"); 1308 1309 if (watcher_thread() == NULL && _startable) { 1310 _should_terminate = false; 1311 // Create the single instance of WatcherThread 1312 new WatcherThread(); 1313 } 1314 } 1315 1316 void WatcherThread::make_startable() { 1317 assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required"); 1318 _startable = true; 1319 } 1320 1321 void WatcherThread::stop() { 1322 // Get the PeriodicTask_lock if we can. If we cannot, then the 1323 // WatcherThread is using it and we don't want to block on that lock 1324 // here because that might cause a safepoint deadlock depending on 1325 // what the current WatcherThread tasks are doing. 1326 bool have_lock = PeriodicTask_lock->try_lock(); 1327 1328 _should_terminate = true; 1329 OrderAccess::fence(); // ensure WatcherThread sees update in main loop 1330 1331 if (have_lock) { 1332 WatcherThread* watcher = watcher_thread(); 1333 if (watcher != NULL) { 1334 // If we managed to get the lock, then we should unpark the 1335 // WatcherThread so that it can see we want it to stop. 1336 watcher->unpark(); 1337 } 1338 1339 PeriodicTask_lock->unlock(); 1340 } 1341 1342 // it is ok to take late safepoints here, if needed 1343 MutexLocker mu(Terminator_lock); 1344 1345 while (watcher_thread() != NULL) { 1346 // This wait should make safepoint checks, wait without a timeout, 1347 // and wait as a suspend-equivalent condition. 1348 // 1349 // Note: If the FlatProfiler is running, then this thread is waiting 1350 // for the WatcherThread to terminate and the WatcherThread, via the 1351 // FlatProfiler task, is waiting for the external suspend request on 1352 // this thread to complete. wait_for_ext_suspend_completion() will 1353 // eventually timeout, but that takes time. Making this wait a 1354 // suspend-equivalent condition solves that timeout problem. 1355 // 1356 Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0, 1357 Mutex::_as_suspend_equivalent_flag); 1358 } 1359 } 1360 1361 void WatcherThread::unpark() { 1362 MutexLockerEx ml(PeriodicTask_lock->owned_by_self() 1363 ? NULL 1364 : PeriodicTask_lock, Mutex::_no_safepoint_check_flag); 1365 PeriodicTask_lock->notify(); 1366 } 1367 1368 void WatcherThread::print_on(outputStream* st) const { 1369 st->print("\"%s\" ", name()); 1370 Thread::print_on(st); 1371 st->cr(); 1372 } 1373 1374 // ======= JavaThread ======== 1375 1376 // A JavaThread is a normal Java thread 1377 1378 void JavaThread::initialize() { 1379 // Initialize fields 1380 1381 // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids) 1382 set_claimed_par_id(UINT_MAX); 1383 1384 set_saved_exception_pc(NULL); 1385 set_threadObj(NULL); 1386 _anchor.clear(); 1387 set_entry_point(NULL); 1388 set_jni_functions(jni_functions()); 1389 set_callee_target(NULL); 1390 set_vm_result(NULL); 1391 set_vm_result_2(NULL); 1392 set_vframe_array_head(NULL); 1393 set_vframe_array_last(NULL); 1394 set_deferred_locals(NULL); 1395 set_deopt_mark(NULL); 1396 set_deopt_nmethod(NULL); 1397 clear_must_deopt_id(); 1398 set_monitor_chunks(NULL); 1399 set_next(NULL); 1400 set_thread_state(_thread_new); 1401 _terminated = _not_terminated; 1402 _privileged_stack_top = NULL; 1403 _array_for_gc = NULL; 1404 _suspend_equivalent = false; 1405 _in_deopt_handler = 0; 1406 _doing_unsafe_access = false; 1407 _stack_guard_state = stack_guard_unused; 1408 (void)const_cast<oop&>(_exception_oop = oop(NULL)); 1409 _exception_pc = 0; 1410 _exception_handler_pc = 0; 1411 _is_method_handle_return = 0; 1412 _jvmti_thread_state= NULL; 1413 _should_post_on_exceptions_flag = JNI_FALSE; 1414 _jvmti_get_loaded_classes_closure = NULL; 1415 _interp_only_mode = 0; 1416 _special_runtime_exit_condition = _no_async_condition; 1417 _pending_async_exception = NULL; 1418 _thread_stat = NULL; 1419 _thread_stat = new ThreadStatistics(); 1420 _blocked_on_compilation = false; 1421 _jni_active_critical = 0; 1422 _pending_jni_exception_check_fn = NULL; 1423 _do_not_unlock_if_synchronized = false; 1424 _cached_monitor_info = NULL; 1425 _parker = Parker::Allocate(this); 1426 1427 #ifndef PRODUCT 1428 _jmp_ring_index = 0; 1429 for (int ji = 0; ji < jump_ring_buffer_size; ji++) { 1430 record_jump(NULL, NULL, NULL, 0); 1431 } 1432 #endif // PRODUCT 1433 1434 set_thread_profiler(NULL); 1435 if (FlatProfiler::is_active()) { 1436 // This is where we would decide to either give each thread it's own profiler 1437 // or use one global one from FlatProfiler, 1438 // or up to some count of the number of profiled threads, etc. 1439 ThreadProfiler* pp = new ThreadProfiler(); 1440 pp->engage(); 1441 set_thread_profiler(pp); 1442 } 1443 1444 // Setup safepoint state info for this thread 1445 ThreadSafepointState::create(this); 1446 1447 debug_only(_java_call_counter = 0); 1448 1449 // JVMTI PopFrame support 1450 _popframe_condition = popframe_inactive; 1451 _popframe_preserved_args = NULL; 1452 _popframe_preserved_args_size = 0; 1453 _frames_to_pop_failed_realloc = 0; 1454 1455 pd_initialize(); 1456 } 1457 1458 #if INCLUDE_ALL_GCS 1459 SATBMarkQueueSet JavaThread::_satb_mark_queue_set; 1460 DirtyCardQueueSet JavaThread::_dirty_card_queue_set; 1461 #endif // INCLUDE_ALL_GCS 1462 1463 JavaThread::JavaThread(bool is_attaching_via_jni) : 1464 Thread() 1465 #if INCLUDE_ALL_GCS 1466 , _satb_mark_queue(&_satb_mark_queue_set), 1467 _dirty_card_queue(&_dirty_card_queue_set) 1468 #endif // INCLUDE_ALL_GCS 1469 { 1470 initialize(); 1471 if (is_attaching_via_jni) { 1472 _jni_attach_state = _attaching_via_jni; 1473 } else { 1474 _jni_attach_state = _not_attaching_via_jni; 1475 } 1476 assert(deferred_card_mark().is_empty(), "Default MemRegion ctor"); 1477 } 1478 1479 bool JavaThread::reguard_stack(address cur_sp) { 1480 if (_stack_guard_state != stack_guard_yellow_disabled) { 1481 return true; // Stack already guarded or guard pages not needed. 1482 } 1483 1484 if (register_stack_overflow()) { 1485 // For those architectures which have separate register and 1486 // memory stacks, we must check the register stack to see if 1487 // it has overflowed. 1488 return false; 1489 } 1490 1491 // Java code never executes within the yellow zone: the latter is only 1492 // there to provoke an exception during stack banging. If java code 1493 // is executing there, either StackShadowPages should be larger, or 1494 // some exception code in c1, c2 or the interpreter isn't unwinding 1495 // when it should. 1496 guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages"); 1497 1498 enable_stack_yellow_zone(); 1499 return true; 1500 } 1501 1502 bool JavaThread::reguard_stack(void) { 1503 return reguard_stack(os::current_stack_pointer()); 1504 } 1505 1506 1507 void JavaThread::block_if_vm_exited() { 1508 if (_terminated == _vm_exited) { 1509 // _vm_exited is set at safepoint, and Threads_lock is never released 1510 // we will block here forever 1511 Threads_lock->lock_without_safepoint_check(); 1512 ShouldNotReachHere(); 1513 } 1514 } 1515 1516 1517 // Remove this ifdef when C1 is ported to the compiler interface. 1518 static void compiler_thread_entry(JavaThread* thread, TRAPS); 1519 static void sweeper_thread_entry(JavaThread* thread, TRAPS); 1520 1521 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) : 1522 Thread() 1523 #if INCLUDE_ALL_GCS 1524 , _satb_mark_queue(&_satb_mark_queue_set), 1525 _dirty_card_queue(&_dirty_card_queue_set) 1526 #endif // INCLUDE_ALL_GCS 1527 { 1528 initialize(); 1529 _jni_attach_state = _not_attaching_via_jni; 1530 set_entry_point(entry_point); 1531 // Create the native thread itself. 1532 // %note runtime_23 1533 os::ThreadType thr_type = os::java_thread; 1534 thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread : 1535 os::java_thread; 1536 os::create_thread(this, thr_type, stack_sz); 1537 // The _osthread may be NULL here because we ran out of memory (too many threads active). 1538 // We need to throw and OutOfMemoryError - however we cannot do this here because the caller 1539 // may hold a lock and all locks must be unlocked before throwing the exception (throwing 1540 // the exception consists of creating the exception object & initializing it, initialization 1541 // will leave the VM via a JavaCall and then all locks must be unlocked). 1542 // 1543 // The thread is still suspended when we reach here. Thread must be explicit started 1544 // by creator! Furthermore, the thread must also explicitly be added to the Threads list 1545 // by calling Threads:add. The reason why this is not done here, is because the thread 1546 // object must be fully initialized (take a look at JVM_Start) 1547 } 1548 1549 JavaThread::~JavaThread() { 1550 1551 // JSR166 -- return the parker to the free list 1552 Parker::Release(_parker); 1553 _parker = NULL; 1554 1555 // Free any remaining previous UnrollBlock 1556 vframeArray* old_array = vframe_array_last(); 1557 1558 if (old_array != NULL) { 1559 Deoptimization::UnrollBlock* old_info = old_array->unroll_block(); 1560 old_array->set_unroll_block(NULL); 1561 delete old_info; 1562 delete old_array; 1563 } 1564 1565 GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals(); 1566 if (deferred != NULL) { 1567 // This can only happen if thread is destroyed before deoptimization occurs. 1568 assert(deferred->length() != 0, "empty array!"); 1569 do { 1570 jvmtiDeferredLocalVariableSet* dlv = deferred->at(0); 1571 deferred->remove_at(0); 1572 // individual jvmtiDeferredLocalVariableSet are CHeapObj's 1573 delete dlv; 1574 } while (deferred->length() != 0); 1575 delete deferred; 1576 } 1577 1578 // All Java related clean up happens in exit 1579 ThreadSafepointState::destroy(this); 1580 if (_thread_profiler != NULL) delete _thread_profiler; 1581 if (_thread_stat != NULL) delete _thread_stat; 1582 } 1583 1584 1585 // The first routine called by a new Java thread 1586 void JavaThread::run() { 1587 // initialize thread-local alloc buffer related fields 1588 this->initialize_tlab(); 1589 1590 // used to test validity of stack trace backs 1591 this->record_base_of_stack_pointer(); 1592 1593 // Record real stack base and size. 1594 this->record_stack_base_and_size(); 1595 1596 // Initialize thread local storage; set before calling MutexLocker 1597 this->initialize_thread_local_storage(); 1598 1599 this->create_stack_guard_pages(); 1600 1601 this->cache_global_variables(); 1602 1603 // Thread is now sufficient initialized to be handled by the safepoint code as being 1604 // in the VM. Change thread state from _thread_new to _thread_in_vm 1605 ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm); 1606 1607 assert(JavaThread::current() == this, "sanity check"); 1608 assert(!Thread::current()->owns_locks(), "sanity check"); 1609 1610 DTRACE_THREAD_PROBE(start, this); 1611 1612 // This operation might block. We call that after all safepoint checks for a new thread has 1613 // been completed. 1614 this->set_active_handles(JNIHandleBlock::allocate_block()); 1615 1616 if (JvmtiExport::should_post_thread_life()) { 1617 JvmtiExport::post_thread_start(this); 1618 } 1619 1620 EventThreadStart event; 1621 if (event.should_commit()) { 1622 event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj())); 1623 event.commit(); 1624 } 1625 1626 // We call another function to do the rest so we are sure that the stack addresses used 1627 // from there will be lower than the stack base just computed 1628 thread_main_inner(); 1629 1630 // Note, thread is no longer valid at this point! 1631 } 1632 1633 1634 void JavaThread::thread_main_inner() { 1635 assert(JavaThread::current() == this, "sanity check"); 1636 assert(this->threadObj() != NULL, "just checking"); 1637 1638 // Execute thread entry point unless this thread has a pending exception 1639 // or has been stopped before starting. 1640 // Note: Due to JVM_StopThread we can have pending exceptions already! 1641 if (!this->has_pending_exception() && 1642 !java_lang_Thread::is_stillborn(this->threadObj())) { 1643 { 1644 ResourceMark rm(this); 1645 this->set_native_thread_name(this->get_thread_name()); 1646 } 1647 HandleMark hm(this); 1648 this->entry_point()(this, this); 1649 } 1650 1651 DTRACE_THREAD_PROBE(stop, this); 1652 1653 this->exit(false); 1654 delete this; 1655 } 1656 1657 1658 static void ensure_join(JavaThread* thread) { 1659 // We do not need to grap the Threads_lock, since we are operating on ourself. 1660 Handle threadObj(thread, thread->threadObj()); 1661 assert(threadObj.not_null(), "java thread object must exist"); 1662 ObjectLocker lock(threadObj, thread); 1663 // Ignore pending exception (ThreadDeath), since we are exiting anyway 1664 thread->clear_pending_exception(); 1665 // Thread is exiting. So set thread_status field in java.lang.Thread class to TERMINATED. 1666 java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED); 1667 // Clear the native thread instance - this makes isAlive return false and allows the join() 1668 // to complete once we've done the notify_all below 1669 java_lang_Thread::set_thread(threadObj(), NULL); 1670 lock.notify_all(thread); 1671 // Ignore pending exception (ThreadDeath), since we are exiting anyway 1672 thread->clear_pending_exception(); 1673 } 1674 1675 1676 // For any new cleanup additions, please check to see if they need to be applied to 1677 // cleanup_failed_attach_current_thread as well. 1678 void JavaThread::exit(bool destroy_vm, ExitType exit_type) { 1679 assert(this == JavaThread::current(), "thread consistency check"); 1680 1681 HandleMark hm(this); 1682 Handle uncaught_exception(this, this->pending_exception()); 1683 this->clear_pending_exception(); 1684 Handle threadObj(this, this->threadObj()); 1685 assert(threadObj.not_null(), "Java thread object should be created"); 1686 1687 if (get_thread_profiler() != NULL) { 1688 get_thread_profiler()->disengage(); 1689 ResourceMark rm; 1690 get_thread_profiler()->print(get_thread_name()); 1691 } 1692 1693 1694 // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place 1695 { 1696 EXCEPTION_MARK; 1697 1698 CLEAR_PENDING_EXCEPTION; 1699 } 1700 if (!destroy_vm) { 1701 if (uncaught_exception.not_null()) { 1702 EXCEPTION_MARK; 1703 // Call method Thread.dispatchUncaughtException(). 1704 KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass()); 1705 JavaValue result(T_VOID); 1706 JavaCalls::call_virtual(&result, 1707 threadObj, thread_klass, 1708 vmSymbols::dispatchUncaughtException_name(), 1709 vmSymbols::throwable_void_signature(), 1710 uncaught_exception, 1711 THREAD); 1712 if (HAS_PENDING_EXCEPTION) { 1713 ResourceMark rm(this); 1714 jio_fprintf(defaultStream::error_stream(), 1715 "\nException: %s thrown from the UncaughtExceptionHandler" 1716 " in thread \"%s\"\n", 1717 pending_exception()->klass()->external_name(), 1718 get_thread_name()); 1719 CLEAR_PENDING_EXCEPTION; 1720 } 1721 } 1722 1723 // Called before the java thread exit since we want to read info 1724 // from java_lang_Thread object 1725 EventThreadEnd event; 1726 if (event.should_commit()) { 1727 event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj())); 1728 event.commit(); 1729 } 1730 1731 // Call after last event on thread 1732 EVENT_THREAD_EXIT(this); 1733 1734 // Call Thread.exit(). We try 3 times in case we got another Thread.stop during 1735 // the execution of the method. If that is not enough, then we don't really care. Thread.stop 1736 // is deprecated anyhow. 