1 /* 2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/metadataOnStackMark.hpp" 27 #include "classfile/stringTable.hpp" 28 #include "code/codeCache.hpp" 29 #include "code/icBuffer.hpp" 30 #include "gc/g1/bufferingOopClosure.hpp" 31 #include "gc/g1/concurrentG1Refine.hpp" 32 #include "gc/g1/concurrentG1RefineThread.hpp" 33 #include "gc/g1/concurrentMarkThread.inline.hpp" 34 #include "gc/g1/g1Allocator.inline.hpp" 35 #include "gc/g1/g1CollectedHeap.inline.hpp" 36 #include "gc/g1/g1CollectorPolicy.hpp" 37 #include "gc/g1/g1CollectorState.hpp" 38 #include "gc/g1/g1ErgoVerbose.hpp" 39 #include "gc/g1/g1EvacFailure.hpp" 40 #include "gc/g1/g1EvacStats.inline.hpp" 41 #include "gc/g1/g1GCPhaseTimes.hpp" 42 #include "gc/g1/g1Log.hpp" 43 #include "gc/g1/g1MarkSweep.hpp" 44 #include "gc/g1/g1OopClosures.inline.hpp" 45 #include "gc/g1/g1ParScanThreadState.inline.hpp" 46 #include "gc/g1/g1RegionToSpaceMapper.hpp" 47 #include "gc/g1/g1RemSet.inline.hpp" 48 #include "gc/g1/g1RootClosures.hpp" 49 #include "gc/g1/g1RootProcessor.hpp" 50 #include "gc/g1/g1StringDedup.hpp" 51 #include "gc/g1/g1YCTypes.hpp" 52 #include "gc/g1/heapRegion.inline.hpp" 53 #include "gc/g1/heapRegionRemSet.hpp" 54 #include "gc/g1/heapRegionSet.inline.hpp" 55 #include "gc/g1/suspendibleThreadSet.hpp" 56 #include "gc/g1/vm_operations_g1.hpp" 57 #include "gc/shared/gcHeapSummary.hpp" 58 #include "gc/shared/gcId.hpp" 59 #include "gc/shared/gcLocker.inline.hpp" 60 #include "gc/shared/gcTimer.hpp" 61 #include "gc/shared/gcTrace.hpp" 62 #include "gc/shared/gcTraceTime.hpp" 63 #include "gc/shared/generationSpec.hpp" 64 #include "gc/shared/isGCActiveMark.hpp" 65 #include "gc/shared/referenceProcessor.hpp" 66 #include "gc/shared/taskqueue.inline.hpp" 67 #include "memory/allocation.hpp" 68 #include "memory/iterator.hpp" 69 #include "oops/oop.inline.hpp" 70 #include "runtime/atomic.inline.hpp" 71 #include "runtime/init.hpp" 72 #include "runtime/orderAccess.inline.hpp" 73 #include "runtime/vmThread.hpp" 74 #include "utilities/globalDefinitions.hpp" 75 #include "utilities/stack.inline.hpp" 76 77 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0; 78 79 // INVARIANTS/NOTES 80 // 81 // All allocation activity covered by the G1CollectedHeap interface is 82 // serialized by acquiring the HeapLock. This happens in mem_allocate 83 // and allocate_new_tlab, which are the "entry" points to the 84 // allocation code from the rest of the JVM. (Note that this does not 85 // apply to TLAB allocation, which is not part of this interface: it 86 // is done by clients of this interface.) 87 88 // Local to this file. 89 90 class RefineCardTableEntryClosure: public CardTableEntryClosure { 91 bool _concurrent; 92 public: 93 RefineCardTableEntryClosure() : _concurrent(true) { } 94 95 bool do_card_ptr(jbyte* card_ptr, uint worker_i) { 96 bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false); 97 // This path is executed by the concurrent refine or mutator threads, 98 // concurrently, and so we do not care if card_ptr contains references 99 // that point into the collection set. 100 assert(!oops_into_cset, "should be"); 101 102 if (_concurrent && SuspendibleThreadSet::should_yield()) { 103 // Caller will actually yield. 104 return false; 105 } 106 // Otherwise, we finished successfully; return true. 107 return true; 108 } 109 110 void set_concurrent(bool b) { _concurrent = b; } 111 }; 112 113 114 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure { 115 private: 116 size_t _num_processed; 117 118 public: 119 RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { } 120 121 bool do_card_ptr(jbyte* card_ptr, uint worker_i) { 122 *card_ptr = CardTableModRefBS::dirty_card_val(); 123 _num_processed++; 124 return true; 125 } 126 127 size_t num_processed() const { return _num_processed; } 128 }; 129 130 131 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) { 132 HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions); 133 } 134 135 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) { 136 // The from card cache is not the memory that is actually committed. So we cannot 137 // take advantage of the zero_filled parameter. 138 reset_from_card_cache(start_idx, num_regions); 139 } 140 141 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr) 142 { 143 // Claim the right to put the region on the dirty cards region list 144 // by installing a self pointer. 145 HeapRegion* next = hr->get_next_dirty_cards_region(); 146 if (next == NULL) { 147 HeapRegion* res = (HeapRegion*) 148 Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(), 149 NULL); 150 if (res == NULL) { 151 HeapRegion* head; 152 do { 153 // Put the region to the dirty cards region list. 154 head = _dirty_cards_region_list; 155 next = (HeapRegion*) 156 Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head); 157 if (next == head) { 158 assert(hr->get_next_dirty_cards_region() == hr, 159 "hr->get_next_dirty_cards_region() != hr"); 160 if (next == NULL) { 161 // The last region in the list points to itself. 162 hr->set_next_dirty_cards_region(hr); 163 } else { 164 hr->set_next_dirty_cards_region(next); 165 } 166 } 167 } while (next != head); 168 } 169 } 170 } 171 172 HeapRegion* G1CollectedHeap::pop_dirty_cards_region() 173 { 174 HeapRegion* head; 175 HeapRegion* hr; 176 do { 177 head = _dirty_cards_region_list; 178 if (head == NULL) { 179 return NULL; 180 } 181 HeapRegion* new_head = head->get_next_dirty_cards_region(); 182 if (head == new_head) { 183 // The last region. 184 new_head = NULL; 185 } 186 hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list, 187 head); 188 } while (hr != head); 189 assert(hr != NULL, "invariant"); 190 hr->set_next_dirty_cards_region(NULL); 191 return hr; 192 } 193 194 // Returns true if the reference points to an object that 195 // can move in an incremental collection. 196 bool G1CollectedHeap::is_scavengable(const void* p) { 197 HeapRegion* hr = heap_region_containing(p); 198 return !hr->is_pinned(); 199 } 200 201 // Private methods. 202 203 HeapRegion* 204 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) { 205 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 206 while (!_secondary_free_list.is_empty() || free_regions_coming()) { 207 if (!_secondary_free_list.is_empty()) { 208 if (G1ConcRegionFreeingVerbose) { 209 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 210 "secondary_free_list has %u entries", 211 _secondary_free_list.length()); 212 } 213 // It looks as if there are free regions available on the 214 // secondary_free_list. Let's move them to the free_list and try 215 // again to allocate from it. 216 append_secondary_free_list(); 217 218 assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not " 219 "empty we should have moved at least one entry to the free_list"); 220 HeapRegion* res = _hrm.allocate_free_region(is_old); 221 if (G1ConcRegionFreeingVerbose) { 222 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 223 "allocated " HR_FORMAT " from secondary_free_list", 224 HR_FORMAT_PARAMS(res)); 225 } 226 return res; 227 } 228 229 // Wait here until we get notified either when (a) there are no 230 // more free regions coming or (b) some regions have been moved on 231 // the secondary_free_list. 232 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag); 233 } 234 235 if (G1ConcRegionFreeingVerbose) { 236 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 237 "could not allocate from secondary_free_list"); 238 } 239 return NULL; 240 } 241 242 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) { 243 assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords, 244 "the only time we use this to allocate a humongous region is " 245 "when we are allocating a single humongous region"); 246 247 HeapRegion* res; 248 if (G1StressConcRegionFreeing) { 249 if (!_secondary_free_list.is_empty()) { 250 if (G1ConcRegionFreeingVerbose) { 251 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 252 "forced to look at the secondary_free_list"); 253 } 254 res = new_region_try_secondary_free_list(is_old); 255 if (res != NULL) { 256 return res; 257 } 258 } 259 } 260 261 res = _hrm.allocate_free_region(is_old); 262 263 if (res == NULL) { 264 if (G1ConcRegionFreeingVerbose) { 265 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 266 "res == NULL, trying the secondary_free_list"); 267 } 268 res = new_region_try_secondary_free_list(is_old); 269 } 270 if (res == NULL && do_expand && _expand_heap_after_alloc_failure) { 271 // Currently, only attempts to allocate GC alloc regions set 272 // do_expand to true. So, we should only reach here during a 273 // safepoint. If this assumption changes we might have to 274 // reconsider the use of _expand_heap_after_alloc_failure. 275 assert(SafepointSynchronize::is_at_safepoint(), "invariant"); 276 277 ergo_verbose1(ErgoHeapSizing, 278 "attempt heap expansion", 279 ergo_format_reason("region allocation request failed") 280 ergo_format_byte("allocation request"), 281 word_size * HeapWordSize); 282 if (expand(word_size * HeapWordSize)) { 283 // Given that expand() succeeded in expanding the heap, and we 284 // always expand the heap by an amount aligned to the heap 285 // region size, the free list should in theory not be empty. 286 // In either case allocate_free_region() will check for NULL. 287 res = _hrm.allocate_free_region(is_old); 288 } else { 289 _expand_heap_after_alloc_failure = false; 290 } 291 } 292 return res; 293 } 294 295 HeapWord* 296 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first, 297 uint num_regions, 298 size_t word_size, 299 AllocationContext_t context) { 300 assert(first != G1_NO_HRM_INDEX, "pre-condition"); 301 assert(is_humongous(word_size), "word_size should be humongous"); 302 assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition"); 303 304 // Index of last region in the series. 305 uint last = first + num_regions - 1; 306 307 // We need to initialize the region(s) we just discovered. This is 308 // a bit tricky given that it can happen concurrently with 309 // refinement threads refining cards on these regions and 310 // potentially wanting to refine the BOT as they are scanning 311 // those cards (this can happen shortly after a cleanup; see CR 312 // 6991377). So we have to set up the region(s) carefully and in 313 // a specific order. 314 315 // The word size sum of all the regions we will allocate. 316 size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords; 317 assert(word_size <= word_size_sum, "sanity"); 318 319 // This will be the "starts humongous" region. 320 HeapRegion* first_hr = region_at(first); 321 // The header of the new object will be placed at the bottom of 322 // the first region. 323 HeapWord* new_obj = first_hr->bottom(); 324 // This will be the new top of the new object. 325 HeapWord* obj_top = new_obj + word_size; 326 327 // First, we need to zero the header of the space that we will be 328 // allocating. When we update top further down, some refinement 329 // threads might try to scan the region. By zeroing the header we 330 // ensure that any thread that will try to scan the region will 331 // come across the zero klass word and bail out. 332 // 333 // NOTE: It would not have been correct to have used 334 // CollectedHeap::fill_with_object() and make the space look like 335 // an int array. The thread that is doing the allocation will 336 // later update the object header to a potentially different array 337 // type and, for a very short period of time, the klass and length 338 // fields will be inconsistent. This could cause a refinement 339 // thread to calculate the object size incorrectly. 340 Copy::fill_to_words(new_obj, oopDesc::header_size(), 0); 341 342 // How many words we use for filler objects. 343 size_t word_fill_size = word_size_sum - word_size; 344 345 // How many words memory we "waste" which cannot hold a filler object. 346 size_t words_not_fillable = 0; 347 348 if (word_fill_size >= min_fill_size()) { 349 fill_with_objects(obj_top, word_fill_size); 350 } else if (word_fill_size > 0) { 351 // We have space to fill, but we cannot fit an object there. 352 words_not_fillable = word_fill_size; 353 word_fill_size = 0; 354 } 355 356 // We will set up the first region as "starts humongous". This 357 // will also update the BOT covering all the regions to reflect 358 // that there is a single object that starts at the bottom of the 359 // first region. 360 first_hr->set_starts_humongous(obj_top, word_fill_size); 361 first_hr->set_allocation_context(context); 362 // Then, if there are any, we will set up the "continues 363 // humongous" regions. 364 HeapRegion* hr = NULL; 365 for (uint i = first + 1; i <= last; ++i) { 366 hr = region_at(i); 367 hr->set_continues_humongous(first_hr); 368 hr->set_allocation_context(context); 369 } 370 371 // Up to this point no concurrent thread would have been able to 372 // do any scanning on any region in this series. All the top 373 // fields still point to bottom, so the intersection between 374 // [bottom,top] and [card_start,card_end] will be empty. Before we 375 // update the top fields, we'll do a storestore to make sure that 376 // no thread sees the update to top before the zeroing of the 377 // object header and the BOT initialization. 378 OrderAccess::storestore(); 379 380 // Now, we will update the top fields of the "continues humongous" 381 // regions except the last one. 382 for (uint i = first; i < last; ++i) { 383 hr = region_at(i); 384 hr->set_top(hr->end()); 385 } 386 387 hr = region_at(last); 388 // If we cannot fit a filler object, we must set top to the end 389 // of the humongous object, otherwise we cannot iterate the heap 390 // and the BOT will not be complete. 391 hr->set_top(hr->end() - words_not_fillable); 392 393 assert(hr->bottom() < obj_top && obj_top <= hr->end(), 394 "obj_top should be in last region"); 395 396 check_bitmaps("Humongous Region Allocation", first_hr); 397 398 assert(words_not_fillable == 0 || 399 first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(), 400 "Miscalculation in humongous allocation"); 401 402 increase_used((word_size_sum - words_not_fillable) * HeapWordSize); 403 404 for (uint i = first; i <= last; ++i) { 405 hr = region_at(i); 406 _humongous_set.add(hr); 407 if (i == first) { 408 _hr_printer.alloc(G1HRPrinter::StartsHumongous, hr, hr->top()); 409 } else { 410 _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->top()); 411 } 412 } 413 414 return new_obj; 415 } 416 417 // If could fit into free regions w/o expansion, try. 418 // Otherwise, if can expand, do so. 419 // Otherwise, if using ex regions might help, try with ex given back. 420 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) { 421 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 422 423 verify_region_sets_optional(); 424 425 uint first = G1_NO_HRM_INDEX; 426 uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords); 427 428 if (obj_regions == 1) { 429 // Only one region to allocate, try to use a fast path by directly allocating 430 // from the free lists. Do not try to expand here, we will potentially do that 431 // later. 432 HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */); 433 if (hr != NULL) { 434 first = hr->hrm_index(); 435 } 436 } else { 437 // We can't allocate humongous regions spanning more than one region while 438 // cleanupComplete() is running, since some of the regions we find to be 439 // empty might not yet be added to the free list. It is not straightforward 440 // to know in which list they are on so that we can remove them. We only 441 // need to do this if we need to allocate more than one region to satisfy the 442 // current humongous allocation request. If we are only allocating one region 443 // we use the one-region region allocation code (see above), that already 444 // potentially waits for regions from the secondary free list. 445 wait_while_free_regions_coming(); 446 append_secondary_free_list_if_not_empty_with_lock(); 447 448 // Policy: Try only empty regions (i.e. already committed first). Maybe we 449 // are lucky enough to find some. 450 first = _hrm.find_contiguous_only_empty(obj_regions); 451 if (first != G1_NO_HRM_INDEX) { 452 _hrm.allocate_free_regions_starting_at(first, obj_regions); 453 } 454 } 455 456 if (first == G1_NO_HRM_INDEX) { 457 // Policy: We could not find enough regions for the humongous object in the 458 // free list. Look through the heap to find a mix of free and uncommitted regions. 459 // If so, try expansion. 460 first = _hrm.find_contiguous_empty_or_unavailable(obj_regions); 461 if (first != G1_NO_HRM_INDEX) { 462 // We found something. Make sure these regions are committed, i.e. expand 463 // the heap. Alternatively we could do a defragmentation GC. 464 ergo_verbose1(ErgoHeapSizing, 465 "attempt heap expansion", 466 ergo_format_reason("humongous allocation request failed") 467 ergo_format_byte("allocation request"), 468 word_size * HeapWordSize); 469 470 _hrm.expand_at(first, obj_regions); 471 g1_policy()->record_new_heap_size(num_regions()); 472 473 #ifdef ASSERT 474 for (uint i = first; i < first + obj_regions; ++i) { 475 HeapRegion* hr = region_at(i); 476 assert(hr->is_free(), "sanity"); 477 assert(hr->is_empty(), "sanity"); 478 assert(is_on_master_free_list(hr), "sanity"); 479 } 480 #endif 481 _hrm.allocate_free_regions_starting_at(first, obj_regions); 482 } else { 483 // Policy: Potentially trigger a defragmentation GC. 484 } 485 } 486 487 HeapWord* result = NULL; 488 if (first != G1_NO_HRM_INDEX) { 489 result = humongous_obj_allocate_initialize_regions(first, obj_regions, 490 word_size, context); 491 assert(result != NULL, "it should always return a valid result"); 492 493 // A successful humongous object allocation changes the used space 494 // information of the old generation so we need to recalculate the 495 // sizes and update the jstat counters here. 496 g1mm()->update_sizes(); 497 } 498 499 verify_region_sets_optional(); 500 501 return result; 502 } 503 504 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) { 505 assert_heap_not_locked_and_not_at_safepoint(); 506 assert(!is_humongous(word_size), "we do not allow humongous TLABs"); 507 508 uint dummy_gc_count_before; 509 uint dummy_gclocker_retry_count = 0; 510 return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count); 511 } 512 513 HeapWord* 514 G1CollectedHeap::mem_allocate(size_t word_size, 515 bool* gc_overhead_limit_was_exceeded) { 516 assert_heap_not_locked_and_not_at_safepoint(); 517 518 // Loop until the allocation is satisfied, or unsatisfied after GC. 519 for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) { 520 uint gc_count_before; 521 522 HeapWord* result = NULL; 523 if (!is_humongous(word_size)) { 524 result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count); 525 } else { 526 result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count); 527 } 528 if (result != NULL) { 529 return result; 530 } 531 532 // Create the garbage collection operation... 533 VM_G1CollectForAllocation op(gc_count_before, word_size); 534 op.set_allocation_context(AllocationContext::current()); 535 536 // ...and get the VM thread to execute it. 537 VMThread::execute(&op); 538 539 if (op.prologue_succeeded() && op.pause_succeeded()) { 540 // If the operation was successful we'll return the result even 541 // if it is NULL. If the allocation attempt failed immediately 542 // after a Full GC, it's unlikely we'll be able to allocate now. 543 HeapWord* result = op.result(); 544 if (result != NULL && !is_humongous(word_size)) { 545 // Allocations that take place on VM operations do not do any 546 // card dirtying and we have to do it here. We only have to do 547 // this for non-humongous allocations, though. 548 dirty_young_block(result, word_size); 549 } 550 return result; 551 } else { 552 if (gclocker_retry_count > GCLockerRetryAllocationCount) { 553 return NULL; 554 } 555 assert(op.result() == NULL, 556 "the result should be NULL if the VM op did not succeed"); 557 } 558 559 // Give a warning if we seem to be looping forever. 560 if ((QueuedAllocationWarningCount > 0) && 561 (try_count % QueuedAllocationWarningCount == 0)) { 562 warning("G1CollectedHeap::mem_allocate retries %d times", try_count); 563 } 564 } 565 566 ShouldNotReachHere(); 567 return NULL; 568 } 569 570 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size, 571 AllocationContext_t context, 572 uint* gc_count_before_ret, 573 uint* gclocker_retry_count_ret) { 574 // Make sure you read the note in attempt_allocation_humongous(). 575 576 assert_heap_not_locked_and_not_at_safepoint(); 577 assert(!is_humongous(word_size), "attempt_allocation_slow() should not " 578 "be called for humongous allocation requests"); 579 580 // We should only get here after the first-level allocation attempt 581 // (attempt_allocation()) failed to allocate. 582 583 // We will loop until a) we manage to successfully perform the 584 // allocation or b) we successfully schedule a collection which 585 // fails to perform the allocation. b) is the only case when we'll 586 // return NULL. 587 HeapWord* result = NULL; 588 for (int try_count = 1; /* we'll return */; try_count += 1) { 589 bool should_try_gc; 590 uint gc_count_before; 591 592 { 593 MutexLockerEx x(Heap_lock); 594 result = _allocator->attempt_allocation_locked(word_size, context); 595 if (result != NULL) { 596 return result; 597 } 598 599 if (GC_locker::is_active_and_needs_gc()) { 600 if (g1_policy()->can_expand_young_list()) { 601 // No need for an ergo verbose message here, 602 // can_expand_young_list() does this when it returns true. 603 result = _allocator->attempt_allocation_force(word_size, context); 604 if (result != NULL) { 605 return result; 606 } 607 } 608 should_try_gc = false; 609 } else { 610 // The GCLocker may not be active but the GCLocker initiated 611 // GC may not yet have been performed (GCLocker::needs_gc() 612 // returns true). In this case we do not try this GC and 613 // wait until the GCLocker initiated GC is performed, and 614 // then retry the allocation. 615 if (GC_locker::needs_gc()) { 616 should_try_gc = false; 617 } else { 618 // Read the GC count while still holding the Heap_lock. 619 gc_count_before = total_collections(); 620 should_try_gc = true; 621 } 622 } 623 } 624 625 if (should_try_gc) { 626 bool succeeded; 627 result = do_collection_pause(word_size, gc_count_before, &succeeded, 628 GCCause::_g1_inc_collection_pause); 629 if (result != NULL) { 630 assert(succeeded, "only way to get back a non-NULL result"); 631 return result; 632 } 633 634 if (succeeded) { 635 // If we get here we successfully scheduled a collection which 636 // failed to allocate. No point in trying to allocate 637 // further. We'll just return NULL. 638 MutexLockerEx x(Heap_lock); 639 *gc_count_before_ret = total_collections(); 640 return NULL; 641 } 642 } else { 643 if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) { 644 MutexLockerEx x(Heap_lock); 645 *gc_count_before_ret = total_collections(); 646 return NULL; 647 } 648 // The GCLocker is either active or the GCLocker initiated 649 // GC has not yet been performed. Stall until it is and 650 // then retry the allocation. 651 GC_locker::stall_until_clear(); 652 (*gclocker_retry_count_ret) += 1; 653 } 654 655 // We can reach here if we were unsuccessful in scheduling a 656 // collection (because another thread beat us to it) or if we were 657 // stalled due to the GC locker. In either can we should retry the 658 // allocation attempt in case another thread successfully 659 // performed a collection and reclaimed enough space. We do the 660 // first attempt (without holding the Heap_lock) here and the 661 // follow-on attempt will be at the start of the next loop 662 // iteration (after taking the Heap_lock). 663 result = _allocator->attempt_allocation(word_size, context); 664 if (result != NULL) { 665 return result; 666 } 667 668 // Give a warning if we seem to be looping forever. 669 if ((QueuedAllocationWarningCount > 0) && 670 (try_count % QueuedAllocationWarningCount == 0)) { 671 warning("G1CollectedHeap::attempt_allocation_slow() " 672 "retries %d times", try_count); 673 } 674 } 675 676 ShouldNotReachHere(); 677 return NULL; 678 } 679 680 void G1CollectedHeap::begin_archive_alloc_range() { 681 assert_at_safepoint(true /* should_be_vm_thread */); 682 if (_archive_allocator == NULL) { 683 _archive_allocator = G1ArchiveAllocator::create_allocator(this); 684 } 685 } 686 687 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) { 688 // Allocations in archive regions cannot be of a size that would be considered 689 // humongous even for a minimum-sized region, because G1 region sizes/boundaries 690 // may be different at archive-restore time. 691 return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words()); 692 } 693 694 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) { 695 assert_at_safepoint(true /* should_be_vm_thread */); 696 assert(_archive_allocator != NULL, "_archive_allocator not initialized"); 697 if (is_archive_alloc_too_large(word_size)) { 698 return NULL; 699 } 700 return _archive_allocator->archive_mem_allocate(word_size); 701 } 702 703 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges, 704 size_t end_alignment_in_bytes) { 705 assert_at_safepoint(true /* should_be_vm_thread */); 706 assert(_archive_allocator != NULL, "_archive_allocator not initialized"); 707 708 // Call complete_archive to do the real work, filling in the MemRegion 709 // array with the archive regions. 710 _archive_allocator->complete_archive(ranges, end_alignment_in_bytes); 711 delete _archive_allocator; 712 _archive_allocator = NULL; 713 } 714 715 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) { 716 assert(ranges != NULL, "MemRegion array NULL"); 717 assert(count != 0, "No MemRegions provided"); 718 MemRegion reserved = _hrm.reserved(); 719 for (size_t i = 0; i < count; i++) { 720 if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) { 721 return false; 722 } 723 } 724 return true; 725 } 726 727 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) { 728 assert(!is_init_completed(), "Expect to be called at JVM init time"); 729 assert(ranges != NULL, "MemRegion array NULL"); 730 assert(count != 0, "No MemRegions provided"); 731 MutexLockerEx x(Heap_lock); 732 733 MemRegion reserved = _hrm.reserved(); 734 HeapWord* prev_last_addr = NULL; 735 HeapRegion* prev_last_region = NULL; 736 737 // Temporarily disable pretouching of heap pages. This interface is used 738 // when mmap'ing archived heap data in, so pre-touching is wasted. 739 FlagSetting fs(AlwaysPreTouch, false); 740 741 // Enable archive object checking in G1MarkSweep. We have to let it know 742 // about each archive range, so that objects in those ranges aren't marked. 743 G1MarkSweep::enable_archive_object_check(); 744 745 // For each specified MemRegion range, allocate the corresponding G1 746 // regions and mark them as archive regions. We expect the ranges in 747 // ascending starting address order, without overlap. 748 for (size_t i = 0; i < count; i++) { 749 MemRegion curr_range = ranges[i]; 750 HeapWord* start_address = curr_range.start(); 751 size_t word_size = curr_range.word_size(); 752 HeapWord* last_address = curr_range.last(); 753 size_t commits = 0; 754 755 guarantee(reserved.contains(start_address) && reserved.contains(last_address), 756 "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", 757 p2i(start_address), p2i(last_address)); 758 guarantee(start_address > prev_last_addr, 759 "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , 760 p2i(start_address), p2i(prev_last_addr)); 761 prev_last_addr = last_address; 762 763 // Check for ranges that start in the same G1 region in which the previous 764 // range ended, and adjust the start address so we don't try to allocate 765 // the same region again. If the current range is entirely within that 766 // region, skip it, just adjusting the recorded top. 767 HeapRegion* start_region = _hrm.addr_to_region(start_address); 768 if ((prev_last_region != NULL) && (start_region == prev_last_region)) { 769 start_address = start_region->end(); 770 if (start_address > last_address) { 771 increase_used(word_size * HeapWordSize); 772 start_region->set_top(last_address + 1); 773 continue; 774 } 775 start_region->set_top(start_address); 776 curr_range = MemRegion(start_address, last_address + 1); 777 start_region = _hrm.addr_to_region(start_address); 778 } 779 780 // Perform the actual region allocation, exiting if it fails. 