1 /* 2 * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_Compilation.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_FrameMap.hpp" 29 #include "c1/c1_Instruction.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_LIRGenerator.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "ci/ciObjArray.hpp" 36 #include "ci/ciUtilities.hpp" 37 #include "gc/shared/barrierSet.hpp" 38 #include "gc/shared/c1/barrierSetC1.hpp" 39 #include "runtime/arguments.hpp" 40 #include "runtime/sharedRuntime.hpp" 41 #include "runtime/stubRoutines.hpp" 42 #include "runtime/vm_version.hpp" 43 #include "utilities/bitMap.inline.hpp" 44 #include "utilities/macros.hpp" 45 46 #ifdef ASSERT 47 #define __ gen()->lir(__FILE__, __LINE__)-> 48 #else 49 #define __ gen()->lir()-> 50 #endif 51 52 #ifndef PATCHED_ADDR 53 #define PATCHED_ADDR (max_jint) 54 #endif 55 56 void PhiResolverState::reset(int max_vregs) { 57 // Initialize array sizes 58 _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL); 59 _virtual_operands.trunc_to(0); 60 _other_operands.at_put_grow(max_vregs - 1, NULL, NULL); 61 _other_operands.trunc_to(0); 62 _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL); 63 _vreg_table.trunc_to(0); 64 } 65 66 67 68 //-------------------------------------------------------------- 69 // PhiResolver 70 71 // Resolves cycles: 72 // 73 // r1 := r2 becomes temp := r1 74 // r2 := r1 r1 := r2 75 // r2 := temp 76 // and orders moves: 77 // 78 // r2 := r3 becomes r1 := r2 79 // r1 := r2 r2 := r3 80 81 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs) 82 : _gen(gen) 83 , _state(gen->resolver_state()) 84 , _temp(LIR_OprFact::illegalOpr) 85 { 86 // reinitialize the shared state arrays 87 _state.reset(max_vregs); 88 } 89 90 91 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 92 assert(src->is_valid(), ""); 93 assert(dest->is_valid(), ""); 94 __ move(src, dest); 95 } 96 97 98 void PhiResolver::move_temp_to(LIR_Opr dest) { 99 assert(_temp->is_valid(), ""); 100 emit_move(_temp, dest); 101 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 102 } 103 104 105 void PhiResolver::move_to_temp(LIR_Opr src) { 106 assert(_temp->is_illegal(), ""); 107 _temp = _gen->new_register(src->type()); 108 emit_move(src, _temp); 109 } 110 111 112 // Traverse assignment graph in depth first order and generate moves in post order 113 // ie. two assignments: b := c, a := b start with node c: 114 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a) 115 // Generates moves in this order: move b to a and move c to b 116 // ie. cycle a := b, b := a start with node a 117 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a) 118 // Generates moves in this order: move b to temp, move a to b, move temp to a 119 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 120 if (!dest->visited()) { 121 dest->set_visited(); 122 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 123 move(dest, dest->destination_at(i)); 124 } 125 } else if (!dest->start_node()) { 126 // cylce in graph detected 127 assert(_loop == NULL, "only one loop valid!"); 128 _loop = dest; 129 move_to_temp(src->operand()); 130 return; 131 } // else dest is a start node 132 133 if (!dest->assigned()) { 134 if (_loop == dest) { 135 move_temp_to(dest->operand()); 136 dest->set_assigned(); 137 } else if (src != NULL) { 138 emit_move(src->operand(), dest->operand()); 139 dest->set_assigned(); 140 } 141 } 142 } 143 144 145 PhiResolver::~PhiResolver() { 146 int i; 147 // resolve any cycles in moves from and to virtual registers 148 for (i = virtual_operands().length() - 1; i >= 0; i --) { 149 ResolveNode* node = virtual_operands().at(i); 150 if (!node->visited()) { 151 _loop = NULL; 152 move(NULL, node); 153 node->set_start_node(); 154 assert(_temp->is_illegal(), "move_temp_to() call missing"); 155 } 156 } 157 158 // generate move for move from non virtual register to abitrary destination 159 for (i = other_operands().length() - 1; i >= 0; i --) { 160 ResolveNode* node = other_operands().at(i); 161 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 162 emit_move(node->operand(), node->destination_at(j)->operand()); 