1737 if (!is_Compiler_thread()) { 1738 int count = 3; 1739 while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) { 1740 EXCEPTION_MARK; 1741 JavaValue result(T_VOID); 1742 KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass()); 1743 JavaCalls::call_virtual(&result, 1744 threadObj, thread_klass, 1745 vmSymbols::exit_method_name(), 1746 vmSymbols::void_method_signature(), 1747 THREAD); 1748 CLEAR_PENDING_EXCEPTION; 1749 } 1750 } 1751 // notify JVMTI 1752 if (JvmtiExport::should_post_thread_life()) { 1753 JvmtiExport::post_thread_end(this); 1754 } 1755 1756 // We have notified the agents that we are exiting, before we go on, 1757 // we must check for a pending external suspend request and honor it 1758 // in order to not surprise the thread that made the suspend request. 1759 while (true) { 1760 { 1761 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 1762 if (!is_external_suspend()) { 1763 set_terminated(_thread_exiting); 1764 ThreadService::current_thread_exiting(this); 1765 break; 1766 } 1767 // Implied else: 1768 // Things get a little tricky here. We have a pending external 1769 // suspend request, but we are holding the SR_lock so we 1770 // can't just self-suspend. So we temporarily drop the lock 1771 // and then self-suspend. 1772 } 1773 1774 ThreadBlockInVM tbivm(this); 1775 java_suspend_self(); 1776 1777 // We're done with this suspend request, but we have to loop around 1778 // and check again. Eventually we will get SR_lock without a pending 1779 // external suspend request and will be able to mark ourselves as 1780 // exiting. 1781 } 1782 // no more external suspends are allowed at this point 1783 } else { 1784 // before_exit() has already posted JVMTI THREAD_END events 1785 } 1786 1787 // Notify waiters on thread object. This has to be done after exit() is called 1788 // on the thread (if the thread is the last thread in a daemon ThreadGroup the 1789 // group should have the destroyed bit set before waiters are notified). 1790 ensure_join(this); 1791 assert(!this->has_pending_exception(), "ensure_join should have cleared"); 1792 1793 // 6282335 JNI DetachCurrentThread spec states that all Java monitors 1794 // held by this thread must be released. A detach operation must only 1795 // get here if there are no Java frames on the stack. Therefore, any 1796 // owned monitors at this point MUST be JNI-acquired monitors which are 1797 // pre-inflated and in the monitor cache. 1798 // 1799 // ensure_join() ignores IllegalThreadStateExceptions, and so does this. 1800 if (exit_type == jni_detach && JNIDetachReleasesMonitors) { 1801 assert(!this->has_last_Java_frame(), "detaching with Java frames?"); 1802 ObjectSynchronizer::release_monitors_owned_by_thread(this); 1803 assert(!this->has_pending_exception(), "release_monitors should have cleared"); 1804 } 1805 1806 // These things needs to be done while we are still a Java Thread. Make sure that thread 1807 // is in a consistent state, in case GC happens 1808 assert(_privileged_stack_top == NULL, "must be NULL when we get here"); 1809 1810 if (active_handles() != NULL) { 1811 JNIHandleBlock* block = active_handles(); 1812 set_active_handles(NULL); 1813 JNIHandleBlock::release_block(block); 1814 } 1815 1816 if (free_handle_block() != NULL) { 1817 JNIHandleBlock* block = free_handle_block(); 1818 set_free_handle_block(NULL); 1819 JNIHandleBlock::release_block(block); 1820 } 1821 1822 // These have to be removed while this is still a valid thread. 1823 remove_stack_guard_pages(); 1824 1825 if (UseTLAB) { 1826 tlab().make_parsable(true); // retire TLAB 1827 } 1828 1829 if (JvmtiEnv::environments_might_exist()) { 1830 JvmtiExport::cleanup_thread(this); 1831 } 1832 1833 // We must flush any deferred card marks before removing a thread from 1834 // the list of active threads. 1835 Universe::heap()->flush_deferred_store_barrier(this); 1836 assert(deferred_card_mark().is_empty(), "Should have been flushed"); 1837 1838 #if INCLUDE_ALL_GCS 1839 // We must flush the G1-related buffers before removing a thread 1840 // from the list of active threads. We must do this after any deferred 1841 // card marks have been flushed (above) so that any entries that are 1842 // added to the thread's dirty card queue as a result are not lost. 1843 if (UseG1GC) { 1844 flush_barrier_queues(); 1845 } 1846 #endif // INCLUDE_ALL_GCS 1847 1848 // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread 1849 Threads::remove(this); 1850 } 1851 1852 #if INCLUDE_ALL_GCS 1853 // Flush G1-related queues. 1854 void JavaThread::flush_barrier_queues() { 1855 satb_mark_queue().flush(); 1856 dirty_card_queue().flush(); 1857 } 1858 1859 void JavaThread::initialize_queues() { 1860 assert(!SafepointSynchronize::is_at_safepoint(), 1861 "we should not be at a safepoint"); 1862 1863 ObjPtrQueue& satb_queue = satb_mark_queue(); 1864 SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set(); 1865 // The SATB queue should have been constructed with its active 1866 // field set to false. 1867 assert(!satb_queue.is_active(), "SATB queue should not be active"); 1868 assert(satb_queue.is_empty(), "SATB queue should be empty"); 1869 // If we are creating the thread during a marking cycle, we should 1870 // set the active field of the SATB queue to true. 1871 if (satb_queue_set.is_active()) { 1872 satb_queue.set_active(true); 1873 } 1874 1875 DirtyCardQueue& dirty_queue = dirty_card_queue(); 1876 // The dirty card queue should have been constructed with its 1877 // active field set to true. 1878 assert(dirty_queue.is_active(), "dirty card queue should be active"); 1879 } 1880 #endif // INCLUDE_ALL_GCS 1881 1882 void JavaThread::cleanup_failed_attach_current_thread() { 1883 if (get_thread_profiler() != NULL) { 1884 get_thread_profiler()->disengage(); 1885 ResourceMark rm; 1886 get_thread_profiler()->print(get_thread_name()); 1887 } 1888 1889 if (active_handles() != NULL) { 1890 JNIHandleBlock* block = active_handles(); 1891 set_active_handles(NULL); 1892 JNIHandleBlock::release_block(block); 1893 } 1894 1895 if (free_handle_block() != NULL) { 1896 JNIHandleBlock* block = free_handle_block(); 1897 set_free_handle_block(NULL); 1898 JNIHandleBlock::release_block(block); 1899 } 1900 1901 // These have to be removed while this is still a valid thread. 1902 remove_stack_guard_pages(); 1903 1904 if (UseTLAB) { 1905 tlab().make_parsable(true); // retire TLAB, if any 1906 } 1907 1908 #if INCLUDE_ALL_GCS 1909 if (UseG1GC) { 1910 flush_barrier_queues(); 1911 } 1912 #endif // INCLUDE_ALL_GCS 1913 1914 Threads::remove(this); 1915 delete this; 1916 } 1917 1918 1919 1920 1921 JavaThread* JavaThread::active() { 1922 Thread* thread = ThreadLocalStorage::thread(); 1923 assert(thread != NULL, "just checking"); 1924 if (thread->is_Java_thread()) { 1925 return (JavaThread*) thread; 1926 } else { 1927 assert(thread->is_VM_thread(), "this must be a vm thread"); 1928 VM_Operation* op = ((VMThread*) thread)->vm_operation(); 1929 JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread(); 1930 assert(ret->is_Java_thread(), "must be a Java thread"); 1931 return ret; 1932 } 1933 } 1934 1935 bool JavaThread::is_lock_owned(address adr) const { 1936 if (Thread::is_lock_owned(adr)) return true; 1937 1938 for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) { 1939 if (chunk->contains(adr)) return true; 1940 } 1941 1942 return false; 1943 } 1944 1945 1946 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) { 1947 chunk->set_next(monitor_chunks()); 1948 set_monitor_chunks(chunk); 1949 } 1950 1951 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) { 1952 guarantee(monitor_chunks() != NULL, "must be non empty"); 1953 if (monitor_chunks() == chunk) { 1954 set_monitor_chunks(chunk->next()); 1955 } else { 1956 MonitorChunk* prev = monitor_chunks(); 1957 while (prev->next() != chunk) prev = prev->next(); 1958 prev->set_next(chunk->next()); 1959 } 1960 } 1961 1962 // JVM support. 1963 1964 // Note: this function shouldn't block if it's called in 1965 // _thread_in_native_trans state (such as from 1966 // check_special_condition_for_native_trans()). 1967 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) { 1968 1969 if (has_last_Java_frame() && has_async_condition()) { 1970 // If we are at a polling page safepoint (not a poll return) 1971 // then we must defer async exception because live registers 1972 // will be clobbered by the exception path. Poll return is 1973 // ok because the call we a returning from already collides 1974 // with exception handling registers and so there is no issue. 1975 // (The exception handling path kills call result registers but 1976 // this is ok since the exception kills the result anyway). 1977 1978 if (is_at_poll_safepoint()) { 1979 // if the code we are returning to has deoptimized we must defer 1980 // the exception otherwise live registers get clobbered on the 1981 // exception path before deoptimization is able to retrieve them. 1982 // 1983 RegisterMap map(this, false); 1984 frame caller_fr = last_frame().sender(&map); 1985 assert(caller_fr.is_compiled_frame(), "what?"); 1986 if (caller_fr.is_deoptimized_frame()) { 1987 if (TraceExceptions) { 1988 ResourceMark rm; 1989 tty->print_cr("deferred async exception at compiled safepoint"); 1990 } 1991 return; 1992 } 1993 } 1994 } 1995 1996 JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition(); 1997 if (condition == _no_async_condition) { 1998 // Conditions have changed since has_special_runtime_exit_condition() 1999 // was called: 2000 // - if we were here only because of an external suspend request, 2001 // then that was taken care of above (or cancelled) so we are done 2002 // - if we were here because of another async request, then it has 2003 // been cleared between the has_special_runtime_exit_condition() 2004 // and now so again we are done 2005 return; 2006 } 2007 2008 // Check for pending async. exception 2009 if (_pending_async_exception != NULL) { 2010 // Only overwrite an already pending exception, if it is not a threadDeath. 2011 if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) { 2012 2013 // We cannot call Exceptions::_throw(...) here because we cannot block 2014 set_pending_exception(_pending_async_exception, __FILE__, __LINE__); 2015 2016 if (TraceExceptions) { 2017 ResourceMark rm; 2018 tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this); 2019 if (has_last_Java_frame()) { 2020 frame f = last_frame(); 2021 tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp()); 2022 } 2023 tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name()); 2024 } 2025 _pending_async_exception = NULL; 2026 clear_has_async_exception(); 2027 } 2028 } 2029 2030 if (check_unsafe_error && 2031 condition == _async_unsafe_access_error && !has_pending_exception()) { 2032 condition = _no_async_condition; // done 2033 switch (thread_state()) { 2034 case _thread_in_vm: { 2035 JavaThread* THREAD = this; 2036 THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation"); 2037 } 2038 case _thread_in_native: { 2039 ThreadInVMfromNative tiv(this); 2040 JavaThread* THREAD = this; 2041 THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation"); 2042 } 2043 case _thread_in_Java: { 2044 ThreadInVMfromJava tiv(this); 2045 JavaThread* THREAD = this; 2046 THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code"); 2047 } 2048 default: 2049 ShouldNotReachHere(); 2050 } 2051 } 2052 2053 assert(condition == _no_async_condition || has_pending_exception() || 2054 (!check_unsafe_error && condition == _async_unsafe_access_error), 2055 "must have handled the async condition, if no exception"); 2056 } 2057 2058 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) { 2059 // 2060 // Check for pending external suspend. Internal suspend requests do 2061 // not use handle_special_runtime_exit_condition(). 2062 // If JNIEnv proxies are allowed, don't self-suspend if the target 2063 // thread is not the current thread. In older versions of jdbx, jdbx 2064 // threads could call into the VM with another thread's JNIEnv so we 2065 // can be here operating on behalf of a suspended thread (4432884). 2066 bool do_self_suspend = is_external_suspend_with_lock(); 2067 if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) { 2068 // 2069 // Because thread is external suspended the safepoint code will count 2070 // thread as at a safepoint. This can be odd because we can be here 2071 // as _thread_in_Java which would normally transition to _thread_blocked 2072 // at a safepoint. We would like to mark the thread as _thread_blocked 2073 // before calling java_suspend_self like all other callers of it but 2074 // we must then observe proper safepoint protocol. (We can't leave 2075 // _thread_blocked with a safepoint in progress). However we can be 2076 // here as _thread_in_native_trans so we can't use a normal transition 2077 // constructor/destructor pair because they assert on that type of 2078 // transition. We could do something like: 2079 // 2080 // JavaThreadState state = thread_state(); 2081 // set_thread_state(_thread_in_vm); 2082 // { 2083 // ThreadBlockInVM tbivm(this); 2084 // java_suspend_self() 2085 // } 2086 // set_thread_state(_thread_in_vm_trans); 2087 // if (safepoint) block; 2088 // set_thread_state(state); 2089 // 2090 // but that is pretty messy. Instead we just go with the way the 2091 // code has worked before and note that this is the only path to 2092 // java_suspend_self that doesn't put the thread in _thread_blocked 2093 // mode. 2094 2095 frame_anchor()->make_walkable(this); 2096 java_suspend_self(); 2097 2098 // We might be here for reasons in addition to the self-suspend request 2099 // so check for other async requests. 2100 } 2101 2102 if (check_asyncs) { 2103 check_and_handle_async_exceptions(); 2104 } 2105 } 2106 2107 void JavaThread::send_thread_stop(oop java_throwable) { 2108 assert(Thread::current()->is_VM_thread(), "should be in the vm thread"); 2109 assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code"); 2110 assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped"); 2111 2112 // Do not throw asynchronous exceptions against the compiler thread 2113 // (the compiler thread should not be a Java thread -- fix in 1.4.2) 2114 if (is_Compiler_thread()) return; 2115 2116 { 2117 // Actually throw the Throwable against the target Thread - however 2118 // only if there is no thread death exception installed already. 