1 /* 2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/metadataOnStackMark.hpp" 27 #include "classfile/stringTable.hpp" 28 #include "classfile/symbolTable.hpp" 29 #include "code/codeCache.hpp" 30 #include "code/icBuffer.hpp" 31 #include "gc/g1/bufferingOopClosure.hpp" 32 #include "gc/g1/concurrentG1Refine.hpp" 33 #include "gc/g1/concurrentG1RefineThread.hpp" 34 #include "gc/g1/concurrentMarkThread.inline.hpp" 35 #include "gc/g1/g1Allocator.inline.hpp" 36 #include "gc/g1/g1CollectedHeap.inline.hpp" 37 #include "gc/g1/g1CollectorPolicy.hpp" 38 #include "gc/g1/g1CollectorState.hpp" 39 #include "gc/g1/g1EvacStats.inline.hpp" 40 #include "gc/g1/g1GCPhaseTimes.hpp" 41 #include "gc/g1/g1HeapVerifier.hpp" 42 #include "gc/g1/g1MarkSweep.hpp" 43 #include "gc/g1/g1OopClosures.inline.hpp" 44 #include "gc/g1/g1ParScanThreadState.inline.hpp" 45 #include "gc/g1/g1RegionToSpaceMapper.hpp" 46 #include "gc/g1/g1RemSet.inline.hpp" 47 #include "gc/g1/g1RootClosures.hpp" 48 #include "gc/g1/g1RootProcessor.hpp" 49 #include "gc/g1/g1StringDedup.hpp" 50 #include "gc/g1/g1YCTypes.hpp" 51 #include "gc/g1/heapRegion.inline.hpp" 52 #include "gc/g1/heapRegionRemSet.hpp" 53 #include "gc/g1/heapRegionSet.inline.hpp" 54 #include "gc/g1/suspendibleThreadSet.hpp" 55 #include "gc/g1/vm_operations_g1.hpp" 56 #include "gc/shared/gcHeapSummary.hpp" 57 #include "gc/shared/gcId.hpp" 58 #include "gc/shared/gcLocker.inline.hpp" 59 #include "gc/shared/gcTimer.hpp" 60 #include "gc/shared/gcTrace.hpp" 61 #include "gc/shared/gcTraceTime.inline.hpp" 62 #include "gc/shared/generationSpec.hpp" 63 #include "gc/shared/isGCActiveMark.hpp" 64 #include "gc/shared/referenceProcessor.hpp" 65 #include "gc/shared/taskqueue.inline.hpp" 66 #include "logging/log.hpp" 67 #include "memory/allocation.hpp" 68 #include "memory/iterator.hpp" 69 #include "oops/oop.inline.hpp" 70 #include "runtime/atomic.inline.hpp" 71 #include "runtime/init.hpp" 72 #include "runtime/orderAccess.inline.hpp" 73 #include "runtime/vmThread.hpp" 74 #include "utilities/globalDefinitions.hpp" 75 #include "utilities/stack.inline.hpp" 76 77 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0; 78 79 // INVARIANTS/NOTES 80 // 81 // All allocation activity covered by the G1CollectedHeap interface is 82 // serialized by acquiring the HeapLock. This happens in mem_allocate 83 // and allocate_new_tlab, which are the "entry" points to the 84 // allocation code from the rest of the JVM. (Note that this does not 85 // apply to TLAB allocation, which is not part of this interface: it 86 // is done by clients of this interface.) 87 88 // Local to this file. 89 90 class RefineCardTableEntryClosure: public CardTableEntryClosure { 91 bool _concurrent; 92 public: 93 RefineCardTableEntryClosure() : _concurrent(true) { } 94 95 bool do_card_ptr(jbyte* card_ptr, uint worker_i) { 96 bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false); 97 // This path is executed by the concurrent refine or mutator threads, 98 // concurrently, and so we do not care if card_ptr contains references 99 // that point into the collection set. 100 assert(!oops_into_cset, "should be"); 101 102 if (_concurrent && SuspendibleThreadSet::should_yield()) { 103 // Caller will actually yield. 104 return false; 105 } 106 // Otherwise, we finished successfully; return true. 107 return true; 108 } 109 110 void set_concurrent(bool b) { _concurrent = b; } 111 }; 112 113 114 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure { 115 private: 116 size_t _num_dirtied; 117 G1CollectedHeap* _g1h; 118 G1SATBCardTableLoggingModRefBS* _g1_bs; 119 120 HeapRegion* region_for_card(jbyte* card_ptr) const { 121 return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr)); 122 } 123 124 bool will_become_free(HeapRegion* hr) const { 125 // A region will be freed by free_collection_set if the region is in the 126 // collection set and has not had an evacuation failure. 127 return _g1h->is_in_cset(hr) && !hr->evacuation_failed(); 128 } 129 130 public: 131 RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(), 132 _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { } 133 134 bool do_card_ptr(jbyte* card_ptr, uint worker_i) { 135 HeapRegion* hr = region_for_card(card_ptr); 136 137 // Should only dirty cards in regions that won't be freed. 138 if (!will_become_free(hr)) { 139 *card_ptr = CardTableModRefBS::dirty_card_val(); 140 _num_dirtied++; 141 } 142 143 return true; 144 } 145 146 size_t num_dirtied() const { return _num_dirtied; } 147 }; 148 149 150 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) { 151 HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions); 152 } 153 154 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) { 155 // The from card cache is not the memory that is actually committed. So we cannot 156 // take advantage of the zero_filled parameter. 157 reset_from_card_cache(start_idx, num_regions); 158 } 159 160 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr) 161 { 162 // Claim the right to put the region on the dirty cards region list 163 // by installing a self pointer. 164 HeapRegion* next = hr->get_next_dirty_cards_region(); 165 if (next == NULL) { 166 HeapRegion* res = (HeapRegion*) 167 Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(), 168 NULL); 169 if (res == NULL) { 170 HeapRegion* head; 171 do { 172 // Put the region to the dirty cards region list. 173 head = _dirty_cards_region_list; 174 next = (HeapRegion*) 175 Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head); 176 if (next == head) { 177 assert(hr->get_next_dirty_cards_region() == hr, 178 "hr->get_next_dirty_cards_region() != hr"); 179 if (next == NULL) { 180 // The last region in the list points to itself. 181 hr->set_next_dirty_cards_region(hr); 182 } else { 183 hr->set_next_dirty_cards_region(next); 184 } 185 } 186 } while (next != head); 187 } 188 } 189 } 190 191 HeapRegion* G1CollectedHeap::pop_dirty_cards_region() 192 { 193 HeapRegion* head; 194 HeapRegion* hr; 195 do { 196 head = _dirty_cards_region_list; 197 if (head == NULL) { 198 return NULL; 199 } 200 HeapRegion* new_head = head->get_next_dirty_cards_region(); 201 if (head == new_head) { 202 // The last region. 203 new_head = NULL; 204 } 205 hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list, 206 head); 207 } while (hr != head); 208 assert(hr != NULL, "invariant"); 209 hr->set_next_dirty_cards_region(NULL); 210 return hr; 211 } 212 213 // Returns true if the reference points to an object that 214 // can move in an incremental collection. 215 bool G1CollectedHeap::is_scavengable(const void* p) { 216 HeapRegion* hr = heap_region_containing(p); 217 return !hr->is_pinned(); 218 } 219 220 // Private methods. 221 222 HeapRegion* 223 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) { 224 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 225 while (!_secondary_free_list.is_empty() || free_regions_coming()) { 226 if (!_secondary_free_list.is_empty()) { 227 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : " 228 "secondary_free_list has %u entries", 229 _secondary_free_list.length()); 230 // It looks as if there are free regions available on the 231 // secondary_free_list. Let's move them to the free_list and try 232 // again to allocate from it. 233 append_secondary_free_list(); 234 235 assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not " 236 "empty we should have moved at least one entry to the free_list"); 237 HeapRegion* res = _hrm.allocate_free_region(is_old); 238 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : " 239 "allocated " HR_FORMAT " from secondary_free_list", 240 HR_FORMAT_PARAMS(res)); 241 return res; 242 } 243 244 // Wait here until we get notified either when (a) there are no 245 // more free regions coming or (b) some regions have been moved on 246 // the secondary_free_list. 247 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag); 248 } 249 250 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : " 251 "could not allocate from secondary_free_list"); 252 return NULL; 253 } 254 255 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) { 256 assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords, 257 "the only time we use this to allocate a humongous region is " 258 "when we are allocating a single humongous region"); 259 260 HeapRegion* res; 261 if (G1StressConcRegionFreeing) { 262 if (!_secondary_free_list.is_empty()) { 263 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : " 264 "forced to look at the secondary_free_list"); 265 res = new_region_try_secondary_free_list(is_old); 266 if (res != NULL) { 267 return res; 268 } 269 } 270 } 271 272 res = _hrm.allocate_free_region(is_old); 273 274 if (res == NULL) { 275 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : " 276 "res == NULL, trying the secondary_free_list"); 277 res = new_region_try_secondary_free_list(is_old); 278 } 279 if (res == NULL && do_expand && _expand_heap_after_alloc_failure) { 280 // Currently, only attempts to allocate GC alloc regions set 281 // do_expand to true. So, we should only reach here during a 282 // safepoint. If this assumption changes we might have to 283 // reconsider the use of _expand_heap_after_alloc_failure. 284 assert(SafepointSynchronize::is_at_safepoint(), "invariant"); 285 286 log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B", 287 word_size * HeapWordSize); 288 289 if (expand(word_size * HeapWordSize)) { 290 // Given that expand() succeeded in expanding the heap, and we 291 // always expand the heap by an amount aligned to the heap 292 // region size, the free list should in theory not be empty. 293 // In either case allocate_free_region() will check for NULL. 294 res = _hrm.allocate_free_region(is_old); 295 } else { 296 _expand_heap_after_alloc_failure = false; 297 } 298 } 299 return res; 300 } 301 302 HeapWord* 303 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first, 304 uint num_regions, 305 size_t word_size, 306 AllocationContext_t context) { 307 assert(first != G1_NO_HRM_INDEX, "pre-condition"); 308 assert(is_humongous(word_size), "word_size should be humongous"); 309 assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition"); 310 311 // Index of last region in the series. 312 uint last = first + num_regions - 1; 313 314 // We need to initialize the region(s) we just discovered. This is 315 // a bit tricky given that it can happen concurrently with 316 // refinement threads refining cards on these regions and 317 // potentially wanting to refine the BOT as they are scanning 318 // those cards (this can happen shortly after a cleanup; see CR 319 // 6991377). So we have to set up the region(s) carefully and in 320 // a specific order. 321 322 // The word size sum of all the regions we will allocate. 323 size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords; 324 assert(word_size <= word_size_sum, "sanity"); 325 326 // This will be the "starts humongous" region. 327 HeapRegion* first_hr = region_at(first); 328 // The header of the new object will be placed at the bottom of 329 // the first region. 330 HeapWord* new_obj = first_hr->bottom(); 331 // This will be the new top of the new object. 332 HeapWord* obj_top = new_obj + word_size; 333 334 // First, we need to zero the header of the space that we will be 335 // allocating. When we update top further down, some refinement 336 // threads might try to scan the region. By zeroing the header we 337 // ensure that any thread that will try to scan the region will 338 // come across the zero klass word and bail out. 339 // 340 // NOTE: It would not have been correct to have used 341 // CollectedHeap::fill_with_object() and make the space look like 342 // an int array. The thread that is doing the allocation will 343 // later update the object header to a potentially different array 344 // type and, for a very short period of time, the klass and length 345 // fields will be inconsistent. This could cause a refinement 346 // thread to calculate the object size incorrectly. 347 Copy::fill_to_words(new_obj, oopDesc::header_size(), 0); 348 349 // How many words we use for filler objects. 350 size_t word_fill_size = word_size_sum - word_size; 351 352 // How many words memory we "waste" which cannot hold a filler object. 353 size_t words_not_fillable = 0; 354 355 if (word_fill_size >= min_fill_size()) { 356 fill_with_objects(obj_top, word_fill_size); 357 } else if (word_fill_size > 0) { 358 // We have space to fill, but we cannot fit an object there. 359 words_not_fillable = word_fill_size; 360 word_fill_size = 0; 361 } 362 363 // We will set up the first region as "starts humongous". This 364 // will also update the BOT covering all the regions to reflect 365 // that there is a single object that starts at the bottom of the 366 // first region. 367 first_hr->set_starts_humongous(obj_top, word_fill_size); 368 first_hr->set_allocation_context(context); 369 // Then, if there are any, we will set up the "continues 370 // humongous" regions. 371 HeapRegion* hr = NULL; 372 for (uint i = first + 1; i <= last; ++i) { 373 hr = region_at(i); 374 hr->set_continues_humongous(first_hr); 375 hr->set_allocation_context(context); 376 } 377 378 // Up to this point no concurrent thread would have been able to 379 // do any scanning on any region in this series. All the top 380 // fields still point to bottom, so the intersection between 381 // [bottom,top] and [card_start,card_end] will be empty. Before we 382 // update the top fields, we'll do a storestore to make sure that 383 // no thread sees the update to top before the zeroing of the 384 // object header and the BOT initialization. 385 OrderAccess::storestore(); 386 387 // Now, we will update the top fields of the "continues humongous" 388 // regions except the last one. 389 for (uint i = first; i < last; ++i) { 390 hr = region_at(i); 391 hr->set_top(hr->end()); 392 } 393 394 hr = region_at(last); 395 // If we cannot fit a filler object, we must set top to the end 396 // of the humongous object, otherwise we cannot iterate the heap 397 // and the BOT will not be complete. 398 hr->set_top(hr->end() - words_not_fillable); 399 400 assert(hr->bottom() < obj_top && obj_top <= hr->end(), 401 "obj_top should be in last region"); 402 403 _verifier->check_bitmaps("Humongous Region Allocation", first_hr); 404 405 assert(words_not_fillable == 0 || 406 first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(), 407 "Miscalculation in humongous allocation"); 408 409 increase_used((word_size_sum - words_not_fillable) * HeapWordSize); 410 411 for (uint i = first; i <= last; ++i) { 412 hr = region_at(i); 413 _humongous_set.add(hr); 414 _hr_printer.alloc(hr); 415 } 416 417 return new_obj; 418 } 419 420 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) { 421 assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size); 422 return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords; 423 } 424 425 // If could fit into free regions w/o expansion, try. 426 // Otherwise, if can expand, do so. 427 // Otherwise, if using ex regions might help, try with ex given back. 428 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) { 429 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 430 431 _verifier->verify_region_sets_optional(); 432 433 uint first = G1_NO_HRM_INDEX; 434 uint obj_regions = (uint) humongous_obj_size_in_regions(word_size); 435 436 if (obj_regions == 1) { 437 // Only one region to allocate, try to use a fast path by directly allocating 438 // from the free lists. Do not try to expand here, we will potentially do that 439 // later. 440 HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */); 441 if (hr != NULL) { 442 first = hr->hrm_index(); 443 } 444 } else { 445 // We can't allocate humongous regions spanning more than one region while 446 // cleanupComplete() is running, since some of the regions we find to be 447 // empty might not yet be added to the free list. It is not straightforward 448 // to know in which list they are on so that we can remove them. We only 449 // need to do this if we need to allocate more than one region to satisfy the 450 // current humongous allocation request. If we are only allocating one region 451 // we use the one-region region allocation code (see above), that already 452 // potentially waits for regions from the secondary free list. 453 wait_while_free_regions_coming(); 454 append_secondary_free_list_if_not_empty_with_lock(); 455 456 // Policy: Try only empty regions (i.e. already committed first). Maybe we 457 // are lucky enough to find some. 458 first = _hrm.find_contiguous_only_empty(obj_regions); 459 if (first != G1_NO_HRM_INDEX) { 460 _hrm.allocate_free_regions_starting_at(first, obj_regions); 461 } 462 } 463 464 if (first == G1_NO_HRM_INDEX) { 465 // Policy: We could not find enough regions for the humongous object in the 466 // free list. Look through the heap to find a mix of free and uncommitted regions. 467 // If so, try expansion. 468 first = _hrm.find_contiguous_empty_or_unavailable(obj_regions); 469 if (first != G1_NO_HRM_INDEX) { 470 // We found something. Make sure these regions are committed, i.e. expand 471 // the heap. Alternatively we could do a defragmentation GC. 472 log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B", 473 word_size * HeapWordSize); 474 475 476 _hrm.expand_at(first, obj_regions); 477 g1_policy()->record_new_heap_size(num_regions()); 478 479 #ifdef ASSERT 480 for (uint i = first; i < first + obj_regions; ++i) { 481 HeapRegion* hr = region_at(i); 482 assert(hr->is_free(), "sanity"); 483 assert(hr->is_empty(), "sanity"); 484 assert(is_on_master_free_list(hr), "sanity"); 485 } 486 #endif 487 _hrm.allocate_free_regions_starting_at(first, obj_regions); 488 } else { 489 // Policy: Potentially trigger a defragmentation GC. 490 } 491 } 492 493 HeapWord* result = NULL; 494 if (first != G1_NO_HRM_INDEX) { 495 result = humongous_obj_allocate_initialize_regions(first, obj_regions, 496 word_size, context); 497 assert(result != NULL, "it should always return a valid result"); 498 499 // A successful humongous object allocation changes the used space 500 // information of the old generation so we need to recalculate the 501 // sizes and update the jstat counters here. 502 g1mm()->update_sizes(); 503 } 504 505 _verifier->verify_region_sets_optional(); 506 507 return result; 508 } 509 510 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) { 511 assert_heap_not_locked_and_not_at_safepoint(); 512 assert(!is_humongous(word_size), "we do not allow humongous TLABs"); 513 514 uint dummy_gc_count_before; 515 uint dummy_gclocker_retry_count = 0; 516 return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count); 517 } 518 519 HeapWord* 520 G1CollectedHeap::mem_allocate(size_t word_size, 521 bool* gc_overhead_limit_was_exceeded) { 522 assert_heap_not_locked_and_not_at_safepoint(); 523 524 // Loop until the allocation is satisfied, or unsatisfied after GC. 525 for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) { 526 uint gc_count_before; 527 528 HeapWord* result = NULL; 529 if (!is_humongous(word_size)) { 530 result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count); 531 } else { 532 result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count); 533 } 534 if (result != NULL) { 535 return result; 536 } 537 538 // Create the garbage collection operation... 539 VM_G1CollectForAllocation op(gc_count_before, word_size); 540 op.set_allocation_context(AllocationContext::current()); 541 542 // ...and get the VM thread to execute it. 543 VMThread::execute(&op); 544 545 if (op.prologue_succeeded() && op.pause_succeeded()) { 546 // If the operation was successful we'll return the result even 547 // if it is NULL. If the allocation attempt failed immediately 548 // after a Full GC, it's unlikely we'll be able to allocate now. 549 HeapWord* result = op.result(); 550 if (result != NULL && !is_humongous(word_size)) { 551 // Allocations that take place on VM operations do not do any 552 // card dirtying and we have to do it here. We only have to do 553 // this for non-humongous allocations, though. 554 dirty_young_block(result, word_size); 555 } 556 return result; 557 } else { 558 if (gclocker_retry_count > GCLockerRetryAllocationCount) { 559 return NULL; 560 } 561 assert(op.result() == NULL, 562 "the result should be NULL if the VM op did not succeed"); 563 } 564 565 // Give a warning if we seem to be looping forever. 566 if ((QueuedAllocationWarningCount > 0) && 567 (try_count % QueuedAllocationWarningCount == 0)) { 568 warning("G1CollectedHeap::mem_allocate retries %d times", try_count); 569 } 570 } 571 572 ShouldNotReachHere(); 573 return NULL; 574 } 575 576 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size, 577 AllocationContext_t context, 578 uint* gc_count_before_ret, 579 uint* gclocker_retry_count_ret) { 580 // Make sure you read the note in attempt_allocation_humongous(). 581 582 assert_heap_not_locked_and_not_at_safepoint(); 583 assert(!is_humongous(word_size), "attempt_allocation_slow() should not " 584 "be called for humongous allocation requests"); 585 586 // We should only get here after the first-level allocation attempt 587 // (attempt_allocation()) failed to allocate. 588 589 // We will loop until a) we manage to successfully perform the 590 // allocation or b) we successfully schedule a collection which 591 // fails to perform the allocation. b) is the only case when we'll 592 // return NULL. 593 HeapWord* result = NULL; 594 for (int try_count = 1; /* we'll return */; try_count += 1) { 595 bool should_try_gc; 596 uint gc_count_before; 597 598 { 599 MutexLockerEx x(Heap_lock); 600 result = _allocator->attempt_allocation_locked(word_size, context); 601 if (result != NULL) { 602 return result; 603 } 604 605 if (GCLocker::is_active_and_needs_gc()) { 606 if (g1_policy()->can_expand_young_list()) { 607 // No need for an ergo verbose message here, 608 // can_expand_young_list() does this when it returns true. 609 result = _allocator->attempt_allocation_force(word_size, context); 610 if (result != NULL) { 611 return result; 612 } 613 } 614 should_try_gc = false; 615 } else { 616 // The GCLocker may not be active but the GCLocker initiated 617 // GC may not yet have been performed (GCLocker::needs_gc() 618 // returns true). In this case we do not try this GC and 619 // wait until the GCLocker initiated GC is performed, and 620 // then retry the allocation. 621 if (GCLocker::needs_gc()) { 622 should_try_gc = false; 623 } else { 624 // Read the GC count while still holding the Heap_lock. 625 gc_count_before = total_collections(); 626 should_try_gc = true; 627 } 628 } 629 } 630 631 if (should_try_gc) { 632 bool succeeded; 633 result = do_collection_pause(word_size, gc_count_before, &succeeded, 634 GCCause::_g1_inc_collection_pause); 635 if (result != NULL) { 636 assert(succeeded, "only way to get back a non-NULL result"); 637 return result; 638 } 639 640 if (succeeded) { 641 // If we get here we successfully scheduled a collection which 642 // failed to allocate. No point in trying to allocate 643 // further. We'll just return NULL. 644 MutexLockerEx x(Heap_lock); 645 *gc_count_before_ret = total_collections(); 646 return NULL; 647 } 648 } else { 649 if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) { 650 MutexLockerEx x(Heap_lock); 651 *gc_count_before_ret = total_collections(); 652 return NULL; 653 } 654 // The GCLocker is either active or the GCLocker initiated 655 // GC has not yet been performed. Stall until it is and 656 // then retry the allocation. 657 GCLocker::stall_until_clear(); 658 (*gclocker_retry_count_ret) += 1; 659 } 660 661 // We can reach here if we were unsuccessful in scheduling a 662 // collection (because another thread beat us to it) or if we were 663 // stalled due to the GC locker. In either can we should retry the 664 // allocation attempt in case another thread successfully 665 // performed a collection and reclaimed enough space. We do the 666 // first attempt (without holding the Heap_lock) here and the 667 // follow-on attempt will be at the start of the next loop 668 // iteration (after taking the Heap_lock). 669 result = _allocator->attempt_allocation(word_size, context); 670 if (result != NULL) { 671 return result; 672 } 673 674 // Give a warning if we seem to be looping forever. 