163 } 164 } 165 } 166 167 168 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 169 ResolveNode* node; 170 if (opr->is_virtual()) { 171 int vreg_num = opr->vreg_number(); 172 node = vreg_table().at_grow(vreg_num, NULL); 173 assert(node == NULL || node->operand() == opr, ""); 174 if (node == NULL) { 175 node = new ResolveNode(opr); 176 vreg_table().at_put(vreg_num, node); 177 } 178 // Make sure that all virtual operands show up in the list when 179 // they are used as the source of a move. 180 if (source && !virtual_operands().contains(node)) { 181 virtual_operands().append(node); 182 } 183 } else { 184 assert(source, ""); 185 node = new ResolveNode(opr); 186 other_operands().append(node); 187 } 188 return node; 189 } 190 191 192 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 193 assert(dest->is_virtual(), ""); 194 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 195 assert(src->is_valid(), ""); 196 assert(dest->is_valid(), ""); 197 ResolveNode* source = source_node(src); 198 source->append(destination_node(dest)); 199 } 200 201 202 //-------------------------------------------------------------- 203 // LIRItem 204 205 void LIRItem::set_result(LIR_Opr opr) { 206 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 207 value()->set_operand(opr); 208 209 if (opr->is_virtual()) { 210 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL); 211 } 212 213 _result = opr; 214 } 215 216 void LIRItem::load_item() { 217 if (result()->is_illegal()) { 218 // update the items result 219 _result = value()->operand(); 220 } 221 if (!result()->is_register()) { 222 LIR_Opr reg = _gen->new_register(value()->type()); 223 __ move(result(), reg); 224 if (result()->is_constant()) { 225 _result = reg; 226 } else { 227 set_result(reg); 228 } 229 } 230 } 231 232 233 void LIRItem::load_for_store(BasicType type) { 234 if (_gen->can_store_as_constant(value(), type)) { 235 _result = value()->operand(); 236 if (!_result->is_constant()) { 237 _result = LIR_OprFact::value_type(value()->type()); 238 } 239 } else if (type == T_BYTE || type == T_BOOLEAN) { 240 load_byte_item(); 241 } else { 242 load_item(); 243 } 244 } 245 246 void LIRItem::load_item_force(LIR_Opr reg) { 247 LIR_Opr r = result(); 248 if (r != reg) { 249 #if !defined(ARM) && !defined(E500V2) 250 if (r->type() != reg->type()) { 251 // moves between different types need an intervening spill slot 252 r = _gen->force_to_spill(r, reg->type()); 253 } 254 #endif 255 __ move(r, reg); 256 _result = reg; 257 } 258 } 259 260 ciObject* LIRItem::get_jobject_constant() const { 261 ObjectType* oc = type()->as_ObjectType(); 262 if (oc) { 263 return oc->constant_value(); 264 } 265 return NULL; 266 } 267 268 269 jint LIRItem::get_jint_constant() const { 270 assert(is_constant() && value() != NULL, ""); 271 assert(type()->as_IntConstant() != NULL, "type check"); 272 return type()->as_IntConstant()->value(); 273 } 274 275 276 jint LIRItem::get_address_constant() const { 277 assert(is_constant() && value() != NULL, ""); 278 assert(type()->as_AddressConstant() != NULL, "type check"); 279 return type()->as_AddressConstant()->value(); 280 } 281 282 283 jfloat LIRItem::get_jfloat_constant() const { 284 assert(is_constant() && value() != NULL, ""); 285 assert(type()->as_FloatConstant() != NULL, "type check"); 286 return type()->as_FloatConstant()->value(); 287 } 288 289 290 jdouble LIRItem::get_jdouble_constant() const { 291 assert(is_constant() && value() != NULL, ""); 292 assert(type()->as_DoubleConstant() != NULL, "type check"); 293 return type()->as_DoubleConstant()->value(); 294 } 295 296 297 jlong LIRItem::get_jlong_constant() const { 298 assert(is_constant() && value() != NULL, ""); 299 assert(type()->as_LongConstant() != NULL, "type check"); 300 return type()->as_LongConstant()->value(); 301 } 302 303 304 305 //-------------------------------------------------------------- 306 307 308 void LIRGenerator::block_do_prolog(BlockBegin* block) { 309 #ifndef PRODUCT 310 if (PrintIRWithLIR) { 311 block->print(); 312 } 313 #endif 314 315 // set up the list of LIR instructions 316 