2119 if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) { 2120 // If the topmost frame is a runtime stub, then we are calling into 2121 // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..) 2122 // must deoptimize the caller before continuing, as the compiled exception handler table 2123 // may not be valid 2124 if (has_last_Java_frame()) { 2125 frame f = last_frame(); 2126 if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) { 2127 // BiasedLocking needs an updated RegisterMap for the revoke monitors pass 2128 RegisterMap reg_map(this, UseBiasedLocking); 2129 frame compiled_frame = f.sender(®_map); 2130 if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) { 2131 Deoptimization::deoptimize(this, compiled_frame, ®_map); 2132 } 2133 } 2134 } 2135 2136 // Set async. pending exception in thread. 2137 set_pending_async_exception(java_throwable); 2138 2139 if (TraceExceptions) { 2140 ResourceMark rm; 2141 tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name()); 2142 } 2143 // for AbortVMOnException flag 2144 NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name())); 2145 } 2146 } 2147 2148 2149 // Interrupt thread so it will wake up from a potential wait() 2150 Thread::interrupt(this); 2151 } 2152 2153 // External suspension mechanism. 2154 // 2155 // Tell the VM to suspend a thread when ever it knows that it does not hold on 2156 // to any VM_locks and it is at a transition 2157 // Self-suspension will happen on the transition out of the vm. 2158 // Catch "this" coming in from JNIEnv pointers when the thread has been freed 2159 // 2160 // Guarantees on return: 2161 // + Target thread will not execute any new bytecode (that's why we need to 2162 // force a safepoint) 2163 // + Target thread will not enter any new monitors 2164 // 2165 void JavaThread::java_suspend() { 2166 { MutexLocker mu(Threads_lock); 2167 if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) { 2168 return; 2169 } 2170 } 2171 2172 { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 2173 if (!is_external_suspend()) { 2174 // a racing resume has cancelled us; bail out now 2175 return; 2176 } 2177 2178 // suspend is done 2179 uint32_t debug_bits = 0; 2180 // Warning: is_ext_suspend_completed() may temporarily drop the 2181 // SR_lock to allow the thread to reach a stable thread state if 2182 // it is currently in a transient thread state. 2183 if (is_ext_suspend_completed(false /* !called_by_wait */, 2184 SuspendRetryDelay, &debug_bits)) { 2185 return; 2186 } 2187 } 2188 2189 VM_ForceSafepoint vm_suspend; 2190 VMThread::execute(&vm_suspend); 2191 } 2192 2193 // Part II of external suspension. 2194 // A JavaThread self suspends when it detects a pending external suspend 2195 // request. This is usually on transitions. It is also done in places 2196 // where continuing to the next transition would surprise the caller, 2197 // e.g., monitor entry. 2198 // 2199 // Returns the number of times that the thread self-suspended. 2200 // 2201 // Note: DO NOT call java_suspend_self() when you just want to block current 2202 // thread. java_suspend_self() is the second stage of cooperative 2203 // suspension for external suspend requests and should only be used 2204 // to complete an external suspend request. 2205 // 2206 int JavaThread::java_suspend_self() { 2207 int ret = 0; 2208 2209 // we are in the process of exiting so don't suspend 2210 if (is_exiting()) { 2211 clear_external_suspend(); 2212 return ret; 2213 } 2214 2215 assert(_anchor.walkable() || 2216 (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()), 2217 "must have walkable stack"); 2218 2219 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 2220 2221 assert(!this->is_ext_suspended(), 2222 "a thread trying to self-suspend should not already be suspended"); 2223 2224 if (this->is_suspend_equivalent()) { 2225 // If we are self-suspending as a result of the lifting of a 2226 // suspend equivalent condition, then the suspend_equivalent 2227 // flag is not cleared until we set the ext_suspended flag so 2228 // that wait_for_ext_suspend_completion() returns consistent 2229 // results. 2230 this->clear_suspend_equivalent(); 2231 } 2232 2233 // A racing resume may have cancelled us before we grabbed SR_lock 2234 // above. Or another external suspend request could be waiting for us 2235 // by the time we return from SR_lock()->wait(). The thread 2236 // that requested the suspension may already be trying to walk our 2237 // stack and if we return now, we can change the stack out from under 2238 // it. This would be a "bad thing (TM)" and cause the stack walker 2239 // to crash. We stay self-suspended until there are no more pending 2240 // external suspend requests. 2241 while (is_external_suspend()) { 2242 ret++; 2243 this->set_ext_suspended(); 2244 2245 // _ext_suspended flag is cleared by java_resume() 2246 while (is_ext_suspended()) { 2247 this->SR_lock()->wait(Mutex::_no_safepoint_check_flag); 2248 } 2249 } 2250 2251 return ret; 2252 } 2253 2254 #ifdef ASSERT 2255 // verify the JavaThread has not yet been published in the Threads::list, and 2256 // hence doesn't need protection from concurrent access at this stage 2257 void JavaThread::verify_not_published() { 2258 if (!Threads_lock->owned_by_self()) { 2259 MutexLockerEx ml(Threads_lock, Mutex::_no_safepoint_check_flag); 2260 assert(!Threads::includes(this), 2261 "java thread shouldn't have been published yet!"); 2262 } else { 2263 assert(!Threads::includes(this), 2264 "java thread shouldn't have been published yet!"); 2265 } 2266 } 2267 #endif 2268 2269 // Slow path when the native==>VM/Java barriers detect a safepoint is in 2270 // progress or when _suspend_flags is non-zero. 2271 // Current thread needs to self-suspend if there is a suspend request and/or 2272 // block if a safepoint is in progress. 2273 // Async exception ISN'T checked. 2274 // Note only the ThreadInVMfromNative transition can call this function 2275 // directly and when thread state is _thread_in_native_trans 2276 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) { 2277 assert(thread->thread_state() == _thread_in_native_trans, "wrong state"); 2278 2279 JavaThread *curJT = JavaThread::current(); 2280 bool do_self_suspend = thread->is_external_suspend(); 2281 2282 assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition"); 2283 2284 // If JNIEnv proxies are allowed, don't self-suspend if the target 2285 // thread is not the current thread. In older versions of jdbx, jdbx 2286 // threads could call into the VM with another thread's JNIEnv so we 2287 // can be here operating on behalf of a suspended thread (4432884). 2288 if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) { 2289 JavaThreadState state = thread->thread_state(); 2290 2291 // We mark this thread_blocked state as a suspend-equivalent so 2292 // that a caller to is_ext_suspend_completed() won't be confused. 2293 // The suspend-equivalent state is cleared by java_suspend_self(). 2294 thread->set_suspend_equivalent(); 2295 2296 // If the safepoint code sees the _thread_in_native_trans state, it will 2297 // wait until the thread changes to other thread state. There is no 2298 // guarantee on how soon we can obtain the SR_lock and complete the 2299 // self-suspend request. It would be a bad idea to let safepoint wait for 2300 // too long. Temporarily change the state to _thread_blocked to 2301 // let the VM thread know that this thread is ready for GC. The problem 2302 // of changing thread state is that safepoint could happen just after 2303 // java_suspend_self() returns after being resumed, and VM thread will 2304 // see the _thread_blocked state. We must check for safepoint 2305 // after restoring the state and make sure we won't leave while a safepoint 2306 // is in progress. 2307 thread->set_thread_state(_thread_blocked); 2308 thread->java_suspend_self(); 2309 thread->set_thread_state(state); 2310 // Make sure new state is seen by VM thread 2311 if (os::is_MP()) { 2312 if (UseMembar) { 2313 // Force a fence between the write above and read below 2314 OrderAccess::fence(); 2315 } else { 2316 // Must use this rather than serialization page in particular on Windows 2317 InterfaceSupport::serialize_memory(thread); 2318 } 2319 } 2320 } 2321 2322 if (SafepointSynchronize::do_call_back()) { 2323 // If we are safepointing, then block the caller which may not be 2324 // the same as the target thread (see above). 2325 SafepointSynchronize::block(curJT); 2326 } 2327 2328 if (thread->is_deopt_suspend()) { 2329 thread->clear_deopt_suspend(); 2330 RegisterMap map(thread, false); 2331 frame f = thread->last_frame(); 2332 while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) { 2333 f = f.sender(&map); 2334 } 2335 if (f.id() == thread->must_deopt_id()) { 2336 thread->clear_must_deopt_id(); 2337 f.deoptimize(thread); 2338 } else { 2339 fatal("missed deoptimization!"); 2340 } 2341 } 2342 } 2343 2344 // Slow path when the native==>VM/Java barriers detect a safepoint is in 2345 // progress or when _suspend_flags is non-zero. 2346 // Current thread needs to self-suspend if there is a suspend request and/or 2347 // block if a safepoint is in progress. 2348 // Also check for pending async exception (not including unsafe access error). 2349 // Note only the native==>VM/Java barriers can call this function and when 2350 // thread state is _thread_in_native_trans. 2351 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) { 2352 check_safepoint_and_suspend_for_native_trans(thread); 2353 2354 if (thread->has_async_exception()) { 2355 // We are in _thread_in_native_trans state, don't handle unsafe 2356 // access error since that may block. 2357 thread->check_and_handle_async_exceptions(false); 2358 } 2359 } 2360 2361 // This is a variant of the normal 2362 // check_special_condition_for_native_trans with slightly different 2363 // semantics for use by critical native wrappers. It does all the 2364 // normal checks but also performs the transition back into 2365 // thread_in_Java state. This is required so that critical natives 2366 // can potentially block and perform a GC if they are the last thread 2367 // exiting the GC_locker. 2368 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) { 2369 check_special_condition_for_native_trans(thread); 2370 2371 // Finish the transition 2372 thread->set_thread_state(_thread_in_Java); 2373 2374 if (thread->do_critical_native_unlock()) { 2375 ThreadInVMfromJavaNoAsyncException tiv(thread); 2376 GC_locker::unlock_critical(thread); 2377 thread->clear_critical_native_unlock(); 2378 } 2379 } 2380 2381 // We need to guarantee the Threads_lock here, since resumes are not 2382 // allowed during safepoint synchronization 2383 // Can only resume from an external suspension 2384 void JavaThread::java_resume() { 2385 assert_locked_or_safepoint(Threads_lock); 2386 2387 // Sanity check: thread is gone, has started exiting or the thread 2388 // was not externally suspended. 2389 if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) { 2390 return; 2391 } 2392 2393 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 2394 2395 clear_external_suspend(); 2396 2397 if (is_ext_suspended()) { 2398 clear_ext_suspended(); 2399 SR_lock()->notify_all(); 2400 } 2401 } 2402 2403 void JavaThread::create_stack_guard_pages() { 2404 if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return; 2405 address low_addr = stack_base() - stack_size(); 2406 size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size(); 2407 2408 int allocate = os::allocate_stack_guard_pages(); 2409 // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len); 2410 2411 if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) { 2412 warning("Attempt to allocate stack guard pages failed."); 2413 return; 2414 } 2415 2416 if (os::guard_memory((char *) low_addr, len)) { 2417 _stack_guard_state = stack_guard_enabled; 2418 } else { 2419 warning("Attempt to protect stack guard pages failed."); 2420 if (os::uncommit_memory((char *) low_addr, len)) { 2421 warning("Attempt to deallocate stack guard pages failed."); 2422 } 2423 } 2424 } 2425 2426 void JavaThread::remove_stack_guard_pages() { 2427 assert(Thread::current() == this, "from different thread"); 2428 if (_stack_guard_state == stack_guard_unused) return; 2429 address low_addr = stack_base() - stack_size(); 2430 size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size(); 2431 2432 if (os::allocate_stack_guard_pages()) { 2433 if (os::remove_stack_guard_pages((char *) low_addr, len)) { 2434 _stack_guard_state = stack_guard_unused; 2435 } else { 2436 warning("Attempt to deallocate stack guard pages failed."); 2437 } 2438 } else { 2439 if (_stack_guard_state == stack_guard_unused) return; 2440 if (os::unguard_memory((char *) low_addr, len)) { 2441 _stack_guard_state = stack_guard_unused; 2442 } else { 2443 warning("Attempt to unprotect stack guard pages failed."); 2444 } 2445 } 2446 } 2447 2448 void JavaThread::enable_stack_yellow_zone() { 2449 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages."); 2450 assert(_stack_guard_state != stack_guard_enabled, "already enabled"); 2451 2452 // The base notation is from the stacks point of view, growing downward. 2453 // We need to adjust it to work correctly with guard_memory() 2454 address base = stack_yellow_zone_base() - stack_yellow_zone_size(); 2455 2456 guarantee(base < stack_base(), "Error calculating stack yellow zone"); 2457 guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone"); 2458 2459 if (os::guard_memory((char *) base, stack_yellow_zone_size())) { 2460 _stack_guard_state = stack_guard_enabled; 2461 } else { 2462 warning("Attempt to guard stack yellow zone failed."); 2463 } 2464 enable_register_stack_guard(); 2465 } 2466 2467 void JavaThread::disable_stack_yellow_zone() { 2468 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages."); 2469 assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled"); 2470 2471 // Simply return if called for a thread that does not use guard pages. 2472 if (_stack_guard_state == stack_guard_unused) return; 2473 2474 // The base notation is from the stacks point of view, growing downward. 2475 // We need to adjust it to work correctly with guard_memory() 2476 address base = stack_yellow_zone_base() - stack_yellow_zone_size(); 2477 2478 if (os::unguard_memory((char *)base, stack_yellow_zone_size())) { 2479 _stack_guard_state = stack_guard_yellow_disabled; 2480 } else { 2481 warning("Attempt to unguard stack yellow zone failed."); 2482 } 2483 disable_register_stack_guard(); 2484 } 2485 2486 void JavaThread::enable_stack_red_zone() { 2487 // The base notation is from the stacks point of view, growing downward. 