1 /* 2 * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/symbolTable.hpp" 27 #include "classfile/systemDictionary.hpp" 28 #include "classfile/vmSymbols.hpp" 29 #include "code/codeCache.hpp" 30 #include "code/icBuffer.hpp" 31 #include "gc/shared/collectedHeap.inline.hpp" 32 #include "gc/shared/collectorCounters.hpp" 33 #include "gc/shared/gcId.hpp" 34 #include "gc/shared/gcLocker.inline.hpp" 35 #include "gc/shared/gcTrace.hpp" 36 #include "gc/shared/gcTraceTime.inline.hpp" 37 #include "gc/shared/genCollectedHeap.hpp" 38 #include "gc/shared/genOopClosures.inline.hpp" 39 #include "gc/shared/generationSpec.hpp" 40 #include "gc/shared/space.hpp" 41 #include "gc/shared/strongRootsScope.hpp" 42 #include "gc/shared/vmGCOperations.hpp" 43 #include "gc/shared/workgroup.hpp" 44 #include "memory/filemap.hpp" 45 #include "memory/resourceArea.hpp" 46 #include "oops/oop.inline.hpp" 47 #include "runtime/biasedLocking.hpp" 48 #include "runtime/fprofiler.hpp" 49 #include "runtime/handles.hpp" 50 #include "runtime/handles.inline.hpp" 51 #include "runtime/java.hpp" 52 #include "runtime/vmThread.hpp" 53 #include "services/management.hpp" 54 #include "services/memoryService.hpp" 55 #include "utilities/macros.hpp" 56 #include "utilities/stack.inline.hpp" 57 #include "utilities/vmError.hpp" 58 #if INCLUDE_ALL_GCS 59 #include "gc/cms/concurrentMarkSweepThread.hpp" 60 #include "gc/cms/vmCMSOperations.hpp" 61 #endif // INCLUDE_ALL_GCS 62 63 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;) 64 65 // The set of potentially parallel tasks in root scanning. 66 enum GCH_strong_roots_tasks { 67 GCH_PS_Universe_oops_do, 68 GCH_PS_JNIHandles_oops_do, 69 GCH_PS_ObjectSynchronizer_oops_do, 70 GCH_PS_FlatProfiler_oops_do, 71 GCH_PS_Management_oops_do, 72 GCH_PS_SystemDictionary_oops_do, 73 GCH_PS_ClassLoaderDataGraph_oops_do, 74 GCH_PS_jvmti_oops_do, 75 GCH_PS_CodeCache_oops_do, 76 GCH_PS_younger_gens, 77 // Leave this one last. 78 GCH_PS_NumElements 79 }; 80 81 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) : 82 CollectedHeap(), 83 _rem_set(NULL), 84 _gen_policy(policy), 85 _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)), 86 _full_collections_completed(0) 87 { 88 assert(policy != NULL, "Sanity check"); 89 if (UseConcMarkSweepGC) { 90 _workers = new WorkGang("GC Thread", ParallelGCThreads, 91 /* are_GC_task_threads */true, 92 /* are_ConcurrentGC_threads */false); 93 _workers->initialize_workers(); 94 } else { 95 // Serial GC does not use workers. 96 _workers = NULL; 97 } 98 } 99 100 jint GenCollectedHeap::initialize() { 101 CollectedHeap::pre_initialize(); 102 103 // While there are no constraints in the GC code that HeapWordSize 104 // be any particular value, there are multiple other areas in the 105 // system which believe this to be true (e.g. oop->object_size in some 106 // cases incorrectly returns the size in wordSize units rather than 107 // HeapWordSize). 108 guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize"); 109 110 // Allocate space for the heap. 111 112 char* heap_address; 113 ReservedSpace heap_rs; 114 115 size_t heap_alignment = collector_policy()->heap_alignment(); 116 117 heap_address = allocate(heap_alignment, &heap_rs); 118 119 if (!heap_rs.is_reserved()) { 120 vm_shutdown_during_initialization( 121 "Could not reserve enough space for object heap"); 122 return JNI_ENOMEM; 123 } 124 125 initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size())); 126 127 _rem_set = collector_policy()->create_rem_set(reserved_region()); 128 set_barrier_set(rem_set()->bs()); 129 130 ReservedSpace young_rs = heap_rs.first_part(gen_policy()->young_gen_spec()->max_size(), false, false); 131 _young_gen = gen_policy()->young_gen_spec()->init(young_rs, rem_set()); 132 heap_rs = heap_rs.last_part(gen_policy()->young_gen_spec()->max_size()); 133 134 ReservedSpace old_rs = heap_rs.first_part(gen_policy()->old_gen_spec()->max_size(), false, false); 135 _old_gen = gen_policy()->old_gen_spec()->init(old_rs, rem_set()); 136 clear_incremental_collection_failed(); 137 138 #if INCLUDE_ALL_GCS 139 // If we are running CMS, create the collector responsible 140 // for collecting the CMS generations. 141 if (collector_policy()->is_concurrent_mark_sweep_policy()) { 142 bool success = create_cms_collector(); 143 if (!success) return JNI_ENOMEM; 144 } 145 #endif // INCLUDE_ALL_GCS 146 147 return JNI_OK; 148 } 149 150 char* GenCollectedHeap::allocate(size_t alignment, 151 ReservedSpace* heap_rs){ 152 // Now figure out the total size. 153 const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size(); 154 assert(alignment % pageSize == 0, "Must be"); 155 156 GenerationSpec* young_spec = gen_policy()->young_gen_spec(); 157 GenerationSpec* old_spec = gen_policy()->old_gen_spec(); 158 159 // Check for overflow. 