assert(block->lir() == NULL, "LIR list already computed for this block"); 317 _lir = new LIR_List(compilation(), block); 318 block->set_lir(_lir); 319 320 __ branch_destination(block->label()); 321 322 if (LIRTraceExecution && 323 Compilation::current()->hir()->start()->block_id() != block->block_id() && 324 !block->is_set(BlockBegin::exception_entry_flag)) { 325 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 326 trace_block_entry(block); 327 } 328 } 329 330 331 void LIRGenerator::block_do_epilog(BlockBegin* block) { 332 #ifndef PRODUCT 333 if (PrintIRWithLIR) { 334 tty->cr(); 335 } 336 #endif 337 338 // LIR_Opr for unpinned constants shouldn't be referenced by other 339 // blocks so clear them out after processing the block. 340 for (int i = 0; i < _unpinned_constants.length(); i++) { 341 _unpinned_constants.at(i)->clear_operand(); 342 } 343 _unpinned_constants.trunc_to(0); 344 345 // clear our any registers for other local constants 346 _constants.trunc_to(0); 347 _reg_for_constants.trunc_to(0); 348 } 349 350 351 void LIRGenerator::block_do(BlockBegin* block) { 352 CHECK_BAILOUT(); 353 354 block_do_prolog(block); 355 set_block(block); 356 357 for (Instruction* instr = block; instr != NULL; instr = instr->next()) { 358 if (instr->is_pinned()) do_root(instr); 359 } 360 361 set_block(NULL); 362 block_do_epilog(block); 363 } 364 365 366 //-------------------------LIRGenerator----------------------------- 367 368 // This is where the tree-walk starts; instr must be root; 369 void LIRGenerator::do_root(Value instr) { 370 CHECK_BAILOUT(); 371 372 InstructionMark im(compilation(), instr); 373 374 assert(instr->is_pinned(), "use only with roots"); 375 assert(instr->subst() == instr, "shouldn't have missed substitution"); 376 377 instr->visit(this); 378 379 assert(!instr->has_uses() || instr->operand()->is_valid() || 380 instr->as_Constant() != NULL || bailed_out(), "invalid item set"); 381 } 382 383 384 // This is called for each node in tree; the walk stops if a root is reached 385 void LIRGenerator::walk(Value instr) { 386 InstructionMark im(compilation(), instr); 387 //stop walk when encounter a root 388 if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) { 389 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited"); 390 } else { 391 assert(instr->subst() == instr, "shouldn't have missed substitution"); 392 instr->visit(this); 393 // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use"); 394 } 395 } 396 397 398 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 399 assert(state != NULL, "state must be defined"); 400 401 #ifndef PRODUCT 402 state->verify(); 403 #endif 404 405 ValueStack* s = state; 406 for_each_state(s) { 407 if (s->kind() == ValueStack::EmptyExceptionState) { 408 assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty"); 409 continue; 410 } 411 412 int index; 413 Value value; 414 for_each_stack_value(s, index, value) { 415 assert(value->subst() == value, "missed substitution"); 416 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { 417 walk(value); 418 assert(value->operand()->is_valid(), "must be evaluated now"); 419 } 420 } 421 422 int bci = s->bci(); 423 IRScope* scope = s->scope(); 424 ciMethod* method = scope->method(); 425 426 MethodLivenessResult liveness = method->liveness_at_bci(bci); 427 if (bci == SynchronizationEntryBCI) { 428 if (x->as_ExceptionObject() || x->as_Throw()) { 429 // all locals are dead on exit from the synthetic unlocker 430 liveness.clear(); 431 } else { 432 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 433 } 434 } 435 if (!liveness.is_valid()) { 436 // Degenerate or breakpointed method. 