1 /* 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/systemDictionary.hpp" 27 #include "classfile/vmSymbols.hpp" 28 #include "code/codeCache.hpp" 29 #include "code/compiledIC.hpp" 30 #include "code/scopeDesc.hpp" 31 #include "code/vtableStubs.hpp" 32 #include "compiler/abstractCompiler.hpp" 33 #include "compiler/compileBroker.hpp" 34 #include "compiler/compilerOracle.hpp" 35 #include "compiler/disassembler.hpp" 36 #include "gc/shared/gcLocker.inline.hpp" 37 #include "interpreter/interpreter.hpp" 38 #include "interpreter/interpreterRuntime.hpp" 39 #include "memory/universe.inline.hpp" 40 #include "oops/oop.inline.hpp" 41 #include "prims/forte.hpp" 42 #include "prims/jvmtiExport.hpp" 43 #include "prims/jvmtiRedefineClassesTrace.hpp" 44 #include "prims/methodHandles.hpp" 45 #include "prims/nativeLookup.hpp" 46 #include "runtime/arguments.hpp" 47 #include "runtime/atomic.inline.hpp" 48 #include "runtime/biasedLocking.hpp" 49 #include "runtime/handles.inline.hpp" 50 #include "runtime/init.hpp" 51 #include "runtime/interfaceSupport.hpp" 52 #include "runtime/javaCalls.hpp" 53 #include "runtime/sharedRuntime.hpp" 54 #include "runtime/stubRoutines.hpp" 55 #include "runtime/vframe.hpp" 56 #include "runtime/vframeArray.hpp" 57 #include "utilities/copy.hpp" 58 #include "utilities/dtrace.hpp" 59 #include "utilities/events.hpp" 60 #include "utilities/hashtable.inline.hpp" 61 #include "utilities/macros.hpp" 62 #include "utilities/xmlstream.hpp" 63 #ifdef COMPILER1 64 #include "c1/c1_Runtime1.hpp" 65 #endif 66 67 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC 68 69 // Shared stub locations 70 RuntimeStub* SharedRuntime::_wrong_method_blob; 71 RuntimeStub* SharedRuntime::_wrong_method_abstract_blob; 72 RuntimeStub* SharedRuntime::_ic_miss_blob; 73 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob; 74 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob; 75 RuntimeStub* SharedRuntime::_resolve_static_call_blob; 76 77 DeoptimizationBlob* SharedRuntime::_deopt_blob; 78 SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob; 79 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob; 80 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob; 81 82 #ifdef COMPILER2 83 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob; 84 #endif // COMPILER2 85 86 87 //----------------------------generate_stubs----------------------------------- 88 void SharedRuntime::generate_stubs() { 89 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub"); 90 _wrong_method_abstract_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub"); 91 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub"); 92 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call"); 93 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call"); 94 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call"); 95 96 #ifdef COMPILER2 97 // Vectors are generated only by C2. 98 if (is_wide_vector(MaxVectorSize)) { 99 _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP); 100 } 101 #endif // COMPILER2 102 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP); 103 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN); 104 105 generate_deopt_blob(); 106 107 #ifdef COMPILER2 108 generate_uncommon_trap_blob(); 109 #endif // COMPILER2 110 } 111 112 #include <math.h> 113 114 // Implementation of SharedRuntime 115 116 #ifndef PRODUCT 117 // For statistics 118 int SharedRuntime::_ic_miss_ctr = 0; 119 int SharedRuntime::_wrong_method_ctr = 0; 120 int SharedRuntime::_resolve_static_ctr = 0; 121 int SharedRuntime::_resolve_virtual_ctr = 0; 122 int SharedRuntime::_resolve_opt_virtual_ctr = 0; 123 int SharedRuntime::_implicit_null_throws = 0; 124 int SharedRuntime::_implicit_div0_throws = 0; 125 int SharedRuntime::_throw_null_ctr = 0; 126 127 int SharedRuntime::_nof_normal_calls = 0; 128 int SharedRuntime::_nof_optimized_calls = 0; 129 int SharedRuntime::_nof_inlined_calls = 0; 130 int SharedRuntime::_nof_megamorphic_calls = 0; 131 int SharedRuntime::_nof_static_calls = 0; 132 int SharedRuntime::_nof_inlined_static_calls = 0; 133 int SharedRuntime::_nof_interface_calls = 0; 134 int SharedRuntime::_nof_optimized_interface_calls = 0; 135 int SharedRuntime::_nof_inlined_interface_calls = 0; 136 int SharedRuntime::_nof_megamorphic_interface_calls = 0; 137 int SharedRuntime::_nof_removable_exceptions = 0; 138 139 int SharedRuntime::_new_instance_ctr=0; 140 int SharedRuntime::_new_array_ctr=0; 141 int SharedRuntime::_multi1_ctr=0; 142 int SharedRuntime::_multi2_ctr=0; 143 int SharedRuntime::_multi3_ctr=0; 144 int SharedRuntime::_multi4_ctr=0; 145 int SharedRuntime::_multi5_ctr=0; 146 int SharedRuntime::_mon_enter_stub_ctr=0; 147 int SharedRuntime::_mon_exit_stub_ctr=0; 148 int SharedRuntime::_mon_enter_ctr=0; 149 int SharedRuntime::_mon_exit_ctr=0; 150 int SharedRuntime::_partial_subtype_ctr=0; 151 int SharedRuntime::_jbyte_array_copy_ctr=0; 152 int SharedRuntime::_jshort_array_copy_ctr=0; 153 int SharedRuntime::_jint_array_copy_ctr=0; 154 int SharedRuntime::_jlong_array_copy_ctr=0; 155 int SharedRuntime::_oop_array_copy_ctr=0; 156 int SharedRuntime::_checkcast_array_copy_ctr=0; 157 int SharedRuntime::_unsafe_array_copy_ctr=0; 158 int SharedRuntime::_generic_array_copy_ctr=0; 159 int SharedRuntime::_slow_array_copy_ctr=0; 160 int SharedRuntime::_find_handler_ctr=0; 161 int SharedRuntime::_rethrow_ctr=0; 162 163 int SharedRuntime::_ICmiss_index = 0; 164 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 165 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 166 167 168 void SharedRuntime::trace_ic_miss(address at) { 169 for (int i = 0; i < _ICmiss_index; i++) { 170 if (_ICmiss_at[i] == at) { 171 _ICmiss_count[i]++; 172 return; 173 } 174 } 175 int index = _ICmiss_index++; 176 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 177 _ICmiss_at[index] = at; 178 _ICmiss_count[index] = 1; 179 } 180 181 void SharedRuntime::print_ic_miss_histogram() { 182 if (ICMissHistogram) { 183 tty->print_cr("IC Miss Histogram:"); 184 int tot_misses = 0; 185 for (int i = 0; i < _ICmiss_index; i++) { 186 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", _ICmiss_at[i], _ICmiss_count[i]); 187 tot_misses += _ICmiss_count[i]; 188 } 189 tty->print_cr("Total IC misses: %7d", tot_misses); 190 } 191 } 192 #endif // PRODUCT 193 194 #if INCLUDE_ALL_GCS 195 196 // G1 write-barrier pre: executed before a pointer store. 197 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread)) 198 if (orig == NULL) { 199 assert(false, "should be optimized out"); 200 return; 201 } 202 assert(orig->is_oop(true /* ignore mark word */), "Error"); 203 // store the original value that was in the field reference 204 thread->satb_mark_queue().enqueue(orig); 205 JRT_END 206 207 // G1 write-barrier post: executed after a pointer store. 208 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread)) 209 thread->dirty_card_queue().enqueue(card_addr); 210 JRT_END 211 212 #endif // INCLUDE_ALL_GCS 213 214 215 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 216 return x * y; 217 JRT_END 218 219 220 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 221 if (x == min_jlong && y == CONST64(-1)) { 222 return x; 223 } else { 224 return x / y; 225 } 226 JRT_END 227 228 229 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 230 if (x == min_jlong && y == CONST64(-1)) { 231 return 0; 232 } else { 233 return x % y; 234 } 235 JRT_END 236 237 238 const juint float_sign_mask = 0x7FFFFFFF; 239 const juint float_infinity = 0x7F800000; 240 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 241 const julong double_infinity = CONST64(0x7FF0000000000000); 242 243 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 244 #ifdef _WIN64 245 // 64-bit Windows on amd64 returns the wrong values for 246 // infinity operands. 247 union { jfloat f; juint i; } xbits, ybits; 248 xbits.f = x; 249 ybits.f = y; 250 // x Mod Infinity == x unless x is infinity 251 if (((xbits.i & float_sign_mask) != float_infinity) && 252 ((ybits.i & float_sign_mask) == float_infinity) ) { 253 return x; 254 } 255 #endif 256 return ((jfloat)fmod((double)x,(double)y)); 257 JRT_END 258 259 260 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 261 #ifdef _WIN64 262 union { jdouble d; julong l; } xbits, ybits; 263 xbits.d = x; 264 ybits.d = y; 265 // x Mod Infinity == x unless x is infinity 266 if (((xbits.l & double_sign_mask) != double_infinity) && 267 ((ybits.l & double_sign_mask) == double_infinity) ) { 268 return x; 269 } 270 #endif 271 return ((jdouble)fmod((double)x,(double)y)); 272 JRT_END 273 274 #ifdef __SOFTFP__ 275 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 276 return x + y; 277 JRT_END 278 279 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 280 return x - y; 281 JRT_END 282 283 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 284 return x * y; 285 JRT_END 286 287 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 288 return x / y; 289 JRT_END 290 291 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 292 return x + y; 293 JRT_END 294 295 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 296 return x - y; 297 JRT_END 298 299 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 300 return x * y; 301 JRT_END 302 303 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 304 return x / y; 305 JRT_END 306 307 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 308 return (jfloat)x; 309 JRT_END 310 311 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 312 return (jdouble)x; 313 JRT_END 314 315 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 316 return (jdouble)x; 317 JRT_END 318 319 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 320 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 321 JRT_END 322 323 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 324 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 325 JRT_END 326 327 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 328 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 329 JRT_END 330 331 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 332 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 333 JRT_END 334 335 // Functions to return the opposite of the aeabi functions for nan. 336 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 337 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 338 JRT_END 339 340 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 341 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 342 JRT_END 343 344 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 345 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 346 JRT_END 347 348 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 349 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 350 JRT_END 351 352 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 353 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 354 JRT_END 355 356 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 357 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 358 JRT_END 359 360 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 361 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 362 JRT_END 363 364 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 365 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 366 JRT_END 367 368 // Intrinsics make gcc generate code for these. 369 float SharedRuntime::fneg(float f) { 370 return -f; 371 } 372 373 double SharedRuntime::dneg(double f) { 374 return -f; 375 } 376 377 #endif // __SOFTFP__ 378 379 #if defined(__SOFTFP__) || defined(E500V2) 380 // Intrinsics make gcc generate code for these. 381 double SharedRuntime::dabs(double f) { 382 return (f <= (double)0.0) ? (double)0.0 - f : f; 383 } 384 385 #endif 386 387 #if defined(__SOFTFP__) || defined(PPC32) 388 double SharedRuntime::dsqrt(double f) { 389 return sqrt(f); 390 } 391 #endif 392 393 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 394 if (g_isnan(x)) 395 return 0; 396 if (x >= (jfloat) max_jint) 397 return max_jint; 398 if (x <= (jfloat) min_jint) 399 return min_jint; 400 return (jint) x; 401 JRT_END 402 403 404 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 405 if (g_isnan(x)) 406 return 0; 407 if (x >= (jfloat) max_jlong) 408 return max_jlong; 409 if (x <= (jfloat) min_jlong) 410 return min_jlong; 411 return (jlong) x; 412 JRT_END 413 414 415 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 416 if (g_isnan(x)) 417 return 0; 418 if (x >= (jdouble) max_jint) 419 return max_jint; 420 if (x <= (jdouble) min_jint) 421 return min_jint; 422 return (jint) x; 423 JRT_END 424 425 426 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 427 if (g_isnan(x)) 428 return 0; 429 if (x >= (jdouble) max_jlong) 430 return max_jlong; 431 if (x <= (jdouble) min_jlong) 432 return min_jlong; 433 return (jlong) x; 434 JRT_END 435 436 437 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 438 return (jfloat)x; 439 JRT_END 440 441 442 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 443 return (jfloat)x; 444 JRT_END 445 446 447 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 448 return (jdouble)x; 449 JRT_END 450 451 // Exception handling across interpreter/compiler boundaries 452 // 453 // exception_handler_for_return_address(...) returns the continuation address. 