160 size_t total_reserved = young_spec->max_size() + old_spec->max_size(); 161 if (total_reserved < young_spec->max_size()) { 162 vm_exit_during_initialization("The size of the object heap + VM data exceeds " 163 "the maximum representable size"); 164 } 165 assert(total_reserved % alignment == 0, 166 "Gen size; total_reserved=" SIZE_FORMAT ", alignment=" 167 SIZE_FORMAT, total_reserved, alignment); 168 169 *heap_rs = Universe::reserve_heap(total_reserved, alignment); 170 return heap_rs->base(); 171 } 172 173 void GenCollectedHeap::post_initialize() { 174 CollectedHeap::post_initialize(); 175 ref_processing_init(); 176 assert((_young_gen->kind() == Generation::DefNew) || 177 (_young_gen->kind() == Generation::ParNew), 178 "Wrong youngest generation type"); 179 DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen; 180 181 assert(_old_gen->kind() == Generation::ConcurrentMarkSweep || 182 _old_gen->kind() == Generation::MarkSweepCompact, 183 "Wrong generation kind"); 184 185 _gen_policy->initialize_size_policy(def_new_gen->eden()->capacity(), 186 _old_gen->capacity(), 187 def_new_gen->from()->capacity()); 188 _gen_policy->initialize_gc_policy_counters(); 189 } 190 191 void GenCollectedHeap::ref_processing_init() { 192 _young_gen->ref_processor_init(); 193 _old_gen->ref_processor_init(); 194 } 195 196 size_t GenCollectedHeap::capacity() const { 197 return _young_gen->capacity() + _old_gen->capacity(); 198 } 199 200 size_t GenCollectedHeap::used() const { 201 return _young_gen->used() + _old_gen->used(); 202 } 203 204 void GenCollectedHeap::save_used_regions() { 205 _old_gen->save_used_region(); 206 _young_gen->save_used_region(); 207 } 208 209 size_t GenCollectedHeap::max_capacity() const { 210 return _young_gen->max_capacity() + _old_gen->max_capacity(); 211 } 212 213 // Update the _full_collections_completed counter 214 // at the end of a stop-world full GC. 215 unsigned int GenCollectedHeap::update_full_collections_completed() { 216 MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag); 217 assert(_full_collections_completed <= _total_full_collections, 218 "Can't complete more collections than were started"); 219 _full_collections_completed = _total_full_collections; 220 ml.notify_all(); 221 return _full_collections_completed; 222 } 223 224 // Update the _full_collections_completed counter, as appropriate, 225 // at the end of a concurrent GC cycle. Note the conditional update 226 // below to allow this method to be called by a concurrent collector 227 // without synchronizing in any manner with the VM thread (which 228 // may already have initiated a STW full collection "concurrently"). 229 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) { 230 MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag); 231 assert((_full_collections_completed <= _total_full_collections) && 232 (count <= _total_full_collections), 233 "Can't complete more collections than were started"); 234 if (count > _full_collections_completed) { 235 _full_collections_completed = count; 236 ml.notify_all(); 237 } 238 return _full_collections_completed; 239 } 240 241 242 #ifndef PRODUCT 243 // Override of memory state checking method in CollectedHeap: 244 // Some collectors (CMS for example) can't have badHeapWordVal written 245 // in the first two words of an object. (For instance , in the case of 246 // CMS these words hold state used to synchronize between certain 247 // (concurrent) GC steps and direct allocating mutators.) 248 // The skip_header_HeapWords() method below, allows us to skip 249 // over the requisite number of HeapWord's. Note that (for 250 // generational collectors) this means that those many words are 251 // skipped in each object, irrespective of the generation in which 252 // that object lives. The resultant loss of precision seems to be 253 // harmless and the pain of avoiding that imprecision appears somewhat 254 // higher than we are prepared to pay for such rudimentary debugging 255 // support. 256 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, 257 size_t size) { 258 if (CheckMemoryInitialization && ZapUnusedHeapArea) { 259 // We are asked to check a size in HeapWords, 260 // but the memory is mangled in juint words. 261 juint* start = (juint*) (addr + skip_header_HeapWords()); 262 juint* end = (juint*) (addr + size); 263 for (juint* slot = start; slot < end; slot += 1) { 264 assert(*slot == badHeapWordVal, 265 "Found non badHeapWordValue in pre-allocation check"); 266 } 267 } 268 } 269 #endif 270 271 HeapWord* GenCollectedHeap::attempt_allocation(size_t size, 272 bool is_tlab, 273 bool first_only) { 274 HeapWord* res = NULL; 275 276 if (_young_gen->should_allocate(size, is_tlab)) { 277 res = _young_gen->allocate(size, is_tlab); 278 if (res != NULL || first_only) { 279 return res; 280 } 281 } 282 283 if (_old_gen->should_allocate(size, is_tlab)) { 284 res = _old_gen->allocate(size, is_tlab); 285 } 286 287 return res; 288 } 289 290 HeapWord* GenCollectedHeap::mem_allocate(size_t size, 291 bool* gc_overhead_limit_was_exceeded) { 292 return gen_policy()->mem_allocate_work(size, 293 false /* is_tlab */, 294 gc_overhead_limit_was_exceeded); 295 } 296 297 bool GenCollectedHeap::must_clear_all_soft_refs() { 298 return _gc_cause == GCCause::_last_ditch_collection; 299 } 300 301 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) { 302 if (!UseConcMarkSweepGC) { 303 return false; 304 } 305 306 switch (cause) { 307 case GCCause::_gc_locker: return GCLockerInvokesConcurrent; 308 case GCCause::_java_lang_system_gc: 309 case GCCause::_dcmd_gc_run: return ExplicitGCInvokesConcurrent; 310 default: return false; 311 } 312 } 313 314 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size, 315 bool is_tlab, bool run_verification, bool clear_soft_refs, 316 bool restore_marks_for_biased_locking) { 317 FormatBuffer<> title("Collect gen: %s", gen->short_name()); 318 GCTraceTime(Debug, gc) t1(title); 319 TraceCollectorStats tcs(gen->counters()); 320 TraceMemoryManagerStats tmms(gen->kind(),gc_cause()); 321 322 gen->stat_record()->invocations++; 323 gen->stat_record()->accumulated_time.start(); 324 325 // Must be done anew before each collection because 326 // a previous collection will do mangling and will 327 // change top of some spaces. 