1 /* 2 * Copyright (c) 2011, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/g1/g1AllocRegion.inline.hpp" 27 #include "gc/g1/g1EvacStats.inline.hpp" 28 #include "gc/g1/g1CollectedHeap.inline.hpp" 29 #include "runtime/orderAccess.inline.hpp" 30 31 G1CollectedHeap* G1AllocRegion::_g1h = NULL; 32 HeapRegion* G1AllocRegion::_dummy_region = NULL; 33 34 void G1AllocRegion::setup(G1CollectedHeap* g1h, HeapRegion* dummy_region) { 35 assert(_dummy_region == NULL, "should be set once"); 36 assert(dummy_region != NULL, "pre-condition"); 37 assert(dummy_region->free() == 0, "pre-condition"); 38 39 // Make sure that any allocation attempt on this region will fail 40 // and will not trigger any asserts. 41 assert(allocate(dummy_region, 1, false) == NULL, "should fail"); 42 assert(par_allocate(dummy_region, 1, false) == NULL, "should fail"); 43 assert(allocate(dummy_region, 1, true) == NULL, "should fail"); 44 assert(par_allocate(dummy_region, 1, true) == NULL, "should fail"); 45 46 _g1h = g1h; 47 _dummy_region = dummy_region; 48 } 49 50 size_t G1AllocRegion::fill_up_remaining_space(HeapRegion* alloc_region, 51 bool bot_updates) { 52 assert(alloc_region != NULL && alloc_region != _dummy_region, 53 "pre-condition"); 54 size_t result = 0; 55 56 // Other threads might still be trying to allocate using a CAS out 57 // of the region we are trying to retire, as they can do so without 58 // holding the lock. So, we first have to make sure that noone else 59 // can allocate out of it by doing a maximal allocation. Even if our 60 // CAS attempt fails a few times, we'll succeed sooner or later 61 // given that failed CAS attempts mean that the region is getting 62 // closed to being full. 63 size_t free_word_size = alloc_region->free() / HeapWordSize; 64 65 // This is the minimum free chunk we can turn into a dummy 66 // object. If the free space falls below this, then noone can 67 // allocate in this region anyway (all allocation requests will be 68 // of a size larger than this) so we won't have to perform the dummy 69 // allocation. 70 size_t min_word_size_to_fill = CollectedHeap::min_fill_size(); 71 72 while (free_word_size >= min_word_size_to_fill) { 73 HeapWord* dummy = par_allocate(alloc_region, free_word_size, bot_updates); 74 if (dummy != NULL) { 75 // If the allocation was successful we should fill in the space. 76 CollectedHeap::fill_with_object(dummy, free_word_size); 77 alloc_region->set_pre_dummy_top(dummy); 78 result += free_word_size * HeapWordSize; 79 break; 80 } 81 82 free_word_size = alloc_region->free() / HeapWordSize; 83 // It's also possible that someone else beats us to the 84 // allocation and they fill up the region. In that case, we can 85 // just get out of the loop. 86 } 87 result += alloc_region->free(); 88 89 assert(alloc_region->free() / HeapWordSize < min_word_size_to_fill, 90 "post-condition"); 91 return result; 92 } 93 94 size_t G1AllocRegion::retire(bool fill_up) { 95 assert_alloc_region(_alloc_region != NULL, "not initialized properly"); 96 97 size_t result = 0; 98 99 trace("retiring"); 100 HeapRegion* alloc_region = _alloc_region; 101 if (alloc_region != _dummy_region) { 102 // We never have to check whether the active region is empty or not, 103 // and potentially free it if it is, given that it's guaranteed that 104 // it will never be empty. 