2488 // We need to adjust it to work correctly with guard_memory() 2489 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages."); 2490 address base = stack_red_zone_base() - stack_red_zone_size(); 2491 2492 guarantee(base < stack_base(), "Error calculating stack red zone"); 2493 guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone"); 2494 2495 if (!os::guard_memory((char *) base, stack_red_zone_size())) { 2496 warning("Attempt to guard stack red zone failed."); 2497 } 2498 } 2499 2500 void JavaThread::disable_stack_red_zone() { 2501 // The base notation is from the stacks point of view, growing downward. 2502 // We need to adjust it to work correctly with guard_memory() 2503 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages."); 2504 address base = stack_red_zone_base() - stack_red_zone_size(); 2505 if (!os::unguard_memory((char *)base, stack_red_zone_size())) { 2506 warning("Attempt to unguard stack red zone failed."); 2507 } 2508 } 2509 2510 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) { 2511 // ignore is there is no stack 2512 if (!has_last_Java_frame()) return; 2513 // traverse the stack frames. Starts from top frame. 2514 for (StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2515 frame* fr = fst.current(); 2516 f(fr, fst.register_map()); 2517 } 2518 } 2519 2520 2521 #ifndef PRODUCT 2522 // Deoptimization 2523 // Function for testing deoptimization 2524 void JavaThread::deoptimize() { 2525 // BiasedLocking needs an updated RegisterMap for the revoke monitors pass 2526 StackFrameStream fst(this, UseBiasedLocking); 2527 bool deopt = false; // Dump stack only if a deopt actually happens. 2528 bool only_at = strlen(DeoptimizeOnlyAt) > 0; 2529 // Iterate over all frames in the thread and deoptimize 2530 for (; !fst.is_done(); fst.next()) { 2531 if (fst.current()->can_be_deoptimized()) { 2532 2533 if (only_at) { 2534 // Deoptimize only at particular bcis. DeoptimizeOnlyAt 2535 // consists of comma or carriage return separated numbers so 2536 // search for the current bci in that string. 2537 address pc = fst.current()->pc(); 2538 nmethod* nm = (nmethod*) fst.current()->cb(); 2539 ScopeDesc* sd = nm->scope_desc_at(pc); 2540 char buffer[8]; 2541 jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci()); 2542 size_t len = strlen(buffer); 2543 const char * found = strstr(DeoptimizeOnlyAt, buffer); 2544 while (found != NULL) { 2545 if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') && 2546 (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) { 2547 // Check that the bci found is bracketed by terminators. 2548 break; 2549 } 2550 found = strstr(found + 1, buffer); 2551 } 2552 if (!found) { 2553 continue; 2554 } 2555 } 2556 2557 if (DebugDeoptimization && !deopt) { 2558 deopt = true; // One-time only print before deopt 2559 tty->print_cr("[BEFORE Deoptimization]"); 2560 trace_frames(); 2561 trace_stack(); 2562 } 2563 Deoptimization::deoptimize(this, *fst.current(), fst.register_map()); 2564 } 2565 } 2566 2567 if (DebugDeoptimization && deopt) { 2568 tty->print_cr("[AFTER Deoptimization]"); 2569 trace_frames(); 2570 } 2571 } 2572 2573 2574 // Make zombies 2575 void JavaThread::make_zombies() { 2576 for (StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2577 if (fst.current()->can_be_deoptimized()) { 2578 // it is a Java nmethod 2579 nmethod* nm = CodeCache::find_nmethod(fst.current()->pc()); 2580 nm->make_not_entrant(); 2581 } 2582 } 2583 } 2584 #endif // PRODUCT 2585 2586 2587 void JavaThread::deoptimized_wrt_marked_nmethods() { 2588 if (!has_last_Java_frame()) return; 2589 // BiasedLocking needs an updated RegisterMap for the revoke monitors pass 2590 StackFrameStream fst(this, UseBiasedLocking); 2591 for (; !fst.is_done(); fst.next()) { 2592 if (fst.current()->should_be_deoptimized()) { 2593 if (LogCompilation && xtty != NULL) { 2594 nmethod* nm = fst.current()->cb()->as_nmethod_or_null(); 2595 xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'", 2596 this->name(), nm != NULL ? nm->compile_id() : -1); 2597 } 2598 2599 Deoptimization::deoptimize(this, *fst.current(), fst.register_map()); 2600 } 2601 } 2602 } 2603 2604 2605 // If the caller is a NamedThread, then remember, in the current scope, 2606 // the given JavaThread in its _processed_thread field. 2607 class RememberProcessedThread: public StackObj { 2608 NamedThread* _cur_thr; 2609 public: 2610 RememberProcessedThread(JavaThread* jthr) { 2611 Thread* thread = Thread::current(); 2612 if (thread->is_Named_thread()) { 2613 _cur_thr = (NamedThread *)thread; 2614 _cur_thr->set_processed_thread(jthr); 2615 } else { 2616 _cur_thr = NULL; 2617 } 2618 } 2619 2620 ~RememberProcessedThread() { 2621 if (_cur_thr) { 2622 _cur_thr->set_processed_thread(NULL); 2623 } 2624 } 2625 }; 2626 2627 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) { 2628 // Verify that the deferred card marks have been flushed. 2629 assert(deferred_card_mark().is_empty(), "Should be empty during GC"); 2630 2631 // The ThreadProfiler oops_do is done from FlatProfiler::oops_do 2632 // since there may be more than one thread using each ThreadProfiler. 2633 2634 // Traverse the GCHandles 2635 Thread::oops_do(f, cld_f, cf); 2636 2637 assert((!has_last_Java_frame() && java_call_counter() == 0) || 2638 (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!"); 2639 2640 if (has_last_Java_frame()) { 2641 // Record JavaThread to GC thread 2642 RememberProcessedThread rpt(this); 2643 2644 // Traverse the privileged stack 2645 if (_privileged_stack_top != NULL) { 2646 _privileged_stack_top->oops_do(f); 2647 } 2648 2649 // traverse the registered growable array 2650 if (_array_for_gc != NULL) { 2651 for (int index = 0; index < _array_for_gc->length(); index++) { 2652 f->do_oop(_array_for_gc->adr_at(index)); 2653 } 2654 } 2655 2656 // Traverse the monitor chunks 2657 for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) { 2658 chunk->oops_do(f); 2659 } 2660 2661 // Traverse the execution stack 2662 for (StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2663 fst.current()->oops_do(f, cld_f, cf, fst.register_map()); 2664 } 2665 } 2666 2667 // callee_target is never live across a gc point so NULL it here should 2668 // it still contain a methdOop. 2669 2670 set_callee_target(NULL); 2671 2672 assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!"); 2673 // If we have deferred set_locals there might be oops waiting to be 2674 // written 2675 GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals(); 2676 if (list != NULL) { 2677 for (int i = 0; i < list->length(); i++) { 2678 list->at(i)->oops_do(f); 2679 } 2680 } 2681 2682 // Traverse instance variables at the end since the GC may be moving things 2683 // around using this function 2684 f->do_oop((oop*) &_threadObj); 2685 f->do_oop((oop*) &_vm_result); 2686 f->do_oop((oop*) &_exception_oop); 2687 f->do_oop((oop*) &_pending_async_exception); 2688 2689 if (jvmti_thread_state() != NULL) { 2690 jvmti_thread_state()->oops_do(f); 2691 } 2692 } 2693 2694 void JavaThread::nmethods_do(CodeBlobClosure* cf) { 2695 Thread::nmethods_do(cf); // (super method is a no-op) 2696 2697 assert((!has_last_Java_frame() && java_call_counter() == 0) || 2698 (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!"); 2699 2700 if (has_last_Java_frame()) { 2701 // Traverse the execution stack 2702 for (StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2703 fst.current()->nmethods_do(cf); 2704 } 2705 } 2706 } 2707 2708 void JavaThread::metadata_do(void f(Metadata*)) { 2709 Thread::metadata_do(f); 2710 if (has_last_Java_frame()) { 2711 // Traverse the execution stack to call f() on the methods in the stack 2712 for (StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2713 fst.current()->metadata_do(f); 2714 } 2715 } else if (is_Compiler_thread()) { 2716 // need to walk ciMetadata in current compile tasks to keep alive. 2717 CompilerThread* ct = (CompilerThread*)this; 2718 if (ct->env() != NULL) { 2719 ct->env()->metadata_do(f); 2720 } 2721 } 2722 } 2723 2724 // Printing 2725 const char* _get_thread_state_name(JavaThreadState _thread_state) { 2726 switch (_thread_state) { 2727 case _thread_uninitialized: return "_thread_uninitialized"; 2728 case _thread_new: return "_thread_new"; 2729 case _thread_new_trans: return "_thread_new_trans"; 2730 case _thread_in_native: return "_thread_in_native"; 2731 case _thread_in_native_trans: return "_thread_in_native_trans"; 2732 case _thread_in_vm: return "_thread_in_vm"; 2733 case _thread_in_vm_trans: return "_thread_in_vm_trans"; 2734 case _thread_in_Java: return "_thread_in_Java"; 2735 case _thread_in_Java_trans: return "_thread_in_Java_trans"; 2736 case _thread_blocked: return "_thread_blocked"; 2737 case _thread_blocked_trans: return "_thread_blocked_trans"; 2738 default: return "unknown thread state"; 2739 } 2740 } 2741 2742 #ifndef PRODUCT 2743 void JavaThread::print_thread_state_on(outputStream *st) const { 2744 st->print_cr(" JavaThread state: %s", _get_thread_state_name(_thread_state)); 2745 }; 2746 void JavaThread::print_thread_state() const { 2747 print_thread_state_on(tty); 2748 } 2749 #endif // PRODUCT 2750 2751 // Called by Threads::print() for VM_PrintThreads operation 2752 void JavaThread::print_on(outputStream *st) const { 2753 st->print("\"%s\" ", get_thread_name()); 2754 oop thread_oop = threadObj(); 2755 if (thread_oop != NULL) { 2756 st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop)); 2757 if (java_lang_Thread::is_daemon(thread_oop)) st->print("daemon "); 2758 st->print("prio=%d ", java_lang_Thread::priority(thread_oop)); 2759 } 2760 Thread::print_on(st); 2761 // print guess for valid stack memory region (assume 4K pages); helps lock debugging 2762 st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12)); 2763 if (thread_oop != NULL) { 2764 st->print_cr(" java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop)); 2765 } 2766 #ifndef PRODUCT 2767 print_thread_state_on(st); 2768 _safepoint_state->print_on(st); 2769 #endif // PRODUCT 2770 } 2771 2772 // Called by fatal error handler. The difference between this and 2773 // JavaThread::print() is that we can't grab lock or allocate memory. 2774 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const { 2775 st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen)); 2776 oop thread_obj = threadObj(); 2777 if (thread_obj != NULL) { 2778 if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon"); 2779 } 2780 st->print(" ["); 2781 st->print("%s", _get_thread_state_name(_thread_state)); 2782 if (osthread()) { 2783 st->print(", id=%d", osthread()->thread_id()); 2784 } 2785 st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")", 2786 _stack_base - _stack_size, _stack_base); 2787 st->print("]"); 2788 return; 2789 } 2790 2791 // Verification 2792 2793 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); } 2794 2795 void JavaThread::verify() { 2796 // Verify oops in the thread. 2797 oops_do(&VerifyOopClosure::verify_oop, NULL, NULL); 2798 2799 // Verify the stack frames. 2800 frames_do(frame_verify); 2801 } 2802 2803 // CR 6300358 (sub-CR 2137150) 2804 // Most callers of this method assume that it can't return NULL but a 2805 // thread may not have a name whilst it is in the process of attaching to 2806 // the VM - see CR 6412693, and there are places where a JavaThread can be 2807 // seen prior to having it's threadObj set (eg JNI attaching threads and 2808 // if vm exit occurs during initialization). These cases can all be accounted 2809 // for such that this method never returns NULL. 2810 const char* JavaThread::get_thread_name() const { 2811 #ifdef ASSERT 2812 // early safepoints can hit while current thread does not yet have TLS 2813 if (!SafepointSynchronize::is_at_safepoint()) { 2814 Thread *cur = Thread::current(); 2815 if (!(cur->is_Java_thread() && cur == this)) { 2816 // Current JavaThreads are allowed to get their own name without 2817 // the Threads_lock. 2818 assert_locked_or_safepoint(Threads_lock); 2819 } 2820 } 2821 #endif // ASSERT 2822 return get_thread_name_string(); 2823 } 2824 2825 // Returns a non-NULL representation of this thread's name, or a suitable 2826 // descriptive string if there is no set name 2827 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const { 2828 const char* name_str; 2829 oop thread_obj = threadObj(); 2830 if (thread_obj != NULL) { 2831 oop name = java_lang_Thread::name(thread_obj); 2832 if (name != NULL) { 2833 if (buf == NULL) { 2834 name_str = java_lang_String::as_utf8_string(name); 2835 } else { 2836 name_str = java_lang_String::as_utf8_string(name, buf, buflen); 2837 } 2838 } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306 2839 name_str = "<no-name - thread is attaching>"; 2840 } else { 2841 name_str = Thread::name(); 2842 } 2843 } else { 2844 name_str = Thread::name(); 2845 } 2846 assert(name_str != NULL, "unexpected NULL thread name"); 2847 return name_str; 2848 } 2849 2850 2851 const char* JavaThread::get_threadgroup_name() const { 2852 debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);) 2853 oop thread_obj = threadObj(); 2854 if (thread_obj != NULL) { 2855 oop thread_group = java_lang_Thread::threadGroup(thread_obj); 2856 if (thread_group != NULL) { 2857 typeArrayOop name = java_lang_ThreadGroup::name(thread_group); 2858 // ThreadGroup.name can be null 2859 if (name != NULL) { 2860 const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length()); 2861 return str; 2862 } 2863 } 2864 } 2865 return NULL; 2866 } 2867 2868 const char* JavaThread::get_parent_name() const { 2869 debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);) 2870 oop thread_obj = threadObj(); 2871 if (thread_obj != NULL) { 2872 oop thread_group = java_lang_Thread::threadGroup(thread_obj); 2873 if (thread_group != NULL) { 2874 oop parent = java_lang_ThreadGroup::parent(thread_group); 2875 if (parent != NULL) { 2876 typeArrayOop name = java_lang_ThreadGroup::name(parent); 2877 // ThreadGroup.name can be null 2878 if (name != NULL) { 2879 const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length()); 2880 return str; 2881 } 2882 } 2883 } 2884 } 2885 return NULL; 2886 } 2887 2888 ThreadPriority JavaThread::java_priority() const { 2889 oop thr_oop = threadObj(); 2890 if (thr_oop == NULL) return NormPriority; // Bootstrapping 2891 ThreadPriority priority = java_lang_Thread::priority(thr_oop); 2892 assert(MinPriority <= priority && priority <= MaxPriority, "sanity check"); 2893 return priority; 2894 } 2895 2896 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) { 2897 2898 assert(Threads_lock->owner() == Thread::current(), "must have threads lock"); 2899 // Link Java Thread object <-> C++ Thread 2900 2901 // Get the C++ thread object (an oop) from the JNI handle (a jthread) 2902 // and put it into a new Handle. The Handle "thread_oop" can then 2903 // be used to pass the C++ thread object to other methods. 2904 2905 // Set the Java level thread object (jthread) field of the 2906 // new thread (a JavaThread *) to C++ thread object using the 2907 // "thread_oop" handle. 