675 if ((QueuedAllocationWarningCount > 0) && 676 (try_count % QueuedAllocationWarningCount == 0)) { 677 warning("G1CollectedHeap::attempt_allocation_slow() " 678 "retries %d times", try_count); 679 } 680 } 681 682 ShouldNotReachHere(); 683 return NULL; 684 } 685 686 void G1CollectedHeap::begin_archive_alloc_range() { 687 assert_at_safepoint(true /* should_be_vm_thread */); 688 if (_archive_allocator == NULL) { 689 _archive_allocator = G1ArchiveAllocator::create_allocator(this); 690 } 691 } 692 693 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) { 694 // Allocations in archive regions cannot be of a size that would be considered 695 // humongous even for a minimum-sized region, because G1 region sizes/boundaries 696 // may be different at archive-restore time. 697 return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words()); 698 } 699 700 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) { 701 assert_at_safepoint(true /* should_be_vm_thread */); 702 assert(_archive_allocator != NULL, "_archive_allocator not initialized"); 703 if (is_archive_alloc_too_large(word_size)) { 704 return NULL; 705 } 706 return _archive_allocator->archive_mem_allocate(word_size); 707 } 708 709 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges, 710 size_t end_alignment_in_bytes) { 711 assert_at_safepoint(true /* should_be_vm_thread */); 712 assert(_archive_allocator != NULL, "_archive_allocator not initialized"); 713 714 // Call complete_archive to do the real work, filling in the MemRegion 715 // array with the archive regions. 716 _archive_allocator->complete_archive(ranges, end_alignment_in_bytes); 717 delete _archive_allocator; 718 _archive_allocator = NULL; 719 } 720 721 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) { 722 assert(ranges != NULL, "MemRegion array NULL"); 723 assert(count != 0, "No MemRegions provided"); 724 MemRegion reserved = _hrm.reserved(); 725 for (size_t i = 0; i < count; i++) { 726 if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) { 727 return false; 728 } 729 } 730 return true; 731 } 732 733 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) { 734 assert(!is_init_completed(), "Expect to be called at JVM init time"); 735 assert(ranges != NULL, "MemRegion array NULL"); 736 assert(count != 0, "No MemRegions provided"); 737 MutexLockerEx x(Heap_lock); 738 739 MemRegion reserved = _hrm.reserved(); 740 HeapWord* prev_last_addr = NULL; 741 HeapRegion* prev_last_region = NULL; 742 743 // Temporarily disable pretouching of heap pages. This interface is used 744 // when mmap'ing archived heap data in, so pre-touching is wasted. 745 FlagSetting fs(AlwaysPreTouch, false); 746 747 // Enable archive object checking in G1MarkSweep. We have to let it know 748 // about each archive range, so that objects in those ranges aren't marked. 749 G1MarkSweep::enable_archive_object_check(); 750 751 // For each specified MemRegion range, allocate the corresponding G1 752 // regions and mark them as archive regions. We expect the ranges in 753 // ascending starting address order, without overlap. 754 for (size_t i = 0; i < count; i++) { 755 MemRegion curr_range = ranges[i]; 756 HeapWord* start_address = curr_range.start(); 757 size_t word_size = curr_range.word_size(); 758 HeapWord* last_address = curr_range.last(); 759 size_t commits = 0; 760 761 guarantee(reserved.contains(start_address) && reserved.contains(last_address), 762 "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", 763 p2i(start_address), p2i(last_address)); 764 guarantee(start_address > prev_last_addr, 765 "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , 766 p2i(start_address), p2i(prev_last_addr)); 767 prev_last_addr = last_address; 768 769 // Check for ranges that start in the same G1 region in which the previous 770 // range ended, and adjust the start address so we don't try to allocate 771 // the same region again. If the current range is entirely within that 772 // region, skip it, just adjusting the recorded top. 773 HeapRegion* start_region = _hrm.addr_to_region(start_address); 774 if ((prev_last_region != NULL) && (start_region == prev_last_region)) { 775 start_address = start_region->end(); 776 if (start_address > last_address) { 777 increase_used(word_size * HeapWordSize); 778 start_region->set_top(last_address + 1); 779 continue; 780 } 781 start_region->set_top(start_address); 782 curr_range = MemRegion(start_address, last_address + 1); 783 start_region = _hrm.addr_to_region(start_address); 784 } 785 786 // Perform the actual region allocation, exiting if it fails. 787 // Then note how much new space we have allocated. 788 if (!_hrm.allocate_containing_regions(curr_range, &commits)) { 789 return false; 790 } 791 increase_used(word_size * HeapWordSize); 792 if (commits != 0) { 793 log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B", 794 HeapRegion::GrainWords * HeapWordSize * commits); 795 796 } 797 798 // Mark each G1 region touched by the range as archive, add it to the old set, 799 // and set the allocation context and top. 800 HeapRegion* curr_region = _hrm.addr_to_region(start_address); 801 HeapRegion* last_region = _hrm.addr_to_region(last_address); 802 prev_last_region = last_region; 803 804 while (curr_region != NULL) { 805 assert(curr_region->is_empty() && !curr_region->is_pinned(), 806 "Region already in use (index %u)", curr_region->hrm_index()); 807 curr_region->set_allocation_context(AllocationContext::system()); 808 curr_region->set_archive(); 809 _hr_printer.alloc(curr_region); 810 _old_set.add(curr_region); 811 if (curr_region != last_region) { 812 curr_region->set_top(curr_region->end()); 813 curr_region = _hrm.next_region_in_heap(curr_region); 814 } else { 815 curr_region->set_top(last_address + 1); 816 curr_region = NULL; 817 } 818 } 819 820 // Notify mark-sweep of the archive range. 821 G1MarkSweep::set_range_archive(curr_range, true); 822 } 823 return true; 824 } 825 826 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) { 827 assert(!is_init_completed(), "Expect to be called at JVM init time"); 828 assert(ranges != NULL, "MemRegion array NULL"); 829 assert(count != 0, "No MemRegions provided"); 830 MemRegion reserved = _hrm.reserved(); 831 HeapWord *prev_last_addr = NULL; 832 HeapRegion* prev_last_region = NULL; 833 834 // For each MemRegion, create filler objects, if needed, in the G1 regions 835 // that contain the address range. The address range actually within the 836 // MemRegion will not be modified. That is assumed to have been initialized 837 // elsewhere, probably via an mmap of archived heap data. 838 MutexLockerEx x(Heap_lock); 839 for (size_t i = 0; i < count; i++) { 840 HeapWord* start_address = ranges[i].start(); 841 HeapWord* last_address = ranges[i].last(); 842 843 assert(reserved.contains(start_address) && reserved.contains(last_address), 844 "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", 845 p2i(start_address), p2i(last_address)); 846 assert(start_address > prev_last_addr, 847 "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , 848 p2i(start_address), p2i(prev_last_addr)); 849 850 HeapRegion* start_region = _hrm.addr_to_region(start_address); 851 HeapRegion* last_region = _hrm.addr_to_region(last_address); 852 HeapWord* bottom_address = start_region->bottom(); 853 854 // Check for a range beginning in the same region in which the 855 // previous one ended. 856 if (start_region == prev_last_region) { 857 bottom_address = prev_last_addr + 1; 858 } 859 860 // Verify that the regions were all marked as archive regions by 861 // alloc_archive_regions. 862 HeapRegion* curr_region = start_region; 863 while (curr_region != NULL) { 864 guarantee(curr_region->is_archive(), 865 "Expected archive region at index %u", curr_region->hrm_index()); 866 if (curr_region != last_region) { 867 curr_region = _hrm.next_region_in_heap(curr_region); 868 } else { 869 curr_region = NULL; 870 } 871 } 872 873 prev_last_addr = last_address; 874 prev_last_region = last_region; 875 876 // Fill the memory below the allocated range with dummy object(s), 877 // if the region bottom does not match the range start, or if the previous 878 // range ended within the same G1 region, and there is a gap. 879 if (start_address != bottom_address) { 880 size_t fill_size = pointer_delta(start_address, bottom_address); 881 G1CollectedHeap::fill_with_objects(bottom_address, fill_size); 882 increase_used(fill_size * HeapWordSize); 883 } 884 } 885 } 886 887 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size, 888 uint* gc_count_before_ret, 889 uint* gclocker_retry_count_ret) { 890 assert_heap_not_locked_and_not_at_safepoint(); 891 assert(!is_humongous(word_size), "attempt_allocation() should not " 892 "be called for humongous allocation requests"); 893 894 AllocationContext_t context = AllocationContext::current(); 895 HeapWord* result = _allocator->attempt_allocation(word_size, context); 896 897 if (result == NULL) { 898 result = attempt_allocation_slow(word_size, 899 context, 900 gc_count_before_ret, 901 gclocker_retry_count_ret); 902 } 903 assert_heap_not_locked(); 904 if (result != NULL) { 905 dirty_young_block(result, word_size); 906 } 907 return result; 908 } 909 910 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) { 911 assert(!is_init_completed(), "Expect to be called at JVM init time"); 912 assert(ranges != NULL, "MemRegion array NULL"); 913 assert(count != 0, "No MemRegions provided"); 914 MemRegion reserved = _hrm.reserved(); 915 HeapWord* prev_last_addr = NULL; 916 HeapRegion* prev_last_region = NULL; 917 size_t size_used = 0; 918 size_t uncommitted_regions = 0; 919 920 // For each Memregion, free the G1 regions that constitute it, and 921 // notify mark-sweep that the range is no longer to be considered 'archive.' 922 MutexLockerEx x(Heap_lock); 923 for (size_t i = 0; i < count; i++) { 924 HeapWord* start_address = ranges[i].start(); 925 HeapWord* last_address = ranges[i].last(); 926 927 assert(reserved.contains(start_address) && reserved.contains(last_address), 928 "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", 929 p2i(start_address), p2i(last_address)); 930 assert(start_address > prev_last_addr, 931 "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , 932 p2i(start_address), p2i(prev_last_addr)); 933 size_used += ranges[i].byte_size(); 934 prev_last_addr = last_address; 935 936 HeapRegion* start_region = _hrm.addr_to_region(start_address); 937 HeapRegion* last_region = _hrm.addr_to_region(last_address); 938 939 // Check for ranges that start in the same G1 region in which the previous 940 // range ended, and adjust the start address so we don't try to free 941 // the same region again. If the current range is entirely within that 942 // region, skip it. 943 if (start_region == prev_last_region) { 944 start_address = start_region->end(); 945 if (start_address > last_address) { 946 continue; 947 } 948 start_region = _hrm.addr_to_region(start_address); 949 } 950 prev_last_region = last_region; 951 952 // After verifying that each region was marked as an archive region by 953 // alloc_archive_regions, set it free and empty and uncommit it. 954 HeapRegion* curr_region = start_region; 955 while (curr_region != NULL) { 956 guarantee(curr_region->is_archive(), 957 "Expected archive region at index %u", curr_region->hrm_index()); 958 uint curr_index = curr_region->hrm_index(); 959 _old_set.remove(curr_region); 960 curr_region->set_free(); 961 curr_region->set_top(curr_region->bottom()); 962 if (curr_region != last_region) { 963 curr_region = _hrm.next_region_in_heap(curr_region); 964 } else { 965 curr_region = NULL; 966 } 967 _hrm.shrink_at(curr_index, 1); 968 uncommitted_regions++; 969 } 970 971 // Notify mark-sweep that this is no longer an archive range. 972 G1MarkSweep::set_range_archive(ranges[i], false); 973 } 974 975 if (uncommitted_regions != 0) { 976 log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B", 977 HeapRegion::GrainWords * HeapWordSize * uncommitted_regions); 978 } 979 decrease_used(size_used); 980 } 981 982 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size, 983 uint* gc_count_before_ret, 984 uint* gclocker_retry_count_ret) { 985 // The structure of this method has a lot of similarities to 986 // attempt_allocation_slow(). The reason these two were not merged 987 // into a single one is that such a method would require several "if 988 // allocation is not humongous do this, otherwise do that" 989 // conditional paths which would obscure its flow. In fact, an early 990 // version of this code did use a unified method which was harder to 991 // follow and, as a result, it had subtle bugs that were hard to 992 // track down. So keeping these two methods separate allows each to 993 // be more readable. It will be good to keep these two in sync as 994 // much as possible. 995 996 assert_heap_not_locked_and_not_at_safepoint(); 997 assert(is_humongous(word_size), "attempt_allocation_humongous() " 998 "should only be called for humongous allocations"); 999 1000 // Humongous objects can exhaust the heap quickly, so we should check if we 1001 // need to start a marking cycle at each humongous object allocation. We do 1002 // the check before we do the actual allocation. The reason for doing it 1003 // before the allocation is that we avoid having to keep track of the newly 1004 // allocated memory while we do a GC. 1005 if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation", 1006 word_size)) { 1007 collect(GCCause::_g1_humongous_allocation); 1008 } 1009 1010 // We will loop until a) we manage to successfully perform the 1011 // allocation or b) we successfully schedule a collection which 1012 // fails to perform the allocation. b) is the only case when we'll 1013 // return NULL. 1014 HeapWord* result = NULL; 1015 for (int try_count = 1; /* we'll return */; try_count += 1) { 1016 bool should_try_gc; 1017 uint gc_count_before; 1018 1019 { 1020 MutexLockerEx x(Heap_lock); 1021 1022 // Given that humongous objects are not allocated in young 1023 // regions, we'll first try to do the allocation without doing a 1024 // collection hoping that there's enough space in the heap. 1025 result = humongous_obj_allocate(word_size, AllocationContext::current()); 1026 if (result != NULL) { 1027 size_t size_in_regions = humongous_obj_size_in_regions(word_size); 1028 g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes); 1029 return result; 1030 } 1031 1032 if (GCLocker::is_active_and_needs_gc()) { 1033 should_try_gc = false; 1034 } else { 1035 // The GCLocker may not be active but the GCLocker initiated 1036 // GC may not yet have been performed (GCLocker::needs_gc() 1037 // returns true). In this case we do not try this GC and 1038 // wait until the GCLocker initiated GC is performed, and 1039 // then retry the allocation. 1040 if (GCLocker::needs_gc()) { 1041 should_try_gc = false; 1042 } else { 1043 // Read the GC count while still holding the Heap_lock. 1044 gc_count_before = total_collections(); 1045 should_try_gc = true; 1046 } 1047 } 1048 } 1049 1050 if (should_try_gc) { 1051 // If we failed to allocate the humongous object, we should try to 1052 // do a collection pause (if we're allowed) in case it reclaims 1053 // enough space for the allocation to succeed after the pause. 1054 1055 bool succeeded; 1056 result = do_collection_pause(word_size, gc_count_before, &succeeded, 1057 GCCause::_g1_humongous_allocation); 1058 if (result != NULL) { 1059 assert(succeeded, "only way to get back a non-NULL result"); 1060 return result; 1061 } 1062 1063 if (succeeded) { 1064 // If we get here we successfully scheduled a collection which 1065 // failed to allocate. No point in trying to allocate 1066 // further. We'll just return NULL. 1067 MutexLockerEx x(Heap_lock); 1068 *gc_count_before_ret = total_collections(); 1069 return NULL; 1070 } 1071 } else { 1072 if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) { 1073 MutexLockerEx x(Heap_lock); 1074 *gc_count_before_ret = total_collections(); 1075 return NULL; 1076 } 1077 // The GCLocker is either active or the GCLocker initiated 1078 // GC has not yet been performed. Stall until it is and 1079 // then retry the allocation. 1080 GCLocker::stall_until_clear(); 1081 (*gclocker_retry_count_ret) += 1; 1082 } 1083 1084 // We can reach here if we were unsuccessful in scheduling a 1085 // collection (because another thread beat us to it) or if we were 1086 // stalled due to the GC locker. In either can we should retry the 1087 // allocation attempt in case another thread successfully 1088 // performed a collection and reclaimed enough space. Give a 1089 // warning if we seem to be looping forever. 1090 1091 if ((QueuedAllocationWarningCount > 0) && 1092 (try_count % QueuedAllocationWarningCount == 0)) { 1093 warning("G1CollectedHeap::attempt_allocation_humongous() " 1094 "retries %d times", try_count); 1095 } 1096 } 1097 1098 ShouldNotReachHere(); 1099 return NULL; 1100 } 1101 1102 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size, 1103 AllocationContext_t context, 1104 bool expect_null_mutator_alloc_region) { 1105 assert_at_safepoint(true /* should_be_vm_thread */); 1106 assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region, 1107 "the current alloc region was unexpectedly found to be non-NULL"); 1108 1109 if (!is_humongous(word_size)) { 1110 return _allocator->attempt_allocation_locked(word_size, context); 1111 } else { 1112 HeapWord* result = humongous_obj_allocate(word_size, context); 1113 if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) { 1114 collector_state()->set_initiate_conc_mark_if_possible(true); 1115 } 1116 return result; 1117 } 1118 1119 ShouldNotReachHere(); 1120 } 1121 1122 class PostMCRemSetClearClosure: public HeapRegionClosure { 1123 G1CollectedHeap* _g1h; 1124 ModRefBarrierSet* _mr_bs; 1125 public: 1126 PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) : 1127 _g1h(g1h), _mr_bs(mr_bs) {} 1128 1129 bool doHeapRegion(HeapRegion* r) { 1130 HeapRegionRemSet* hrrs = r->rem_set(); 1131 1132 _g1h->reset_gc_time_stamps(r); 1133 1134 if (r->is_continues_humongous()) { 1135 // We'll assert that the strong code root list and RSet is empty 1136 assert(hrrs->strong_code_roots_list_length() == 0, "sanity"); 1137 assert(hrrs->occupied() == 0, "RSet should be empty"); 1138 } else { 1139 hrrs->clear(); 1140 } 1141 // You might think here that we could clear just the cards 1142 // corresponding to the used region. But no: if we leave a dirty card 1143 // in a region we might allocate into, then it would prevent that card 1144 // from being enqueued, and cause it to be missed. 1145 // Re: the performance cost: we shouldn't be doing full GC anyway! 1146 _mr_bs->clear(MemRegion(r->bottom(), r->end())); 1147 1148 return false; 1149 } 1150 }; 1151 1152 void G1CollectedHeap::clear_rsets_post_compaction() { 1153 PostMCRemSetClearClosure rs_clear(this, g1_barrier_set()); 1154 heap_region_iterate(&rs_clear); 1155 } 1156 1157 class RebuildRSOutOfRegionClosure: public HeapRegionClosure { 1158 G1CollectedHeap* _g1h; 1159 UpdateRSOopClosure _cl; 1160 public: 1161 RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) : 1162 _cl(g1->g1_rem_set(), worker_i), 1163 _g1h(g1) 1164 { } 1165 1166 bool doHeapRegion(HeapRegion* r) { 1167 if (!r->is_continues_humongous()) { 1168 _cl.set_from(r); 1169 r->oop_iterate(&_cl); 1170 } 1171 return false; 1172 } 1173 }; 1174 1175 class ParRebuildRSTask: public AbstractGangTask { 1176 G1CollectedHeap* _g1; 1177 HeapRegionClaimer _hrclaimer; 1178 1179 public: 1180 ParRebuildRSTask(G1CollectedHeap* g1) : 1181 AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {} 1182 1183 void work(uint worker_id) { 1184 RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id); 1185 _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer); 1186 } 1187 }; 1188 1189 class PostCompactionPrinterClosure: public HeapRegionClosure { 1190 private: 1191 G1HRPrinter* _hr_printer; 1192 public: 1193 bool doHeapRegion(HeapRegion* hr) { 1194 assert(!hr->is_young(), "not expecting to find young regions"); 1195 _hr_printer->post_compaction(hr); 1196 return false; 1197 } 1198 1199 PostCompactionPrinterClosure(G1HRPrinter* hr_printer) 1200 : _hr_printer(hr_printer) { } 1201 }; 1202 1203 void G1CollectedHeap::print_hrm_post_compaction() { 1204 if (_hr_printer.is_active()) { 1205 PostCompactionPrinterClosure cl(hr_printer()); 1206 heap_region_iterate(&cl); 1207 } 1208 1209 } 1210 1211 bool G1CollectedHeap::do_full_collection(bool explicit_gc, 1212 bool clear_all_soft_refs) { 1213 assert_at_safepoint(true /* should_be_vm_thread */); 1214 1215 if (GCLocker::check_active_before_gc()) { 1216 return false; 1217 } 1218 1219 STWGCTimer* gc_timer = G1MarkSweep::gc_timer(); 1220 gc_timer->register_gc_start(); 1221 1222 SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer(); 1223 GCIdMark gc_id_mark; 1224 gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start()); 1225 1226 SvcGCMarker sgcm(SvcGCMarker::FULL); 1227 ResourceMark rm; 1228 1229 print_heap_before_gc(); 1230 trace_heap_before_gc(gc_tracer); 1231 1232 size_t metadata_prev_used = MetaspaceAux::used_bytes(); 1233 1234 _verifier->verify_region_sets_optional(); 1235 1236 const bool do_clear_all_soft_refs = clear_all_soft_refs || 1237 collector_policy()->should_clear_all_soft_refs(); 1238 1239 ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy()); 1240 1241 { 1242 IsGCActiveMark x; 1243 1244 // Timing 1245 assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant"); 1246 GCTraceCPUTime tcpu; 1247 1248 { 1249 GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true); 1250 TraceCollectorStats tcs(g1mm()->full_collection_counters()); 1251 TraceMemoryManagerStats tms(true /* fullGC */, gc_cause()); 1252 1253 g1_policy()->record_full_collection_start(); 1254 1255 // Note: When we have a more flexible GC logging framework that 1256 // allows us to add optional attributes to a GC log record we 1257 // could consider timing and reporting how long we wait in the 1258 // following two methods. 1259 wait_while_free_regions_coming(); 1260 // If we start the compaction before the CM threads finish 1261 // scanning the root regions we might trip them over as we'll 1262 // be moving objects / updating references. So let's wait until 1263 // they are done. By telling them to abort, they should complete 1264 // early. 1265 _cm->root_regions()->abort(); 1266 _cm->root_regions()->wait_until_scan_finished(); 1267 append_secondary_free_list_if_not_empty_with_lock(); 1268 1269 gc_prologue(true); 1270 increment_total_collections(true /* full gc */); 1271 increment_old_marking_cycles_started(); 1272 1273 assert(used() == recalculate_used(), "Should be equal"); 1274 1275 _verifier->verify_before_gc(); 1276 1277 _verifier->check_bitmaps("Full GC Start"); 1278 pre_full_gc_dump(gc_timer); 1279 1280 #if defined(COMPILER2) || INCLUDE_JVMCI 1281 DerivedPointerTable::clear(); 1282 #endif 1283 1284 // Disable discovery and empty the discovered lists 1285 // for the CM ref processor. 1286 ref_processor_cm()->disable_discovery(); 1287 ref_processor_cm()->abandon_partial_discovery(); 1288 ref_processor_cm()->verify_no_references_recorded(); 1289 1290 // Abandon current iterations of concurrent marking and concurrent 1291 // refinement, if any are in progress. We have to do this before 1292 // wait_until_scan_finished() below. 1293 concurrent_mark()->abort(); 1294 1295 // Make sure we'll choose a new allocation region afterwards. 1296 _allocator->release_mutator_alloc_region(); 1297 _allocator->abandon_gc_alloc_regions(); 1298 g1_rem_set()->cleanupHRRS(); 1299 1300 // We may have added regions to the current incremental collection 1301 // set between the last GC or pause and now. We need to clear the 1302 // incremental collection set and then start rebuilding it afresh 1303 // after this full GC. 1304 abandon_collection_set(g1_policy()->inc_cset_head()); 1305 g1_policy()->clear_incremental_cset(); 1306 g1_policy()->stop_incremental_cset_building(); 1307 1308 tear_down_region_sets(false /* free_list_only */); 1309 collector_state()->set_gcs_are_young(true); 1310 1311 // See the comments in g1CollectedHeap.hpp and 1312 // G1CollectedHeap::ref_processing_init() about 1313 // how reference processing currently works in G1. 1314 1315 // Temporarily make discovery by the STW ref processor single threaded (non-MT). 1316 ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false); 1317 1318 // Temporarily clear the STW ref processor's _is_alive_non_header field. 1319 ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL); 1320 1321 ref_processor_stw()->enable_discovery(); 1322 ref_processor_stw()->setup_policy(do_clear_all_soft_refs); 1323 1324 // Do collection work 1325 { 1326 HandleMark hm; // Discard invalid handles created during gc 1327 G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs); 1328 } 1329 1330 assert(num_free_regions() == 0, "we should not have added any free regions"); 1331 rebuild_region_sets(false /* free_list_only */); 1332 1333 // Enqueue any discovered reference objects that have 1334 // not been removed from the discovered lists. 1335 ref_processor_stw()->enqueue_discovered_references(); 1336 1337 #if defined(COMPILER2) || INCLUDE_JVMCI 1338 DerivedPointerTable::update_pointers(); 1339 #endif 1340 1341 MemoryService::track_memory_usage(); 1342 1343 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 1344 ref_processor_stw()->verify_no_references_recorded(); 1345 1346 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 1347 ClassLoaderDataGraph::purge(); 1348 MetaspaceAux::verify_metrics(); 1349 1350 // Note: since we've just done a full GC, concurrent 1351 // marking is no longer active. Therefore we need not 1352 // re-enable reference discovery for the CM ref processor. 