105 assert_alloc_region(!alloc_region->is_empty(), 106 "the alloc region should never be empty"); 107 108 if (fill_up) { 109 result = fill_up_remaining_space(alloc_region, _bot_updates); 110 } 111 112 assert_alloc_region(alloc_region->used() >= _used_bytes_before, "invariant"); 113 size_t allocated_bytes = alloc_region->used() - _used_bytes_before; 114 retire_region(alloc_region, allocated_bytes); 115 _used_bytes_before = 0; 116 _alloc_region = _dummy_region; 117 } 118 trace("retired"); 119 120 return result; 121 } 122 123 HeapWord* G1AllocRegion::new_alloc_region_and_allocate(size_t word_size, 124 bool force) { 125 assert_alloc_region(_alloc_region == _dummy_region, "pre-condition"); 126 assert_alloc_region(_used_bytes_before == 0, "pre-condition"); 127 128 trace("attempting region allocation"); 129 HeapRegion* new_alloc_region = allocate_new_region(word_size, force); 130 if (new_alloc_region != NULL) { 131 new_alloc_region->reset_pre_dummy_top(); 132 // Need to do this before the allocation 133 _used_bytes_before = new_alloc_region->used(); 134 HeapWord* result = allocate(new_alloc_region, word_size, _bot_updates); 135 assert_alloc_region(result != NULL, "the allocation should succeeded"); 136 137 OrderAccess::storestore(); 138 // Note that we first perform the allocation and then we store the 139 // region in _alloc_region. This is the reason why an active region 140 // can never be empty. 141 update_alloc_region(new_alloc_region); 142 trace("region allocation successful"); 143 return result; 144 } else { 145 trace("region allocation failed"); 146 return NULL; 147 } 148 ShouldNotReachHere(); 149 } 150 151 void G1AllocRegion::init() { 152 trace("initializing"); 153 assert_alloc_region(_alloc_region == NULL && _used_bytes_before == 0, "pre-condition"); 154 assert_alloc_region(_dummy_region != NULL, "should have been set"); 155 _alloc_region = _dummy_region; 156 _count = 0; 157 trace("initialized"); 158 } 159 160 void G1AllocRegion::set(HeapRegion* alloc_region) { 161 trace("setting"); 162 // We explicitly check that the region is not empty to make sure we 163 // maintain the "the alloc region cannot be empty" invariant. 164 assert_alloc_region(alloc_region != NULL && !alloc_region->is_empty(), "pre-condition"); 165 assert_alloc_region(_alloc_region == _dummy_region && 166 _used_bytes_before == 0 && _count == 0, 167 "pre-condition"); 168 169 _used_bytes_before = alloc_region->used(); 170 _alloc_region = alloc_region; 171 _count += 1; 172 trace("set"); 173 } 174 175 void G1AllocRegion::update_alloc_region(HeapRegion* alloc_region) { 176 trace("update"); 177 // We explicitly check that the region is not empty to make sure we 178 // maintain the "the alloc region cannot be empty" invariant. 179 assert_alloc_region(alloc_region != NULL && !alloc_region->is_empty(), "pre-condition"); 180 181 _alloc_region = alloc_region; 182 _alloc_region->set_allocation_context(allocation_context()); 183 _count += 1; 184 trace("updated"); 185 } 186 187 HeapRegion* G1AllocRegion::release() { 188 trace("releasing"); 189 HeapRegion* alloc_region = _alloc_region; 190 retire(false /* fill_up */); 191 assert_alloc_region(_alloc_region == _dummy_region, "post-condition of retire()"); 192 _alloc_region = NULL; 193 trace("released"); 194 return (alloc_region == _dummy_region) ? NULL : alloc_region; 195 } 196 197 #if G1_ALLOC_REGION_TRACING 198 void G1AllocRegion::trace(const char* str, size_t min_word_size, size_t desired_word_size, size_t actual_word_size, HeapWord* result) { 199 // All the calls to trace that set either just the size or the size 200 // and the result are considered part of level 2 tracing and are 201 // skipped during level 1 tracing. 