454 // The continuation address is the entry point of the exception handler of the 455 // previous frame depending on the return address. 456 457 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) { 458 assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address)); 459 assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 460 461 // Reset method handle flag. 462 thread->set_is_method_handle_return(false); 463 464 // The fastest case first 465 CodeBlob* blob = CodeCache::find_blob(return_address); 466 nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL; 467 if (nm != NULL) { 468 // Set flag if return address is a method handle call site. 469 thread->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 470 // native nmethods don't have exception handlers 471 assert(!nm->is_native_method(), "no exception handler"); 472 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 473 if (nm->is_deopt_pc(return_address)) { 474 // If we come here because of a stack overflow, the stack may be 475 // unguarded. Reguard the stack otherwise if we return to the 476 // deopt blob and the stack bang causes a stack overflow we 477 // crash. 478 bool guard_pages_enabled = thread->stack_yellow_zone_enabled(); 479 if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack(); 480 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 481 return SharedRuntime::deopt_blob()->unpack_with_exception(); 482 } else { 483 return nm->exception_begin(); 484 } 485 } 486 487 // Entry code 488 if (StubRoutines::returns_to_call_stub(return_address)) { 489 return StubRoutines::catch_exception_entry(); 490 } 491 // Interpreted code 492 if (Interpreter::contains(return_address)) { 493 return Interpreter::rethrow_exception_entry(); 494 } 495 496 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub"); 497 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!"); 498 499 #ifndef PRODUCT 500 { ResourceMark rm; 501 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address); 502 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 503 tty->print_cr("b) other problem"); 504 } 505 #endif // PRODUCT 506 507 ShouldNotReachHere(); 508 return NULL; 509 } 510 511 512 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address)) 513 return raw_exception_handler_for_return_address(thread, return_address); 514 JRT_END 515 516 517 address SharedRuntime::get_poll_stub(address pc) { 518 address stub; 519 // Look up the code blob 520 CodeBlob *cb = CodeCache::find_blob(pc); 521 522 // Should be an nmethod 523 assert(cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); 524 525 // Look up the relocation information 526 assert(((nmethod*)cb)->is_at_poll_or_poll_return(pc), 527 "safepoint polling: type must be poll"); 528 529 assert(((NativeInstruction*)pc)->is_safepoint_poll(), 530 "Only polling locations are used for safepoint"); 531 532 bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc); 533 bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors(); 534 if (at_poll_return) { 535 assert(SharedRuntime::polling_page_return_handler_blob() != NULL, 536 "polling page return stub not created yet"); 537 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 538 } else if (has_wide_vectors) { 539 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL, 540 "polling page vectors safepoint stub not created yet"); 541 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 542 } else { 543 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL, 544 "polling page safepoint stub not created yet"); 545 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 546 } 547 #ifndef PRODUCT 548 if (TraceSafepoint) { 549 char buf[256]; 550 jio_snprintf(buf, sizeof(buf), 551 "... found polling page %s exception at pc = " 552 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 553 at_poll_return ? "return" : "loop", 554 (intptr_t)pc, (intptr_t)stub); 555 tty->print_raw_cr(buf); 556 } 557 #endif // PRODUCT 558 return stub; 559 } 560 561 562 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) { 563 assert(caller.is_interpreted_frame(), ""); 564 int args_size = ArgumentSizeComputer(sig).size() + 1; 565 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack"); 566 oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1)); 567 assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop"); 568 return result; 569 } 570 571 572 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) { 573 if (JvmtiExport::can_post_on_exceptions()) { 574 vframeStream vfst(thread, true); 575 methodHandle method = methodHandle(thread, vfst.method()); 576 address bcp = method()->bcp_from(vfst.bci()); 577 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception()); 578 } 579 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception); 580 } 581 582 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) { 583 Handle h_exception = Exceptions::new_exception(thread, name, message); 584 throw_and_post_jvmti_exception(thread, h_exception); 585 } 586 587 // The interpreter code to call this tracing function is only 588 // called/generated when TraceRedefineClasses has the right bits 589 // set. Since obsolete methods are never compiled, we don't have 590 // to modify the compilers to generate calls to this function. 591 // 592 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 593 JavaThread* thread, Method* method)) 594 assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call"); 595 596 if (method->is_obsolete()) { 597 // We are calling an obsolete method, but this is not necessarily 598 // an error. Our method could have been redefined just after we 599 // fetched the Method* from the constant pool. 600 601 // RC_TRACE macro has an embedded ResourceMark 602 RC_TRACE_WITH_THREAD(0x00001000, thread, 603 ("calling obsolete method '%s'", 604 method->name_and_sig_as_C_string())); 605 if (RC_TRACE_ENABLED(0x00002000)) { 606 // this option is provided to debug calls to obsolete methods 607 guarantee(false, "faulting at call to an obsolete method."); 608 } 609 } 610 return 0; 611 JRT_END 612 613 // ret_pc points into caller; we are returning caller's exception handler 614 // for given exception 615 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 616 bool force_unwind, bool top_frame_only) { 617 assert(nm != NULL, "must exist"); 618 ResourceMark rm; 619 620 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 621 // determine handler bci, if any 622 EXCEPTION_MARK; 623 624 int handler_bci = -1; 625 int scope_depth = 0; 626 if (!force_unwind) { 627 int bci = sd->bci(); 628 bool recursive_exception = false; 629 do { 630 bool skip_scope_increment = false; 631 // exception handler lookup 632 KlassHandle ek (THREAD, exception->klass()); 633 methodHandle mh(THREAD, sd->method()); 634 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 635 if (HAS_PENDING_EXCEPTION) { 636 recursive_exception = true; 637 // We threw an exception while trying to find the exception handler. 638 // Transfer the new exception to the exception handle which will 639 // be set into thread local storage, and do another lookup for an 640 // exception handler for this exception, this time starting at the 641 // BCI of the exception handler which caused the exception to be 642 // thrown (bugs 4307310 and 4546590). Set "exception" reference 643 // argument to ensure that the correct exception is thrown (4870175). 644 exception = Handle(THREAD, PENDING_EXCEPTION); 645 CLEAR_PENDING_EXCEPTION; 646 if (handler_bci >= 0) { 647 bci = handler_bci; 648 handler_bci = -1; 649 skip_scope_increment = true; 650 } 651 } 652 else { 653 recursive_exception = false; 654 } 655 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 656 sd = sd->sender(); 657 if (sd != NULL) { 658 bci = sd->bci(); 659 } 660 ++scope_depth; 661 } 662 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL)); 663 } 664 665 // found handling method => lookup exception handler 666 int catch_pco = ret_pc - nm->code_begin(); 667 668 ExceptionHandlerTable table(nm); 669 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 670 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) { 671 // Allow abbreviated catch tables. The idea is to allow a method 672 // to materialize its exceptions without committing to the exact 673 // routing of exceptions. In particular this is needed for adding 674 // a synthetic handler to unlock monitors when inlining 675 // synchronized methods since the unlock path isn't represented in 676 // the bytecodes. 677 t = table.entry_for(catch_pco, -1, 0); 678 } 679 680 #ifdef COMPILER1 681 if (t == NULL && nm->is_compiled_by_c1()) { 682 assert(nm->unwind_handler_begin() != NULL, ""); 683 return nm->unwind_handler_begin(); 684 } 685 #endif 686 687 if (t == NULL) { 688 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci); 689 tty->print_cr(" Exception:"); 690 exception->print(); 691 tty->cr(); 692 tty->print_cr(" Compiled exception table :"); 693 table.print(); 694 nm->print_code(); 695 guarantee(false, "missing exception handler"); 696 return NULL; 697 } 698 699 return nm->code_begin() + t->pco(); 700 } 701 702 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread)) 703 // These errors occur only at call sites 704 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError()); 705 JRT_END 706 707 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread)) 708 // These errors occur only at call sites 709 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 710 JRT_END 711 712 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread)) 713 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 714 JRT_END 715 716 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread)) 717 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); 718 JRT_END 719 720 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread)) 721 // This entry point is effectively only used for NullPointerExceptions which occur at inline 722 // cache sites (when the callee activation is not yet set up) so we are at a call site 723 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); 724 JRT_END 725 726 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread)) 727 // We avoid using the normal exception construction in this case because 728 // it performs an upcall to Java, and we're already out of stack space. 729 Klass* k = SystemDictionary::StackOverflowError_klass(); 730 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 731 Handle exception (thread, exception_oop); 732 if (StackTraceInThrowable) { 733 java_lang_Throwable::fill_in_stack_trace(exception); 734 } 735 // Increment counter for hs_err file reporting 736 Atomic::inc(&Exceptions::_stack_overflow_errors); 737 throw_and_post_jvmti_exception(thread, exception); 738 JRT_END 739 740 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread, 741 address pc, 742 SharedRuntime::ImplicitExceptionKind exception_kind) 743 { 744 address target_pc = NULL; 745 746 if (Interpreter::contains(pc)) { 747 #ifdef CC_INTERP 748 // C++ interpreter doesn't throw implicit exceptions 749 ShouldNotReachHere(); 750 #else 751 switch (exception_kind) { 752 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 753 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 754 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 755 default: ShouldNotReachHere(); 756 } 757 #endif // !CC_INTERP 758 } else { 759 switch (exception_kind) { 760 case STACK_OVERFLOW: { 761 // Stack overflow only occurs upon frame setup; the callee is 762 // going to be unwound. Dispatch to a shared runtime stub 763 // which will cause the StackOverflowError to be fabricated 764 // and processed. 765 // Stack overflow should never occur during deoptimization: 766 // the compiled method bangs the stack by as much as the 767 // interpreter would need in case of a deoptimization. The 768 // deoptimization blob and uncommon trap blob bang the stack 769 // in a debug VM to verify the correctness of the compiled 770 // method stack banging. 771 assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap"); 772 Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc); 773 return StubRoutines::throw_StackOverflowError_entry(); 774 } 775 776 case IMPLICIT_NULL: { 777 if (VtableStubs::contains(pc)) { 778 // We haven't yet entered the callee frame. Fabricate an 779 // exception and begin dispatching it in the caller. Since 780 // the caller was at a call site, it's safe to destroy all 781 // caller-saved registers, as these entry points do. 782 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 783 784 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error. 785 if (vt_stub == NULL) return NULL; 786 787 if (vt_stub->is_abstract_method_error(pc)) { 788 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 789 Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc); 790 return StubRoutines::throw_AbstractMethodError_entry(); 791 } else { 792 Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc); 793 return StubRoutines::throw_NullPointerException_at_call_entry(); 794 } 795 } else { 796 CodeBlob* cb = CodeCache::find_blob(pc); 797 798 // If code blob is NULL, then return NULL to signal handler to report the SEGV error. 