781 // Then note how much new space we have allocated. 782 if (!_hrm.allocate_containing_regions(curr_range, &commits)) { 783 return false; 784 } 785 increase_used(word_size * HeapWordSize); 786 if (commits != 0) { 787 ergo_verbose1(ErgoHeapSizing, 788 "attempt heap expansion", 789 ergo_format_reason("allocate archive regions") 790 ergo_format_byte("total size"), 791 HeapRegion::GrainWords * HeapWordSize * commits); 792 } 793 794 // Mark each G1 region touched by the range as archive, add it to the old set, 795 // and set the allocation context and top. 796 HeapRegion* curr_region = _hrm.addr_to_region(start_address); 797 HeapRegion* last_region = _hrm.addr_to_region(last_address); 798 prev_last_region = last_region; 799 800 while (curr_region != NULL) { 801 assert(curr_region->is_empty() && !curr_region->is_pinned(), 802 "Region already in use (index %u)", curr_region->hrm_index()); 803 _hr_printer.alloc(curr_region, G1HRPrinter::Archive); 804 curr_region->set_allocation_context(AllocationContext::system()); 805 curr_region->set_archive(); 806 _old_set.add(curr_region); 807 if (curr_region != last_region) { 808 curr_region->set_top(curr_region->end()); 809 curr_region = _hrm.next_region_in_heap(curr_region); 810 } else { 811 curr_region->set_top(last_address + 1); 812 curr_region = NULL; 813 } 814 } 815 816 // Notify mark-sweep of the archive range. 817 G1MarkSweep::set_range_archive(curr_range, true); 818 } 819 return true; 820 } 821 822 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) { 823 assert(!is_init_completed(), "Expect to be called at JVM init time"); 824 assert(ranges != NULL, "MemRegion array NULL"); 825 assert(count != 0, "No MemRegions provided"); 826 MemRegion reserved = _hrm.reserved(); 827 HeapWord *prev_last_addr = NULL; 828 HeapRegion* prev_last_region = NULL; 829 830 // For each MemRegion, create filler objects, if needed, in the G1 regions 831 // that contain the address range. The address range actually within the 832 // MemRegion will not be modified. That is assumed to have been initialized 833 // elsewhere, probably via an mmap of archived heap data. 834 MutexLockerEx x(Heap_lock); 835 for (size_t i = 0; i < count; i++) { 836 HeapWord* start_address = ranges[i].start(); 837 HeapWord* last_address = ranges[i].last(); 838 839 assert(reserved.contains(start_address) && reserved.contains(last_address), 840 "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", 841 p2i(start_address), p2i(last_address)); 842 assert(start_address > prev_last_addr, 843 "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , 844 p2i(start_address), p2i(prev_last_addr)); 845 846 HeapRegion* start_region = _hrm.addr_to_region(start_address); 847 HeapRegion* last_region = _hrm.addr_to_region(last_address); 848 HeapWord* bottom_address = start_region->bottom(); 849 850 // Check for a range beginning in the same region in which the 851 // previous one ended. 852 if (start_region == prev_last_region) { 853 bottom_address = prev_last_addr + 1; 854 } 855 856 // Verify that the regions were all marked as archive regions by 857 // alloc_archive_regions. 858 HeapRegion* curr_region = start_region; 859 while (curr_region != NULL) { 860 guarantee(curr_region->is_archive(), 861 "Expected archive region at index %u", curr_region->hrm_index()); 862 if (curr_region != last_region) { 863 curr_region = _hrm.next_region_in_heap(curr_region); 864 } else { 865 curr_region = NULL; 866 } 867 } 868 869 prev_last_addr = last_address; 870 prev_last_region = last_region; 871 872 // Fill the memory below the allocated range with dummy object(s), 873 // if the region bottom does not match the range start, or if the previous 874 // range ended within the same G1 region, and there is a gap. 875 if (start_address != bottom_address) { 876 size_t fill_size = pointer_delta(start_address, bottom_address); 877 G1CollectedHeap::fill_with_objects(bottom_address, fill_size); 878 increase_used(fill_size * HeapWordSize); 879 } 880 } 881 } 882 883 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size, 884 uint* gc_count_before_ret, 885 uint* gclocker_retry_count_ret) { 886 assert_heap_not_locked_and_not_at_safepoint(); 887 assert(!is_humongous(word_size), "attempt_allocation() should not " 888 "be called for humongous allocation requests"); 889 890 AllocationContext_t context = AllocationContext::current(); 891 HeapWord* result = _allocator->attempt_allocation(word_size, context); 892 893 if (result == NULL) { 894 result = attempt_allocation_slow(word_size, 895 context, 896 gc_count_before_ret, 897 gclocker_retry_count_ret); 898 } 899 assert_heap_not_locked(); 900 if (result != NULL) { 901 dirty_young_block(result, word_size); 902 } 903 return result; 904 } 905 906 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) { 907 assert(!is_init_completed(), "Expect to be called at JVM init time"); 908 assert(ranges != NULL, "MemRegion array NULL"); 909 assert(count != 0, "No MemRegions provided"); 910 MemRegion reserved = _hrm.reserved(); 911 HeapWord* prev_last_addr = NULL; 912 HeapRegion* prev_last_region = NULL; 913 size_t size_used = 0; 914 size_t uncommitted_regions = 0; 915 916 // For each Memregion, free the G1 regions that constitute it, and 917 // notify mark-sweep that the range is no longer to be considered 'archive.' 918 MutexLockerEx x(Heap_lock); 919 for (size_t i = 0; i < count; i++) { 920 HeapWord* start_address = ranges[i].start(); 921 HeapWord* last_address = ranges[i].last(); 922 923 assert(reserved.contains(start_address) && reserved.contains(last_address), 924 "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", 925 p2i(start_address), p2i(last_address)); 926 assert(start_address > prev_last_addr, 927 "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , 928 p2i(start_address), p2i(prev_last_addr)); 929 size_used += ranges[i].byte_size(); 930 prev_last_addr = last_address; 931 932 HeapRegion* start_region = _hrm.addr_to_region(start_address); 933 HeapRegion* last_region = _hrm.addr_to_region(last_address); 934 935 // Check for ranges that start in the same G1 region in which the previous 936 // range ended, and adjust the start address so we don't try to free 937 // the same region again. If the current range is entirely within that 938 // region, skip it. 939 if (start_region == prev_last_region) { 940 start_address = start_region->end(); 941 if (start_address > last_address) { 942 continue; 943 } 944 start_region = _hrm.addr_to_region(start_address); 945 } 946 prev_last_region = last_region; 947 948 // After verifying that each region was marked as an archive region by 949 // alloc_archive_regions, set it free and empty and uncommit it. 950 HeapRegion* curr_region = start_region; 951 while (curr_region != NULL) { 952 guarantee(curr_region->is_archive(), 953 "Expected archive region at index %u", curr_region->hrm_index()); 954 uint curr_index = curr_region->hrm_index(); 955 _old_set.remove(curr_region); 956 curr_region->set_free(); 957 curr_region->set_top(curr_region->bottom()); 958 if (curr_region != last_region) { 959 curr_region = _hrm.next_region_in_heap(curr_region); 960 } else { 961 curr_region = NULL; 962 } 963 _hrm.shrink_at(curr_index, 1); 964 uncommitted_regions++; 965 } 966 967 // Notify mark-sweep that this is no longer an archive range. 968 G1MarkSweep::set_range_archive(ranges[i], false); 969 } 970 971 if (uncommitted_regions != 0) { 972 ergo_verbose1(ErgoHeapSizing, 973 "attempt heap shrinking", 974 ergo_format_reason("uncommitted archive regions") 975 ergo_format_byte("total size"), 976 HeapRegion::GrainWords * HeapWordSize * uncommitted_regions); 977 } 978 decrease_used(size_used); 979 } 980 981 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size, 982 uint* gc_count_before_ret, 983 uint* gclocker_retry_count_ret) { 984 // The structure of this method has a lot of similarities to 985 // attempt_allocation_slow(). The reason these two were not merged 986 // into a single one is that such a method would require several "if 987 // allocation is not humongous do this, otherwise do that" 988 // conditional paths which would obscure its flow. In fact, an early 989 // version of this code did use a unified method which was harder to 990 // follow and, as a result, it had subtle bugs that were hard to 991 // track down. So keeping these two methods separate allows each to 992 // be more readable. It will be good to keep these two in sync as 993 // much as possible. 994 995 assert_heap_not_locked_and_not_at_safepoint(); 996 assert(is_humongous(word_size), "attempt_allocation_humongous() " 997 "should only be called for humongous allocations"); 998 999 // Humongous objects can exhaust the heap quickly, so we should check if we 1000 // need to start a marking cycle at each humongous object allocation. We do 1001 // the check before we do the actual allocation. The reason for doing it 1002 // before the allocation is that we avoid having to keep track of the newly 1003 // allocated memory while we do a GC. 1004 if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation", 1005 word_size)) { 1006 collect(GCCause::_g1_humongous_allocation); 1007 } 1008 1009 // We will loop until a) we manage to successfully perform the 1010 // allocation or b) we successfully schedule a collection which 1011 // fails to perform the allocation. b) is the only case when we'll 1012 // return NULL. 1013 HeapWord* result = NULL; 1014 for (int try_count = 1; /* we'll return */; try_count += 1) { 1015 bool should_try_gc; 1016 uint gc_count_before; 1017 1018 { 1019 MutexLockerEx x(Heap_lock); 1020 1021 // Given that humongous objects are not allocated in young 1022 // regions, we'll first try to do the allocation without doing a 1023 // collection hoping that there's enough space in the heap. 1024 result = humongous_obj_allocate(word_size, AllocationContext::current()); 1025 if (result != NULL) { 1026 return result; 1027 } 1028 1029 if (GC_locker::is_active_and_needs_gc()) { 1030 should_try_gc = false; 1031 } else { 1032 // The GCLocker may not be active but the GCLocker initiated 1033 // GC may not yet have been performed (GCLocker::needs_gc() 1034 // returns true). In this case we do not try this GC and 1035 // wait until the GCLocker initiated GC is performed, and 1036 // then retry the allocation. 1037 if (GC_locker::needs_gc()) { 1038 should_try_gc = false; 1039 } else { 1040 // Read the GC count while still holding the Heap_lock. 1041 gc_count_before = total_collections(); 1042 should_try_gc = true; 1043 } 1044 } 1045 } 1046 1047 if (should_try_gc) { 1048 // If we failed to allocate the humongous object, we should try to 1049 // do a collection pause (if we're allowed) in case it reclaims 1050 // enough space for the allocation to succeed after the pause. 1051 1052 bool succeeded; 1053 result = do_collection_pause(word_size, gc_count_before, &succeeded, 1054 GCCause::_g1_humongous_allocation); 1055 if (result != NULL) { 1056 assert(succeeded, "only way to get back a non-NULL result"); 1057 return result; 1058 } 1059 1060 if (succeeded) { 1061 // If we get here we successfully scheduled a collection which 1062 // failed to allocate. No point in trying to allocate 1063 // further. We'll just return NULL. 1064 MutexLockerEx x(Heap_lock); 1065 *gc_count_before_ret = total_collections(); 1066 return NULL; 1067 } 1068 } else { 1069 if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) { 1070 MutexLockerEx x(Heap_lock); 1071 *gc_count_before_ret = total_collections(); 1072 return NULL; 1073 } 1074 // The GCLocker is either active or the GCLocker initiated 1075 // GC has not yet been performed. Stall until it is and 1076 // then retry the allocation. 1077 GC_locker::stall_until_clear(); 1078 (*gclocker_retry_count_ret) += 1; 1079 } 1080 1081 // We can reach here if we were unsuccessful in scheduling a 1082 // collection (because another thread beat us to it) or if we were 1083 // stalled due to the GC locker. In either can we should retry the 1084 // allocation attempt in case another thread successfully 1085 // performed a collection and reclaimed enough space. Give a 1086 // warning if we seem to be looping forever. 1087 1088 if ((QueuedAllocationWarningCount > 0) && 1089 (try_count % QueuedAllocationWarningCount == 0)) { 1090 warning("G1CollectedHeap::attempt_allocation_humongous() " 1091 "retries %d times", try_count); 1092 } 1093 } 1094 1095 ShouldNotReachHere(); 1096 return NULL; 1097 } 1098 1099 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size, 1100 AllocationContext_t context, 1101 bool expect_null_mutator_alloc_region) { 1102 assert_at_safepoint(true /* should_be_vm_thread */); 1103 assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region, 1104 "the current alloc region was unexpectedly found to be non-NULL"); 1105 1106 if (!is_humongous(word_size)) { 1107 return _allocator->attempt_allocation_locked(word_size, context); 1108 } else { 1109 HeapWord* result = humongous_obj_allocate(word_size, context); 1110 if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) { 1111 collector_state()->set_initiate_conc_mark_if_possible(true); 1112 } 1113 return result; 1114 } 1115 1116 ShouldNotReachHere(); 1117 } 1118 1119 class PostMCRemSetClearClosure: public HeapRegionClosure { 1120 G1CollectedHeap* _g1h; 1121 ModRefBarrierSet* _mr_bs; 1122 public: 1123 PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) : 1124 _g1h(g1h), _mr_bs(mr_bs) {} 1125 1126 bool doHeapRegion(HeapRegion* r) { 1127 HeapRegionRemSet* hrrs = r->rem_set(); 1128 1129 _g1h->reset_gc_time_stamps(r); 1130 1131 if (r->is_continues_humongous()) { 1132 // We'll assert that the strong code root list and RSet is empty 1133 assert(hrrs->strong_code_roots_list_length() == 0, "sanity"); 1134 assert(hrrs->occupied() == 0, "RSet should be empty"); 1135 } else { 1136 hrrs->clear(); 1137 } 1138 // You might think here that we could clear just the cards 1139 // corresponding to the used region. But no: if we leave a dirty card 1140 // in a region we might allocate into, then it would prevent that card 1141 // from being enqueued, and cause it to be missed. 1142 // Re: the performance cost: we shouldn't be doing full GC anyway! 1143 _mr_bs->clear(MemRegion(r->bottom(), r->end())); 1144 1145 return false; 1146 } 1147 }; 1148 1149 void G1CollectedHeap::clear_rsets_post_compaction() { 1150 PostMCRemSetClearClosure rs_clear(this, g1_barrier_set()); 1151 heap_region_iterate(&rs_clear); 1152 } 1153 1154 class RebuildRSOutOfRegionClosure: public HeapRegionClosure { 1155 G1CollectedHeap* _g1h; 1156 UpdateRSOopClosure _cl; 1157 public: 1158 RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) : 1159 _cl(g1->g1_rem_set(), worker_i), 1160 _g1h(g1) 1161 { } 1162 1163 bool doHeapRegion(HeapRegion* r) { 1164 if (!r->is_continues_humongous()) { 1165 _cl.set_from(r); 1166 r->oop_iterate(&_cl); 1167 } 1168 return false; 1169 } 1170 }; 1171 1172 class ParRebuildRSTask: public AbstractGangTask { 1173 G1CollectedHeap* _g1; 1174 HeapRegionClaimer _hrclaimer; 1175 1176 public: 1177 ParRebuildRSTask(G1CollectedHeap* g1) : 1178 AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {} 1179 1180 void work(uint worker_id) { 1181 RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id); 1182 _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer); 1183 } 1184 }; 1185 1186 class PostCompactionPrinterClosure: public HeapRegionClosure { 1187 private: 1188 G1HRPrinter* _hr_printer; 1189 public: 1190 bool doHeapRegion(HeapRegion* hr) { 1191 assert(!hr->is_young(), "not expecting to find young regions"); 1192 if (hr->is_free()) { 1193 // We only generate output for non-empty regions. 1194 } else if (hr->is_starts_humongous()) { 1195 _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous); 1196 } else if (hr->is_continues_humongous()) { 1197 _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous); 1198 } else if (hr->is_archive()) { 1199 _hr_printer->post_compaction(hr, G1HRPrinter::Archive); 1200 } else if (hr->is_old()) { 1201 _hr_printer->post_compaction(hr, G1HRPrinter::Old); 1202 } else { 1203 ShouldNotReachHere(); 1204 } 1205 return false; 1206 } 1207 1208 PostCompactionPrinterClosure(G1HRPrinter* hr_printer) 1209 : _hr_printer(hr_printer) { } 1210 }; 1211 1212 void G1CollectedHeap::print_hrm_post_compaction() { 1213 PostCompactionPrinterClosure cl(hr_printer()); 1214 heap_region_iterate(&cl); 1215 } 1216 1217 bool G1CollectedHeap::do_full_collection(bool explicit_gc, 1218 bool clear_all_soft_refs) { 1219 assert_at_safepoint(true /* should_be_vm_thread */); 1220 1221 if (GC_locker::check_active_before_gc()) { 1222 return false; 1223 } 1224 1225 STWGCTimer* gc_timer = G1MarkSweep::gc_timer(); 1226 gc_timer->register_gc_start(); 1227 1228 SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer(); 1229 GCIdMark gc_id_mark; 1230 gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start()); 1231 1232 SvcGCMarker sgcm(SvcGCMarker::FULL); 1233 ResourceMark rm; 1234 1235 G1Log::update_level(); 1236 print_heap_before_gc(); 1237 trace_heap_before_gc(gc_tracer); 1238 1239 size_t metadata_prev_used = MetaspaceAux::used_bytes(); 1240 1241 verify_region_sets_optional(); 1242 1243 const bool do_clear_all_soft_refs = clear_all_soft_refs || 1244 collector_policy()->should_clear_all_soft_refs(); 1245 1246 ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy()); 1247 1248 { 1249 IsGCActiveMark x; 1250 1251 // Timing 1252 assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant"); 1253 TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty); 1254 1255 { 1256 GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL); 1257 TraceCollectorStats tcs(g1mm()->full_collection_counters()); 1258 TraceMemoryManagerStats tms(true /* fullGC */, gc_cause()); 1259 1260 g1_policy()->record_full_collection_start(); 1261 1262 // Note: When we have a more flexible GC logging framework that 1263 // allows us to add optional attributes to a GC log record we 1264 // could consider timing and reporting how long we wait in the 1265 // following two methods. 1266 wait_while_free_regions_coming(); 1267 // If we start the compaction before the CM threads finish 1268 // scanning the root regions we might trip them over as we'll 1269 // be moving objects / updating references. So let's wait until 1270 // they are done. By telling them to abort, they should complete 1271 // early. 1272 _cm->root_regions()->abort(); 1273 _cm->root_regions()->wait_until_scan_finished(); 1274 append_secondary_free_list_if_not_empty_with_lock(); 1275 1276 gc_prologue(true); 1277 increment_total_collections(true /* full gc */); 1278 increment_old_marking_cycles_started(); 1279 1280 assert(used() == recalculate_used(), "Should be equal"); 1281 1282 verify_before_gc(); 1283 1284 check_bitmaps("Full GC Start"); 1285 pre_full_gc_dump(gc_timer); 1286 1287 #if defined(COMPILER2) || INCLUDE_JVMCI 1288 DerivedPointerTable::clear(); 1289 #endif 1290 1291 // Disable discovery and empty the discovered lists 1292 // for the CM ref processor. 1293 ref_processor_cm()->disable_discovery(); 1294 ref_processor_cm()->abandon_partial_discovery(); 1295 ref_processor_cm()->verify_no_references_recorded(); 1296 1297 // Abandon current iterations of concurrent marking and concurrent 1298 // refinement, if any are in progress. We have to do this before 1299 // wait_until_scan_finished() below. 1300 concurrent_mark()->abort(); 1301 1302 // Make sure we'll choose a new allocation region afterwards. 1303 _allocator->release_mutator_alloc_region(); 1304 _allocator->abandon_gc_alloc_regions(); 1305 g1_rem_set()->cleanupHRRS(); 1306 1307 // We should call this after we retire any currently active alloc 1308 // regions so that all the ALLOC / RETIRE events are generated 1309 // before the start GC event. 1310 _hr_printer.start_gc(true /* full */, (size_t) total_collections()); 1311 1312 // We may have added regions to the current incremental collection 1313 // set between the last GC or pause and now. We need to clear the 1314 // incremental collection set and then start rebuilding it afresh 1315 // after this full GC. 1316 abandon_collection_set(g1_policy()->inc_cset_head()); 1317 g1_policy()->clear_incremental_cset(); 1318 g1_policy()->stop_incremental_cset_building(); 1319 1320 tear_down_region_sets(false /* free_list_only */); 1321 collector_state()->set_gcs_are_young(true); 1322 1323 // See the comments in g1CollectedHeap.hpp and 1324 // G1CollectedHeap::ref_processing_init() about 1325 // how reference processing currently works in G1. 1326 1327 // Temporarily make discovery by the STW ref processor single threaded (non-MT). 1328 ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false); 1329 1330 // Temporarily clear the STW ref processor's _is_alive_non_header field. 1331 ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL); 1332 1333 ref_processor_stw()->enable_discovery(); 1334 ref_processor_stw()->setup_policy(do_clear_all_soft_refs); 1335 1336 // Do collection work 1337 { 1338 HandleMark hm; // Discard invalid handles created during gc 1339 G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs); 1340 } 1341 1342 assert(num_free_regions() == 0, "we should not have added any free regions"); 1343 rebuild_region_sets(false /* free_list_only */); 1344 1345 // Enqueue any discovered reference objects that have 1346 // not been removed from the discovered lists. 1347 ref_processor_stw()->enqueue_discovered_references(); 1348 1349 #if defined(COMPILER2) || INCLUDE_JVMCI 1350 DerivedPointerTable::update_pointers(); 1351 #endif 1352 1353 MemoryService::track_memory_usage(); 1354 1355 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 1356 ref_processor_stw()->verify_no_references_recorded(); 1357 1358 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 1359 ClassLoaderDataGraph::purge(); 1360 MetaspaceAux::verify_metrics(); 1361 1362 // Note: since we've just done a full GC, concurrent 1363 // marking is no longer active. Therefore we need not 1364 // re-enable reference discovery for the CM ref processor. 1365 // That will be done at the start of the next marking cycle. 1366 assert(!ref_processor_cm()->discovery_enabled(), "Postcondition"); 1367 ref_processor_cm()->verify_no_references_recorded(); 1368 1369 reset_gc_time_stamp(); 1370 // Since everything potentially moved, we will clear all remembered 1371 // sets, and clear all cards. Later we will rebuild remembered 1372 // sets. We will also reset the GC time stamps of the regions. 1373 clear_rsets_post_compaction(); 1374 check_gc_time_stamps(); 1375 1376 resize_if_necessary_after_full_collection(); 1377 1378 if (_hr_printer.is_active()) { 1379 // We should do this after we potentially resize the heap so 1380 // that all the COMMIT / UNCOMMIT events are generated before 1381 // the end GC event. 1382 1383 print_hrm_post_compaction(); 1384 _hr_printer.end_gc(true /* full */, (size_t) total_collections()); 1385 } 1386 1387 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 1388 if (hot_card_cache->use_cache()) { 1389 hot_card_cache->reset_card_counts(); 1390 hot_card_cache->reset_hot_cache(); 1391 } 1392 1393 // Rebuild remembered sets of all regions. 1394 uint n_workers = 1395 AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(), 1396 workers()->active_workers(), 1397 Threads::number_of_non_daemon_threads()); 1398 workers()->set_active_workers(n_workers); 1399 1400 ParRebuildRSTask rebuild_rs_task(this); 1401 workers()->run_task(&rebuild_rs_task); 1402 1403 // Rebuild the strong code root lists for each region 1404 rebuild_strong_code_roots(); 1405 1406 if (true) { // FIXME 1407 MetaspaceGC::compute_new_size(); 1408 } 1409 1410 #ifdef TRACESPINNING 1411 ParallelTaskTerminator::print_termination_counts(); 1412 #endif 1413 1414 // Discard all rset updates 1415 JavaThread::dirty_card_queue_set().abandon_logs(); 1416 assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty"); 1417 1418 _young_list->reset_sampled_info(); 1419 // At this point there should be no regions in the 1420 // entire heap tagged as young. 1421 assert(check_young_list_empty(true /* check_heap */), 1422 "young list should be empty at this point"); 1423 1424 // Update the number of full collections that have been completed. 1425 increment_old_marking_cycles_completed(false /* concurrent */); 1426 1427 _hrm.verify_optional(); 1428 verify_region_sets_optional(); 1429 1430 verify_after_gc(); 1431 1432 // Clear the previous marking bitmap, if needed for bitmap verification. 1433 // Note we cannot do this when we clear the next marking bitmap in 1434 // ConcurrentMark::abort() above since VerifyDuringGC verifies the 1435 // objects marked during a full GC against the previous bitmap. 1436 // But we need to clear it before calling check_bitmaps below since 1437 // the full GC has compacted objects and updated TAMS but not updated 1438 // the prev bitmap. 1439 if (G1VerifyBitmaps) { 1440 ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll(); 1441 } 1442 check_bitmaps("Full GC End"); 1443 1444 // Start a new incremental collection set for the next pause 1445 assert(g1_policy()->collection_set() == NULL, "must be"); 1446 g1_policy()->start_incremental_cset_building(); 1447 1448 clear_cset_fast_test(); 1449 1450 _allocator->init_mutator_alloc_region(); 1451 1452 g1_policy()->record_full_collection_end(); 1453 1454 if (G1Log::fine()) { 1455 g1_policy()->print_heap_transition(); 1456 } 1457 1458 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 1459 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 1460 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 1461 // before any GC notifications are raised. 1462 g1mm()->update_sizes(); 1463 1464 gc_epilogue(true); 1465 } 1466 1467 if (G1Log::finer()) { 1468 g1_policy()->print_detailed_heap_transition(true /* full */); 1469 } 1470 1471 print_heap_after_gc(); 1472 trace_heap_after_gc(gc_tracer); 1473 1474 post_full_gc_dump(gc_timer); 1475 1476 gc_timer->register_gc_end(); 1477 gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions()); 1478 } 1479 1480 return true; 1481 } 1482 1483 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) { 1484 // Currently, there is no facility in the do_full_collection(bool) API to notify 1485 // the caller that the collection did not succeed (e.g., because it was locked 1486 // out by the GC locker). So, right now, we'll ignore the return value. 1487 bool dummy = do_full_collection(true, /* explicit_gc */ 1488 clear_all_soft_refs); 1489 } 1490 1491 void G1CollectedHeap::resize_if_necessary_after_full_collection() { 1492 // Include bytes that will be pre-allocated to support collections, as "used". 1493 const size_t used_after_gc = used(); 1494 const size_t capacity_after_gc = capacity(); 1495 const size_t free_after_gc = capacity_after_gc - used_after_gc; 1496 1497 // This is enforced in arguments.cpp. 1498 assert(MinHeapFreeRatio <= MaxHeapFreeRatio, 1499 "otherwise the code below doesn't make sense"); 1500 1501 // We don't have floating point command-line arguments 1502 const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0; 1503 const double maximum_used_percentage = 1.0 - minimum_free_percentage; 1504 const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0; 1505 const double minimum_used_percentage = 1.0 - maximum_free_percentage; 1506 1507 const size_t min_heap_size = collector_policy()->min_heap_byte_size(); 1508 const size_t max_heap_size = collector_policy()->max_heap_byte_size(); 1509 1510 // We have to be careful here as these two calculations can overflow 1511 // 32-bit size_t's. 1512 double used_after_gc_d = (double) used_after_gc; 1513 double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage; 1514 double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage; 1515 1516 // Let's make sure that they are both under the max heap size, which 1517 // by default will make them fit into a size_t. 1518 double desired_capacity_upper_bound = (double) max_heap_size; 1519 minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d, 1520 desired_capacity_upper_bound); 1521 maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d, 1522 desired_capacity_upper_bound); 1523 1524 // We can now safely turn them into size_t's. 1525 size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d; 1526 size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d; 1527 1528 // This assert only makes sense here, before we adjust them 1529 // with respect to the min and max heap size. 1530 assert(minimum_desired_capacity <= maximum_desired_capacity, 1531 "minimum_desired_capacity = " SIZE_FORMAT ", " 1532 "maximum_desired_capacity = " SIZE_FORMAT, 1533 minimum_desired_capacity, maximum_desired_capacity); 1534 1535 // Should not be greater than the heap max size. No need to adjust 1536 // it with respect to the heap min size as it's a lower bound (i.e., 1537 // we'll try to make the capacity larger than it, not smaller). 