1353 // That will be done at the start of the next marking cycle. 1354 assert(!ref_processor_cm()->discovery_enabled(), "Postcondition"); 1355 ref_processor_cm()->verify_no_references_recorded(); 1356 1357 reset_gc_time_stamp(); 1358 // Since everything potentially moved, we will clear all remembered 1359 // sets, and clear all cards. Later we will rebuild remembered 1360 // sets. We will also reset the GC time stamps of the regions. 1361 clear_rsets_post_compaction(); 1362 check_gc_time_stamps(); 1363 1364 resize_if_necessary_after_full_collection(); 1365 1366 // We should do this after we potentially resize the heap so 1367 // that all the COMMIT / UNCOMMIT events are generated before 1368 // the compaction events. 1369 print_hrm_post_compaction(); 1370 1371 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 1372 if (hot_card_cache->use_cache()) { 1373 hot_card_cache->reset_card_counts(); 1374 hot_card_cache->reset_hot_cache(); 1375 } 1376 1377 // Rebuild remembered sets of all regions. 1378 uint n_workers = 1379 AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(), 1380 workers()->active_workers(), 1381 Threads::number_of_non_daemon_threads()); 1382 workers()->set_active_workers(n_workers); 1383 1384 ParRebuildRSTask rebuild_rs_task(this); 1385 workers()->run_task(&rebuild_rs_task); 1386 1387 // Rebuild the strong code root lists for each region 1388 rebuild_strong_code_roots(); 1389 1390 if (true) { // FIXME 1391 MetaspaceGC::compute_new_size(); 1392 } 1393 1394 #ifdef TRACESPINNING 1395 ParallelTaskTerminator::print_termination_counts(); 1396 #endif 1397 1398 // Discard all rset updates 1399 JavaThread::dirty_card_queue_set().abandon_logs(); 1400 assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty"); 1401 1402 _young_list->reset_sampled_info(); 1403 // At this point there should be no regions in the 1404 // entire heap tagged as young. 1405 assert(check_young_list_empty(true /* check_heap */), 1406 "young list should be empty at this point"); 1407 1408 // Update the number of full collections that have been completed. 1409 increment_old_marking_cycles_completed(false /* concurrent */); 1410 1411 _hrm.verify_optional(); 1412 _verifier->verify_region_sets_optional(); 1413 1414 _verifier->verify_after_gc(); 1415 1416 // Clear the previous marking bitmap, if needed for bitmap verification. 1417 // Note we cannot do this when we clear the next marking bitmap in 1418 // ConcurrentMark::abort() above since VerifyDuringGC verifies the 1419 // objects marked during a full GC against the previous bitmap. 1420 // But we need to clear it before calling check_bitmaps below since 1421 // the full GC has compacted objects and updated TAMS but not updated 1422 // the prev bitmap. 1423 if (G1VerifyBitmaps) { 1424 ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll(); 1425 } 1426 _verifier->check_bitmaps("Full GC End"); 1427 1428 // Start a new incremental collection set for the next pause 1429 assert(g1_policy()->collection_set() == NULL, "must be"); 1430 g1_policy()->start_incremental_cset_building(); 1431 1432 clear_cset_fast_test(); 1433 1434 _allocator->init_mutator_alloc_region(); 1435 1436 g1_policy()->record_full_collection_end(); 1437 1438 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 1439 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 1440 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 1441 // before any GC notifications are raised. 1442 g1mm()->update_sizes(); 1443 1444 gc_epilogue(true); 1445 } 1446 1447 g1_policy()->print_detailed_heap_transition(); 1448 1449 print_heap_after_gc(); 1450 trace_heap_after_gc(gc_tracer); 1451 1452 post_full_gc_dump(gc_timer); 1453 1454 gc_timer->register_gc_end(); 1455 gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions()); 1456 } 1457 1458 return true; 1459 } 1460 1461 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) { 1462 // Currently, there is no facility in the do_full_collection(bool) API to notify 1463 // the caller that the collection did not succeed (e.g., because it was locked 1464 // out by the GC locker). So, right now, we'll ignore the return value. 1465 bool dummy = do_full_collection(true, /* explicit_gc */ 1466 clear_all_soft_refs); 1467 } 1468 1469 void G1CollectedHeap::resize_if_necessary_after_full_collection() { 1470 // Include bytes that will be pre-allocated to support collections, as "used". 1471 const size_t used_after_gc = used(); 1472 const size_t capacity_after_gc = capacity(); 1473 const size_t free_after_gc = capacity_after_gc - used_after_gc; 1474 1475 // This is enforced in arguments.cpp. 1476 assert(MinHeapFreeRatio <= MaxHeapFreeRatio, 1477 "otherwise the code below doesn't make sense"); 1478 1479 // We don't have floating point command-line arguments 1480 const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0; 1481 const double maximum_used_percentage = 1.0 - minimum_free_percentage; 1482 const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0; 1483 const double minimum_used_percentage = 1.0 - maximum_free_percentage; 1484 1485 const size_t min_heap_size = collector_policy()->min_heap_byte_size(); 1486 const size_t max_heap_size = collector_policy()->max_heap_byte_size(); 1487 1488 // We have to be careful here as these two calculations can overflow 1489 // 32-bit size_t's. 1490 double used_after_gc_d = (double) used_after_gc; 1491 double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage; 1492 double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage; 1493 1494 // Let's make sure that they are both under the max heap size, which 1495 // by default will make them fit into a size_t. 1496 double desired_capacity_upper_bound = (double) max_heap_size; 1497 minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d, 1498 desired_capacity_upper_bound); 1499 maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d, 1500 desired_capacity_upper_bound); 1501 1502 // We can now safely turn them into size_t's. 1503 size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d; 1504 size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d; 1505 1506 // This assert only makes sense here, before we adjust them 1507 // with respect to the min and max heap size. 1508 assert(minimum_desired_capacity <= maximum_desired_capacity, 1509 "minimum_desired_capacity = " SIZE_FORMAT ", " 1510 "maximum_desired_capacity = " SIZE_FORMAT, 1511 minimum_desired_capacity, maximum_desired_capacity); 1512 1513 // Should not be greater than the heap max size. No need to adjust 1514 // it with respect to the heap min size as it's a lower bound (i.e., 1515 // we'll try to make the capacity larger than it, not smaller). 1516 minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size); 1517 // Should not be less than the heap min size. No need to adjust it 1518 // with respect to the heap max size as it's an upper bound (i.e., 1519 // we'll try to make the capacity smaller than it, not greater). 1520 maximum_desired_capacity = MAX2(maximum_desired_capacity, min_heap_size); 1521 1522 if (capacity_after_gc < minimum_desired_capacity) { 1523 // Don't expand unless it's significant 1524 size_t expand_bytes = minimum_desired_capacity - capacity_after_gc; 1525 1526 log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). " 1527 "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)", 1528 capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio); 1529 1530 expand(expand_bytes); 1531 1532 // No expansion, now see if we want to shrink 1533 } else if (capacity_after_gc > maximum_desired_capacity) { 1534 // Capacity too large, compute shrinking size 1535 size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity; 1536 1537 log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). " 1538 "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)", 1539 capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio); 1540 1541 shrink(shrink_bytes); 1542 } 1543 } 1544 1545 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size, 1546 AllocationContext_t context, 1547 bool do_gc, 1548 bool clear_all_soft_refs, 1549 bool expect_null_mutator_alloc_region, 1550 bool* gc_succeeded) { 1551 *gc_succeeded = true; 1552 // Let's attempt the allocation first. 1553 HeapWord* result = 1554 attempt_allocation_at_safepoint(word_size, 1555 context, 1556 expect_null_mutator_alloc_region); 1557 if (result != NULL) { 1558 assert(*gc_succeeded, "sanity"); 1559 return result; 1560 } 1561 1562 // In a G1 heap, we're supposed to keep allocation from failing by 1563 // incremental pauses. Therefore, at least for now, we'll favor 1564 // expansion over collection. (This might change in the future if we can 1565 // do something smarter than full collection to satisfy a failed alloc.) 1566 result = expand_and_allocate(word_size, context); 1567 if (result != NULL) { 1568 assert(*gc_succeeded, "sanity"); 1569 return result; 1570 } 1571 1572 if (do_gc) { 1573 // Expansion didn't work, we'll try to do a Full GC. 1574 *gc_succeeded = do_full_collection(false, /* explicit_gc */ 1575 clear_all_soft_refs); 1576 } 1577 1578 return NULL; 1579 } 1580 1581 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size, 1582 AllocationContext_t context, 1583 bool* succeeded) { 1584 assert_at_safepoint(true /* should_be_vm_thread */); 1585 1586 // Attempts to allocate followed by Full GC. 1587 HeapWord* result = 1588 satisfy_failed_allocation_helper(word_size, 1589 context, 1590 true, /* do_gc */ 1591 false, /* clear_all_soft_refs */ 1592 false, /* expect_null_mutator_alloc_region */ 1593 succeeded); 1594 1595 if (result != NULL || !*succeeded) { 1596 return result; 1597 } 1598 1599 // Attempts to allocate followed by Full GC that will collect all soft references. 1600 result = satisfy_failed_allocation_helper(word_size, 1601 context, 1602 true, /* do_gc */ 1603 true, /* clear_all_soft_refs */ 1604 true, /* expect_null_mutator_alloc_region */ 1605 succeeded); 1606 1607 if (result != NULL || !*succeeded) { 1608 return result; 1609 } 1610 1611 // Attempts to allocate, no GC 1612 result = satisfy_failed_allocation_helper(word_size, 1613 context, 1614 false, /* do_gc */ 1615 false, /* clear_all_soft_refs */ 1616 true, /* expect_null_mutator_alloc_region */ 1617 succeeded); 1618 1619 if (result != NULL) { 1620 assert(*succeeded, "sanity"); 1621 return result; 1622 } 1623 1624 assert(!collector_policy()->should_clear_all_soft_refs(), 1625 "Flag should have been handled and cleared prior to this point"); 1626 1627 // What else? We might try synchronous finalization later. If the total 1628 // space available is large enough for the allocation, then a more 1629 // complete compaction phase than we've tried so far might be 1630 // appropriate. 1631 assert(*succeeded, "sanity"); 1632 return NULL; 1633 } 1634 1635 // Attempting to expand the heap sufficiently 1636 // to support an allocation of the given "word_size". If 1637 // successful, perform the allocation and return the address of the 1638 // allocated block, or else "NULL". 1639 1640 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) { 1641 assert_at_safepoint(true /* should_be_vm_thread */); 1642 1643 _verifier->verify_region_sets_optional(); 1644 1645 size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes); 1646 log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B", 1647 word_size * HeapWordSize); 1648 1649 1650 if (expand(expand_bytes)) { 1651 _hrm.verify_optional(); 1652 _verifier->verify_region_sets_optional(); 1653 return attempt_allocation_at_safepoint(word_size, 1654 context, 1655 false /* expect_null_mutator_alloc_region */); 1656 } 1657 return NULL; 1658 } 1659 1660 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) { 1661 size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes); 1662 aligned_expand_bytes = align_size_up(aligned_expand_bytes, 1663 HeapRegion::GrainBytes); 1664 1665 log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount:" SIZE_FORMAT "B expansion amount:" SIZE_FORMAT "B", 1666 expand_bytes, aligned_expand_bytes); 1667 1668 if (is_maximal_no_gc()) { 1669 log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)"); 1670 return false; 1671 } 1672 1673 double expand_heap_start_time_sec = os::elapsedTime(); 1674 uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes); 1675 assert(regions_to_expand > 0, "Must expand by at least one region"); 1676 1677 uint expanded_by = _hrm.expand_by(regions_to_expand); 1678 if (expand_time_ms != NULL) { 1679 *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS; 1680 } 1681 1682 if (expanded_by > 0) { 1683 size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes; 1684 assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition"); 1685 g1_policy()->record_new_heap_size(num_regions()); 1686 } else { 1687 log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)"); 1688 1689 // The expansion of the virtual storage space was unsuccessful. 1690 // Let's see if it was because we ran out of swap. 1691 if (G1ExitOnExpansionFailure && 1692 _hrm.available() >= regions_to_expand) { 1693 // We had head room... 1694 vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion"); 1695 } 1696 } 1697 return regions_to_expand > 0; 1698 } 1699 1700 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) { 1701 size_t aligned_shrink_bytes = 1702 ReservedSpace::page_align_size_down(shrink_bytes); 1703 aligned_shrink_bytes = align_size_down(aligned_shrink_bytes, 1704 HeapRegion::GrainBytes); 1705 uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes); 1706 1707 uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove); 1708 size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes; 1709 1710 1711 log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B", 1712 shrink_bytes, aligned_shrink_bytes, shrunk_bytes); 1713 if (num_regions_removed > 0) { 1714 g1_policy()->record_new_heap_size(num_regions()); 1715 } else { 1716 log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)"); 1717 } 1718 } 1719 1720 void G1CollectedHeap::shrink(size_t shrink_bytes) { 1721 _verifier->verify_region_sets_optional(); 1722 1723 // We should only reach here at the end of a Full GC which means we 1724 // should not not be holding to any GC alloc regions. The method 1725 // below will make sure of that and do any remaining clean up. 1726 _allocator->abandon_gc_alloc_regions(); 1727 1728 // Instead of tearing down / rebuilding the free lists here, we 1729 // could instead use the remove_all_pending() method on free_list to 1730 // remove only the ones that we need to remove. 1731 tear_down_region_sets(true /* free_list_only */); 1732 shrink_helper(shrink_bytes); 1733 rebuild_region_sets(true /* free_list_only */); 1734 1735 _hrm.verify_optional(); 1736 _verifier->verify_region_sets_optional(); 1737 } 1738 1739 // Public methods. 1740 1741 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) : 1742 CollectedHeap(), 1743 _g1_policy(policy_), 1744 _dirty_card_queue_set(false), 1745 _is_alive_closure_cm(this), 1746 _is_alive_closure_stw(this), 1747 _ref_processor_cm(NULL), 1748 _ref_processor_stw(NULL), 1749 _bot(NULL), 1750 _cg1r(NULL), 1751 _g1mm(NULL), 1752 _refine_cte_cl(NULL), 1753 _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()), 1754 _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()), 1755 _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()), 1756 _humongous_reclaim_candidates(), 1757 _has_humongous_reclaim_candidates(false), 1758 _archive_allocator(NULL), 1759 _free_regions_coming(false), 1760 _young_list(new YoungList(this)), 1761 _gc_time_stamp(0), 1762 _summary_bytes_used(0), 1763 _survivor_evac_stats(YoungPLABSize, PLABWeight), 1764 _old_evac_stats(OldPLABSize, PLABWeight), 1765 _expand_heap_after_alloc_failure(true), 1766 _old_marking_cycles_started(0), 1767 _old_marking_cycles_completed(0), 1768 _heap_summary_sent(false), 1769 _in_cset_fast_test(), 1770 _dirty_cards_region_list(NULL), 1771 _worker_cset_start_region(NULL), 1772 _worker_cset_start_region_time_stamp(NULL), 1773 _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()), 1774 _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()), 1775 _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()), 1776 _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) { 1777 1778 _workers = new WorkGang("GC Thread", ParallelGCThreads, 1779 /* are_GC_task_threads */true, 1780 /* are_ConcurrentGC_threads */false); 1781 _workers->initialize_workers(); 1782 _verifier = new G1HeapVerifier(this); 1783 1784 _allocator = G1Allocator::create_allocator(this); 1785 _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords); 1786 1787 // Override the default _filler_array_max_size so that no humongous filler 1788 // objects are created. 1789 _filler_array_max_size = _humongous_object_threshold_in_words; 1790 1791 uint n_queues = ParallelGCThreads; 1792 _task_queues = new RefToScanQueueSet(n_queues); 1793 1794 _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC); 1795 _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC); 1796 _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC); 1797 1798 for (uint i = 0; i < n_queues; i++) { 1799 RefToScanQueue* q = new RefToScanQueue(); 1800 q->initialize(); 1801 _task_queues->register_queue(i, q); 1802 ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo(); 1803 } 1804 clear_cset_start_regions(); 1805 1806 // Initialize the G1EvacuationFailureALot counters and flags. 1807 NOT_PRODUCT(reset_evacuation_should_fail();) 1808 1809 guarantee(_task_queues != NULL, "task_queues allocation failure."); 1810 } 1811 1812 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description, 1813 size_t size, 1814 size_t translation_factor) { 1815 size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1); 1816 // Allocate a new reserved space, preferring to use large pages. 1817 ReservedSpace rs(size, preferred_page_size); 1818 G1RegionToSpaceMapper* result = 1819 G1RegionToSpaceMapper::create_mapper(rs, 1820 size, 1821 rs.alignment(), 1822 HeapRegion::GrainBytes, 1823 translation_factor, 1824 mtGC); 1825 if (TracePageSizes) { 1826 tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT, 1827 description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size); 1828 } 1829 return result; 1830 } 1831 1832 jint G1CollectedHeap::initialize() { 1833 CollectedHeap::pre_initialize(); 1834 os::enable_vtime(); 1835 1836 // Necessary to satisfy locking discipline assertions. 1837 1838 MutexLocker x(Heap_lock); 1839 1840 // While there are no constraints in the GC code that HeapWordSize 1841 // be any particular value, there are multiple other areas in the 1842 // system which believe this to be true (e.g. oop->object_size in some 1843 // cases incorrectly returns the size in wordSize units rather than 1844 // HeapWordSize). 1845 guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize"); 1846 1847 size_t init_byte_size = collector_policy()->initial_heap_byte_size(); 1848 size_t max_byte_size = collector_policy()->max_heap_byte_size(); 1849 size_t heap_alignment = collector_policy()->heap_alignment(); 1850 1851 // Ensure that the sizes are properly aligned. 1852 Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap"); 1853 Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap"); 1854 Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap"); 1855 1856 _refine_cte_cl = new RefineCardTableEntryClosure(); 1857 1858 jint ecode = JNI_OK; 1859 _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode); 1860 if (_cg1r == NULL) { 1861 return ecode; 1862 } 1863 1864 // Reserve the maximum. 1865 1866 // When compressed oops are enabled, the preferred heap base 1867 // is calculated by subtracting the requested size from the 1868 // 32Gb boundary and using the result as the base address for 1869 // heap reservation. If the requested size is not aligned to 1870 // HeapRegion::GrainBytes (i.e. the alignment that is passed 1871 // into the ReservedHeapSpace constructor) then the actual 1872 // base of the reserved heap may end up differing from the 1873 // address that was requested (i.e. the preferred heap base). 1874 // If this happens then we could end up using a non-optimal 1875 // compressed oops mode. 1876 1877 ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size, 1878 heap_alignment); 1879 1880 initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size())); 1881 1882 // Create the barrier set for the entire reserved region. 1883 G1SATBCardTableLoggingModRefBS* bs 1884 = new G1SATBCardTableLoggingModRefBS(reserved_region()); 1885 bs->initialize(); 1886 assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity"); 1887 set_barrier_set(bs); 1888 1889 // Also create a G1 rem set. 1890 _g1_rem_set = new G1RemSet(this, g1_barrier_set()); 1891 1892 // Carve out the G1 part of the heap. 1893 ReservedSpace g1_rs = heap_rs.first_part(max_byte_size); 1894 size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 1895 G1RegionToSpaceMapper* heap_storage = 1896 G1RegionToSpaceMapper::create_mapper(g1_rs, 1897 g1_rs.size(), 1898 page_size, 1899 HeapRegion::GrainBytes, 1900 1, 1901 mtJavaHeap); 1902 os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(), 1903 max_byte_size, page_size, 1904 heap_rs.base(), 1905 heap_rs.size()); 1906 heap_storage->set_mapping_changed_listener(&_listener); 1907 1908 // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps. 1909 G1RegionToSpaceMapper* bot_storage = 1910 create_aux_memory_mapper("Block offset table", 1911 G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize), 1912 G1BlockOffsetTable::heap_map_factor()); 1913 1914 ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize)); 1915 G1RegionToSpaceMapper* cardtable_storage = 1916 create_aux_memory_mapper("Card table", 1917 G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize), 1918 G1SATBCardTableLoggingModRefBS::heap_map_factor()); 1919 1920 G1RegionToSpaceMapper* card_counts_storage = 1921 create_aux_memory_mapper("Card counts table", 1922 G1CardCounts::compute_size(g1_rs.size() / HeapWordSize), 1923 G1CardCounts::heap_map_factor()); 1924 1925 size_t bitmap_size = CMBitMap::compute_size(g1_rs.size()); 1926 G1RegionToSpaceMapper* prev_bitmap_storage = 1927 create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor()); 1928 G1RegionToSpaceMapper* next_bitmap_storage = 1929 create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor()); 1930 1931 _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage); 1932 g1_barrier_set()->initialize(cardtable_storage); 1933 // Do later initialization work for concurrent refinement. 1934 _cg1r->init(card_counts_storage); 1935 1936 // 6843694 - ensure that the maximum region index can fit 1937 // in the remembered set structures. 1938 const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1; 1939 guarantee((max_regions() - 1) <= max_region_idx, "too many regions"); 1940 1941 G1RemSet::initialize(max_regions()); 1942 1943 size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1; 1944 guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized"); 1945 guarantee(HeapRegion::CardsPerRegion < max_cards_per_region, 1946 "too many cards per region"); 1947 1948 FreeRegionList::set_unrealistically_long_length(max_regions() + 1); 1949 1950 _bot = new G1BlockOffsetTable(reserved_region(), bot_storage); 1951 1952 { 1953 HeapWord* start = _hrm.reserved().start(); 1954 HeapWord* end = _hrm.reserved().end(); 1955 size_t granularity = HeapRegion::GrainBytes; 1956 1957 _in_cset_fast_test.initialize(start, end, granularity); 1958 _humongous_reclaim_candidates.initialize(start, end, granularity); 1959 } 1960 1961 // Create the ConcurrentMark data structure and thread. 1962 // (Must do this late, so that "max_regions" is defined.) 1963 _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage); 1964 if (_cm == NULL || !_cm->completed_initialization()) { 1965 vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark"); 1966 return JNI_ENOMEM; 1967 } 1968 _cmThread = _cm->cmThread(); 1969 1970 // Now expand into the initial heap size. 1971 if (!expand(init_byte_size)) { 1972 vm_shutdown_during_initialization("Failed to allocate initial heap."); 1973 return JNI_ENOMEM; 1974 } 1975 1976 // Perform any initialization actions delegated to the policy. 1977 g1_policy()->init(); 1978 1979 JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon, 1980 SATB_Q_FL_lock, 1981 G1SATBProcessCompletedThreshold, 1982 Shared_SATB_Q_lock); 1983 1984 JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl, 1985 DirtyCardQ_CBL_mon, 1986 DirtyCardQ_FL_lock, 1987 concurrent_g1_refine()->yellow_zone(), 1988 concurrent_g1_refine()->red_zone(), 1989 Shared_DirtyCardQ_lock, 1990 NULL, // fl_owner 1991 true); // init_free_ids 1992 1993 dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code 1994 DirtyCardQ_CBL_mon, 1995 DirtyCardQ_FL_lock, 1996 -1, // never trigger processing 1997 -1, // no limit on length 1998 Shared_DirtyCardQ_lock, 1999 &JavaThread::dirty_card_queue_set()); 2000 2001 // Here we allocate the dummy HeapRegion that is required by the 2002 // G1AllocRegion class. 