799 if (cb == NULL) return NULL; 800 801 // Exception happened in CodeCache. Must be either: 802 // 1. Inline-cache check in C2I handler blob, 803 // 2. Inline-cache check in nmethod, or 804 // 3. Implicit null exception in nmethod 805 806 if (!cb->is_nmethod()) { 807 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 808 if (!is_in_blob) { 809 cb->print(); 810 fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc)); 811 } 812 Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc); 813 // There is no handler here, so we will simply unwind. 814 return StubRoutines::throw_NullPointerException_at_call_entry(); 815 } 816 817 // Otherwise, it's an nmethod. Consult its exception handlers. 818 nmethod* nm = (nmethod*)cb; 819 if (nm->inlinecache_check_contains(pc)) { 820 // exception happened inside inline-cache check code 821 // => the nmethod is not yet active (i.e., the frame 822 // is not set up yet) => use return address pushed by 823 // caller => don't push another return address 824 Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc); 825 return StubRoutines::throw_NullPointerException_at_call_entry(); 826 } 827 828 if (nm->method()->is_method_handle_intrinsic()) { 829 // exception happened inside MH dispatch code, similar to a vtable stub 830 Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc); 831 return StubRoutines::throw_NullPointerException_at_call_entry(); 832 } 833 834 #ifndef PRODUCT 835 _implicit_null_throws++; 836 #endif 837 target_pc = nm->continuation_for_implicit_exception(pc); 838 // If there's an unexpected fault, target_pc might be NULL, 839 // in which case we want to fall through into the normal 840 // error handling code. 841 } 842 843 break; // fall through 844 } 845 846 847 case IMPLICIT_DIVIDE_BY_ZERO: { 848 nmethod* nm = CodeCache::find_nmethod(pc); 849 guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions"); 850 #ifndef PRODUCT 851 _implicit_div0_throws++; 852 #endif 853 target_pc = nm->continuation_for_implicit_exception(pc); 854 // If there's an unexpected fault, target_pc might be NULL, 855 // in which case we want to fall through into the normal 856 // error handling code. 857 break; // fall through 858 } 859 860 default: ShouldNotReachHere(); 861 } 862 863 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 864 865 // for AbortVMOnException flag 866 NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException")); 867 if (exception_kind == IMPLICIT_NULL) { 868 Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc); 869 } else { 870 Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc); 871 } 872 return target_pc; 873 } 874 875 ShouldNotReachHere(); 876 return NULL; 877 } 878 879 880 /** 881 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 882 * installed in the native function entry of all native Java methods before 883 * they get linked to their actual native methods. 884 * 885 * \note 886 * This method actually never gets called! The reason is because 887 * the interpreter's native entries call NativeLookup::lookup() which 888 * throws the exception when the lookup fails. The exception is then 889 * caught and forwarded on the return from NativeLookup::lookup() call 890 * before the call to the native function. This might change in the future. 891 */ 892 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 893 { 894 // We return a bad value here to make sure that the exception is 895 // forwarded before we look at the return value. 896 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle); 897 } 898 JNI_END 899 900 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 901 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 902 } 903 904 905 #ifndef PRODUCT 906 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2)) 907 const frame f = thread->last_frame(); 908 assert(f.is_interpreted_frame(), "must be an interpreted frame"); 909 #ifndef PRODUCT 910 methodHandle mh(THREAD, f.interpreter_frame_method()); 911 BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2); 912 #endif // !PRODUCT 913 return preserve_this_value; 914 JRT_END 915 #endif // !PRODUCT 916 917 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj)) 918 assert(obj->is_oop(), "must be a valid oop"); 919 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 920 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 921 JRT_END 922 923 924 jlong SharedRuntime::get_java_tid(Thread* thread) { 925 if (thread != NULL) { 926 if (thread->is_Java_thread()) { 927 oop obj = ((JavaThread*)thread)->threadObj(); 928 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj); 929 } 930 } 931 return 0; 932 } 933 934 /** 935 * This function ought to be a void function, but cannot be because 936 * it gets turned into a tail-call on sparc, which runs into dtrace bug 937 * 6254741. Once that is fixed we can remove the dummy return value. 938 */ 939 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) { 940 return dtrace_object_alloc_base(Thread::current(), o, size); 941 } 942 943 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) { 944 assert(DTraceAllocProbes, "wrong call"); 945 Klass* klass = o->klass(); 946 Symbol* name = klass->name(); 947 HOTSPOT_OBJECT_ALLOC( 948 get_java_tid(thread), 949 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 950 return 0; 951 } 952 953 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 954 JavaThread* thread, Method* method)) 955 assert(DTraceMethodProbes, "wrong call"); 956 Symbol* kname = method->klass_name(); 957 Symbol* name = method->name(); 958 Symbol* sig = method->signature(); 959 HOTSPOT_METHOD_ENTRY( 960 get_java_tid(thread), 961 (char *) kname->bytes(), kname->utf8_length(), 962 (char *) name->bytes(), name->utf8_length(), 963 (char *) sig->bytes(), sig->utf8_length()); 964 return 0; 965 JRT_END 966 967 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 968 JavaThread* thread, Method* method)) 969 assert(DTraceMethodProbes, "wrong call"); 970 Symbol* kname = method->klass_name(); 971 Symbol* name = method->name(); 972 Symbol* sig = method->signature(); 973 HOTSPOT_METHOD_RETURN( 974 get_java_tid(thread), 975 (char *) kname->bytes(), kname->utf8_length(), 976 (char *) name->bytes(), name->utf8_length(), 977 (char *) sig->bytes(), sig->utf8_length()); 978 return 0; 979 JRT_END 980 981 982 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 983 // for a call current in progress, i.e., arguments has been pushed on stack 984 // put callee has not been invoked yet. Used by: resolve virtual/static, 985 // vtable updates, etc. Caller frame must be compiled. 986 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 987 ResourceMark rm(THREAD); 988 989 // last java frame on stack (which includes native call frames) 990 vframeStream vfst(thread, true); // Do not skip and javaCalls 991 992 return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD); 993 } 994 995 996 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 997 // for a call current in progress, i.e., arguments has been pushed on stack 998 // but callee has not been invoked yet. Caller frame must be compiled. 999 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread, 1000 vframeStream& vfst, 1001 Bytecodes::Code& bc, 1002 CallInfo& callinfo, TRAPS) { 1003 Handle receiver; 1004 Handle nullHandle; //create a handy null handle for exception returns 1005 1006 assert(!vfst.at_end(), "Java frame must exist"); 1007 1008 // Find caller and bci from vframe 1009 methodHandle caller(THREAD, vfst.method()); 1010 int bci = vfst.bci(); 1011 1012 // Find bytecode 1013 Bytecode_invoke bytecode(caller, bci); 1014 bc = bytecode.invoke_code(); 1015 int bytecode_index = bytecode.index(); 1016 1017 // Find receiver for non-static call 1018 if (bc != Bytecodes::_invokestatic && 1019 bc != Bytecodes::_invokedynamic && 1020 bc != Bytecodes::_invokehandle) { 1021 // This register map must be update since we need to find the receiver for 1022 // compiled frames. The receiver might be in a register. 1023 RegisterMap reg_map2(thread); 1024 frame stubFrame = thread->last_frame(); 1025 // Caller-frame is a compiled frame 1026 frame callerFrame = stubFrame.sender(®_map2); 1027 1028 methodHandle callee = bytecode.static_target(CHECK_(nullHandle)); 1029 if (callee.is_null()) { 1030 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1031 } 1032 // Retrieve from a compiled argument list 1033 receiver = Handle(THREAD, callerFrame.retrieve_receiver(®_map2)); 1034 1035 if (receiver.is_null()) { 1036 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1037 } 1038 } 1039 1040 // Resolve method. This is parameterized by bytecode. 1041 constantPoolHandle constants(THREAD, caller->constants()); 1042 assert(receiver.is_null() || receiver->is_oop(), "wrong receiver"); 1043 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle)); 1044 1045 #ifdef ASSERT 1046 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1047 if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) { 1048 assert(receiver.not_null(), "should have thrown exception"); 1049 KlassHandle receiver_klass(THREAD, receiver->klass()); 1050 Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle)); 1051 // klass is already loaded 1052 KlassHandle static_receiver_klass(THREAD, rk); 1053 // Method handle invokes might have been optimized to a direct call 1054 // so don't check for the receiver class. 1055 // FIXME this weakens the assert too much 1056 methodHandle callee = callinfo.selected_method(); 1057 assert(receiver_klass->is_subtype_of(static_receiver_klass()) || 1058 callee->is_method_handle_intrinsic() || 1059 callee->is_compiled_lambda_form(), 1060 "actual receiver must be subclass of static receiver klass"); 1061 if (receiver_klass->oop_is_instance()) { 1062 if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) { 1063 tty->print_cr("ERROR: Klass not yet initialized!!"); 1064 receiver_klass()->print(); 1065 } 1066 assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized"); 1067 } 1068 } 1069 #endif 1070 1071 return receiver; 1072 } 1073 1074 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) { 1075 ResourceMark rm(THREAD); 1076 // We need first to check if any Java activations (compiled, interpreted) 1077 // exist on the stack since last JavaCall. If not, we need 1078 // to get the target method from the JavaCall wrapper. 1079 vframeStream vfst(thread, true); // Do not skip any javaCalls 1080 methodHandle callee_method; 1081 if (vfst.at_end()) { 1082 // No Java frames were found on stack since we did the JavaCall. 1083 // Hence the stack can only contain an entry_frame. We need to 1084 // find the target method from the stub frame. 1085 RegisterMap reg_map(thread, false); 1086 frame fr = thread->last_frame(); 1087 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1088 fr = fr.sender(®_map); 1089 assert(fr.is_entry_frame(), "must be"); 1090 // fr is now pointing to the entry frame. 1091 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method()); 1092 assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??"); 1093 } else { 1094 Bytecodes::Code bc; 1095 CallInfo callinfo; 1096 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle())); 1097 callee_method = callinfo.selected_method(); 1098 } 1099 assert(callee_method()->is_method(), "must be"); 1100 return callee_method; 1101 } 1102 1103 // Resolves a call. 1104 methodHandle SharedRuntime::resolve_helper(JavaThread *thread, 1105 bool is_virtual, 1106 bool is_optimized, TRAPS) { 1107 methodHandle callee_method; 1108 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD); 1109 if (JvmtiExport::can_hotswap_or_post_breakpoint()) { 1110 int retry_count = 0; 1111 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() && 1112 callee_method->method_holder() != SystemDictionary::Object_klass()) { 1113 // If has a pending exception then there is no need to re-try to 1114 // resolve this method. 1115 // If the method has been redefined, we need to try again. 1116 // Hack: we have no way to update the vtables of arrays, so don't 1117 // require that java.lang.Object has been updated. 