202 if ((actual_word_size == 0 && result == NULL) || (G1_ALLOC_REGION_TRACING > 1)) { 203 const size_t buffer_length = 128; 204 char hr_buffer[buffer_length]; 205 char rest_buffer[buffer_length]; 206 207 HeapRegion* alloc_region = _alloc_region; 208 if (alloc_region == NULL) { 209 jio_snprintf(hr_buffer, buffer_length, "NULL"); 210 } else if (alloc_region == _dummy_region) { 211 jio_snprintf(hr_buffer, buffer_length, "DUMMY"); 212 } else { 213 jio_snprintf(hr_buffer, buffer_length, 214 HR_FORMAT, HR_FORMAT_PARAMS(alloc_region)); 215 } 216 217 if (G1_ALLOC_REGION_TRACING > 1) { 218 if (result != NULL) { 219 jio_snprintf(rest_buffer, buffer_length, "min " SIZE_FORMAT " desired " SIZE_FORMAT " actual " SIZE_FORMAT " " PTR_FORMAT, 220 min_word_size, desired_word_size, actual_word_size, result); 221 } else if (min_word_size != 0) { 222 jio_snprintf(rest_buffer, buffer_length, "min " SIZE_FORMAT " desired " SIZE_FORMAT, min_word_size, desired_word_size); 223 } else { 224 jio_snprintf(rest_buffer, buffer_length, ""); 225 } 226 } else { 227 jio_snprintf(rest_buffer, buffer_length, ""); 228 } 229 230 tty->print_cr("[%s] %u %s : %s %s", 231 _name, _count, hr_buffer, str, rest_buffer); 232 } 233 } 234 #endif // G1_ALLOC_REGION_TRACING 235 236 G1AllocRegion::G1AllocRegion(const char* name, 237 bool bot_updates) 238 : _name(name), _bot_updates(bot_updates), 239 _alloc_region(NULL), _count(0), _used_bytes_before(0), 240 _allocation_context(AllocationContext::system()) { } 241 242 243 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size, 244 bool force) { 245 return _g1h->new_mutator_alloc_region(word_size, force); 246 } 247 248 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region, 249 size_t allocated_bytes) { 250 _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes); 251 } 252 253 HeapRegion* G1GCAllocRegion::allocate_new_region(size_t word_size, 254 bool force) { 255 assert(!force, "not supported for GC alloc regions"); 256 return _g1h->new_gc_alloc_region(word_size, count(), _purpose); 257 } 258 259 void G1GCAllocRegion::retire_region(HeapRegion* alloc_region, 260 size_t allocated_bytes) { 261 _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes, _purpose); 262 } 263 264 size_t G1GCAllocRegion::retire(bool fill_up) { 265 HeapRegion* retired = get(); 266 size_t end_waste = G1AllocRegion::retire(fill_up); 267 // Do not count retirement of the dummy allocation region. 268 if (retired != NULL) { 269 _stats->add_region_end_waste(end_waste / HeapWordSize); 270 } 271 return end_waste; 272 } 273 274 HeapRegion* OldGCAllocRegion::release() { 275 HeapRegion* cur = get(); 276 if (cur != NULL) { 277 // Determine how far we are from the next card boundary. If it is smaller than 278 // the minimum object size we can allocate into, expand into the next card. 279 HeapWord* top = cur->top(); 280 HeapWord* aligned_top = (HeapWord*)align_ptr_up(top, BOTConstants::N_bytes); 281 282 size_t to_allocate_words = pointer_delta(aligned_top, top, HeapWordSize); 283 284 if (to_allocate_words != 0) { 285 // We are not at a card boundary. Fill up, possibly into the next, taking the 286 // end of the region and the minimum object size into account. 287 to_allocate_words = MIN2(pointer_delta(cur->end(), cur->top(), HeapWordSize), 288 MAX2(to_allocate_words, G1CollectedHeap::min_fill_size())); 289 290 // Skip allocation if there is not enough space to allocate even the smallest 291 // possible object. In this case this region will not be retained, so the 292 // original problem cannot occur. 293 if (to_allocate_words >= G1CollectedHeap::min_fill_size()) { 294 HeapWord* dummy = attempt_allocation(to_allocate_words, true /* bot_updates */); 295 CollectedHeap::fill_with_object(dummy, to_allocate_words); 296 } 297 } 298 } 299 return G1AllocRegion::release(); 300 }