1538 minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size); 1539 // Should not be less than the heap min size. No need to adjust it 1540 // with respect to the heap max size as it's an upper bound (i.e., 1541 // we'll try to make the capacity smaller than it, not greater). 1542 maximum_desired_capacity = MAX2(maximum_desired_capacity, min_heap_size); 1543 1544 if (capacity_after_gc < minimum_desired_capacity) { 1545 // Don't expand unless it's significant 1546 size_t expand_bytes = minimum_desired_capacity - capacity_after_gc; 1547 ergo_verbose4(ErgoHeapSizing, 1548 "attempt heap expansion", 1549 ergo_format_reason("capacity lower than " 1550 "min desired capacity after Full GC") 1551 ergo_format_byte("capacity") 1552 ergo_format_byte("occupancy") 1553 ergo_format_byte_perc("min desired capacity"), 1554 capacity_after_gc, used_after_gc, 1555 minimum_desired_capacity, (double) MinHeapFreeRatio); 1556 expand(expand_bytes); 1557 1558 // No expansion, now see if we want to shrink 1559 } else if (capacity_after_gc > maximum_desired_capacity) { 1560 // Capacity too large, compute shrinking size 1561 size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity; 1562 ergo_verbose4(ErgoHeapSizing, 1563 "attempt heap shrinking", 1564 ergo_format_reason("capacity higher than " 1565 "max desired capacity after Full GC") 1566 ergo_format_byte("capacity") 1567 ergo_format_byte("occupancy") 1568 ergo_format_byte_perc("max desired capacity"), 1569 capacity_after_gc, used_after_gc, 1570 maximum_desired_capacity, (double) MaxHeapFreeRatio); 1571 shrink(shrink_bytes); 1572 } 1573 } 1574 1575 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size, 1576 AllocationContext_t context, 1577 bool do_gc, 1578 bool clear_all_soft_refs, 1579 bool expect_null_mutator_alloc_region, 1580 bool* gc_succeeded) { 1581 *gc_succeeded = true; 1582 // Let's attempt the allocation first. 1583 HeapWord* result = 1584 attempt_allocation_at_safepoint(word_size, 1585 context, 1586 expect_null_mutator_alloc_region); 1587 if (result != NULL) { 1588 assert(*gc_succeeded, "sanity"); 1589 return result; 1590 } 1591 1592 // In a G1 heap, we're supposed to keep allocation from failing by 1593 // incremental pauses. Therefore, at least for now, we'll favor 1594 // expansion over collection. (This might change in the future if we can 1595 // do something smarter than full collection to satisfy a failed alloc.) 1596 result = expand_and_allocate(word_size, context); 1597 if (result != NULL) { 1598 assert(*gc_succeeded, "sanity"); 1599 return result; 1600 } 1601 1602 if (do_gc) { 1603 // Expansion didn't work, we'll try to do a Full GC. 1604 *gc_succeeded = do_full_collection(false, /* explicit_gc */ 1605 clear_all_soft_refs); 1606 } 1607 1608 return NULL; 1609 } 1610 1611 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size, 1612 AllocationContext_t context, 1613 bool* succeeded) { 1614 assert_at_safepoint(true /* should_be_vm_thread */); 1615 1616 // Attempts to allocate followed by Full GC. 1617 HeapWord* result = 1618 satisfy_failed_allocation_helper(word_size, 1619 context, 1620 true, /* do_gc */ 1621 false, /* clear_all_soft_refs */ 1622 false, /* expect_null_mutator_alloc_region */ 1623 succeeded); 1624 1625 if (result != NULL || !*succeeded) { 1626 return result; 1627 } 1628 1629 // Attempts to allocate followed by Full GC that will collect all soft references. 1630 result = satisfy_failed_allocation_helper(word_size, 1631 context, 1632 true, /* do_gc */ 1633 true, /* clear_all_soft_refs */ 1634 true, /* expect_null_mutator_alloc_region */ 1635 succeeded); 1636 1637 if (result != NULL || !*succeeded) { 1638 return result; 1639 } 1640 1641 // Attempts to allocate, no GC 1642 result = satisfy_failed_allocation_helper(word_size, 1643 context, 1644 false, /* do_gc */ 1645 false, /* clear_all_soft_refs */ 1646 true, /* expect_null_mutator_alloc_region */ 1647 succeeded); 1648 1649 if (result != NULL) { 1650 assert(*succeeded, "sanity"); 1651 return result; 1652 } 1653 1654 assert(!collector_policy()->should_clear_all_soft_refs(), 1655 "Flag should have been handled and cleared prior to this point"); 1656 1657 // What else? We might try synchronous finalization later. If the total 1658 // space available is large enough for the allocation, then a more 1659 // complete compaction phase than we've tried so far might be 1660 // appropriate. 1661 assert(*succeeded, "sanity"); 1662 return NULL; 1663 } 1664 1665 // Attempting to expand the heap sufficiently 1666 // to support an allocation of the given "word_size". If 1667 // successful, perform the allocation and return the address of the 1668 // allocated block, or else "NULL". 1669 1670 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) { 1671 assert_at_safepoint(true /* should_be_vm_thread */); 1672 1673 verify_region_sets_optional(); 1674 1675 size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes); 1676 ergo_verbose1(ErgoHeapSizing, 1677 "attempt heap expansion", 1678 ergo_format_reason("allocation request failed") 1679 ergo_format_byte("allocation request"), 1680 word_size * HeapWordSize); 1681 if (expand(expand_bytes)) { 1682 _hrm.verify_optional(); 1683 verify_region_sets_optional(); 1684 return attempt_allocation_at_safepoint(word_size, 1685 context, 1686 false /* expect_null_mutator_alloc_region */); 1687 } 1688 return NULL; 1689 } 1690 1691 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) { 1692 size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes); 1693 aligned_expand_bytes = align_size_up(aligned_expand_bytes, 1694 HeapRegion::GrainBytes); 1695 ergo_verbose2(ErgoHeapSizing, 1696 "expand the heap", 1697 ergo_format_byte("requested expansion amount") 1698 ergo_format_byte("attempted expansion amount"), 1699 expand_bytes, aligned_expand_bytes); 1700 1701 if (is_maximal_no_gc()) { 1702 ergo_verbose0(ErgoHeapSizing, 1703 "did not expand the heap", 1704 ergo_format_reason("heap already fully expanded")); 1705 return false; 1706 } 1707 1708 double expand_heap_start_time_sec = os::elapsedTime(); 1709 uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes); 1710 assert(regions_to_expand > 0, "Must expand by at least one region"); 1711 1712 uint expanded_by = _hrm.expand_by(regions_to_expand); 1713 if (expand_time_ms != NULL) { 1714 *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS; 1715 } 1716 1717 if (expanded_by > 0) { 1718 size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes; 1719 assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition"); 1720 g1_policy()->record_new_heap_size(num_regions()); 1721 } else { 1722 ergo_verbose0(ErgoHeapSizing, 1723 "did not expand the heap", 1724 ergo_format_reason("heap expansion operation failed")); 1725 // The expansion of the virtual storage space was unsuccessful. 1726 // Let's see if it was because we ran out of swap. 1727 if (G1ExitOnExpansionFailure && 1728 _hrm.available() >= regions_to_expand) { 1729 // We had head room... 1730 vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion"); 1731 } 1732 } 1733 return regions_to_expand > 0; 1734 } 1735 1736 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) { 1737 size_t aligned_shrink_bytes = 1738 ReservedSpace::page_align_size_down(shrink_bytes); 1739 aligned_shrink_bytes = align_size_down(aligned_shrink_bytes, 1740 HeapRegion::GrainBytes); 1741 uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes); 1742 1743 uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove); 1744 size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes; 1745 1746 ergo_verbose3(ErgoHeapSizing, 1747 "shrink the heap", 1748 ergo_format_byte("requested shrinking amount") 1749 ergo_format_byte("aligned shrinking amount") 1750 ergo_format_byte("attempted shrinking amount"), 1751 shrink_bytes, aligned_shrink_bytes, shrunk_bytes); 1752 if (num_regions_removed > 0) { 1753 g1_policy()->record_new_heap_size(num_regions()); 1754 } else { 1755 ergo_verbose0(ErgoHeapSizing, 1756 "did not shrink the heap", 1757 ergo_format_reason("heap shrinking operation failed")); 1758 } 1759 } 1760 1761 void G1CollectedHeap::shrink(size_t shrink_bytes) { 1762 verify_region_sets_optional(); 1763 1764 // We should only reach here at the end of a Full GC which means we 1765 // should not not be holding to any GC alloc regions. The method 1766 // below will make sure of that and do any remaining clean up. 1767 _allocator->abandon_gc_alloc_regions(); 1768 1769 // Instead of tearing down / rebuilding the free lists here, we 1770 // could instead use the remove_all_pending() method on free_list to 1771 // remove only the ones that we need to remove. 1772 tear_down_region_sets(true /* free_list_only */); 1773 shrink_helper(shrink_bytes); 1774 rebuild_region_sets(true /* free_list_only */); 1775 1776 _hrm.verify_optional(); 1777 verify_region_sets_optional(); 1778 } 1779 1780 // Public methods. 1781 1782 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) : 1783 CollectedHeap(), 1784 _g1_policy(policy_), 1785 _dirty_card_queue_set(false), 1786 _is_alive_closure_cm(this), 1787 _is_alive_closure_stw(this), 1788 _ref_processor_cm(NULL), 1789 _ref_processor_stw(NULL), 1790 _bot_shared(NULL), 1791 _cg1r(NULL), 1792 _g1mm(NULL), 1793 _refine_cte_cl(NULL), 1794 _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()), 1795 _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()), 1796 _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()), 1797 _humongous_reclaim_candidates(), 1798 _has_humongous_reclaim_candidates(false), 1799 _archive_allocator(NULL), 1800 _free_regions_coming(false), 1801 _young_list(new YoungList(this)), 1802 _gc_time_stamp(0), 1803 _summary_bytes_used(0), 1804 _survivor_evac_stats(YoungPLABSize, PLABWeight), 1805 _old_evac_stats(OldPLABSize, PLABWeight), 1806 _expand_heap_after_alloc_failure(true), 1807 _old_marking_cycles_started(0), 1808 _old_marking_cycles_completed(0), 1809 _heap_summary_sent(false), 1810 _in_cset_fast_test(), 1811 _dirty_cards_region_list(NULL), 1812 _worker_cset_start_region(NULL), 1813 _worker_cset_start_region_time_stamp(NULL), 1814 _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()), 1815 _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()), 1816 _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()), 1817 _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) { 1818 1819 _workers = new WorkGang("GC Thread", ParallelGCThreads, 1820 /* are_GC_task_threads */true, 1821 /* are_ConcurrentGC_threads */false); 1822 _workers->initialize_workers(); 1823 1824 _allocator = G1Allocator::create_allocator(this); 1825 _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords); 1826 1827 // Override the default _filler_array_max_size so that no humongous filler 1828 // objects are created. 1829 _filler_array_max_size = _humongous_object_threshold_in_words; 1830 1831 uint n_queues = ParallelGCThreads; 1832 _task_queues = new RefToScanQueueSet(n_queues); 1833 1834 uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets(); 1835 assert(n_rem_sets > 0, "Invariant."); 1836 1837 _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC); 1838 _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC); 1839 _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC); 1840 1841 for (uint i = 0; i < n_queues; i++) { 1842 RefToScanQueue* q = new RefToScanQueue(); 1843 q->initialize(); 1844 _task_queues->register_queue(i, q); 1845 ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo(); 1846 } 1847 clear_cset_start_regions(); 1848 1849 // Initialize the G1EvacuationFailureALot counters and flags. 1850 NOT_PRODUCT(reset_evacuation_should_fail();) 1851 1852 guarantee(_task_queues != NULL, "task_queues allocation failure."); 1853 } 1854 1855 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description, 1856 size_t size, 1857 size_t translation_factor) { 1858 size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1); 1859 // Allocate a new reserved space, preferring to use large pages. 1860 ReservedSpace rs(size, preferred_page_size); 1861 G1RegionToSpaceMapper* result = 1862 G1RegionToSpaceMapper::create_mapper(rs, 1863 size, 1864 rs.alignment(), 1865 HeapRegion::GrainBytes, 1866 translation_factor, 1867 mtGC); 1868 if (TracePageSizes) { 1869 gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT, 1870 description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size); 1871 } 1872 return result; 1873 } 1874 1875 jint G1CollectedHeap::initialize() { 1876 CollectedHeap::pre_initialize(); 1877 os::enable_vtime(); 1878 1879 G1Log::init(); 1880 1881 // Necessary to satisfy locking discipline assertions. 1882 1883 MutexLocker x(Heap_lock); 1884 1885 // We have to initialize the printer before committing the heap, as 1886 // it will be used then. 1887 _hr_printer.set_active(G1PrintHeapRegions); 1888 1889 // While there are no constraints in the GC code that HeapWordSize 1890 // be any particular value, there are multiple other areas in the 1891 // system which believe this to be true (e.g. oop->object_size in some 1892 // cases incorrectly returns the size in wordSize units rather than 1893 // HeapWordSize). 1894 guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize"); 1895 1896 size_t init_byte_size = collector_policy()->initial_heap_byte_size(); 1897 size_t max_byte_size = collector_policy()->max_heap_byte_size(); 1898 size_t heap_alignment = collector_policy()->heap_alignment(); 1899 1900 // Ensure that the sizes are properly aligned. 1901 Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap"); 1902 Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap"); 1903 Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap"); 1904 1905 _refine_cte_cl = new RefineCardTableEntryClosure(); 1906 1907 jint ecode = JNI_OK; 1908 _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode); 1909 if (_cg1r == NULL) { 1910 return ecode; 1911 } 1912 1913 // Reserve the maximum. 1914 1915 // When compressed oops are enabled, the preferred heap base 1916 // is calculated by subtracting the requested size from the 1917 // 32Gb boundary and using the result as the base address for 1918 // heap reservation. If the requested size is not aligned to 1919 // HeapRegion::GrainBytes (i.e. the alignment that is passed 1920 // into the ReservedHeapSpace constructor) then the actual 1921 // base of the reserved heap may end up differing from the 1922 // address that was requested (i.e. the preferred heap base). 1923 // If this happens then we could end up using a non-optimal 1924 // compressed oops mode. 1925 1926 ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size, 1927 heap_alignment); 1928 1929 initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size())); 1930 1931 // Create the barrier set for the entire reserved region. 1932 G1SATBCardTableLoggingModRefBS* bs 1933 = new G1SATBCardTableLoggingModRefBS(reserved_region()); 1934 bs->initialize(); 1935 assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity"); 1936 set_barrier_set(bs); 1937 1938 // Also create a G1 rem set. 1939 _g1_rem_set = new G1RemSet(this, g1_barrier_set()); 1940 1941 // Carve out the G1 part of the heap. 1942 1943 ReservedSpace g1_rs = heap_rs.first_part(max_byte_size); 1944 size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 1945 G1RegionToSpaceMapper* heap_storage = 1946 G1RegionToSpaceMapper::create_mapper(g1_rs, 1947 g1_rs.size(), 1948 page_size, 1949 HeapRegion::GrainBytes, 1950 1, 1951 mtJavaHeap); 1952 os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(), 1953 max_byte_size, page_size, 1954 heap_rs.base(), 1955 heap_rs.size()); 1956 heap_storage->set_mapping_changed_listener(&_listener); 1957 1958 // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps. 1959 G1RegionToSpaceMapper* bot_storage = 1960 create_aux_memory_mapper("Block offset table", 1961 G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize), 1962 G1BlockOffsetSharedArray::heap_map_factor()); 1963 1964 ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize)); 1965 G1RegionToSpaceMapper* cardtable_storage = 1966 create_aux_memory_mapper("Card table", 1967 G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize), 1968 G1SATBCardTableLoggingModRefBS::heap_map_factor()); 1969 1970 G1RegionToSpaceMapper* card_counts_storage = 1971 create_aux_memory_mapper("Card counts table", 1972 G1CardCounts::compute_size(g1_rs.size() / HeapWordSize), 1973 G1CardCounts::heap_map_factor()); 1974 1975 size_t bitmap_size = CMBitMap::compute_size(g1_rs.size()); 1976 G1RegionToSpaceMapper* prev_bitmap_storage = 1977 create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor()); 1978 G1RegionToSpaceMapper* next_bitmap_storage = 1979 create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor()); 1980 1981 _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage); 1982 g1_barrier_set()->initialize(cardtable_storage); 1983 // Do later initialization work for concurrent refinement. 1984 _cg1r->init(card_counts_storage); 1985 1986 // 6843694 - ensure that the maximum region index can fit 1987 // in the remembered set structures. 1988 const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1; 1989 guarantee((max_regions() - 1) <= max_region_idx, "too many regions"); 1990 1991 size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1; 1992 guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized"); 1993 guarantee(HeapRegion::CardsPerRegion < max_cards_per_region, 1994 "too many cards per region"); 1995 1996 FreeRegionList::set_unrealistically_long_length(max_regions() + 1); 1997 1998 _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage); 1999 2000 { 2001 HeapWord* start = _hrm.reserved().start(); 2002 HeapWord* end = _hrm.reserved().end(); 2003 size_t granularity = HeapRegion::GrainBytes; 2004 2005 _in_cset_fast_test.initialize(start, end, granularity); 2006 _humongous_reclaim_candidates.initialize(start, end, granularity); 2007 } 2008 2009 // Create the ConcurrentMark data structure and thread. 2010 // (Must do this late, so that "max_regions" is defined.) 2011 _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage); 2012 if (_cm == NULL || !_cm->completed_initialization()) { 2013 vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark"); 2014 return JNI_ENOMEM; 2015 } 2016 _cmThread = _cm->cmThread(); 2017 2018 // Initialize the from_card cache structure of HeapRegionRemSet. 2019 HeapRegionRemSet::init_heap(max_regions()); 2020 2021 // Now expand into the initial heap size. 2022 if (!expand(init_byte_size)) { 2023 vm_shutdown_during_initialization("Failed to allocate initial heap."); 2024 return JNI_ENOMEM; 2025 } 2026 2027 // Perform any initialization actions delegated to the policy. 2028 g1_policy()->init(); 2029 2030 JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon, 2031 SATB_Q_FL_lock, 2032 G1SATBProcessCompletedThreshold, 2033 Shared_SATB_Q_lock); 2034 2035 JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl, 2036 DirtyCardQ_CBL_mon, 2037 DirtyCardQ_FL_lock, 2038 concurrent_g1_refine()->yellow_zone(), 2039 concurrent_g1_refine()->red_zone(), 2040 Shared_DirtyCardQ_lock); 2041 2042 dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code 2043 DirtyCardQ_CBL_mon, 2044 DirtyCardQ_FL_lock, 2045 -1, // never trigger processing 2046 -1, // no limit on length 2047 Shared_DirtyCardQ_lock, 2048 &JavaThread::dirty_card_queue_set()); 2049 2050 // Here we allocate the dummy HeapRegion that is required by the 2051 // G1AllocRegion class. 2052 HeapRegion* dummy_region = _hrm.get_dummy_region(); 2053 2054 // We'll re-use the same region whether the alloc region will 2055 // require BOT updates or not and, if it doesn't, then a non-young 2056 // region will complain that it cannot support allocations without 2057 // BOT updates. So we'll tag the dummy region as eden to avoid that. 2058 dummy_region->set_eden(); 2059 // Make sure it's full. 2060 dummy_region->set_top(dummy_region->end()); 2061 G1AllocRegion::setup(this, dummy_region); 2062 2063 _allocator->init_mutator_alloc_region(); 2064 2065 // Do create of the monitoring and management support so that 2066 // values in the heap have been properly initialized. 2067 _g1mm = new G1MonitoringSupport(this); 2068 2069 G1StringDedup::initialize(); 2070 2071 _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC); 2072 for (uint i = 0; i < ParallelGCThreads; i++) { 2073 new (&_preserved_objs[i]) OopAndMarkOopStack(); 2074 } 2075 2076 return JNI_OK; 2077 } 2078 2079 void G1CollectedHeap::stop() { 2080 // Stop all concurrent threads. We do this to make sure these threads 2081 // do not continue to execute and access resources (e.g. gclog_or_tty) 2082 // that are destroyed during shutdown. 2083 _cg1r->stop(); 2084 _cmThread->stop(); 2085 if (G1StringDedup::is_enabled()) { 2086 G1StringDedup::stop(); 2087 } 2088 } 2089 2090 size_t G1CollectedHeap::conservative_max_heap_alignment() { 2091 return HeapRegion::max_region_size(); 2092 } 2093 2094 void G1CollectedHeap::post_initialize() { 2095 CollectedHeap::post_initialize(); 2096 ref_processing_init(); 2097 } 2098 2099 void G1CollectedHeap::ref_processing_init() { 2100 // Reference processing in G1 currently works as follows: 2101 // 2102 // * There are two reference processor instances. One is 2103 // used to record and process discovered references 2104 // during concurrent marking; the other is used to 2105 // record and process references during STW pauses 2106 // (both full and incremental). 2107 // * Both ref processors need to 'span' the entire heap as 2108 // the regions in the collection set may be dotted around. 2109 // 2110 // * For the concurrent marking ref processor: 2111 // * Reference discovery is enabled at initial marking. 2112 // * Reference discovery is disabled and the discovered 2113 // references processed etc during remarking. 2114 // * Reference discovery is MT (see below). 2115 // * Reference discovery requires a barrier (see below). 2116 // * Reference processing may or may not be MT 2117 // (depending on the value of ParallelRefProcEnabled 2118 // and ParallelGCThreads). 2119 // * A full GC disables reference discovery by the CM 2120 // ref processor and abandons any entries on it's 2121 // discovered lists. 2122 // 2123 // * For the STW processor: 2124 // * Non MT discovery is enabled at the start of a full GC. 2125 // * Processing and enqueueing during a full GC is non-MT. 2126 // * During a full GC, references are processed after marking. 2127 // 2128 // * Discovery (may or may not be MT) is enabled at the start 2129 // of an incremental evacuation pause. 2130 // * References are processed near the end of a STW evacuation pause. 2131 // * For both types of GC: 2132 // * Discovery is atomic - i.e. not concurrent. 2133 // * Reference discovery will not need a barrier. 2134 2135 MemRegion mr = reserved_region(); 2136 2137 // Concurrent Mark ref processor 2138 _ref_processor_cm = 2139 new ReferenceProcessor(mr, // span 2140 ParallelRefProcEnabled && (ParallelGCThreads > 1), 2141 // mt processing 2142 ParallelGCThreads, 2143 // degree of mt processing 2144 (ParallelGCThreads > 1) || (ConcGCThreads > 1), 2145 // mt discovery 2146 MAX2(ParallelGCThreads, ConcGCThreads), 2147 // degree of mt discovery 2148 false, 2149 // Reference discovery is not atomic 2150 &_is_alive_closure_cm); 2151 // is alive closure 2152 // (for efficiency/performance) 2153 2154 // STW ref processor 2155 _ref_processor_stw = 2156 new ReferenceProcessor(mr, // span 2157 ParallelRefProcEnabled && (ParallelGCThreads > 1), 2158 // mt processing 2159 ParallelGCThreads, 2160 // degree of mt processing 2161 (ParallelGCThreads > 1), 2162 // mt discovery 2163 ParallelGCThreads, 2164 // degree of mt discovery 2165 true, 2166 // Reference discovery is atomic 2167 &_is_alive_closure_stw); 2168 // is alive closure 2169 // (for efficiency/performance) 2170 } 2171 2172 CollectorPolicy* G1CollectedHeap::collector_policy() const { 2173 return g1_policy(); 2174 } 2175 2176 size_t G1CollectedHeap::capacity() const { 2177 return _hrm.length() * HeapRegion::GrainBytes; 2178 } 2179 2180 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) { 2181 hr->reset_gc_time_stamp(); 2182 } 2183 2184 #ifndef PRODUCT 2185 2186 class CheckGCTimeStampsHRClosure : public HeapRegionClosure { 2187 private: 2188 unsigned _gc_time_stamp; 2189 bool _failures; 2190 2191 public: 2192 CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) : 2193 _gc_time_stamp(gc_time_stamp), _failures(false) { } 2194 2195 virtual bool doHeapRegion(HeapRegion* hr) { 2196 unsigned region_gc_time_stamp = hr->get_gc_time_stamp(); 2197 if (_gc_time_stamp != region_gc_time_stamp) { 2198 gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, " 2199 "expected %d", HR_FORMAT_PARAMS(hr), 2200 region_gc_time_stamp, _gc_time_stamp); 2201 _failures = true; 2202 } 2203 return false; 2204 } 2205 2206 bool failures() { return _failures; } 2207 }; 2208 2209 void G1CollectedHeap::check_gc_time_stamps() { 2210 CheckGCTimeStampsHRClosure cl(_gc_time_stamp); 2211 heap_region_iterate(&cl); 2212 guarantee(!cl.failures(), "all GC time stamps should have been reset"); 2213 } 2214 #endif // PRODUCT 2215 2216 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) { 2217 _cg1r->hot_card_cache()->drain(cl, worker_i); 2218 } 2219 2220 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) { 2221 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 2222 size_t n_completed_buffers = 0; 2223 while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) { 2224 n_completed_buffers++; 2225 } 2226 g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers); 2227 dcqs.clear_n_completed_buffers(); 2228 assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!"); 2229 } 2230 2231 // Computes the sum of the storage used by the various regions. 2232 size_t G1CollectedHeap::used() const { 2233 size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions(); 2234 if (_archive_allocator != NULL) { 2235 result += _archive_allocator->used(); 2236 } 2237 return result; 2238 } 2239 2240 size_t G1CollectedHeap::used_unlocked() const { 2241 return _summary_bytes_used; 2242 } 2243 2244 class SumUsedClosure: public HeapRegionClosure { 2245 size_t _used; 2246 public: 2247 SumUsedClosure() : _used(0) {} 2248 bool doHeapRegion(HeapRegion* r) { 2249 _used += r->used(); 2250 return false; 2251 } 2252 size_t result() { return _used; } 2253 }; 2254 2255 size_t G1CollectedHeap::recalculate_used() const { 2256 double recalculate_used_start = os::elapsedTime(); 2257 2258 SumUsedClosure blk; 2259 heap_region_iterate(&blk); 2260 2261 g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0); 2262 return blk.result(); 2263 } 2264 2265 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) { 2266 switch (cause) { 2267 case GCCause::_gc_locker: return GCLockerInvokesConcurrent; 2268 case GCCause::_java_lang_system_gc: return ExplicitGCInvokesConcurrent; 2269 case GCCause::_dcmd_gc_run: return ExplicitGCInvokesConcurrent; 2270 case GCCause::_g1_humongous_allocation: return true; 2271 case GCCause::_update_allocation_context_stats_inc: return true; 2272 case GCCause::_wb_conc_mark: return true; 2273 default: return false; 2274 } 2275 } 2276 2277 #ifndef PRODUCT 2278 void G1CollectedHeap::allocate_dummy_regions() { 2279 // Let's fill up most of the region 2280 size_t word_size = HeapRegion::GrainWords - 1024; 2281 // And as a result the region we'll allocate will be humongous. 2282 guarantee(is_humongous(word_size), "sanity"); 2283 2284 // _filler_array_max_size is set to humongous object threshold 2285 // but temporarily change it to use CollectedHeap::fill_with_object(). 