1118 1119 // It is very unlikely that method is redefined more than 100 times 1120 // in the middle of resolve. If it is looping here more than 100 times 1121 // means then there could be a bug here. 1122 guarantee((retry_count++ < 100), 1123 "Could not resolve to latest version of redefined method"); 1124 // method is redefined in the middle of resolve so re-try. 1125 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD); 1126 } 1127 } 1128 return callee_method; 1129 } 1130 1131 // Resolves a call. The compilers generate code for calls that go here 1132 // and are patched with the real destination of the call. 1133 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread, 1134 bool is_virtual, 1135 bool is_optimized, TRAPS) { 1136 1137 ResourceMark rm(thread); 1138 RegisterMap cbl_map(thread, false); 1139 frame caller_frame = thread->last_frame().sender(&cbl_map); 1140 1141 CodeBlob* caller_cb = caller_frame.cb(); 1142 guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod"); 1143 nmethod* caller_nm = caller_cb->as_nmethod_or_null(); 1144 1145 // make sure caller is not getting deoptimized 1146 // and removed before we are done with it. 1147 // CLEANUP - with lazy deopt shouldn't need this lock 1148 nmethodLocker caller_lock(caller_nm); 1149 1150 // determine call info & receiver 1151 // note: a) receiver is NULL for static calls 1152 // b) an exception is thrown if receiver is NULL for non-static calls 1153 CallInfo call_info; 1154 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1155 Handle receiver = find_callee_info(thread, invoke_code, 1156 call_info, CHECK_(methodHandle())); 1157 methodHandle callee_method = call_info.selected_method(); 1158 1159 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1160 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1161 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1162 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1163 1164 assert(caller_nm->is_alive(), "It should be alive"); 1165 1166 #ifndef PRODUCT 1167 // tracing/debugging/statistics 1168 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1169 (is_virtual) ? (&_resolve_virtual_ctr) : 1170 (&_resolve_static_ctr); 1171 Atomic::inc(addr); 1172 1173 if (TraceCallFixup) { 1174 ResourceMark rm(thread); 1175 tty->print("resolving %s%s (%s) call to", 1176 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1177 Bytecodes::name(invoke_code)); 1178 callee_method->print_short_name(tty); 1179 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code()); 1180 } 1181 #endif 1182 1183 // JSR 292 key invariant: 1184 // If the resolved method is a MethodHandle invoke target, the call 1185 // site must be a MethodHandle call site, because the lambda form might tail-call 1186 // leaving the stack in a state unknown to either caller or callee 1187 // TODO detune for now but we might need it again 1188 // assert(!callee_method->is_compiled_lambda_form() || 1189 // caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site"); 1190 1191 // Compute entry points. This might require generation of C2I converter 1192 // frames, so we cannot be holding any locks here. Furthermore, the 1193 // computation of the entry points is independent of patching the call. We 1194 // always return the entry-point, but we only patch the stub if the call has 1195 // not been deoptimized. Return values: For a virtual call this is an 1196 // (cached_oop, destination address) pair. For a static call/optimized 1197 // virtual this is just a destination address. 1198 1199 StaticCallInfo static_call_info; 1200 CompiledICInfo virtual_call_info; 1201 1202 // Make sure the callee nmethod does not get deoptimized and removed before 1203 // we are done patching the code. 1204 nmethod* callee_nm = callee_method->code(); 1205 if (callee_nm != NULL && !callee_nm->is_in_use()) { 1206 // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded. 1207 callee_nm = NULL; 1208 } 1209 nmethodLocker nl_callee(callee_nm); 1210 #ifdef ASSERT 1211 address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below 1212 #endif 1213 1214 if (is_virtual) { 1215 assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check"); 1216 bool static_bound = call_info.resolved_method()->can_be_statically_bound(); 1217 KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass()); 1218 CompiledIC::compute_monomorphic_entry(callee_method, h_klass, 1219 is_optimized, static_bound, virtual_call_info, 1220 CHECK_(methodHandle())); 1221 } else { 1222 // static call 1223 CompiledStaticCall::compute_entry(callee_method, static_call_info); 1224 } 1225 1226 // grab lock, check for deoptimization and potentially patch caller 1227 { 1228 MutexLocker ml_patch(CompiledIC_lock); 1229 1230 // Lock blocks for safepoint during which both nmethods can change state. 1231 1232 // Now that we are ready to patch if the Method* was redefined then 1233 // don't update call site and let the caller retry. 1234 // Don't update call site if callee nmethod was unloaded or deoptimized. 1235 // Don't update call site if callee nmethod was replaced by an other nmethod 1236 // which may happen when multiply alive nmethod (tiered compilation) 1237 // will be supported. 1238 if (!callee_method->is_old() && 1239 (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) { 1240 #ifdef ASSERT 1241 // We must not try to patch to jump to an already unloaded method. 1242 if (dest_entry_point != 0) { 1243 CodeBlob* cb = CodeCache::find_blob(dest_entry_point); 1244 assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm), 1245 "should not call unloaded nmethod"); 1246 } 1247 #endif 1248 if (is_virtual) { 1249 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1250 if (inline_cache->is_clean()) { 1251 inline_cache->set_to_monomorphic(virtual_call_info); 1252 } 1253 } else { 1254 CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc()); 1255 if (ssc->is_clean()) ssc->set(static_call_info); 1256 } 1257 } 1258 1259 } // unlock CompiledIC_lock 1260 1261 return callee_method; 1262 } 1263 1264 1265 // Inline caches exist only in compiled code 1266 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread)) 1267 #ifdef ASSERT 1268 RegisterMap reg_map(thread, false); 1269 frame stub_frame = thread->last_frame(); 1270 assert(stub_frame.is_runtime_frame(), "sanity check"); 1271 frame caller_frame = stub_frame.sender(®_map); 1272 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame"); 1273 #endif /* ASSERT */ 1274 1275 methodHandle callee_method; 1276 JRT_BLOCK 1277 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL); 1278 // Return Method* through TLS 1279 thread->set_vm_result_2(callee_method()); 1280 JRT_BLOCK_END 1281 // return compiled code entry point after potential safepoints 1282 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1283 return callee_method->verified_code_entry(); 1284 JRT_END 1285 1286 1287 // Handle call site that has been made non-entrant 1288 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread)) 1289 // 6243940 We might end up in here if the callee is deoptimized 1290 // as we race to call it. We don't want to take a safepoint if 1291 // the caller was interpreted because the caller frame will look 1292 // interpreted to the stack walkers and arguments are now 1293 // "compiled" so it is much better to make this transition 1294 // invisible to the stack walking code. The i2c path will 1295 // place the callee method in the callee_target. It is stashed 1296 // there because if we try and find the callee by normal means a 1297 // safepoint is possible and have trouble gc'ing the compiled args. 1298 RegisterMap reg_map(thread, false); 1299 frame stub_frame = thread->last_frame(); 1300 assert(stub_frame.is_runtime_frame(), "sanity check"); 1301 frame caller_frame = stub_frame.sender(®_map); 1302 1303 if (caller_frame.is_interpreted_frame() || 1304 caller_frame.is_entry_frame()) { 1305 Method* callee = thread->callee_target(); 1306 guarantee(callee != NULL && callee->is_method(), "bad handshake"); 1307 thread->set_vm_result_2(callee); 1308 thread->set_callee_target(NULL); 1309 return callee->get_c2i_entry(); 1310 } 1311 1312 // Must be compiled to compiled path which is safe to stackwalk 1313 methodHandle callee_method; 1314 JRT_BLOCK 1315 // Force resolving of caller (if we called from compiled frame) 1316 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL); 1317 thread->set_vm_result_2(callee_method()); 1318 JRT_BLOCK_END 1319 // return compiled code entry point after potential safepoints 1320 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1321 return callee_method->verified_code_entry(); 1322 JRT_END 1323 1324 // Handle abstract method call 1325 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread)) 1326 return StubRoutines::throw_AbstractMethodError_entry(); 1327 JRT_END 1328 1329 1330 // resolve a static call and patch code 1331 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread )) 1332 methodHandle callee_method; 1333 JRT_BLOCK 1334 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL); 1335 thread->set_vm_result_2(callee_method()); 1336 JRT_BLOCK_END 1337 // return compiled code entry point after potential safepoints 1338 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1339 return callee_method->verified_code_entry(); 1340 JRT_END 1341 1342 1343 // resolve virtual call and update inline cache to monomorphic 1344 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread )) 1345 methodHandle callee_method; 1346 JRT_BLOCK 1347 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL); 1348 thread->set_vm_result_2(callee_method()); 1349 JRT_BLOCK_END 1350 // return compiled code entry point after potential safepoints 1351 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1352 return callee_method->verified_code_entry(); 1353 JRT_END 1354 1355 1356 // Resolve a virtual call that can be statically bound (e.g., always 1357 // monomorphic, so it has no inline cache). Patch code to resolved target. 1358 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread)) 1359 methodHandle callee_method; 1360 JRT_BLOCK 1361 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL); 1362 thread->set_vm_result_2(callee_method()); 1363 JRT_BLOCK_END 1364 // return compiled code entry point after potential safepoints 1365 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1366 return callee_method->verified_code_entry(); 1367 JRT_END 1368 1369 1370 1371 1372 1373 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) { 1374 ResourceMark rm(thread); 1375 CallInfo call_info; 1376 Bytecodes::Code bc; 1377 1378 // receiver is NULL for static calls. An exception is thrown for NULL 1379 // receivers for non-static calls 1380 Handle receiver = find_callee_info(thread, bc, call_info, 1381 CHECK_(methodHandle())); 1382 // Compiler1 can produce virtual call sites that can actually be statically bound 1383 // If we fell thru to below we would think that the site was going megamorphic 1384 // when in fact the site can never miss. Worse because we'd think it was megamorphic 1385 // we'd try and do a vtable dispatch however methods that can be statically bound 1386 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a 1387 // reresolution of the call site (as if we did a handle_wrong_method and not an 1388 // plain ic_miss) and the site will be converted to an optimized virtual call site 1389 // never to miss again. I don't believe C2 will produce code like this but if it 1390 // did this would still be the correct thing to do for it too, hence no ifdef. 1391 // 1392 if (call_info.resolved_method()->can_be_statically_bound()) { 1393 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle())); 1394 if (TraceCallFixup) { 1395 RegisterMap reg_map(thread, false); 1396 frame caller_frame = thread->last_frame().sender(®_map); 1397 ResourceMark rm(thread); 1398 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc)); 1399 callee_method->print_short_name(tty); 1400 tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc()); 1401 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1402 } 1403 return callee_method; 1404 } 1405 1406 methodHandle callee_method = call_info.selected_method(); 1407 1408 bool should_be_mono = false; 1409 1410 #ifndef PRODUCT 1411 Atomic::inc(&_ic_miss_ctr); 1412 1413 // Statistics & Tracing 1414 if (TraceCallFixup) { 1415 ResourceMark rm(thread); 1416 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1417 callee_method->print_short_name(tty); 1418 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1419 } 1420 1421 if (ICMissHistogram) { 1422 MutexLocker m(VMStatistic_lock); 1423 RegisterMap reg_map(thread, false); 1424 frame f = thread->last_frame().real_sender(®_map);// skip runtime stub 1425 // produce statistics under the lock 1426 trace_ic_miss(f.pc()); 1427 } 1428 #endif 1429 1430 // install an event collector so that when a vtable stub is created the 1431 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1432 // event can't be posted when the stub is created as locks are held 1433 // - instead the event will be deferred until the event collector goes 1434 // out of scope. 