328 record_gen_tops_before_GC(); 329 330 log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize); 331 332 if (run_verification && VerifyBeforeGC) { 333 HandleMark hm; // Discard invalid handles created during verification 334 Universe::verify("Before GC"); 335 } 336 COMPILER2_PRESENT(DerivedPointerTable::clear()); 337 338 if (restore_marks_for_biased_locking) { 339 // We perform this mark word preservation work lazily 340 // because it's only at this point that we know whether we 341 // absolutely have to do it; we want to avoid doing it for 342 // scavenge-only collections where it's unnecessary 343 BiasedLocking::preserve_marks(); 344 } 345 346 // Do collection work 347 { 348 // Note on ref discovery: For what appear to be historical reasons, 349 // GCH enables and disabled (by enqueing) refs discovery. 350 // In the future this should be moved into the generation's 351 // collect method so that ref discovery and enqueueing concerns 352 // are local to a generation. The collect method could return 353 // an appropriate indication in the case that notification on 354 // the ref lock was needed. This will make the treatment of 355 // weak refs more uniform (and indeed remove such concerns 356 // from GCH). XXX 357 358 HandleMark hm; // Discard invalid handles created during gc 359 save_marks(); // save marks for all gens 360 // We want to discover references, but not process them yet. 361 // This mode is disabled in process_discovered_references if the 362 // generation does some collection work, or in 363 // enqueue_discovered_references if the generation returns 364 // without doing any work. 365 ReferenceProcessor* rp = gen->ref_processor(); 366 // If the discovery of ("weak") refs in this generation is 367 // atomic wrt other collectors in this configuration, we 368 // are guaranteed to have empty discovered ref lists. 369 if (rp->discovery_is_atomic()) { 370 rp->enable_discovery(); 371 rp->setup_policy(clear_soft_refs); 372 } else { 373 // collect() below will enable discovery as appropriate 374 } 375 gen->collect(full, clear_soft_refs, size, is_tlab); 376 if (!rp->enqueuing_is_done()) { 377 rp->enqueue_discovered_references(); 378 } else { 379 rp->set_enqueuing_is_done(false); 380 } 381 rp->verify_no_references_recorded(); 382 } 383 384 COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); 385 386 gen->stat_record()->accumulated_time.stop(); 387 388 update_gc_stats(gen, full); 389 390 if (run_verification && VerifyAfterGC) { 391 HandleMark hm; // Discard invalid handles created during verification 392 Universe::verify("After GC"); 393 } 394 } 395 396 void GenCollectedHeap::do_collection(bool full, 397 bool clear_all_soft_refs, 398 size_t size, 399 bool is_tlab, 400 GenerationType max_generation) { 401 ResourceMark rm; 402 DEBUG_ONLY(Thread* my_thread = Thread::current();) 403 404 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); 405 assert(my_thread->is_VM_thread() || 406 my_thread->is_ConcurrentGC_thread(), 407 "incorrect thread type capability"); 408 assert(Heap_lock->is_locked(), 409 "the requesting thread should have the Heap_lock"); 410 guarantee(!is_gc_active(), "collection is not reentrant"); 411 412 if (GCLocker::check_active_before_gc()) { 413 return; // GC is disabled (e.g. JNI GetXXXCritical operation) 414 } 415 416 GCIdMarkAndRestore gc_id_mark; 417 418 const bool do_clear_all_soft_refs = clear_all_soft_refs || 419 collector_policy()->should_clear_all_soft_refs(); 420 421 ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy()); 422 423 const size_t metadata_prev_used = MetaspaceAux::used_bytes(); 424 425 print_heap_before_gc(); 426 427 { 428 FlagSetting fl(_is_gc_active, true); 429 430 bool complete = full && (max_generation == OldGen); 431 bool old_collects_young = complete && !ScavengeBeforeFullGC; 432 bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab); 433 434 FormatBuffer<> gc_string("%s", "Pause "); 435 if (do_young_collection) { 436 gc_string.append("Young"); 437 } else { 438 gc_string.append("Full"); 439 } 440 441 GCTraceCPUTime tcpu; 442 GCTraceTime(Info, gc) t(gc_string, NULL, gc_cause(), true); 443 444 gc_prologue(complete); 445 increment_total_collections(complete); 446 447 size_t young_prev_used = _young_gen->used(); 448 size_t old_prev_used = _old_gen->used(); 449 450 bool run_verification = total_collections() >= VerifyGCStartAt; 451 452 bool prepared_for_verification = false; 453 bool collected_old = false; 454 455 if (do_young_collection) { 456 if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) { 457 prepare_for_verify(); 458 prepared_for_verification = true; 459 } 460 461 collect_generation(_young_gen, 462 full, 463 size, 464 is_tlab, 465 run_verification && VerifyGCLevel <= 0, 466 do_clear_all_soft_refs, 467 false); 468 469 if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) && 470 size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) { 471 // Allocation request was met by young GC. 472 size = 0; 473 } 474 } 475 476 bool must_restore_marks_for_biased_locking = false; 477 478 if (max_generation == OldGen && _old_gen->should_collect(full, size, is_tlab)) { 479 if (!complete) { 480 // The full_collections increment was missed above. 