2908 2909 // Set the thread field (a JavaThread *) of the 2910 // oop representing the java_lang_Thread to the new thread (a JavaThread *). 2911 2912 Handle thread_oop(Thread::current(), 2913 JNIHandles::resolve_non_null(jni_thread)); 2914 assert(InstanceKlass::cast(thread_oop->klass())->is_linked(), 2915 "must be initialized"); 2916 set_threadObj(thread_oop()); 2917 java_lang_Thread::set_thread(thread_oop(), this); 2918 2919 if (prio == NoPriority) { 2920 prio = java_lang_Thread::priority(thread_oop()); 2921 assert(prio != NoPriority, "A valid priority should be present"); 2922 } 2923 2924 // Push the Java priority down to the native thread; needs Threads_lock 2925 Thread::set_priority(this, prio); 2926 2927 prepare_ext(); 2928 2929 // Add the new thread to the Threads list and set it in motion. 2930 // We must have threads lock in order to call Threads::add. 2931 // It is crucial that we do not block before the thread is 2932 // added to the Threads list for if a GC happens, then the java_thread oop 2933 // will not be visited by GC. 2934 Threads::add(this); 2935 } 2936 2937 oop JavaThread::current_park_blocker() { 2938 // Support for JSR-166 locks 2939 oop thread_oop = threadObj(); 2940 if (thread_oop != NULL && 2941 JDK_Version::current().supports_thread_park_blocker()) { 2942 return java_lang_Thread::park_blocker(thread_oop); 2943 } 2944 return NULL; 2945 } 2946 2947 2948 void JavaThread::print_stack_on(outputStream* st) { 2949 if (!has_last_Java_frame()) return; 2950 ResourceMark rm; 2951 HandleMark hm; 2952 2953 RegisterMap reg_map(this); 2954 vframe* start_vf = last_java_vframe(®_map); 2955 int count = 0; 2956 for (vframe* f = start_vf; f; f = f->sender()) { 2957 if (f->is_java_frame()) { 2958 javaVFrame* jvf = javaVFrame::cast(f); 2959 java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci()); 2960 2961 // Print out lock information 2962 if (JavaMonitorsInStackTrace) { 2963 jvf->print_lock_info_on(st, count); 2964 } 2965 } else { 2966 // Ignore non-Java frames 2967 } 2968 2969 // Bail-out case for too deep stacks 2970 count++; 2971 if (MaxJavaStackTraceDepth == count) return; 2972 } 2973 } 2974 2975 2976 // JVMTI PopFrame support 2977 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) { 2978 assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments"); 2979 if (in_bytes(size_in_bytes) != 0) { 2980 _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread); 2981 _popframe_preserved_args_size = in_bytes(size_in_bytes); 2982 Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size); 2983 } 2984 } 2985 2986 void* JavaThread::popframe_preserved_args() { 2987 return _popframe_preserved_args; 2988 } 2989 2990 ByteSize JavaThread::popframe_preserved_args_size() { 2991 return in_ByteSize(_popframe_preserved_args_size); 2992 } 2993 2994 WordSize JavaThread::popframe_preserved_args_size_in_words() { 2995 int sz = in_bytes(popframe_preserved_args_size()); 2996 assert(sz % wordSize == 0, "argument size must be multiple of wordSize"); 2997 return in_WordSize(sz / wordSize); 2998 } 2999 3000 void JavaThread::popframe_free_preserved_args() { 3001 assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice"); 3002 FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args); 3003 _popframe_preserved_args = NULL; 3004 _popframe_preserved_args_size = 0; 3005 } 3006 3007 #ifndef PRODUCT 3008 3009 void JavaThread::trace_frames() { 3010 tty->print_cr("[Describe stack]"); 3011 int frame_no = 1; 3012 for (StackFrameStream fst(this); !fst.is_done(); fst.next()) { 3013 tty->print(" %d. ", frame_no++); 3014 fst.current()->print_value_on(tty, this); 3015 tty->cr(); 3016 } 3017 } 3018 3019 class PrintAndVerifyOopClosure: public OopClosure { 3020 protected: 3021 template <class T> inline void do_oop_work(T* p) { 3022 oop obj = oopDesc::load_decode_heap_oop(p); 3023 if (obj == NULL) return; 3024 tty->print(INTPTR_FORMAT ": ", p); 3025 if (obj->is_oop_or_null()) { 3026 if (obj->is_objArray()) { 3027 tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj); 3028 } else { 3029 obj->print(); 3030 } 3031 } else { 3032 tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj); 3033 } 3034 tty->cr(); 3035 } 3036 public: 3037 virtual void do_oop(oop* p) { do_oop_work(p); } 3038 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 3039 }; 3040 3041 3042 static void oops_print(frame* f, const RegisterMap *map) { 3043 PrintAndVerifyOopClosure print; 3044 f->print_value(); 3045 f->oops_do(&print, NULL, NULL, (RegisterMap*)map); 3046 } 3047 3048 // Print our all the locations that contain oops and whether they are 3049 // valid or not. This useful when trying to find the oldest frame 3050 // where an oop has gone bad since the frame walk is from youngest to 3051 // oldest. 3052 void JavaThread::trace_oops() { 3053 tty->print_cr("[Trace oops]"); 3054 frames_do(oops_print); 3055 } 3056 3057 3058 #ifdef ASSERT 3059 // Print or validate the layout of stack frames 3060 void JavaThread::print_frame_layout(int depth, bool validate_only) { 3061 ResourceMark rm; 3062 PRESERVE_EXCEPTION_MARK; 3063 FrameValues values; 3064 int frame_no = 0; 3065 for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) { 3066 fst.current()->describe(values, ++frame_no); 3067 if (depth == frame_no) break; 3068 } 3069 if (validate_only) { 3070 values.validate(); 3071 } else { 3072 tty->print_cr("[Describe stack layout]"); 3073 values.print(this); 3074 } 3075 } 3076 #endif 3077 3078 void JavaThread::trace_stack_from(vframe* start_vf) { 3079 ResourceMark rm; 3080 int vframe_no = 1; 3081 for (vframe* f = start_vf; f; f = f->sender()) { 3082 if (f->is_java_frame()) { 3083 javaVFrame::cast(f)->print_activation(vframe_no++); 3084 } else { 3085 f->print(); 3086 } 3087 if (vframe_no > StackPrintLimit) { 3088 tty->print_cr("...<more frames>..."); 3089 return; 3090 } 3091 } 3092 } 3093 3094 3095 void JavaThread::trace_stack() { 3096 if (!has_last_Java_frame()) return; 3097 ResourceMark rm; 3098 HandleMark hm; 3099 RegisterMap reg_map(this); 3100 trace_stack_from(last_java_vframe(®_map)); 3101 } 3102 3103 3104 #endif // PRODUCT 3105 3106 3107 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) { 3108 assert(reg_map != NULL, "a map must be given"); 3109 frame f = last_frame(); 3110 for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) { 3111 if (vf->is_java_frame()) return javaVFrame::cast(vf); 3112 } 3113 return NULL; 3114 } 3115 3116 3117 Klass* JavaThread::security_get_caller_class(int depth) { 3118 vframeStream vfst(this); 3119 vfst.security_get_caller_frame(depth); 3120 if (!vfst.at_end()) { 3121 return vfst.method()->method_holder(); 3122 } 3123 return NULL; 3124 } 3125 3126 static void compiler_thread_entry(JavaThread* thread, TRAPS) { 3127 assert(thread->is_Compiler_thread(), "must be compiler thread"); 3128 CompileBroker::compiler_thread_loop(); 3129 } 3130 3131 static void sweeper_thread_entry(JavaThread* thread, TRAPS) { 3132 NMethodSweeper::sweeper_loop(); 3133 } 3134 3135 // Create a CompilerThread 3136 CompilerThread::CompilerThread(CompileQueue* queue, 3137 CompilerCounters* counters) 3138 : JavaThread(&compiler_thread_entry) { 3139 _env = NULL; 3140 _log = NULL; 3141 _task = NULL; 3142 _queue = queue; 3143 _counters = counters; 3144 _buffer_blob = NULL; 3145 _compiler = NULL; 3146 3147 #ifndef PRODUCT 3148 _ideal_graph_printer = NULL; 3149 #endif 3150 } 3151 3152 // Create sweeper thread 3153 CodeCacheSweeperThread::CodeCacheSweeperThread() 3154 : JavaThread(&sweeper_thread_entry) { 3155 _scanned_nmethod = NULL; 3156 } 3157 void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) { 3158 JavaThread::oops_do(f, cld_f, cf); 3159 if (_scanned_nmethod != NULL && cf != NULL) { 3160 // Safepoints can occur when the sweeper is scanning an nmethod so 3161 // process it here to make sure it isn't unloaded in the middle of 3162 // a scan. 3163 cf->do_code_blob(_scanned_nmethod); 3164 } 3165 } 3166 3167 3168 // ======= Threads ======== 3169 3170 // The Threads class links together all active threads, and provides 3171 // operations over all threads. It is protected by its own Mutex 3172 // lock, which is also used in other contexts to protect thread 3173 // operations from having the thread being operated on from exiting 3174 // and going away unexpectedly (e.g., safepoint synchronization) 3175 3176 JavaThread* Threads::_thread_list = NULL; 3177 int Threads::_number_of_threads = 0; 3178 int Threads::_number_of_non_daemon_threads = 0; 3179 int Threads::_return_code = 0; 3180 size_t JavaThread::_stack_size_at_create = 0; 3181 #ifdef ASSERT 3182 bool Threads::_vm_complete = false; 3183 #endif 3184 3185 // All JavaThreads 3186 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next()) 3187 3188 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system) 3189 void Threads::threads_do(ThreadClosure* tc) { 3190 assert_locked_or_safepoint(Threads_lock); 3191 // ALL_JAVA_THREADS iterates through all JavaThreads 3192 ALL_JAVA_THREADS(p) { 3193 tc->do_thread(p); 3194 } 3195 // Someday we could have a table or list of all non-JavaThreads. 3196 // For now, just manually iterate through them. 3197 tc->do_thread(VMThread::vm_thread()); 3198 Universe::heap()->gc_threads_do(tc); 3199 WatcherThread *wt = WatcherThread::watcher_thread(); 3200 // Strictly speaking, the following NULL check isn't sufficient to make sure 3201 // the data for WatcherThread is still valid upon being examined. However, 3202 // considering that WatchThread terminates when the VM is on the way to 3203 // exit at safepoint, the chance of the above is extremely small. The right 3204 // way to prevent termination of WatcherThread would be to acquire 3205 // Terminator_lock, but we can't do that without violating the lock rank 3206 // checking in some cases. 3207 if (wt != NULL) { 3208 tc->do_thread(wt); 3209 } 3210 3211 // If CompilerThreads ever become non-JavaThreads, add them here 3212 } 3213 3214 3215 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) { 3216 TraceTime timer("Initialize java.lang classes", TraceStartupTime); 3217 3218 if (EagerXrunInit && Arguments::init_libraries_at_startup()) { 3219 create_vm_init_libraries(); 3220 } 3221 3222 initialize_class(vmSymbols::java_lang_String(), CHECK); 3223 3224 // Initialize java_lang.System (needed before creating the thread) 3225 initialize_class(vmSymbols::java_lang_System(), CHECK); 3226 initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK); 3227 Handle thread_group = create_initial_thread_group(CHECK); 3228 Universe::set_main_thread_group(thread_group()); 3229 initialize_class(vmSymbols::java_lang_Thread(), CHECK); 3230 oop thread_object = create_initial_thread(thread_group, main_thread, CHECK); 3231 main_thread->set_threadObj(thread_object); 3232 // Set thread status to running since main thread has 3233 // been started and running. 3234 java_lang_Thread::set_thread_status(thread_object, 3235 java_lang_Thread::RUNNABLE); 3236 3237 // The VM creates & returns objects of this class. Make sure it's initialized. 3238 initialize_class(vmSymbols::java_lang_Class(), CHECK); 3239 3240 // The VM preresolves methods to these classes. Make sure that they get initialized 3241 initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK); 3242 initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK); 3243 call_initializeSystemClass(CHECK); 3244 3245 // get the Java runtime name after java.lang.System is initialized 3246 JDK_Version::set_runtime_name(get_java_runtime_name(THREAD)); 3247 JDK_Version::set_runtime_version(get_java_runtime_version(THREAD)); 3248 3249 // an instance of OutOfMemory exception has been allocated earlier 3250 initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK); 3251 initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK); 3252 initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK); 3253 initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK); 3254 initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK); 3255 initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK); 3256 initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK); 3257 initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK); 3258 } 3259 3260 void Threads::initialize_jsr292_core_classes(TRAPS) { 3261 initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK); 3262 initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK); 3263 initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK); 3264 } 3265 3266 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) { 3267 extern void JDK_Version_init(); 3268 3269 // Check version 3270 if (!is_supported_jni_version(args->version)) return JNI_EVERSION; 3271 3272 // Initialize the output stream module 3273 ostream_init(); 3274 3275 // Process java launcher properties. 3276 Arguments::process_sun_java_launcher_properties(args); 3277 3278 // Initialize the os module before using TLS 3279 os::init(); 3280 3281 // Initialize system properties. 3282 Arguments::init_system_properties(); 3283 3284 // So that JDK version can be used as a discriminator when parsing arguments 3285 JDK_Version_init(); 3286 3287 // Update/Initialize System properties after JDK version number is known 3288 Arguments::init_version_specific_system_properties(); 3289 3290 // Parse arguments 3291 jint parse_result = Arguments::parse(args); 3292 if (parse_result != JNI_OK) return parse_result; 3293 3294 os::init_before_ergo(); 3295 3296 jint ergo_result = Arguments::apply_ergo(); 3297 if (ergo_result != JNI_OK) return ergo_result; 3298 3299 if (PauseAtStartup) { 3300 os::pause(); 3301 } 3302 3303 HOTSPOT_VM_INIT_BEGIN(); 3304 3305 // Record VM creation timing statistics 3306 TraceVmCreationTime create_vm_timer; 3307 create_vm_timer.start(); 3308 3309 // Timing (must come after argument parsing) 3310 TraceTime timer("Create VM", TraceStartupTime); 3311 3312 // Initialize the os module after parsing the args 3313 jint os_init_2_result = os::init_2(); 3314 if (os_init_2_result != JNI_OK) return os_init_2_result; 3315 3316 jint adjust_after_os_result = Arguments::adjust_after_os(); 3317 if (adjust_after_os_result != JNI_OK) return adjust_after_os_result; 3318 3319 // initialize TLS 3320 ThreadLocalStorage::init(); 3321 3322 // Initialize output stream logging 3323 ostream_init_log(); 3324 3325 // Convert -Xrun to -agentlib: if there is no JVM_OnLoad 3326 // Must be before create_vm_init_agents() 3327 if (Arguments::init_libraries_at_startup()) { 3328 convert_vm_init_libraries_to_agents(); 3329 } 3330 3331 // Launch -agentlib/-agentpath and converted -Xrun agents 3332 if (Arguments::init_agents_at_startup()) { 3333 create_vm_init_agents(); 3334 } 3335 3336 // Initialize Threads state 3337 _thread_list = NULL; 3338 _number_of_threads = 0; 3339 _number_of_non_daemon_threads = 0; 3340 3341 // Initialize global data structures and create system classes in heap 3342 vm_init_globals(); 3343 3344 // Attach the main thread to this os thread 3345 JavaThread* main_thread = new JavaThread(); 3346 main_thread->set_thread_state(_thread_in_vm); 3347 // must do this before set_active_handles and initialize_thread_local_storage 3348 // Note: on solaris initialize_thread_local_storage() will (indirectly) 3349 // change the stack size recorded here to one based on the java thread 3350 // stacksize. This adjusted size is what is used to figure the placement 3351 // of the guard pages. 