1435 JvmtiDynamicCodeEventCollector event_collector; 1436 1437 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1438 { MutexLocker ml_patch (CompiledIC_lock); 1439 RegisterMap reg_map(thread, false); 1440 frame caller_frame = thread->last_frame().sender(®_map); 1441 CodeBlob* cb = caller_frame.cb(); 1442 if (cb->is_nmethod()) { 1443 CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc()); 1444 bool should_be_mono = false; 1445 if (inline_cache->is_optimized()) { 1446 if (TraceCallFixup) { 1447 ResourceMark rm(thread); 1448 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc)); 1449 callee_method->print_short_name(tty); 1450 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1451 } 1452 should_be_mono = true; 1453 } else if (inline_cache->is_icholder_call()) { 1454 CompiledICHolder* ic_oop = inline_cache->cached_icholder(); 1455 if (ic_oop != NULL) { 1456 1457 if (receiver()->klass() == ic_oop->holder_klass()) { 1458 // This isn't a real miss. We must have seen that compiled code 1459 // is now available and we want the call site converted to a 1460 // monomorphic compiled call site. 1461 // We can't assert for callee_method->code() != NULL because it 1462 // could have been deoptimized in the meantime 1463 if (TraceCallFixup) { 1464 ResourceMark rm(thread); 1465 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc)); 1466 callee_method->print_short_name(tty); 1467 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1468 } 1469 should_be_mono = true; 1470 } 1471 } 1472 } 1473 1474 if (should_be_mono) { 1475 1476 // We have a path that was monomorphic but was going interpreted 1477 // and now we have (or had) a compiled entry. We correct the IC 1478 // by using a new icBuffer. 1479 CompiledICInfo info; 1480 KlassHandle receiver_klass(THREAD, receiver()->klass()); 1481 inline_cache->compute_monomorphic_entry(callee_method, 1482 receiver_klass, 1483 inline_cache->is_optimized(), 1484 false, 1485 info, CHECK_(methodHandle())); 1486 inline_cache->set_to_monomorphic(info); 1487 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) { 1488 // Potential change to megamorphic 1489 bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle())); 1490 if (!successful) { 1491 inline_cache->set_to_clean(); 1492 } 1493 } else { 1494 // Either clean or megamorphic 1495 } 1496 } 1497 } // Release CompiledIC_lock 1498 1499 return callee_method; 1500 } 1501 1502 // 1503 // Resets a call-site in compiled code so it will get resolved again. 1504 // This routines handles both virtual call sites, optimized virtual call 1505 // sites, and static call sites. Typically used to change a call sites 1506 // destination from compiled to interpreted. 1507 // 1508 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) { 1509 ResourceMark rm(thread); 1510 RegisterMap reg_map(thread, false); 1511 frame stub_frame = thread->last_frame(); 1512 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1513 frame caller = stub_frame.sender(®_map); 1514 1515 // Do nothing if the frame isn't a live compiled frame. 1516 // nmethod could be deoptimized by the time we get here 1517 // so no update to the caller is needed. 1518 1519 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) { 1520 1521 address pc = caller.pc(); 1522 1523 // Default call_addr is the location of the "basic" call. 1524 // Determine the address of the call we a reresolving. With 1525 // Inline Caches we will always find a recognizable call. 1526 // With Inline Caches disabled we may or may not find a 1527 // recognizable call. We will always find a call for static 1528 // calls and for optimized virtual calls. For vanilla virtual 1529 // calls it depends on the state of the UseInlineCaches switch. 1530 // 1531 // With Inline Caches disabled we can get here for a virtual call 1532 // for two reasons: 1533 // 1 - calling an abstract method. The vtable for abstract methods 1534 // will run us thru handle_wrong_method and we will eventually 1535 // end up in the interpreter to throw the ame. 1536 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1537 // call and between the time we fetch the entry address and 1538 // we jump to it the target gets deoptimized. Similar to 1 1539 // we will wind up in the interprter (thru a c2i with c2). 1540 // 1541 address call_addr = NULL; 1542 { 1543 // Get call instruction under lock because another thread may be 1544 // busy patching it. 1545 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag); 1546 // Location of call instruction 1547 if (NativeCall::is_call_before(pc)) { 1548 NativeCall *ncall = nativeCall_before(pc); 1549 call_addr = ncall->instruction_address(); 1550 } 1551 } 1552 1553 // Check for static or virtual call 1554 bool is_static_call = false; 1555 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1556 // Make sure nmethod doesn't get deoptimized and removed until 1557 // this is done with it. 1558 // CLEANUP - with lazy deopt shouldn't need this lock 1559 nmethodLocker nmlock(caller_nm); 1560 1561 if (call_addr != NULL) { 1562 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1563 int ret = iter.next(); // Get item 1564 if (ret) { 1565 assert(iter.addr() == call_addr, "must find call"); 1566 if (iter.type() == relocInfo::static_call_type) { 1567 is_static_call = true; 1568 } else { 1569 assert(iter.type() == relocInfo::virtual_call_type || 1570 iter.type() == relocInfo::opt_virtual_call_type 1571 , "unexpected relocInfo. type"); 1572 } 1573 } else { 1574 assert(!UseInlineCaches, "relocation info. must exist for this address"); 1575 } 1576 1577 // Cleaning the inline cache will force a new resolve. This is more robust 1578 // than directly setting it to the new destination, since resolving of calls 1579 // is always done through the same code path. (experience shows that it 1580 // leads to very hard to track down bugs, if an inline cache gets updated 1581 // to a wrong method). It should not be performance critical, since the 1582 // resolve is only done once. 1583 1584 MutexLocker ml(CompiledIC_lock); 1585 if (is_static_call) { 1586 CompiledStaticCall* ssc= compiledStaticCall_at(call_addr); 1587 ssc->set_to_clean(); 1588 } else { 1589 // compiled, dispatched call (which used to call an interpreted method) 1590 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1591 inline_cache->set_to_clean(); 1592 } 1593 } 1594 1595 } 1596 1597 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle())); 1598 1599 1600 #ifndef PRODUCT 1601 Atomic::inc(&_wrong_method_ctr); 1602 1603 if (TraceCallFixup) { 1604 ResourceMark rm(thread); 1605 tty->print("handle_wrong_method reresolving call to"); 1606 callee_method->print_short_name(tty); 1607 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1608 } 1609 #endif 1610 1611 return callee_method; 1612 } 1613 1614 #ifdef ASSERT 1615 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method, 1616 const BasicType* sig_bt, 1617 const VMRegPair* regs) { 1618 ResourceMark rm; 1619 const int total_args_passed = method->size_of_parameters(); 1620 const VMRegPair* regs_with_member_name = regs; 1621 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1622 1623 const int member_arg_pos = total_args_passed - 1; 1624 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1625 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1626 1627 const bool is_outgoing = method->is_method_handle_intrinsic(); 1628 int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing); 1629 1630 for (int i = 0; i < member_arg_pos; i++) { 1631 VMReg a = regs_with_member_name[i].first(); 1632 VMReg b = regs_without_member_name[i].first(); 1633 assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value())); 1634 } 1635 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1636 } 1637 #endif 1638 1639 // --------------------------------------------------------------------------- 1640 // We are calling the interpreter via a c2i. Normally this would mean that 1641 // we were called by a compiled method. However we could have lost a race 1642 // where we went int -> i2c -> c2i and so the caller could in fact be 1643 // interpreted. If the caller is compiled we attempt to patch the caller 1644 // so he no longer calls into the interpreter. 1645 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1646 Method* moop(method); 1647 1648 address entry_point = moop->from_compiled_entry(); 1649 1650 // It's possible that deoptimization can occur at a call site which hasn't 1651 // been resolved yet, in which case this function will be called from 1652 // an nmethod that has been patched for deopt and we can ignore the 1653 // request for a fixup. 1654 // Also it is possible that we lost a race in that from_compiled_entry 1655 // is now back to the i2c in that case we don't need to patch and if 1656 // we did we'd leap into space because the callsite needs to use 1657 // "to interpreter" stub in order to load up the Method*. Don't 1658 // ask me how I know this... 1659 1660 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1661 if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) { 1662 return; 1663 } 1664 1665 // The check above makes sure this is a nmethod. 1666 nmethod* nm = cb->as_nmethod_or_null(); 1667 assert(nm, "must be"); 1668 1669 // Get the return PC for the passed caller PC. 1670 address return_pc = caller_pc + frame::pc_return_offset; 1671 1672 // There is a benign race here. We could be attempting to patch to a compiled 1673 // entry point at the same time the callee is being deoptimized. If that is 1674 // the case then entry_point may in fact point to a c2i and we'd patch the 1675 // call site with the same old data. clear_code will set code() to NULL 1676 // at the end of it. If we happen to see that NULL then we can skip trying 1677 // to patch. If we hit the window where the callee has a c2i in the 1678 // from_compiled_entry and the NULL isn't present yet then we lose the race 1679 // and patch the code with the same old data. Asi es la vida. 1680 1681 if (moop->code() == NULL) return; 1682 1683 if (nm->is_in_use()) { 1684 1685 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1686 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag); 1687 if (NativeCall::is_call_before(return_pc)) { 1688 NativeCall *call = nativeCall_before(return_pc); 1689 // 1690 // bug 6281185. We might get here after resolving a call site to a vanilla 1691 // virtual call. Because the resolvee uses the verified entry it may then 1692 // see compiled code and attempt to patch the site by calling us. This would 1693 // then incorrectly convert the call site to optimized and its downhill from 1694 // there. If you're lucky you'll get the assert in the bugid, if not you've 1695 // just made a call site that could be megamorphic into a monomorphic site 1696 // for the rest of its life! Just another racing bug in the life of 1697 // fixup_callers_callsite ... 1698 // 1699 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address()); 1700 iter.next(); 1701 assert(iter.has_current(), "must have a reloc at java call site"); 1702 relocInfo::relocType typ = iter.reloc()->type(); 1703 if (typ != relocInfo::static_call_type && 1704 typ != relocInfo::opt_virtual_call_type && 1705 typ != relocInfo::static_stub_type) { 1706 return; 1707 } 1708 address destination = call->destination(); 1709 if (destination != entry_point) { 1710 CodeBlob* callee = CodeCache::find_blob(destination); 1711 // callee == cb seems weird. It means calling interpreter thru stub. 1712 if (callee == cb || callee->is_adapter_blob()) { 1713 // static call or optimized virtual 1714 if (TraceCallFixup) { 1715 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc); 1716 moop->print_short_name(tty); 1717 tty->print_cr(" to " INTPTR_FORMAT, entry_point); 1718 } 1719 call->set_destination_mt_safe(entry_point); 1720 } else { 1721 if (TraceCallFixup) { 1722 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc); 1723 moop->print_short_name(tty); 1724 tty->print_cr(" to " INTPTR_FORMAT, entry_point); 1725 } 1726 // assert is too strong could also be resolve destinations. 1727 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be"); 1728 } 1729 } else { 1730 if (TraceCallFixup) { 1731 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc); 1732 moop->print_short_name(tty); 1733 tty->print_cr(" to " INTPTR_FORMAT, entry_point); 1734 } 1735 } 1736 } 1737 } 1738 IRT_END 1739 1740 1741 // same as JVM_Arraycopy, but called directly from compiled code 1742 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1743 oopDesc* dest, jint dest_pos, 1744 jint length, 1745 JavaThread* thread)) { 1746 #ifndef PRODUCT 1747 _slow_array_copy_ctr++; 1748 #endif 1749 // Check if we have null pointers 1750 if (src == NULL || dest == NULL) { 1751 THROW(vmSymbols::java_lang_NullPointerException()); 1752 } 1753 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1754 // even though the copy_array API also performs dynamic checks to ensure 1755 // that src and dest are truly arrays (and are conformable). 1756 // The copy_array mechanism is awkward and could be removed, but 1757 // the compilers don't call this function except as a last resort, 1758 // so it probably doesn't matter. 