1 /* 2 * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/shared/blockOffsetTable.inline.hpp" 27 #include "gc/shared/collectedHeap.inline.hpp" 28 #include "gc/shared/space.inline.hpp" 29 #include "memory/iterator.hpp" 30 #include "memory/universe.hpp" 31 #include "logging/log.hpp" 32 #include "oops/oop.inline.hpp" 33 #include "runtime/java.hpp" 34 #include "services/memTracker.hpp" 35 36 ////////////////////////////////////////////////////////////////////// 37 // BlockOffsetSharedArray 38 ////////////////////////////////////////////////////////////////////// 39 40 BlockOffsetSharedArray::BlockOffsetSharedArray(MemRegion reserved, 41 size_t init_word_size): 42 _reserved(reserved), _end(NULL) 43 { 44 size_t size = compute_size(reserved.word_size()); 45 ReservedSpace rs(size); 46 if (!rs.is_reserved()) { 47 vm_exit_during_initialization("Could not reserve enough space for heap offset array"); 48 } 49 50 MemTracker::record_virtual_memory_type((address)rs.base(), mtGC); 51 52 if (!_vs.initialize(rs, 0)) { 53 vm_exit_during_initialization("Could not reserve enough space for heap offset array"); 54 } 55 _offset_array = (u_char*)_vs.low_boundary(); 56 resize(init_word_size); 57 log_trace(gc, bot)("BlockOffsetSharedArray::BlockOffsetSharedArray: "); 58 log_trace(gc, bot)(" rs.base(): " INTPTR_FORMAT " rs.size(): " INTPTR_FORMAT " rs end(): " INTPTR_FORMAT, 59 p2i(rs.base()), rs.size(), p2i(rs.base() + rs.size())); 60 log_trace(gc, bot)(" _vs.low_boundary(): " INTPTR_FORMAT " _vs.high_boundary(): " INTPTR_FORMAT, 61 p2i(_vs.low_boundary()), p2i(_vs.high_boundary())); 62 } 63 64 void BlockOffsetSharedArray::resize(size_t new_word_size) { 65 assert(new_word_size <= _reserved.word_size(), "Resize larger than reserved"); 66 size_t new_size = compute_size(new_word_size); 67 size_t old_size = _vs.committed_size(); 68 size_t delta; 69 char* high = _vs.high(); 70 _end = _reserved.start() + new_word_size; 71 if (new_size > old_size) { 72 delta = ReservedSpace::page_align_size_up(new_size - old_size); 73 assert(delta > 0, "just checking"); 74 if (!_vs.expand_by(delta)) { 75 // Do better than this for Merlin 76 vm_exit_out_of_memory(delta, OOM_MMAP_ERROR, "offset table expansion"); 77 } 78 assert(_vs.high() == high + delta, "invalid expansion"); 79 } else { 80 delta = ReservedSpace::page_align_size_down(old_size - new_size); 81 if (delta == 0) return; 82 _vs.shrink_by(delta); 83 assert(_vs.high() == high - delta, "invalid expansion"); 84 } 85 } 86 87 bool BlockOffsetSharedArray::is_card_boundary(HeapWord* p) const { 88 assert(p >= _reserved.start(), "just checking"); 89 size_t delta = pointer_delta(p, _reserved.start()); 90 return (delta & right_n_bits(LogN_words)) == (size_t)NoBits; 91 } 92 93 94 ////////////////////////////////////////////////////////////////////// 95 // BlockOffsetArray 96 ////////////////////////////////////////////////////////////////////// 97 98 BlockOffsetArray::BlockOffsetArray(BlockOffsetSharedArray* array, 99 MemRegion mr, bool init_to_zero_) : 100 BlockOffsetTable(mr.start(), mr.end()), 101 _array(array) 102 { 103 assert(_bottom <= _end, "arguments out of order"); 104 set_init_to_zero(init_to_zero_); 105 if (!init_to_zero_) { 106 // initialize cards to point back to mr.start() 107 set_remainder_to_point_to_start(mr.start() + N_words, mr.end()); 108 _array->set_offset_array(0, 0); // set first card to 0 109 } 110 } 111 112 113 // The arguments follow the normal convention of denoting 114 // a right-open interval: [start, end) 115 void 116 BlockOffsetArray:: 117 set_remainder_to_point_to_start(HeapWord* start, HeapWord* end, bool reducing) { 118 119 check_reducing_assertion(reducing); 120 if (start >= end) { 121 // The start address is equal to the end address (or to 122 // the right of the end address) so there are not cards 123 // that need to be updated.. 