3352 main_thread->record_stack_base_and_size(); 3353 main_thread->initialize_thread_local_storage(); 3354 3355 main_thread->set_active_handles(JNIHandleBlock::allocate_block()); 3356 3357 if (!main_thread->set_as_starting_thread()) { 3358 vm_shutdown_during_initialization( 3359 "Failed necessary internal allocation. Out of swap space"); 3360 delete main_thread; 3361 *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again 3362 return JNI_ENOMEM; 3363 } 3364 3365 // Enable guard page *after* os::create_main_thread(), otherwise it would 3366 // crash Linux VM, see notes in os_linux.cpp. 3367 main_thread->create_stack_guard_pages(); 3368 3369 // Initialize Java-Level synchronization subsystem 3370 ObjectMonitor::Initialize(); 3371 3372 // Initialize global modules 3373 jint status = init_globals(); 3374 if (status != JNI_OK) { 3375 delete main_thread; 3376 *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again 3377 return status; 3378 } 3379 3380 // Should be done after the heap is fully created 3381 main_thread->cache_global_variables(); 3382 3383 HandleMark hm; 3384 3385 { MutexLocker mu(Threads_lock); 3386 Threads::add(main_thread); 3387 } 3388 3389 // Any JVMTI raw monitors entered in onload will transition into 3390 // real raw monitor. VM is setup enough here for raw monitor enter. 3391 JvmtiExport::transition_pending_onload_raw_monitors(); 3392 3393 // Create the VMThread 3394 { TraceTime timer("Start VMThread", TraceStartupTime); 3395 VMThread::create(); 3396 Thread* vmthread = VMThread::vm_thread(); 3397 3398 if (!os::create_thread(vmthread, os::vm_thread)) { 3399 vm_exit_during_initialization("Cannot create VM thread. " 3400 "Out of system resources."); 3401 } 3402 3403 // Wait for the VM thread to become ready, and VMThread::run to initialize 3404 // Monitors can have spurious returns, must always check another state flag 3405 { 3406 MutexLocker ml(Notify_lock); 3407 os::start_thread(vmthread); 3408 while (vmthread->active_handles() == NULL) { 3409 Notify_lock->wait(); 3410 } 3411 } 3412 } 3413 3414 assert(Universe::is_fully_initialized(), "not initialized"); 3415 if (VerifyDuringStartup) { 3416 // Make sure we're starting with a clean slate. 3417 VM_Verify verify_op; 3418 VMThread::execute(&verify_op); 3419 } 3420 3421 Thread* THREAD = Thread::current(); 3422 3423 // At this point, the Universe is initialized, but we have not executed 3424 // any byte code. Now is a good time (the only time) to dump out the 3425 // internal state of the JVM for sharing. 3426 if (DumpSharedSpaces) { 3427 MetaspaceShared::preload_and_dump(CHECK_JNI_ERR); 3428 ShouldNotReachHere(); 3429 } 3430 3431 // Always call even when there are not JVMTI environments yet, since environments 3432 // may be attached late and JVMTI must track phases of VM execution 3433 JvmtiExport::enter_start_phase(); 3434 3435 // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents. 3436 JvmtiExport::post_vm_start(); 3437 3438 initialize_java_lang_classes(main_thread, CHECK_JNI_ERR); 3439 3440 // We need this for ClassDataSharing - the initial vm.info property is set 3441 // with the default value of CDS "sharing" which may be reset through 3442 // command line options. 3443 reset_vm_info_property(CHECK_JNI_ERR); 3444 3445 quicken_jni_functions(); 3446 3447 // Must be run after init_ft which initializes ft_enabled 3448 if (TRACE_INITIALIZE() != JNI_OK) { 3449 vm_exit_during_initialization("Failed to initialize tracing backend"); 3450 } 3451 3452 // Set flag that basic initialization has completed. Used by exceptions and various 3453 // debug stuff, that does not work until all basic classes have been initialized. 3454 set_init_completed(); 3455 3456 Metaspace::post_initialize(); 3457 3458 HOTSPOT_VM_INIT_END(); 3459 3460 // record VM initialization completion time 3461 #if INCLUDE_MANAGEMENT 3462 Management::record_vm_init_completed(); 3463 #endif // INCLUDE_MANAGEMENT 3464 3465 // Compute system loader. Note that this has to occur after set_init_completed, since 3466 // valid exceptions may be thrown in the process. 3467 // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and 3468 // set_init_completed has just been called, causing exceptions not to be shortcut 3469 // anymore. We call vm_exit_during_initialization directly instead. 3470 SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR); 3471 3472 #if INCLUDE_ALL_GCS 3473 // Support for ConcurrentMarkSweep. This should be cleaned up 3474 // and better encapsulated. The ugly nested if test would go away 3475 // once things are properly refactored. XXX YSR 3476 if (UseConcMarkSweepGC || UseG1GC) { 3477 if (UseConcMarkSweepGC) { 3478 ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR); 3479 } else { 3480 ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR); 3481 } 3482 } 3483 #endif // INCLUDE_ALL_GCS 3484 3485 // Always call even when there are not JVMTI environments yet, since environments 3486 // may be attached late and JVMTI must track phases of VM execution 3487 JvmtiExport::enter_live_phase(); 3488 3489 // Signal Dispatcher needs to be started before VMInit event is posted 3490 os::signal_init(); 3491 3492 // Start Attach Listener if +StartAttachListener or it can't be started lazily 3493 if (!DisableAttachMechanism) { 3494 AttachListener::vm_start(); 3495 if (StartAttachListener || AttachListener::init_at_startup()) { 3496 AttachListener::init(); 3497 } 3498 } 3499 3500 // Launch -Xrun agents 3501 // Must be done in the JVMTI live phase so that for backward compatibility the JDWP 3502 // back-end can launch with -Xdebug -Xrunjdwp. 3503 if (!EagerXrunInit && Arguments::init_libraries_at_startup()) { 3504 create_vm_init_libraries(); 3505 } 3506 3507 // Notify JVMTI agents that VM initialization is complete - nop if no agents. 3508 JvmtiExport::post_vm_initialized(); 3509 3510 if (TRACE_START() != JNI_OK) { 3511 vm_exit_during_initialization("Failed to start tracing backend."); 3512 } 3513 3514 if (CleanChunkPoolAsync) { 3515 Chunk::start_chunk_pool_cleaner_task(); 3516 } 3517 3518 // initialize compiler(s) 3519 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) 3520 CompileBroker::compilation_init(); 3521 #endif 3522 3523 // Pre-initialize some JSR292 core classes to avoid deadlock during class loading. 3524 // It is done after compilers are initialized, because otherwise compilations of 3525 // signature polymorphic MH intrinsics can be missed 3526 // (see SystemDictionary::find_method_handle_intrinsic). 3527 initialize_jsr292_core_classes(CHECK_JNI_ERR); 3528 3529 #if INCLUDE_MANAGEMENT 3530 Management::initialize(THREAD); 3531 3532 if (HAS_PENDING_EXCEPTION) { 3533 // management agent fails to start possibly due to 3534 // configuration problem and is responsible for printing 3535 // stack trace if appropriate. Simply exit VM. 3536 vm_exit(1); 3537 } 3538 #endif // INCLUDE_MANAGEMENT 3539 3540 if (Arguments::has_profile()) FlatProfiler::engage(main_thread, true); 3541 if (MemProfiling) MemProfiler::engage(); 3542 StatSampler::engage(); 3543 if (CheckJNICalls) JniPeriodicChecker::engage(); 3544 3545 BiasedLocking::init(); 3546 3547 #if INCLUDE_RTM_OPT 3548 RTMLockingCounters::init(); 3549 #endif 3550 3551 if (JDK_Version::current().post_vm_init_hook_enabled()) { 3552 call_postVMInitHook(THREAD); 3553 // The Java side of PostVMInitHook.run must deal with all 3554 // exceptions and provide means of diagnosis. 3555 if (HAS_PENDING_EXCEPTION) { 3556 CLEAR_PENDING_EXCEPTION; 3557 } 3558 } 3559 3560 { 3561 MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag); 3562 // Make sure the watcher thread can be started by WatcherThread::start() 3563 // or by dynamic enrollment. 3564 WatcherThread::make_startable(); 3565 // Start up the WatcherThread if there are any periodic tasks 3566 // NOTE: All PeriodicTasks should be registered by now. If they 3567 // aren't, late joiners might appear to start slowly (we might 3568 // take a while to process their first tick). 3569 if (PeriodicTask::num_tasks() > 0) { 3570 WatcherThread::start(); 3571 } 3572 } 3573 3574 create_vm_timer.end(); 3575 #ifdef ASSERT 3576 _vm_complete = true; 3577 #endif 3578 return JNI_OK; 3579 } 3580 3581 // type for the Agent_OnLoad and JVM_OnLoad entry points 3582 extern "C" { 3583 typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *); 3584 } 3585 // Find a command line agent library and return its entry point for 3586 // -agentlib: -agentpath: -Xrun 3587 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array. 3588 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, 3589 const char *on_load_symbols[], 3590 size_t num_symbol_entries) { 3591 OnLoadEntry_t on_load_entry = NULL; 3592 void *library = NULL; 3593 3594 if (!agent->valid()) { 3595 char buffer[JVM_MAXPATHLEN]; 3596 char ebuf[1024] = ""; 3597 const char *name = agent->name(); 3598 const char *msg = "Could not find agent library "; 3599 3600 // First check to see if agent is statically linked into executable 3601 if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) { 3602 library = agent->os_lib(); 3603 } else if (agent->is_absolute_path()) { 3604 library = os::dll_load(name, ebuf, sizeof ebuf); 3605 if (library == NULL) { 3606 const char *sub_msg = " in absolute path, with error: "; 3607 size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1; 3608 char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread); 3609 jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf); 3610 // If we can't find the agent, exit. 3611 vm_exit_during_initialization(buf, NULL); 3612 FREE_C_HEAP_ARRAY(char, buf); 3613 } 3614 } else { 3615 // Try to load the agent from the standard dll directory 3616 if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), 3617 name)) { 3618 library = os::dll_load(buffer, ebuf, sizeof ebuf); 3619 } 3620 if (library == NULL) { // Try the local directory 3621 char ns[1] = {0}; 3622 if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) { 3623 library = os::dll_load(buffer, ebuf, sizeof ebuf); 3624 } 3625 if (library == NULL) { 3626 const char *sub_msg = " on the library path, with error: "; 3627 size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1; 3628 char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread); 3629 jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf); 3630 // If we can't find the agent, exit. 3631 vm_exit_during_initialization(buf, NULL); 3632 FREE_C_HEAP_ARRAY(char, buf); 3633 } 3634 } 3635 } 3636 agent->set_os_lib(library); 3637 agent->set_valid(); 3638 } 3639 3640 // Find the OnLoad function. 3641 on_load_entry = 3642 CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent, 3643 false, 3644 on_load_symbols, 3645 num_symbol_entries)); 3646 return on_load_entry; 3647 } 3648 3649 // Find the JVM_OnLoad entry point 3650 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) { 3651 const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS; 3652 return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*)); 3653 } 3654 3655 // Find the Agent_OnLoad entry point 3656 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) { 3657 const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS; 3658 return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*)); 3659 } 3660 3661 // For backwards compatibility with -Xrun 3662 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be 3663 // treated like -agentpath: 3664 // Must be called before agent libraries are created 3665 void Threads::convert_vm_init_libraries_to_agents() { 3666 AgentLibrary* agent; 3667 AgentLibrary* next; 3668 3669 for (agent = Arguments::libraries(); agent != NULL; agent = next) { 3670 next = agent->next(); // cache the next agent now as this agent may get moved off this list 3671 OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent); 3672 3673 // If there is an JVM_OnLoad function it will get called later, 3674 // otherwise see if there is an Agent_OnLoad 3675 if (on_load_entry == NULL) { 3676 on_load_entry = lookup_agent_on_load(agent); 3677 if (on_load_entry != NULL) { 3678 // switch it to the agent list -- so that Agent_OnLoad will be called, 3679 // JVM_OnLoad won't be attempted and Agent_OnUnload will 3680 Arguments::convert_library_to_agent(agent); 3681 } else { 3682 vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name()); 3683 } 3684 } 3685 } 3686 } 3687 3688 // Create agents for -agentlib: -agentpath: and converted -Xrun 3689 // Invokes Agent_OnLoad 3690 // Called very early -- before JavaThreads exist 3691 void Threads::create_vm_init_agents() { 3692 extern struct JavaVM_ main_vm; 3693 AgentLibrary* agent; 3694 3695 JvmtiExport::enter_onload_phase(); 3696 3697 for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) { 3698 OnLoadEntry_t on_load_entry = lookup_agent_on_load(agent); 3699 3700 if (on_load_entry != NULL) { 3701 // Invoke the Agent_OnLoad function 3702 jint err = (*on_load_entry)(&main_vm, agent->options(), NULL); 3703 if (err != JNI_OK) { 3704 vm_exit_during_initialization("agent library failed to init", agent->name()); 3705 } 3706 } else { 3707 vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name()); 3708 } 3709 } 3710 JvmtiExport::enter_primordial_phase(); 3711 } 3712 3713 extern "C" { 3714 typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *); 3715 } 3716 3717 void Threads::shutdown_vm_agents() { 3718 // Send any Agent_OnUnload notifications 3719 const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS; 3720 size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols); 3721 extern struct JavaVM_ main_vm; 3722 for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) { 3723 3724 // Find the Agent_OnUnload function. 