1759 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1760 (arrayOopDesc*)dest, dest_pos, 1761 length, thread); 1762 } 1763 JRT_END 1764 1765 char* SharedRuntime::generate_class_cast_message( 1766 JavaThread* thread, const char* objName) { 1767 1768 // Get target class name from the checkcast instruction 1769 vframeStream vfst(thread, true); 1770 assert(!vfst.at_end(), "Java frame must exist"); 1771 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1772 Klass* targetKlass = vfst.method()->constants()->klass_at( 1773 cc.index(), thread); 1774 return generate_class_cast_message(objName, targetKlass->external_name()); 1775 } 1776 1777 char* SharedRuntime::generate_class_cast_message( 1778 const char* objName, const char* targetKlassName, const char* desc) { 1779 size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1; 1780 1781 char* message = NEW_RESOURCE_ARRAY(char, msglen); 1782 if (NULL == message) { 1783 // Shouldn't happen, but don't cause even more problems if it does 1784 message = const_cast<char*>(objName); 1785 } else { 1786 jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName); 1787 } 1788 return message; 1789 } 1790 1791 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 1792 (void) JavaThread::current()->reguard_stack(); 1793 JRT_END 1794 1795 1796 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 1797 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread)) 1798 // Disable ObjectSynchronizer::quick_enter() in default config 1799 // until JDK-8077392 is resolved. 1800 if ((SyncFlags & 256) != 0 && !SafepointSynchronize::is_synchronizing()) { 1801 // Only try quick_enter() if we're not trying to reach a safepoint 1802 // so that the calling thread reaches the safepoint more quickly. 1803 if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return; 1804 } 1805 // NO_ASYNC required because an async exception on the state transition destructor 1806 // would leave you with the lock held and it would never be released. 1807 // The normal monitorenter NullPointerException is thrown without acquiring a lock 1808 // and the model is that an exception implies the method failed. 1809 JRT_BLOCK_NO_ASYNC 1810 oop obj(_obj); 1811 if (PrintBiasedLockingStatistics) { 1812 Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); 1813 } 1814 Handle h_obj(THREAD, obj); 1815 if (UseBiasedLocking) { 1816 // Retry fast entry if bias is revoked to avoid unnecessary inflation 1817 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK); 1818 } else { 1819 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK); 1820 } 1821 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 1822 JRT_BLOCK_END 1823 JRT_END 1824 1825 // Handles the uncommon cases of monitor unlocking in compiled code 1826 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD)) 1827 oop obj(_obj); 1828 assert(JavaThread::current() == THREAD, "invariant"); 1829 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore 1830 // testing was unable to ever fire the assert that guarded it so I have removed it. 1831 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?"); 1832 #undef MIGHT_HAVE_PENDING 1833 #ifdef MIGHT_HAVE_PENDING 1834 // Save and restore any pending_exception around the exception mark. 1835 // While the slow_exit must not throw an exception, we could come into 1836 // this routine with one set. 1837 oop pending_excep = NULL; 1838 const char* pending_file; 1839 int pending_line; 1840 if (HAS_PENDING_EXCEPTION) { 1841 pending_excep = PENDING_EXCEPTION; 1842 pending_file = THREAD->exception_file(); 1843 pending_line = THREAD->exception_line(); 1844 CLEAR_PENDING_EXCEPTION; 1845 } 1846 #endif /* MIGHT_HAVE_PENDING */ 1847 1848 { 1849 // Exit must be non-blocking, and therefore no exceptions can be thrown. 1850 EXCEPTION_MARK; 1851 ObjectSynchronizer::slow_exit(obj, lock, THREAD); 1852 } 1853 1854 #ifdef MIGHT_HAVE_PENDING 1855 if (pending_excep != NULL) { 1856 THREAD->set_pending_exception(pending_excep, pending_file, pending_line); 1857 } 1858 #endif /* MIGHT_HAVE_PENDING */ 1859 JRT_END 1860 1861 #ifndef PRODUCT 1862 1863 void SharedRuntime::print_statistics() { 1864 ttyLocker ttyl; 1865 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'"); 1866 1867 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr); 1868 1869 SharedRuntime::print_ic_miss_histogram(); 1870 1871 if (CountRemovableExceptions) { 1872 if (_nof_removable_exceptions > 0) { 1873 Unimplemented(); // this counter is not yet incremented 1874 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions); 1875 } 1876 } 1877 1878 // Dump the JRT_ENTRY counters 1879 if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr); 1880 if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr); 1881 if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr); 1882 if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr); 1883 if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr); 1884 if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr); 1885 if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr); 1886 1887 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr); 1888 tty->print_cr("%5d wrong method", _wrong_method_ctr); 1889 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr); 1890 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr); 1891 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr); 1892 1893 if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr); 1894 if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr); 1895 if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr); 1896 if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr); 1897 if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr); 1898 if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr); 1899 if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr); 1900 if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr); 1901 if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr); 1902 if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr); 1903 if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr); 1904 if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr); 1905 if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr); 1906 if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr); 1907 if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr); 1908 if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr); 1909 1910 AdapterHandlerLibrary::print_statistics(); 1911 1912 if (xtty != NULL) xtty->tail("statistics"); 1913 } 1914 1915 inline double percent(int x, int y) { 1916 return 100.0 * x / MAX2(y, 1); 1917 } 1918 1919 class MethodArityHistogram { 1920 public: 1921 enum { MAX_ARITY = 256 }; 1922 private: 1923 static int _arity_histogram[MAX_ARITY]; // histogram of #args 1924 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words 1925 static int _max_arity; // max. arity seen 1926 static int _max_size; // max. arg size seen 1927 1928 static void add_method_to_histogram(nmethod* nm) { 1929 Method* m = nm->method(); 1930 ArgumentCount args(m->signature()); 1931 int arity = args.size() + (m->is_static() ? 0 : 1); 1932 int argsize = m->size_of_parameters(); 1933 arity = MIN2(arity, MAX_ARITY-1); 1934 argsize = MIN2(argsize, MAX_ARITY-1); 1935 int count = nm->method()->compiled_invocation_count(); 1936 _arity_histogram[arity] += count; 1937 _size_histogram[argsize] += count; 1938 _max_arity = MAX2(_max_arity, arity); 1939 _max_size = MAX2(_max_size, argsize); 1940 } 1941 1942 void print_histogram_helper(int n, int* histo, const char* name) { 1943 const int N = MIN2(5, n); 1944 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 1945 double sum = 0; 1946 double weighted_sum = 0; 1947 int i; 1948 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; } 1949 double rest = sum; 1950 double percent = sum / 100; 1951 for (i = 0; i <= N; i++) { 1952 rest -= histo[i]; 1953 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent); 1954 } 1955 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent); 1956 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 1957 } 1958 1959 void print_histogram() { 1960 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 1961 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 1962 tty->print_cr("\nSame for parameter size (in words):"); 1963 print_histogram_helper(_max_size, _size_histogram, "size"); 1964 tty->cr(); 1965 } 1966 1967 public: 1968 MethodArityHistogram() { 1969 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 1970 _max_arity = _max_size = 0; 1971 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 1972 CodeCache::nmethods_do(add_method_to_histogram); 1973 print_histogram(); 1974 } 1975 }; 1976 1977 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 1978 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 1979 int MethodArityHistogram::_max_arity; 1980 int MethodArityHistogram::_max_size; 1981 1982 void SharedRuntime::print_call_statistics(int comp_total) { 1983 tty->print_cr("Calls from compiled code:"); 1984 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 1985 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls; 1986 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls; 1987 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total)); 1988 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 1989 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 1990 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls)); 1991 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 1992 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 1993 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 1994 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 1995 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls)); 1996 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 1997 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls)); 1998 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 1999 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2000 tty->cr(); 2001 tty->print_cr("Note 1: counter updates are not MT-safe."); 2002 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2003 tty->print_cr(" %% in nested categories are relative to their category"); 2004 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2005 tty->cr(); 2006 2007 MethodArityHistogram h; 2008 } 2009 #endif 2010 2011 2012 // A simple wrapper class around the calling convention information 2013 // that allows sharing of adapters for the same calling convention. 2014 class AdapterFingerPrint : public CHeapObj<mtCode> { 2015 private: 2016 enum { 2017 _basic_type_bits = 4, 2018 _basic_type_mask = right_n_bits(_basic_type_bits), 2019 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2020 _compact_int_count = 3 2021 }; 2022 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2023 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2024 2025 union { 2026 int _compact[_compact_int_count]; 2027 int* _fingerprint; 2028 } _value; 2029 int _length; // A negative length indicates the fingerprint is in the compact form, 2030 // Otherwise _value._fingerprint is the array. 2031 2032 // Remap BasicTypes that are handled equivalently by the adapters. 2033 // These are correct for the current system but someday it might be 2034 // necessary to make this mapping platform dependent. 2035 static int adapter_encoding(BasicType in) { 2036 switch (in) { 2037 case T_BOOLEAN: 2038 case T_BYTE: 2039 case T_SHORT: 2040 case T_CHAR: 2041 // There are all promoted to T_INT in the calling convention 2042 return T_INT; 2043 2044 case T_OBJECT: 2045 case T_ARRAY: 2046 // In other words, we assume that any register good enough for 2047 // an int or long is good enough for a managed pointer. 2048 #ifdef _LP64 2049 return T_LONG; 2050 #else 2051 return T_INT; 2052 #endif 2053 2054 case T_INT: 2055 case T_LONG: 2056 case T_FLOAT: 2057 case T_DOUBLE: 2058 case T_VOID: 2059 return in; 2060 2061 default: 2062 ShouldNotReachHere(); 2063 return T_CONFLICT; 2064 } 2065 } 2066 2067 public: 2068 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) { 2069 // The fingerprint is based on the BasicType signature encoded 2070 // into an array of ints with eight entries per int. 2071 int* ptr; 2072 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2073 if (len <= _compact_int_count) { 2074 assert(_compact_int_count == 3, "else change next line"); 2075 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; 2076 // Storing the signature encoded as signed chars hits about 98% 2077 // of the time. 2078 _length = -len; 2079 ptr = _value._compact; 2080 } else { 2081 _length = len; 2082 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode); 2083 ptr = _value._fingerprint; 2084 } 2085 2086 // Now pack the BasicTypes with 8 per int 2087 int sig_index = 0; 2088 for (int index = 0; index < len; index++) { 2089 int value = 0; 2090 for (int byte = 0; byte < _basic_types_per_int; byte++) { 2091 int bt = ((sig_index < total_args_passed) 2092 ? adapter_encoding(sig_bt[sig_index++]) 2093 : 0); 2094 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2095 value = (value << _basic_type_bits) | bt; 2096 } 2097 ptr[index] = value; 2098 } 2099 } 2100 2101 ~AdapterFingerPrint() { 2102 if (_length > 0) { 2103 FREE_C_HEAP_ARRAY(int, _value._fingerprint); 2104 } 2105 } 2106 2107 int value(int index) { 2108 if (_length < 0) { 2109 return _value._compact[index]; 2110 } 2111 return _value._fingerprint[index]; 2112 } 2113 int length() { 2114 if (_length < 0) return -_length; 2115 return _length; 2116 } 2117 2118 bool is_compact() { 2119 return _length <= 0; 2120 } 2121 2122 unsigned int compute_hash() { 2123 int hash = 0; 2124 for (int i = 0; i < length(); i++) { 2125 int v = value(i); 