124 return; 125 } 126 127 // Write the backskip value for each region. 128 // 129 // offset 130 // card 2nd 3rd 131 // | +- 1st | | 132 // v v v v 133 // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+- 134 // |x|0|0|0|0|0|0|0|1|1|1|1|1|1| ... |1|1|1|1|2|2|2|2|2|2| ... 135 // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+- 136 // 11 19 75 137 // 12 138 // 139 // offset card is the card that points to the start of an object 140 // x - offset value of offset card 141 // 1st - start of first logarithmic region 142 // 0 corresponds to logarithmic value N_words + 0 and 2**(3 * 0) = 1 143 // 2nd - start of second logarithmic region 144 // 1 corresponds to logarithmic value N_words + 1 and 2**(3 * 1) = 8 145 // 3rd - start of third logarithmic region 146 // 2 corresponds to logarithmic value N_words + 2 and 2**(3 * 2) = 64 147 // 148 // integer below the block offset entry is an example of 149 // the index of the entry 150 // 151 // Given an address, 152 // Find the index for the address 153 // Find the block offset table entry 154 // Convert the entry to a back slide 155 // (e.g., with today's, offset = 0x81 => 156 // back slip = 2**(3*(0x81 - N_words)) = 2**3) = 8 157 // Move back N (e.g., 8) entries and repeat with the 158 // value of the new entry 159 // 160 size_t start_card = _array->index_for(start); 161 size_t end_card = _array->index_for(end-1); 162 assert(start ==_array->address_for_index(start_card), "Precondition"); 163 assert(end ==_array->address_for_index(end_card)+N_words, "Precondition"); 164 set_remainder_to_point_to_start_incl(start_card, end_card, reducing); // closed interval 165 } 166 167 168 // Unlike the normal convention in this code, the argument here denotes 169 // a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start() 170 // above. 171 void 172 BlockOffsetArray::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card, bool reducing) { 173 174 check_reducing_assertion(reducing); 175 if (start_card > end_card) { 176 return; 177 } 178 assert(start_card > _array->index_for(_bottom), "Cannot be first card"); 179 assert(_array->offset_array(start_card-1) <= N_words, 180 "Offset card has an unexpected value"); 181 size_t start_card_for_region = start_card; 182 u_char offset = max_jubyte; 183 for (int i = 0; i < N_powers; i++) { 184 // -1 so that the the card with the actual offset is counted. Another -1 185 // so that the reach ends in this region and not at the start 186 // of the next. 187 size_t reach = start_card - 1 + (power_to_cards_back(i+1) - 1); 188 offset = N_words + i; 189 if (reach >= end_card) { 190 _array->set_offset_array(start_card_for_region, end_card, offset, reducing); 191 start_card_for_region = reach + 1; 192 break; 193 } 194 _array->set_offset_array(start_card_for_region, reach, offset, reducing); 195 start_card_for_region = reach + 1; 196 } 197 assert(start_card_for_region > end_card, "Sanity check"); 198 DEBUG_ONLY(check_all_cards(start_card, end_card);) 199 } 200 201 // The card-interval [start_card, end_card] is a closed interval; this 202 // is an expensive check -- use with care and only under protection of 203 // suitable flag. 204 void BlockOffsetArray::check_all_cards(size_t start_card, size_t end_card) const { 205 206 if (end_card < start_card) { 207 return; 208 } 209 guarantee(_array->offset_array(start_card) == N_words, "Wrong value in second card"); 210 u_char last_entry = N_words; 211 for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) { 212 u_char entry = _array->offset_array(c); 213 guarantee(entry >= last_entry, "Monotonicity"); 214 if (c - start_card > power_to_cards_back(1)) { 215 guarantee(entry > N_words, "Should be in logarithmic region"); 216 } 217 size_t backskip = entry_to_cards_back(entry); 218 size_t landing_card = c - backskip; 219 guarantee(landing_card >= (start_card - 1), "Inv"); 220 if (landing_card >= start_card) { 221 guarantee(_array->offset_array(landing_card) <= entry, "Monotonicity"); 222 } else { 223 guarantee(landing_card == (start_card - 1), "Tautology"); 224 // Note that N_words is the maximum offset value 225 guarantee(_array->offset_array(landing_card) <= N_words, "Offset value"); 226 } 227 last_entry = entry; // remember for monotonicity test 228 } 229 } 230 231 232 void 233 BlockOffsetArray::alloc_block(HeapWord* blk_start, HeapWord* blk_end) { 234 assert(blk_start != NULL && blk_end > blk_start, 235 "phantom block"); 236 single_block(blk_start, blk_end); 237 } 238 239 // Action_mark - update the BOT for the block [blk_start, blk_end). 240 // Current typical use is for splitting a block. 241 // Action_single - udpate the BOT for an allocation. 242 // Action_verify - BOT verification. 243 void 244 BlockOffsetArray::do_block_internal(HeapWord* blk_start, 245 HeapWord* blk_end, 246 Action action, bool reducing) { 247 assert(Universe::heap()->is_in_reserved(blk_start), 248 "reference must be into the heap"); 249 assert(Universe::heap()->is_in_reserved(blk_end-1), 250 "limit must be within the heap"); 251 // This is optimized to make the test fast, assuming we only rarely 252 // cross boundaries. 253 uintptr_t end_ui = (uintptr_t)(blk_end - 1); 254 uintptr_t start_ui = (uintptr_t)blk_start; 255 // Calculate the last card boundary preceding end of blk 256 intptr_t boundary_before_end = (intptr_t)end_ui; 257 clear_bits(boundary_before_end, right_n_bits(LogN)); 258 if (start_ui <= (uintptr_t)boundary_before_end) { 259 // blk starts at or crosses a boundary 260 // Calculate index of card on which blk begins 261 size_t start_index = _array->index_for(blk_start); 262 // Index of card on which blk ends 263 size_t end_index = _array->index_for(blk_end - 1); 264 // Start address of card on which blk begins 265 HeapWord* boundary = _array->address_for_index(start_index); 266 assert(boundary <= blk_start, "blk should start at or after boundary"); 267 if (blk_start != boundary) { 268 // blk starts strictly after boundary 269 // adjust card boundary and start_index forward to next card 270 boundary += N_words; 271 start_index++; 272 } 273 assert(start_index <= end_index, "monotonicity of index_for()"); 274 assert(boundary <= (HeapWord*)boundary_before_end, "tautology"); 275 switch (action) { 276 case Action_mark: { 277 if (init_to_zero()) { 278 _array->set_offset_array(start_index, boundary, blk_start, reducing); 279 break; 280 } // Else fall through to the next case 281 } 282 case Action_single: { 283 _array->set_offset_array(start_index, boundary, blk_start, reducing); 284 // We have finished marking the "offset card". We need to now 285 // mark the subsequent cards that this blk spans. 286 if (start_index < end_index) { 287 HeapWord* rem_st = _array->address_for_index(start_index) + N_words; 288 HeapWord* rem_end = _array->address_for_index(end_index) + N_words; 289 set_remainder_to_point_to_start(rem_st, rem_end, reducing); 290 } 291 break; 292 } 293 case Action_check: { 294 _array->check_offset_array(start_index, boundary, blk_start); 295 // We have finished checking the "offset card". We need to now 296 // check the subsequent cards that this blk spans. 297 check_all_cards(start_index + 1, end_index); 298 break; 299 } 300 default: 301 ShouldNotReachHere(); 302 } 303 } 304 } 305 306 // The range [blk_start, blk_end) represents a single contiguous block 307 // of storage; modify the block offset table to represent this 308 // information; Right-open interval: [blk_start, blk_end) 309 // NOTE: this method does _not_ adjust _unallocated_block. 