3725 Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t, 3726 os::find_agent_function(agent, 3727 false, 3728 on_unload_symbols, 3729 num_symbol_entries)); 3730 3731 // Invoke the Agent_OnUnload function 3732 if (unload_entry != NULL) { 3733 JavaThread* thread = JavaThread::current(); 3734 ThreadToNativeFromVM ttn(thread); 3735 HandleMark hm(thread); 3736 (*unload_entry)(&main_vm); 3737 } 3738 } 3739 } 3740 3741 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries 3742 // Invokes JVM_OnLoad 3743 void Threads::create_vm_init_libraries() { 3744 extern struct JavaVM_ main_vm; 3745 AgentLibrary* agent; 3746 3747 for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) { 3748 OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent); 3749 3750 if (on_load_entry != NULL) { 3751 // Invoke the JVM_OnLoad function 3752 JavaThread* thread = JavaThread::current(); 3753 ThreadToNativeFromVM ttn(thread); 3754 HandleMark hm(thread); 3755 jint err = (*on_load_entry)(&main_vm, agent->options(), NULL); 3756 if (err != JNI_OK) { 3757 vm_exit_during_initialization("-Xrun library failed to init", agent->name()); 3758 } 3759 } else { 3760 vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name()); 3761 } 3762 } 3763 } 3764 3765 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) { 3766 assert(Threads_lock->owned_by_self(), "Must hold Threads_lock"); 3767 3768 JavaThread* java_thread = NULL; 3769 // Sequential search for now. Need to do better optimization later. 3770 for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) { 3771 oop tobj = thread->threadObj(); 3772 if (!thread->is_exiting() && 3773 tobj != NULL && 3774 java_tid == java_lang_Thread::thread_id(tobj)) { 3775 java_thread = thread; 3776 break; 3777 } 3778 } 3779 return java_thread; 3780 } 3781 3782 3783 // Last thread running calls java.lang.Shutdown.shutdown() 3784 void JavaThread::invoke_shutdown_hooks() { 3785 HandleMark hm(this); 3786 3787 // We could get here with a pending exception, if so clear it now. 3788 if (this->has_pending_exception()) { 3789 this->clear_pending_exception(); 3790 } 3791 3792 EXCEPTION_MARK; 3793 Klass* k = 3794 SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(), 3795 THREAD); 3796 if (k != NULL) { 3797 // SystemDictionary::resolve_or_null will return null if there was 3798 // an exception. If we cannot load the Shutdown class, just don't 3799 // call Shutdown.shutdown() at all. This will mean the shutdown hooks 3800 // and finalizers (if runFinalizersOnExit is set) won't be run. 3801 // Note that if a shutdown hook was registered or runFinalizersOnExit 3802 // was called, the Shutdown class would have already been loaded 3803 // (Runtime.addShutdownHook and runFinalizersOnExit will load it). 3804 instanceKlassHandle shutdown_klass (THREAD, k); 3805 JavaValue result(T_VOID); 3806 JavaCalls::call_static(&result, 3807 shutdown_klass, 3808 vmSymbols::shutdown_method_name(), 3809 vmSymbols::void_method_signature(), 3810 THREAD); 3811 } 3812 CLEAR_PENDING_EXCEPTION; 3813 } 3814 3815 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when 3816 // the program falls off the end of main(). Another VM exit path is through 3817 // vm_exit() when the program calls System.exit() to return a value or when 3818 // there is a serious error in VM. The two shutdown paths are not exactly 3819 // the same, but they share Shutdown.shutdown() at Java level and before_exit() 3820 // and VM_Exit op at VM level. 3821 // 3822 // Shutdown sequence: 3823 // + Shutdown native memory tracking if it is on 3824 // + Wait until we are the last non-daemon thread to execute 3825 // <-- every thing is still working at this moment --> 3826 // + Call java.lang.Shutdown.shutdown(), which will invoke Java level 3827 // shutdown hooks, run finalizers if finalization-on-exit 3828 // + Call before_exit(), prepare for VM exit 3829 // > run VM level shutdown hooks (they are registered through JVM_OnExit(), 3830 // currently the only user of this mechanism is File.deleteOnExit()) 3831 // > stop flat profiler, StatSampler, watcher thread, CMS threads, 3832 // post thread end and vm death events to JVMTI, 3833 // stop signal thread 3834 // + Call JavaThread::exit(), it will: 3835 // > release JNI handle blocks, remove stack guard pages 3836 // > remove this thread from Threads list 3837 // <-- no more Java code from this thread after this point --> 3838 // + Stop VM thread, it will bring the remaining VM to a safepoint and stop 3839 // the compiler threads at safepoint 3840 // <-- do not use anything that could get blocked by Safepoint --> 3841 // + Disable tracing at JNI/JVM barriers 3842 // + Set _vm_exited flag for threads that are still running native code 3843 // + Delete this thread 3844 // + Call exit_globals() 3845 // > deletes tty 3846 // > deletes PerfMemory resources 3847 // + Return to caller 3848 3849 bool Threads::destroy_vm() { 3850 JavaThread* thread = JavaThread::current(); 3851 3852 #ifdef ASSERT 3853 _vm_complete = false; 3854 #endif 3855 // Wait until we are the last non-daemon thread to execute 3856 { MutexLocker nu(Threads_lock); 3857 while (Threads::number_of_non_daemon_threads() > 1) 3858 // This wait should make safepoint checks, wait without a timeout, 3859 // and wait as a suspend-equivalent condition. 3860 // 3861 // Note: If the FlatProfiler is running and this thread is waiting 3862 // for another non-daemon thread to finish, then the FlatProfiler 3863 // is waiting for the external suspend request on this thread to 3864 // complete. wait_for_ext_suspend_completion() will eventually 3865 // timeout, but that takes time. Making this wait a suspend- 3866 // equivalent condition solves that timeout problem. 3867 // 3868 Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0, 3869 Mutex::_as_suspend_equivalent_flag); 3870 } 3871 3872 // Hang forever on exit if we are reporting an error. 3873 if (ShowMessageBoxOnError && is_error_reported()) { 3874 os::infinite_sleep(); 3875 } 3876 os::wait_for_keypress_at_exit(); 3877 3878 // run Java level shutdown hooks 3879 thread->invoke_shutdown_hooks(); 3880 3881 before_exit(thread); 3882 3883 thread->exit(true); 3884 3885 // Stop VM thread. 3886 { 3887 // 4945125 The vm thread comes to a safepoint during exit. 3888 // GC vm_operations can get caught at the safepoint, and the 3889 // heap is unparseable if they are caught. Grab the Heap_lock 3890 // to prevent this. The GC vm_operations will not be able to 3891 // queue until after the vm thread is dead. After this point, 3892 // we'll never emerge out of the safepoint before the VM exits. 3893 3894 MutexLocker ml(Heap_lock); 3895 3896 VMThread::wait_for_vm_thread_exit(); 3897 assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint"); 3898 VMThread::destroy(); 3899 } 3900 3901 // clean up ideal graph printers 3902 #if defined(COMPILER2) && !defined(PRODUCT) 3903 IdealGraphPrinter::clean_up(); 3904 #endif 3905 3906 // Now, all Java threads are gone except daemon threads. Daemon threads 3907 // running Java code or in VM are stopped by the Safepoint. However, 3908 // daemon threads executing native code are still running. But they 3909 // will be stopped at native=>Java/VM barriers. Note that we can't 3910 // simply kill or suspend them, as it is inherently deadlock-prone. 3911 3912 #ifndef PRODUCT 3913 // disable function tracing at JNI/JVM barriers 3914 TraceJNICalls = false; 3915 TraceJVMCalls = false; 3916 TraceRuntimeCalls = false; 3917 #endif 3918 3919 VM_Exit::set_vm_exited(); 3920 3921 notify_vm_shutdown(); 3922 3923 delete thread; 3924 3925 // exit_globals() will delete tty 3926 exit_globals(); 3927 3928 return true; 3929 } 3930 3931 3932 jboolean Threads::is_supported_jni_version_including_1_1(jint version) { 3933 if (version == JNI_VERSION_1_1) return JNI_TRUE; 3934 return is_supported_jni_version(version); 3935 } 3936 3937 3938 jboolean Threads::is_supported_jni_version(jint version) { 3939 if (version == JNI_VERSION_1_2) return JNI_TRUE; 3940 if (version == JNI_VERSION_1_4) return JNI_TRUE; 3941 if (version == JNI_VERSION_1_6) return JNI_TRUE; 3942 if (version == JNI_VERSION_1_8) return JNI_TRUE; 3943 return JNI_FALSE; 3944 } 3945 3946 3947 void Threads::add(JavaThread* p, bool force_daemon) { 3948 // The threads lock must be owned at this point 3949 assert_locked_or_safepoint(Threads_lock); 3950 3951 // See the comment for this method in thread.hpp for its purpose and 3952 // why it is called here. 3953 p->initialize_queues(); 3954 p->set_next(_thread_list); 3955 _thread_list = p; 3956 _number_of_threads++; 3957 oop threadObj = p->threadObj(); 3958 bool daemon = true; 3959 // Bootstrapping problem: threadObj can be null for initial 3960 // JavaThread (or for threads attached via JNI) 3961 if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) { 3962 _number_of_non_daemon_threads++; 3963 daemon = false; 3964 } 3965 3966 ThreadService::add_thread(p, daemon); 3967 3968 // Possible GC point. 3969 Events::log(p, "Thread added: " INTPTR_FORMAT, p); 3970 } 3971 3972 void Threads::remove(JavaThread* p) { 3973 // Extra scope needed for Thread_lock, so we can check 3974 // that we do not remove thread without safepoint code notice 3975 { MutexLocker ml(Threads_lock); 3976 3977 assert(includes(p), "p must be present"); 3978 3979 JavaThread* current = _thread_list; 3980 JavaThread* prev = NULL; 3981 3982 while (current != p) { 3983 prev = current; 3984 current = current->next(); 3985 } 3986 3987 if (prev) { 3988 prev->set_next(current->next()); 3989 } else { 3990 _thread_list = p->next(); 3991 } 3992 _number_of_threads--; 3993 oop threadObj = p->threadObj(); 3994 bool daemon = true; 3995 if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) { 3996 _number_of_non_daemon_threads--; 3997 daemon = false; 3998 3999 // Only one thread left, do a notify on the Threads_lock so a thread waiting 4000 // on destroy_vm will wake up. 4001 if (number_of_non_daemon_threads() == 1) { 4002 Threads_lock->notify_all(); 4003 } 4004 } 4005 ThreadService::remove_thread(p, daemon); 4006 4007 // Make sure that safepoint code disregard this thread. This is needed since 4008 // the thread might mess around with locks after this point. This can cause it 4009 // to do callbacks into the safepoint code. However, the safepoint code is not aware 4010 // of this thread since it is removed from the queue. 4011 p->set_terminated_value(); 4012 } // unlock Threads_lock 4013 4014 // Since Events::log uses a lock, we grab it outside the Threads_lock 4015 Events::log(p, "Thread exited: " INTPTR_FORMAT, p); 4016 } 4017 4018 // Threads_lock must be held when this is called (or must be called during a safepoint) 4019 bool Threads::includes(JavaThread* p) { 4020 assert(Threads_lock->is_locked(), "sanity check"); 4021 ALL_JAVA_THREADS(q) { 4022 if (q == p) { 4023 return true; 4024 } 4025 } 4026 return false; 4027 } 4028 4029 // Operations on the Threads list for GC. These are not explicitly locked, 4030 // but the garbage collector must provide a safe context for them to run. 4031 // In particular, these things should never be called when the Threads_lock 4032 // is held by some other thread. (Note: the Safepoint abstraction also 4033 // uses the Threads_lock to guarantee this property. It also makes sure that 4034 // all threads gets blocked when exiting or starting). 4035 4036 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) { 4037 ALL_JAVA_THREADS(p) { 4038 p->oops_do(f, cld_f, cf); 4039 } 4040 VMThread::vm_thread()->oops_do(f, cld_f, cf); 4041 } 4042 4043 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) { 4044 // Introduce a mechanism allowing parallel threads to claim threads as 4045 // root groups. Overhead should be small enough to use all the time, 4046 // even in sequential code. 4047 SharedHeap* sh = SharedHeap::heap(); 4048 // Cannot yet substitute active_workers for n_par_threads 4049 // because of G1CollectedHeap::verify() use of 4050 // SharedHeap::process_roots(). n_par_threads == 0 will 4051 // turn off parallelism in process_roots while active_workers 4052 // is being used for parallelism elsewhere. 4053 bool is_par = sh->n_par_threads() > 0; 4054 assert(!is_par || 4055 (SharedHeap::heap()->n_par_threads() == 4056 SharedHeap::heap()->workers()->active_workers()), "Mismatch"); 4057 int cp = SharedHeap::heap()->strong_roots_parity(); 4058 ALL_JAVA_THREADS(p) { 4059 if (p->claim_oops_do(is_par, cp)) { 4060 p->oops_do(f, cld_f, cf); 4061 } 4062 } 4063 VMThread* vmt = VMThread::vm_thread(); 4064 if (vmt->claim_oops_do(is_par, cp)) { 4065 vmt->oops_do(f, cld_f, cf); 4066 } 4067 } 4068 4069 #if INCLUDE_ALL_GCS 4070 // Used by ParallelScavenge 4071 void Threads::create_thread_roots_tasks(GCTaskQueue* q) { 4072 ALL_JAVA_THREADS(p) { 4073 q->enqueue(new ThreadRootsTask(p)); 4074 } 4075 q->enqueue(new ThreadRootsTask(VMThread::vm_thread())); 4076 } 4077 4078 // Used by Parallel Old 4079 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) { 4080 ALL_JAVA_THREADS(p) { 4081 q->enqueue(new ThreadRootsMarkingTask(p)); 4082 } 4083 q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread())); 4084 } 4085 #endif // INCLUDE_ALL_GCS 4086 4087 void Threads::nmethods_do(CodeBlobClosure* cf) { 4088 ALL_JAVA_THREADS(p) { 4089 p->nmethods_do(cf); 4090 } 4091 VMThread::vm_thread()->nmethods_do(cf); 4092 } 4093 4094 void Threads::metadata_do(void f(Metadata*)) { 4095 ALL_JAVA_THREADS(p) { 4096 p->metadata_do(f); 4097 } 4098 } 4099 4100 void Threads::deoptimized_wrt_marked_nmethods() { 4101 ALL_JAVA_THREADS(p) { 4102 p->deoptimized_wrt_marked_nmethods(); 4103 } 4104 } 4105 4106 4107 // Get count Java threads that are waiting to enter the specified monitor. 4108 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count, 4109 address monitor, 4110 bool doLock) { 4111 assert(doLock || SafepointSynchronize::is_at_safepoint(), 4112 "must grab Threads_lock or be at safepoint"); 4113 GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count); 4114 4115 int i = 0; 4116 { 4117 MutexLockerEx ml(doLock ? Threads_lock : NULL); 4118 ALL_JAVA_THREADS(p) { 4119 if (p->is_Compiler_thread()) continue; 4120 4121 address pending = (address)p->current_pending_monitor(); 4122 if (pending == monitor) { // found a match 4123 if (i < count) result->append(p); // save the first count matches 4124 i++; 4125 } 4126 } 4127 } 4128 return result; 4129 } 4130 4131 4132 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, 4133 bool doLock) { 4134 assert(doLock || 4135 Threads_lock->owned_by_self() || 4136 SafepointSynchronize::is_at_safepoint(), 4137 "must grab Threads_lock or be at safepoint"); 4138 4139 // NULL owner means not locked so we can skip the search 4140 if (owner == NULL) return NULL; 4141 4142 { 4143 MutexLockerEx ml(doLock ? Threads_lock : NULL); 4144 ALL_JAVA_THREADS(p) { 4145 // first, see if owner is the address of a Java thread 4146 if (owner == (address)p) return p; 4147 } 4148 } 4149 // Cannot assert on lack of success here since this function may be 4150 // used by code that is trying to report useful problem information 4151 // like deadlock detection. 4152 if (UseHeavyMonitors) return NULL; 4153 4154 // If we didn't find a matching Java thread and we didn't force use of 4155 // heavyweight monitors, then the owner is the stack address of the 4156 // Lock Word in the owning Java thread's stack. 