481 increment_total_full_collections(); 482 } 483 484 if (!prepared_for_verification && run_verification && 485 VerifyGCLevel <= 1 && VerifyBeforeGC) { 486 prepare_for_verify(); 487 } 488 489 if (do_young_collection) { 490 // We did a young GC. Need a new GC id for the old GC. 491 GCIdMarkAndRestore gc_id_mark; 492 GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true); 493 collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true); 494 } else { 495 // No young GC done. Use the same GC id as was set up earlier in this method. 496 collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true); 497 } 498 499 must_restore_marks_for_biased_locking = true; 500 collected_old = true; 501 } 502 503 // Update "complete" boolean wrt what actually transpired -- 504 // for instance, a promotion failure could have led to 505 // a whole heap collection. 506 complete = complete || collected_old; 507 508 print_heap_change(young_prev_used, old_prev_used); 509 MetaspaceAux::print_metaspace_change(metadata_prev_used); 510 511 // Adjust generation sizes. 512 if (collected_old) { 513 _old_gen->compute_new_size(); 514 } 515 _young_gen->compute_new_size(); 516 517 if (complete) { 518 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 519 ClassLoaderDataGraph::purge(); 520 MetaspaceAux::verify_metrics(); 521 // Resize the metaspace capacity after full collections 522 MetaspaceGC::compute_new_size(); 523 update_full_collections_completed(); 524 } 525 526 // Track memory usage and detect low memory after GC finishes 527 MemoryService::track_memory_usage(); 528 529 gc_epilogue(complete); 530 531 if (must_restore_marks_for_biased_locking) { 532 BiasedLocking::restore_marks(); 533 } 534 } 535 536 print_heap_after_gc(); 537 538 #ifdef TRACESPINNING 539 ParallelTaskTerminator::print_termination_counts(); 540 #endif 541 } 542 543 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) { 544 return gen_policy()->satisfy_failed_allocation(size, is_tlab); 545 } 546 547 #ifdef ASSERT 548 class AssertNonScavengableClosure: public OopClosure { 549 public: 550 virtual void do_oop(oop* p) { 551 assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p), 552 "Referent should not be scavengable."); } 553 virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); } 554 }; 555 static AssertNonScavengableClosure assert_is_non_scavengable_closure; 556 #endif 557 558 void GenCollectedHeap::process_roots(StrongRootsScope* scope, 559 ScanningOption so, 560 OopClosure* strong_roots, 561 OopClosure* weak_roots, 562 CLDClosure* strong_cld_closure, 563 CLDClosure* weak_cld_closure, 564 CodeBlobClosure* code_roots) { 565 // General roots. 566 assert(Threads::thread_claim_parity() != 0, "must have called prologue code"); 567 assert(code_roots != NULL, "code root closure should always be set"); 568 // _n_termination for _process_strong_tasks should be set up stream 569 // in a method not running in a GC worker. Otherwise the GC worker 570 // could be trying to change the termination condition while the task 571 // is executing in another GC worker. 572 573 if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) { 574 ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure); 575 } 576 577 // Some CLDs contained in the thread frames should be considered strong. 578 // Don't process them if they will be processed during the ClassLoaderDataGraph phase. 579 CLDClosure* roots_from_clds_p = (strong_cld_closure != weak_cld_closure) ? strong_cld_closure : NULL; 580 // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway 581 CodeBlobClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots; 582 583 bool is_par = scope->n_threads() > 1; 584 Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_clds_p, roots_from_code_p); 585 586 if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) { 587 Universe::oops_do(strong_roots); 588 } 589 // Global (strong) JNI handles 590 if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) { 591 JNIHandles::oops_do(strong_roots); 592 } 593 594 if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) { 595 ObjectSynchronizer::oops_do(strong_roots); 596 } 597 if (!_process_strong_tasks->is_task_claimed(GCH_PS_FlatProfiler_oops_do)) { 598 FlatProfiler::oops_do(strong_roots); 599 } 600 if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) { 601 Management::oops_do(strong_roots); 602 } 603 if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) { 604 JvmtiExport::oops_do(strong_roots); 605 } 606 607 if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) { 608 SystemDictionary::roots_oops_do(strong_roots, weak_roots); 609 } 610 611 // All threads execute the following. A specific chunk of buckets 612 // from the StringTable are the individual tasks. 613 if (weak_roots != NULL) { 614 if (is_par) { 615 StringTable::possibly_parallel_oops_do(weak_roots); 616 } else { 617 StringTable::oops_do(weak_roots); 618 } 619 } 620 621 if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) { 622 if (so & SO_ScavengeCodeCache) { 623 assert(code_roots != NULL, "must supply closure for code cache"); 624 625 // We only visit parts of the CodeCache when scavenging. 626 CodeCache::scavenge_root_nmethods_do(code_roots); 627 CodeCache::prune_scavenge_root_nmethods(); 628 } 629 if (so & SO_AllCodeCache) { 630 assert(code_roots != NULL, "must supply closure for code cache"); 631 632 // CMSCollector uses this to do intermediate-strength collections. 