310 void 311 BlockOffsetArray::single_block(HeapWord* blk_start, 312 HeapWord* blk_end) { 313 do_block_internal(blk_start, blk_end, Action_single); 314 } 315 316 void BlockOffsetArray::verify() const { 317 // For each entry in the block offset table, verify that 318 // the entry correctly finds the start of an object at the 319 // first address covered by the block or to the left of that 320 // first address. 321 322 size_t next_index = 1; 323 size_t last_index = last_active_index(); 324 325 // Use for debugging. Initialize to NULL to distinguish the 326 // first iteration through the while loop. 327 HeapWord* last_p = NULL; 328 HeapWord* last_start = NULL; 329 oop last_o = NULL; 330 331 while (next_index <= last_index) { 332 // Use an address past the start of the address for 333 // the entry. 334 HeapWord* p = _array->address_for_index(next_index) + 1; 335 if (p >= _end) { 336 // That's all of the allocated block table. 337 return; 338 } 339 // block_start() asserts that start <= p. 340 HeapWord* start = block_start(p); 341 // First check if the start is an allocated block and only 342 // then if it is a valid object. 343 oop o = oop(start); 344 assert(!Universe::is_fully_initialized() || 345 _sp->is_free_block(start) || 346 o->is_oop_or_null(), "Bad object was found"); 347 next_index++; 348 last_p = p; 349 last_start = start; 350 last_o = o; 351 } 352 } 353 354 ////////////////////////////////////////////////////////////////////// 355 // BlockOffsetArrayNonContigSpace 356 ////////////////////////////////////////////////////////////////////// 357 358 // The block [blk_start, blk_end) has been allocated; 359 // adjust the block offset table to represent this information; 360 // NOTE: Clients of BlockOffsetArrayNonContigSpace: consider using 361 // the somewhat more lightweight split_block() or 362 // (when init_to_zero()) mark_block() wherever possible. 363 // right-open interval: [blk_start, blk_end) 364 void 365 BlockOffsetArrayNonContigSpace::alloc_block(HeapWord* blk_start, 366 HeapWord* blk_end) { 367 assert(blk_start != NULL && blk_end > blk_start, 368 "phantom block"); 369 single_block(blk_start, blk_end); 370 allocated(blk_start, blk_end); 371 } 372 373 // Adjust BOT to show that a previously whole block has been split 374 // into two. We verify the BOT for the first part (prefix) and 375 // update the BOT for the second part (suffix). 376 // blk is the start of the block 377 // blk_size is the size of the original block 378 // left_blk_size is the size of the first part of the split 379 void BlockOffsetArrayNonContigSpace::split_block(HeapWord* blk, 380 size_t blk_size, 381 size_t left_blk_size) { 382 // Verify that the BOT shows [blk, blk + blk_size) to be one block. 383 verify_single_block(blk, blk_size); 384 // Update the BOT to indicate that [blk + left_blk_size, blk + blk_size) 385 // is one single block. 386 assert(blk_size > 0, "Should be positive"); 387 assert(left_blk_size > 0, "Should be positive"); 388 assert(left_blk_size < blk_size, "Not a split"); 389 390 // Start addresses of prefix block and suffix block. 391 HeapWord* pref_addr = blk; 392 HeapWord* suff_addr = blk + left_blk_size; 393 HeapWord* end_addr = blk + blk_size; 394 395 // Indices for starts of prefix block and suffix block. 