2003 HeapRegion* dummy_region = _hrm.get_dummy_region(); 2004 2005 // We'll re-use the same region whether the alloc region will 2006 // require BOT updates or not and, if it doesn't, then a non-young 2007 // region will complain that it cannot support allocations without 2008 // BOT updates. So we'll tag the dummy region as eden to avoid that. 2009 dummy_region->set_eden(); 2010 // Make sure it's full. 2011 dummy_region->set_top(dummy_region->end()); 2012 G1AllocRegion::setup(this, dummy_region); 2013 2014 _allocator->init_mutator_alloc_region(); 2015 2016 // Do create of the monitoring and management support so that 2017 // values in the heap have been properly initialized. 2018 _g1mm = new G1MonitoringSupport(this); 2019 2020 G1StringDedup::initialize(); 2021 2022 _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC); 2023 for (uint i = 0; i < ParallelGCThreads; i++) { 2024 new (&_preserved_objs[i]) OopAndMarkOopStack(); 2025 } 2026 2027 return JNI_OK; 2028 } 2029 2030 void G1CollectedHeap::stop() { 2031 // Stop all concurrent threads. We do this to make sure these threads 2032 // do not continue to execute and access resources (e.g. logging) 2033 // that are destroyed during shutdown. 2034 _cg1r->stop(); 2035 _cmThread->stop(); 2036 if (G1StringDedup::is_enabled()) { 2037 G1StringDedup::stop(); 2038 } 2039 } 2040 2041 size_t G1CollectedHeap::conservative_max_heap_alignment() { 2042 return HeapRegion::max_region_size(); 2043 } 2044 2045 void G1CollectedHeap::post_initialize() { 2046 CollectedHeap::post_initialize(); 2047 ref_processing_init(); 2048 } 2049 2050 void G1CollectedHeap::ref_processing_init() { 2051 // Reference processing in G1 currently works as follows: 2052 // 2053 // * There are two reference processor instances. One is 2054 // used to record and process discovered references 2055 // during concurrent marking; the other is used to 2056 // record and process references during STW pauses 2057 // (both full and incremental). 2058 // * Both ref processors need to 'span' the entire heap as 2059 // the regions in the collection set may be dotted around. 2060 // 2061 // * For the concurrent marking ref processor: 2062 // * Reference discovery is enabled at initial marking. 2063 // * Reference discovery is disabled and the discovered 2064 // references processed etc during remarking. 2065 // * Reference discovery is MT (see below). 2066 // * Reference discovery requires a barrier (see below). 2067 // * Reference processing may or may not be MT 2068 // (depending on the value of ParallelRefProcEnabled 2069 // and ParallelGCThreads). 2070 // * A full GC disables reference discovery by the CM 2071 // ref processor and abandons any entries on it's 2072 // discovered lists. 2073 // 2074 // * For the STW processor: 2075 // * Non MT discovery is enabled at the start of a full GC. 2076 // * Processing and enqueueing during a full GC is non-MT. 2077 // * During a full GC, references are processed after marking. 2078 // 2079 // * Discovery (may or may not be MT) is enabled at the start 2080 // of an incremental evacuation pause. 2081 // * References are processed near the end of a STW evacuation pause. 2082 // * For both types of GC: 2083 // * Discovery is atomic - i.e. not concurrent. 2084 // * Reference discovery will not need a barrier. 2085 2086 MemRegion mr = reserved_region(); 2087 2088 // Concurrent Mark ref processor 2089 _ref_processor_cm = 2090 new ReferenceProcessor(mr, // span 2091 ParallelRefProcEnabled && (ParallelGCThreads > 1), 2092 // mt processing 2093 ParallelGCThreads, 2094 // degree of mt processing 2095 (ParallelGCThreads > 1) || (ConcGCThreads > 1), 2096 // mt discovery 2097 MAX2(ParallelGCThreads, ConcGCThreads), 2098 // degree of mt discovery 2099 false, 2100 // Reference discovery is not atomic 2101 &_is_alive_closure_cm); 2102 // is alive closure 2103 // (for efficiency/performance) 2104 2105 // STW ref processor 2106 _ref_processor_stw = 2107 new ReferenceProcessor(mr, // span 2108 ParallelRefProcEnabled && (ParallelGCThreads > 1), 2109 // mt processing 2110 ParallelGCThreads, 2111 // degree of mt processing 2112 (ParallelGCThreads > 1), 2113 // mt discovery 2114 ParallelGCThreads, 2115 // degree of mt discovery 2116 true, 2117 // Reference discovery is atomic 2118 &_is_alive_closure_stw); 2119 // is alive closure 2120 // (for efficiency/performance) 2121 } 2122 2123 CollectorPolicy* G1CollectedHeap::collector_policy() const { 2124 return g1_policy(); 2125 } 2126 2127 size_t G1CollectedHeap::capacity() const { 2128 return _hrm.length() * HeapRegion::GrainBytes; 2129 } 2130 2131 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) { 2132 hr->reset_gc_time_stamp(); 2133 } 2134 2135 #ifndef PRODUCT 2136 2137 class CheckGCTimeStampsHRClosure : public HeapRegionClosure { 2138 private: 2139 unsigned _gc_time_stamp; 2140 bool _failures; 2141 2142 public: 2143 CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) : 2144 _gc_time_stamp(gc_time_stamp), _failures(false) { } 2145 2146 virtual bool doHeapRegion(HeapRegion* hr) { 2147 unsigned region_gc_time_stamp = hr->get_gc_time_stamp(); 2148 if (_gc_time_stamp != region_gc_time_stamp) { 2149 log_info(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr), 2150 region_gc_time_stamp, _gc_time_stamp); 2151 _failures = true; 2152 } 2153 return false; 2154 } 2155 2156 bool failures() { return _failures; } 2157 }; 2158 2159 void G1CollectedHeap::check_gc_time_stamps() { 2160 CheckGCTimeStampsHRClosure cl(_gc_time_stamp); 2161 heap_region_iterate(&cl); 2162 guarantee(!cl.failures(), "all GC time stamps should have been reset"); 2163 } 2164 #endif // PRODUCT 2165 2166 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) { 2167 _cg1r->hot_card_cache()->drain(cl, worker_i); 2168 } 2169 2170 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) { 2171 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 2172 size_t n_completed_buffers = 0; 2173 while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) { 2174 n_completed_buffers++; 2175 } 2176 g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers); 2177 dcqs.clear_n_completed_buffers(); 2178 assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!"); 2179 } 2180 2181 // Computes the sum of the storage used by the various regions. 2182 size_t G1CollectedHeap::used() const { 2183 size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions(); 2184 if (_archive_allocator != NULL) { 2185 result += _archive_allocator->used(); 2186 } 2187 return result; 2188 } 2189 2190 size_t G1CollectedHeap::used_unlocked() const { 2191 return _summary_bytes_used; 2192 } 2193 2194 class SumUsedClosure: public HeapRegionClosure { 2195 size_t _used; 2196 public: 2197 SumUsedClosure() : _used(0) {} 2198 bool doHeapRegion(HeapRegion* r) { 2199 _used += r->used(); 2200 return false; 2201 } 2202 size_t result() { return _used; } 2203 }; 2204 2205 size_t G1CollectedHeap::recalculate_used() const { 2206 double recalculate_used_start = os::elapsedTime(); 2207 2208 SumUsedClosure blk; 2209 heap_region_iterate(&blk); 2210 2211 g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0); 2212 return blk.result(); 2213 } 2214 2215 bool G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) { 2216 switch (cause) { 2217 case GCCause::_java_lang_system_gc: return ExplicitGCInvokesConcurrent; 2218 case GCCause::_dcmd_gc_run: return ExplicitGCInvokesConcurrent; 2219 case GCCause::_update_allocation_context_stats_inc: return true; 2220 case GCCause::_wb_conc_mark: return true; 2221 default : return false; 2222 } 2223 } 2224 2225 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) { 2226 switch (cause) { 2227 case GCCause::_gc_locker: return GCLockerInvokesConcurrent; 2228 case GCCause::_g1_humongous_allocation: return true; 2229 default: return is_user_requested_concurrent_full_gc(cause); 2230 } 2231 } 2232 2233 #ifndef PRODUCT 2234 void G1CollectedHeap::allocate_dummy_regions() { 2235 // Let's fill up most of the region 2236 size_t word_size = HeapRegion::GrainWords - 1024; 2237 // And as a result the region we'll allocate will be humongous. 2238 guarantee(is_humongous(word_size), "sanity"); 2239 2240 // _filler_array_max_size is set to humongous object threshold 2241 // but temporarily change it to use CollectedHeap::fill_with_object(). 2242 SizeTFlagSetting fs(_filler_array_max_size, word_size); 2243 2244 for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) { 2245 // Let's use the existing mechanism for the allocation 2246 HeapWord* dummy_obj = humongous_obj_allocate(word_size, 2247 AllocationContext::system()); 2248 if (dummy_obj != NULL) { 2249 MemRegion mr(dummy_obj, word_size); 2250 CollectedHeap::fill_with_object(mr); 2251 } else { 2252 // If we can't allocate once, we probably cannot allocate 2253 // again. Let's get out of the loop. 2254 break; 2255 } 2256 } 2257 } 2258 #endif // !PRODUCT 2259 2260 void G1CollectedHeap::increment_old_marking_cycles_started() { 2261 assert(_old_marking_cycles_started == _old_marking_cycles_completed || 2262 _old_marking_cycles_started == _old_marking_cycles_completed + 1, 2263 "Wrong marking cycle count (started: %d, completed: %d)", 2264 _old_marking_cycles_started, _old_marking_cycles_completed); 2265 2266 _old_marking_cycles_started++; 2267 } 2268 2269 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) { 2270 MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag); 2271 2272 // We assume that if concurrent == true, then the caller is a 2273 // concurrent thread that was joined the Suspendible Thread 2274 // Set. If there's ever a cheap way to check this, we should add an 2275 // assert here. 2276 2277 // Given that this method is called at the end of a Full GC or of a 2278 // concurrent cycle, and those can be nested (i.e., a Full GC can 2279 // interrupt a concurrent cycle), the number of full collections 2280 // completed should be either one (in the case where there was no 2281 // nesting) or two (when a Full GC interrupted a concurrent cycle) 2282 // behind the number of full collections started. 2283 2284 // This is the case for the inner caller, i.e. a Full GC. 2285 assert(concurrent || 2286 (_old_marking_cycles_started == _old_marking_cycles_completed + 1) || 2287 (_old_marking_cycles_started == _old_marking_cycles_completed + 2), 2288 "for inner caller (Full GC): _old_marking_cycles_started = %u " 2289 "is inconsistent with _old_marking_cycles_completed = %u", 2290 _old_marking_cycles_started, _old_marking_cycles_completed); 2291 2292 // This is the case for the outer caller, i.e. the concurrent cycle. 2293 assert(!concurrent || 2294 (_old_marking_cycles_started == _old_marking_cycles_completed + 1), 2295 "for outer caller (concurrent cycle): " 2296 "_old_marking_cycles_started = %u " 2297 "is inconsistent with _old_marking_cycles_completed = %u", 2298 _old_marking_cycles_started, _old_marking_cycles_completed); 2299 2300 _old_marking_cycles_completed += 1; 2301 2302 // We need to clear the "in_progress" flag in the CM thread before 2303 // we wake up any waiters (especially when ExplicitInvokesConcurrent 2304 // is set) so that if a waiter requests another System.gc() it doesn't 2305 // incorrectly see that a marking cycle is still in progress. 2306 if (concurrent) { 2307 _cmThread->set_idle(); 2308 } 2309 2310 // This notify_all() will ensure that a thread that called 2311 // System.gc() with (with ExplicitGCInvokesConcurrent set or not) 2312 // and it's waiting for a full GC to finish will be woken up. It is 2313 // waiting in VM_G1IncCollectionPause::doit_epilogue(). 2314 FullGCCount_lock->notify_all(); 2315 } 2316 2317 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) { 2318 GCIdMarkAndRestore conc_gc_id_mark; 2319 collector_state()->set_concurrent_cycle_started(true); 2320 _gc_timer_cm->register_gc_start(start_time); 2321 2322 _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start()); 2323 trace_heap_before_gc(_gc_tracer_cm); 2324 _cmThread->set_gc_id(GCId::current()); 2325 } 2326 2327 void G1CollectedHeap::register_concurrent_cycle_end() { 2328 if (collector_state()->concurrent_cycle_started()) { 2329 GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id()); 2330 if (_cm->has_aborted()) { 2331 _gc_tracer_cm->report_concurrent_mode_failure(); 2332 } 2333 2334 _gc_timer_cm->register_gc_end(); 2335 _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions()); 2336 2337 // Clear state variables to prepare for the next concurrent cycle. 2338 collector_state()->set_concurrent_cycle_started(false); 2339 _heap_summary_sent = false; 2340 } 2341 } 2342 2343 void G1CollectedHeap::trace_heap_after_concurrent_cycle() { 2344 if (collector_state()->concurrent_cycle_started()) { 2345 // This function can be called when: 2346 // the cleanup pause is run 2347 // the concurrent cycle is aborted before the cleanup pause. 2348 // the concurrent cycle is aborted after the cleanup pause, 2349 // but before the concurrent cycle end has been registered. 2350 // Make sure that we only send the heap information once. 2351 if (!_heap_summary_sent) { 2352 GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id()); 2353 trace_heap_after_gc(_gc_tracer_cm); 2354 _heap_summary_sent = true; 2355 } 2356 } 2357 } 2358 2359 void G1CollectedHeap::collect(GCCause::Cause cause) { 2360 assert_heap_not_locked(); 2361 2362 uint gc_count_before; 2363 uint old_marking_count_before; 2364 uint full_gc_count_before; 2365 bool retry_gc; 2366 2367 do { 2368 retry_gc = false; 2369 2370 { 2371 MutexLocker ml(Heap_lock); 2372 2373 // Read the GC count while holding the Heap_lock 2374 gc_count_before = total_collections(); 2375 full_gc_count_before = total_full_collections(); 2376 old_marking_count_before = _old_marking_cycles_started; 2377 } 2378 2379 if (should_do_concurrent_full_gc(cause)) { 2380 // Schedule an initial-mark evacuation pause that will start a 2381 // concurrent cycle. We're setting word_size to 0 which means that 2382 // we are not requesting a post-GC allocation. 2383 VM_G1IncCollectionPause op(gc_count_before, 2384 0, /* word_size */ 2385 true, /* should_initiate_conc_mark */ 2386 g1_policy()->max_pause_time_ms(), 2387 cause); 2388 op.set_allocation_context(AllocationContext::current()); 2389 2390 VMThread::execute(&op); 2391 if (!op.pause_succeeded()) { 2392 if (old_marking_count_before == _old_marking_cycles_started) { 2393 retry_gc = op.should_retry_gc(); 2394 } else { 2395 // A Full GC happened while we were trying to schedule the 2396 // initial-mark GC. No point in starting a new cycle given 2397 // that the whole heap was collected anyway. 2398 } 2399 2400 if (retry_gc) { 2401 if (GCLocker::is_active_and_needs_gc()) { 2402 GCLocker::stall_until_clear(); 2403 } 2404 } 2405 } 2406 } else { 2407 if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc 2408 DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) { 2409 2410 // Schedule a standard evacuation pause. We're setting word_size 2411 // to 0 which means that we are not requesting a post-GC allocation. 2412 VM_G1IncCollectionPause op(gc_count_before, 2413 0, /* word_size */ 2414 false, /* should_initiate_conc_mark */ 2415 g1_policy()->max_pause_time_ms(), 2416 cause); 2417 VMThread::execute(&op); 2418 } else { 2419 // Schedule a Full GC. 2420 VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause); 2421 VMThread::execute(&op); 2422 } 2423 } 2424 } while (retry_gc); 2425 } 2426 2427 bool G1CollectedHeap::is_in(const void* p) const { 2428 if (_hrm.reserved().contains(p)) { 2429 // Given that we know that p is in the reserved space, 2430 // heap_region_containing() should successfully 2431 // return the containing region. 2432 HeapRegion* hr = heap_region_containing(p); 2433 return hr->is_in(p); 2434 } else { 2435 return false; 2436 } 2437 } 2438 2439 #ifdef ASSERT 2440 bool G1CollectedHeap::is_in_exact(const void* p) const { 2441 bool contains = reserved_region().contains(p); 2442 bool available = _hrm.is_available(addr_to_region((HeapWord*)p)); 2443 if (contains && available) { 2444 return true; 2445 } else { 2446 return false; 2447 } 2448 } 2449 #endif 2450 2451 bool G1CollectedHeap::obj_in_cs(oop obj) { 2452 HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj); 2453 return r != NULL && r->in_collection_set(); 2454 } 2455 2456 // Iteration functions. 2457 2458 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion. 2459 2460 class IterateOopClosureRegionClosure: public HeapRegionClosure { 2461 ExtendedOopClosure* _cl; 2462 public: 2463 IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {} 2464 bool doHeapRegion(HeapRegion* r) { 2465 if (!r->is_continues_humongous()) { 2466 r->oop_iterate(_cl); 2467 } 2468 return false; 2469 } 2470 }; 2471 2472 // Iterates an ObjectClosure over all objects within a HeapRegion. 2473 2474 class IterateObjectClosureRegionClosure: public HeapRegionClosure { 2475 ObjectClosure* _cl; 2476 public: 2477 IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {} 2478 bool doHeapRegion(HeapRegion* r) { 2479 if (!r->is_continues_humongous()) { 2480 r->object_iterate(_cl); 2481 } 2482 return false; 2483 } 2484 }; 2485 2486 void G1CollectedHeap::object_iterate(ObjectClosure* cl) { 2487 IterateObjectClosureRegionClosure blk(cl); 2488 heap_region_iterate(&blk); 2489 } 2490 2491 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const { 2492 _hrm.iterate(cl); 2493 } 2494 2495 void 2496 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl, 2497 uint worker_id, 2498 HeapRegionClaimer *hrclaimer, 2499 bool concurrent) const { 2500 _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent); 2501 } 2502 2503 // Clear the cached CSet starting regions and (more importantly) 2504 // the time stamps. Called when we reset the GC time stamp. 2505 void G1CollectedHeap::clear_cset_start_regions() { 2506 assert(_worker_cset_start_region != NULL, "sanity"); 2507 assert(_worker_cset_start_region_time_stamp != NULL, "sanity"); 2508 2509 for (uint i = 0; i < ParallelGCThreads; i++) { 2510 _worker_cset_start_region[i] = NULL; 2511 _worker_cset_start_region_time_stamp[i] = 0; 2512 } 2513 } 2514 2515 // Given the id of a worker, obtain or calculate a suitable 2516 // starting region for iterating over the current collection set. 2517 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) { 2518 assert(get_gc_time_stamp() > 0, "should have been updated by now"); 2519 2520 HeapRegion* result = NULL; 2521 unsigned gc_time_stamp = get_gc_time_stamp(); 2522 2523 if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) { 2524 // Cached starting region for current worker was set 2525 // during the current pause - so it's valid. 2526 // Note: the cached starting heap region may be NULL 2527 // (when the collection set is empty). 2528 result = _worker_cset_start_region[worker_i]; 2529 assert(result == NULL || result->in_collection_set(), "sanity"); 2530 return result; 2531 } 2532 2533 // The cached entry was not valid so let's calculate 2534 // a suitable starting heap region for this worker. 2535 2536 // We want the parallel threads to start their collection 2537 // set iteration at different collection set regions to 2538 // avoid contention. 2539 // If we have: 2540 // n collection set regions 2541 // p threads 2542 // Then thread t will start at region floor ((t * n) / p) 2543 2544 result = g1_policy()->collection_set(); 2545 uint cs_size = g1_policy()->cset_region_length(); 2546 uint active_workers = workers()->active_workers(); 2547 2548 uint end_ind = (cs_size * worker_i) / active_workers; 2549 uint start_ind = 0; 2550 2551 if (worker_i > 0 && 2552 _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) { 2553 // Previous workers starting region is valid 2554 // so let's iterate from there 2555 start_ind = (cs_size * (worker_i - 1)) / active_workers; 2556 OrderAccess::loadload(); 2557 result = _worker_cset_start_region[worker_i - 1]; 2558 } 2559 2560 for (uint i = start_ind; i < end_ind; i++) { 2561 result = result->next_in_collection_set(); 2562 } 2563 2564 // Note: the calculated starting heap region may be NULL 2565 // (when the collection set is empty). 2566 assert(result == NULL || result->in_collection_set(), "sanity"); 2567 assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp, 2568 "should be updated only once per pause"); 2569 _worker_cset_start_region[worker_i] = result; 2570 OrderAccess::storestore(); 2571 _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp; 2572 return result; 2573 } 2574 2575 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) { 2576 HeapRegion* r = g1_policy()->collection_set(); 2577 while (r != NULL) { 2578 HeapRegion* next = r->next_in_collection_set(); 2579 if (cl->doHeapRegion(r)) { 2580 cl->incomplete(); 2581 return; 2582 } 2583 r = next; 2584 } 2585 } 2586 2587 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r, 2588 HeapRegionClosure *cl) { 2589 if (r == NULL) { 2590 // The CSet is empty so there's nothing to do. 2591 return; 2592 } 2593 2594 assert(r->in_collection_set(), 2595 "Start region must be a member of the collection set."); 2596 HeapRegion* cur = r; 2597 while (cur != NULL) { 2598 HeapRegion* next = cur->next_in_collection_set(); 2599 if (cl->doHeapRegion(cur) && false) { 2600 cl->incomplete(); 2601 return; 2602 } 2603 cur = next; 2604 } 2605 cur = g1_policy()->collection_set(); 2606 while (cur != r) { 2607 HeapRegion* next = cur->next_in_collection_set(); 2608 if (cl->doHeapRegion(cur) && false) { 2609 cl->incomplete(); 2610 return; 2611 } 2612 cur = next; 2613 } 2614 } 2615 2616 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const { 2617 HeapRegion* result = _hrm.next_region_in_heap(from); 2618 while (result != NULL && result->is_pinned()) { 2619 result = _hrm.next_region_in_heap(result); 2620 } 2621 return result; 2622 } 2623 2624 HeapWord* G1CollectedHeap::block_start(const void* addr) const { 2625 HeapRegion* hr = heap_region_containing(addr); 2626 return hr->block_start(addr); 2627 } 2628 2629 size_t G1CollectedHeap::block_size(const HeapWord* addr) const { 2630 HeapRegion* hr = heap_region_containing(addr); 2631 return hr->block_size(addr); 2632 } 2633 2634 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const { 2635 HeapRegion* hr = heap_region_containing(addr); 2636 return hr->block_is_obj(addr); 2637 } 2638 2639 bool G1CollectedHeap::supports_tlab_allocation() const { 2640 return true; 2641 } 2642 2643 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const { 2644 return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes; 2645 } 2646 2647 size_t G1CollectedHeap::tlab_used(Thread* ignored) const { 2648 return young_list()->eden_used_bytes(); 2649 } 2650 2651 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size 2652 // must be equal to the humongous object limit. 2653 size_t G1CollectedHeap::max_tlab_size() const { 2654 return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment); 2655 } 2656 2657 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const { 2658 AllocationContext_t context = AllocationContext::current(); 2659 return _allocator->unsafe_max_tlab_alloc(context); 2660 } 2661 2662 size_t G1CollectedHeap::max_capacity() const { 2663 return _hrm.reserved().byte_size(); 2664 } 2665 2666 jlong G1CollectedHeap::millis_since_last_gc() { 2667 // assert(false, "NYI"); 2668 return 0; 2669 } 2670 2671 void G1CollectedHeap::prepare_for_verify() { 2672 _verifier->prepare_for_verify(); 2673 } 2674 2675 class PrintRegionClosure: public HeapRegionClosure { 2676 outputStream* _st; 2677 public: 2678 PrintRegionClosure(outputStream* st) : _st(st) {} 2679 bool doHeapRegion(HeapRegion* r) { 2680 r->print_on(_st); 2681 return false; 2682 } 2683 }; 2684 2685 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 2686 const HeapRegion* hr, 2687 const VerifyOption vo) const { 2688 switch (vo) { 2689 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr); 2690 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr); 2691 case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked() && !hr->is_archive(); 2692 default: ShouldNotReachHere(); 2693 } 2694 return false; // keep some compilers happy 2695 } 2696 2697 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 2698 const VerifyOption vo) const { 2699 switch (vo) { 2700 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj); 2701 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj); 2702 case VerifyOption_G1UseMarkWord: { 2703 HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj); 2704 return !obj->is_gc_marked() && !hr->is_archive(); 2705 } 2706 default: ShouldNotReachHere(); 2707 } 2708 return false; // keep some compilers happy 2709 } 2710 2711 void G1CollectedHeap::print_on(outputStream* st) const { 2712 st->print(" %-20s", "garbage-first heap"); 2713 st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K", 2714 capacity()/K, used_unlocked()/K); 2715 st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")", 2716 p2i(_hrm.reserved().start()), 2717 p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords), 2718 p2i(_hrm.reserved().end())); 2719 st->cr(); 2720 st->print(" region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K); 2721 uint young_regions = _young_list->length(); 2722 st->print("%u young (" SIZE_FORMAT "K), ", young_regions, 2723 (size_t) young_regions * HeapRegion::GrainBytes / K); 2724 uint survivor_regions = g1_policy()->recorded_survivor_regions(); 2725 st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions, 2726 (size_t) survivor_regions * HeapRegion::GrainBytes / K); 2727 st->cr(); 2728 MetaspaceAux::print_on(st); 2729 } 2730 2731 void G1CollectedHeap::print_extended_on(outputStream* st) const { 2732 print_on(st); 2733 2734 // Print the per-region information. 