633 // We scan the entire code cache, since CodeCache::do_unloading is not called. 634 CodeCache::blobs_do(code_roots); 635 } 636 // Verify that the code cache contents are not subject to 637 // movement by a scavenging collection. 638 DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations)); 639 DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable)); 640 } 641 } 642 643 void GenCollectedHeap::gen_process_roots(StrongRootsScope* scope, 644 GenerationType type, 645 bool young_gen_as_roots, 646 ScanningOption so, 647 bool only_strong_roots, 648 OopsInGenClosure* not_older_gens, 649 OopsInGenClosure* older_gens, 650 CLDClosure* cld_closure) { 651 const bool is_adjust_phase = !only_strong_roots && !young_gen_as_roots; 652 653 bool is_moving_collection = false; 654 if (type == YoungGen || is_adjust_phase) { 655 // young collections are always moving 656 is_moving_collection = true; 657 } 658 659 MarkingCodeBlobClosure mark_code_closure(not_older_gens, is_moving_collection); 660 OopsInGenClosure* weak_roots = only_strong_roots ? NULL : not_older_gens; 661 CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure; 662 663 process_roots(scope, so, 664 not_older_gens, weak_roots, 665 cld_closure, weak_cld_closure, 666 &mark_code_closure); 667 668 if (young_gen_as_roots) { 669 if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) { 670 if (type == OldGen) { 671 not_older_gens->set_generation(_young_gen); 672 _young_gen->oop_iterate(not_older_gens); 673 } 674 not_older_gens->reset_generation(); 675 } 676 } 677 // When collection is parallel, all threads get to cooperate to do 678 // old generation scanning. 679 if (type == YoungGen) { 680 older_gens->set_generation(_old_gen); 681 rem_set()->younger_refs_iterate(_old_gen, older_gens, scope->n_threads()); 682 older_gens->reset_generation(); 683 } 684 685 _process_strong_tasks->all_tasks_completed(scope->n_threads()); 686 } 687 688 689 class AlwaysTrueClosure: public BoolObjectClosure { 690 public: 691 bool do_object_b(oop p) { return true; } 692 }; 693 static AlwaysTrueClosure always_true; 694 695 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) { 696 JNIHandles::weak_oops_do(&always_true, root_closure); 697 _young_gen->ref_processor()->weak_oops_do(root_closure); 698 _old_gen->ref_processor()->weak_oops_do(root_closure); 699 } 700 701 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix) \ 702 void GenCollectedHeap:: \ 703 oop_since_save_marks_iterate(GenerationType gen, \ 704 OopClosureType* cur, \ 705 OopClosureType* older) { \ 706 if (gen == YoungGen) { \ 707 _young_gen->oop_since_save_marks_iterate##nv_suffix(cur); \ 708 _old_gen->oop_since_save_marks_iterate##nv_suffix(older); \ 709 } else { \ 710 _old_gen->oop_since_save_marks_iterate##nv_suffix(cur); \ 711 } \ 712 } 713 714 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN) 715 716 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN 717 718 bool GenCollectedHeap::no_allocs_since_save_marks() { 719 return _young_gen->no_allocs_since_save_marks() && 720 _old_gen->no_allocs_since_save_marks(); 721 } 722 723 bool GenCollectedHeap::supports_inline_contig_alloc() const { 724 return _young_gen->supports_inline_contig_alloc(); 725 } 726 727 HeapWord** GenCollectedHeap::top_addr() const { 728 return _young_gen->top_addr(); 729 } 730 731 HeapWord** GenCollectedHeap::end_addr() const { 732 return _young_gen->end_addr(); 733 } 734 735 // public collection interfaces 736 737 void GenCollectedHeap::collect(GCCause::Cause cause) { 738 if (should_do_concurrent_full_gc(cause)) { 739 #if INCLUDE_ALL_GCS 740 // Mostly concurrent full collection. 741 collect_mostly_concurrent(cause); 742 #else // INCLUDE_ALL_GCS 743 ShouldNotReachHere(); 744 #endif // INCLUDE_ALL_GCS 745 } else if (cause == GCCause::_wb_young_gc) { 746 // Young collection for the WhiteBox API. 747 collect(cause, YoungGen); 748 } else { 749 #ifdef ASSERT 750 if (cause == GCCause::_scavenge_alot) { 751 // Young collection only. 752 collect(cause, YoungGen); 753 } else { 754 // Stop-the-world full collection. 755 collect(cause, OldGen); 756 } 757 #else 758 // Stop-the-world full collection. 759 collect(cause, OldGen); 760 #endif 761 } 762 } 763 764 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) { 765 // The caller doesn't have the Heap_lock 766 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock"); 767 MutexLocker ml(Heap_lock); 768 collect_locked(cause, max_generation); 769 } 770 771 void GenCollectedHeap::collect_locked(GCCause::Cause cause) { 772 // The caller has the Heap_lock 773 assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock"); 774 collect_locked(cause, OldGen); 775 } 776 777 // this is the private collection interface 778 // The Heap_lock is expected to be held on entry. 