396 size_t pref_index = _array->index_for(pref_addr); 397 if (_array->address_for_index(pref_index) != pref_addr) { 398 // pref_addr does not begin pref_index 399 pref_index++; 400 } 401 402 size_t suff_index = _array->index_for(suff_addr); 403 if (_array->address_for_index(suff_index) != suff_addr) { 404 // suff_addr does not begin suff_index 405 suff_index++; 406 } 407 408 // Definition: A block B, denoted [B_start, B_end) __starts__ 409 // a card C, denoted [C_start, C_end), where C_start and C_end 410 // are the heap addresses that card C covers, iff 411 // B_start <= C_start < B_end. 412 // 413 // We say that a card C "is started by" a block B, iff 414 // B "starts" C. 415 // 416 // Note that the cardinality of the set of cards {C} 417 // started by a block B can be 0, 1, or more. 418 // 419 // Below, pref_index and suff_index are, respectively, the 420 // first (least) card indices that the prefix and suffix of 421 // the split start; end_index is one more than the index of 422 // the last (greatest) card that blk starts. 423 size_t end_index = _array->index_for(end_addr - 1) + 1; 424 425 // Calculate the # cards that the prefix and suffix affect. 426 size_t num_pref_cards = suff_index - pref_index; 427 428 size_t num_suff_cards = end_index - suff_index; 429 // Change the cards that need changing 430 if (num_suff_cards > 0) { 431 HeapWord* boundary = _array->address_for_index(suff_index); 432 // Set the offset card for suffix block 433 _array->set_offset_array(suff_index, boundary, suff_addr, true /* reducing */); 434 // Change any further cards that need changing in the suffix 435 if (num_pref_cards > 0) { 436 if (num_pref_cards >= num_suff_cards) { 437 // Unilaterally fix all of the suffix cards: closed card 438 // index interval in args below. 439 set_remainder_to_point_to_start_incl(suff_index + 1, end_index - 1, true /* reducing */); 440 } else { 441 // Unilaterally fix the first (num_pref_cards - 1) following 442 // the "offset card" in the suffix block. 443 const size_t right_most_fixed_index = suff_index + num_pref_cards - 1; 444 set_remainder_to_point_to_start_incl(suff_index + 1, 445 right_most_fixed_index, true /* reducing */); 446 // Fix the appropriate cards in the remainder of the 447 // suffix block -- these are the last num_pref_cards 448 // cards in each power block of the "new" range plumbed 449 // from suff_addr. 450 bool more = true; 451 uint i = 1; 452 // Fix the first power block with back_by > num_pref_cards. 453 while (more && (i < N_powers)) { 454 size_t back_by = power_to_cards_back(i); 455 size_t right_index = suff_index + back_by - 1; 456 size_t left_index = right_index - num_pref_cards + 1; 457 if (right_index >= end_index - 1) { // last iteration 458 right_index = end_index - 1; 459 more = false; 460 } 461 if (left_index <= right_most_fixed_index) { 462 left_index = right_most_fixed_index + 1; 463 } 464 if (back_by > num_pref_cards) { 465 // Fill in the remainder of this "power block", if it 466 // is non-null. 467 if (left_index <= right_index) { 468 _array->set_offset_array(left_index, right_index, 469 N_words + i - 1, true /* reducing */); 470 } else { 471 more = false; // we are done 472 assert((end_index - 1) == right_index, "Must be at the end."); 473 } 474 i++; 475 break; 476 } 477 i++; 478 } 479 // Fix the rest of the power blocks. 480 while (more && (i < N_powers)) { 481 size_t back_by = power_to_cards_back(i); 482 size_t right_index = suff_index + back_by - 1; 483 size_t left_index = right_index - num_pref_cards + 1; 484 if (right_index >= end_index - 1) { // last iteration 485 right_index = end_index - 1; 486 if (left_index > right_index) { 487 break; 488 } 489 more = false; 490 } 491 assert(left_index <= right_index, "Error"); 492 _array->set_offset_array(left_index, right_index, N_words + i - 1, true /* reducing */); 493 i++; 494 } 495 } 496 } // else no more cards to fix in suffix 497 } // else nothing needs to be done 498 // Verify that we did the right thing 499 verify_single_block(pref_addr, left_blk_size); 500 verify_single_block(suff_addr, blk_size - left_blk_size); 501 } 502 503 504 // Mark the BOT such that if [blk_start, blk_end) straddles a card 505 // boundary, the card following the first such boundary is marked 506 // with the appropriate offset. 