2126 hash = (hash << 8) ^ v ^ (hash >> 5); 2127 } 2128 return (unsigned int)hash; 2129 } 2130 2131 const char* as_string() { 2132 stringStream st; 2133 st.print("0x"); 2134 for (int i = 0; i < length(); i++) { 2135 st.print("%08x", value(i)); 2136 } 2137 return st.as_string(); 2138 } 2139 2140 bool equals(AdapterFingerPrint* other) { 2141 if (other->_length != _length) { 2142 return false; 2143 } 2144 if (_length < 0) { 2145 assert(_compact_int_count == 3, "else change next line"); 2146 return _value._compact[0] == other->_value._compact[0] && 2147 _value._compact[1] == other->_value._compact[1] && 2148 _value._compact[2] == other->_value._compact[2]; 2149 } else { 2150 for (int i = 0; i < _length; i++) { 2151 if (_value._fingerprint[i] != other->_value._fingerprint[i]) { 2152 return false; 2153 } 2154 } 2155 } 2156 return true; 2157 } 2158 }; 2159 2160 2161 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2162 class AdapterHandlerTable : public BasicHashtable<mtCode> { 2163 friend class AdapterHandlerTableIterator; 2164 2165 private: 2166 2167 #ifndef PRODUCT 2168 static int _lookups; // number of calls to lookup 2169 static int _buckets; // number of buckets checked 2170 static int _equals; // number of buckets checked with matching hash 2171 static int _hits; // number of successful lookups 2172 static int _compact; // number of equals calls with compact signature 2173 #endif 2174 2175 AdapterHandlerEntry* bucket(int i) { 2176 return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i); 2177 } 2178 2179 public: 2180 AdapterHandlerTable() 2181 : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { } 2182 2183 // Create a new entry suitable for insertion in the table 2184 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) { 2185 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash()); 2186 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); 2187 return entry; 2188 } 2189 2190 // Insert an entry into the table 2191 void add(AdapterHandlerEntry* entry) { 2192 int index = hash_to_index(entry->hash()); 2193 add_entry(index, entry); 2194 } 2195 2196 void free_entry(AdapterHandlerEntry* entry) { 2197 entry->deallocate(); 2198 BasicHashtable<mtCode>::free_entry(entry); 2199 } 2200 2201 // Find a entry with the same fingerprint if it exists 2202 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) { 2203 NOT_PRODUCT(_lookups++); 2204 AdapterFingerPrint fp(total_args_passed, sig_bt); 2205 unsigned int hash = fp.compute_hash(); 2206 int index = hash_to_index(hash); 2207 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { 2208 NOT_PRODUCT(_buckets++); 2209 if (e->hash() == hash) { 2210 NOT_PRODUCT(_equals++); 2211 if (fp.equals(e->fingerprint())) { 2212 #ifndef PRODUCT 2213 if (fp.is_compact()) _compact++; 2214 _hits++; 2215 #endif 2216 return e; 2217 } 2218 } 2219 } 2220 return NULL; 2221 } 2222 2223 #ifndef PRODUCT 2224 void print_statistics() { 2225 ResourceMark rm; 2226 int longest = 0; 2227 int empty = 0; 2228 int total = 0; 2229 int nonempty = 0; 2230 for (int index = 0; index < table_size(); index++) { 2231 int count = 0; 2232 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { 2233 count++; 2234 } 2235 if (count != 0) nonempty++; 2236 if (count == 0) empty++; 2237 if (count > longest) longest = count; 2238 total += count; 2239 } 2240 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f", 2241 empty, longest, total, total / (double)nonempty); 2242 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d", 2243 _lookups, _buckets, _equals, _hits, _compact); 2244 } 2245 #endif 2246 }; 2247 2248 2249 #ifndef PRODUCT 2250 2251 int AdapterHandlerTable::_lookups; 2252 int AdapterHandlerTable::_buckets; 2253 int AdapterHandlerTable::_equals; 2254 int AdapterHandlerTable::_hits; 2255 int AdapterHandlerTable::_compact; 2256 2257 #endif 2258 2259 class AdapterHandlerTableIterator : public StackObj { 2260 private: 2261 AdapterHandlerTable* _table; 2262 int _index; 2263 AdapterHandlerEntry* _current; 2264 2265 void scan() { 2266 while (_index < _table->table_size()) { 2267 AdapterHandlerEntry* a = _table->bucket(_index); 2268 _index++; 2269 if (a != NULL) { 2270 _current = a; 2271 return; 2272 } 2273 } 2274 } 2275 2276 public: 2277 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) { 2278 scan(); 2279 } 2280 bool has_next() { 2281 return _current != NULL; 2282 } 2283 AdapterHandlerEntry* next() { 2284 if (_current != NULL) { 2285 AdapterHandlerEntry* result = _current; 2286 _current = _current->next(); 2287 if (_current == NULL) scan(); 2288 return result; 2289 } else { 2290 return NULL; 2291 } 2292 } 2293 }; 2294 2295 2296 // --------------------------------------------------------------------------- 2297 // Implementation of AdapterHandlerLibrary 2298 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL; 2299 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL; 2300 const int AdapterHandlerLibrary_size = 16*K; 2301 BufferBlob* AdapterHandlerLibrary::_buffer = NULL; 2302 2303 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2304 // Should be called only when AdapterHandlerLibrary_lock is active. 2305 if (_buffer == NULL) // Initialize lazily 2306 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2307 return _buffer; 2308 } 2309 2310 void AdapterHandlerLibrary::initialize() { 2311 if (_adapters != NULL) return; 2312 _adapters = new AdapterHandlerTable(); 2313 2314 // Create a special handler for abstract methods. Abstract methods 2315 // are never compiled so an i2c entry is somewhat meaningless, but 2316 // throw AbstractMethodError just in case. 2317 // Pass wrong_method_abstract for the c2i transitions to return 2318 // AbstractMethodError for invalid invocations. 2319 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2320 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL), 2321 StubRoutines::throw_AbstractMethodError_entry(), 2322 wrong_method_abstract, wrong_method_abstract); 2323 } 2324 2325 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, 2326 address i2c_entry, 2327 address c2i_entry, 2328 address c2i_unverified_entry) { 2329 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); 2330 } 2331 2332 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) { 2333 // Use customized signature handler. Need to lock around updates to 2334 // the AdapterHandlerTable (it is not safe for concurrent readers 2335 // and a single writer: this could be fixed if it becomes a 2336 // problem). 2337 2338 // Get the address of the ic_miss handlers before we grab the 2339 // AdapterHandlerLibrary_lock. This fixes bug 6236259 which 2340 // was caused by the initialization of the stubs happening 2341 // while we held the lock and then notifying jvmti while 2342 // holding it. This just forces the initialization to be a little 2343 // earlier. 2344 address ic_miss = SharedRuntime::get_ic_miss_stub(); 2345 assert(ic_miss != NULL, "must have handler"); 2346 2347 ResourceMark rm; 2348 2349 NOT_PRODUCT(int insts_size); 2350 AdapterBlob* new_adapter = NULL; 2351 AdapterHandlerEntry* entry = NULL; 2352 AdapterFingerPrint* fingerprint = NULL; 2353 { 2354 MutexLocker mu(AdapterHandlerLibrary_lock); 2355 // make sure data structure is initialized 2356 initialize(); 2357 2358 if (method->is_abstract()) { 2359 return _abstract_method_handler; 2360 } 2361 2362 // Fill in the signature array, for the calling-convention call. 2363 int total_args_passed = method->size_of_parameters(); // All args on stack 2364 2365 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2366 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2367 int i = 0; 2368 if (!method->is_static()) // Pass in receiver first 2369 sig_bt[i++] = T_OBJECT; 2370 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) { 2371 sig_bt[i++] = ss.type(); // Collect remaining bits of signature 2372 if (ss.type() == T_LONG || ss.type() == T_DOUBLE) 2373 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots 2374 } 2375 assert(i == total_args_passed, ""); 2376 2377 // Lookup method signature's fingerprint 2378 entry = _adapters->lookup(total_args_passed, sig_bt); 2379 2380 #ifdef ASSERT 2381 AdapterHandlerEntry* shared_entry = NULL; 2382 // Start adapter sharing verification only after the VM is booted. 2383 if (VerifyAdapterSharing && (entry != NULL)) { 2384 shared_entry = entry; 2385 entry = NULL; 2386 } 2387 #endif 2388 2389 if (entry != NULL) { 2390 return entry; 2391 } 2392 2393 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2394 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false); 2395 2396 // Make a C heap allocated version of the fingerprint to store in the adapter 2397 fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt); 2398 2399 // StubRoutines::code2() is initialized after this function can be called. As a result, 2400 // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated 2401 // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C 2402 // stub that ensure that an I2C stub is called from an interpreter frame. 2403 bool contains_all_checks = StubRoutines::code2() != NULL; 2404 2405 // Create I2C & C2I handlers 2406 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2407 if (buf != NULL) { 2408 CodeBuffer buffer(buf); 2409 short buffer_locs[20]; 2410 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2411 sizeof(buffer_locs)/sizeof(relocInfo)); 2412 2413 MacroAssembler _masm(&buffer); 2414 entry = SharedRuntime::generate_i2c2i_adapters(&_masm, 2415 total_args_passed, 2416 comp_args_on_stack, 2417 sig_bt, 2418 regs, 2419 fingerprint); 2420 #ifdef ASSERT 2421 if (VerifyAdapterSharing) { 2422 if (shared_entry != NULL) { 2423 assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match"); 2424 // Release the one just created and return the original 2425 _adapters->free_entry(entry); 2426 return shared_entry; 2427 } else { 2428 entry->save_code(buf->code_begin(), buffer.insts_size()); 2429 } 2430 } 2431 #endif 2432 2433 new_adapter = AdapterBlob::create(&buffer); 2434 NOT_PRODUCT(insts_size = buffer.insts_size()); 2435 } 2436 if (new_adapter == NULL) { 2437 // CodeCache is full, disable compilation 2438 // Ought to log this but compile log is only per compile thread 2439 // and we're some non descript Java thread. 2440 return NULL; // Out of CodeCache space 2441 } 2442 entry->relocate(new_adapter->content_begin()); 2443 #ifndef PRODUCT 2444 // debugging suppport 2445 if (PrintAdapterHandlers || PrintStubCode) { 2446 ttyLocker ttyl; 2447 entry->print_adapter_on(tty); 2448 tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)", 2449 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"), 2450 method->signature()->as_C_string(), fingerprint->as_string(), insts_size); 2451 tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry()); 2452 if (Verbose || PrintStubCode) { 2453 address first_pc = entry->base_address(); 2454 if (first_pc != NULL) { 2455 Disassembler::decode(first_pc, first_pc + insts_size); 2456 tty->cr(); 2457 } 2458 } 2459 } 2460 #endif 2461 // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp) 2462 // The checks are inserted only if -XX:+VerifyAdapterCalls is specified. 2463 if (contains_all_checks || !VerifyAdapterCalls) { 2464 _adapters->add(entry); 2465 } 2466 } 2467 // Outside of the lock 2468 if (new_adapter != NULL) { 2469 char blob_id[256]; 2470 jio_snprintf(blob_id, 2471 sizeof(blob_id), 2472 "%s(%s)@" PTR_FORMAT, 2473 new_adapter->name(), 2474 fingerprint->as_string(), 2475 new_adapter->content_begin()); 2476 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2477 2478 if (JvmtiExport::should_post_dynamic_code_generated()) { 2479 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2480 } 2481 } 2482 return entry; 2483 } 2484 2485 address AdapterHandlerEntry::base_address() { 2486 address base = _i2c_entry; 2487 if (base == NULL) base = _c2i_entry; 2488 assert(base <= _c2i_entry || _c2i_entry == NULL, ""); 2489 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, ""); 2490 return base; 2491 } 2492 2493 void AdapterHandlerEntry::relocate(address new_base) { 2494 address old_base = base_address(); 2495 assert(old_base != NULL, ""); 2496 ptrdiff_t delta = new_base - old_base; 2497 if (_i2c_entry != NULL) 2498 _i2c_entry += delta; 2499 if (_c2i_entry != NULL) 2500 _c2i_entry += delta; 2501 if (_c2i_unverified_entry != NULL) 2502 _c2i_unverified_entry += delta; 2503 assert(base_address() == new_base, ""); 2504 } 2505 2506 2507 void AdapterHandlerEntry::deallocate() { 2508 delete _fingerprint; 2509 #ifdef ASSERT 2510 if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 2511 #endif 2512 } 2513 2514 2515 #ifdef ASSERT 2516 // Capture the code before relocation so that it can be compared 2517 // against other versions. If the code is captured after relocation 2518 // then relative instructions won't be equivalent. 