2735 st->cr(); 2736 st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, " 2737 "HS=humongous(starts), HC=humongous(continues), " 2738 "CS=collection set, F=free, A=archive, TS=gc time stamp, " 2739 "AC=allocation context, " 2740 "TAMS=top-at-mark-start (previous, next)"); 2741 PrintRegionClosure blk(st); 2742 heap_region_iterate(&blk); 2743 } 2744 2745 void G1CollectedHeap::print_on_error(outputStream* st) const { 2746 this->CollectedHeap::print_on_error(st); 2747 2748 if (_cm != NULL) { 2749 st->cr(); 2750 _cm->print_on_error(st); 2751 } 2752 } 2753 2754 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const { 2755 workers()->print_worker_threads_on(st); 2756 _cmThread->print_on(st); 2757 st->cr(); 2758 _cm->print_worker_threads_on(st); 2759 _cg1r->print_worker_threads_on(st); 2760 if (G1StringDedup::is_enabled()) { 2761 G1StringDedup::print_worker_threads_on(st); 2762 } 2763 } 2764 2765 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const { 2766 workers()->threads_do(tc); 2767 tc->do_thread(_cmThread); 2768 _cg1r->threads_do(tc); 2769 if (G1StringDedup::is_enabled()) { 2770 G1StringDedup::threads_do(tc); 2771 } 2772 } 2773 2774 void G1CollectedHeap::print_tracing_info() const { 2775 // We'll overload this to mean "trace GC pause statistics." 2776 if (TraceYoungGenTime || TraceOldGenTime) { 2777 // The "G1CollectorPolicy" is keeping track of these stats, so delegate 2778 // to that. 2779 g1_policy()->print_tracing_info(); 2780 } 2781 g1_rem_set()->print_summary_info(); 2782 concurrent_mark()->print_summary_info(); 2783 g1_policy()->print_yg_surv_rate_info(); 2784 } 2785 2786 #ifndef PRODUCT 2787 // Helpful for debugging RSet issues. 2788 2789 class PrintRSetsClosure : public HeapRegionClosure { 2790 private: 2791 const char* _msg; 2792 size_t _occupied_sum; 2793 2794 public: 2795 bool doHeapRegion(HeapRegion* r) { 2796 HeapRegionRemSet* hrrs = r->rem_set(); 2797 size_t occupied = hrrs->occupied(); 2798 _occupied_sum += occupied; 2799 2800 tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r)); 2801 if (occupied == 0) { 2802 tty->print_cr(" RSet is empty"); 2803 } else { 2804 hrrs->print(); 2805 } 2806 tty->print_cr("----------"); 2807 return false; 2808 } 2809 2810 PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) { 2811 tty->cr(); 2812 tty->print_cr("========================================"); 2813 tty->print_cr("%s", msg); 2814 tty->cr(); 2815 } 2816 2817 ~PrintRSetsClosure() { 2818 tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum); 2819 tty->print_cr("========================================"); 2820 tty->cr(); 2821 } 2822 }; 2823 2824 void G1CollectedHeap::print_cset_rsets() { 2825 PrintRSetsClosure cl("Printing CSet RSets"); 2826 collection_set_iterate(&cl); 2827 } 2828 2829 void G1CollectedHeap::print_all_rsets() { 2830 PrintRSetsClosure cl("Printing All RSets");; 2831 heap_region_iterate(&cl); 2832 } 2833 #endif // PRODUCT 2834 2835 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() { 2836 YoungList* young_list = heap()->young_list(); 2837 2838 size_t eden_used_bytes = young_list->eden_used_bytes(); 2839 size_t survivor_used_bytes = young_list->survivor_used_bytes(); 2840 2841 size_t eden_capacity_bytes = 2842 (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes; 2843 2844 VirtualSpaceSummary heap_summary = create_heap_space_summary(); 2845 return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes); 2846 } 2847 2848 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) { 2849 return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(), 2850 stats->unused(), stats->used(), stats->region_end_waste(), 2851 stats->regions_filled(), stats->direct_allocated(), 2852 stats->failure_used(), stats->failure_waste()); 2853 } 2854 2855 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) { 2856 const G1HeapSummary& heap_summary = create_g1_heap_summary(); 2857 gc_tracer->report_gc_heap_summary(when, heap_summary); 2858 2859 const MetaspaceSummary& metaspace_summary = create_metaspace_summary(); 2860 gc_tracer->report_metaspace_summary(when, metaspace_summary); 2861 } 2862 2863 2864 G1CollectedHeap* G1CollectedHeap::heap() { 2865 CollectedHeap* heap = Universe::heap(); 2866 assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()"); 2867 assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap"); 2868 return (G1CollectedHeap*)heap; 2869 } 2870 2871 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) { 2872 // always_do_update_barrier = false; 2873 assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer"); 2874 // Fill TLAB's and such 2875 accumulate_statistics_all_tlabs(); 2876 ensure_parsability(true); 2877 2878 g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections()); 2879 } 2880 2881 void G1CollectedHeap::gc_epilogue(bool full) { 2882 // we are at the end of the GC. Total collections has already been increased. 2883 g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1); 2884 2885 // FIXME: what is this about? 2886 // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled" 2887 // is set. 2888 #if defined(COMPILER2) || INCLUDE_JVMCI 2889 assert(DerivedPointerTable::is_empty(), "derived pointer present"); 2890 #endif 2891 // always_do_update_barrier = true; 2892 2893 resize_all_tlabs(); 2894 allocation_context_stats().update(full); 2895 2896 // We have just completed a GC. Update the soft reference 2897 // policy with the new heap occupancy 2898 Universe::update_heap_info_at_gc(); 2899 } 2900 2901 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size, 2902 uint gc_count_before, 2903 bool* succeeded, 2904 GCCause::Cause gc_cause) { 2905 assert_heap_not_locked_and_not_at_safepoint(); 2906 g1_policy()->record_stop_world_start(); 2907 VM_G1IncCollectionPause op(gc_count_before, 2908 word_size, 2909 false, /* should_initiate_conc_mark */ 2910 g1_policy()->max_pause_time_ms(), 2911 gc_cause); 2912 2913 op.set_allocation_context(AllocationContext::current()); 2914 VMThread::execute(&op); 2915 2916 HeapWord* result = op.result(); 2917 bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded(); 2918 assert(result == NULL || ret_succeeded, 2919 "the result should be NULL if the VM did not succeed"); 2920 *succeeded = ret_succeeded; 2921 2922 assert_heap_not_locked(); 2923 return result; 2924 } 2925 2926 void 2927 G1CollectedHeap::doConcurrentMark() { 2928 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2929 if (!_cmThread->in_progress()) { 2930 _cmThread->set_started(); 2931 CGC_lock->notify(); 2932 } 2933 } 2934 2935 size_t G1CollectedHeap::pending_card_num() { 2936 size_t extra_cards = 0; 2937 JavaThread *curr = Threads::first(); 2938 while (curr != NULL) { 2939 DirtyCardQueue& dcq = curr->dirty_card_queue(); 2940 extra_cards += dcq.size(); 2941 curr = curr->next(); 2942 } 2943 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 2944 size_t buffer_size = dcqs.buffer_size(); 2945 size_t buffer_num = dcqs.completed_buffers_num(); 2946 2947 // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes 2948 // in bytes - not the number of 'entries'. We need to convert 2949 // into a number of cards. 2950 return (buffer_size * buffer_num + extra_cards) / oopSize; 2951 } 2952 2953 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure { 2954 private: 2955 size_t _total_humongous; 2956 size_t _candidate_humongous; 2957 2958 DirtyCardQueue _dcq; 2959 2960 // We don't nominate objects with many remembered set entries, on 2961 // the assumption that such objects are likely still live. 2962 bool is_remset_small(HeapRegion* region) const { 2963 HeapRegionRemSet* const rset = region->rem_set(); 2964 return G1EagerReclaimHumongousObjectsWithStaleRefs 2965 ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) 2966 : rset->is_empty(); 2967 } 2968 2969 bool is_typeArray_region(HeapRegion* region) const { 2970 return oop(region->bottom())->is_typeArray(); 2971 } 2972 2973 bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const { 2974 assert(region->is_starts_humongous(), "Must start a humongous object"); 2975 2976 // Candidate selection must satisfy the following constraints 2977 // while concurrent marking is in progress: 2978 // 2979 // * In order to maintain SATB invariants, an object must not be 2980 // reclaimed if it was allocated before the start of marking and 2981 // has not had its references scanned. Such an object must have 2982 // its references (including type metadata) scanned to ensure no 2983 // live objects are missed by the marking process. Objects 2984 // allocated after the start of concurrent marking don't need to 2985 // be scanned. 2986 // 2987 // * An object must not be reclaimed if it is on the concurrent 2988 // mark stack. Objects allocated after the start of concurrent 2989 // marking are never pushed on the mark stack. 2990 // 2991 // Nominating only objects allocated after the start of concurrent 2992 // marking is sufficient to meet both constraints. This may miss 2993 // some objects that satisfy the constraints, but the marking data 2994 // structures don't support efficiently performing the needed 2995 // additional tests or scrubbing of the mark stack. 2996 // 2997 // However, we presently only nominate is_typeArray() objects. 2998 // A humongous object containing references induces remembered 2999 // set entries on other regions. In order to reclaim such an 3000 // object, those remembered sets would need to be cleaned up. 3001 // 3002 // We also treat is_typeArray() objects specially, allowing them 3003 // to be reclaimed even if allocated before the start of 3004 // concurrent mark. For this we rely on mark stack insertion to 3005 // exclude is_typeArray() objects, preventing reclaiming an object 3006 // that is in the mark stack. We also rely on the metadata for 3007 // such objects to be built-in and so ensured to be kept live. 3008 // Frequent allocation and drop of large binary blobs is an 3009 // important use case for eager reclaim, and this special handling 3010 // may reduce needed headroom. 3011 3012 return is_typeArray_region(region) && is_remset_small(region); 3013 } 3014 3015 public: 3016 RegisterHumongousWithInCSetFastTestClosure() 3017 : _total_humongous(0), 3018 _candidate_humongous(0), 3019 _dcq(&JavaThread::dirty_card_queue_set()) { 3020 } 3021 3022 virtual bool doHeapRegion(HeapRegion* r) { 3023 if (!r->is_starts_humongous()) { 3024 return false; 3025 } 3026 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 3027 3028 bool is_candidate = humongous_region_is_candidate(g1h, r); 3029 uint rindex = r->hrm_index(); 3030 g1h->set_humongous_reclaim_candidate(rindex, is_candidate); 3031 if (is_candidate) { 3032 _candidate_humongous++; 3033 g1h->register_humongous_region_with_cset(rindex); 3034 // Is_candidate already filters out humongous object with large remembered sets. 3035 // If we have a humongous object with a few remembered sets, we simply flush these 3036 // remembered set entries into the DCQS. That will result in automatic 3037 // re-evaluation of their remembered set entries during the following evacuation 3038 // phase. 3039 if (!r->rem_set()->is_empty()) { 3040 guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries), 3041 "Found a not-small remembered set here. This is inconsistent with previous assumptions."); 3042 G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set(); 3043 HeapRegionRemSetIterator hrrs(r->rem_set()); 3044 size_t card_index; 3045 while (hrrs.has_next(card_index)) { 3046 jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index); 3047 // The remembered set might contain references to already freed 3048 // regions. Filter out such entries to avoid failing card table 3049 // verification. 3050 if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) { 3051 if (*card_ptr != CardTableModRefBS::dirty_card_val()) { 3052 *card_ptr = CardTableModRefBS::dirty_card_val(); 3053 _dcq.enqueue(card_ptr); 3054 } 3055 } 3056 } 3057 assert(hrrs.n_yielded() == r->rem_set()->occupied(), 3058 "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries", 3059 hrrs.n_yielded(), r->rem_set()->occupied()); 3060 r->rem_set()->clear_locked(); 3061 } 3062 assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty."); 3063 } 3064 _total_humongous++; 3065 3066 return false; 3067 } 3068 3069 size_t total_humongous() const { return _total_humongous; } 3070 size_t candidate_humongous() const { return _candidate_humongous; } 3071 3072 void flush_rem_set_entries() { _dcq.flush(); } 3073 }; 3074 3075 void G1CollectedHeap::register_humongous_regions_with_cset() { 3076 if (!G1EagerReclaimHumongousObjects) { 3077 g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0); 3078 return; 3079 } 3080 double time = os::elapsed_counter(); 3081 3082 // Collect reclaim candidate information and register candidates with cset. 3083 RegisterHumongousWithInCSetFastTestClosure cl; 3084 heap_region_iterate(&cl); 3085 3086 time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0; 3087 g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time, 3088 cl.total_humongous(), 3089 cl.candidate_humongous()); 3090 _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0; 3091 3092 // Finally flush all remembered set entries to re-check into the global DCQS. 3093 cl.flush_rem_set_entries(); 3094 } 3095 3096 class VerifyRegionRemSetClosure : public HeapRegionClosure { 3097 public: 3098 bool doHeapRegion(HeapRegion* hr) { 3099 if (!hr->is_archive() && !hr->is_continues_humongous()) { 3100 hr->verify_rem_set(); 3101 } 3102 return false; 3103 } 3104 }; 3105 3106 #ifdef ASSERT 3107 class VerifyCSetClosure: public HeapRegionClosure { 3108 public: 3109 bool doHeapRegion(HeapRegion* hr) { 3110 // Here we check that the CSet region's RSet is ready for parallel 3111 // iteration. The fields that we'll verify are only manipulated 3112 // when the region is part of a CSet and is collected. Afterwards, 3113 // we reset these fields when we clear the region's RSet (when the 3114 // region is freed) so they are ready when the region is 3115 // re-allocated. The only exception to this is if there's an 3116 // evacuation failure and instead of freeing the region we leave 3117 // it in the heap. In that case, we reset these fields during 3118 // evacuation failure handling. 3119 guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification"); 3120 3121 // Here's a good place to add any other checks we'd like to 3122 // perform on CSet regions. 3123 return false; 3124 } 3125 }; 3126 #endif // ASSERT 3127 3128 uint G1CollectedHeap::num_task_queues() const { 3129 return _task_queues->size(); 3130 } 3131 3132 #if TASKQUEUE_STATS 3133 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) { 3134 st->print_raw_cr("GC Task Stats"); 3135 st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr(); 3136 st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr(); 3137 } 3138 3139 void G1CollectedHeap::print_taskqueue_stats() const { 3140 if (!develop_log_is_enabled(Trace, gc, task, stats)) { 3141 return; 3142 } 3143 LogHandle(gc, task, stats) log; 3144 ResourceMark rm; 3145 outputStream* st = log.trace_stream(); 3146 3147 print_taskqueue_stats_hdr(st); 3148 3149 TaskQueueStats totals; 3150 const uint n = num_task_queues(); 3151 for (uint i = 0; i < n; ++i) { 3152 st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr(); 3153 totals += task_queue(i)->stats; 3154 } 3155 st->print_raw("tot "); totals.print(st); st->cr(); 3156 3157 DEBUG_ONLY(totals.verify()); 3158 } 3159 3160 void G1CollectedHeap::reset_taskqueue_stats() { 3161 const uint n = num_task_queues(); 3162 for (uint i = 0; i < n; ++i) { 3163 task_queue(i)->stats.reset(); 3164 } 3165 } 3166 #endif // TASKQUEUE_STATS 3167 3168 void G1CollectedHeap::log_gc_footer(jlong pause_time_counter) { 3169 if (evacuation_failed()) { 3170 log_info(gc)("To-space exhausted"); 3171 } 3172 3173 double pause_time_ms = TimeHelper::counter_to_millis(pause_time_counter); 3174 g1_policy()->print_phases(pause_time_ms); 3175 3176 g1_policy()->print_detailed_heap_transition(); 3177 } 3178 3179 3180 void G1CollectedHeap::wait_for_root_region_scanning() { 3181 double scan_wait_start = os::elapsedTime(); 3182 // We have to wait until the CM threads finish scanning the 3183 // root regions as it's the only way to ensure that all the 3184 // objects on them have been correctly scanned before we start 3185 // moving them during the GC. 3186 bool waited = _cm->root_regions()->wait_until_scan_finished(); 3187 double wait_time_ms = 0.0; 3188 if (waited) { 3189 double scan_wait_end = os::elapsedTime(); 3190 wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0; 3191 } 3192 g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms); 3193 } 3194 3195 bool 3196 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) { 3197 assert_at_safepoint(true /* should_be_vm_thread */); 3198 guarantee(!is_gc_active(), "collection is not reentrant"); 3199 3200 if (GCLocker::check_active_before_gc()) { 3201 return false; 3202 } 3203 3204 _gc_timer_stw->register_gc_start(); 3205 3206 GCIdMark gc_id_mark; 3207 _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start()); 3208 3209 SvcGCMarker sgcm(SvcGCMarker::MINOR); 3210 ResourceMark rm; 3211 3212 wait_for_root_region_scanning(); 3213 3214 print_heap_before_gc(); 3215 trace_heap_before_gc(_gc_tracer_stw); 3216 3217 _verifier->verify_region_sets_optional(); 3218 _verifier->verify_dirty_young_regions(); 3219 3220 // This call will decide whether this pause is an initial-mark 3221 // pause. If it is, during_initial_mark_pause() will return true 3222 // for the duration of this pause. 3223 g1_policy()->decide_on_conc_mark_initiation(); 3224 3225 // We do not allow initial-mark to be piggy-backed on a mixed GC. 3226 assert(!collector_state()->during_initial_mark_pause() || 3227 collector_state()->gcs_are_young(), "sanity"); 3228 3229 // We also do not allow mixed GCs during marking. 3230 assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity"); 3231 3232 // Record whether this pause is an initial mark. When the current 3233 // thread has completed its logging output and it's safe to signal 3234 // the CM thread, the flag's value in the policy has been reset. 3235 bool should_start_conc_mark = collector_state()->during_initial_mark_pause(); 3236 3237 // Inner scope for scope based logging, timers, and stats collection 3238 { 3239 EvacuationInfo evacuation_info; 3240 3241 if (collector_state()->during_initial_mark_pause()) { 3242 // We are about to start a marking cycle, so we increment the 3243 // full collection counter. 3244 increment_old_marking_cycles_started(); 3245 register_concurrent_cycle_start(_gc_timer_stw->gc_start()); 3246 } 3247 3248 _gc_tracer_stw->report_yc_type(collector_state()->yc_type()); 3249 3250 GCTraceCPUTime tcpu; 3251 3252 uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(), 3253 workers()->active_workers(), 3254 Threads::number_of_non_daemon_threads()); 3255 workers()->set_active_workers(active_workers); 3256 FormatBuffer<> gc_string("Pause "); 3257 if (collector_state()->during_initial_mark_pause()) { 3258 gc_string.append("Initial Mark"); 3259 } else if (collector_state()->gcs_are_young()) { 3260 gc_string.append("Young"); 3261 } else { 3262 gc_string.append("Mixed"); 3263 } 3264 GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true); 3265 3266 jlong pause_start_counter = os::elapsed_counter(); 3267 g1_policy()->note_gc_start(active_workers); 3268 3269 TraceCollectorStats tcs(g1mm()->incremental_collection_counters()); 3270 TraceMemoryManagerStats tms(false /* fullGC */, gc_cause()); 3271 3272 // If the secondary_free_list is not empty, append it to the 3273 // free_list. No need to wait for the cleanup operation to finish; 3274 // the region allocation code will check the secondary_free_list 3275 // and wait if necessary. If the G1StressConcRegionFreeing flag is 3276 // set, skip this step so that the region allocation code has to 3277 // get entries from the secondary_free_list. 3278 if (!G1StressConcRegionFreeing) { 3279 append_secondary_free_list_if_not_empty_with_lock(); 3280 } 3281 3282 assert(check_young_list_well_formed(), "young list should be well formed"); 3283 3284 // Don't dynamically change the number of GC threads this early. A value of 3285 // 0 is used to indicate serial work. When parallel work is done, 3286 // it will be set. 3287 3288 { // Call to jvmpi::post_class_unload_events must occur outside of active GC 3289 IsGCActiveMark x; 3290 3291 gc_prologue(false); 3292 increment_total_collections(false /* full gc */); 3293 increment_gc_time_stamp(); 3294 3295 if (VerifyRememberedSets) { 3296 log_info(gc, verify)("[Verifying RemSets before GC]"); 3297 VerifyRegionRemSetClosure v_cl; 3298 heap_region_iterate(&v_cl); 3299 } 3300 3301 _verifier->verify_before_gc(); 3302 3303 _verifier->check_bitmaps("GC Start"); 3304 3305 #if defined(COMPILER2) || INCLUDE_JVMCI 3306 DerivedPointerTable::clear(); 3307 #endif 3308 3309 // Please see comment in g1CollectedHeap.hpp and 3310 // G1CollectedHeap::ref_processing_init() to see how 3311 // reference processing currently works in G1. 3312 3313 // Enable discovery in the STW reference processor 3314 if (g1_policy()->should_process_references()) { 3315 ref_processor_stw()->enable_discovery(); 3316 } else { 3317 ref_processor_stw()->disable_discovery(); 3318 } 3319 3320 { 3321 // We want to temporarily turn off discovery by the 3322 // CM ref processor, if necessary, and turn it back on 3323 // on again later if we do. Using a scoped 3324 // NoRefDiscovery object will do this. 3325 NoRefDiscovery no_cm_discovery(ref_processor_cm()); 3326 3327 // Forget the current alloc region (we might even choose it to be part 3328 // of the collection set!). 3329 _allocator->release_mutator_alloc_region(); 3330 3331 // This timing is only used by the ergonomics to handle our pause target. 3332 // It is unclear why this should not include the full pause. We will 3333 // investigate this in CR 7178365. 3334 // 3335 // Preserving the old comment here if that helps the investigation: 3336 // 3337 // The elapsed time induced by the start time below deliberately elides 3338 // the possible verification above. 3339 double sample_start_time_sec = os::elapsedTime(); 3340 3341 g1_policy()->record_collection_pause_start(sample_start_time_sec); 3342 3343 if (collector_state()->during_initial_mark_pause()) { 3344 concurrent_mark()->checkpointRootsInitialPre(); 3345 } 3346 3347 double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms); 3348 g1_policy()->finalize_old_cset_part(time_remaining_ms); 3349 3350 evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length()); 3351 3352 // Make sure the remembered sets are up to date. This needs to be 3353 // done before register_humongous_regions_with_cset(), because the 3354 // remembered sets are used there to choose eager reclaim candidates. 3355 // If the remembered sets are not up to date we might miss some 3356 // entries that need to be handled. 3357 g1_rem_set()->cleanupHRRS(); 3358 3359 register_humongous_regions_with_cset(); 3360 3361 assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table."); 3362 3363 _cm->note_start_of_gc(); 3364 // We call this after finalize_cset() to 3365 // ensure that the CSet has been finalized. 3366 _cm->verify_no_cset_oops(); 3367 3368 if (_hr_printer.is_active()) { 3369 HeapRegion* hr = g1_policy()->collection_set(); 3370 while (hr != NULL) { 3371 _hr_printer.cset(hr); 3372 hr = hr->next_in_collection_set(); 3373 } 3374 } 3375 3376 #ifdef ASSERT 3377 VerifyCSetClosure cl; 3378 collection_set_iterate(&cl); 3379 #endif // ASSERT 3380 3381 // Initialize the GC alloc regions. 