2286 SizeTFlagSetting fs(_filler_array_max_size, word_size); 2287 2288 for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) { 2289 // Let's use the existing mechanism for the allocation 2290 HeapWord* dummy_obj = humongous_obj_allocate(word_size, 2291 AllocationContext::system()); 2292 if (dummy_obj != NULL) { 2293 MemRegion mr(dummy_obj, word_size); 2294 CollectedHeap::fill_with_object(mr); 2295 } else { 2296 // If we can't allocate once, we probably cannot allocate 2297 // again. Let's get out of the loop. 2298 break; 2299 } 2300 } 2301 } 2302 #endif // !PRODUCT 2303 2304 void G1CollectedHeap::increment_old_marking_cycles_started() { 2305 assert(_old_marking_cycles_started == _old_marking_cycles_completed || 2306 _old_marking_cycles_started == _old_marking_cycles_completed + 1, 2307 "Wrong marking cycle count (started: %d, completed: %d)", 2308 _old_marking_cycles_started, _old_marking_cycles_completed); 2309 2310 _old_marking_cycles_started++; 2311 } 2312 2313 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) { 2314 MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag); 2315 2316 // We assume that if concurrent == true, then the caller is a 2317 // concurrent thread that was joined the Suspendible Thread 2318 // Set. If there's ever a cheap way to check this, we should add an 2319 // assert here. 2320 2321 // Given that this method is called at the end of a Full GC or of a 2322 // concurrent cycle, and those can be nested (i.e., a Full GC can 2323 // interrupt a concurrent cycle), the number of full collections 2324 // completed should be either one (in the case where there was no 2325 // nesting) or two (when a Full GC interrupted a concurrent cycle) 2326 // behind the number of full collections started. 2327 2328 // This is the case for the inner caller, i.e. a Full GC. 2329 assert(concurrent || 2330 (_old_marking_cycles_started == _old_marking_cycles_completed + 1) || 2331 (_old_marking_cycles_started == _old_marking_cycles_completed + 2), 2332 "for inner caller (Full GC): _old_marking_cycles_started = %u " 2333 "is inconsistent with _old_marking_cycles_completed = %u", 2334 _old_marking_cycles_started, _old_marking_cycles_completed); 2335 2336 // This is the case for the outer caller, i.e. the concurrent cycle. 2337 assert(!concurrent || 2338 (_old_marking_cycles_started == _old_marking_cycles_completed + 1), 2339 "for outer caller (concurrent cycle): " 2340 "_old_marking_cycles_started = %u " 2341 "is inconsistent with _old_marking_cycles_completed = %u", 2342 _old_marking_cycles_started, _old_marking_cycles_completed); 2343 2344 _old_marking_cycles_completed += 1; 2345 2346 // We need to clear the "in_progress" flag in the CM thread before 2347 // we wake up any waiters (especially when ExplicitInvokesConcurrent 2348 // is set) so that if a waiter requests another System.gc() it doesn't 2349 // incorrectly see that a marking cycle is still in progress. 2350 if (concurrent) { 2351 _cmThread->set_idle(); 2352 } 2353 2354 // This notify_all() will ensure that a thread that called 2355 // System.gc() with (with ExplicitGCInvokesConcurrent set or not) 2356 // and it's waiting for a full GC to finish will be woken up. It is 2357 // waiting in VM_G1IncCollectionPause::doit_epilogue(). 2358 FullGCCount_lock->notify_all(); 2359 } 2360 2361 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) { 2362 GCIdMarkAndRestore conc_gc_id_mark; 2363 collector_state()->set_concurrent_cycle_started(true); 2364 _gc_timer_cm->register_gc_start(start_time); 2365 2366 _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start()); 2367 trace_heap_before_gc(_gc_tracer_cm); 2368 _cmThread->set_gc_id(GCId::current()); 2369 } 2370 2371 void G1CollectedHeap::register_concurrent_cycle_end() { 2372 if (collector_state()->concurrent_cycle_started()) { 2373 GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id()); 2374 if (_cm->has_aborted()) { 2375 _gc_tracer_cm->report_concurrent_mode_failure(); 2376 } 2377 2378 _gc_timer_cm->register_gc_end(); 2379 _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions()); 2380 2381 // Clear state variables to prepare for the next concurrent cycle. 2382 collector_state()->set_concurrent_cycle_started(false); 2383 _heap_summary_sent = false; 2384 } 2385 } 2386 2387 void G1CollectedHeap::trace_heap_after_concurrent_cycle() { 2388 if (collector_state()->concurrent_cycle_started()) { 2389 // This function can be called when: 2390 // the cleanup pause is run 2391 // the concurrent cycle is aborted before the cleanup pause. 2392 // the concurrent cycle is aborted after the cleanup pause, 2393 // but before the concurrent cycle end has been registered. 2394 // Make sure that we only send the heap information once. 2395 if (!_heap_summary_sent) { 2396 GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id()); 2397 trace_heap_after_gc(_gc_tracer_cm); 2398 _heap_summary_sent = true; 2399 } 2400 } 2401 } 2402 2403 void G1CollectedHeap::collect(GCCause::Cause cause) { 2404 assert_heap_not_locked(); 2405 2406 uint gc_count_before; 2407 uint old_marking_count_before; 2408 uint full_gc_count_before; 2409 bool retry_gc; 2410 2411 do { 2412 retry_gc = false; 2413 2414 { 2415 MutexLocker ml(Heap_lock); 2416 2417 // Read the GC count while holding the Heap_lock 2418 gc_count_before = total_collections(); 2419 full_gc_count_before = total_full_collections(); 2420 old_marking_count_before = _old_marking_cycles_started; 2421 } 2422 2423 if (should_do_concurrent_full_gc(cause)) { 2424 // Schedule an initial-mark evacuation pause that will start a 2425 // concurrent cycle. We're setting word_size to 0 which means that 2426 // we are not requesting a post-GC allocation. 2427 VM_G1IncCollectionPause op(gc_count_before, 2428 0, /* word_size */ 2429 true, /* should_initiate_conc_mark */ 2430 g1_policy()->max_pause_time_ms(), 2431 cause); 2432 op.set_allocation_context(AllocationContext::current()); 2433 2434 VMThread::execute(&op); 2435 if (!op.pause_succeeded()) { 2436 if (old_marking_count_before == _old_marking_cycles_started) { 2437 retry_gc = op.should_retry_gc(); 2438 } else { 2439 // A Full GC happened while we were trying to schedule the 2440 // initial-mark GC. No point in starting a new cycle given 2441 // that the whole heap was collected anyway. 2442 } 2443 2444 if (retry_gc) { 2445 if (GC_locker::is_active_and_needs_gc()) { 2446 GC_locker::stall_until_clear(); 2447 } 2448 } 2449 } 2450 } else { 2451 if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc 2452 DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) { 2453 2454 // Schedule a standard evacuation pause. We're setting word_size 2455 // to 0 which means that we are not requesting a post-GC allocation. 2456 VM_G1IncCollectionPause op(gc_count_before, 2457 0, /* word_size */ 2458 false, /* should_initiate_conc_mark */ 2459 g1_policy()->max_pause_time_ms(), 2460 cause); 2461 VMThread::execute(&op); 2462 } else { 2463 // Schedule a Full GC. 2464 VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause); 2465 VMThread::execute(&op); 2466 } 2467 } 2468 } while (retry_gc); 2469 } 2470 2471 bool G1CollectedHeap::is_in(const void* p) const { 2472 if (_hrm.reserved().contains(p)) { 2473 // Given that we know that p is in the reserved space, 2474 // heap_region_containing() should successfully 2475 // return the containing region. 2476 HeapRegion* hr = heap_region_containing(p); 2477 return hr->is_in(p); 2478 } else { 2479 return false; 2480 } 2481 } 2482 2483 #ifdef ASSERT 2484 bool G1CollectedHeap::is_in_exact(const void* p) const { 2485 bool contains = reserved_region().contains(p); 2486 bool available = _hrm.is_available(addr_to_region((HeapWord*)p)); 2487 if (contains && available) { 2488 return true; 2489 } else { 2490 return false; 2491 } 2492 } 2493 #endif 2494 2495 bool G1CollectedHeap::obj_in_cs(oop obj) { 2496 HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj); 2497 return r != NULL && r->in_collection_set(); 2498 } 2499 2500 // Iteration functions. 2501 2502 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion. 2503 2504 class IterateOopClosureRegionClosure: public HeapRegionClosure { 2505 ExtendedOopClosure* _cl; 2506 public: 2507 IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {} 2508 bool doHeapRegion(HeapRegion* r) { 2509 if (!r->is_continues_humongous()) { 2510 r->oop_iterate(_cl); 2511 } 2512 return false; 2513 } 2514 }; 2515 2516 // Iterates an ObjectClosure over all objects within a HeapRegion. 2517 2518 class IterateObjectClosureRegionClosure: public HeapRegionClosure { 2519 ObjectClosure* _cl; 2520 public: 2521 IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {} 2522 bool doHeapRegion(HeapRegion* r) { 2523 if (!r->is_continues_humongous()) { 2524 r->object_iterate(_cl); 2525 } 2526 return false; 2527 } 2528 }; 2529 2530 void G1CollectedHeap::object_iterate(ObjectClosure* cl) { 2531 IterateObjectClosureRegionClosure blk(cl); 2532 heap_region_iterate(&blk); 2533 } 2534 2535 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const { 2536 _hrm.iterate(cl); 2537 } 2538 2539 void 2540 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl, 2541 uint worker_id, 2542 HeapRegionClaimer *hrclaimer, 2543 bool concurrent) const { 2544 _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent); 2545 } 2546 2547 // Clear the cached CSet starting regions and (more importantly) 2548 // the time stamps. Called when we reset the GC time stamp. 2549 void G1CollectedHeap::clear_cset_start_regions() { 2550 assert(_worker_cset_start_region != NULL, "sanity"); 2551 assert(_worker_cset_start_region_time_stamp != NULL, "sanity"); 2552 2553 for (uint i = 0; i < ParallelGCThreads; i++) { 2554 _worker_cset_start_region[i] = NULL; 2555 _worker_cset_start_region_time_stamp[i] = 0; 2556 } 2557 } 2558 2559 // Given the id of a worker, obtain or calculate a suitable 2560 // starting region for iterating over the current collection set. 2561 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) { 2562 assert(get_gc_time_stamp() > 0, "should have been updated by now"); 2563 2564 HeapRegion* result = NULL; 2565 unsigned gc_time_stamp = get_gc_time_stamp(); 2566 2567 if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) { 2568 // Cached starting region for current worker was set 2569 // during the current pause - so it's valid. 2570 // Note: the cached starting heap region may be NULL 2571 // (when the collection set is empty). 2572 result = _worker_cset_start_region[worker_i]; 2573 assert(result == NULL || result->in_collection_set(), "sanity"); 2574 return result; 2575 } 2576 2577 // The cached entry was not valid so let's calculate 2578 // a suitable starting heap region for this worker. 2579 2580 // We want the parallel threads to start their collection 2581 // set iteration at different collection set regions to 2582 // avoid contention. 2583 // If we have: 2584 // n collection set regions 2585 // p threads 2586 // Then thread t will start at region floor ((t * n) / p) 2587 2588 result = g1_policy()->collection_set(); 2589 uint cs_size = g1_policy()->cset_region_length(); 2590 uint active_workers = workers()->active_workers(); 2591 2592 uint end_ind = (cs_size * worker_i) / active_workers; 2593 uint start_ind = 0; 2594 2595 if (worker_i > 0 && 2596 _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) { 2597 // Previous workers starting region is valid 2598 // so let's iterate from there 2599 start_ind = (cs_size * (worker_i - 1)) / active_workers; 2600 result = _worker_cset_start_region[worker_i - 1]; 2601 } 2602 2603 for (uint i = start_ind; i < end_ind; i++) { 2604 result = result->next_in_collection_set(); 2605 } 2606 2607 // Note: the calculated starting heap region may be NULL 2608 // (when the collection set is empty). 2609 assert(result == NULL || result->in_collection_set(), "sanity"); 2610 assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp, 2611 "should be updated only once per pause"); 2612 _worker_cset_start_region[worker_i] = result; 2613 OrderAccess::storestore(); 2614 _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp; 2615 return result; 2616 } 2617 2618 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) { 2619 HeapRegion* r = g1_policy()->collection_set(); 2620 while (r != NULL) { 2621 HeapRegion* next = r->next_in_collection_set(); 2622 if (cl->doHeapRegion(r)) { 2623 cl->incomplete(); 2624 return; 2625 } 2626 r = next; 2627 } 2628 } 2629 2630 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r, 2631 HeapRegionClosure *cl) { 2632 if (r == NULL) { 2633 // The CSet is empty so there's nothing to do. 2634 return; 2635 } 2636 2637 assert(r->in_collection_set(), 2638 "Start region must be a member of the collection set."); 2639 HeapRegion* cur = r; 2640 while (cur != NULL) { 2641 HeapRegion* next = cur->next_in_collection_set(); 2642 if (cl->doHeapRegion(cur) && false) { 2643 cl->incomplete(); 2644 return; 2645 } 2646 cur = next; 2647 } 2648 cur = g1_policy()->collection_set(); 2649 while (cur != r) { 2650 HeapRegion* next = cur->next_in_collection_set(); 2651 if (cl->doHeapRegion(cur) && false) { 2652 cl->incomplete(); 2653 return; 2654 } 2655 cur = next; 2656 } 2657 } 2658 2659 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const { 2660 HeapRegion* result = _hrm.next_region_in_heap(from); 2661 while (result != NULL && result->is_pinned()) { 2662 result = _hrm.next_region_in_heap(result); 2663 } 2664 return result; 2665 } 2666 2667 HeapWord* G1CollectedHeap::block_start(const void* addr) const { 2668 HeapRegion* hr = heap_region_containing(addr); 2669 return hr->block_start(addr); 2670 } 2671 2672 size_t G1CollectedHeap::block_size(const HeapWord* addr) const { 2673 HeapRegion* hr = heap_region_containing(addr); 2674 return hr->block_size(addr); 2675 } 2676 2677 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const { 2678 HeapRegion* hr = heap_region_containing(addr); 2679 return hr->block_is_obj(addr); 2680 } 2681 2682 bool G1CollectedHeap::supports_tlab_allocation() const { 2683 return true; 2684 } 2685 2686 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const { 2687 return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes; 2688 } 2689 2690 size_t G1CollectedHeap::tlab_used(Thread* ignored) const { 2691 return young_list()->eden_used_bytes(); 2692 } 2693 2694 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size 2695 // must be equal to the humongous object limit. 2696 size_t G1CollectedHeap::max_tlab_size() const { 2697 return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment); 2698 } 2699 2700 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const { 2701 AllocationContext_t context = AllocationContext::current(); 2702 return _allocator->unsafe_max_tlab_alloc(context); 2703 } 2704 2705 size_t G1CollectedHeap::max_capacity() const { 2706 return _hrm.reserved().byte_size(); 2707 } 2708 2709 jlong G1CollectedHeap::millis_since_last_gc() { 2710 // assert(false, "NYI"); 2711 return 0; 2712 } 2713 2714 void G1CollectedHeap::prepare_for_verify() { 2715 if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) { 2716 ensure_parsability(false); 2717 } 2718 g1_rem_set()->prepare_for_verify(); 2719 } 2720 2721 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr, 2722 VerifyOption vo) { 2723 switch (vo) { 2724 case VerifyOption_G1UsePrevMarking: 2725 return hr->obj_allocated_since_prev_marking(obj); 2726 case VerifyOption_G1UseNextMarking: 2727 return hr->obj_allocated_since_next_marking(obj); 2728 case VerifyOption_G1UseMarkWord: 2729 return false; 2730 default: 2731 ShouldNotReachHere(); 2732 } 2733 return false; // keep some compilers happy 2734 } 2735 2736 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) { 2737 switch (vo) { 2738 case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start(); 2739 case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start(); 2740 case VerifyOption_G1UseMarkWord: return NULL; 2741 default: ShouldNotReachHere(); 2742 } 2743 return NULL; // keep some compilers happy 2744 } 2745 2746 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) { 2747 switch (vo) { 2748 case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj); 2749 case VerifyOption_G1UseNextMarking: return isMarkedNext(obj); 2750 case VerifyOption_G1UseMarkWord: return obj->is_gc_marked(); 2751 default: ShouldNotReachHere(); 2752 } 2753 return false; // keep some compilers happy 2754 } 2755 2756 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) { 2757 switch (vo) { 2758 case VerifyOption_G1UsePrevMarking: return "PTAMS"; 2759 case VerifyOption_G1UseNextMarking: return "NTAMS"; 2760 case VerifyOption_G1UseMarkWord: return "NONE"; 2761 default: ShouldNotReachHere(); 2762 } 2763 return NULL; // keep some compilers happy 2764 } 2765 2766 class VerifyRootsClosure: public OopClosure { 2767 private: 2768 G1CollectedHeap* _g1h; 2769 VerifyOption _vo; 2770 bool _failures; 2771 public: 2772 // _vo == UsePrevMarking -> use "prev" marking information, 2773 // _vo == UseNextMarking -> use "next" marking information, 2774 // _vo == UseMarkWord -> use mark word from object header. 2775 VerifyRootsClosure(VerifyOption vo) : 2776 _g1h(G1CollectedHeap::heap()), 2777 _vo(vo), 2778 _failures(false) { } 2779 2780 bool failures() { return _failures; } 2781 2782 template <class T> void do_oop_nv(T* p) { 2783 T heap_oop = oopDesc::load_heap_oop(p); 2784 if (!oopDesc::is_null(heap_oop)) { 2785 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 2786 if (_g1h->is_obj_dead_cond(obj, _vo)) { 2787 gclog_or_tty->print_cr("Root location " PTR_FORMAT " " 2788 "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj)); 2789 if (_vo == VerifyOption_G1UseMarkWord) { 2790 gclog_or_tty->print_cr(" Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark()); 2791 } 2792 obj->print_on(gclog_or_tty); 2793 _failures = true; 2794 } 2795 } 2796 } 2797 2798 void do_oop(oop* p) { do_oop_nv(p); } 2799 void do_oop(narrowOop* p) { do_oop_nv(p); } 2800 }; 2801 2802 class G1VerifyCodeRootOopClosure: public OopClosure { 2803 G1CollectedHeap* _g1h; 2804 OopClosure* _root_cl; 2805 nmethod* _nm; 2806 VerifyOption _vo; 2807 bool _failures; 2808 2809 template <class T> void do_oop_work(T* p) { 2810 // First verify that this root is live 2811 _root_cl->do_oop(p); 2812 2813 if (!G1VerifyHeapRegionCodeRoots) { 2814 // We're not verifying the code roots attached to heap region. 2815 return; 2816 } 2817 2818 // Don't check the code roots during marking verification in a full GC 2819 if (_vo == VerifyOption_G1UseMarkWord) { 2820 return; 2821 } 2822 2823 // Now verify that the current nmethod (which contains p) is 2824 // in the code root list of the heap region containing the 2825 // object referenced by p. 2826 2827 T heap_oop = oopDesc::load_heap_oop(p); 2828 if (!oopDesc::is_null(heap_oop)) { 2829 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 2830 2831 // Now fetch the region containing the object 2832 HeapRegion* hr = _g1h->heap_region_containing(obj); 2833 HeapRegionRemSet* hrrs = hr->rem_set(); 2834 // Verify that the strong code root list for this region 2835 // contains the nmethod 2836 if (!hrrs->strong_code_roots_list_contains(_nm)) { 2837 gclog_or_tty->print_cr("Code root location " PTR_FORMAT " " 2838 "from nmethod " PTR_FORMAT " not in strong " 2839 "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")", 2840 p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end())); 2841 _failures = true; 2842 } 2843 } 2844 } 2845 2846 public: 2847 G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo): 2848 _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {} 2849 2850 void do_oop(oop* p) { do_oop_work(p); } 2851 void do_oop(narrowOop* p) { do_oop_work(p); } 2852 2853 void set_nmethod(nmethod* nm) { _nm = nm; } 2854 bool failures() { return _failures; } 2855 }; 2856 2857 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure { 2858 G1VerifyCodeRootOopClosure* _oop_cl; 2859 2860 public: 2861 G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl): 2862 _oop_cl(oop_cl) {} 2863 2864 void do_code_blob(CodeBlob* cb) { 2865 nmethod* nm = cb->as_nmethod_or_null(); 2866 if (nm != NULL) { 2867 _oop_cl->set_nmethod(nm); 2868 nm->oops_do(_oop_cl); 2869 } 2870 } 2871 }; 2872 2873 class YoungRefCounterClosure : public OopClosure { 2874 G1CollectedHeap* _g1h; 2875 int _count; 2876 public: 2877 YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {} 2878 void do_oop(oop* p) { if (_g1h->is_in_young(*p)) { _count++; } } 2879 void do_oop(narrowOop* p) { ShouldNotReachHere(); } 2880 2881 int count() { return _count; } 2882 void reset_count() { _count = 0; }; 2883 }; 2884 2885 class VerifyKlassClosure: public KlassClosure { 2886 YoungRefCounterClosure _young_ref_counter_closure; 2887 OopClosure *_oop_closure; 2888 public: 2889 VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {} 2890 void do_klass(Klass* k) { 2891 k->oops_do(_oop_closure); 2892 2893 _young_ref_counter_closure.reset_count(); 2894 k->oops_do(&_young_ref_counter_closure); 2895 if (_young_ref_counter_closure.count() > 0) { 2896 guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k)); 2897 } 2898 } 2899 }; 2900 2901 class VerifyLivenessOopClosure: public OopClosure { 2902 G1CollectedHeap* _g1h; 2903 VerifyOption _vo; 2904 public: 2905 VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo): 2906 _g1h(g1h), _vo(vo) 2907 { } 2908 void do_oop(narrowOop *p) { do_oop_work(p); } 2909 void do_oop( oop *p) { do_oop_work(p); } 2910 2911 template <class T> void do_oop_work(T *p) { 2912 oop obj = oopDesc::load_decode_heap_oop(p); 2913 guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo), 2914 "Dead object referenced by a not dead object"); 2915 } 2916 }; 2917 2918 class VerifyObjsInRegionClosure: public ObjectClosure { 2919 private: 2920 G1CollectedHeap* _g1h; 2921 size_t _live_bytes; 2922 HeapRegion *_hr; 2923 VerifyOption _vo; 2924 public: 2925 // _vo == UsePrevMarking -> use "prev" marking information, 2926 // _vo == UseNextMarking -> use "next" marking information, 2927 // _vo == UseMarkWord -> use mark word from object header. 2928 VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo) 2929 : _live_bytes(0), _hr(hr), _vo(vo) { 2930 _g1h = G1CollectedHeap::heap(); 2931 } 2932 void do_object(oop o) { 2933 VerifyLivenessOopClosure isLive(_g1h, _vo); 2934 assert(o != NULL, "Huh?"); 2935 if (!_g1h->is_obj_dead_cond(o, _vo)) { 2936 // If the object is alive according to the mark word, 2937 // then verify that the marking information agrees. 2938 // Note we can't verify the contra-positive of the 2939 // above: if the object is dead (according to the mark 2940 // word), it may not be marked, or may have been marked 2941 // but has since became dead, or may have been allocated 2942 // since the last marking. 2943 if (_vo == VerifyOption_G1UseMarkWord) { 2944 guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch"); 2945 } 2946 2947 o->oop_iterate_no_header(&isLive); 2948 if (!_hr->obj_allocated_since_prev_marking(o)) { 2949 size_t obj_size = o->size(); // Make sure we don't overflow 2950 _live_bytes += (obj_size * HeapWordSize); 2951 } 2952 } 2953 } 2954 size_t live_bytes() { return _live_bytes; } 2955 }; 2956 2957 class VerifyArchiveOopClosure: public OopClosure { 2958 public: 2959 VerifyArchiveOopClosure(HeapRegion *hr) { } 2960 void do_oop(narrowOop *p) { do_oop_work(p); } 2961 void do_oop( oop *p) { do_oop_work(p); } 2962 2963 template <class T> void do_oop_work(T *p) { 2964 oop obj = oopDesc::load_decode_heap_oop(p); 2965 guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj), 2966 "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT, 2967 p2i(p), p2i(obj)); 2968 } 2969 }; 2970 2971 class VerifyArchiveRegionClosure: public ObjectClosure { 2972 public: 2973 VerifyArchiveRegionClosure(HeapRegion *hr) { } 2974 // Verify that all object pointers are to archive regions. 2975 void do_object(oop o) { 2976 VerifyArchiveOopClosure checkOop(NULL); 2977 assert(o != NULL, "Should not be here for NULL oops"); 2978 o->oop_iterate_no_header(&checkOop); 2979 } 2980 }; 2981 2982 class VerifyRegionClosure: public HeapRegionClosure { 2983 private: 2984 bool _par; 2985 VerifyOption _vo; 2986 bool _failures; 2987 public: 2988 // _vo == UsePrevMarking -> use "prev" marking information, 2989 // _vo == UseNextMarking -> use "next" marking information, 2990 // _vo == UseMarkWord -> use mark word from object header. 2991 VerifyRegionClosure(bool par, VerifyOption vo) 2992 : _par(par), 2993 _vo(vo), 2994 _failures(false) {} 2995 2996 bool failures() { 2997 return _failures; 2998 } 2999 3000 bool doHeapRegion(HeapRegion* r) { 3001 // For archive regions, verify there are no heap pointers to 3002 // non-pinned regions. For all others, verify liveness info. 3003 if (r->is_archive()) { 3004 VerifyArchiveRegionClosure verify_oop_pointers(r); 3005 r->object_iterate(&verify_oop_pointers); 3006 return true; 3007 } 3008 if (!r->is_continues_humongous()) { 3009 bool failures = false; 3010 r->verify(_vo, &failures); 3011 if (failures) { 3012 _failures = true; 3013 } else if (!r->is_starts_humongous()) { 3014 VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo); 3015 r->object_iterate(¬_dead_yet_cl); 3016 if (_vo != VerifyOption_G1UseNextMarking) { 3017 if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) { 3018 gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] " 3019 "max_live_bytes " SIZE_FORMAT " " 3020 "< calculated " SIZE_FORMAT, 3021 p2i(r->bottom()), p2i(r->end()), 3022 r->max_live_bytes(), 3023 not_dead_yet_cl.live_bytes()); 3024 _failures = true; 3025 } 3026 } else { 3027 // When vo == UseNextMarking we cannot currently do a sanity 3028 // check on the live bytes as the calculation has not been 3029 // finalized yet. 3030 } 3031 } 3032 } 3033 return false; // stop the region iteration if we hit a failure 3034 } 3035 }; 3036 3037 // This is the task used for parallel verification of the heap regions 3038 3039 class G1ParVerifyTask: public AbstractGangTask { 3040 private: 3041 G1CollectedHeap* _g1h; 3042 VerifyOption _vo; 3043 bool _failures; 3044 HeapRegionClaimer _hrclaimer; 3045 3046 public: 3047 // _vo == UsePrevMarking -> use "prev" marking information, 3048 // _vo == UseNextMarking -> use "next" marking information, 3049 // _vo == UseMarkWord -> use mark word from object header. 3050 G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) : 3051 AbstractGangTask("Parallel verify task"), 3052 _g1h(g1h), 3053 _vo(vo), 3054 _failures(false), 3055 _hrclaimer(g1h->workers()->active_workers()) {} 3056 3057 bool failures() { 3058 return _failures; 3059 } 3060 3061 void work(uint worker_id) { 3062 HandleMark hm; 3063 VerifyRegionClosure blk(true, _vo); 3064 _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer); 3065 if (blk.failures()) { 3066 _failures = true; 3067 } 3068 } 3069 }; 3070 3071 void G1CollectedHeap::verify(bool silent, VerifyOption vo) { 3072 if (SafepointSynchronize::is_at_safepoint()) { 3073 assert(Thread::current()->is_VM_thread(), 3074 "Expected to be executed serially by the VM thread at this point"); 3075 3076 if (!silent) { gclog_or_tty->print("Roots "); } 3077 VerifyRootsClosure rootsCl(vo); 3078 VerifyKlassClosure klassCl(this, &rootsCl); 3079 CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false); 3080 3081 // We apply the relevant closures to all the oops in the 3082 // system dictionary, class loader data graph, the string table 3083 // and the nmethods in the code cache. 3084 G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo); 3085 G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl); 3086 3087 { 3088 G1RootProcessor root_processor(this, 1); 3089 root_processor.process_all_roots(&rootsCl, 3090 &cldCl, 3091 &blobsCl); 3092 } 3093 3094 bool failures = rootsCl.failures() || codeRootsCl.failures(); 3095 3096 if (vo != VerifyOption_G1UseMarkWord) { 3097 // If we're verifying during a full GC then the region sets 3098 // will have been torn down at the start of the GC. Therefore 3099 // verifying the region sets will fail. So we only verify 3100 // the region sets when not in a full GC. 3101 if (!silent) { gclog_or_tty->print("HeapRegionSets "); } 3102 verify_region_sets(); 3103 } 3104 3105 if (!silent) { gclog_or_tty->print("HeapRegions "); } 3106 if (GCParallelVerificationEnabled && ParallelGCThreads > 1) { 3107 3108 G1ParVerifyTask task(this, vo); 3109 workers()->run_task(&task); 3110 if (task.failures()) { 3111 failures = true; 3112 } 3113 3114 } else { 3115 VerifyRegionClosure blk(false, vo); 3116 heap_region_iterate(&blk); 3117 if (blk.failures()) { 3118 failures = true; 3119 } 3120 } 3121 3122 if (G1StringDedup::is_enabled()) { 3123 if (!silent) gclog_or_tty->print("StrDedup "); 3124 G1StringDedup::verify(); 3125 } 3126 3127 if (failures) { 3128 gclog_or_tty->print_cr("Heap:"); 3129 // It helps to have the per-region information in the output to 3130 // help us track down what went wrong. This is why we call 3131 // print_extended_on() instead of print_on(). 