437 bailout("Degenerate or breakpointed method"); 438 } else { 439 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 440 for_each_local_value(s, index, value) { 441 assert(value->subst() == value, "missed substition"); 442 if (liveness.at(index) && !value->type()->is_illegal()) { 443 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { 444 walk(value); 445 assert(value->operand()->is_valid(), "must be evaluated now"); 446 } 447 } else { 448 // NULL out this local so that linear scan can assume that all non-NULL values are live. 449 s->invalidate_local(index); 450 } 451 } 452 } 453 } 454 455 return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 456 } 457 458 459 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 460 return state_for(x, x->exception_state()); 461 } 462 463 464 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 465 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation 466 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 467 * the class. */ 468 if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) { 469 assert(info != NULL, "info must be set if class is not loaded"); 470 __ klass2reg_patch(NULL, r, info); 471 } else { 472 // no patching needed 473 __ metadata2reg(obj->constant_encoding(), r); 474 } 475 } 476 477 478 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 479 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 480 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 481 if (index->is_constant()) { 482 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 483 index->as_jint(), null_check_info); 484 __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch 485 } else { 486 cmp_reg_mem(lir_cond_aboveEqual, index, array, 487 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 488 __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch 489 } 490 } 491 492 493 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) { 494 CodeStub* stub = new RangeCheckStub(info, index); 495 if (index->is_constant()) { 496 cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info); 497 __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch 498 } else { 499 cmp_reg_mem(lir_cond_aboveEqual, index, buffer, 500 java_nio_Buffer::limit_offset(), T_INT, info); 501 __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch 502 } 503 __ move(index, result); 504 } 505 506 507 508 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) { 509 LIR_Opr result_op = result; 510 LIR_Opr left_op = left; 511 LIR_Opr right_op = right; 512 513 if (TwoOperandLIRForm && left_op != result_op) { 514 assert(right_op != result_op, "malformed"); 515 __ move(left_op, result_op); 516 left_op = result_op; 517 } 518 519 switch(code) { 520 case Bytecodes::_dadd: 521 case Bytecodes::_fadd: 522 case Bytecodes::_ladd: 523 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 524 case Bytecodes::_fmul: 525 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 526 527 case Bytecodes::_dmul: 528 { 529 if (is_strictfp) { 530 __ mul_strictfp(left_op, right_op, result_op, tmp_op); break; 531 } else { 532 __ mul(left_op, right_op, result_op); break; 533 } 534 } 535 break; 536 537 case Bytecodes::_imul: 538 { 539 bool did_strength_reduce = false; 540 541 if (right->is_constant()) { 542 jint c = right->as_jint(); 543 if (c > 0 && is_power_of_2(c)) { 544 // do not need tmp here 545 __ shift_left(left_op, exact_log2(c), result_op); 546 did_strength_reduce = true; 547 } else { 548 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 549 } 550 } 551 // we couldn't strength reduce so just emit the multiply 552 if (!did_strength_reduce) { 553 __ mul(left_op, right_op, result_op); 554 } 555 } 556 break; 557 558 case Bytecodes::_dsub: 559 case Bytecodes::_fsub: 560 case Bytecodes::_lsub: 561 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 562 563 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 564 // ldiv and lrem are implemented with a direct runtime call 565 566 case Bytecodes::_ddiv: 567 { 568 if (is_strictfp) { 569 __ div_strictfp (left_op, right_op, result_op, tmp_op); break; 570 } else { 571 __ div (left_op, right_op, result_op); break; 572 } 573 } 574 break; 575 576 case Bytecodes::_drem: 577 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 578 579 default: ShouldNotReachHere(); 580 } 581 } 582 583 584 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 585 arithmetic_op(code, result, left, right, false, tmp); 586 } 587 588 589 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 590 arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info); 591 } 592 593 594 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) { 595 arithmetic_op(code, result, left, right, is_strictfp, tmp); 596 } 597 598 599 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 600 601 if (TwoOperandLIRForm && value != result_op 602 // Only 32bit right shifts require two operand form on S390. 