3382 _allocator->init_gc_alloc_regions(evacuation_info); 3383 3384 G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length()); 3385 pre_evacuate_collection_set(); 3386 3387 // Actually do the work... 3388 evacuate_collection_set(evacuation_info, &per_thread_states); 3389 3390 post_evacuate_collection_set(evacuation_info, &per_thread_states); 3391 3392 const size_t* surviving_young_words = per_thread_states.surviving_young_words(); 3393 free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words); 3394 3395 eagerly_reclaim_humongous_regions(); 3396 3397 g1_policy()->clear_collection_set(); 3398 3399 // Start a new incremental collection set for the next pause. 3400 g1_policy()->start_incremental_cset_building(); 3401 3402 clear_cset_fast_test(); 3403 3404 _young_list->reset_sampled_info(); 3405 3406 // Don't check the whole heap at this point as the 3407 // GC alloc regions from this pause have been tagged 3408 // as survivors and moved on to the survivor list. 3409 // Survivor regions will fail the !is_young() check. 3410 assert(check_young_list_empty(false /* check_heap */), 3411 "young list should be empty"); 3412 3413 g1_policy()->record_survivor_regions(_young_list->survivor_length(), 3414 _young_list->first_survivor_region(), 3415 _young_list->last_survivor_region()); 3416 3417 _young_list->reset_auxilary_lists(); 3418 3419 if (evacuation_failed()) { 3420 set_used(recalculate_used()); 3421 if (_archive_allocator != NULL) { 3422 _archive_allocator->clear_used(); 3423 } 3424 for (uint i = 0; i < ParallelGCThreads; i++) { 3425 if (_evacuation_failed_info_array[i].has_failed()) { 3426 _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]); 3427 } 3428 } 3429 } else { 3430 // The "used" of the the collection set have already been subtracted 3431 // when they were freed. Add in the bytes evacuated. 3432 increase_used(g1_policy()->bytes_copied_during_gc()); 3433 } 3434 3435 if (collector_state()->during_initial_mark_pause()) { 3436 // We have to do this before we notify the CM threads that 3437 // they can start working to make sure that all the 3438 // appropriate initialization is done on the CM object. 3439 concurrent_mark()->checkpointRootsInitialPost(); 3440 collector_state()->set_mark_in_progress(true); 3441 // Note that we don't actually trigger the CM thread at 3442 // this point. We do that later when we're sure that 3443 // the current thread has completed its logging output. 3444 } 3445 3446 allocate_dummy_regions(); 3447 3448 _allocator->init_mutator_alloc_region(); 3449 3450 { 3451 size_t expand_bytes = g1_policy()->expansion_amount(); 3452 if (expand_bytes > 0) { 3453 size_t bytes_before = capacity(); 3454 // No need for an ergo logging here, 3455 // expansion_amount() does this when it returns a value > 0. 3456 double expand_ms; 3457 if (!expand(expand_bytes, &expand_ms)) { 3458 // We failed to expand the heap. Cannot do anything about it. 3459 } 3460 g1_policy()->phase_times()->record_expand_heap_time(expand_ms); 3461 } 3462 } 3463 3464 // We redo the verification but now wrt to the new CSet which 3465 // has just got initialized after the previous CSet was freed. 3466 _cm->verify_no_cset_oops(); 3467 _cm->note_end_of_gc(); 3468 3469 // This timing is only used by the ergonomics to handle our pause target. 3470 // It is unclear why this should not include the full pause. We will 3471 // investigate this in CR 7178365. 3472 double sample_end_time_sec = os::elapsedTime(); 3473 double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS; 3474 size_t total_cards_scanned = per_thread_states.total_cards_scanned(); 3475 g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned); 3476 3477 evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before()); 3478 evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc()); 3479 3480 MemoryService::track_memory_usage(); 3481 3482 // In prepare_for_verify() below we'll need to scan the deferred 3483 // update buffers to bring the RSets up-to-date if 3484 // G1HRRSFlushLogBuffersOnVerify has been set. While scanning 3485 // the update buffers we'll probably need to scan cards on the 3486 // regions we just allocated to (i.e., the GC alloc 3487 // regions). However, during the last GC we called 3488 // set_saved_mark() on all the GC alloc regions, so card 3489 // scanning might skip the [saved_mark_word()...top()] area of 3490 // those regions (i.e., the area we allocated objects into 3491 // during the last GC). But it shouldn't. Given that 3492 // saved_mark_word() is conditional on whether the GC time stamp 3493 // on the region is current or not, by incrementing the GC time 3494 // stamp here we invalidate all the GC time stamps on all the 3495 // regions and saved_mark_word() will simply return top() for 3496 // all the regions. This is a nicer way of ensuring this rather 3497 // than iterating over the regions and fixing them. In fact, the 3498 // GC time stamp increment here also ensures that 3499 // saved_mark_word() will return top() between pauses, i.e., 3500 // during concurrent refinement. So we don't need the 3501 // is_gc_active() check to decided which top to use when 3502 // scanning cards (see CR 7039627). 3503 increment_gc_time_stamp(); 3504 3505 if (VerifyRememberedSets) { 3506 log_info(gc, verify)("[Verifying RemSets after GC]"); 3507 VerifyRegionRemSetClosure v_cl; 3508 heap_region_iterate(&v_cl); 3509 } 3510 3511 _verifier->verify_after_gc(); 3512 _verifier->check_bitmaps("GC End"); 3513 3514 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 3515 ref_processor_stw()->verify_no_references_recorded(); 3516 3517 // CM reference discovery will be re-enabled if necessary. 3518 } 3519 3520 #ifdef TRACESPINNING 3521 ParallelTaskTerminator::print_termination_counts(); 3522 #endif 3523 3524 gc_epilogue(false); 3525 } 3526 3527 // Print the remainder of the GC log output. 3528 log_gc_footer(os::elapsed_counter() - pause_start_counter); 3529 3530 // It is not yet to safe to tell the concurrent mark to 3531 // start as we have some optional output below. We don't want the 3532 // output from the concurrent mark thread interfering with this 3533 // logging output either. 3534 3535 _hrm.verify_optional(); 3536 _verifier->verify_region_sets_optional(); 3537 3538 TASKQUEUE_STATS_ONLY(print_taskqueue_stats()); 3539 TASKQUEUE_STATS_ONLY(reset_taskqueue_stats()); 3540 3541 print_heap_after_gc(); 3542 trace_heap_after_gc(_gc_tracer_stw); 3543 3544 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 3545 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 3546 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 3547 // before any GC notifications are raised. 3548 g1mm()->update_sizes(); 3549 3550 _gc_tracer_stw->report_evacuation_info(&evacuation_info); 3551 _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold()); 3552 _gc_timer_stw->register_gc_end(); 3553 _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions()); 3554 } 3555 // It should now be safe to tell the concurrent mark thread to start 3556 // without its logging output interfering with the logging output 3557 // that came from the pause. 3558 3559 if (should_start_conc_mark) { 3560 // CAUTION: after the doConcurrentMark() call below, 3561 // the concurrent marking thread(s) could be running 3562 // concurrently with us. Make sure that anything after 3563 // this point does not assume that we are the only GC thread 3564 // running. Note: of course, the actual marking work will 3565 // not start until the safepoint itself is released in 3566 // SuspendibleThreadSet::desynchronize(). 3567 doConcurrentMark(); 3568 } 3569 3570 return true; 3571 } 3572 3573 void G1CollectedHeap::restore_preserved_marks() { 3574 G1RestorePreservedMarksTask rpm_task(_preserved_objs); 3575 workers()->run_task(&rpm_task); 3576 } 3577 3578 void G1CollectedHeap::remove_self_forwarding_pointers() { 3579 G1ParRemoveSelfForwardPtrsTask rsfp_task; 3580 workers()->run_task(&rsfp_task); 3581 } 3582 3583 void G1CollectedHeap::restore_after_evac_failure() { 3584 double remove_self_forwards_start = os::elapsedTime(); 3585 3586 remove_self_forwarding_pointers(); 3587 restore_preserved_marks(); 3588 3589 g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0); 3590 } 3591 3592 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) { 3593 if (!_evacuation_failed) { 3594 _evacuation_failed = true; 3595 } 3596 3597 _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size()); 3598 3599 // We want to call the "for_promotion_failure" version only in the 3600 // case of a promotion failure. 3601 if (m->must_be_preserved_for_promotion_failure(obj)) { 3602 OopAndMarkOop elem(obj, m); 3603 _preserved_objs[worker_id].push(elem); 3604 } 3605 } 3606 3607 bool G1ParEvacuateFollowersClosure::offer_termination() { 3608 G1ParScanThreadState* const pss = par_scan_state(); 3609 start_term_time(); 3610 const bool res = terminator()->offer_termination(); 3611 end_term_time(); 3612 return res; 3613 } 3614 3615 void G1ParEvacuateFollowersClosure::do_void() { 3616 G1ParScanThreadState* const pss = par_scan_state(); 3617 pss->trim_queue(); 3618 do { 3619 pss->steal_and_trim_queue(queues()); 3620 } while (!offer_termination()); 3621 } 3622 3623 class G1ParTask : public AbstractGangTask { 3624 protected: 3625 G1CollectedHeap* _g1h; 3626 G1ParScanThreadStateSet* _pss; 3627 RefToScanQueueSet* _queues; 3628 G1RootProcessor* _root_processor; 3629 ParallelTaskTerminator _terminator; 3630 uint _n_workers; 3631 3632 public: 3633 G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers) 3634 : AbstractGangTask("G1 collection"), 3635 _g1h(g1h), 3636 _pss(per_thread_states), 3637 _queues(task_queues), 3638 _root_processor(root_processor), 3639 _terminator(n_workers, _queues), 3640 _n_workers(n_workers) 3641 {} 3642 3643 void work(uint worker_id) { 3644 if (worker_id >= _n_workers) return; // no work needed this round 3645 3646 double start_sec = os::elapsedTime(); 3647 _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec); 3648 3649 { 3650 ResourceMark rm; 3651 HandleMark hm; 3652 3653 ReferenceProcessor* rp = _g1h->ref_processor_stw(); 3654 3655 G1ParScanThreadState* pss = _pss->state_for_worker(worker_id); 3656 pss->set_ref_processor(rp); 3657 3658 double start_strong_roots_sec = os::elapsedTime(); 3659 3660 _root_processor->evacuate_roots(pss->closures(), worker_id); 3661 3662 G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss); 3663 3664 // We pass a weak code blobs closure to the remembered set scanning because we want to avoid 3665 // treating the nmethods visited to act as roots for concurrent marking. 3666 // We only want to make sure that the oops in the nmethods are adjusted with regard to the 3667 // objects copied by the current evacuation. 3668 size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl, 3669 pss->closures()->weak_codeblobs(), 3670 worker_id); 3671 3672 _pss->add_cards_scanned(worker_id, cards_scanned); 3673 3674 double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec; 3675 3676 double term_sec = 0.0; 3677 size_t evac_term_attempts = 0; 3678 { 3679 double start = os::elapsedTime(); 3680 G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator); 3681 evac.do_void(); 3682 3683 evac_term_attempts = evac.term_attempts(); 3684 term_sec = evac.term_time(); 3685 double elapsed_sec = os::elapsedTime() - start; 3686 _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec); 3687 _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec); 3688 _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts); 3689 } 3690 3691 assert(pss->queue_is_empty(), "should be empty"); 3692 3693 if (log_is_enabled(Debug, gc, task, stats)) { 3694 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); 3695 size_t lab_waste; 3696 size_t lab_undo_waste; 3697 pss->waste(lab_waste, lab_undo_waste); 3698 _g1h->print_termination_stats(worker_id, 3699 (os::elapsedTime() - start_sec) * 1000.0, /* elapsed time */ 3700 strong_roots_sec * 1000.0, /* strong roots time */ 3701 term_sec * 1000.0, /* evac term time */ 3702 evac_term_attempts, /* evac term attempts */ 3703 lab_waste, /* alloc buffer waste */ 3704 lab_undo_waste /* undo waste */ 3705 ); 3706 } 3707 3708 // Close the inner scope so that the ResourceMark and HandleMark 3709 // destructors are executed here and are included as part of the 3710 // "GC Worker Time". 3711 } 3712 _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime()); 3713 } 3714 }; 3715 3716 void G1CollectedHeap::print_termination_stats_hdr() { 3717 log_debug(gc, task, stats)("GC Termination Stats"); 3718 log_debug(gc, task, stats)(" elapsed --strong roots-- -------termination------- ------waste (KiB)------"); 3719 log_debug(gc, task, stats)("thr ms ms %% ms %% attempts total alloc undo"); 3720 log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------"); 3721 } 3722 3723 void G1CollectedHeap::print_termination_stats(uint worker_id, 3724 double elapsed_ms, 3725 double strong_roots_ms, 3726 double term_ms, 3727 size_t term_attempts, 3728 size_t alloc_buffer_waste, 3729 size_t undo_waste) const { 3730 log_debug(gc, task, stats) 3731 ("%3d %9.2f %9.2f %6.2f " 3732 "%9.2f %6.2f " SIZE_FORMAT_W(8) " " 3733 SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7), 3734 worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms, 3735 term_ms, term_ms * 100 / elapsed_ms, term_attempts, 3736 (alloc_buffer_waste + undo_waste) * HeapWordSize / K, 3737 alloc_buffer_waste * HeapWordSize / K, 3738 undo_waste * HeapWordSize / K); 3739 } 3740 3741 class G1StringSymbolTableUnlinkTask : public AbstractGangTask { 3742 private: 3743 BoolObjectClosure* _is_alive; 3744 int _initial_string_table_size; 3745 int _initial_symbol_table_size; 3746 3747 bool _process_strings; 3748 int _strings_processed; 3749 int _strings_removed; 3750 3751 bool _process_symbols; 3752 int _symbols_processed; 3753 int _symbols_removed; 3754 3755 public: 3756 G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) : 3757 AbstractGangTask("String/Symbol Unlinking"), 3758 _is_alive(is_alive), 3759 _process_strings(process_strings), _strings_processed(0), _strings_removed(0), 3760 _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) { 3761 3762 _initial_string_table_size = StringTable::the_table()->table_size(); 3763 _initial_symbol_table_size = SymbolTable::the_table()->table_size(); 3764 if (process_strings) { 3765 StringTable::clear_parallel_claimed_index(); 3766 } 3767 if (process_symbols) { 3768 SymbolTable::clear_parallel_claimed_index(); 3769 } 3770 } 3771 3772 ~G1StringSymbolTableUnlinkTask() { 3773 guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size, 3774 "claim value %d after unlink less than initial string table size %d", 3775 StringTable::parallel_claimed_index(), _initial_string_table_size); 3776 guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size, 3777 "claim value %d after unlink less than initial symbol table size %d", 3778 SymbolTable::parallel_claimed_index(), _initial_symbol_table_size); 3779 3780 log_debug(gc, stringdedup)("Cleaned string and symbol table, " 3781 "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, " 3782 "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed", 3783 strings_processed(), strings_removed(), 3784 symbols_processed(), symbols_removed()); 3785 } 3786 3787 void work(uint worker_id) { 3788 int strings_processed = 0; 3789 int strings_removed = 0; 3790 int symbols_processed = 0; 3791 int symbols_removed = 0; 3792 if (_process_strings) { 3793 StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed); 3794 Atomic::add(strings_processed, &_strings_processed); 3795 Atomic::add(strings_removed, &_strings_removed); 3796 } 3797 if (_process_symbols) { 3798 SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed); 3799 Atomic::add(symbols_processed, &_symbols_processed); 3800 Atomic::add(symbols_removed, &_symbols_removed); 3801 } 3802 } 3803 3804 size_t strings_processed() const { return (size_t)_strings_processed; } 3805 size_t strings_removed() const { return (size_t)_strings_removed; } 3806 3807 size_t symbols_processed() const { return (size_t)_symbols_processed; } 3808 size_t symbols_removed() const { return (size_t)_symbols_removed; } 3809 }; 3810 3811 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC { 3812 private: 3813 static Monitor* _lock; 3814 3815 BoolObjectClosure* const _is_alive; 3816 const bool _unloading_occurred; 3817 const uint _num_workers; 3818 3819 // Variables used to claim nmethods. 3820 nmethod* _first_nmethod; 3821 volatile nmethod* _claimed_nmethod; 3822 3823 // The list of nmethods that need to be processed by the second pass. 3824 volatile nmethod* _postponed_list; 3825 volatile uint _num_entered_barrier; 3826 3827 public: 3828 G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) : 3829 _is_alive(is_alive), 3830 _unloading_occurred(unloading_occurred), 3831 _num_workers(num_workers), 3832 _first_nmethod(NULL), 3833 _claimed_nmethod(NULL), 3834 _postponed_list(NULL), 3835 _num_entered_barrier(0) 3836 { 3837 nmethod::increase_unloading_clock(); 3838 // Get first alive nmethod 3839 NMethodIterator iter = NMethodIterator(); 3840 if(iter.next_alive()) { 3841 _first_nmethod = iter.method(); 3842 } 3843 _claimed_nmethod = (volatile nmethod*)_first_nmethod; 3844 } 3845 3846 ~G1CodeCacheUnloadingTask() { 3847 CodeCache::verify_clean_inline_caches(); 3848 3849 CodeCache::set_needs_cache_clean(false); 3850 guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be"); 3851 3852 CodeCache::verify_icholder_relocations(); 3853 } 3854 3855 private: 3856 void add_to_postponed_list(nmethod* nm) { 3857 nmethod* old; 3858 do { 3859 old = (nmethod*)_postponed_list; 3860 nm->set_unloading_next(old); 3861 } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old); 3862 } 3863 3864 void clean_nmethod(nmethod* nm) { 3865 bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred); 3866 3867 if (postponed) { 3868 // This nmethod referred to an nmethod that has not been cleaned/unloaded yet. 3869 add_to_postponed_list(nm); 3870 } 3871 3872 // Mark that this thread has been cleaned/unloaded. 3873 // After this call, it will be safe to ask if this nmethod was unloaded or not. 3874 nm->set_unloading_clock(nmethod::global_unloading_clock()); 3875 } 3876 3877 void clean_nmethod_postponed(nmethod* nm) { 3878 nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred); 3879 } 3880 3881 static const int MaxClaimNmethods = 16; 3882 3883 void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) { 3884 nmethod* first; 3885 NMethodIterator last; 3886 3887 do { 3888 *num_claimed_nmethods = 0; 3889 3890 first = (nmethod*)_claimed_nmethod; 3891 last = NMethodIterator(first); 3892 3893 if (first != NULL) { 3894 3895 for (int i = 0; i < MaxClaimNmethods; i++) { 3896 if (!last.next_alive()) { 3897 break; 3898 } 3899 claimed_nmethods[i] = last.method(); 3900 (*num_claimed_nmethods)++; 3901 } 3902 } 3903 3904 } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first); 3905 } 3906 3907 nmethod* claim_postponed_nmethod() { 3908 nmethod* claim; 3909 nmethod* next; 3910 3911 do { 3912 claim = (nmethod*)_postponed_list; 3913 if (claim == NULL) { 3914 return NULL; 3915 } 3916 3917 next = claim->unloading_next(); 3918 3919 } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim); 3920 3921 return claim; 3922 } 3923 3924 public: 3925 // Mark that we're done with the first pass of nmethod cleaning. 3926 void barrier_mark(uint worker_id) { 3927 MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag); 3928 _num_entered_barrier++; 3929 if (_num_entered_barrier == _num_workers) { 3930 ml.notify_all(); 3931 } 3932 } 3933 3934 // See if we have to wait for the other workers to 3935 // finish their first-pass nmethod cleaning work. 3936 void barrier_wait(uint worker_id) { 3937 if (_num_entered_barrier < _num_workers) { 3938 MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag); 3939 while (_num_entered_barrier < _num_workers) { 3940 ml.wait(Mutex::_no_safepoint_check_flag, 0, false); 3941 } 3942 } 3943 } 3944 3945 // Cleaning and unloading of nmethods. Some work has to be postponed 3946 // to the second pass, when we know which nmethods survive. 3947 void work_first_pass(uint worker_id) { 3948 // The first nmethods is claimed by the first worker. 3949 if (worker_id == 0 && _first_nmethod != NULL) { 3950 clean_nmethod(_first_nmethod); 3951 _first_nmethod = NULL; 3952 } 3953 3954 int num_claimed_nmethods; 3955 nmethod* claimed_nmethods[MaxClaimNmethods]; 3956 3957 while (true) { 3958 claim_nmethods(claimed_nmethods, &num_claimed_nmethods); 3959 3960 if (num_claimed_nmethods == 0) { 3961 break; 3962 } 3963 3964 for (int i = 0; i < num_claimed_nmethods; i++) { 3965 clean_nmethod(claimed_nmethods[i]); 3966 } 3967 } 3968 } 3969 3970 void work_second_pass(uint worker_id) { 3971 nmethod* nm; 3972 // Take care of postponed nmethods. 3973 while ((nm = claim_postponed_nmethod()) != NULL) { 3974 clean_nmethod_postponed(nm); 3975 } 3976 } 3977 }; 3978 3979 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never); 3980 3981 class G1KlassCleaningTask : public StackObj { 3982 BoolObjectClosure* _is_alive; 3983 volatile jint _clean_klass_tree_claimed; 3984 ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator; 3985 3986 public: 3987 G1KlassCleaningTask(BoolObjectClosure* is_alive) : 3988 _is_alive(is_alive), 3989 _clean_klass_tree_claimed(0), 3990 _klass_iterator() { 3991 } 3992 3993 private: 3994 bool claim_clean_klass_tree_task() { 3995 if (_clean_klass_tree_claimed) { 3996 return false; 3997 } 3998 3999 return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0; 4000 } 4001 4002 InstanceKlass* claim_next_klass() { 4003 Klass* klass; 4004 do { 4005 klass =_klass_iterator.next_klass(); 4006 } while (klass != NULL && !klass->is_instance_klass()); 4007 4008 // this can be null so don't call InstanceKlass::cast 4009 return static_cast<InstanceKlass*>(klass); 4010 } 4011 4012 public: 4013 4014 void clean_klass(InstanceKlass* ik) { 4015 ik->clean_weak_instanceklass_links(_is_alive); 4016 } 4017 4018 void work() { 4019 ResourceMark rm; 4020 4021 // One worker will clean the subklass/sibling klass tree. 4022 if (claim_clean_klass_tree_task()) { 4023 Klass::clean_subklass_tree(_is_alive); 4024 } 4025 4026 // All workers will help cleaning the classes, 4027 InstanceKlass* klass; 4028 while ((klass = claim_next_klass()) != NULL) { 4029 clean_klass(klass); 4030 } 4031 } 4032 }; 4033 4034 // To minimize the remark pause times, the tasks below are done in parallel. 4035 class G1ParallelCleaningTask : public AbstractGangTask { 4036 private: 4037 G1StringSymbolTableUnlinkTask _string_symbol_task; 4038 G1CodeCacheUnloadingTask _code_cache_task; 4039 G1KlassCleaningTask _klass_cleaning_task; 4040 4041 public: 4042 // The constructor is run in the VMThread. 4043 G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) : 4044 AbstractGangTask("Parallel Cleaning"), 4045 _string_symbol_task(is_alive, process_strings, process_symbols), 4046 _code_cache_task(num_workers, is_alive, unloading_occurred), 4047 _klass_cleaning_task(is_alive) { 4048 } 4049 4050 // The parallel work done by all worker threads. 4051 void work(uint worker_id) { 4052 // Do first pass of code cache cleaning. 4053 _code_cache_task.work_first_pass(worker_id); 4054 4055 // Let the threads mark that the first pass is done. 4056 _code_cache_task.barrier_mark(worker_id); 4057 4058 // Clean the Strings and Symbols. 4059 _string_symbol_task.work(worker_id); 4060 4061 // Wait for all workers to finish the first code cache cleaning pass. 4062 _code_cache_task.barrier_wait(worker_id); 4063 4064 // Do the second code cache cleaning work, which realize on 4065 // the liveness information gathered during the first pass. 4066 _code_cache_task.work_second_pass(worker_id); 4067 4068 // Clean all klasses that were not unloaded. 4069 _klass_cleaning_task.work(); 4070 } 4071 }; 4072 4073 4074 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive, 4075 bool process_strings, 4076 bool process_symbols, 4077 bool class_unloading_occurred) { 4078 uint n_workers = workers()->active_workers(); 4079 4080 G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, 4081 n_workers, class_unloading_occurred); 4082 workers()->run_task(&g1_unlink_task); 4083 } 4084 4085 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive, 4086 bool process_strings, bool process_symbols) { 4087 { 4088 G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols); 4089 workers()->run_task(&g1_unlink_task); 4090 } 4091 4092 if (G1StringDedup::is_enabled()) { 4093 G1StringDedup::unlink(is_alive); 4094 } 4095 } 4096 4097 class G1RedirtyLoggedCardsTask : public AbstractGangTask { 4098 private: 4099 DirtyCardQueueSet* _queue; 4100 G1CollectedHeap* _g1h; 4101 public: 4102 G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"), 4103 _queue(queue), _g1h(g1h) { } 4104 4105 virtual void work(uint worker_id) { 4106 G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times(); 4107 G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id); 4108 4109 RedirtyLoggedCardTableEntryClosure cl(_g1h); 4110 _queue->par_apply_closure_to_all_completed_buffers(&cl); 4111 4112 phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied()); 4113 } 4114 }; 4115 4116 void G1CollectedHeap::redirty_logged_cards() { 4117 double redirty_logged_cards_start = os::elapsedTime(); 4118 4119 G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this); 4120 dirty_card_queue_set().reset_for_par_iteration(); 4121 workers()->run_task(&redirty_task); 4122 4123 DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set(); 4124 dcq.merge_bufferlists(&dirty_card_queue_set()); 4125 assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed"); 4126 4127 g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0); 4128 } 4129 4130 // Weak Reference Processing support 4131 4132 // An always "is_alive" closure that is used to preserve referents. 