4157 // 4158 JavaThread* the_owner = NULL; 4159 { 4160 MutexLockerEx ml(doLock ? Threads_lock : NULL); 4161 ALL_JAVA_THREADS(q) { 4162 if (q->is_lock_owned(owner)) { 4163 the_owner = q; 4164 break; 4165 } 4166 } 4167 } 4168 // cannot assert on lack of success here; see above comment 4169 return the_owner; 4170 } 4171 4172 // Threads::print_on() is called at safepoint by VM_PrintThreads operation. 4173 void Threads::print_on(outputStream* st, bool print_stacks, 4174 bool internal_format, bool print_concurrent_locks) { 4175 char buf[32]; 4176 st->print_cr("%s", os::local_time_string(buf, sizeof(buf))); 4177 4178 st->print_cr("Full thread dump %s (%s %s):", 4179 Abstract_VM_Version::vm_name(), 4180 Abstract_VM_Version::vm_release(), 4181 Abstract_VM_Version::vm_info_string()); 4182 st->cr(); 4183 4184 #if INCLUDE_ALL_GCS 4185 // Dump concurrent locks 4186 ConcurrentLocksDump concurrent_locks; 4187 if (print_concurrent_locks) { 4188 concurrent_locks.dump_at_safepoint(); 4189 } 4190 #endif // INCLUDE_ALL_GCS 4191 4192 ALL_JAVA_THREADS(p) { 4193 ResourceMark rm; 4194 p->print_on(st); 4195 if (print_stacks) { 4196 if (internal_format) { 4197 p->trace_stack(); 4198 } else { 4199 p->print_stack_on(st); 4200 } 4201 } 4202 st->cr(); 4203 #if INCLUDE_ALL_GCS 4204 if (print_concurrent_locks) { 4205 concurrent_locks.print_locks_on(p, st); 4206 } 4207 #endif // INCLUDE_ALL_GCS 4208 } 4209 4210 VMThread::vm_thread()->print_on(st); 4211 st->cr(); 4212 Universe::heap()->print_gc_threads_on(st); 4213 WatcherThread* wt = WatcherThread::watcher_thread(); 4214 if (wt != NULL) { 4215 wt->print_on(st); 4216 st->cr(); 4217 } 4218 CompileBroker::print_compiler_threads_on(st); 4219 st->flush(); 4220 } 4221 4222 // Threads::print_on_error() is called by fatal error handler. It's possible 4223 // that VM is not at safepoint and/or current thread is inside signal handler. 4224 // Don't print stack trace, as the stack may not be walkable. Don't allocate 4225 // memory (even in resource area), it might deadlock the error handler. 4226 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, 4227 int buflen) { 4228 bool found_current = false; 4229 st->print_cr("Java Threads: ( => current thread )"); 4230 ALL_JAVA_THREADS(thread) { 4231 bool is_current = (current == thread); 4232 found_current = found_current || is_current; 4233 4234 st->print("%s", is_current ? "=>" : " "); 4235 4236 st->print(PTR_FORMAT, thread); 4237 st->print(" "); 4238 thread->print_on_error(st, buf, buflen); 4239 st->cr(); 4240 } 4241 st->cr(); 4242 4243 st->print_cr("Other Threads:"); 4244 if (VMThread::vm_thread()) { 4245 bool is_current = (current == VMThread::vm_thread()); 4246 found_current = found_current || is_current; 4247 st->print("%s", current == VMThread::vm_thread() ? "=>" : " "); 4248 4249 st->print(PTR_FORMAT, VMThread::vm_thread()); 4250 st->print(" "); 4251 VMThread::vm_thread()->print_on_error(st, buf, buflen); 4252 st->cr(); 4253 } 4254 WatcherThread* wt = WatcherThread::watcher_thread(); 4255 if (wt != NULL) { 4256 bool is_current = (current == wt); 4257 found_current = found_current || is_current; 4258 st->print("%s", is_current ? "=>" : " "); 4259 4260 st->print(PTR_FORMAT, wt); 4261 st->print(" "); 4262 wt->print_on_error(st, buf, buflen); 4263 st->cr(); 4264 } 4265 if (!found_current) { 4266 st->cr(); 4267 st->print("=>" PTR_FORMAT " (exited) ", current); 4268 current->print_on_error(st, buf, buflen); 4269 st->cr(); 4270 } 4271 } 4272 4273 // Internal SpinLock and Mutex 4274 // Based on ParkEvent 4275 4276 // Ad-hoc mutual exclusion primitives: SpinLock and Mux 4277 // 4278 // We employ SpinLocks _only for low-contention, fixed-length 4279 // short-duration critical sections where we're concerned 4280 // about native mutex_t or HotSpot Mutex:: latency. 4281 // The mux construct provides a spin-then-block mutual exclusion 4282 // mechanism. 4283 // 4284 // Testing has shown that contention on the ListLock guarding gFreeList 4285 // is common. If we implement ListLock as a simple SpinLock it's common 4286 // for the JVM to devolve to yielding with little progress. This is true 4287 // despite the fact that the critical sections protected by ListLock are 4288 // extremely short. 4289 // 4290 // TODO-FIXME: ListLock should be of type SpinLock. 4291 // We should make this a 1st-class type, integrated into the lock 4292 // hierarchy as leaf-locks. Critically, the SpinLock structure 4293 // should have sufficient padding to avoid false-sharing and excessive 4294 // cache-coherency traffic. 4295 4296 4297 typedef volatile int SpinLockT; 4298 4299 void Thread::SpinAcquire(volatile int * adr, const char * LockName) { 4300 if (Atomic::cmpxchg (1, adr, 0) == 0) { 4301 return; // normal fast-path return 4302 } 4303 4304 // Slow-path : We've encountered contention -- Spin/Yield/Block strategy. 4305 TEVENT(SpinAcquire - ctx); 4306 int ctr = 0; 4307 int Yields = 0; 4308 for (;;) { 4309 while (*adr != 0) { 4310 ++ctr; 4311 if ((ctr & 0xFFF) == 0 || !os::is_MP()) { 4312 if (Yields > 5) { 4313 os::naked_short_sleep(1); 4314 } else { 4315 os::naked_yield(); 4316 ++Yields; 4317 } 4318 } else { 4319 SpinPause(); 4320 } 4321 } 4322 if (Atomic::cmpxchg(1, adr, 0) == 0) return; 4323 } 4324 } 4325 4326 void Thread::SpinRelease(volatile int * adr) { 4327 assert(*adr != 0, "invariant"); 4328 OrderAccess::fence(); // guarantee at least release consistency. 4329 // Roach-motel semantics. 4330 // It's safe if subsequent LDs and STs float "up" into the critical section, 4331 // but prior LDs and STs within the critical section can't be allowed 4332 // to reorder or float past the ST that releases the lock. 4333 // Loads and stores in the critical section - which appear in program 4334 // order before the store that releases the lock - must also appear 4335 // before the store that releases the lock in memory visibility order. 4336 // Conceptually we need a #loadstore|#storestore "release" MEMBAR before 4337 // the ST of 0 into the lock-word which releases the lock, so fence 4338 // more than covers this on all platforms. 4339 *adr = 0; 4340 } 4341 4342 // muxAcquire and muxRelease: 4343 // 4344 // * muxAcquire and muxRelease support a single-word lock-word construct. 4345 // The LSB of the word is set IFF the lock is held. 4346 // The remainder of the word points to the head of a singly-linked list 4347 // of threads blocked on the lock. 4348 // 4349 // * The current implementation of muxAcquire-muxRelease uses its own 4350 // dedicated Thread._MuxEvent instance. If we're interested in 4351 // minimizing the peak number of extant ParkEvent instances then 4352 // we could eliminate _MuxEvent and "borrow" _ParkEvent as long 4353 // as certain invariants were satisfied. Specifically, care would need 4354 // to be taken with regards to consuming unpark() "permits". 4355 // A safe rule of thumb is that a thread would never call muxAcquire() 4356 // if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently 4357 // park(). Otherwise the _ParkEvent park() operation in muxAcquire() could 4358 // consume an unpark() permit intended for monitorenter, for instance. 4359 // One way around this would be to widen the restricted-range semaphore 4360 // implemented in park(). Another alternative would be to provide 4361 // multiple instances of the PlatformEvent() for each thread. One 4362 // instance would be dedicated to muxAcquire-muxRelease, for instance. 4363 // 4364 // * Usage: 4365 // -- Only as leaf locks 4366 // -- for short-term locking only as muxAcquire does not perform 4367 // thread state transitions. 4368 // 4369 // Alternatives: 4370 // * We could implement muxAcquire and muxRelease with MCS or CLH locks 4371 // but with parking or spin-then-park instead of pure spinning. 4372 // * Use Taura-Oyama-Yonenzawa locks. 4373 // * It's possible to construct a 1-0 lock if we encode the lockword as 4374 // (List,LockByte). Acquire will CAS the full lockword while Release 4375 // will STB 0 into the LockByte. The 1-0 scheme admits stranding, so 4376 // acquiring threads use timers (ParkTimed) to detect and recover from 4377 // the stranding window. Thread/Node structures must be aligned on 256-byte 4378 // boundaries by using placement-new. 4379 // * Augment MCS with advisory back-link fields maintained with CAS(). 4380 // Pictorially: LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner. 4381 // The validity of the backlinks must be ratified before we trust the value. 4382 // If the backlinks are invalid the exiting thread must back-track through the 4383 // the forward links, which are always trustworthy. 4384 // * Add a successor indication. The LockWord is currently encoded as 4385 // (List, LOCKBIT:1). We could also add a SUCCBIT or an explicit _succ variable 4386 // to provide the usual futile-wakeup optimization. 4387 // See RTStt for details. 4388 // * Consider schedctl.sc_nopreempt to cover the critical section. 4389 // 4390 4391 4392 typedef volatile intptr_t MutexT; // Mux Lock-word 4393 enum MuxBits { LOCKBIT = 1 }; 4394 4395 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) { 4396 intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0); 4397 if (w == 0) return; 4398 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4399 return; 4400 } 4401 4402 TEVENT(muxAcquire - Contention); 4403 ParkEvent * const Self = Thread::current()->_MuxEvent; 4404 assert((intptr_t(Self) & LOCKBIT) == 0, "invariant"); 4405 for (;;) { 4406 int its = (os::is_MP() ? 100 : 0) + 1; 4407 4408 // Optional spin phase: spin-then-park strategy 4409 while (--its >= 0) { 4410 w = *Lock; 4411 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4412 return; 4413 } 4414 } 4415 4416 Self->reset(); 4417 Self->OnList = intptr_t(Lock); 4418 // The following fence() isn't _strictly necessary as the subsequent 4419 // CAS() both serializes execution and ratifies the fetched *Lock value. 4420 OrderAccess::fence(); 4421 for (;;) { 4422 w = *Lock; 4423 if ((w & LOCKBIT) == 0) { 4424 if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4425 Self->OnList = 0; // hygiene - allows stronger asserts 4426 return; 4427 } 4428 continue; // Interference -- *Lock changed -- Just retry 4429 } 4430 assert(w & LOCKBIT, "invariant"); 4431 Self->ListNext = (ParkEvent *) (w & ~LOCKBIT); 4432 if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break; 4433 } 4434 4435 while (Self->OnList != 0) { 4436 Self->park(); 4437 } 4438 } 4439 } 4440 4441 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) { 4442 intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0); 4443 if (w == 0) return; 4444 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4445 return; 4446 } 4447 4448 TEVENT(muxAcquire - Contention); 4449 ParkEvent * ReleaseAfter = NULL; 4450 if (ev == NULL) { 4451 ev = ReleaseAfter = ParkEvent::Allocate(NULL); 4452 } 4453 assert((intptr_t(ev) & LOCKBIT) == 0, "invariant"); 4454 for (;;) { 4455 guarantee(ev->OnList == 0, "invariant"); 4456 int its = (os::is_MP() ? 100 : 0) + 1; 4457 4458 // Optional spin phase: spin-then-park strategy 4459 while (--its >= 0) { 4460 w = *Lock; 4461 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4462 if (ReleaseAfter != NULL) { 4463 ParkEvent::Release(ReleaseAfter); 4464 } 4465 return; 4466 } 4467 } 4468 4469 ev->reset(); 4470 ev->OnList = intptr_t(Lock); 4471 // The following fence() isn't _strictly necessary as the subsequent 4472 // CAS() both serializes execution and ratifies the fetched *Lock value. 4473 OrderAccess::fence(); 4474 for (;;) { 4475 w = *Lock; 4476 if ((w & LOCKBIT) == 0) { 4477 if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4478 ev->OnList = 0; 4479 // We call ::Release while holding the outer lock, thus 4480 // artificially lengthening the critical section. 4481 // Consider deferring the ::Release() until the subsequent unlock(), 4482 // after we've dropped the outer lock. 4483 if (ReleaseAfter != NULL) { 4484 ParkEvent::Release(ReleaseAfter); 4485 } 4486 return; 4487 } 4488 continue; // Interference -- *Lock changed -- Just retry 4489 } 4490 assert(w & LOCKBIT, "invariant"); 4491 ev->ListNext = (ParkEvent *) (w & ~LOCKBIT); 4492 if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break; 4493 } 4494 4495 while (ev->OnList != 0) { 4496 ev->park(); 4497 } 4498 } 4499 } 4500 4501 // Release() must extract a successor from the list and then wake that thread. 4502 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme 4503 // similar to that used by ParkEvent::Allocate() and ::Release(). DMR-based 4504 // Release() would : 4505 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list. 4506 // (B) Extract a successor from the private list "in-hand" 4507 // (C) attempt to CAS() the residual back into *Lock over null. 4508 // If there were any newly arrived threads and the CAS() would fail. 4509 // In that case Release() would detach the RATs, re-merge the list in-hand 4510 // with the RATs and repeat as needed. Alternately, Release() might 4511 // detach and extract a successor, but then pass the residual list to the wakee. 4512 // The wakee would be responsible for reattaching and remerging before it 4513 // competed for the lock. 4514 // 4515 // Both "pop" and DMR are immune from ABA corruption -- there can be 4516 // multiple concurrent pushers, but only one popper or detacher. 4517 // This implementation pops from the head of the list. This is unfair, 4518 // but tends to provide excellent throughput as hot threads remain hot. 4519 // (We wake recently run threads first). 4520 // 4521 // All paths through muxRelease() will execute a CAS. 4522 // Release consistency -- We depend on the CAS in muxRelease() to provide full 4523 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations 4524 // executed within the critical section are complete and globally visible before the 4525 // store (CAS) to the lock-word that releases the lock becomes globally visible. 4526 void Thread::muxRelease(volatile intptr_t * Lock) { 4527 for (;;) { 4528 const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT); 4529 assert(w & LOCKBIT, "invariant"); 4530 if (w == LOCKBIT) return; 4531 ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT); 4532 assert(List != NULL, "invariant"); 4533 assert(List->OnList == intptr_t(Lock), "invariant"); 4534 ParkEvent * const nxt = List->ListNext; 4535 guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant"); 4536 4537 // The following CAS() releases the lock and pops the head element. 4538 // The CAS() also ratifies the previously fetched lock-word value. 4539 if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) { 4540 continue; 4541 } 4542 List->OnList = 0; 4543 OrderAccess::fence(); 4544 List->unpark(); 4545 return; 4546 } 4547 } 4548 4549 4550 void Threads::verify() { 4551 ALL_JAVA_THREADS(p) { 4552 p->verify(); 4553 } 4554 VMThread* thread = VMThread::vm_thread(); 4555 if (thread != NULL) thread->verify(); 4556 } --- EOF ---