2519 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 2520 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 2521 _saved_code_length = length; 2522 memcpy(_saved_code, buffer, length); 2523 } 2524 2525 2526 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) { 2527 if (length != _saved_code_length) { 2528 return false; 2529 } 2530 2531 return (memcmp(buffer, _saved_code, length) == 0) ? true : false; 2532 } 2533 #endif 2534 2535 2536 /** 2537 * Create a native wrapper for this native method. The wrapper converts the 2538 * Java-compiled calling convention to the native convention, handles 2539 * arguments, and transitions to native. On return from the native we transition 2540 * back to java blocking if a safepoint is in progress. 2541 */ 2542 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) { 2543 ResourceMark rm; 2544 nmethod* nm = NULL; 2545 2546 assert(method->is_native(), "must be native"); 2547 assert(method->is_method_handle_intrinsic() || 2548 method->has_native_function(), "must have something valid to call!"); 2549 2550 { 2551 // Perform the work while holding the lock, but perform any printing outside the lock 2552 MutexLocker mu(AdapterHandlerLibrary_lock); 2553 // See if somebody beat us to it 2554 nm = method->code(); 2555 if (nm != NULL) { 2556 return; 2557 } 2558 2559 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 2560 assert(compile_id > 0, "Must generate native wrapper"); 2561 2562 2563 ResourceMark rm; 2564 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2565 if (buf != NULL) { 2566 CodeBuffer buffer(buf); 2567 double locs_buf[20]; 2568 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 2569 MacroAssembler _masm(&buffer); 2570 2571 // Fill in the signature array, for the calling-convention call. 2572 const int total_args_passed = method->size_of_parameters(); 2573 2574 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2575 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2576 int i=0; 2577 if (!method->is_static()) // Pass in receiver first 2578 sig_bt[i++] = T_OBJECT; 2579 SignatureStream ss(method->signature()); 2580 for (; !ss.at_return_type(); ss.next()) { 2581 sig_bt[i++] = ss.type(); // Collect remaining bits of signature 2582 if (ss.type() == T_LONG || ss.type() == T_DOUBLE) 2583 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots 2584 } 2585 assert(i == total_args_passed, ""); 2586 BasicType ret_type = ss.type(); 2587 2588 // Now get the compiled-Java layout as input (or output) arguments. 2589 // NOTE: Stubs for compiled entry points of method handle intrinsics 2590 // are just trampolines so the argument registers must be outgoing ones. 2591 const bool is_outgoing = method->is_method_handle_intrinsic(); 2592 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing); 2593 2594 // Generate the compiled-to-native wrapper code 2595 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 2596 2597 if (nm != NULL) { 2598 method->set_code(method, nm); 2599 } 2600 } 2601 } // Unlock AdapterHandlerLibrary_lock 2602 2603 2604 // Install the generated code. 2605 if (nm != NULL) { 2606 if (PrintCompilation) { 2607 ttyLocker ttyl; 2608 CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : ""); 2609 } 2610 nm->post_compiled_method_load_event(); 2611 } 2612 } 2613 2614 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread)) 2615 assert(thread == JavaThread::current(), "must be"); 2616 // The code is about to enter a JNI lazy critical native method and 2617 // _needs_gc is true, so if this thread is already in a critical 2618 // section then just return, otherwise this thread should block 2619 // until needs_gc has been cleared. 2620 if (thread->in_critical()) { 2621 return; 2622 } 2623 // Lock and unlock a critical section to give the system a chance to block 2624 GC_locker::lock_critical(thread); 2625 GC_locker::unlock_critical(thread); 2626 JRT_END 2627 2628 int SharedRuntime::convert_ints_to_longints_argcnt(int in_args_count, BasicType* in_sig_bt) { 2629 int argcnt = in_args_count; 2630 if (CCallingConventionRequiresIntsAsLongs) { 2631 for (int in = 0; in < in_args_count; in++) { 2632 BasicType bt = in_sig_bt[in]; 2633 switch (bt) { 2634 case T_BOOLEAN: 2635 case T_CHAR: 2636 case T_BYTE: 2637 case T_SHORT: 2638 case T_INT: 2639 argcnt++; 2640 break; 2641 default: 2642 break; 2643 } 2644 } 2645 } else { 2646 assert(0, "This should not be needed on this platform"); 2647 } 2648 2649 return argcnt; 2650 } 2651 2652 void SharedRuntime::convert_ints_to_longints(int i2l_argcnt, int& in_args_count, 2653 BasicType*& in_sig_bt, VMRegPair*& in_regs) { 2654 if (CCallingConventionRequiresIntsAsLongs) { 2655 VMRegPair *new_in_regs = NEW_RESOURCE_ARRAY(VMRegPair, i2l_argcnt); 2656 BasicType *new_in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt); 2657 2658 int argcnt = 0; 2659 for (int in = 0; in < in_args_count; in++, argcnt++) { 2660 BasicType bt = in_sig_bt[in]; 2661 VMRegPair reg = in_regs[in]; 2662 switch (bt) { 2663 case T_BOOLEAN: 2664 case T_CHAR: 2665 case T_BYTE: 2666 case T_SHORT: 2667 case T_INT: 2668 // Convert (bt) to (T_LONG,bt). 2669 new_in_sig_bt[argcnt] = T_LONG; 2670 new_in_sig_bt[argcnt+1] = bt; 2671 assert(reg.first()->is_valid() && !reg.second()->is_valid(), ""); 2672 new_in_regs[argcnt].set2(reg.first()); 2673 new_in_regs[argcnt+1].set_bad(); 2674 argcnt++; 2675 break; 2676 default: 2677 // No conversion needed. 2678 new_in_sig_bt[argcnt] = bt; 2679 new_in_regs[argcnt] = reg; 2680 break; 2681 } 2682 } 2683 assert(argcnt == i2l_argcnt, "must match"); 2684 2685 in_regs = new_in_regs; 2686 in_sig_bt = new_in_sig_bt; 2687 in_args_count = i2l_argcnt; 2688 } else { 2689 assert(0, "This should not be needed on this platform"); 2690 } 2691 } 2692 2693 // ------------------------------------------------------------------------- 2694 // Java-Java calling convention 2695 // (what you use when Java calls Java) 2696 2697 //------------------------------name_for_receiver---------------------------------- 2698 // For a given signature, return the VMReg for parameter 0. 2699 VMReg SharedRuntime::name_for_receiver() { 2700 VMRegPair regs; 2701 BasicType sig_bt = T_OBJECT; 2702 (void) java_calling_convention(&sig_bt, ®s, 1, true); 2703 // Return argument 0 register. In the LP64 build pointers 2704 // take 2 registers, but the VM wants only the 'main' name. 2705 return regs.first(); 2706 } 2707 2708 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 2709 // This method is returning a data structure allocating as a 2710 // ResourceObject, so do not put any ResourceMarks in here. 2711 char *s = sig->as_C_string(); 2712 int len = (int)strlen(s); 2713 s++; len--; // Skip opening paren 2714 char *t = s+len; 2715 while (*(--t) != ')'); // Find close paren 2716 2717 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 2718 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 2719 int cnt = 0; 2720 if (has_receiver) { 2721 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 2722 } 2723 2724 while (s < t) { 2725 switch (*s++) { // Switch on signature character 2726 case 'B': sig_bt[cnt++] = T_BYTE; break; 2727 case 'C': sig_bt[cnt++] = T_CHAR; break; 2728 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break; 2729 case 'F': sig_bt[cnt++] = T_FLOAT; break; 2730 case 'I': sig_bt[cnt++] = T_INT; break; 2731 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break; 2732 case 'S': sig_bt[cnt++] = T_SHORT; break; 2733 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break; 2734 case 'V': sig_bt[cnt++] = T_VOID; break; 2735 case 'L': // Oop 2736 while (*s++ != ';'); // Skip signature 2737 sig_bt[cnt++] = T_OBJECT; 2738 break; 2739 case '[': { // Array 2740 do { // Skip optional size 2741 while (*s >= '0' && *s <= '9') s++; 2742 } while (*s++ == '['); // Nested arrays? 2743 // Skip element type 2744 if (s[-1] == 'L') 2745 while (*s++ != ';'); // Skip signature 2746 sig_bt[cnt++] = T_ARRAY; 2747 break; 2748 } 2749 default : ShouldNotReachHere(); 2750 } 2751 } 2752 2753 if (has_appendix) { 2754 sig_bt[cnt++] = T_OBJECT; 2755 } 2756 2757 assert(cnt < 256, "grow table size"); 2758 2759 int comp_args_on_stack; 2760 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true); 2761 2762 // the calling convention doesn't count out_preserve_stack_slots so 2763 // we must add that in to get "true" stack offsets. 2764 2765 if (comp_args_on_stack) { 2766 for (int i = 0; i < cnt; i++) { 2767 VMReg reg1 = regs[i].first(); 2768 if (reg1->is_stack()) { 2769 // Yuck 2770 reg1 = reg1->bias(out_preserve_stack_slots()); 2771 } 2772 VMReg reg2 = regs[i].second(); 2773 if (reg2->is_stack()) { 2774 // Yuck 2775 reg2 = reg2->bias(out_preserve_stack_slots()); 2776 } 2777 regs[i].set_pair(reg2, reg1); 2778 } 2779 } 2780 2781 // results 2782 *arg_size = cnt; 2783 return regs; 2784 } 2785 2786 // OSR Migration Code 2787 // 2788 // This code is used convert interpreter frames into compiled frames. It is 2789 // called from very start of a compiled OSR nmethod. A temp array is 2790 // allocated to hold the interesting bits of the interpreter frame. All 2791 // active locks are inflated to allow them to move. The displaced headers and 2792 // active interpreter locals are copied into the temp buffer. Then we return 2793 // back to the compiled code. The compiled code then pops the current 2794 // interpreter frame off the stack and pushes a new compiled frame. Then it 2795 // copies the interpreter locals and displaced headers where it wants. 2796 // Finally it calls back to free the temp buffer. 2797 // 2798 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 2799 2800 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) ) 2801 2802 // 2803 // This code is dependent on the memory layout of the interpreter local 2804 // array and the monitors. On all of our platforms the layout is identical 2805 // so this code is shared. If some platform lays the their arrays out 2806 // differently then this code could move to platform specific code or 2807 // the code here could be modified to copy items one at a time using 2808 // frame accessor methods and be platform independent. 2809 2810 frame fr = thread->last_frame(); 2811 assert(fr.is_interpreted_frame(), ""); 2812 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 2813 2814 // Figure out how many monitors are active. 2815 int active_monitor_count = 0; 2816 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 2817 kptr < fr.interpreter_frame_monitor_begin(); 2818 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 2819 if (kptr->obj() != NULL) active_monitor_count++; 2820 } 2821 2822 // QQQ we could place number of active monitors in the array so that compiled code 2823 // could double check it. 2824 2825 Method* moop = fr.interpreter_frame_method(); 2826 int max_locals = moop->max_locals(); 2827 // Allocate temp buffer, 1 word per local & 2 per active monitor 2828 int buf_size_words = max_locals + active_monitor_count*2; 2829 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 2830 2831 // Copy the locals. Order is preserved so that loading of longs works. 2832 // Since there's no GC I can copy the oops blindly. 2833 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 2834 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 2835 (HeapWord*)&buf[0], 2836 max_locals); 2837 2838 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 2839 int i = max_locals; 2840 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 2841 kptr2 < fr.interpreter_frame_monitor_begin(); 2842 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 2843 if (kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array 2844 BasicLock *lock = kptr2->lock(); 2845 // Inflate so the displaced header becomes position-independent 2846 if (lock->displaced_header()->is_unlocked()) 2847 ObjectSynchronizer::inflate_helper(kptr2->obj()); 2848 // Now the displaced header is free to move 2849 buf[i++] = (intptr_t)lock->displaced_header(); 2850 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 2851 } 2852 } 2853 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 2854 2855 return buf; 2856 JRT_END 2857 2858 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 2859 FREE_C_HEAP_ARRAY(intptr_t, buf); 2860 JRT_END 2861 2862 bool AdapterHandlerLibrary::contains(CodeBlob* b) { 2863 AdapterHandlerTableIterator iter(_adapters); 2864 while (iter.has_next()) { 2865 AdapterHandlerEntry* a = iter.next(); 2866 if (b == CodeCache::find_blob(a->get_i2c_entry())) return true; 2867 } 2868 return false; 2869 } 2870 2871 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) { 2872 AdapterHandlerTableIterator iter(_adapters); 2873 while (iter.has_next()) { 2874 AdapterHandlerEntry* a = iter.next(); 2875 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 2876 st->print("Adapter for signature: "); 2877 a->print_adapter_on(tty); 2878 return; 2879 } 2880 } 2881 assert(false, "Should have found handler"); 2882 } 2883 2884 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 2885 st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT, 2886 (intptr_t) this, fingerprint()->as_string(), 2887 get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry()); 2888 2889 } 2890 2891 #ifndef PRODUCT 2892 2893 void AdapterHandlerLibrary::print_statistics() { 2894 _adapters->print_statistics(); 2895 } 2896 2897 #endif /* PRODUCT */