4133 // If the object is non-null then it's alive. Used in the preservation 4134 // of referent objects that are pointed to by reference objects 4135 // discovered by the CM ref processor. 4136 class G1AlwaysAliveClosure: public BoolObjectClosure { 4137 G1CollectedHeap* _g1; 4138 public: 4139 G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 4140 bool do_object_b(oop p) { 4141 if (p != NULL) { 4142 return true; 4143 } 4144 return false; 4145 } 4146 }; 4147 4148 bool G1STWIsAliveClosure::do_object_b(oop p) { 4149 // An object is reachable if it is outside the collection set, 4150 // or is inside and copied. 4151 return !_g1->is_in_cset(p) || p->is_forwarded(); 4152 } 4153 4154 // Non Copying Keep Alive closure 4155 class G1KeepAliveClosure: public OopClosure { 4156 G1CollectedHeap* _g1; 4157 public: 4158 G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 4159 void do_oop(narrowOop* p) { guarantee(false, "Not needed"); } 4160 void do_oop(oop* p) { 4161 oop obj = *p; 4162 assert(obj != NULL, "the caller should have filtered out NULL values"); 4163 4164 const InCSetState cset_state = _g1->in_cset_state(obj); 4165 if (!cset_state.is_in_cset_or_humongous()) { 4166 return; 4167 } 4168 if (cset_state.is_in_cset()) { 4169 assert( obj->is_forwarded(), "invariant" ); 4170 *p = obj->forwardee(); 4171 } else { 4172 assert(!obj->is_forwarded(), "invariant" ); 4173 assert(cset_state.is_humongous(), 4174 "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()); 4175 _g1->set_humongous_is_live(obj); 4176 } 4177 } 4178 }; 4179 4180 // Copying Keep Alive closure - can be called from both 4181 // serial and parallel code as long as different worker 4182 // threads utilize different G1ParScanThreadState instances 4183 // and different queues. 4184 4185 class G1CopyingKeepAliveClosure: public OopClosure { 4186 G1CollectedHeap* _g1h; 4187 OopClosure* _copy_non_heap_obj_cl; 4188 G1ParScanThreadState* _par_scan_state; 4189 4190 public: 4191 G1CopyingKeepAliveClosure(G1CollectedHeap* g1h, 4192 OopClosure* non_heap_obj_cl, 4193 G1ParScanThreadState* pss): 4194 _g1h(g1h), 4195 _copy_non_heap_obj_cl(non_heap_obj_cl), 4196 _par_scan_state(pss) 4197 {} 4198 4199 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 4200 virtual void do_oop( oop* p) { do_oop_work(p); } 4201 4202 template <class T> void do_oop_work(T* p) { 4203 oop obj = oopDesc::load_decode_heap_oop(p); 4204 4205 if (_g1h->is_in_cset_or_humongous(obj)) { 4206 // If the referent object has been forwarded (either copied 4207 // to a new location or to itself in the event of an 4208 // evacuation failure) then we need to update the reference 4209 // field and, if both reference and referent are in the G1 4210 // heap, update the RSet for the referent. 4211 // 4212 // If the referent has not been forwarded then we have to keep 4213 // it alive by policy. Therefore we have copy the referent. 4214 // 4215 // If the reference field is in the G1 heap then we can push 4216 // on the PSS queue. When the queue is drained (after each 4217 // phase of reference processing) the object and it's followers 4218 // will be copied, the reference field set to point to the 4219 // new location, and the RSet updated. Otherwise we need to 4220 // use the the non-heap or metadata closures directly to copy 4221 // the referent object and update the pointer, while avoiding 4222 // updating the RSet. 4223 4224 if (_g1h->is_in_g1_reserved(p)) { 4225 _par_scan_state->push_on_queue(p); 4226 } else { 4227 assert(!Metaspace::contains((const void*)p), 4228 "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)); 4229 _copy_non_heap_obj_cl->do_oop(p); 4230 } 4231 } 4232 } 4233 }; 4234 4235 // Serial drain queue closure. Called as the 'complete_gc' 4236 // closure for each discovered list in some of the 4237 // reference processing phases. 4238 4239 class G1STWDrainQueueClosure: public VoidClosure { 4240 protected: 4241 G1CollectedHeap* _g1h; 4242 G1ParScanThreadState* _par_scan_state; 4243 4244 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 4245 4246 public: 4247 G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) : 4248 _g1h(g1h), 4249 _par_scan_state(pss) 4250 { } 4251 4252 void do_void() { 4253 G1ParScanThreadState* const pss = par_scan_state(); 4254 pss->trim_queue(); 4255 } 4256 }; 4257 4258 // Parallel Reference Processing closures 4259 4260 // Implementation of AbstractRefProcTaskExecutor for parallel reference 4261 // processing during G1 evacuation pauses. 4262 4263 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor { 4264 private: 4265 G1CollectedHeap* _g1h; 4266 G1ParScanThreadStateSet* _pss; 4267 RefToScanQueueSet* _queues; 4268 WorkGang* _workers; 4269 uint _active_workers; 4270 4271 public: 4272 G1STWRefProcTaskExecutor(G1CollectedHeap* g1h, 4273 G1ParScanThreadStateSet* per_thread_states, 4274 WorkGang* workers, 4275 RefToScanQueueSet *task_queues, 4276 uint n_workers) : 4277 _g1h(g1h), 4278 _pss(per_thread_states), 4279 _queues(task_queues), 4280 _workers(workers), 4281 _active_workers(n_workers) 4282 { 4283 assert(n_workers > 0, "shouldn't call this otherwise"); 4284 } 4285 4286 // Executes the given task using concurrent marking worker threads. 4287 virtual void execute(ProcessTask& task); 4288 virtual void execute(EnqueueTask& task); 4289 }; 4290 4291 // Gang task for possibly parallel reference processing 4292 4293 class G1STWRefProcTaskProxy: public AbstractGangTask { 4294 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; 4295 ProcessTask& _proc_task; 4296 G1CollectedHeap* _g1h; 4297 G1ParScanThreadStateSet* _pss; 4298 RefToScanQueueSet* _task_queues; 4299 ParallelTaskTerminator* _terminator; 4300 4301 public: 4302 G1STWRefProcTaskProxy(ProcessTask& proc_task, 4303 G1CollectedHeap* g1h, 4304 G1ParScanThreadStateSet* per_thread_states, 4305 RefToScanQueueSet *task_queues, 4306 ParallelTaskTerminator* terminator) : 4307 AbstractGangTask("Process reference objects in parallel"), 4308 _proc_task(proc_task), 4309 _g1h(g1h), 4310 _pss(per_thread_states), 4311 _task_queues(task_queues), 4312 _terminator(terminator) 4313 {} 4314 4315 virtual void work(uint worker_id) { 4316 // The reference processing task executed by a single worker. 4317 ResourceMark rm; 4318 HandleMark hm; 4319 4320 G1STWIsAliveClosure is_alive(_g1h); 4321 4322 G1ParScanThreadState* pss = _pss->state_for_worker(worker_id); 4323 pss->set_ref_processor(NULL); 4324 4325 // Keep alive closure. 4326 G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss); 4327 4328 // Complete GC closure 4329 G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator); 4330 4331 // Call the reference processing task's work routine. 4332 _proc_task.work(worker_id, is_alive, keep_alive, drain_queue); 4333 4334 // Note we cannot assert that the refs array is empty here as not all 4335 // of the processing tasks (specifically phase2 - pp2_work) execute 4336 // the complete_gc closure (which ordinarily would drain the queue) so 4337 // the queue may not be empty. 4338 } 4339 }; 4340 4341 // Driver routine for parallel reference processing. 4342 // Creates an instance of the ref processing gang 4343 // task and has the worker threads execute it. 4344 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) { 4345 assert(_workers != NULL, "Need parallel worker threads."); 4346 4347 ParallelTaskTerminator terminator(_active_workers, _queues); 4348 G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator); 4349 4350 _workers->run_task(&proc_task_proxy); 4351 } 4352 4353 // Gang task for parallel reference enqueueing. 4354 4355 class G1STWRefEnqueueTaskProxy: public AbstractGangTask { 4356 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask; 4357 EnqueueTask& _enq_task; 4358 4359 public: 4360 G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) : 4361 AbstractGangTask("Enqueue reference objects in parallel"), 4362 _enq_task(enq_task) 4363 { } 4364 4365 virtual void work(uint worker_id) { 4366 _enq_task.work(worker_id); 4367 } 4368 }; 4369 4370 // Driver routine for parallel reference enqueueing. 4371 // Creates an instance of the ref enqueueing gang 4372 // task and has the worker threads execute it. 4373 4374 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) { 4375 assert(_workers != NULL, "Need parallel worker threads."); 4376 4377 G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task); 4378 4379 _workers->run_task(&enq_task_proxy); 4380 } 4381 4382 // End of weak reference support closures 4383 4384 // Abstract task used to preserve (i.e. copy) any referent objects 4385 // that are in the collection set and are pointed to by reference 4386 // objects discovered by the CM ref processor. 4387 4388 class G1ParPreserveCMReferentsTask: public AbstractGangTask { 4389 protected: 4390 G1CollectedHeap* _g1h; 4391 G1ParScanThreadStateSet* _pss; 4392 RefToScanQueueSet* _queues; 4393 ParallelTaskTerminator _terminator; 4394 uint _n_workers; 4395 4396 public: 4397 G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) : 4398 AbstractGangTask("ParPreserveCMReferents"), 4399 _g1h(g1h), 4400 _pss(per_thread_states), 4401 _queues(task_queues), 4402 _terminator(workers, _queues), 4403 _n_workers(workers) 4404 { } 4405 4406 void work(uint worker_id) { 4407 ResourceMark rm; 4408 HandleMark hm; 4409 4410 G1ParScanThreadState* pss = _pss->state_for_worker(worker_id); 4411 pss->set_ref_processor(NULL); 4412 assert(pss->queue_is_empty(), "both queue and overflow should be empty"); 4413 4414 // Is alive closure 4415 G1AlwaysAliveClosure always_alive(_g1h); 4416 4417 // Copying keep alive closure. Applied to referent objects that need 4418 // to be copied. 4419 G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss); 4420 4421 ReferenceProcessor* rp = _g1h->ref_processor_cm(); 4422 4423 uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q(); 4424 uint stride = MIN2(MAX2(_n_workers, 1U), limit); 4425 4426 // limit is set using max_num_q() - which was set using ParallelGCThreads. 4427 // So this must be true - but assert just in case someone decides to 4428 // change the worker ids. 4429 assert(worker_id < limit, "sanity"); 4430 assert(!rp->discovery_is_atomic(), "check this code"); 4431 4432 // Select discovered lists [i, i+stride, i+2*stride,...,limit) 4433 for (uint idx = worker_id; idx < limit; idx += stride) { 4434 DiscoveredList& ref_list = rp->discovered_refs()[idx]; 4435 4436 DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive); 4437 while (iter.has_next()) { 4438 // Since discovery is not atomic for the CM ref processor, we 4439 // can see some null referent objects. 4440 iter.load_ptrs(DEBUG_ONLY(true)); 4441 oop ref = iter.obj(); 4442 4443 // This will filter nulls. 4444 if (iter.is_referent_alive()) { 4445 iter.make_referent_alive(); 4446 } 4447 iter.move_to_next(); 4448 } 4449 } 4450 4451 // Drain the queue - which may cause stealing 4452 G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator); 4453 drain_queue.do_void(); 4454 // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure 4455 assert(pss->queue_is_empty(), "should be"); 4456 } 4457 }; 4458 4459 void G1CollectedHeap::process_weak_jni_handles() { 4460 double ref_proc_start = os::elapsedTime(); 4461 4462 G1STWIsAliveClosure is_alive(this); 4463 G1KeepAliveClosure keep_alive(this); 4464 JNIHandles::weak_oops_do(&is_alive, &keep_alive); 4465 4466 double ref_proc_time = os::elapsedTime() - ref_proc_start; 4467 g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0); 4468 } 4469 4470 // Weak Reference processing during an evacuation pause (part 1). 4471 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) { 4472 double ref_proc_start = os::elapsedTime(); 4473 4474 ReferenceProcessor* rp = _ref_processor_stw; 4475 assert(rp->discovery_enabled(), "should have been enabled"); 4476 4477 // Any reference objects, in the collection set, that were 'discovered' 4478 // by the CM ref processor should have already been copied (either by 4479 // applying the external root copy closure to the discovered lists, or 4480 // by following an RSet entry). 4481 // 4482 // But some of the referents, that are in the collection set, that these 4483 // reference objects point to may not have been copied: the STW ref 4484 // processor would have seen that the reference object had already 4485 // been 'discovered' and would have skipped discovering the reference, 4486 // but would not have treated the reference object as a regular oop. 4487 // As a result the copy closure would not have been applied to the 4488 // referent object. 4489 // 4490 // We need to explicitly copy these referent objects - the references 4491 // will be processed at the end of remarking. 4492 // 4493 // We also need to do this copying before we process the reference 4494 // objects discovered by the STW ref processor in case one of these 4495 // referents points to another object which is also referenced by an 4496 // object discovered by the STW ref processor. 4497 4498 uint no_of_gc_workers = workers()->active_workers(); 4499 4500 G1ParPreserveCMReferentsTask keep_cm_referents(this, 4501 per_thread_states, 4502 no_of_gc_workers, 4503 _task_queues); 4504 4505 workers()->run_task(&keep_cm_referents); 4506 4507 // Closure to test whether a referent is alive. 4508 G1STWIsAliveClosure is_alive(this); 4509 4510 // Even when parallel reference processing is enabled, the processing 4511 // of JNI refs is serial and performed serially by the current thread 4512 // rather than by a worker. The following PSS will be used for processing 4513 // JNI refs. 4514 4515 // Use only a single queue for this PSS. 4516 G1ParScanThreadState* pss = per_thread_states->state_for_worker(0); 4517 pss->set_ref_processor(NULL); 4518 assert(pss->queue_is_empty(), "pre-condition"); 4519 4520 // Keep alive closure. 4521 G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss); 4522 4523 // Serial Complete GC closure 4524 G1STWDrainQueueClosure drain_queue(this, pss); 4525 4526 // Setup the soft refs policy... 4527 rp->setup_policy(false); 4528 4529 ReferenceProcessorStats stats; 4530 if (!rp->processing_is_mt()) { 4531 // Serial reference processing... 4532 stats = rp->process_discovered_references(&is_alive, 4533 &keep_alive, 4534 &drain_queue, 4535 NULL, 4536 _gc_timer_stw); 4537 } else { 4538 // Parallel reference processing 4539 assert(rp->num_q() == no_of_gc_workers, "sanity"); 4540 assert(no_of_gc_workers <= rp->max_num_q(), "sanity"); 4541 4542 G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers); 4543 stats = rp->process_discovered_references(&is_alive, 4544 &keep_alive, 4545 &drain_queue, 4546 &par_task_executor, 4547 _gc_timer_stw); 4548 } 4549 4550 _gc_tracer_stw->report_gc_reference_stats(stats); 4551 4552 // We have completed copying any necessary live referent objects. 4553 assert(pss->queue_is_empty(), "both queue and overflow should be empty"); 4554 4555 double ref_proc_time = os::elapsedTime() - ref_proc_start; 4556 g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0); 4557 } 4558 4559 // Weak Reference processing during an evacuation pause (part 2). 4560 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) { 4561 double ref_enq_start = os::elapsedTime(); 4562 4563 ReferenceProcessor* rp = _ref_processor_stw; 4564 assert(!rp->discovery_enabled(), "should have been disabled as part of processing"); 4565 4566 // Now enqueue any remaining on the discovered lists on to 4567 // the pending list. 4568 if (!rp->processing_is_mt()) { 4569 // Serial reference processing... 4570 rp->enqueue_discovered_references(); 4571 } else { 4572 // Parallel reference enqueueing 4573 4574 uint n_workers = workers()->active_workers(); 4575 4576 assert(rp->num_q() == n_workers, "sanity"); 4577 assert(n_workers <= rp->max_num_q(), "sanity"); 4578 4579 G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers); 4580 rp->enqueue_discovered_references(&par_task_executor); 4581 } 4582 4583 rp->verify_no_references_recorded(); 4584 assert(!rp->discovery_enabled(), "should have been disabled"); 4585 4586 // FIXME 4587 // CM's reference processing also cleans up the string and symbol tables. 4588 // Should we do that here also? We could, but it is a serial operation 4589 // and could significantly increase the pause time. 4590 4591 double ref_enq_time = os::elapsedTime() - ref_enq_start; 4592 g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0); 4593 } 4594 4595 void G1CollectedHeap::pre_evacuate_collection_set() { 4596 _expand_heap_after_alloc_failure = true; 4597 _evacuation_failed = false; 4598 4599 // Disable the hot card cache. 4600 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 4601 hot_card_cache->reset_hot_cache_claimed_index(); 4602 hot_card_cache->set_use_cache(false); 4603 4604 g1_rem_set()->prepare_for_oops_into_collection_set_do(); 4605 } 4606 4607 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) { 4608 // Should G1EvacuationFailureALot be in effect for this GC? 4609 NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();) 4610 4611 assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty"); 4612 double start_par_time_sec = os::elapsedTime(); 4613 double end_par_time_sec; 4614 4615 { 4616 const uint n_workers = workers()->active_workers(); 4617 G1RootProcessor root_processor(this, n_workers); 4618 G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers); 4619 // InitialMark needs claim bits to keep track of the marked-through CLDs. 4620 if (collector_state()->during_initial_mark_pause()) { 4621 ClassLoaderDataGraph::clear_claimed_marks(); 4622 } 4623 4624 print_termination_stats_hdr(); 4625 4626 workers()->run_task(&g1_par_task); 4627 end_par_time_sec = os::elapsedTime(); 4628 4629 // Closing the inner scope will execute the destructor 4630 // for the G1RootProcessor object. We record the current 4631 // elapsed time before closing the scope so that time 4632 // taken for the destructor is NOT included in the 4633 // reported parallel time. 4634 } 4635 4636 G1GCPhaseTimes* phase_times = g1_policy()->phase_times(); 4637 4638 double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0; 4639 phase_times->record_par_time(par_time_ms); 4640 4641 double code_root_fixup_time_ms = 4642 (os::elapsedTime() - end_par_time_sec) * 1000.0; 4643 phase_times->record_code_root_fixup_time(code_root_fixup_time_ms); 4644 } 4645 4646 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) { 4647 // Process any discovered reference objects - we have 4648 // to do this _before_ we retire the GC alloc regions 4649 // as we may have to copy some 'reachable' referent 4650 // objects (and their reachable sub-graphs) that were 4651 // not copied during the pause. 4652 if (g1_policy()->should_process_references()) { 4653 process_discovered_references(per_thread_states); 4654 } else { 4655 ref_processor_stw()->verify_no_references_recorded(); 4656 process_weak_jni_handles(); 4657 } 4658 4659 if (G1StringDedup::is_enabled()) { 4660 double fixup_start = os::elapsedTime(); 4661 4662 G1STWIsAliveClosure is_alive(this); 4663 G1KeepAliveClosure keep_alive(this); 4664 G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times()); 4665 4666 double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0; 4667 g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms); 4668 } 4669 4670 g1_rem_set()->cleanup_after_oops_into_collection_set_do(); 4671 4672 if (evacuation_failed()) { 4673 restore_after_evac_failure(); 4674 4675 // Reset the G1EvacuationFailureALot counters and flags 4676 // Note: the values are reset only when an actual 4677 // evacuation failure occurs. 4678 NOT_PRODUCT(reset_evacuation_should_fail();) 4679 } 4680 4681 // Enqueue any remaining references remaining on the STW 4682 // reference processor's discovered lists. We need to do 4683 // this after the card table is cleaned (and verified) as 4684 // the act of enqueueing entries on to the pending list 4685 // will log these updates (and dirty their associated 4686 // cards). We need these updates logged to update any 4687 // RSets. 4688 if (g1_policy()->should_process_references()) { 4689 enqueue_discovered_references(per_thread_states); 4690 } else { 4691 g1_policy()->phase_times()->record_ref_enq_time(0); 4692 } 4693 4694 _allocator->release_gc_alloc_regions(evacuation_info); 4695 4696 per_thread_states->flush(); 4697 4698 record_obj_copy_mem_stats(); 4699 4700 _survivor_evac_stats.adjust_desired_plab_sz(); 4701 _old_evac_stats.adjust_desired_plab_sz(); 4702 4703 // Reset and re-enable the hot card cache. 4704 // Note the counts for the cards in the regions in the 4705 // collection set are reset when the collection set is freed. 4706 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 4707 hot_card_cache->reset_hot_cache(); 4708 hot_card_cache->set_use_cache(true); 4709 4710 purge_code_root_memory(); 4711 4712 redirty_logged_cards(); 4713 #if defined(COMPILER2) || INCLUDE_JVMCI 4714 DerivedPointerTable::update_pointers(); 4715 #endif 4716 } 4717 4718 void G1CollectedHeap::record_obj_copy_mem_stats() { 4719 g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize); 4720 4721 _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats), 4722 create_g1_evac_summary(&_old_evac_stats)); 4723 } 4724 4725 void G1CollectedHeap::free_region(HeapRegion* hr, 4726 FreeRegionList* free_list, 4727 bool par, 4728 bool locked) { 4729 assert(!hr->is_free(), "the region should not be free"); 4730 assert(!hr->is_empty(), "the region should not be empty"); 4731 assert(_hrm.is_available(hr->hrm_index()), "region should be committed"); 4732 assert(free_list != NULL, "pre-condition"); 4733 4734 if (G1VerifyBitmaps) { 4735 MemRegion mr(hr->bottom(), hr->end()); 4736 concurrent_mark()->clearRangePrevBitmap(mr); 4737 } 4738 4739 // Clear the card counts for this region. 4740 // Note: we only need to do this if the region is not young 4741 // (since we don't refine cards in young regions). 4742 if (!hr->is_young()) { 4743 _cg1r->hot_card_cache()->reset_card_counts(hr); 4744 } 4745 hr->hr_clear(par, true /* clear_space */, locked /* locked */); 4746 free_list->add_ordered(hr); 4747 } 4748 4749 void G1CollectedHeap::free_humongous_region(HeapRegion* hr, 4750 FreeRegionList* free_list, 4751 bool par) { 4752 assert(hr->is_humongous(), "this is only for humongous regions"); 4753 assert(free_list != NULL, "pre-condition"); 4754 hr->clear_humongous(); 4755 free_region(hr, free_list, par); 4756 } 4757 4758 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed, 4759 const uint humongous_regions_removed) { 4760 if (old_regions_removed > 0 || humongous_regions_removed > 0) { 4761 MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag); 4762 _old_set.bulk_remove(old_regions_removed); 4763 _humongous_set.bulk_remove(humongous_regions_removed); 4764 } 4765 4766 } 4767 4768 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) { 4769 assert(list != NULL, "list can't be null"); 4770 if (!list->is_empty()) { 4771 MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag); 4772 _hrm.insert_list_into_free_list(list); 4773 } 4774 } 4775 4776 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) { 4777 decrease_used(bytes); 4778 } 4779 4780 class G1ParCleanupCTTask : public AbstractGangTask { 4781 G1SATBCardTableModRefBS* _ct_bs; 4782 G1CollectedHeap* _g1h; 4783 HeapRegion* volatile _su_head; 4784 public: 4785 G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs, 4786 G1CollectedHeap* g1h) : 4787 AbstractGangTask("G1 Par Cleanup CT Task"), 4788 _ct_bs(ct_bs), _g1h(g1h) { } 4789 4790 void work(uint worker_id) { 4791 HeapRegion* r; 4792 while (r = _g1h->pop_dirty_cards_region()) { 4793 clear_cards(r); 4794 } 4795 } 4796 4797 void clear_cards(HeapRegion* r) { 4798 // Cards of the survivors should have already been dirtied. 