507 // NOTE: this method does _not_ adjust _unallocated_block or 508 // any cards subsequent to the first one. 509 void 510 BlockOffsetArrayNonContigSpace::mark_block(HeapWord* blk_start, 511 HeapWord* blk_end, bool reducing) { 512 do_block_internal(blk_start, blk_end, Action_mark, reducing); 513 } 514 515 HeapWord* BlockOffsetArrayNonContigSpace::block_start_unsafe( 516 const void* addr) const { 517 assert(_array->offset_array(0) == 0, "objects can't cross covered areas"); 518 assert(_bottom <= addr && addr < _end, 519 "addr must be covered by this Array"); 520 // Must read this exactly once because it can be modified by parallel 521 // allocation. 522 HeapWord* ub = _unallocated_block; 523 if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) { 524 assert(ub < _end, "tautology (see above)"); 525 return ub; 526 } 527 528 // Otherwise, find the block start using the table. 529 size_t index = _array->index_for(addr); 530 HeapWord* q = _array->address_for_index(index); 531 532 uint offset = _array->offset_array(index); // Extend u_char to uint. 533 while (offset >= N_words) { 534 // The excess of the offset from N_words indicates a power of Base 535 // to go back by. 536 size_t n_cards_back = entry_to_cards_back(offset); 537 q -= (N_words * n_cards_back); 538 assert(q >= _sp->bottom(), 539 "q = " PTR_FORMAT " crossed below bottom = " PTR_FORMAT, 540 p2i(q), p2i(_sp->bottom())); 541 assert(q < _sp->end(), 542 "q = " PTR_FORMAT " crossed above end = " PTR_FORMAT, 543 p2i(q), p2i(_sp->end())); 544 index -= n_cards_back; 545 offset = _array->offset_array(index); 546 } 547 assert(offset < N_words, "offset too large"); 548 index--; 549 q -= offset; 550 assert(q >= _sp->bottom(), 551 "q = " PTR_FORMAT " crossed below bottom = " PTR_FORMAT, 552 p2i(q), p2i(_sp->bottom())); 553 assert(q < _sp->end(), 554 "q = " PTR_FORMAT " crossed above end = " PTR_FORMAT, 555 p2i(q), p2i(_sp->end())); 556 HeapWord* n = q; 557 558 while (n <= addr) { 559 debug_only(HeapWord* last = q); // for debugging 560 q = n; 561 n += _sp->block_size(n); 562 assert(n > q, 563 "Looping at n = " PTR_FORMAT " with last = " PTR_FORMAT "," 564 " while querying blk_start(" PTR_FORMAT ")" 565 " on _sp = [" PTR_FORMAT "," PTR_FORMAT ")", 566 p2i(n), p2i(last), p2i(addr), p2i(_sp->bottom()), p2i(_sp->end())); 567 } 568 assert(q <= addr, 569 "wrong order for current (" INTPTR_FORMAT ")" " <= arg (" INTPTR_FORMAT ")", 570 p2i(q), p2i(addr)); 571 assert(addr <= n, 572 "wrong order for arg (" INTPTR_FORMAT ") <= next (" INTPTR_FORMAT ")", 573 p2i(addr), p2i(n)); 574 return q; 575 } 576 577 HeapWord* BlockOffsetArrayNonContigSpace::block_start_careful( 578 const void* addr) const { 579 assert(_array->offset_array(0) == 0, "objects can't cross covered areas"); 580 581 assert(_bottom <= addr && addr < _end, 582 "addr must be covered by this Array"); 583 // Must read this exactly once because it can be modified by parallel 584 // allocation. 585 HeapWord* ub = _unallocated_block; 586 if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) { 587 assert(ub < _end, "tautology (see above)"); 588 return ub; 589 } 590 591 // Otherwise, find the block start using the table, but taking 592 // care (cf block_start_unsafe() above) not to parse any objects/blocks 593 // on the cards themselves. 