603 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 604 assert(count != result_op, "malformed"); 605 __ move(value, result_op); 606 value = result_op; 607 } 608 609 assert(count->is_constant() || count->is_register(), "must be"); 610 switch(code) { 611 case Bytecodes::_ishl: 612 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 613 case Bytecodes::_ishr: 614 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 615 case Bytecodes::_iushr: 616 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 617 default: ShouldNotReachHere(); 618 } 619 } 620 621 622 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 623 if (TwoOperandLIRForm && left_op != result_op) { 624 assert(right_op != result_op, "malformed"); 625 __ move(left_op, result_op); 626 left_op = result_op; 627 } 628 629 switch(code) { 630 case Bytecodes::_iand: 631 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 632 633 case Bytecodes::_ior: 634 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 635 636 case Bytecodes::_ixor: 637 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 638 639 default: ShouldNotReachHere(); 640 } 641 } 642 643 644 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { 645 if (!GenerateSynchronizationCode) return; 646 // for slow path, use debug info for state after successful locking 647 CodeStub* slow_path = new MonitorEnterStub(object, lock, info); 648 __ load_stack_address_monitor(monitor_no, lock); 649 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 650 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); 651 } 652 653 654 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 655 if (!GenerateSynchronizationCode) return; 656 // setup registers 657 LIR_Opr hdr = lock; 658 lock = new_hdr; 659 CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no); 660 __ load_stack_address_monitor(monitor_no, lock); 661 __ unlock_object(hdr, object, lock, scratch, slow_path); 662 } 663 664 #ifndef PRODUCT 665 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 666 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 667 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 668 } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) { 669 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 670 } 671 } 672 #endif 673 674 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 675 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 676 // If klass is not loaded we do not know if the klass has finalizers: 677 if (UseFastNewInstance && klass->is_loaded() 678 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 679 680 Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id; 681 682 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 683 684 assert(klass->is_loaded(), "must be loaded"); 685 // allocate space for instance 686 assert(klass->size_helper() >= 0, "illegal instance size"); 687 const int instance_size = align_object_size(klass->size_helper()); 688 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 689 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 690 } else { 691 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id); 692 __ branch(lir_cond_always, T_ILLEGAL, slow_path); 693 __ branch_destination(slow_path->continuation()); 694 } 695 } 696 697 698 static bool is_constant_zero(Instruction* inst) { 699 IntConstant* c = inst->type()->as_IntConstant(); 700 if (c) { 701 return (c->value() == 0); 702 } 703 return false; 704 } 705 706 707 static bool positive_constant(Instruction* inst) { 708 IntConstant* c = inst->type()->as_IntConstant(); 709 if (c) { 710 return (c->value() >= 0); 711 } 712 return false; 713 } 714 715 716 static ciArrayKlass* as_array_klass(ciType* type) { 717 if (type != NULL && type->is_array_klass() && type->is_loaded()) { 718 return (ciArrayKlass*)type; 719 } else { 720 return NULL; 721 } 722 } 723 724 static ciType* phi_declared_type(Phi* phi) { 725 ciType* t = phi->operand_at(0)->declared_type(); 726 if (t == NULL) { 727 return NULL; 728 } 729 for(int i = 1; i < phi->operand_count(); i++) { 730 if (t != phi->operand_at(i)->declared_type()) { 731 return NULL; 732 } 733 } 734 return t; 735 } 736 737 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 738 Instruction* src = x->argument_at(0); 739 Instruction* src_pos = x->argument_at(1); 740 Instruction* dst = x->argument_at(2); 741 Instruction* dst_pos = x->argument_at(3); 742 Instruction* length = x->argument_at(4); 743 744 // first try to identify the likely type of the arrays involved 745 ciArrayKlass* expected_type = NULL; 746 bool is_exact = false, src_objarray = false, dst_objarray = false; 747 { 748 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 749 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 750 Phi* phi; 751 if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) { 752 src_declared_type = as_array_klass(phi_declared_type(phi)); 753 } 754 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 755 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 756 if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) { 757 dst_declared_type = as_array_klass(phi_declared_type(phi)); 758 } 759 760 if (src_exact_type != NULL && src_exact_type == dst_exact_type) { 761 // the types exactly match so the type is fully known 762 is_exact = true; 763 expected_type = src_exact_type; 764 } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) { 765 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 766 ciArrayKlass* src_type = NULL; 767 if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) { 768 src_type = (ciArrayKlass*) src_exact_type; 769 } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) { 770 src_type = (ciArrayKlass*) src_declared_type; 771 } 772 if (src_type != NULL) { 773 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 774 is_exact = true; 775 expected_type = dst_type; 776 } 777 } 778 } 779 // at least pass along a good guess 780 if (expected_type == NULL) expected_type = dst_exact_type; 781 if (expected_type == NULL) expected_type = src_declared_type; 782 if (expected_type == NULL) expected_type = dst_declared_type; 783 784 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 785 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 786 } 787 788 // if a probable array type has been identified, figure out if any 789 // of the required checks for a fast case can be elided. 790 int flags = LIR_OpArrayCopy::all_flags; 791 792 if (!src_objarray) 793 flags &= ~LIR_OpArrayCopy::src_objarray; 794 if (!dst_objarray) 795 flags &= ~LIR_OpArrayCopy::dst_objarray; 796 797 if (!x->arg_needs_null_check(0)) 798 flags &= ~LIR_OpArrayCopy::src_null_check; 799 if (!x->arg_needs_null_check(2)) 800 flags &= ~LIR_OpArrayCopy::dst_null_check; 801 802 803 if (expected_type != NULL) { 804 Value length_limit = NULL; 805 806 IfOp* ifop = length->as_IfOp(); 807 if (ifop != NULL) { 808 // look for expressions like min(v, a.length) which ends up as 809 // x > y ? y : x or x >= y ? y : x 810 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 811 ifop->x() == ifop->fval() && 812 ifop->y() == ifop->tval()) { 813 length_limit = ifop->y(); 814 } 815 } 816 817 // try to skip null checks and range checks 818 NewArray* src_array = src->as_NewArray(); 819 if (src_array != NULL) { 820 flags &= ~LIR_OpArrayCopy::src_null_check; 821 if (length_limit != NULL && 822 src_array->length() == length_limit && 823 is_constant_zero(src_pos)) { 824 flags &= ~LIR_OpArrayCopy::src_range_check; 825 } 826 } 827 828 NewArray* dst_array = dst->as_NewArray(); 829 if (dst_array != NULL) { 830 flags &= ~LIR_OpArrayCopy::dst_null_check; 831 if (length_limit != NULL && 832 dst_array->length() == length_limit && 833 is_constant_zero(dst_pos)) { 834 flags &= ~LIR_OpArrayCopy::dst_range_check; 835 } 836 } 837 838 // check from incoming constant values 839 if (positive_constant(src_pos)) 840 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 841 if (positive_constant(dst_pos)) 842 