779 780 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) { 781 // Read the GC count while holding the Heap_lock 782 unsigned int gc_count_before = total_collections(); 783 unsigned int full_gc_count_before = total_full_collections(); 784 { 785 MutexUnlocker mu(Heap_lock); // give up heap lock, execute gets it back 786 VM_GenCollectFull op(gc_count_before, full_gc_count_before, 787 cause, max_generation); 788 VMThread::execute(&op); 789 } 790 } 791 792 #if INCLUDE_ALL_GCS 793 bool GenCollectedHeap::create_cms_collector() { 794 795 assert(_old_gen->kind() == Generation::ConcurrentMarkSweep, 796 "Unexpected generation kinds"); 797 // Skip two header words in the block content verification 798 NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();) 799 assert(_gen_policy->is_concurrent_mark_sweep_policy(), "Unexpected policy type"); 800 CMSCollector* collector = 801 new CMSCollector((ConcurrentMarkSweepGeneration*)_old_gen, 802 _rem_set, 803 _gen_policy->as_concurrent_mark_sweep_policy()); 804 805 if (collector == NULL || !collector->completed_initialization()) { 806 if (collector) { 807 delete collector; // Be nice in embedded situation 808 } 809 vm_shutdown_during_initialization("Could not create CMS collector"); 810 return false; 811 } 812 return true; // success 813 } 814 815 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) { 816 assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock"); 817 818 MutexLocker ml(Heap_lock); 819 // Read the GC counts while holding the Heap_lock 820 unsigned int full_gc_count_before = total_full_collections(); 821 unsigned int gc_count_before = total_collections(); 822 { 823 MutexUnlocker mu(Heap_lock); 824 VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause); 825 VMThread::execute(&op); 826 } 827 } 828 #endif // INCLUDE_ALL_GCS 829 830 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) { 831 do_full_collection(clear_all_soft_refs, OldGen); 832 } 833 834 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs, 835 GenerationType last_generation) { 836 GenerationType local_last_generation; 837 if (!incremental_collection_will_fail(false /* don't consult_young */) && 838 gc_cause() == GCCause::_gc_locker) { 839 local_last_generation = YoungGen; 840 } else { 841 local_last_generation = last_generation; 842 } 843 844 do_collection(true, // full 845 clear_all_soft_refs, // clear_all_soft_refs 846 0, // size 847 false, // is_tlab 848 local_last_generation); // last_generation 849 // Hack XXX FIX ME !!! 850 // A scavenge may not have been attempted, or may have 851 // been attempted and failed, because the old gen was too full 852 if (local_last_generation == YoungGen && gc_cause() == GCCause::_gc_locker && 853 incremental_collection_will_fail(false /* don't consult_young */)) { 854 log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed"); 855 // This time allow the old gen to be collected as well 856 do_collection(true, // full 857 clear_all_soft_refs, // clear_all_soft_refs 858 0, // size 859 false, // is_tlab 860 OldGen); // last_generation 861 } 862 } 863 864 bool GenCollectedHeap::is_in_young(oop p) { 865 bool result = ((HeapWord*)p) < _old_gen->reserved().start(); 866 assert(result == _young_gen->is_in_reserved(p), 867 "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p)); 868 return result; 869 } 870 871 // Returns "TRUE" iff "p" points into the committed areas of the heap. 872 bool GenCollectedHeap::is_in(const void* p) const { 873 return _young_gen->is_in(p) || _old_gen->is_in(p); 874 } 875 876 #ifdef ASSERT 877 // Don't implement this by using is_in_young(). This method is used 878 // in some cases to check that is_in_young() is correct. 879 bool GenCollectedHeap::is_in_partial_collection(const void* p) { 880 assert(is_in_reserved(p) || p == NULL, 881 "Does not work if address is non-null and outside of the heap"); 882 return p < _young_gen->reserved().end() && p != NULL; 883 } 884 #endif 885 886 void GenCollectedHeap::oop_iterate_no_header(OopClosure* cl) { 887 NoHeaderExtendedOopClosure no_header_cl(cl); 888 oop_iterate(&no_header_cl); 889 } 890 891 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) { 892 _young_gen->oop_iterate(cl); 893 _old_gen->oop_iterate(cl); 894 } 895 896 void GenCollectedHeap::object_iterate(ObjectClosure* cl) { 897 _young_gen->object_iterate(cl); 898 _old_gen->object_iterate(cl); 899 } 900 901 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) { 902 _young_gen->safe_object_iterate(cl); 903 _old_gen->safe_object_iterate(cl); 904 } 905 906 Space* GenCollectedHeap::space_containing(const void* addr) const { 907 Space* res = _young_gen->space_containing(addr); 908 if (res != NULL) { 909 return res; 910 } 911 res = _old_gen->space_containing(addr); 912 assert(res != NULL, "Could not find containing space"); 913 return res; 914 } 915 916 HeapWord* GenCollectedHeap::block_start(const void* addr) const { 917 assert(is_in_reserved(addr), "block_start of address outside of heap"); 918 if (_young_gen->is_in_reserved(addr)) { 919 assert(_young_gen->is_in(addr), "addr should be in allocated part of generation"); 920 return _young_gen->block_start(addr); 921 } 922 923 assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address"); 924 assert(_old_gen->is_in(addr), "addr should be in allocated part of generation"); 925 return _old_gen->block_start(addr); 926 } 927 928 size_t GenCollectedHeap::block_size(const HeapWord* addr) const { 929 assert(is_in_reserved(addr), "block_size of address outside of heap"); 930 if (_young_gen->is_in_reserved(addr)) { 931 assert(_young_gen->is_in(addr), "addr should be in allocated part of generation"); 932 return _young_gen->block_size(addr); 933 } 934 935 assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address"); 936 assert(_old_gen->is_in(addr), "addr should be in allocated part of generation"); 937 return _old_gen->block_size(addr); 938 } 939 940 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const { 941 assert(is_in_reserved(addr), "block_is_obj of address outside of heap"); 942 assert(block_start(addr) == addr, "addr must be a block