3132 print_extended_on(gclog_or_tty); 3133 gclog_or_tty->cr(); 3134 gclog_or_tty->flush(); 3135 } 3136 guarantee(!failures, "there should not have been any failures"); 3137 } else { 3138 if (!silent) { 3139 gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet"); 3140 if (G1StringDedup::is_enabled()) { 3141 gclog_or_tty->print(", StrDedup"); 3142 } 3143 gclog_or_tty->print(") "); 3144 } 3145 } 3146 } 3147 3148 void G1CollectedHeap::verify(bool silent) { 3149 verify(silent, VerifyOption_G1UsePrevMarking); 3150 } 3151 3152 double G1CollectedHeap::verify(bool guard, const char* msg) { 3153 double verify_time_ms = 0.0; 3154 3155 if (guard && total_collections() >= VerifyGCStartAt) { 3156 double verify_start = os::elapsedTime(); 3157 HandleMark hm; // Discard invalid handles created during verification 3158 prepare_for_verify(); 3159 Universe::verify(VerifyOption_G1UsePrevMarking, msg); 3160 verify_time_ms = (os::elapsedTime() - verify_start) * 1000; 3161 } 3162 3163 return verify_time_ms; 3164 } 3165 3166 void G1CollectedHeap::verify_before_gc() { 3167 double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:"); 3168 g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms); 3169 } 3170 3171 void G1CollectedHeap::verify_after_gc() { 3172 double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:"); 3173 g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms); 3174 } 3175 3176 class PrintRegionClosure: public HeapRegionClosure { 3177 outputStream* _st; 3178 public: 3179 PrintRegionClosure(outputStream* st) : _st(st) {} 3180 bool doHeapRegion(HeapRegion* r) { 3181 r->print_on(_st); 3182 return false; 3183 } 3184 }; 3185 3186 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 3187 const HeapRegion* hr, 3188 const VerifyOption vo) const { 3189 switch (vo) { 3190 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr); 3191 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr); 3192 case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked() && !hr->is_archive(); 3193 default: ShouldNotReachHere(); 3194 } 3195 return false; // keep some compilers happy 3196 } 3197 3198 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 3199 const VerifyOption vo) const { 3200 switch (vo) { 3201 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj); 3202 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj); 3203 case VerifyOption_G1UseMarkWord: { 3204 HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj); 3205 return !obj->is_gc_marked() && !hr->is_archive(); 3206 } 3207 default: ShouldNotReachHere(); 3208 } 3209 return false; // keep some compilers happy 3210 } 3211 3212 void G1CollectedHeap::print_on(outputStream* st) const { 3213 st->print(" %-20s", "garbage-first heap"); 3214 st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K", 3215 capacity()/K, used_unlocked()/K); 3216 st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")", 3217 p2i(_hrm.reserved().start()), 3218 p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords), 3219 p2i(_hrm.reserved().end())); 3220 st->cr(); 3221 st->print(" region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K); 3222 uint young_regions = _young_list->length(); 3223 st->print("%u young (" SIZE_FORMAT "K), ", young_regions, 3224 (size_t) young_regions * HeapRegion::GrainBytes / K); 3225 uint survivor_regions = g1_policy()->recorded_survivor_regions(); 3226 st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions, 3227 (size_t) survivor_regions * HeapRegion::GrainBytes / K); 3228 st->cr(); 3229 MetaspaceAux::print_on(st); 3230 } 3231 3232 void G1CollectedHeap::print_extended_on(outputStream* st) const { 3233 print_on(st); 3234 3235 // Print the per-region information. 3236 st->cr(); 3237 st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, " 3238 "HS=humongous(starts), HC=humongous(continues), " 3239 "CS=collection set, F=free, A=archive, TS=gc time stamp, " 3240 "PTAMS=previous top-at-mark-start, " 3241 "NTAMS=next top-at-mark-start)"); 3242 PrintRegionClosure blk(st); 3243 heap_region_iterate(&blk); 3244 } 3245 3246 void G1CollectedHeap::print_on_error(outputStream* st) const { 3247 this->CollectedHeap::print_on_error(st); 3248 3249 if (_cm != NULL) { 3250 st->cr(); 3251 _cm->print_on_error(st); 3252 } 3253 } 3254 3255 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const { 3256 workers()->print_worker_threads_on(st); 3257 _cmThread->print_on(st); 3258 st->cr(); 3259 _cm->print_worker_threads_on(st); 3260 _cg1r->print_worker_threads_on(st); 3261 if (G1StringDedup::is_enabled()) { 3262 G1StringDedup::print_worker_threads_on(st); 3263 } 3264 } 3265 3266 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const { 3267 workers()->threads_do(tc); 3268 tc->do_thread(_cmThread); 3269 _cg1r->threads_do(tc); 3270 if (G1StringDedup::is_enabled()) { 3271 G1StringDedup::threads_do(tc); 3272 } 3273 } 3274 3275 void G1CollectedHeap::print_tracing_info() const { 3276 // We'll overload this to mean "trace GC pause statistics." 3277 if (TraceYoungGenTime || TraceOldGenTime) { 3278 // The "G1CollectorPolicy" is keeping track of these stats, so delegate 3279 // to that. 3280 g1_policy()->print_tracing_info(); 3281 } 3282 if (G1SummarizeRSetStats) { 3283 g1_rem_set()->print_summary_info(); 3284 } 3285 if (G1SummarizeConcMark) { 3286 concurrent_mark()->print_summary_info(); 3287 } 3288 g1_policy()->print_yg_surv_rate_info(); 3289 } 3290 3291 #ifndef PRODUCT 3292 // Helpful for debugging RSet issues. 3293 3294 class PrintRSetsClosure : public HeapRegionClosure { 3295 private: 3296 const char* _msg; 3297 size_t _occupied_sum; 3298 3299 public: 3300 bool doHeapRegion(HeapRegion* r) { 3301 HeapRegionRemSet* hrrs = r->rem_set(); 3302 size_t occupied = hrrs->occupied(); 3303 _occupied_sum += occupied; 3304 3305 gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT, 3306 HR_FORMAT_PARAMS(r)); 3307 if (occupied == 0) { 3308 gclog_or_tty->print_cr(" RSet is empty"); 3309 } else { 3310 hrrs->print(); 3311 } 3312 gclog_or_tty->print_cr("----------"); 3313 return false; 3314 } 3315 3316 PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) { 3317 gclog_or_tty->cr(); 3318 gclog_or_tty->print_cr("========================================"); 3319 gclog_or_tty->print_cr("%s", msg); 3320 gclog_or_tty->cr(); 3321 } 3322 3323 ~PrintRSetsClosure() { 3324 gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum); 3325 gclog_or_tty->print_cr("========================================"); 3326 gclog_or_tty->cr(); 3327 } 3328 }; 3329 3330 void G1CollectedHeap::print_cset_rsets() { 3331 PrintRSetsClosure cl("Printing CSet RSets"); 3332 collection_set_iterate(&cl); 3333 } 3334 3335 void G1CollectedHeap::print_all_rsets() { 3336 PrintRSetsClosure cl("Printing All RSets");; 3337 heap_region_iterate(&cl); 3338 } 3339 #endif // PRODUCT 3340 3341 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() { 3342 YoungList* young_list = heap()->young_list(); 3343 3344 size_t eden_used_bytes = young_list->eden_used_bytes(); 3345 size_t survivor_used_bytes = young_list->survivor_used_bytes(); 3346 3347 size_t eden_capacity_bytes = 3348 (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes; 3349 3350 VirtualSpaceSummary heap_summary = create_heap_space_summary(); 3351 return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes); 3352 } 3353 3354 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) { 3355 return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(), 3356 stats->unused(), stats->used(), stats->region_end_waste(), 3357 stats->regions_filled(), stats->direct_allocated(), 3358 stats->failure_used(), stats->failure_waste()); 3359 } 3360 3361 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) { 3362 const G1HeapSummary& heap_summary = create_g1_heap_summary(); 3363 gc_tracer->report_gc_heap_summary(when, heap_summary); 3364 3365 const MetaspaceSummary& metaspace_summary = create_metaspace_summary(); 3366 gc_tracer->report_metaspace_summary(when, metaspace_summary); 3367 } 3368 3369 3370 G1CollectedHeap* G1CollectedHeap::heap() { 3371 CollectedHeap* heap = Universe::heap(); 3372 assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()"); 3373 assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap"); 3374 return (G1CollectedHeap*)heap; 3375 } 3376 3377 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) { 3378 // always_do_update_barrier = false; 3379 assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer"); 3380 // Fill TLAB's and such 3381 accumulate_statistics_all_tlabs(); 3382 ensure_parsability(true); 3383 3384 if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) && 3385 (total_collections() % G1SummarizeRSetStatsPeriod == 0)) { 3386 g1_rem_set()->print_periodic_summary_info("Before GC RS summary"); 3387 } 3388 } 3389 3390 void G1CollectedHeap::gc_epilogue(bool full) { 3391 3392 if (G1SummarizeRSetStats && 3393 (G1SummarizeRSetStatsPeriod > 0) && 3394 // we are at the end of the GC. Total collections has already been increased. 3395 ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) { 3396 g1_rem_set()->print_periodic_summary_info("After GC RS summary"); 3397 } 3398 3399 // FIXME: what is this about? 3400 // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled" 3401 // is set. 3402 #if defined(COMPILER2) || INCLUDE_JVMCI 3403 assert(DerivedPointerTable::is_empty(), "derived pointer present"); 3404 #endif 3405 // always_do_update_barrier = true; 3406 3407 resize_all_tlabs(); 3408 allocation_context_stats().update(full); 3409 3410 // We have just completed a GC. Update the soft reference 3411 // policy with the new heap occupancy 3412 Universe::update_heap_info_at_gc(); 3413 } 3414 3415 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size, 3416 uint gc_count_before, 3417 bool* succeeded, 3418 GCCause::Cause gc_cause) { 3419 assert_heap_not_locked_and_not_at_safepoint(); 3420 g1_policy()->record_stop_world_start(); 3421 VM_G1IncCollectionPause op(gc_count_before, 3422 word_size, 3423 false, /* should_initiate_conc_mark */ 3424 g1_policy()->max_pause_time_ms(), 3425 gc_cause); 3426 3427 op.set_allocation_context(AllocationContext::current()); 3428 VMThread::execute(&op); 3429 3430 HeapWord* result = op.result(); 3431 bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded(); 3432 assert(result == NULL || ret_succeeded, 3433 "the result should be NULL if the VM did not succeed"); 3434 *succeeded = ret_succeeded; 3435 3436 assert_heap_not_locked(); 3437 return result; 3438 } 3439 3440 void 3441 G1CollectedHeap::doConcurrentMark() { 3442 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 3443 if (!_cmThread->in_progress()) { 3444 _cmThread->set_started(); 3445 CGC_lock->notify(); 3446 } 3447 } 3448 3449 size_t G1CollectedHeap::pending_card_num() { 3450 size_t extra_cards = 0; 3451 JavaThread *curr = Threads::first(); 3452 while (curr != NULL) { 3453 DirtyCardQueue& dcq = curr->dirty_card_queue(); 3454 extra_cards += dcq.size(); 3455 curr = curr->next(); 3456 } 3457 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 3458 size_t buffer_size = dcqs.buffer_size(); 3459 size_t buffer_num = dcqs.completed_buffers_num(); 3460 3461 // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes 3462 // in bytes - not the number of 'entries'. We need to convert 3463 // into a number of cards. 3464 return (buffer_size * buffer_num + extra_cards) / oopSize; 3465 } 3466 3467 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure { 3468 private: 3469 size_t _total_humongous; 3470 size_t _candidate_humongous; 3471 3472 DirtyCardQueue _dcq; 3473 3474 // We don't nominate objects with many remembered set entries, on 3475 // the assumption that such objects are likely still live. 3476 bool is_remset_small(HeapRegion* region) const { 3477 HeapRegionRemSet* const rset = region->rem_set(); 3478 return G1EagerReclaimHumongousObjectsWithStaleRefs 3479 ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) 3480 : rset->is_empty(); 3481 } 3482 3483 bool is_typeArray_region(HeapRegion* region) const { 3484 return oop(region->bottom())->is_typeArray(); 3485 } 3486 3487 bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const { 3488 assert(region->is_starts_humongous(), "Must start a humongous object"); 3489 3490 // Candidate selection must satisfy the following constraints 3491 // while concurrent marking is in progress: 3492 // 3493 // * In order to maintain SATB invariants, an object must not be 3494 // reclaimed if it was allocated before the start of marking and 3495 // has not had its references scanned. Such an object must have 3496 // its references (including type metadata) scanned to ensure no 3497 // live objects are missed by the marking process. Objects 3498 // allocated after the start of concurrent marking don't need to 3499 // be scanned. 3500 // 3501 // * An object must not be reclaimed if it is on the concurrent 3502 // mark stack. Objects allocated after the start of concurrent 3503 // marking are never pushed on the mark stack. 3504 // 3505 // Nominating only objects allocated after the start of concurrent 3506 // marking is sufficient to meet both constraints. This may miss 3507 // some objects that satisfy the constraints, but the marking data 3508 // structures don't support efficiently performing the needed 3509 // additional tests or scrubbing of the mark stack. 3510 // 3511 // However, we presently only nominate is_typeArray() objects. 3512 // A humongous object containing references induces remembered 3513 // set entries on other regions. In order to reclaim such an 3514 // object, those remembered sets would need to be cleaned up. 3515 // 3516 // We also treat is_typeArray() objects specially, allowing them 3517 // to be reclaimed even if allocated before the start of 3518 // concurrent mark. For this we rely on mark stack insertion to 3519 // exclude is_typeArray() objects, preventing reclaiming an object 3520 // that is in the mark stack. We also rely on the metadata for 3521 // such objects to be built-in and so ensured to be kept live. 3522 // Frequent allocation and drop of large binary blobs is an 3523 // important use case for eager reclaim, and this special handling 3524 // may reduce needed headroom. 3525 3526 return is_typeArray_region(region) && is_remset_small(region); 3527 } 3528 3529 public: 3530 RegisterHumongousWithInCSetFastTestClosure() 3531 : _total_humongous(0), 3532 _candidate_humongous(0), 3533 _dcq(&JavaThread::dirty_card_queue_set()) { 3534 } 3535 3536 virtual bool doHeapRegion(HeapRegion* r) { 3537 if (!r->is_starts_humongous()) { 3538 return false; 3539 } 3540 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 3541 3542 bool is_candidate = humongous_region_is_candidate(g1h, r); 3543 uint rindex = r->hrm_index(); 3544 g1h->set_humongous_reclaim_candidate(rindex, is_candidate); 3545 if (is_candidate) { 3546 _candidate_humongous++; 3547 g1h->register_humongous_region_with_cset(rindex); 3548 // Is_candidate already filters out humongous object with large remembered sets. 3549 // If we have a humongous object with a few remembered sets, we simply flush these 3550 // remembered set entries into the DCQS. That will result in automatic 3551 // re-evaluation of their remembered set entries during the following evacuation 3552 // phase. 3553 if (!r->rem_set()->is_empty()) { 3554 guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries), 3555 "Found a not-small remembered set here. This is inconsistent with previous assumptions."); 3556 G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set(); 3557 HeapRegionRemSetIterator hrrs(r->rem_set()); 3558 size_t card_index; 3559 while (hrrs.has_next(card_index)) { 3560 jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index); 3561 // The remembered set might contain references to already freed 3562 // regions. Filter out such entries to avoid failing card table 3563 // verification. 3564 if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) { 3565 if (*card_ptr != CardTableModRefBS::dirty_card_val()) { 3566 *card_ptr = CardTableModRefBS::dirty_card_val(); 3567 _dcq.enqueue(card_ptr); 3568 } 3569 } 3570 } 3571 assert(hrrs.n_yielded() == r->rem_set()->occupied(), 3572 "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries", 3573 hrrs.n_yielded(), r->rem_set()->occupied()); 3574 r->rem_set()->clear_locked(); 3575 } 3576 assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty."); 3577 } 3578 _total_humongous++; 3579 3580 return false; 3581 } 3582 3583 size_t total_humongous() const { return _total_humongous; } 3584 size_t candidate_humongous() const { return _candidate_humongous; } 3585 3586 void flush_rem_set_entries() { _dcq.flush(); } 3587 }; 3588 3589 void G1CollectedHeap::register_humongous_regions_with_cset() { 3590 if (!G1EagerReclaimHumongousObjects) { 3591 g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0); 3592 return; 3593 } 3594 double time = os::elapsed_counter(); 3595 3596 // Collect reclaim candidate information and register candidates with cset. 3597 RegisterHumongousWithInCSetFastTestClosure cl; 3598 heap_region_iterate(&cl); 3599 3600 time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0; 3601 g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time, 3602 cl.total_humongous(), 3603 cl.candidate_humongous()); 3604 _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0; 3605 3606 // Finally flush all remembered set entries to re-check into the global DCQS. 3607 cl.flush_rem_set_entries(); 3608 } 3609 3610 #ifdef ASSERT 3611 class VerifyCSetClosure: public HeapRegionClosure { 3612 public: 3613 bool doHeapRegion(HeapRegion* hr) { 3614 // Here we check that the CSet region's RSet is ready for parallel 3615 // iteration. The fields that we'll verify are only manipulated 3616 // when the region is part of a CSet and is collected. Afterwards, 3617 // we reset these fields when we clear the region's RSet (when the 3618 // region is freed) so they are ready when the region is 3619 // re-allocated. The only exception to this is if there's an 3620 // evacuation failure and instead of freeing the region we leave 3621 // it in the heap. In that case, we reset these fields during 3622 // evacuation failure handling. 3623 guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification"); 3624 3625 // Here's a good place to add any other checks we'd like to 3626 // perform on CSet regions. 3627 return false; 3628 } 3629 }; 3630 #endif // ASSERT 3631 3632 uint G1CollectedHeap::num_task_queues() const { 3633 return _task_queues->size(); 3634 } 3635 3636 #if TASKQUEUE_STATS 3637 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) { 3638 st->print_raw_cr("GC Task Stats"); 3639 st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr(); 3640 st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr(); 3641 } 3642 3643 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const { 3644 print_taskqueue_stats_hdr(st); 3645 3646 TaskQueueStats totals; 3647 const uint n = num_task_queues(); 3648 for (uint i = 0; i < n; ++i) { 3649 st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr(); 3650 totals += task_queue(i)->stats; 3651 } 3652 st->print_raw("tot "); totals.print(st); st->cr(); 3653 3654 DEBUG_ONLY(totals.verify()); 3655 } 3656 3657 void G1CollectedHeap::reset_taskqueue_stats() { 3658 const uint n = num_task_queues(); 3659 for (uint i = 0; i < n; ++i) { 3660 task_queue(i)->stats.reset(); 3661 } 3662 } 3663 #endif // TASKQUEUE_STATS 3664 3665 void G1CollectedHeap::log_gc_header() { 3666 if (!G1Log::fine()) { 3667 return; 3668 } 3669 3670 gclog_or_tty->gclog_stamp(); 3671 3672 GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause()) 3673 .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)") 3674 .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : ""); 3675 3676 gclog_or_tty->print("[%s", (const char*)gc_cause_str); 3677 } 3678 3679 void G1CollectedHeap::log_gc_footer(double pause_time_sec) { 3680 if (!G1Log::fine()) { 3681 return; 3682 } 3683 3684 if (G1Log::finer()) { 3685 if (evacuation_failed()) { 3686 gclog_or_tty->print(" (to-space exhausted)"); 3687 } 3688 gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec); 3689 g1_policy()->print_phases(pause_time_sec); 3690 g1_policy()->print_detailed_heap_transition(); 3691 } else { 3692 if (evacuation_failed()) { 3693 gclog_or_tty->print("--"); 3694 } 3695 g1_policy()->print_heap_transition(); 3696 gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec); 3697 } 3698 gclog_or_tty->flush(); 3699 } 3700 3701 void G1CollectedHeap::wait_for_root_region_scanning() { 3702 double scan_wait_start = os::elapsedTime(); 3703 // We have to wait until the CM threads finish scanning the 3704 // root regions as it's the only way to ensure that all the 3705 // objects on them have been correctly scanned before we start 3706 // moving them during the GC. 3707 bool waited = _cm->root_regions()->wait_until_scan_finished(); 3708 double wait_time_ms = 0.0; 3709 if (waited) { 3710 double scan_wait_end = os::elapsedTime(); 3711 wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0; 3712 } 3713 g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms); 3714 } 3715 3716 bool 3717 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) { 3718 assert_at_safepoint(true /* should_be_vm_thread */); 3719 guarantee(!is_gc_active(), "collection is not reentrant"); 3720 3721 if (GC_locker::check_active_before_gc()) { 3722 return false; 3723 } 3724 3725 _gc_timer_stw->register_gc_start(); 3726 3727 GCIdMark gc_id_mark; 3728 _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start()); 3729 3730 SvcGCMarker sgcm(SvcGCMarker::MINOR); 3731 ResourceMark rm; 3732 3733 wait_for_root_region_scanning(); 3734 3735 G1Log::update_level(); 3736 print_heap_before_gc(); 3737 trace_heap_before_gc(_gc_tracer_stw); 3738 3739 verify_region_sets_optional(); 3740 verify_dirty_young_regions(); 3741 3742 // This call will decide whether this pause is an initial-mark 3743 // pause. If it is, during_initial_mark_pause() will return true 3744 // for the duration of this pause. 3745 g1_policy()->decide_on_conc_mark_initiation(); 3746 3747 // We do not allow initial-mark to be piggy-backed on a mixed GC. 3748 assert(!collector_state()->during_initial_mark_pause() || 3749 collector_state()->gcs_are_young(), "sanity"); 3750 3751 // We also do not allow mixed GCs during marking. 3752 assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity"); 3753 3754 // Record whether this pause is an initial mark. When the current 3755 // thread has completed its logging output and it's safe to signal 3756 // the CM thread, the flag's value in the policy has been reset. 3757 bool should_start_conc_mark = collector_state()->during_initial_mark_pause(); 3758 3759 // Inner scope for scope based logging, timers, and stats collection 3760 { 3761 EvacuationInfo evacuation_info; 3762 3763 if (collector_state()->during_initial_mark_pause()) { 3764 // We are about to start a marking cycle, so we increment the 3765 // full collection counter. 3766 increment_old_marking_cycles_started(); 3767 register_concurrent_cycle_start(_gc_timer_stw->gc_start()); 3768 } 3769 3770 _gc_tracer_stw->report_yc_type(collector_state()->yc_type()); 3771 3772 TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty); 3773 3774 uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(), 3775 workers()->active_workers(), 3776 Threads::number_of_non_daemon_threads()); 3777 workers()->set_active_workers(active_workers); 3778 3779 double pause_start_sec = os::elapsedTime(); 3780 g1_policy()->note_gc_start(active_workers); 3781 log_gc_header(); 3782 3783 TraceCollectorStats tcs(g1mm()->incremental_collection_counters()); 3784 TraceMemoryManagerStats tms(false /* fullGC */, gc_cause()); 3785 3786 // If the secondary_free_list is not empty, append it to the 3787 // free_list. No need to wait for the cleanup operation to finish; 3788 // the region allocation code will check the secondary_free_list 3789 // and wait if necessary. If the G1StressConcRegionFreeing flag is 3790 // set, skip this step so that the region allocation code has to 3791 // get entries from the secondary_free_list. 3792 if (!G1StressConcRegionFreeing) { 3793 append_secondary_free_list_if_not_empty_with_lock(); 3794 } 3795 3796 assert(check_young_list_well_formed(), "young list should be well formed"); 3797 3798 // Don't dynamically change the number of GC threads this early. A value of 3799 // 0 is used to indicate serial work. When parallel work is done, 3800 // it will be set. 3801 3802 { // Call to jvmpi::post_class_unload_events must occur outside of active GC 3803 IsGCActiveMark x; 3804 3805 gc_prologue(false); 3806 increment_total_collections(false /* full gc */); 3807 increment_gc_time_stamp(); 3808 3809 verify_before_gc(); 3810 3811 check_bitmaps("GC Start"); 3812 3813 #if defined(COMPILER2) || INCLUDE_JVMCI 3814 DerivedPointerTable::clear(); 3815 #endif 3816 3817 // Please see comment in g1CollectedHeap.hpp and 3818 // G1CollectedHeap::ref_processing_init() to see how 3819 // reference processing currently works in G1. 3820 3821 // Enable discovery in the STW reference processor 3822 ref_processor_stw()->enable_discovery(); 3823 3824 { 3825 // We want to temporarily turn off discovery by the 3826 // CM ref processor, if necessary, and turn it back on 3827 // on again later if we do. Using a scoped 3828 // NoRefDiscovery object will do this. 3829 NoRefDiscovery no_cm_discovery(ref_processor_cm()); 3830 3831 // Forget the current alloc region (we might even choose it to be part 3832 // of the collection set!). 3833 _allocator->release_mutator_alloc_region(); 3834 3835 // We should call this after we retire the mutator alloc 3836 // region(s) so that all the ALLOC / RETIRE events are generated 3837 // before the start GC event. 3838 _hr_printer.start_gc(false /* full */, (size_t) total_collections()); 3839 3840 // This timing is only used by the ergonomics to handle our pause target. 3841 // It is unclear why this should not include the full pause. We will 3842 // investigate this in CR 7178365. 3843 // 3844 // Preserving the old comment here if that helps the investigation: 3845 // 3846 // The elapsed time induced by the start time below deliberately elides 3847 // the possible verification above. 3848 double sample_start_time_sec = os::elapsedTime(); 3849 3850 g1_policy()->record_collection_pause_start(sample_start_time_sec); 3851 3852 if (collector_state()->during_initial_mark_pause()) { 3853 concurrent_mark()->checkpointRootsInitialPre(); 3854 } 3855 3856 double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms); 3857 g1_policy()->finalize_old_cset_part(time_remaining_ms); 3858 3859 evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length()); 3860 3861 // Make sure the remembered sets are up to date. This needs to be 3862 // done before register_humongous_regions_with_cset(), because the 3863 // remembered sets are used there to choose eager reclaim candidates. 3864 // If the remembered sets are not up to date we might miss some 3865 // entries that need to be handled. 3866 g1_rem_set()->cleanupHRRS(); 3867 3868 register_humongous_regions_with_cset(); 3869 3870 assert(check_cset_fast_test(), "Inconsistency in the InCSetState table."); 3871 3872 _cm->note_start_of_gc(); 3873 // We call this after finalize_cset() to 3874 // ensure that the CSet has been finalized. 3875 _cm->verify_no_cset_oops(); 3876 3877 if (_hr_printer.is_active()) { 3878 HeapRegion* hr = g1_policy()->collection_set(); 3879 while (hr != NULL) { 3880 _hr_printer.cset(hr); 3881 hr = hr->next_in_collection_set(); 3882 } 3883 } 3884 3885 #ifdef ASSERT 3886 VerifyCSetClosure cl; 3887 collection_set_iterate(&cl); 3888 #endif // ASSERT 3889 3890 // Initialize the GC alloc regions. 3891 _allocator->init_gc_alloc_regions(evacuation_info); 3892 3893 G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length()); 3894 pre_evacuate_collection_set(); 3895 3896 // Actually do the work... 3897 evacuate_collection_set(evacuation_info, &per_thread_states); 3898 3899 post_evacuate_collection_set(evacuation_info, &per_thread_states); 3900 3901 const size_t* surviving_young_words = per_thread_states.surviving_young_words(); 3902 free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words); 3903 3904 eagerly_reclaim_humongous_regions(); 3905 3906 g1_policy()->clear_collection_set(); 3907 3908 // Start a new incremental collection set for the next pause. 