4799 if (!r->is_survivor()) { 4800 _ct_bs->clear(MemRegion(r->bottom(), r->end())); 4801 } 4802 } 4803 }; 4804 4805 class G1ParScrubRemSetTask: public AbstractGangTask { 4806 protected: 4807 G1RemSet* _g1rs; 4808 BitMap* _region_bm; 4809 BitMap* _card_bm; 4810 HeapRegionClaimer _hrclaimer; 4811 4812 public: 4813 G1ParScrubRemSetTask(G1RemSet* g1_rs, BitMap* region_bm, BitMap* card_bm, uint num_workers) : 4814 AbstractGangTask("G1 ScrubRS"), 4815 _g1rs(g1_rs), 4816 _region_bm(region_bm), 4817 _card_bm(card_bm), 4818 _hrclaimer(num_workers) { 4819 } 4820 4821 void work(uint worker_id) { 4822 _g1rs->scrub(_region_bm, _card_bm, worker_id, &_hrclaimer); 4823 } 4824 }; 4825 4826 void G1CollectedHeap::scrub_rem_set(BitMap* region_bm, BitMap* card_bm) { 4827 uint num_workers = workers()->active_workers(); 4828 G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), region_bm, card_bm, num_workers); 4829 workers()->run_task(&g1_par_scrub_rs_task); 4830 } 4831 4832 void G1CollectedHeap::cleanUpCardTable() { 4833 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 4834 double start = os::elapsedTime(); 4835 4836 { 4837 // Iterate over the dirty cards region list. 4838 G1ParCleanupCTTask cleanup_task(ct_bs, this); 4839 4840 workers()->run_task(&cleanup_task); 4841 #ifndef PRODUCT 4842 _verifier->verify_card_table_cleanup(); 4843 #endif 4844 } 4845 4846 double elapsed = os::elapsedTime() - start; 4847 g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0); 4848 } 4849 4850 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) { 4851 size_t pre_used = 0; 4852 FreeRegionList local_free_list("Local List for CSet Freeing"); 4853 4854 double young_time_ms = 0.0; 4855 double non_young_time_ms = 0.0; 4856 4857 // Since the collection set is a superset of the the young list, 4858 // all we need to do to clear the young list is clear its 4859 // head and length, and unlink any young regions in the code below 4860 _young_list->clear(); 4861 4862 G1CollectorPolicy* policy = g1_policy(); 4863 4864 double start_sec = os::elapsedTime(); 4865 bool non_young = true; 4866 4867 HeapRegion* cur = cs_head; 4868 int age_bound = -1; 4869 size_t rs_lengths = 0; 4870 4871 while (cur != NULL) { 4872 assert(!is_on_master_free_list(cur), "sanity"); 4873 if (non_young) { 4874 if (cur->is_young()) { 4875 double end_sec = os::elapsedTime(); 4876 double elapsed_ms = (end_sec - start_sec) * 1000.0; 4877 non_young_time_ms += elapsed_ms; 4878 4879 start_sec = os::elapsedTime(); 4880 non_young = false; 4881 } 4882 } else { 4883 if (!cur->is_young()) { 4884 double end_sec = os::elapsedTime(); 4885 double elapsed_ms = (end_sec - start_sec) * 1000.0; 4886 young_time_ms += elapsed_ms; 4887 4888 start_sec = os::elapsedTime(); 4889 non_young = true; 4890 } 4891 } 4892 4893 rs_lengths += cur->rem_set()->occupied_locked(); 4894 4895 HeapRegion* next = cur->next_in_collection_set(); 4896 assert(cur->in_collection_set(), "bad CS"); 4897 cur->set_next_in_collection_set(NULL); 4898 clear_in_cset(cur); 4899 4900 if (cur->is_young()) { 4901 int index = cur->young_index_in_cset(); 4902 assert(index != -1, "invariant"); 4903 assert((uint) index < policy->young_cset_region_length(), "invariant"); 4904 size_t words_survived = surviving_young_words[index]; 4905 cur->record_surv_words_in_group(words_survived); 4906 4907 // At this point the we have 'popped' cur from the collection set 4908 // (linked via next_in_collection_set()) but it is still in the 4909 // young list (linked via next_young_region()). Clear the 4910 // _next_young_region field. 4911 cur->set_next_young_region(NULL); 4912 } else { 4913 int index = cur->young_index_in_cset(); 4914 assert(index == -1, "invariant"); 4915 } 4916 4917 assert( (cur->is_young() && cur->young_index_in_cset() > -1) || 4918 (!cur->is_young() && cur->young_index_in_cset() == -1), 4919 "invariant" ); 4920 4921 if (!cur->evacuation_failed()) { 4922 MemRegion used_mr = cur->used_region(); 4923 4924 // And the region is empty. 4925 assert(!used_mr.is_empty(), "Should not have empty regions in a CS."); 4926 pre_used += cur->used(); 4927 free_region(cur, &local_free_list, false /* par */, true /* locked */); 4928 } else { 4929 cur->uninstall_surv_rate_group(); 4930 if (cur->is_young()) { 4931 cur->set_young_index_in_cset(-1); 4932 } 4933 cur->set_evacuation_failed(false); 4934 // When moving a young gen region to old gen, we "allocate" that whole region 4935 // there. This is in addition to any already evacuated objects. Notify the 4936 // policy about that. 4937 // Old gen regions do not cause an additional allocation: both the objects 4938 // still in the region and the ones already moved are accounted for elsewhere. 4939 if (cur->is_young()) { 4940 policy->add_bytes_allocated_in_old_since_last_gc(HeapRegion::GrainBytes); 4941 } 4942 // The region is now considered to be old. 4943 cur->set_old(); 4944 // Do some allocation statistics accounting. Regions that failed evacuation 4945 // are always made old, so there is no need to update anything in the young 4946 // gen statistics, but we need to update old gen statistics. 4947 size_t used_words = cur->marked_bytes() / HeapWordSize; 4948 _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words); 4949 _old_set.add(cur); 4950 evacuation_info.increment_collectionset_used_after(cur->used()); 4951 } 4952 cur = next; 4953 } 4954 4955 evacuation_info.set_regions_freed(local_free_list.length()); 4956 policy->record_max_rs_lengths(rs_lengths); 4957 policy->cset_regions_freed(); 4958 4959 double end_sec = os::elapsedTime(); 4960 double elapsed_ms = (end_sec - start_sec) * 1000.0; 4961 4962 if (non_young) { 4963 non_young_time_ms += elapsed_ms; 4964 } else { 4965 young_time_ms += elapsed_ms; 4966 } 4967 4968 prepend_to_freelist(&local_free_list); 4969 decrement_summary_bytes(pre_used); 4970 policy->phase_times()->record_young_free_cset_time_ms(young_time_ms); 4971 policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms); 4972 } 4973 4974 class G1FreeHumongousRegionClosure : public HeapRegionClosure { 4975 private: 4976 FreeRegionList* _free_region_list; 4977 HeapRegionSet* _proxy_set; 4978 uint _humongous_regions_removed; 4979 size_t _freed_bytes; 4980 public: 4981 4982 G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) : 4983 _free_region_list(free_region_list), _humongous_regions_removed(0), _freed_bytes(0) { 4984 } 4985 4986 virtual bool doHeapRegion(HeapRegion* r) { 4987 if (!r->is_starts_humongous()) { 4988 return false; 4989 } 4990 4991 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 4992 4993 oop obj = (oop)r->bottom(); 4994 CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap(); 4995 4996 // The following checks whether the humongous object is live are sufficient. 4997 // The main additional check (in addition to having a reference from the roots 4998 // or the young gen) is whether the humongous object has a remembered set entry. 4999 // 5000 // A humongous object cannot be live if there is no remembered set for it 5001 // because: 5002 // - there can be no references from within humongous starts regions referencing 5003 // the object because we never allocate other objects into them. 5004 // (I.e. there are no intra-region references that may be missed by the 5005 // remembered set) 5006 // - as soon there is a remembered set entry to the humongous starts region 5007 // (i.e. it has "escaped" to an old object) this remembered set entry will stay 5008 // until the end of a concurrent mark. 5009 // 5010 // It is not required to check whether the object has been found dead by marking 5011 // or not, in fact it would prevent reclamation within a concurrent cycle, as 5012 // all objects allocated during that time are considered live. 5013 // SATB marking is even more conservative than the remembered set. 5014 // So if at this point in the collection there is no remembered set entry, 5015 // nobody has a reference to it. 5016 // At the start of collection we flush all refinement logs, and remembered sets 5017 // are completely up-to-date wrt to references to the humongous object. 5018 // 5019 // Other implementation considerations: 5020 // - never consider object arrays at this time because they would pose 5021 // considerable effort for cleaning up the the remembered sets. This is 5022 // required because stale remembered sets might reference locations that 5023 // are currently allocated into. 5024 uint region_idx = r->hrm_index(); 5025 if (!g1h->is_humongous_reclaim_candidate(region_idx) || 5026 !r->rem_set()->is_empty()) { 5027 log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d", 5028 region_idx, 5029 (size_t)obj->size() * HeapWordSize, 5030 p2i(r->bottom()), 5031 r->rem_set()->occupied(), 5032 r->rem_set()->strong_code_roots_list_length(), 5033 next_bitmap->isMarked(r->bottom()), 5034 g1h->is_humongous_reclaim_candidate(region_idx), 5035 obj->is_typeArray() 5036 ); 5037 return false; 5038 } 5039 5040 guarantee(obj->is_typeArray(), 5041 "Only eagerly reclaiming type arrays is supported, but the object " 5042 PTR_FORMAT " is not.", p2i(r->bottom())); 5043 5044 log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d", 5045 region_idx, 5046 (size_t)obj->size() * HeapWordSize, 5047 p2i(r->bottom()), 5048 r->rem_set()->occupied(), 5049 r->rem_set()->strong_code_roots_list_length(), 5050 next_bitmap->isMarked(r->bottom()), 5051 g1h->is_humongous_reclaim_candidate(region_idx), 5052 obj->is_typeArray() 5053 ); 5054 5055 // Need to clear mark bit of the humongous object if already set. 5056 if (next_bitmap->isMarked(r->bottom())) { 5057 next_bitmap->clear(r->bottom()); 5058 } 5059 do { 5060 HeapRegion* next = g1h->next_region_in_humongous(r); 5061 _freed_bytes += r->used(); 5062 r->set_containing_set(NULL); 5063 _humongous_regions_removed++; 5064 g1h->free_humongous_region(r, _free_region_list, false); 5065 r = next; 5066 } while (r != NULL); 5067 5068 return false; 5069 } 5070 5071 uint humongous_free_count() { 5072 return _humongous_regions_removed; 5073 } 5074 5075 size_t bytes_freed() const { 5076 return _freed_bytes; 5077 } 5078 }; 5079 5080 void G1CollectedHeap::eagerly_reclaim_humongous_regions() { 5081 assert_at_safepoint(true); 5082 5083 if (!G1EagerReclaimHumongousObjects || 5084 (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) { 5085 g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0); 5086 return; 5087 } 5088 5089 double start_time = os::elapsedTime(); 5090 5091 FreeRegionList local_cleanup_list("Local Humongous Cleanup List"); 5092 5093 G1FreeHumongousRegionClosure cl(&local_cleanup_list); 5094 heap_region_iterate(&cl); 5095 5096 remove_from_old_sets(0, cl.humongous_free_count()); 5097 5098 G1HRPrinter* hrp = hr_printer(); 5099 if (hrp->is_active()) { 5100 FreeRegionListIterator iter(&local_cleanup_list); 5101 while (iter.more_available()) { 5102 HeapRegion* hr = iter.get_next(); 5103 hrp->cleanup(hr); 5104 } 5105 } 5106 5107 prepend_to_freelist(&local_cleanup_list); 5108 decrement_summary_bytes(cl.bytes_freed()); 5109 5110 g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0, 5111 cl.humongous_free_count()); 5112 } 5113 5114 // This routine is similar to the above but does not record 5115 // any policy statistics or update free lists; we are abandoning 5116 // the current incremental collection set in preparation of a 5117 // full collection. After the full GC we will start to build up 5118 // the incremental collection set again. 5119 // This is only called when we're doing a full collection 5120 // and is immediately followed by the tearing down of the young list. 5121 5122 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) { 5123 HeapRegion* cur = cs_head; 5124 5125 while (cur != NULL) { 5126 HeapRegion* next = cur->next_in_collection_set(); 5127 assert(cur->in_collection_set(), "bad CS"); 5128 cur->set_next_in_collection_set(NULL); 5129 clear_in_cset(cur); 5130 cur->set_young_index_in_cset(-1); 5131 cur = next; 5132 } 5133 } 5134 5135 void G1CollectedHeap::set_free_regions_coming() { 5136 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming"); 5137 5138 assert(!free_regions_coming(), "pre-condition"); 5139 _free_regions_coming = true; 5140 } 5141 5142 void G1CollectedHeap::reset_free_regions_coming() { 5143 assert(free_regions_coming(), "pre-condition"); 5144 5145 { 5146 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 5147 _free_regions_coming = false; 5148 SecondaryFreeList_lock->notify_all(); 5149 } 5150 5151 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming"); 5152 } 5153 5154 void G1CollectedHeap::wait_while_free_regions_coming() { 5155 // Most of the time we won't have to wait, so let's do a quick test 5156 // first before we take the lock. 5157 if (!free_regions_coming()) { 5158 return; 5159 } 5160 5161 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions"); 5162 5163 { 5164 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 5165 while (free_regions_coming()) { 5166 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag); 5167 } 5168 } 5169 5170 log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions"); 5171 } 5172 5173 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) { 5174 return _allocator->is_retained_old_region(hr); 5175 } 5176 5177 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) { 5178 _young_list->push_region(hr); 5179 } 5180 5181 class NoYoungRegionsClosure: public HeapRegionClosure { 5182 private: 5183 bool _success; 5184 public: 5185 NoYoungRegionsClosure() : _success(true) { } 5186 bool doHeapRegion(HeapRegion* r) { 5187 if (r->is_young()) { 5188 log_info(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young", 5189 p2i(r->bottom()), p2i(r->end())); 5190 _success = false; 5191 } 5192 return false; 5193 } 5194 bool success() { return _success; } 5195 }; 5196 5197 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) { 5198 bool ret = _young_list->check_list_empty(check_sample); 5199 5200 if (check_heap) { 5201 NoYoungRegionsClosure closure; 5202 heap_region_iterate(&closure); 5203 ret = ret && closure.success(); 5204 } 5205 5206 return ret; 5207 } 5208 5209 class TearDownRegionSetsClosure : public HeapRegionClosure { 5210 private: 5211 HeapRegionSet *_old_set; 5212 5213 public: 5214 TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { } 5215 5216 bool doHeapRegion(HeapRegion* r) { 5217 if (r->is_old()) { 5218 _old_set->remove(r); 5219 } else { 5220 // We ignore free regions, we'll empty the free list afterwards. 5221 // We ignore young regions, we'll empty the young list afterwards. 5222 // We ignore humongous regions, we're not tearing down the 5223 // humongous regions set. 5224 assert(r->is_free() || r->is_young() || r->is_humongous(), 5225 "it cannot be another type"); 5226 } 5227 return false; 5228 } 5229 5230 ~TearDownRegionSetsClosure() { 5231 assert(_old_set->is_empty(), "post-condition"); 5232 } 5233 }; 5234 5235 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) { 5236 assert_at_safepoint(true /* should_be_vm_thread */); 5237 5238 if (!free_list_only) { 5239 TearDownRegionSetsClosure cl(&_old_set); 5240 heap_region_iterate(&cl); 5241 5242 // Note that emptying the _young_list is postponed and instead done as 5243 // the first step when rebuilding the regions sets again. The reason for 5244 // this is that during a full GC string deduplication needs to know if 5245 // a collected region was young or old when the full GC was initiated. 5246 } 5247 _hrm.remove_all_free_regions(); 5248 } 5249 5250 void G1CollectedHeap::increase_used(size_t bytes) { 5251 _summary_bytes_used += bytes; 5252 } 5253 5254 void G1CollectedHeap::decrease_used(size_t bytes) { 5255 assert(_summary_bytes_used >= bytes, 5256 "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT, 5257 _summary_bytes_used, bytes); 5258 _summary_bytes_used -= bytes; 5259 } 5260 5261 void G1CollectedHeap::set_used(size_t bytes) { 5262 _summary_bytes_used = bytes; 5263 } 5264 5265 class RebuildRegionSetsClosure : public HeapRegionClosure { 5266 private: 5267 bool _free_list_only; 5268 HeapRegionSet* _old_set; 5269 HeapRegionManager* _hrm; 5270 size_t _total_used; 5271 5272 public: 5273 RebuildRegionSetsClosure(bool free_list_only, 5274 HeapRegionSet* old_set, HeapRegionManager* hrm) : 5275 _free_list_only(free_list_only), 5276 _old_set(old_set), _hrm(hrm), _total_used(0) { 5277 assert(_hrm->num_free_regions() == 0, "pre-condition"); 5278 if (!free_list_only) { 5279 assert(_old_set->is_empty(), "pre-condition"); 5280 } 5281 } 5282 5283 bool doHeapRegion(HeapRegion* r) { 5284 if (r->is_empty()) { 5285 // Add free regions to the free list 5286 r->set_free(); 5287 r->set_allocation_context(AllocationContext::system()); 5288 _hrm->insert_into_free_list(r); 5289 } else if (!_free_list_only) { 5290 assert(!r->is_young(), "we should not come across young regions"); 5291 5292 if (r->is_humongous()) { 5293 // We ignore humongous regions. We left the humongous set unchanged. 5294 } else { 5295 // Objects that were compacted would have ended up on regions 5296 // that were previously old or free. Archive regions (which are 5297 // old) will not have been touched. 5298 assert(r->is_free() || r->is_old(), "invariant"); 5299 // We now consider them old, so register as such. Leave 5300 // archive regions set that way, however, while still adding 5301 // them to the old set. 5302 if (!r->is_archive()) { 5303 r->set_old(); 5304 } 5305 _old_set->add(r); 5306 } 5307 _total_used += r->used(); 5308 } 5309 5310 return false; 5311 } 5312 5313 size_t total_used() { 5314 return _total_used; 5315 } 5316 }; 5317 5318 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) { 5319 assert_at_safepoint(true /* should_be_vm_thread */); 5320 5321 if (!free_list_only) { 5322 _young_list->empty_list(); 5323 } 5324 5325 RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm); 5326 heap_region_iterate(&cl); 5327 5328 if (!free_list_only) { 5329 set_used(cl.total_used()); 5330 if (_archive_allocator != NULL) { 5331 _archive_allocator->clear_used(); 5332 } 5333 } 5334 assert(used_unlocked() == recalculate_used(), 5335 "inconsistent used_unlocked(), " 5336 "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT, 5337 used_unlocked(), recalculate_used()); 5338 } 5339 5340 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) { 5341 _refine_cte_cl->set_concurrent(concurrent); 5342 } 5343 5344 bool G1CollectedHeap::is_in_closed_subset(const void* p) const { 5345 HeapRegion* hr = heap_region_containing(p); 5346 return hr->is_in(p); 5347 } 5348 5349 // Methods for the mutator alloc region 5350 5351 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size, 5352 bool force) { 5353 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 5354 assert(!force || g1_policy()->can_expand_young_list(), 5355 "if force is true we should be able to expand the young list"); 5356 bool young_list_full = g1_policy()->is_young_list_full(); 5357 if (force || !young_list_full) { 5358 HeapRegion* new_alloc_region = new_region(word_size, 5359 false /* is_old */, 5360 false /* do_expand */); 5361 if (new_alloc_region != NULL) { 5362 set_region_short_lived_locked(new_alloc_region); 5363 _hr_printer.alloc(new_alloc_region, young_list_full); 5364 _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region); 5365 return new_alloc_region; 5366 } 5367 } 5368 return NULL; 5369 } 5370 5371 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region, 5372 size_t allocated_bytes) { 5373 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 5374 assert(alloc_region->is_eden(), "all mutator alloc regions should be eden"); 5375 5376 g1_policy()->add_region_to_incremental_cset_lhs(alloc_region); 5377 increase_used(allocated_bytes); 5378 _hr_printer.retire(alloc_region); 5379 // We update the eden sizes here, when the region is retired, 5380 // instead of when it's allocated, since this is the point that its 5381 // used space has been recored in _summary_bytes_used. 5382 g1mm()->update_eden_size(); 5383 } 5384 5385 // Methods for the GC alloc regions 5386 5387 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, 5388 uint count, 5389 InCSetState dest) { 5390 assert(FreeList_lock->owned_by_self(), "pre-condition"); 5391 5392 if (count < g1_policy()->max_regions(dest)) { 5393 const bool is_survivor = (dest.is_young()); 5394 HeapRegion* new_alloc_region = new_region(word_size, 5395 !is_survivor, 5396 true /* do_expand */); 5397 if (new_alloc_region != NULL) { 5398 // We really only need to do this for old regions given that we 5399 // should never scan survivors. But it doesn't hurt to do it 5400 // for survivors too. 5401 new_alloc_region->record_timestamp(); 5402 if (is_survivor) { 5403 new_alloc_region->set_survivor(); 5404 _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region); 5405 } else { 5406 new_alloc_region->set_old(); 5407 _verifier->check_bitmaps("Old Region Allocation", new_alloc_region); 5408 } 5409 _hr_printer.alloc(new_alloc_region); 5410 bool during_im = collector_state()->during_initial_mark_pause(); 5411 new_alloc_region->note_start_of_copying(during_im); 5412 return new_alloc_region; 5413 } 5414 } 5415 return NULL; 5416 } 5417 5418 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region, 5419 size_t allocated_bytes, 5420 InCSetState dest) { 5421 bool during_im = collector_state()->during_initial_mark_pause(); 5422 alloc_region->note_end_of_copying(during_im); 5423 g1_policy()->record_bytes_copied_during_gc(allocated_bytes); 5424 if (dest.is_young()) { 5425 young_list()->add_survivor_region(alloc_region); 5426 } else { 5427 _old_set.add(alloc_region); 5428 } 5429 _hr_printer.retire(alloc_region); 5430 } 5431 5432 HeapRegion* G1CollectedHeap::alloc_highest_free_region() { 5433 bool expanded = false; 5434 uint index = _hrm.find_highest_free(&expanded); 5435 5436 if (index != G1_NO_HRM_INDEX) { 5437 if (expanded) { 5438 log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B", 5439 HeapRegion::GrainWords * HeapWordSize); 5440 } 5441 _hrm.allocate_free_regions_starting_at(index, 1); 5442 return region_at(index); 5443 } 5444 return NULL; 5445 } 5446 5447 // Optimized nmethod scanning 5448 5449 class RegisterNMethodOopClosure: public OopClosure { 5450 G1CollectedHeap* _g1h; 5451 nmethod* _nm; 5452 5453 template <class T> void do_oop_work(T* p) { 5454 T heap_oop = oopDesc::load_heap_oop(p); 5455 if (!oopDesc::is_null(heap_oop)) { 5456 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 5457 HeapRegion* hr = _g1h->heap_region_containing(obj); 5458 assert(!hr->is_continues_humongous(), 5459 "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT 5460 " starting at " HR_FORMAT, 5461 p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())); 5462 5463 // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries. 5464 hr->add_strong_code_root_locked(_nm); 5465 } 5466 } 5467 5468 public: 5469 RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 5470 _g1h(g1h), _nm(nm) {} 5471 5472 void do_oop(oop* p) { do_oop_work(p); } 5473 void do_oop(narrowOop* p) { do_oop_work(p); } 5474 }; 5475 5476 class UnregisterNMethodOopClosure: public OopClosure { 5477 G1CollectedHeap* _g1h; 5478 nmethod* _nm; 5479 5480 template <class T> void do_oop_work(T* p) { 5481 T heap_oop = oopDesc::load_heap_oop(p); 5482 if (!oopDesc::is_null(heap_oop)) { 5483 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 5484 HeapRegion* hr = _g1h->heap_region_containing(obj); 5485 assert(!hr->is_continues_humongous(), 5486 "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT 5487 " starting at " HR_FORMAT, 5488 p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())); 5489 5490 hr->remove_strong_code_root(_nm); 5491 } 5492 } 5493 5494 public: 5495 UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 5496 _g1h(g1h), _nm(nm) {} 5497 5498 void do_oop(oop* p) { do_oop_work(p); } 5499 void do_oop(narrowOop* p) { do_oop_work(p); } 5500 }; 5501 5502 void G1CollectedHeap::register_nmethod(nmethod* nm) { 5503 CollectedHeap::register_nmethod(nm); 5504 5505 guarantee(nm != NULL, "sanity"); 5506 RegisterNMethodOopClosure reg_cl(this, nm); 5507 nm->oops_do(®_cl); 5508 } 5509 5510 void G1CollectedHeap::unregister_nmethod(nmethod* nm) { 5511 CollectedHeap::unregister_nmethod(nm); 5512 5513 guarantee(nm != NULL, "sanity"); 5514 UnregisterNMethodOopClosure reg_cl(this, nm); 5515 nm->oops_do(®_cl, true); 5516 } 5517 5518 void G1CollectedHeap::purge_code_root_memory() { 5519 double purge_start = os::elapsedTime(); 5520 G1CodeRootSet::purge(); 5521 double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0; 5522 g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms); 5523 } 5524 5525 class RebuildStrongCodeRootClosure: public CodeBlobClosure { 5526 G1CollectedHeap* _g1h; 5527 5528 public: 5529 RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) : 5530 _g1h(g1h) {} 5531 5532 void do_code_blob(CodeBlob* cb) { 5533 nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL; 5534 if (nm == NULL) { 5535 return; 5536 } 5537 5538 if (ScavengeRootsInCode) { 5539 _g1h->register_nmethod(nm); 5540 } 5541 } 5542 }; 5543 5544 void G1CollectedHeap::rebuild_strong_code_roots() { 5545 RebuildStrongCodeRootClosure blob_cl(this); 5546 CodeCache::blobs_do(&blob_cl); 5547 }