start"); 943 if (_young_gen->is_in_reserved(addr)) { 944 return _young_gen->block_is_obj(addr); 945 } 946 947 assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address"); 948 return _old_gen->block_is_obj(addr); 949 } 950 951 bool GenCollectedHeap::supports_tlab_allocation() const { 952 assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!"); 953 return _young_gen->supports_tlab_allocation(); 954 } 955 956 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const { 957 assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!"); 958 if (_young_gen->supports_tlab_allocation()) { 959 return _young_gen->tlab_capacity(); 960 } 961 return 0; 962 } 963 964 size_t GenCollectedHeap::tlab_used(Thread* thr) const { 965 assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!"); 966 if (_young_gen->supports_tlab_allocation()) { 967 return _young_gen->tlab_used(); 968 } 969 return 0; 970 } 971 972 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const { 973 assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!"); 974 if (_young_gen->supports_tlab_allocation()) { 975 return _young_gen->unsafe_max_tlab_alloc(); 976 } 977 return 0; 978 } 979 980 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) { 981 bool gc_overhead_limit_was_exceeded; 982 return gen_policy()->mem_allocate_work(size /* size */, 983 true /* is_tlab */, 984 &gc_overhead_limit_was_exceeded); 985 } 986 987 // Requires "*prev_ptr" to be non-NULL. Deletes and a block of minimal size 988 // from the list headed by "*prev_ptr". 989 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) { 990 bool first = true; 991 size_t min_size = 0; // "first" makes this conceptually infinite. 992 ScratchBlock **smallest_ptr, *smallest; 993 ScratchBlock *cur = *prev_ptr; 994 while (cur) { 995 assert(*prev_ptr == cur, "just checking"); 996 if (first || cur->num_words < min_size) { 997 smallest_ptr = prev_ptr; 998 smallest = cur; 999 min_size = smallest->num_words; 1000 first = false; 1001 } 1002 prev_ptr = &cur->next; 1003 cur = cur->next; 1004 } 1005 smallest = *smallest_ptr; 1006 *smallest_ptr = smallest->next; 1007 return smallest; 1008 } 1009 1010 // Sort the scratch block list headed by res into decreasing size order, 1011 // and set "res" to the result. 1012 static void sort_scratch_list(ScratchBlock*& list) { 1013 ScratchBlock* sorted = NULL; 1014 ScratchBlock* unsorted = list; 1015 while (unsorted) { 1016 ScratchBlock *smallest = removeSmallestScratch(&unsorted); 1017 smallest->next = sorted; 1018 sorted = smallest; 1019 } 1020 list = sorted; 1021 } 1022 1023 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor, 1024 size_t max_alloc_words) { 1025 ScratchBlock* res = NULL; 1026 _young_gen->contribute_scratch(res, requestor, max_alloc_words); 1027 _old_gen->contribute_scratch(res, requestor, max_alloc_words); 1028 sort_scratch_list(res); 1029 return res; 1030 } 1031 1032 void GenCollectedHeap::release_scratch() { 1033 _young_gen->reset_scratch(); 1034 _old_gen->reset_scratch(); 1035 } 1036 1037 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure { 1038 void do_generation(Generation* gen) { 1039 gen->prepare_for_verify(); 1040 } 1041 }; 1042 1043 void GenCollectedHeap::prepare_for_verify() { 1044 ensure_parsability(false); // no need to retire TLABs 1045 GenPrepareForVerifyClosure blk; 1046 generation_iterate(&blk, false); 1047 } 1048 1049 void GenCollectedHeap::generation_iterate(GenClosure* cl, 1050 bool old_to_young) { 1051 if (old_to_young) { 1052 cl->do_generation(_old_gen); 1053 cl->do_generation(_young_gen); 1054 } else { 1055 cl->do_generation(_young_gen); 1056 cl->do_generation(_old_gen); 1057 } 1058 } 1059 1060 bool GenCollectedHeap::is_maximal_no_gc() const { 1061 return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc(); 1062 } 1063 1064 void GenCollectedHeap::save_marks() { 1065 _young_gen->save_marks(); 1066 _old_gen->save_marks(); 1067 } 1068 1069 GenCollectedHeap* GenCollectedHeap::heap() { 1070 CollectedHeap* heap = Universe::heap(); 1071 assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()"); 1072 assert(heap->kind() == CollectedHeap::GenCollectedHeap, "Not a GenCollectedHeap"); 1073 return (GenCollectedHeap*)heap; 1074 } 1075 1076 void GenCollectedHeap::prepare_for_compaction() { 1077 // Start by compacting into same gen. 1078 CompactPoint cp(_old_gen); 1079 _old_gen->prepare_for_compaction(&cp); 1080 _young_gen->prepare_for_compaction(&cp); 1081 } 1082 1083 void GenCollectedHeap::verify(VerifyOption option /* ignored */) { 1084 log_debug(gc, verify)("%s", _old_gen->name()); 1085 _old_gen->verify(); 1086 1087 log_debug(gc, verify)("%s", _old_gen->name()); 1088 _young_gen->verify(); 1089 1090 log_debug(gc, verify)("RemSet"); 1091 rem_set()->verify(); 1092 } 1093 1094 void GenCollectedHeap::print_on(outputStream* st) const { 1095 _young_gen->print_on(st); 1096 _old_gen->print_on(st); 1097 MetaspaceAux::print_on(st); 1098 } 1099 1100 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const { 1101 if (workers() != NULL) { 1102 workers()->threads_do(tc); 1103 } 1104 #if INCLUDE_ALL_GCS 1105 if (UseConcMarkSweepGC) { 1106 ConcurrentMarkSweepThread::threads_do(tc); 1107 } 1108 #endif // INCLUDE_ALL_GCS 1109 } 1110 1111 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const { 1112 #if INCLUDE_ALL_GCS 1113 if (UseConcMarkSweepGC) { 1114 workers()->print_worker_threads_on(st); 1115 ConcurrentMarkSweepThread::print_all_on(st); 