3909 g1_policy()->start_incremental_cset_building(); 3910 3911 clear_cset_fast_test(); 3912 3913 _young_list->reset_sampled_info(); 3914 3915 // Don't check the whole heap at this point as the 3916 // GC alloc regions from this pause have been tagged 3917 // as survivors and moved on to the survivor list. 3918 // Survivor regions will fail the !is_young() check. 3919 assert(check_young_list_empty(false /* check_heap */), 3920 "young list should be empty"); 3921 3922 g1_policy()->record_survivor_regions(_young_list->survivor_length(), 3923 _young_list->first_survivor_region(), 3924 _young_list->last_survivor_region()); 3925 3926 _young_list->reset_auxilary_lists(); 3927 3928 if (evacuation_failed()) { 3929 set_used(recalculate_used()); 3930 if (_archive_allocator != NULL) { 3931 _archive_allocator->clear_used(); 3932 } 3933 for (uint i = 0; i < ParallelGCThreads; i++) { 3934 if (_evacuation_failed_info_array[i].has_failed()) { 3935 _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]); 3936 } 3937 } 3938 } else { 3939 // The "used" of the the collection set have already been subtracted 3940 // when they were freed. Add in the bytes evacuated. 3941 increase_used(g1_policy()->bytes_copied_during_gc()); 3942 } 3943 3944 if (collector_state()->during_initial_mark_pause()) { 3945 // We have to do this before we notify the CM threads that 3946 // they can start working to make sure that all the 3947 // appropriate initialization is done on the CM object. 3948 concurrent_mark()->checkpointRootsInitialPost(); 3949 collector_state()->set_mark_in_progress(true); 3950 // Note that we don't actually trigger the CM thread at 3951 // this point. We do that later when we're sure that 3952 // the current thread has completed its logging output. 3953 } 3954 3955 allocate_dummy_regions(); 3956 3957 _allocator->init_mutator_alloc_region(); 3958 3959 { 3960 size_t expand_bytes = g1_policy()->expansion_amount(); 3961 if (expand_bytes > 0) { 3962 size_t bytes_before = capacity(); 3963 // No need for an ergo verbose message here, 3964 // expansion_amount() does this when it returns a value > 0. 3965 double expand_ms; 3966 if (!expand(expand_bytes, &expand_ms)) { 3967 // We failed to expand the heap. Cannot do anything about it. 3968 } 3969 g1_policy()->phase_times()->record_expand_heap_time(expand_ms); 3970 } 3971 } 3972 3973 // We redo the verification but now wrt to the new CSet which 3974 // has just got initialized after the previous CSet was freed. 3975 _cm->verify_no_cset_oops(); 3976 _cm->note_end_of_gc(); 3977 3978 // This timing is only used by the ergonomics to handle our pause target. 3979 // It is unclear why this should not include the full pause. We will 3980 // investigate this in CR 7178365. 3981 double sample_end_time_sec = os::elapsedTime(); 3982 double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS; 3983 size_t total_cards_scanned = per_thread_states.total_cards_scanned(); 3984 g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned); 3985 3986 evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before()); 3987 evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc()); 3988 3989 MemoryService::track_memory_usage(); 3990 3991 // In prepare_for_verify() below we'll need to scan the deferred 3992 // update buffers to bring the RSets up-to-date if 3993 // G1HRRSFlushLogBuffersOnVerify has been set. While scanning 3994 // the update buffers we'll probably need to scan cards on the 3995 // regions we just allocated to (i.e., the GC alloc 3996 // regions). However, during the last GC we called 3997 // set_saved_mark() on all the GC alloc regions, so card 3998 // scanning might skip the [saved_mark_word()...top()] area of 3999 // those regions (i.e., the area we allocated objects into 4000 // during the last GC). But it shouldn't. Given that 4001 // saved_mark_word() is conditional on whether the GC time stamp 4002 // on the region is current or not, by incrementing the GC time 4003 // stamp here we invalidate all the GC time stamps on all the 4004 // regions and saved_mark_word() will simply return top() for 4005 // all the regions. This is a nicer way of ensuring this rather 4006 // than iterating over the regions and fixing them. In fact, the 4007 // GC time stamp increment here also ensures that 4008 // saved_mark_word() will return top() between pauses, i.e., 4009 // during concurrent refinement. So we don't need the 4010 // is_gc_active() check to decided which top to use when 4011 // scanning cards (see CR 7039627). 4012 increment_gc_time_stamp(); 4013 4014 verify_after_gc(); 4015 check_bitmaps("GC End"); 4016 4017 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 4018 ref_processor_stw()->verify_no_references_recorded(); 4019 4020 // CM reference discovery will be re-enabled if necessary. 4021 } 4022 4023 // We should do this after we potentially expand the heap so 4024 // that all the COMMIT events are generated before the end GC 4025 // event, and after we retire the GC alloc regions so that all 4026 // RETIRE events are generated before the end GC event. 4027 _hr_printer.end_gc(false /* full */, (size_t) total_collections()); 4028 4029 #ifdef TRACESPINNING 4030 ParallelTaskTerminator::print_termination_counts(); 4031 #endif 4032 4033 gc_epilogue(false); 4034 } 4035 4036 // Print the remainder of the GC log output. 4037 log_gc_footer(os::elapsedTime() - pause_start_sec); 4038 4039 // It is not yet to safe to tell the concurrent mark to 4040 // start as we have some optional output below. We don't want the 4041 // output from the concurrent mark thread interfering with this 4042 // logging output either. 4043 4044 _hrm.verify_optional(); 4045 verify_region_sets_optional(); 4046 4047 TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats()); 4048 TASKQUEUE_STATS_ONLY(reset_taskqueue_stats()); 4049 4050 print_heap_after_gc(); 4051 trace_heap_after_gc(_gc_tracer_stw); 4052 4053 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 4054 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 4055 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 4056 // before any GC notifications are raised. 4057 g1mm()->update_sizes(); 4058 4059 _gc_tracer_stw->report_evacuation_info(&evacuation_info); 4060 _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold()); 4061 _gc_timer_stw->register_gc_end(); 4062 _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions()); 4063 } 4064 // It should now be safe to tell the concurrent mark thread to start 4065 // without its logging output interfering with the logging output 4066 // that came from the pause. 4067 4068 if (should_start_conc_mark) { 4069 // CAUTION: after the doConcurrentMark() call below, 4070 // the concurrent marking thread(s) could be running 4071 // concurrently with us. Make sure that anything after 4072 // this point does not assume that we are the only GC thread 4073 // running. Note: of course, the actual marking work will 4074 // not start until the safepoint itself is released in 4075 // SuspendibleThreadSet::desynchronize(). 4076 doConcurrentMark(); 4077 } 4078 4079 return true; 4080 } 4081 4082 void G1CollectedHeap::remove_self_forwarding_pointers() { 4083 double remove_self_forwards_start = os::elapsedTime(); 4084 4085 G1ParRemoveSelfForwardPtrsTask rsfp_task; 4086 workers()->run_task(&rsfp_task); 4087 4088 // Now restore saved marks, if any. 4089 for (uint i = 0; i < ParallelGCThreads; i++) { 4090 OopAndMarkOopStack& cur = _preserved_objs[i]; 4091 while (!cur.is_empty()) { 4092 OopAndMarkOop elem = cur.pop(); 4093 elem.set_mark(); 4094 } 4095 cur.clear(true); 4096 } 4097 4098 g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0); 4099 } 4100 4101 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) { 4102 if (!_evacuation_failed) { 4103 _evacuation_failed = true; 4104 } 4105 4106 _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size()); 4107 4108 // We want to call the "for_promotion_failure" version only in the 4109 // case of a promotion failure. 4110 if (m->must_be_preserved_for_promotion_failure(obj)) { 4111 OopAndMarkOop elem(obj, m); 4112 _preserved_objs[worker_id].push(elem); 4113 } 4114 } 4115 4116 class G1ParEvacuateFollowersClosure : public VoidClosure { 4117 private: 4118 double _start_term; 4119 double _term_time; 4120 size_t _term_attempts; 4121 4122 void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); } 4123 void end_term_time() { _term_time += os::elapsedTime() - _start_term; } 4124 protected: 4125 G1CollectedHeap* _g1h; 4126 G1ParScanThreadState* _par_scan_state; 4127 RefToScanQueueSet* _queues; 4128 ParallelTaskTerminator* _terminator; 4129 4130 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 4131 RefToScanQueueSet* queues() { return _queues; } 4132 ParallelTaskTerminator* terminator() { return _terminator; } 4133 4134 public: 4135 G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h, 4136 G1ParScanThreadState* par_scan_state, 4137 RefToScanQueueSet* queues, 4138 ParallelTaskTerminator* terminator) 4139 : _g1h(g1h), _par_scan_state(par_scan_state), 4140 _queues(queues), _terminator(terminator), 4141 _start_term(0.0), _term_time(0.0), _term_attempts(0) {} 4142 4143 void do_void(); 4144 4145 double term_time() const { return _term_time; } 4146 size_t term_attempts() const { return _term_attempts; } 4147 4148 private: 4149 inline bool offer_termination(); 4150 }; 4151 4152 bool G1ParEvacuateFollowersClosure::offer_termination() { 4153 G1ParScanThreadState* const pss = par_scan_state(); 4154 start_term_time(); 4155 const bool res = terminator()->offer_termination(); 4156 end_term_time(); 4157 return res; 4158 } 4159 4160 void G1ParEvacuateFollowersClosure::do_void() { 4161 G1ParScanThreadState* const pss = par_scan_state(); 4162 pss->trim_queue(); 4163 do { 4164 pss->steal_and_trim_queue(queues()); 4165 } while (!offer_termination()); 4166 } 4167 4168 class G1ParTask : public AbstractGangTask { 4169 protected: 4170 G1CollectedHeap* _g1h; 4171 G1ParScanThreadStateSet* _pss; 4172 RefToScanQueueSet* _queues; 4173 G1RootProcessor* _root_processor; 4174 ParallelTaskTerminator _terminator; 4175 uint _n_workers; 4176 4177 public: 4178 G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers) 4179 : AbstractGangTask("G1 collection"), 4180 _g1h(g1h), 4181 _pss(per_thread_states), 4182 _queues(task_queues), 4183 _root_processor(root_processor), 4184 _terminator(n_workers, _queues), 4185 _n_workers(n_workers) 4186 {} 4187 4188 void work(uint worker_id) { 4189 if (worker_id >= _n_workers) return; // no work needed this round 4190 4191 double start_sec = os::elapsedTime(); 4192 _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec); 4193 4194 { 4195 ResourceMark rm; 4196 HandleMark hm; 4197 4198 ReferenceProcessor* rp = _g1h->ref_processor_stw(); 4199 4200 G1ParScanThreadState* pss = _pss->state_for_worker(worker_id); 4201 pss->set_ref_processor(rp); 4202 4203 double start_strong_roots_sec = os::elapsedTime(); 4204 4205 _root_processor->evacuate_roots(pss->closures(), worker_id); 4206 4207 G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss); 4208 4209 // We pass a weak code blobs closure to the remembered set scanning because we want to avoid 4210 // treating the nmethods visited to act as roots for concurrent marking. 4211 // We only want to make sure that the oops in the nmethods are adjusted with regard to the 4212 // objects copied by the current evacuation. 4213 size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl, 4214 pss->closures()->weak_codeblobs(), 4215 worker_id); 4216 4217 _pss->add_cards_scanned(worker_id, cards_scanned); 4218 4219 double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec; 4220 4221 double term_sec = 0.0; 4222 size_t evac_term_attempts = 0; 4223 { 4224 double start = os::elapsedTime(); 4225 G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator); 4226 evac.do_void(); 4227 4228 evac_term_attempts = evac.term_attempts(); 4229 term_sec = evac.term_time(); 4230 double elapsed_sec = os::elapsedTime() - start; 4231 _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec); 4232 _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec); 4233 _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts); 4234 } 4235 4236 assert(pss->queue_is_empty(), "should be empty"); 4237 4238 if (PrintTerminationStats) { 4239 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); 4240 size_t lab_waste; 4241 size_t lab_undo_waste; 4242 pss->waste(lab_waste, lab_undo_waste); 4243 _g1h->print_termination_stats(gclog_or_tty, 4244 worker_id, 4245 (os::elapsedTime() - start_sec) * 1000.0, /* elapsed time */ 4246 strong_roots_sec * 1000.0, /* strong roots time */ 4247 term_sec * 1000.0, /* evac term time */ 4248 evac_term_attempts, /* evac term attempts */ 4249 lab_waste, /* alloc buffer waste */ 4250 lab_undo_waste /* undo waste */ 4251 ); 4252 } 4253 4254 // Close the inner scope so that the ResourceMark and HandleMark 4255 // destructors are executed here and are included as part of the 4256 // "GC Worker Time". 4257 } 4258 _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime()); 4259 } 4260 }; 4261 4262 void G1CollectedHeap::print_termination_stats_hdr(outputStream* const st) { 4263 st->print_raw_cr("GC Termination Stats"); 4264 st->print_raw_cr(" elapsed --strong roots-- -------termination------- ------waste (KiB)------"); 4265 st->print_raw_cr("thr ms ms % ms % attempts total alloc undo"); 4266 st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------"); 4267 } 4268 4269 void G1CollectedHeap::print_termination_stats(outputStream* const st, 4270 uint worker_id, 4271 double elapsed_ms, 4272 double strong_roots_ms, 4273 double term_ms, 4274 size_t term_attempts, 4275 size_t alloc_buffer_waste, 4276 size_t undo_waste) const { 4277 st->print_cr("%3d %9.2f %9.2f %6.2f " 4278 "%9.2f %6.2f " SIZE_FORMAT_W(8) " " 4279 SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7), 4280 worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms, 4281 term_ms, term_ms * 100 / elapsed_ms, term_attempts, 4282 (alloc_buffer_waste + undo_waste) * HeapWordSize / K, 4283 alloc_buffer_waste * HeapWordSize / K, 4284 undo_waste * HeapWordSize / K); 4285 } 4286 4287 class G1StringSymbolTableUnlinkTask : public AbstractGangTask { 4288 private: 4289 BoolObjectClosure* _is_alive; 4290 int _initial_string_table_size; 4291 int _initial_symbol_table_size; 4292 4293 bool _process_strings; 4294 int _strings_processed; 4295 int _strings_removed; 4296 4297 bool _process_symbols; 4298 int _symbols_processed; 4299 int _symbols_removed; 4300 4301 public: 4302 G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) : 4303 AbstractGangTask("String/Symbol Unlinking"), 4304 _is_alive(is_alive), 4305 _process_strings(process_strings), _strings_processed(0), _strings_removed(0), 4306 _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) { 4307 4308 _initial_string_table_size = StringTable::the_table()->table_size(); 4309 _initial_symbol_table_size = SymbolTable::the_table()->table_size(); 4310 if (process_strings) { 4311 StringTable::clear_parallel_claimed_index(); 4312 } 4313 if (process_symbols) { 4314 SymbolTable::clear_parallel_claimed_index(); 4315 } 4316 } 4317 4318 ~G1StringSymbolTableUnlinkTask() { 4319 guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size, 4320 "claim value %d after unlink less than initial string table size %d", 4321 StringTable::parallel_claimed_index(), _initial_string_table_size); 4322 guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size, 4323 "claim value %d after unlink less than initial symbol table size %d", 4324 SymbolTable::parallel_claimed_index(), _initial_symbol_table_size); 4325 4326 if (G1TraceStringSymbolTableScrubbing) { 4327 gclog_or_tty->print_cr("Cleaned string and symbol table, " 4328 "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, " 4329 "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed", 4330 strings_processed(), strings_removed(), 4331 symbols_processed(), symbols_removed()); 4332 } 4333 } 4334 4335 void work(uint worker_id) { 4336 int strings_processed = 0; 4337 int strings_removed = 0; 4338 int symbols_processed = 0; 4339 int symbols_removed = 0; 4340 if (_process_strings) { 4341 StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed); 4342 Atomic::add(strings_processed, &_strings_processed); 4343 Atomic::add(strings_removed, &_strings_removed); 4344 } 4345 if (_process_symbols) { 4346 SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed); 4347 Atomic::add(symbols_processed, &_symbols_processed); 4348 Atomic::add(symbols_removed, &_symbols_removed); 4349 } 4350 } 4351 4352 size_t strings_processed() const { return (size_t)_strings_processed; } 4353 size_t strings_removed() const { return (size_t)_strings_removed; } 4354 4355 size_t symbols_processed() const { return (size_t)_symbols_processed; } 4356 size_t symbols_removed() const { return (size_t)_symbols_removed; } 4357 }; 4358 4359 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC { 4360 private: 4361 static Monitor* _lock; 4362 4363 BoolObjectClosure* const _is_alive; 4364 const bool _unloading_occurred; 4365 const uint _num_workers; 4366 4367 // Variables used to claim nmethods. 4368 nmethod* _first_nmethod; 4369 volatile nmethod* _claimed_nmethod; 4370 4371 // The list of nmethods that need to be processed by the second pass. 4372 volatile nmethod* _postponed_list; 4373 volatile uint _num_entered_barrier; 4374 4375 public: 4376 G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) : 4377 _is_alive(is_alive), 4378 _unloading_occurred(unloading_occurred), 4379 _num_workers(num_workers), 4380 _first_nmethod(NULL), 4381 _claimed_nmethod(NULL), 4382 _postponed_list(NULL), 4383 _num_entered_barrier(0) 4384 { 4385 nmethod::increase_unloading_clock(); 4386 // Get first alive nmethod 4387 NMethodIterator iter = NMethodIterator(); 4388 if(iter.next_alive()) { 4389 _first_nmethod = iter.method(); 4390 } 4391 _claimed_nmethod = (volatile nmethod*)_first_nmethod; 4392 } 4393 4394 ~G1CodeCacheUnloadingTask() { 4395 CodeCache::verify_clean_inline_caches(); 4396 4397 CodeCache::set_needs_cache_clean(false); 4398 guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be"); 4399 4400 CodeCache::verify_icholder_relocations(); 4401 } 4402 4403 private: 4404 void add_to_postponed_list(nmethod* nm) { 4405 nmethod* old; 4406 do { 4407 old = (nmethod*)_postponed_list; 4408 nm->set_unloading_next(old); 4409 } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old); 4410 } 4411 4412 void clean_nmethod(nmethod* nm) { 4413 bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred); 4414 4415 if (postponed) { 4416 // This nmethod referred to an nmethod that has not been cleaned/unloaded yet. 4417 add_to_postponed_list(nm); 4418 } 4419 4420 // Mark that this thread has been cleaned/unloaded. 4421 // After this call, it will be safe to ask if this nmethod was unloaded or not. 4422 nm->set_unloading_clock(nmethod::global_unloading_clock()); 4423 } 4424 4425 void clean_nmethod_postponed(nmethod* nm) { 4426 nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred); 4427 } 4428 4429 static const int MaxClaimNmethods = 16; 4430 4431 void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) { 4432 nmethod* first; 4433 NMethodIterator last; 4434 4435 do { 4436 *num_claimed_nmethods = 0; 4437 4438 first = (nmethod*)_claimed_nmethod; 4439 last = NMethodIterator(first); 4440 4441 if (first != NULL) { 4442 4443 for (int i = 0; i < MaxClaimNmethods; i++) { 4444 if (!last.next_alive()) { 4445 break; 4446 } 4447 claimed_nmethods[i] = last.method(); 4448 (*num_claimed_nmethods)++; 4449 } 4450 } 4451 4452 } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first); 4453 } 4454 4455 nmethod* claim_postponed_nmethod() { 4456 nmethod* claim; 4457 nmethod* next; 4458 4459 do { 4460 claim = (nmethod*)_postponed_list; 4461 if (claim == NULL) { 4462 return NULL; 4463 } 4464 4465 next = claim->unloading_next(); 4466 4467 } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim); 4468 4469 return claim; 4470 } 4471 4472 public: 4473 // Mark that we're done with the first pass of nmethod cleaning. 4474 void barrier_mark(uint worker_id) { 4475 MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag); 4476 _num_entered_barrier++; 4477 if (_num_entered_barrier == _num_workers) { 4478 ml.notify_all(); 4479 } 4480 } 4481 4482 // See if we have to wait for the other workers to 4483 // finish their first-pass nmethod cleaning work. 4484 void barrier_wait(uint worker_id) { 4485 if (_num_entered_barrier < _num_workers) { 4486 MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag); 4487 while (_num_entered_barrier < _num_workers) { 4488 ml.wait(Mutex::_no_safepoint_check_flag, 0, false); 4489 } 4490 } 4491 } 4492 4493 // Cleaning and unloading of nmethods. Some work has to be postponed 4494 // to the second pass, when we know which nmethods survive. 4495 void work_first_pass(uint worker_id) { 4496 // The first nmethods is claimed by the first worker. 4497 if (worker_id == 0 && _first_nmethod != NULL) { 4498 clean_nmethod(_first_nmethod); 4499 _first_nmethod = NULL; 4500 } 4501 4502 int num_claimed_nmethods; 4503 nmethod* claimed_nmethods[MaxClaimNmethods]; 4504 4505 while (true) { 4506 claim_nmethods(claimed_nmethods, &num_claimed_nmethods); 4507 4508 if (num_claimed_nmethods == 0) { 4509 break; 4510 } 4511 4512 for (int i = 0; i < num_claimed_nmethods; i++) { 4513 clean_nmethod(claimed_nmethods[i]); 4514 } 4515 } 4516 } 4517 4518 void work_second_pass(uint worker_id) { 4519 nmethod* nm; 4520 // Take care of postponed nmethods. 4521 while ((nm = claim_postponed_nmethod()) != NULL) { 4522 clean_nmethod_postponed(nm); 4523 } 4524 } 4525 }; 4526 4527 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never); 4528 4529 class G1KlassCleaningTask : public StackObj { 4530 BoolObjectClosure* _is_alive; 4531 volatile jint _clean_klass_tree_claimed; 4532 ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator; 4533 4534 public: 4535 G1KlassCleaningTask(BoolObjectClosure* is_alive) : 4536 _is_alive(is_alive), 4537 _clean_klass_tree_claimed(0), 4538 _klass_iterator() { 4539 } 4540 4541 private: 4542 bool claim_clean_klass_tree_task() { 4543 if (_clean_klass_tree_claimed) { 4544 return false; 4545 } 4546 4547 return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0; 4548 } 4549 4550 InstanceKlass* claim_next_klass() { 4551 Klass* klass; 4552 do { 4553 klass =_klass_iterator.next_klass(); 4554 } while (klass != NULL && !klass->is_instance_klass()); 4555 4556 // this can be null so don't call InstanceKlass::cast 4557 return static_cast<InstanceKlass*>(klass); 4558 } 4559 4560 public: 4561 4562 void clean_klass(InstanceKlass* ik) { 4563 ik->clean_weak_instanceklass_links(_is_alive); 4564 } 4565 4566 void work() { 4567 ResourceMark rm; 4568 4569 // One worker will clean the subklass/sibling klass tree. 4570 if (claim_clean_klass_tree_task()) { 4571 Klass::clean_subklass_tree(_is_alive); 4572 } 4573 4574 // All workers will help cleaning the classes, 4575 InstanceKlass* klass; 4576 while ((klass = claim_next_klass()) != NULL) { 4577 clean_klass(klass); 4578 } 4579 } 4580 }; 4581 4582 // To minimize the remark pause times, the tasks below are done in parallel. 4583 class G1ParallelCleaningTask : public AbstractGangTask { 4584 private: 4585 G1StringSymbolTableUnlinkTask _string_symbol_task; 4586 G1CodeCacheUnloadingTask _code_cache_task; 4587 G1KlassCleaningTask _klass_cleaning_task; 4588 4589 public: 4590 // The constructor is run in the VMThread. 4591 G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) : 4592 AbstractGangTask("Parallel Cleaning"), 4593 _string_symbol_task(is_alive, process_strings, process_symbols), 4594 _code_cache_task(num_workers, is_alive, unloading_occurred), 4595 _klass_cleaning_task(is_alive) { 4596 } 4597 4598 // The parallel work done by all worker threads. 4599 void work(uint worker_id) { 4600 // Do first pass of code cache cleaning. 4601 _code_cache_task.work_first_pass(worker_id); 4602 4603 // Let the threads mark that the first pass is done. 4604 _code_cache_task.barrier_mark(worker_id); 4605 4606 // Clean the Strings and Symbols. 4607 _string_symbol_task.work(worker_id); 4608 4609 // Wait for all workers to finish the first code cache cleaning pass. 4610 _code_cache_task.barrier_wait(worker_id); 4611 4612 // Do the second code cache cleaning work, which realize on 4613 // the liveness information gathered during the first pass. 4614 _code_cache_task.work_second_pass(worker_id); 4615 4616 // Clean all klasses that were not unloaded. 4617 _klass_cleaning_task.work(); 4618 } 4619 }; 4620 4621 4622 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive, 4623 bool process_strings, 4624 bool process_symbols, 4625 bool class_unloading_occurred) { 4626 uint n_workers = workers()->active_workers(); 4627 4628 G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, 4629 n_workers, class_unloading_occurred); 4630 workers()->run_task(&g1_unlink_task); 4631 } 4632 4633 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive, 4634 bool process_strings, bool process_symbols) { 4635 { 4636 G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols); 4637 workers()->run_task(&g1_unlink_task); 4638 } 4639 4640 if (G1StringDedup::is_enabled()) { 4641 G1StringDedup::unlink(is_alive); 4642 } 4643 } 4644 4645 class G1RedirtyLoggedCardsTask : public AbstractGangTask { 4646 private: 4647 DirtyCardQueueSet* _queue; 4648 public: 4649 G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { } 4650 4651 virtual void work(uint worker_id) { 4652 G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times(); 4653 G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id); 4654 4655 RedirtyLoggedCardTableEntryClosure cl; 4656 _queue->par_apply_closure_to_all_completed_buffers(&cl); 4657 4658 phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed()); 4659 } 4660 }; 4661 4662 void G1CollectedHeap::redirty_logged_cards() { 4663 double redirty_logged_cards_start = os::elapsedTime(); 4664 4665 G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set()); 4666 dirty_card_queue_set().reset_for_par_iteration(); 4667 workers()->run_task(&redirty_task); 4668 4669 DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set(); 4670 dcq.merge_bufferlists(&dirty_card_queue_set()); 4671 assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed"); 4672 4673 g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0); 4674 } 4675 4676 // Weak Reference Processing support 4677 4678 // An always "is_alive" closure that is used to preserve referents. 4679 // If the object is non-null then it's alive. Used in the preservation 4680 // of referent objects that are pointed to by reference objects 4681 // discovered by the CM ref processor. 4682 class G1AlwaysAliveClosure: public BoolObjectClosure { 4683 G1CollectedHeap* _g1; 4684 public: 4685 G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 4686 bool do_object_b(oop p) { 4687 if (p != NULL) { 4688 return true; 4689 } 4690 return false; 4691 } 4692 }; 4693 4694 bool G1STWIsAliveClosure::do_object_b(oop p) { 4695 // An object is reachable if it is outside the collection set, 4696 // or is inside and copied. 4697 return !_g1->is_in_cset(p) || p->is_forwarded(); 4698 } 4699 4700 // Non Copying Keep Alive closure 4701 class G1KeepAliveClosure: public OopClosure { 4702 G1CollectedHeap* _g1; 4703 public: 4704 G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 4705 void do_oop(narrowOop* p) { guarantee(false, "Not needed"); } 4706 void do_oop(oop* p) { 4707 oop obj = *p; 4708 assert(obj != NULL, "the caller should have filtered out NULL values"); 4709 4710 const InCSetState cset_state = _g1->in_cset_state(obj); 4711 if (!cset_state.is_in_cset_or_humongous()) { 4712 return; 4713 } 4714 if (cset_state.is_in_cset()) { 4715 assert( obj->is_forwarded(), "invariant" ); 4716 *p = obj->forwardee(); 4717 } else { 4718 assert(!obj->is_forwarded(), "invariant" ); 4719 assert(cset_state.is_humongous(), 4720 "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()); 4721 _g1->set_humongous_is_live(obj); 4722 } 4723 } 4724 }; 4725 4726 // Copying Keep Alive closure - can be called from both 4727 // serial and parallel code as long as different worker 4728 // threads utilize different G1ParScanThreadState instances 4729 // and different queues. 