594 size_t index = _array->index_for(addr); 595 assert(_array->address_for_index(index) == addr, 596 "arg should be start of card"); 597 598 HeapWord* q = (HeapWord*)addr; 599 uint offset; 600 do { 601 offset = _array->offset_array(index); 602 if (offset < N_words) { 603 q -= offset; 604 } else { 605 size_t n_cards_back = entry_to_cards_back(offset); 606 q -= (n_cards_back * N_words); 607 index -= n_cards_back; 608 } 609 } while (offset >= N_words); 610 assert(q <= addr, "block start should be to left of arg"); 611 return q; 612 } 613 614 #ifndef PRODUCT 615 // Verification & debugging - ensure that the offset table reflects the fact 616 // that the block [blk_start, blk_end) or [blk, blk + size) is a 617 // single block of storage. NOTE: can't const this because of 618 // call to non-const do_block_internal() below. 619 void BlockOffsetArrayNonContigSpace::verify_single_block( 620 HeapWord* blk_start, HeapWord* blk_end) { 621 if (VerifyBlockOffsetArray) { 622 do_block_internal(blk_start, blk_end, Action_check); 623 } 624 } 625 626 void BlockOffsetArrayNonContigSpace::verify_single_block( 627 HeapWord* blk, size_t size) { 628 verify_single_block(blk, blk + size); 629 } 630 631 // Verify that the given block is before _unallocated_block 632 void BlockOffsetArrayNonContigSpace::verify_not_unallocated( 633 HeapWord* blk_start, HeapWord* blk_end) const { 634 if (BlockOffsetArrayUseUnallocatedBlock) { 635 assert(blk_start < blk_end, "Block inconsistency?"); 636 assert(blk_end <= _unallocated_block, "_unallocated_block problem"); 637 } 638 } 639 640 void BlockOffsetArrayNonContigSpace::verify_not_unallocated( 641 HeapWord* blk, size_t size) const { 642 verify_not_unallocated(blk, blk + size); 643 } 644 #endif // PRODUCT 645 646 size_t BlockOffsetArrayNonContigSpace::last_active_index() const { 647 if (_unallocated_block == _bottom) { 648 return 0; 649 } else { 650 return _array->index_for(_unallocated_block - 1); 651 } 652 } 653 654 ////////////////////////////////////////////////////////////////////// 655 // BlockOffsetArrayContigSpace 656 ////////////////////////////////////////////////////////////////////// 657 658 HeapWord* BlockOffsetArrayContigSpace::block_start_unsafe(const void* addr) const { 659 assert(_array->offset_array(0) == 0, "objects can't cross covered areas"); 660 661 // Otherwise, find the block start using the table. 662 assert(_bottom <= addr && addr < _end, 663 "addr must be covered by this Array"); 664 size_t index = _array->index_for(addr); 665 // We must make sure that the offset table entry we use is valid. If 666 // "addr" is past the end, start at the last known one and go forward. 667 index = MIN2(index, _next_offset_index-1); 668 HeapWord* q = _array->address_for_index(index); 669 670 uint offset = _array->offset_array(index); // Extend u_char to uint. 671 while (offset > N_words) { 672 // The excess of the offset from N_words indicates a power of Base 673 // to go back by. 674 size_t n_cards_back = entry_to_cards_back(offset); 675 q -= (N_words * n_cards_back); 676 assert(q >= _sp->bottom(), "Went below bottom!"); 677 index -= n_cards_back; 678 offset = _array->offset_array(index); 679 } 680 while (offset == N_words) { 681 assert(q >= _sp->bottom(), "Went below bottom!"); 682 q -= N_words; 683 index--; 684 offset = _array->offset_array(index); 685 } 686 assert(offset < N_words, "offset too large"); 687 q -= offset; 688 HeapWord* n = q; 689 690 while (n <= addr) { 691 debug_only(HeapWord* last = q); // for debugging 692 q = n; 693 n += _sp->block_size(n); 694 } 695 assert(q <= addr, "wrong order for current and arg"); 696 assert(addr <= n, "wrong order for arg and next"); 697 return q; 698 } 699 700 // 701 // _next_offset_threshold 702 // | _next_offset_index 703 // v v 704 // +-------+-------+-------+-------+-------+ 705 // | i-1 | i | i+1 | i+2 | i+3 | 706 // +-------+-------+-------+-------+-------+ 707 // ( ^ ] 708 // block-start 709 // 710 711 void BlockOffsetArrayContigSpace::alloc_block_work(HeapWord* blk_start, 712 HeapWord* blk_end) { 713 assert(blk_start != NULL && blk_end > blk_start, 714 "phantom block"); 715 assert(blk_end > _next_offset_threshold, 716 "should be past threshold"); 717 assert(blk_start <= _next_offset_threshold, 718 "blk_start should be at or before threshold"); 719 assert(pointer_delta(_next_offset_threshold, blk_start) <= N_words, 720 "offset should be <= BlockOffsetSharedArray::N"); 721 assert(Universe::heap()->is_in_reserved(blk_start), 722 "reference must be into the heap"); 723 assert(Universe::heap()->is_in_reserved(blk_end-1), 724 "limit must be within the heap"); 725 assert(_next_offset_threshold == 726 _array->_reserved.start() + _next_offset_index*N_words, 727 "index must agree with threshold"); 728 729 debug_only(size_t orig_next_offset_index = _next_offset_index;) 730 731 // Mark the card that holds the offset into the block. Note 732 // that _next_offset_index and _next_offset_threshold are not 733 // updated until the end of this method. 734 _array->set_offset_array(_next_offset_index, 735 _next_offset_threshold, 736 blk_start); 737 738 // We need to now mark the subsequent cards that this blk spans. 739 740 // Index of card on which blk ends. 741 size_t end_index = _array->index_for(blk_end - 1); 742 743 // Are there more cards left to be updated? 744 if (_next_offset_index + 1 <= end_index) { 745 HeapWord* rem_st = _array->address_for_index(_next_offset_index + 1); 746 // Calculate rem_end this way because end_index 747 // may be the last valid index in the covered region. 748 HeapWord* rem_end = _array->address_for_index(end_index) + N_words; 749 set_remainder_to_point_to_start(rem_st, rem_end); 750 } 751 752 // _next_offset_index and _next_offset_threshold updated here. 753 _next_offset_index = end_index + 1; 754 // Calculate _next_offset_threshold this way because end_index 755 // may be the last valid index in the covered region. 756 _next_offset_threshold = _array->address_for_index(end_index) + N_words; 757 assert(_next_offset_threshold >= blk_end, "Incorrect offset threshold"); 758 759 #ifdef ASSERT 760 // The offset can be 0 if the block starts on a boundary. That 761 // is checked by an assertion above. 762 size_t start_index = _array->index_for(blk_start); 763 HeapWord* boundary = _array->address_for_index(start_index); 764 assert((_array->offset_array(orig_next_offset_index) == 0 && 765 blk_start == boundary) || 766 (_array->offset_array(orig_next_offset_index) > 0 && 767 _array->offset_array(orig_next_offset_index) <= N_words), 768 "offset array should have been set"); 769 for (size_t j = orig_next_offset_index + 1; j <= end_index; j++) { 770 assert(_array->offset_array(j) > 0 && 771 _array->offset_array(j) <= (u_char) (N_words+N_powers-1), 772 "offset array should have been set"); 773 } 774 #endif 775 } 776 777 HeapWord* BlockOffsetArrayContigSpace::initialize_threshold() { 778 assert(!Universe::heap()->is_in_reserved(_array->_offset_array), 779 "just checking"); 780 _next_offset_index = _array->index_for(_bottom); 781 _next_offset_index++; 782 _next_offset_threshold = 783 _array->address_for_index(_next_offset_index); 784 return _next_offset_threshold; 785 } 786 787 void BlockOffsetArrayContigSpace::zero_bottom_entry() { 788 assert(!Universe::heap()->is_in_reserved(_array->_offset_array), 789 "just checking"); 790 size_t bottom_index = _array->index_for(_bottom); 791 _array->set_offset_array(bottom_index, 0); 792 } 793 794 size_t BlockOffsetArrayContigSpace::last_active_index() const { 795 return _next_offset_index == 0 ? 0 : _next_offset_index - 1; 796 }