1116 } 1117 #endif // INCLUDE_ALL_GCS 1118 } 1119 1120 void GenCollectedHeap::print_on_error(outputStream* st) const { 1121 this->CollectedHeap::print_on_error(st); 1122 1123 #if INCLUDE_ALL_GCS 1124 if (UseConcMarkSweepGC) { 1125 st->cr(); 1126 CMSCollector::print_on_error(st); 1127 } 1128 #endif // INCLUDE_ALL_GCS 1129 } 1130 1131 void GenCollectedHeap::print_tracing_info() const { 1132 if (TraceYoungGenTime) { 1133 _young_gen->print_summary_info(); 1134 } 1135 if (TraceOldGenTime) { 1136 _old_gen->print_summary_info(); 1137 } 1138 } 1139 1140 void GenCollectedHeap::print_heap_change(size_t young_prev_used, size_t old_prev_used) const { 1141 log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K(" SIZE_FORMAT "K)", 1142 _young_gen->short_name(), young_prev_used / K, _young_gen->used() /K, _young_gen->capacity() /K); 1143 log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K(" SIZE_FORMAT "K)", 1144 _old_gen->short_name(), old_prev_used / K, _old_gen->used() /K, _old_gen->capacity() /K); 1145 } 1146 1147 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure { 1148 private: 1149 bool _full; 1150 public: 1151 void do_generation(Generation* gen) { 1152 gen->gc_prologue(_full); 1153 } 1154 GenGCPrologueClosure(bool full) : _full(full) {}; 1155 }; 1156 1157 void GenCollectedHeap::gc_prologue(bool full) { 1158 assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer"); 1159 1160 always_do_update_barrier = false; 1161 // Fill TLAB's and such 1162 CollectedHeap::accumulate_statistics_all_tlabs(); 1163 ensure_parsability(true); // retire TLABs 1164 1165 // Walk generations 1166 GenGCPrologueClosure blk(full); 1167 generation_iterate(&blk, false); // not old-to-young. 1168 }; 1169 1170 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure { 1171 private: 1172 bool _full; 1173 public: 1174 void do_generation(Generation* gen) { 1175 gen->gc_epilogue(_full); 1176 } 1177 GenGCEpilogueClosure(bool full) : _full(full) {}; 1178 }; 1179 1180 void GenCollectedHeap::gc_epilogue(bool full) { 1181 #if defined(COMPILER2) || INCLUDE_JVMCI 1182 assert(DerivedPointerTable::is_empty(), "derived pointer present"); 1183 size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr())); 1184 guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps"); 1185 #endif /* COMPILER2 || INCLUDE_JVMCI */ 1186 1187 resize_all_tlabs(); 1188 1189 GenGCEpilogueClosure blk(full); 1190 generation_iterate(&blk, false); // not old-to-young. 1191 1192 if (!CleanChunkPoolAsync) { 1193 Chunk::clean_chunk_pool(); 1194 } 1195 1196 MetaspaceCounters::update_performance_counters(); 1197 CompressedClassSpaceCounters::update_performance_counters(); 1198 1199 always_do_update_barrier = UseConcMarkSweepGC; 1200 }; 1201 1202 #ifndef PRODUCT 1203 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure { 1204 private: 1205 public: 1206 void do_generation(Generation* gen) { 1207 gen->record_spaces_top(); 1208 } 1209 }; 1210 1211 void GenCollectedHeap::record_gen_tops_before_GC() { 1212 if (ZapUnusedHeapArea) { 1213 GenGCSaveTopsBeforeGCClosure blk; 1214 generation_iterate(&blk, false); // not old-to-young. 1215 } 1216 } 1217 #endif // not PRODUCT 1218 1219 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure { 1220 public: 1221 void do_generation(Generation* gen) { 1222 gen->ensure_parsability(); 1223 } 1224 }; 1225 1226 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) { 1227 CollectedHeap::ensure_parsability(retire_tlabs); 1228 GenEnsureParsabilityClosure ep_cl; 1229 generation_iterate(&ep_cl, false); 1230 } 1231 1232 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen, 1233 oop obj, 1234 size_t obj_size) { 1235 guarantee(old_gen == _old_gen, "We only get here with an old generation"); 1236 assert(obj_size == (size_t)obj->size(), "bad obj_size passed in"); 1237 HeapWord* result = NULL; 1238 1239 result = old_gen->expand_and_allocate(obj_size, false); 1240 1241 if (result != NULL) { 1242 Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size); 1243 } 1244 return oop(result); 1245 } 1246 1247 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure { 1248 jlong _time; // in ms 1249 jlong _now; // in ms 1250 1251 public: 1252 GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { } 1253 1254 jlong time() { return _time; } 1255 1256 void do_generation(Generation* gen) { 1257 _time = MIN2(_time, gen->time_of_last_gc(_now)); 1258 } 1259 }; 1260 1261 jlong GenCollectedHeap::millis_since_last_gc() { 1262 // We need a monotonically non-decreasing time in ms but 1263 // os::javaTimeMillis() does not guarantee monotonicity. 1264 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; 1265 GenTimeOfLastGCClosure tolgc_cl(now); 1266 // iterate over generations getting the oldest 1267 // time that a generation was collected 1268 generation_iterate(&tolgc_cl, false); 1269 1270 // javaTimeNanos() is guaranteed to be monotonically non-decreasing 1271 // provided the underlying platform provides such a time source 1272 // (and it is bug free). So we still have to guard against getting 1273 // back a time later than 'now'. 1274 jlong retVal = now - tolgc_cl.time(); 1275 if (retVal < 0) { 1276 NOT_PRODUCT(warning("time warp: " JLONG_FORMAT, retVal);) 1277 return 0; 1278 } 1279 return retVal; 1280 } 1281 1282 void GenCollectedHeap::stop() { 1283 #if INCLUDE_ALL_GCS 1284 if (UseConcMarkSweepGC) { 1285 ConcurrentMarkSweepThread::stop(); 1286 } 1287 #endif 1288 }