4730 4731 class G1CopyingKeepAliveClosure: public OopClosure { 4732 G1CollectedHeap* _g1h; 4733 OopClosure* _copy_non_heap_obj_cl; 4734 G1ParScanThreadState* _par_scan_state; 4735 4736 public: 4737 G1CopyingKeepAliveClosure(G1CollectedHeap* g1h, 4738 OopClosure* non_heap_obj_cl, 4739 G1ParScanThreadState* pss): 4740 _g1h(g1h), 4741 _copy_non_heap_obj_cl(non_heap_obj_cl), 4742 _par_scan_state(pss) 4743 {} 4744 4745 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 4746 virtual void do_oop( oop* p) { do_oop_work(p); } 4747 4748 template <class T> void do_oop_work(T* p) { 4749 oop obj = oopDesc::load_decode_heap_oop(p); 4750 4751 if (_g1h->is_in_cset_or_humongous(obj)) { 4752 // If the referent object has been forwarded (either copied 4753 // to a new location or to itself in the event of an 4754 // evacuation failure) then we need to update the reference 4755 // field and, if both reference and referent are in the G1 4756 // heap, update the RSet for the referent. 4757 // 4758 // If the referent has not been forwarded then we have to keep 4759 // it alive by policy. Therefore we have copy the referent. 4760 // 4761 // If the reference field is in the G1 heap then we can push 4762 // on the PSS queue. When the queue is drained (after each 4763 // phase of reference processing) the object and it's followers 4764 // will be copied, the reference field set to point to the 4765 // new location, and the RSet updated. Otherwise we need to 4766 // use the the non-heap or metadata closures directly to copy 4767 // the referent object and update the pointer, while avoiding 4768 // updating the RSet. 4769 4770 if (_g1h->is_in_g1_reserved(p)) { 4771 _par_scan_state->push_on_queue(p); 4772 } else { 4773 assert(!Metaspace::contains((const void*)p), 4774 "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)); 4775 _copy_non_heap_obj_cl->do_oop(p); 4776 } 4777 } 4778 } 4779 }; 4780 4781 // Serial drain queue closure. Called as the 'complete_gc' 4782 // closure for each discovered list in some of the 4783 // reference processing phases. 4784 4785 class G1STWDrainQueueClosure: public VoidClosure { 4786 protected: 4787 G1CollectedHeap* _g1h; 4788 G1ParScanThreadState* _par_scan_state; 4789 4790 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 4791 4792 public: 4793 G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) : 4794 _g1h(g1h), 4795 _par_scan_state(pss) 4796 { } 4797 4798 void do_void() { 4799 G1ParScanThreadState* const pss = par_scan_state(); 4800 pss->trim_queue(); 4801 } 4802 }; 4803 4804 // Parallel Reference Processing closures 4805 4806 // Implementation of AbstractRefProcTaskExecutor for parallel reference 4807 // processing during G1 evacuation pauses. 4808 4809 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor { 4810 private: 4811 G1CollectedHeap* _g1h; 4812 G1ParScanThreadStateSet* _pss; 4813 RefToScanQueueSet* _queues; 4814 WorkGang* _workers; 4815 uint _active_workers; 4816 4817 public: 4818 G1STWRefProcTaskExecutor(G1CollectedHeap* g1h, 4819 G1ParScanThreadStateSet* per_thread_states, 4820 WorkGang* workers, 4821 RefToScanQueueSet *task_queues, 4822 uint n_workers) : 4823 _g1h(g1h), 4824 _pss(per_thread_states), 4825 _queues(task_queues), 4826 _workers(workers), 4827 _active_workers(n_workers) 4828 { 4829 assert(n_workers > 0, "shouldn't call this otherwise"); 4830 } 4831 4832 // Executes the given task using concurrent marking worker threads. 4833 virtual void execute(ProcessTask& task); 4834 virtual void execute(EnqueueTask& task); 4835 }; 4836 4837 // Gang task for possibly parallel reference processing 4838 4839 class G1STWRefProcTaskProxy: public AbstractGangTask { 4840 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; 4841 ProcessTask& _proc_task; 4842 G1CollectedHeap* _g1h; 4843 G1ParScanThreadStateSet* _pss; 4844 RefToScanQueueSet* _task_queues; 4845 ParallelTaskTerminator* _terminator; 4846 4847 public: 4848 G1STWRefProcTaskProxy(ProcessTask& proc_task, 4849 G1CollectedHeap* g1h, 4850 G1ParScanThreadStateSet* per_thread_states, 4851 RefToScanQueueSet *task_queues, 4852 ParallelTaskTerminator* terminator) : 4853 AbstractGangTask("Process reference objects in parallel"), 4854 _proc_task(proc_task), 4855 _g1h(g1h), 4856 _pss(per_thread_states), 4857 _task_queues(task_queues), 4858 _terminator(terminator) 4859 {} 4860 4861 virtual void work(uint worker_id) { 4862 // The reference processing task executed by a single worker. 4863 ResourceMark rm; 4864 HandleMark hm; 4865 4866 G1STWIsAliveClosure is_alive(_g1h); 4867 4868 G1ParScanThreadState* pss = _pss->state_for_worker(worker_id); 4869 pss->set_ref_processor(NULL); 4870 4871 // Keep alive closure. 4872 G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss); 4873 4874 // Complete GC closure 4875 G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator); 4876 4877 // Call the reference processing task's work routine. 4878 _proc_task.work(worker_id, is_alive, keep_alive, drain_queue); 4879 4880 // Note we cannot assert that the refs array is empty here as not all 4881 // of the processing tasks (specifically phase2 - pp2_work) execute 4882 // the complete_gc closure (which ordinarily would drain the queue) so 4883 // the queue may not be empty. 4884 } 4885 }; 4886 4887 // Driver routine for parallel reference processing. 4888 // Creates an instance of the ref processing gang 4889 // task and has the worker threads execute it. 4890 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) { 4891 assert(_workers != NULL, "Need parallel worker threads."); 4892 4893 ParallelTaskTerminator terminator(_active_workers, _queues); 4894 G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator); 4895 4896 _workers->run_task(&proc_task_proxy); 4897 } 4898 4899 // Gang task for parallel reference enqueueing. 4900 4901 class G1STWRefEnqueueTaskProxy: public AbstractGangTask { 4902 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask; 4903 EnqueueTask& _enq_task; 4904 4905 public: 4906 G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) : 4907 AbstractGangTask("Enqueue reference objects in parallel"), 4908 _enq_task(enq_task) 4909 { } 4910 4911 virtual void work(uint worker_id) { 4912 _enq_task.work(worker_id); 4913 } 4914 }; 4915 4916 // Driver routine for parallel reference enqueueing. 4917 // Creates an instance of the ref enqueueing gang 4918 // task and has the worker threads execute it. 4919 4920 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) { 4921 assert(_workers != NULL, "Need parallel worker threads."); 4922 4923 G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task); 4924 4925 _workers->run_task(&enq_task_proxy); 4926 } 4927 4928 // End of weak reference support closures 4929 4930 // Abstract task used to preserve (i.e. copy) any referent objects 4931 // that are in the collection set and are pointed to by reference 4932 // objects discovered by the CM ref processor. 4933 4934 class G1ParPreserveCMReferentsTask: public AbstractGangTask { 4935 protected: 4936 G1CollectedHeap* _g1h; 4937 G1ParScanThreadStateSet* _pss; 4938 RefToScanQueueSet* _queues; 4939 ParallelTaskTerminator _terminator; 4940 uint _n_workers; 4941 4942 public: 4943 G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) : 4944 AbstractGangTask("ParPreserveCMReferents"), 4945 _g1h(g1h), 4946 _pss(per_thread_states), 4947 _queues(task_queues), 4948 _terminator(workers, _queues), 4949 _n_workers(workers) 4950 { } 4951 4952 void work(uint worker_id) { 4953 ResourceMark rm; 4954 HandleMark hm; 4955 4956 G1ParScanThreadState* pss = _pss->state_for_worker(worker_id); 4957 pss->set_ref_processor(NULL); 4958 assert(pss->queue_is_empty(), "both queue and overflow should be empty"); 4959 4960 // Is alive closure 4961 G1AlwaysAliveClosure always_alive(_g1h); 4962 4963 // Copying keep alive closure. Applied to referent objects that need 4964 // to be copied. 4965 G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss); 4966 4967 ReferenceProcessor* rp = _g1h->ref_processor_cm(); 4968 4969 uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q(); 4970 uint stride = MIN2(MAX2(_n_workers, 1U), limit); 4971 4972 // limit is set using max_num_q() - which was set using ParallelGCThreads. 4973 // So this must be true - but assert just in case someone decides to 4974 // change the worker ids. 4975 assert(worker_id < limit, "sanity"); 4976 assert(!rp->discovery_is_atomic(), "check this code"); 4977 4978 // Select discovered lists [i, i+stride, i+2*stride,...,limit) 4979 for (uint idx = worker_id; idx < limit; idx += stride) { 4980 DiscoveredList& ref_list = rp->discovered_refs()[idx]; 4981 4982 DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive); 4983 while (iter.has_next()) { 4984 // Since discovery is not atomic for the CM ref processor, we 4985 // can see some null referent objects. 4986 iter.load_ptrs(DEBUG_ONLY(true)); 4987 oop ref = iter.obj(); 4988 4989 // This will filter nulls. 4990 if (iter.is_referent_alive()) { 4991 iter.make_referent_alive(); 4992 } 4993 iter.move_to_next(); 4994 } 4995 } 4996 4997 // Drain the queue - which may cause stealing 4998 G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator); 4999 drain_queue.do_void(); 5000 // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure 5001 assert(pss->queue_is_empty(), "should be"); 5002 } 5003 }; 5004 5005 // Weak Reference processing during an evacuation pause (part 1). 5006 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) { 5007 double ref_proc_start = os::elapsedTime(); 5008 5009 ReferenceProcessor* rp = _ref_processor_stw; 5010 assert(rp->discovery_enabled(), "should have been enabled"); 5011 5012 // Any reference objects, in the collection set, that were 'discovered' 5013 // by the CM ref processor should have already been copied (either by 5014 // applying the external root copy closure to the discovered lists, or 5015 // by following an RSet entry). 5016 // 5017 // But some of the referents, that are in the collection set, that these 5018 // reference objects point to may not have been copied: the STW ref 5019 // processor would have seen that the reference object had already 5020 // been 'discovered' and would have skipped discovering the reference, 5021 // but would not have treated the reference object as a regular oop. 5022 // As a result the copy closure would not have been applied to the 5023 // referent object. 5024 // 5025 // We need to explicitly copy these referent objects - the references 5026 // will be processed at the end of remarking. 5027 // 5028 // We also need to do this copying before we process the reference 5029 // objects discovered by the STW ref processor in case one of these 5030 // referents points to another object which is also referenced by an 5031 // object discovered by the STW ref processor. 5032 5033 uint no_of_gc_workers = workers()->active_workers(); 5034 5035 G1ParPreserveCMReferentsTask keep_cm_referents(this, 5036 per_thread_states, 5037 no_of_gc_workers, 5038 _task_queues); 5039 5040 workers()->run_task(&keep_cm_referents); 5041 5042 // Closure to test whether a referent is alive. 5043 G1STWIsAliveClosure is_alive(this); 5044 5045 // Even when parallel reference processing is enabled, the processing 5046 // of JNI refs is serial and performed serially by the current thread 5047 // rather than by a worker. The following PSS will be used for processing 5048 // JNI refs. 5049 5050 // Use only a single queue for this PSS. 5051 G1ParScanThreadState* pss = per_thread_states->state_for_worker(0); 5052 pss->set_ref_processor(NULL); 5053 assert(pss->queue_is_empty(), "pre-condition"); 5054 5055 // Keep alive closure. 5056 G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss); 5057 5058 // Serial Complete GC closure 5059 G1STWDrainQueueClosure drain_queue(this, pss); 5060 5061 // Setup the soft refs policy... 5062 rp->setup_policy(false); 5063 5064 ReferenceProcessorStats stats; 5065 if (!rp->processing_is_mt()) { 5066 // Serial reference processing... 5067 stats = rp->process_discovered_references(&is_alive, 5068 &keep_alive, 5069 &drain_queue, 5070 NULL, 5071 _gc_timer_stw); 5072 } else { 5073 // Parallel reference processing 5074 assert(rp->num_q() == no_of_gc_workers, "sanity"); 5075 assert(no_of_gc_workers <= rp->max_num_q(), "sanity"); 5076 5077 G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers); 5078 stats = rp->process_discovered_references(&is_alive, 5079 &keep_alive, 5080 &drain_queue, 5081 &par_task_executor, 5082 _gc_timer_stw); 5083 } 5084 5085 _gc_tracer_stw->report_gc_reference_stats(stats); 5086 5087 // We have completed copying any necessary live referent objects. 5088 assert(pss->queue_is_empty(), "both queue and overflow should be empty"); 5089 5090 double ref_proc_time = os::elapsedTime() - ref_proc_start; 5091 g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0); 5092 } 5093 5094 // Weak Reference processing during an evacuation pause (part 2). 5095 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) { 5096 double ref_enq_start = os::elapsedTime(); 5097 5098 ReferenceProcessor* rp = _ref_processor_stw; 5099 assert(!rp->discovery_enabled(), "should have been disabled as part of processing"); 5100 5101 // Now enqueue any remaining on the discovered lists on to 5102 // the pending list. 5103 if (!rp->processing_is_mt()) { 5104 // Serial reference processing... 5105 rp->enqueue_discovered_references(); 5106 } else { 5107 // Parallel reference enqueueing 5108 5109 uint n_workers = workers()->active_workers(); 5110 5111 assert(rp->num_q() == n_workers, "sanity"); 5112 assert(n_workers <= rp->max_num_q(), "sanity"); 5113 5114 G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers); 5115 rp->enqueue_discovered_references(&par_task_executor); 5116 } 5117 5118 rp->verify_no_references_recorded(); 5119 assert(!rp->discovery_enabled(), "should have been disabled"); 5120 5121 // FIXME 5122 // CM's reference processing also cleans up the string and symbol tables. 5123 // Should we do that here also? We could, but it is a serial operation 5124 // and could significantly increase the pause time. 5125 5126 double ref_enq_time = os::elapsedTime() - ref_enq_start; 5127 g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0); 5128 } 5129 5130 void G1CollectedHeap::pre_evacuate_collection_set() { 5131 _expand_heap_after_alloc_failure = true; 5132 _evacuation_failed = false; 5133 5134 // Disable the hot card cache. 5135 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 5136 hot_card_cache->reset_hot_cache_claimed_index(); 5137 hot_card_cache->set_use_cache(false); 5138 5139 } 5140 5141 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) { 5142 g1_rem_set()->prepare_for_oops_into_collection_set_do(); 5143 5144 // Should G1EvacuationFailureALot be in effect for this GC? 5145 NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();) 5146 5147 assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty"); 5148 double start_par_time_sec = os::elapsedTime(); 5149 double end_par_time_sec; 5150 5151 { 5152 const uint n_workers = workers()->active_workers(); 5153 G1RootProcessor root_processor(this, n_workers); 5154 G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers); 5155 // InitialMark needs claim bits to keep track of the marked-through CLDs. 5156 if (collector_state()->during_initial_mark_pause()) { 5157 ClassLoaderDataGraph::clear_claimed_marks(); 5158 } 5159 5160 // The individual threads will set their evac-failure closures. 5161 if (PrintTerminationStats) { 5162 print_termination_stats_hdr(gclog_or_tty); 5163 } 5164 5165 workers()->run_task(&g1_par_task); 5166 end_par_time_sec = os::elapsedTime(); 5167 5168 // Closing the inner scope will execute the destructor 5169 // for the G1RootProcessor object. We record the current 5170 // elapsed time before closing the scope so that time 5171 // taken for the destructor is NOT included in the 5172 // reported parallel time. 5173 } 5174 5175 G1GCPhaseTimes* phase_times = g1_policy()->phase_times(); 5176 5177 double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0; 5178 phase_times->record_par_time(par_time_ms); 5179 5180 double code_root_fixup_time_ms = 5181 (os::elapsedTime() - end_par_time_sec) * 1000.0; 5182 phase_times->record_code_root_fixup_time(code_root_fixup_time_ms); 5183 5184 // Process any discovered reference objects - we have 5185 // to do this _before_ we retire the GC alloc regions 5186 // as we may have to copy some 'reachable' referent 5187 // objects (and their reachable sub-graphs) that were 5188 // not copied during the pause. 5189 process_discovered_references(per_thread_states); 5190 5191 if (G1StringDedup::is_enabled()) { 5192 double fixup_start = os::elapsedTime(); 5193 5194 G1STWIsAliveClosure is_alive(this); 5195 G1KeepAliveClosure keep_alive(this); 5196 G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times); 5197 5198 double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0; 5199 phase_times->record_string_dedup_fixup_time(fixup_time_ms); 5200 } 5201 5202 g1_rem_set()->cleanup_after_oops_into_collection_set_do(); 5203 5204 if (evacuation_failed()) { 5205 remove_self_forwarding_pointers(); 5206 5207 // Reset the G1EvacuationFailureALot counters and flags 5208 // Note: the values are reset only when an actual 5209 // evacuation failure occurs. 5210 NOT_PRODUCT(reset_evacuation_should_fail();) 5211 } 5212 5213 // Enqueue any remaining references remaining on the STW 5214 // reference processor's discovered lists. We need to do 5215 // this after the card table is cleaned (and verified) as 5216 // the act of enqueueing entries on to the pending list 5217 // will log these updates (and dirty their associated 5218 // cards). We need these updates logged to update any 5219 // RSets. 5220 enqueue_discovered_references(per_thread_states); 5221 } 5222 5223 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) { 5224 _allocator->release_gc_alloc_regions(evacuation_info); 5225 5226 per_thread_states->flush(); 5227 5228 record_obj_copy_mem_stats(); 5229 5230 _survivor_evac_stats.adjust_desired_plab_sz(); 5231 _old_evac_stats.adjust_desired_plab_sz(); 5232 5233 // Reset and re-enable the hot card cache. 5234 // Note the counts for the cards in the regions in the 5235 // collection set are reset when the collection set is freed. 5236 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 5237 hot_card_cache->reset_hot_cache(); 5238 hot_card_cache->set_use_cache(true); 5239 5240 purge_code_root_memory(); 5241 5242 redirty_logged_cards(); 5243 #if defined(COMPILER2) || INCLUDE_JVMCI 5244 DerivedPointerTable::update_pointers(); 5245 #endif 5246 } 5247 5248 void G1CollectedHeap::record_obj_copy_mem_stats() { 5249 _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats), 5250 create_g1_evac_summary(&_old_evac_stats)); 5251 } 5252 5253 void G1CollectedHeap::free_region(HeapRegion* hr, 5254 FreeRegionList* free_list, 5255 bool par, 5256 bool locked) { 5257 assert(!hr->is_free(), "the region should not be free"); 5258 assert(!hr->is_empty(), "the region should not be empty"); 5259 assert(_hrm.is_available(hr->hrm_index()), "region should be committed"); 5260 assert(free_list != NULL, "pre-condition"); 5261 5262 if (G1VerifyBitmaps) { 5263 MemRegion mr(hr->bottom(), hr->end()); 5264 concurrent_mark()->clearRangePrevBitmap(mr); 5265 } 5266 5267 // Clear the card counts for this region. 5268 // Note: we only need to do this if the region is not young 5269 // (since we don't refine cards in young regions). 5270 if (!hr->is_young()) { 5271 _cg1r->hot_card_cache()->reset_card_counts(hr); 5272 } 5273 hr->hr_clear(par, true /* clear_space */, locked /* locked */); 5274 free_list->add_ordered(hr); 5275 } 5276 5277 void G1CollectedHeap::free_humongous_region(HeapRegion* hr, 5278 FreeRegionList* free_list, 5279 bool par) { 5280 assert(hr->is_humongous(), "this is only for humongous regions"); 5281 assert(free_list != NULL, "pre-condition"); 5282 hr->clear_humongous(); 5283 free_region(hr, free_list, par); 5284 } 5285 5286 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, 5287 const HeapRegionSetCount& humongous_regions_removed) { 5288 if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) { 5289 MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag); 5290 _old_set.bulk_remove(old_regions_removed); 5291 _humongous_set.bulk_remove(humongous_regions_removed); 5292 } 5293 5294 } 5295 5296 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) { 5297 assert(list != NULL, "list can't be null"); 5298 if (!list->is_empty()) { 5299 MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag); 5300 _hrm.insert_list_into_free_list(list); 5301 } 5302 } 5303 5304 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) { 5305 decrease_used(bytes); 5306 } 5307 5308 class G1ParCleanupCTTask : public AbstractGangTask { 5309 G1SATBCardTableModRefBS* _ct_bs; 5310 G1CollectedHeap* _g1h; 5311 HeapRegion* volatile _su_head; 5312 public: 5313 G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs, 5314 G1CollectedHeap* g1h) : 5315 AbstractGangTask("G1 Par Cleanup CT Task"), 5316 _ct_bs(ct_bs), _g1h(g1h) { } 5317 5318 void work(uint worker_id) { 5319 HeapRegion* r; 5320 while (r = _g1h->pop_dirty_cards_region()) { 5321 clear_cards(r); 5322 } 5323 } 5324 5325 void clear_cards(HeapRegion* r) { 5326 // Cards of the survivors should have already been dirtied. 5327 if (!r->is_survivor()) { 5328 _ct_bs->clear(MemRegion(r->bottom(), r->end())); 5329 } 5330 } 5331 }; 5332 5333 #ifndef PRODUCT 5334 class G1VerifyCardTableCleanup: public HeapRegionClosure { 5335 G1CollectedHeap* _g1h; 5336 G1SATBCardTableModRefBS* _ct_bs; 5337 public: 5338 G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs) 5339 : _g1h(g1h), _ct_bs(ct_bs) { } 5340 virtual bool doHeapRegion(HeapRegion* r) { 5341 if (r->is_survivor()) { 5342 _g1h->verify_dirty_region(r); 5343 } else { 5344 _g1h->verify_not_dirty_region(r); 5345 } 5346 return false; 5347 } 5348 }; 5349 5350 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) { 5351 // All of the region should be clean. 5352 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 5353 MemRegion mr(hr->bottom(), hr->end()); 5354 ct_bs->verify_not_dirty_region(mr); 5355 } 5356 5357 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) { 5358 // We cannot guarantee that [bottom(),end()] is dirty. Threads 5359 // dirty allocated blocks as they allocate them. The thread that 5360 // retires each region and replaces it with a new one will do a 5361 // maximal allocation to fill in [pre_dummy_top(),end()] but will 5362 // not dirty that area (one less thing to have to do while holding 5363 // a lock). So we can only verify that [bottom(),pre_dummy_top()] 5364 // is dirty. 5365 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 5366 MemRegion mr(hr->bottom(), hr->pre_dummy_top()); 5367 if (hr->is_young()) { 5368 ct_bs->verify_g1_young_region(mr); 5369 } else { 5370 ct_bs->verify_dirty_region(mr); 5371 } 5372 } 5373 5374 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) { 5375 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 5376 for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) { 5377 verify_dirty_region(hr); 5378 } 5379 } 5380 5381 void G1CollectedHeap::verify_dirty_young_regions() { 5382 verify_dirty_young_list(_young_list->first_region()); 5383 } 5384 5385 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap, 5386 HeapWord* tams, HeapWord* end) { 5387 guarantee(tams <= end, 5388 "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end)); 5389 HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end); 5390 if (result < end) { 5391 gclog_or_tty->cr(); 5392 gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT, 5393 bitmap_name, p2i(result)); 5394 gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT, 5395 bitmap_name, p2i(tams), p2i(end)); 5396 return false; 5397 } 5398 return true; 5399 } 5400 5401 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) { 5402 CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap(); 5403 CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap(); 5404 5405 HeapWord* bottom = hr->bottom(); 5406 HeapWord* ptams = hr->prev_top_at_mark_start(); 5407 HeapWord* ntams = hr->next_top_at_mark_start(); 5408 HeapWord* end = hr->end(); 5409 5410 bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end); 5411 5412 bool res_n = true; 5413 // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window 5414 // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap 5415 // if we happen to be in that state. 5416 if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) { 5417 res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end); 5418 } 5419 if (!res_p || !res_n) { 5420 gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT, 5421 HR_FORMAT_PARAMS(hr)); 5422 gclog_or_tty->print_cr("#### Caller: %s", caller); 5423 return false; 5424 } 5425 return true; 5426 } 5427 5428 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) { 5429 if (!G1VerifyBitmaps) return; 5430 5431 guarantee(verify_bitmaps(caller, hr), "bitmap verification"); 5432 } 5433 5434 class G1VerifyBitmapClosure : public HeapRegionClosure { 5435 private: 5436 const char* _caller; 5437 G1CollectedHeap* _g1h; 5438 bool _failures; 5439 5440 public: 5441 G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) : 5442 _caller(caller), _g1h(g1h), _failures(false) { } 5443 5444 bool failures() { return _failures; } 5445 5446 virtual bool doHeapRegion(HeapRegion* hr) { 5447 bool result = _g1h->verify_bitmaps(_caller, hr); 5448 if (!result) { 5449 _failures = true; 5450 } 5451 return false; 5452 } 5453 }; 5454 5455 void G1CollectedHeap::check_bitmaps(const char* caller) { 5456 if (!G1VerifyBitmaps) return; 5457 5458 G1VerifyBitmapClosure cl(caller, this); 5459 heap_region_iterate(&cl); 5460 guarantee(!cl.failures(), "bitmap verification"); 5461 } 5462 5463 class G1CheckCSetFastTableClosure : public HeapRegionClosure { 5464 private: 5465 bool _failures; 5466 public: 5467 G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { } 5468 5469 virtual bool doHeapRegion(HeapRegion* hr) { 5470 uint i = hr->hrm_index(); 5471 InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i); 5472 if (hr->is_humongous()) { 5473 if (hr->in_collection_set()) { 5474 gclog_or_tty->print_cr("\n## humongous region %u in CSet", i); 5475 _failures = true; 5476 return true; 5477 } 5478 if (cset_state.is_in_cset()) { 5479 gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i); 5480 _failures = true; 5481 return true; 5482 } 5483 if (hr->is_continues_humongous() && cset_state.is_humongous()) { 5484 gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i); 5485 _failures = true; 5486 return true; 5487 } 5488 } else { 5489 if (cset_state.is_humongous()) { 5490 gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i); 5491 _failures = true; 5492 return true; 5493 } 5494 if (hr->in_collection_set() != cset_state.is_in_cset()) { 5495 gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u", 5496 hr->in_collection_set(), cset_state.value(), i); 5497 _failures = true; 5498 return true; 5499 } 5500 if (cset_state.is_in_cset()) { 5501 if (hr->is_young() != (cset_state.is_young())) { 5502 gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u", 5503 hr->is_young(), cset_state.value(), i); 5504 _failures = true; 5505 return true; 5506 } 5507 if (hr->is_old() != (cset_state.is_old())) { 5508 gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u", 5509 hr->is_old(), cset_state.value(), i); 5510 _failures = true; 5511 return true; 5512 } 5513 } 5514 } 5515 return false; 5516 } 5517 5518 bool failures() const { return _failures; } 5519 }; 5520 5521 bool G1CollectedHeap::check_cset_fast_test() { 5522 G1CheckCSetFastTableClosure cl; 5523 _hrm.iterate(&cl); 5524 return !cl.failures(); 5525 } 5526 #endif // PRODUCT 5527 5528 void G1CollectedHeap::cleanUpCardTable() { 5529 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 5530 double start = os::elapsedTime(); 5531 5532 { 5533 // Iterate over the dirty cards region list. 5534 G1ParCleanupCTTask cleanup_task(ct_bs, this); 5535 5536 workers()->run_task(&cleanup_task); 5537 #ifndef PRODUCT 5538 if (G1VerifyCTCleanup || VerifyAfterGC) { 5539 G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs); 5540 heap_region_iterate(&cleanup_verifier); 5541 } 5542 #endif 5543 } 5544 5545 double elapsed = os::elapsedTime() - start; 5546 g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0); 5547 } 5548 5549 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) { 5550 size_t pre_used = 0; 5551 FreeRegionList local_free_list("Local List for CSet Freeing"); 5552 5553 double young_time_ms = 0.0; 5554 double non_young_time_ms = 0.0; 5555 5556 // Since the collection set is a superset of the the young list, 5557 // all we need to do to clear the young list is clear its 5558 // head and length, and unlink any young regions in the code below 5559 _young_list->clear(); 5560 5561 G1CollectorPolicy* policy = g1_policy(); 5562 5563 double start_sec = os::elapsedTime(); 5564 bool non_young = true; 5565 5566 HeapRegion* cur = cs_head; 5567 int age_bound = -1; 5568 size_t rs_lengths = 0; 5569 5570 while (cur != NULL) { 5571 assert(!is_on_master_free_list(cur), "sanity"); 5572 if (non_young) { 5573 if (cur->is_young()) { 5574 double end_sec = os::elapsedTime(); 5575 double elapsed_ms = (end_sec - start_sec) * 1000.0; 5576 non_young_time_ms += elapsed_ms; 5577 5578 start_sec = os::elapsedTime(); 5579 non_young = false; 5580 } 5581 } else { 5582 if (!cur->is_young()) { 5583 double end_sec = os::elapsedTime(); 5584 double elapsed_ms = (end_sec - start_sec) * 1000.0; 5585 young_time_ms += elapsed_ms; 5586 5587 start_sec = os::elapsedTime(); 5588 non_young = true; 5589 } 5590 } 5591 5592 rs_lengths += cur->rem_set()->occupied_locked(); 5593 5594 HeapRegion* next = cur->next_in_collection_set(); 5595 assert(cur->in_collection_set(), "bad CS"); 5596 cur->set_next_in_collection_set(NULL); 5597 clear_in_cset(cur); 5598 5599 if (cur->is_young()) { 5600 int index = cur->young_index_in_cset(); 5601 assert(index != -1, "invariant"); 5602 assert((uint) index < policy->young_cset_region_length(), "invariant"); 5603 size_t words_survived = surviving_young_words[index]; 5604 cur->record_surv_words_in_group(words_survived); 5605 5606 // At this point the we have 'popped' cur from the collection set 5607 // (linked via next_in_collection_set()) but it is still in the 5608 // young list (linked via next_young_region()). Clear the 5609 // _next_young_region field. 5610 cur->set_next_young_region(NULL); 5611 } else { 5612 int index = cur->young_index_in_cset(); 5613 assert(index == -1, "invariant"); 5614 } 5615 5616 assert( (cur->is_young() && cur->young_index_in_cset() > -1) || 5617 (!cur->is_young() && cur->young_index_in_cset() == -1), 5618 "invariant" ); 5619 5620 if (!cur->evacuation_failed()) { 5621 MemRegion used_mr = cur->used_region(); 5622 5623 // And the region is empty. 5624 assert(!used_mr.is_empty(), "Should not have empty regions in a CS."); 5625 pre_used += cur->used(); 5626 free_region(cur, &local_free_list, false /* par */, true /* locked */); 5627 } else { 5628 cur->uninstall_surv_rate_group(); 5629 if (cur->is_young()) { 5630 cur->set_young_index_in_cset(-1); 5631 } 5632 cur->set_evacuation_failed(false); 5633 // The region is now considered to be old. 5634 cur->set_old(); 5635 // Do some allocation statistics accounting. Regions that failed evacuation 5636 // are always made old, so there is no need to update anything in the young 5637 // gen statistics, but we need to update old gen statistics. 5638 size_t used_words = cur->marked_bytes() / HeapWordSize; 5639 _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words); 5640 _old_set.add(cur); 5641 evacuation_info.increment_collectionset_used_after(cur->used()); 5642 } 5643 cur = next; 5644 } 5645 5646 evacuation_info.set_regions_freed(local_free_list.length()); 5647 policy->record_max_rs_lengths(rs_lengths); 5648 policy->cset_regions_freed(); 5649 5650 double end_sec = os::elapsedTime(); 5651 double elapsed_ms = (end_sec - start_sec) * 1000.0; 5652 5653 if (non_young) { 5654 non_young_time_ms += elapsed_ms; 5655 } else { 5656 young_time_ms += elapsed_ms; 5657 } 5658 5659 prepend_to_freelist(&local_free_list); 5660 decrement_summary_bytes(pre_used); 5661 policy->phase_times()->record_young_free_cset_time_ms(young_time_ms); 5662 policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms); 5663 } 5664 5665 class G1FreeHumongousRegionClosure : public HeapRegionClosure { 5666 private: 5667 FreeRegionList* _free_region_list; 5668 HeapRegionSet* _proxy_set; 5669 HeapRegionSetCount _humongous_regions_removed; 5670 size_t _freed_bytes; 5671 public: 5672 5673 G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) : 5674 _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) { 5675 } 5676 5677 virtual bool doHeapRegion(HeapRegion* r) { 5678 if (!r->is_starts_humongous()) { 5679 return false; 5680 } 5681 5682 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 5683 5684 oop obj = (oop)r->bottom(); 5685 CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap(); 5686 5687 // The following checks whether the humongous object is live are sufficient. 5688 // The main additional check (in addition to having a reference from the roots 5689 // or the young gen) is whether the humongous object has a remembered set entry. 5690 // 5691 // A humongous object cannot be live if there is no remembered set for it 5692 // because: 5693 // - there can be no references from within humongous starts regions referencing 5694 // the object because we never allocate other objects into them. 5695 // (I.e. there are no intra-region references that may be missed by the 5696 // remembered set) 5697 // - as soon there is a remembered set entry to the humongous starts region 5698 // (i.e. it has "escaped" to an old object) this remembered set entry will stay 5699 // until the end of a concurrent mark. 5700 // 5701 // It is not required to check whether the object has been found dead by marking 5702 // or not, in fact it would prevent reclamation within a concurrent cycle, as 5703 // all objects allocated during that time are considered live. 5704 // SATB marking is even more conservative than the remembered set. 5705 // So if at this point in the collection there is no remembered set entry, 5706 // nobody has a reference to it. 5707 // At the start of collection we flush all refinement logs, and remembered sets 5708 // are completely up-to-date wrt to references to the humongous object. 5709 // 5710 // Other implementation considerations: 5711 // - never consider object arrays at this time because they would pose 5712 // considerable effort for cleaning up the the remembered sets. This is 5713 // required because stale remembered sets might reference locations that 5714 // are currently allocated into. 5715 uint region_idx = r->hrm_index(); 5716 if (!g1h->is_humongous_reclaim_candidate(region_idx) || 5717 !r->rem_set()->is_empty()) { 5718 5719 if (G1TraceEagerReclaimHumongousObjects) { 5720 gclog_or_tty->print_cr("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d", 5721 region_idx, 5722 (size_t)obj->size() * HeapWordSize, 5723 p2i(r->bottom()), 5724 r->rem_set()->occupied(), 5725 r->rem_set()->strong_code_roots_list_length(), 5726 next_bitmap->isMarked(r->bottom()), 5727 g1h->is_humongous_reclaim_candidate(region_idx), 5728 obj->is_typeArray() 5729 ); 5730 } 5731 5732 return false; 5733 } 5734 5735 guarantee(obj->is_typeArray(), 5736 "Only eagerly reclaiming type arrays is supported, but the object " 5737 PTR_FORMAT " is not.", p2i(r->bottom())); 5738 5739 if (G1TraceEagerReclaimHumongousObjects) { 5740 gclog_or_tty->print_cr("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d", 5741 region_idx, 5742 (size_t)obj->size() * HeapWordSize, 5743 p2i(r->bottom()), 5744 r->rem_set()->occupied(), 5745 r->rem_set()->strong_code_roots_list_length(), 5746 next_bitmap->isMarked(r->bottom()), 5747 g1h->is_humongous_reclaim_candidate(region_idx), 5748 obj->is_typeArray() 5749 ); 5750 } 5751 // Need to clear mark bit of the humongous object if already set. 5752 if (next_bitmap->isMarked(r->bottom())) { 5753 next_bitmap->clear(r->bottom()); 5754 } 5755 do { 5756 HeapRegion* next = g1h->next_region_in_humongous(r); 5757 _freed_bytes += r->used(); 5758 r->set_containing_set(NULL); 5759 _humongous_regions_removed.increment(1u, r->capacity()); 5760 g1h->free_humongous_region(r, _free_region_list, false); 5761 r = next; 5762 } while (r != NULL); 5763 5764 return false; 5765 } 5766 5767 HeapRegionSetCount& humongous_free_count() { 5768 return _humongous_regions_removed; 5769 } 5770 5771 size_t bytes_freed() const { 5772 return _freed_bytes; 5773 } 5774 5775 size_t humongous_reclaimed() const { 5776 return _humongous_regions_removed.length(); 5777 } 5778 }; 5779 5780 void G1CollectedHeap::eagerly_reclaim_humongous_regions() { 5781 assert_at_safepoint(true); 5782 5783 if (!G1EagerReclaimHumongousObjects || 5784 (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) { 5785 g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0); 5786 return; 5787 } 5788 5789 double start_time = os::elapsedTime(); 5790 5791 FreeRegionList local_cleanup_list("Local Humongous Cleanup List"); 5792 5793 G1FreeHumongousRegionClosure cl(&local_cleanup_list); 5794 heap_region_iterate(&cl); 5795 5796 HeapRegionSetCount empty_set; 5797 remove_from_old_sets(empty_set, cl.humongous_free_count()); 5798 5799 G1HRPrinter* hrp = hr_printer(); 5800 if (hrp->is_active()) { 5801 FreeRegionListIterator iter(&local_cleanup_list); 5802 while (iter.more_available()) { 5803 HeapRegion* hr = iter.get_next(); 5804 hrp->cleanup(hr); 5805 } 5806 } 5807 5808 prepend_to_freelist(&local_cleanup_list); 5809 decrement_summary_bytes(cl.bytes_freed()); 5810 5811 g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0, 5812 cl.humongous_reclaimed()); 5813 } 5814 5815 // This routine is similar to the above but does not record 5816 // any policy statistics or update free lists; we are abandoning 5817 // the current incremental collection set in preparation of a 5818 // full collection. After the full GC we will start to build up 5819 // the incremental collection set again. 5820 // This is only called when we're doing a full collection 5821 // and is immediately followed by the tearing down of the young list. 5822 5823 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) { 5824 HeapRegion* cur = cs_head; 5825 5826 while (cur != NULL) { 5827 HeapRegion* next = cur->next_in_collection_set(); 5828 assert(cur->in_collection_set(), "bad CS"); 5829 cur->set_next_in_collection_set(NULL); 5830 clear_in_cset(cur); 5831 cur->set_young_index_in_cset(-1); 5832 cur = next; 5833 } 5834 } 5835 5836 void G1CollectedHeap::set_free_regions_coming() { 5837 if (G1ConcRegionFreeingVerbose) { 5838 gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : " 5839 "setting free regions coming"); 5840 } 5841 5842 assert(!free_regions_coming(), "pre-condition"); 5843 _free_regions_coming = true; 5844 } 5845 5846 void G1CollectedHeap::reset_free_regions_coming() { 5847 assert(free_regions_coming(), "pre-condition"); 5848 5849 { 5850 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 5851 _free_regions_coming = false; 5852 SecondaryFreeList_lock->notify_all(); 5853 } 5854 5855 if (G1ConcRegionFreeingVerbose) { 5856 gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : " 5857 "reset free regions coming"); 5858 } 5859 } 5860 5861 void G1CollectedHeap::wait_while_free_regions_coming() { 5862 // Most of the time we won't have to wait, so let's do a quick test 5863 // first before we take the lock. 5864 if (!free_regions_coming()) { 5865 return; 5866 } 5867 5868 if (G1ConcRegionFreeingVerbose) { 5869 gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : " 5870 "waiting for free regions"); 5871 } 5872 5873 { 5874 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 5875 while (free_regions_coming()) { 5876 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag); 5877 } 5878 } 5879 5880 if (G1ConcRegionFreeingVerbose) { 5881 gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : " 5882 "done waiting for free regions"); 5883 } 5884 } 5885 5886 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) { 5887 return _allocator->is_retained_old_region(hr); 5888 } 5889 5890 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) { 5891 _young_list->push_region(hr); 5892 } 5893 5894 class NoYoungRegionsClosure: public HeapRegionClosure { 5895 private: 5896 bool _success; 5897 public: 5898 NoYoungRegionsClosure() : _success(true) { } 5899 bool doHeapRegion(HeapRegion* r) { 5900 if (r->is_young()) { 5901 gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young", 5902 p2i(r->bottom()), p2i(r->end())); 5903 _success = false; 5904 } 5905 return false; 5906 } 5907 bool success() { return _success; } 5908 }; 5909 5910 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) { 5911 bool ret = _young_list->check_list_empty(check_sample); 5912 5913 if (check_heap) { 5914 NoYoungRegionsClosure closure; 5915 heap_region_iterate(&closure); 5916 ret = ret && closure.success(); 5917 } 5918 5919 return ret; 5920 } 5921 5922 class TearDownRegionSetsClosure : public HeapRegionClosure { 5923 private: 5924 HeapRegionSet *_old_set; 5925 5926 public: 5927 TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { } 5928 5929 bool doHeapRegion(HeapRegion* r) { 5930 if (r->is_old()) { 5931 _old_set->remove(r); 5932 } else { 5933 // We ignore free regions, we'll empty the free list afterwards. 5934 // We ignore young regions, we'll empty the young list afterwards. 5935 // We ignore humongous regions, we're not tearing down the 5936 // humongous regions set. 5937 assert(r->is_free() || r->is_young() || r->is_humongous(), 5938 "it cannot be another type"); 5939 } 5940 return false; 5941 } 5942 5943 ~TearDownRegionSetsClosure() { 5944 assert(_old_set->is_empty(), "post-condition"); 5945 } 5946 }; 5947 5948 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) { 5949 assert_at_safepoint(true /* should_be_vm_thread */); 5950 5951 if (!free_list_only) { 5952 TearDownRegionSetsClosure cl(&_old_set); 5953 heap_region_iterate(&cl); 5954 5955 // Note that emptying the _young_list is postponed and instead done as 5956 // the first step when rebuilding the regions sets again. The reason for 5957 // this is that during a full GC string deduplication needs to know if 5958 // a collected region was young or old when the full GC was initiated. 5959 } 5960 _hrm.remove_all_free_regions(); 5961 } 5962 5963 void G1CollectedHeap::increase_used(size_t bytes) { 5964 _summary_bytes_used += bytes; 5965 } 5966 5967 void G1CollectedHeap::decrease_used(size_t bytes) { 5968 assert(_summary_bytes_used >= bytes, 5969 "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT, 5970 _summary_bytes_used, bytes); 5971 _summary_bytes_used -= bytes; 5972 } 5973 5974 void G1CollectedHeap::set_used(size_t bytes) { 5975 _summary_bytes_used = bytes; 5976 } 5977 5978 class RebuildRegionSetsClosure : public HeapRegionClosure { 5979 private: 5980 bool _free_list_only; 5981 HeapRegionSet* _old_set; 5982 HeapRegionManager* _hrm; 5983 size_t _total_used; 5984 5985 public: 5986 RebuildRegionSetsClosure(bool free_list_only, 5987 HeapRegionSet* old_set, HeapRegionManager* hrm) : 5988 _free_list_only(free_list_only), 5989 _old_set(old_set), _hrm(hrm), _total_used(0) { 5990 assert(_hrm->num_free_regions() == 0, "pre-condition"); 5991 if (!free_list_only) { 5992 assert(_old_set->is_empty(), "pre-condition"); 5993 } 5994 } 5995 5996 bool doHeapRegion(HeapRegion* r) { 5997 if (r->is_empty()) { 5998 // Add free regions to the free list 5999 r->set_free(); 6000 r->set_allocation_context(AllocationContext::system()); 6001 _hrm->insert_into_free_list(r); 6002 } else if (!_free_list_only) { 6003 assert(!r->is_young(), "we should not come across young regions"); 6004 6005 if (r->is_humongous()) { 6006 // We ignore humongous regions. We left the humongous set unchanged. 6007 } else { 6008 // Objects that were compacted would have ended up on regions 6009 // that were previously old or free. Archive regions (which are 6010 // old) will not have been touched. 6011 assert(r->is_free() || r->is_old(), "invariant"); 6012 // We now consider them old, so register as such. Leave 6013 // archive regions set that way, however, while still adding 6014 // them to the old set. 6015 if (!r->is_archive()) { 6016 r->set_old(); 6017 } 6018 _old_set->add(r); 6019 } 6020 _total_used += r->used(); 6021 } 6022 6023 return false; 6024 } 6025 6026 size_t total_used() { 6027 return _total_used; 6028 } 6029 }; 6030 6031 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) { 6032 assert_at_safepoint(true /* should_be_vm_thread */); 6033 6034 if (!free_list_only) { 6035 _young_list->empty_list(); 6036 } 6037 6038 RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm); 6039 heap_region_iterate(&cl); 6040 6041 if (!free_list_only) { 6042 set_used(cl.total_used()); 6043 if (_archive_allocator != NULL) { 6044 _archive_allocator->clear_used(); 6045 } 6046 } 6047 assert(used_unlocked() == recalculate_used(), 6048 "inconsistent used_unlocked(), " 6049 "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT, 6050 used_unlocked(), recalculate_used()); 6051 } 6052 6053 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) { 6054 _refine_cte_cl->set_concurrent(concurrent); 6055 } 6056 6057 bool G1CollectedHeap::is_in_closed_subset(const void* p) const { 6058 HeapRegion* hr = heap_region_containing(p); 6059 return hr->is_in(p); 6060 } 6061 6062 // Methods for the mutator alloc region 6063 6064 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size, 6065 bool force) { 6066 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6067 assert(!force || g1_policy()->can_expand_young_list(), 6068 "if force is true we should be able to expand the young list"); 6069 bool young_list_full = g1_policy()->is_young_list_full(); 6070 if (force || !young_list_full) { 6071 HeapRegion* new_alloc_region = new_region(word_size, 6072 false /* is_old */, 6073 false /* do_expand */); 6074 if (new_alloc_region != NULL) { 6075 set_region_short_lived_locked(new_alloc_region); 6076 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full); 6077 check_bitmaps("Mutator Region Allocation", new_alloc_region); 6078 return new_alloc_region; 6079 } 6080 } 6081 return NULL; 6082 } 6083 6084 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region, 6085 size_t allocated_bytes) { 6086 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6087 assert(alloc_region->is_eden(), "all mutator alloc regions should be eden"); 6088 6089 g1_policy()->add_region_to_incremental_cset_lhs(alloc_region); 6090 increase_used(allocated_bytes); 6091 _hr_printer.retire(alloc_region); 6092 // We update the eden sizes here, when the region is retired, 6093 // instead of when it's allocated, since this is the point that its 6094 // used space has been recored in _summary_bytes_used. 6095 g1mm()->update_eden_size(); 6096 } 6097 6098 // Methods for the GC alloc regions 6099 6100 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, 6101 uint count, 6102 InCSetState dest) { 6103 assert(FreeList_lock->owned_by_self(), "pre-condition"); 6104 6105 if (count < g1_policy()->max_regions(dest)) { 6106 const bool is_survivor = (dest.is_young()); 6107 HeapRegion* new_alloc_region = new_region(word_size, 6108 !is_survivor, 6109 true /* do_expand */); 6110 if (new_alloc_region != NULL) { 6111 // We really only need to do this for old regions given that we 6112 // should never scan survivors. But it doesn't hurt to do it 6113 // for survivors too. 6114 new_alloc_region->record_timestamp(); 6115 if (is_survivor) { 6116 new_alloc_region->set_survivor(); 6117 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor); 6118 check_bitmaps("Survivor Region Allocation", new_alloc_region); 6119 } else { 6120 new_alloc_region->set_old(); 6121 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old); 6122 check_bitmaps("Old Region Allocation", new_alloc_region); 6123 } 6124 bool during_im = collector_state()->during_initial_mark_pause(); 6125 new_alloc_region->note_start_of_copying(during_im); 6126 return new_alloc_region; 6127 } 6128 } 6129 return NULL; 6130 } 6131 6132 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region, 6133 size_t allocated_bytes, 6134 InCSetState dest) { 6135 bool during_im = collector_state()->during_initial_mark_pause(); 6136 alloc_region->note_end_of_copying(during_im); 6137 g1_policy()->record_bytes_copied_during_gc(allocated_bytes); 6138 if (dest.is_young()) { 6139 young_list()->add_survivor_region(alloc_region); 6140 } else { 6141 _old_set.add(alloc_region); 6142 } 6143 _hr_printer.retire(alloc_region); 6144 } 6145 6146 HeapRegion* G1CollectedHeap::alloc_highest_free_region() { 6147 bool expanded = false; 6148 uint index = _hrm.find_highest_free(&expanded); 6149 6150 if (index != G1_NO_HRM_INDEX) { 6151 if (expanded) { 6152 ergo_verbose1(ErgoHeapSizing, 6153 "attempt heap expansion", 6154 ergo_format_reason("requested address range outside heap bounds") 6155 ergo_format_byte("region size"), 6156 HeapRegion::GrainWords * HeapWordSize); 6157 } 6158 _hrm.allocate_free_regions_starting_at(index, 1); 6159 return region_at(index); 6160 } 6161 return NULL; 6162 } 6163 6164 // Heap region set verification 6165 6166 class VerifyRegionListsClosure : public HeapRegionClosure { 6167 private: 6168 HeapRegionSet* _old_set; 6169 HeapRegionSet* _humongous_set; 6170 HeapRegionManager* _hrm; 6171 6172 public: 6173 HeapRegionSetCount _old_count; 6174 HeapRegionSetCount _humongous_count; 6175 HeapRegionSetCount _free_count; 6176 6177 VerifyRegionListsClosure(HeapRegionSet* old_set, 6178 HeapRegionSet* humongous_set, 6179 HeapRegionManager* hrm) : 6180 _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm), 6181 _old_count(), _humongous_count(), _free_count(){ } 6182 6183 bool doHeapRegion(HeapRegion* hr) { 6184 if (hr->is_young()) { 6185 // TODO 6186 } else if (hr->is_humongous()) { 6187 assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index()); 6188 _humongous_count.increment(1u, hr->capacity()); 6189 } else if (hr->is_empty()) { 6190 assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index()); 6191 _free_count.increment(1u, hr->capacity()); 6192 } else if (hr->is_old()) { 6193 assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index()); 6194 _old_count.increment(1u, hr->capacity()); 6195 } else { 6196 // There are no other valid region types. Check for one invalid 6197 // one we can identify: pinned without old or humongous set. 6198 assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index()); 6199 ShouldNotReachHere(); 6200 } 6201 return false; 6202 } 6203 6204 void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) { 6205 guarantee(old_set->length() == _old_count.length(), "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()); 6206 guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), "Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT, 6207 old_set->total_capacity_bytes(), _old_count.capacity()); 6208 6209 guarantee(humongous_set->length() == _humongous_count.length(), "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()); 6210 guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), "Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT, 6211 humongous_set->total_capacity_bytes(), _humongous_count.capacity()); 6212 6213 guarantee(free_list->num_free_regions() == _free_count.length(), "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()); 6214 guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), "Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT, 6215 free_list->total_capacity_bytes(), _free_count.capacity()); 6216 } 6217 }; 6218 6219 void G1CollectedHeap::verify_region_sets() { 6220 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6221 6222 // First, check the explicit lists. 6223 _hrm.verify(); 6224 { 6225 // Given that a concurrent operation might be adding regions to 6226 // the secondary free list we have to take the lock before 6227 // verifying it. 6228 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 6229 _secondary_free_list.verify_list(); 6230 } 6231 6232 // If a concurrent region freeing operation is in progress it will 6233 // be difficult to correctly attributed any free regions we come 6234 // across to the correct free list given that they might belong to 6235 // one of several (free_list, secondary_free_list, any local lists, 6236 // etc.). So, if that's the case we will skip the rest of the 6237 // verification operation. Alternatively, waiting for the concurrent 6238 // operation to complete will have a non-trivial effect on the GC's 6239 // operation (no concurrent operation will last longer than the 6240 // interval between two calls to verification) and it might hide 6241 // any issues that we would like to catch during testing. 6242 if (free_regions_coming()) { 6243 return; 6244 } 6245 6246 // Make sure we append the secondary_free_list on the free_list so 6247 // that all free regions we will come across can be safely 6248 // attributed to the free_list. 6249 append_secondary_free_list_if_not_empty_with_lock(); 6250 6251 // Finally, make sure that the region accounting in the lists is 6252 // consistent with what we see in the heap. 6253 6254 VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm); 6255 heap_region_iterate(&cl); 6256 cl.verify_counts(&_old_set, &_humongous_set, &_hrm); 6257 } 6258 6259 // Optimized nmethod scanning 6260 6261 class RegisterNMethodOopClosure: public OopClosure { 6262 G1CollectedHeap* _g1h; 6263 nmethod* _nm; 6264 6265 template <class T> void do_oop_work(T* p) { 6266 T heap_oop = oopDesc::load_heap_oop(p); 6267 if (!oopDesc::is_null(heap_oop)) { 6268 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 6269 HeapRegion* hr = _g1h->heap_region_containing(obj); 6270 assert(!hr->is_continues_humongous(), 6271 "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT 6272 " starting at " HR_FORMAT, 6273 p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())); 6274 6275 // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries. 6276 hr->add_strong_code_root_locked(_nm); 6277 } 6278 } 6279 6280 public: 6281 RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 6282 _g1h(g1h), _nm(nm) {} 6283 6284 void do_oop(oop* p) { do_oop_work(p); } 6285 void do_oop(narrowOop* p) { do_oop_work(p); } 6286 }; 6287 6288 class UnregisterNMethodOopClosure: public OopClosure { 6289 G1CollectedHeap* _g1h; 6290 nmethod* _nm; 6291 6292 template <class T> void do_oop_work(T* p) { 6293 T heap_oop = oopDesc::load_heap_oop(p); 6294 if (!oopDesc::is_null(heap_oop)) { 6295 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 6296 HeapRegion* hr = _g1h->heap_region_containing(obj); 6297 assert(!hr->is_continues_humongous(), 6298 "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT 6299 " starting at " HR_FORMAT, 6300 p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())); 6301 6302 hr->remove_strong_code_root(_nm); 6303 } 6304 } 6305 6306 public: 6307 UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 6308 _g1h(g1h), _nm(nm) {} 6309 6310 void do_oop(oop* p) { do_oop_work(p); } 6311 void do_oop(narrowOop* p) { do_oop_work(p); } 6312 }; 6313 6314 void G1CollectedHeap::register_nmethod(nmethod* nm) { 6315 CollectedHeap::register_nmethod(nm); 6316 6317 guarantee(nm != NULL, "sanity"); 6318 RegisterNMethodOopClosure reg_cl(this, nm); 6319 nm->oops_do(®_cl); 6320 } 6321 6322 void G1CollectedHeap::unregister_nmethod(nmethod* nm) { 6323 CollectedHeap::unregister_nmethod(nm); 6324 6325 guarantee(nm != NULL, "sanity"); 6326 UnregisterNMethodOopClosure reg_cl(this, nm); 6327 nm->oops_do(®_cl, true); 6328 } 6329 6330 void G1CollectedHeap::purge_code_root_memory() { 6331 double purge_start = os::elapsedTime(); 6332 G1CodeRootSet::purge(); 6333 double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0; 6334 g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms); 6335 } 6336 6337 class RebuildStrongCodeRootClosure: public CodeBlobClosure { 6338 G1CollectedHeap* _g1h; 6339 6340 public: 6341 RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) : 6342 _g1h(g1h) {} 6343 6344 void do_code_blob(CodeBlob* cb) { 6345 nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL; 6346 if (nm == NULL) { 6347 return; 6348 } 6349 6350 if (ScavengeRootsInCode) { 6351 _g1h->register_nmethod(nm); 6352 } 6353 } 6354 }; 6355 6356 void G1CollectedHeap::rebuild_strong_code_roots() { 6357 RebuildStrongCodeRootClosure blob_cl(this); 6358 CodeCache::blobs_do(&blob_cl); 6359 } --- EOF ---