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 843 if (positive_constant(length)) 844 flags &= ~LIR_OpArrayCopy::length_positive_check; 845 846 // see if the range check can be elided, which might also imply 847 // that src or dst is non-null. 848 ArrayLength* al = length->as_ArrayLength(); 849 if (al != NULL) { 850 if (al->array() == src) { 851 // it's the length of the source array 852 flags &= ~LIR_OpArrayCopy::length_positive_check; 853 flags &= ~LIR_OpArrayCopy::src_null_check; 854 if (is_constant_zero(src_pos)) 855 flags &= ~LIR_OpArrayCopy::src_range_check; 856 } 857 if (al->array() == dst) { 858 // it's the length of the destination array 859 flags &= ~LIR_OpArrayCopy::length_positive_check; 860 flags &= ~LIR_OpArrayCopy::dst_null_check; 861 if (is_constant_zero(dst_pos)) 862 flags &= ~LIR_OpArrayCopy::dst_range_check; 863 } 864 } 865 if (is_exact) { 866 flags &= ~LIR_OpArrayCopy::type_check; 867 } 868 } 869 870 IntConstant* src_int = src_pos->type()->as_IntConstant(); 871 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 872 if (src_int && dst_int) { 873 int s_offs = src_int->value(); 874 int d_offs = dst_int->value(); 875 if (src_int->value() >= dst_int->value()) { 876 flags &= ~LIR_OpArrayCopy::overlapping; 877 } 878 if (expected_type != NULL) { 879 BasicType t = expected_type->element_type()->basic_type(); 880 int element_size = type2aelembytes(t); 881 if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) && 882 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) { 883 flags &= ~LIR_OpArrayCopy::unaligned; 884 } 885 } 886 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 887 // src and dest positions are the same, or dst is zero so assume 888 // nonoverlapping copy. 889 flags &= ~LIR_OpArrayCopy::overlapping; 890 } 891 892 if (src == dst) { 893 // moving within a single array so no type checks are needed 894 if (flags & LIR_OpArrayCopy::type_check) { 895 flags &= ~LIR_OpArrayCopy::type_check; 896 } 897 } 898 *flagsp = flags; 899 *expected_typep = (ciArrayKlass*)expected_type; 900 } 901 902 903 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) { 904 assert(opr->is_register(), "why spill if item is not register?"); 905 906 if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) { 907 LIR_Opr result = new_register(T_FLOAT); 908 set_vreg_flag(result, must_start_in_memory); 909 assert(opr->is_register(), "only a register can be spilled"); 910 assert(opr->value_type()->is_float(), "rounding only for floats available"); 911 __ roundfp(opr, LIR_OprFact::illegalOpr, result); 912 return result; 913 } 914 return opr; 915 } 916 917 918 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 919 assert(type2size[t] == type2size[value->type()], 920 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 921 if (!value->is_register()) { 922 // force into a register 923 LIR_Opr r = new_register(value->type()); 924 __ move(value, r); 925 value = r; 926 } 927 928 // create a spill location 929 LIR_Opr tmp = new_register(t); 930 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 931 932 // move from register to spill 933 __ move(value, tmp); 934 return tmp; 935 } 936 937 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 938 if (if_instr->should_profile()) { 939 ciMethod* method = if_instr->profiled_method(); 940 assert(method != NULL, "method should be set if branch is profiled"); 941 ciMethodData* md = method->method_data_or_null(); 942 assert(md != NULL, "Sanity"); 943 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 944 assert(data != NULL, "must have profiling data"); 945 assert(data->is_BranchData(), "need BranchData for two-way branches"); 946 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 947 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 948 if (if_instr->is_swapped()) { 949 int t = taken_count_offset; 950 taken_count_offset = not_taken_count_offset; 951 not_taken_count_offset = t; 952 } 953 954 LIR_Opr md_reg = new_register(T_METADATA); 955 __ metadata2reg(md->constant_encoding(), md_reg); 956 957 LIR_Opr data_offset_reg = new_pointer_register(); 958 __ cmove(lir_cond(cond), 959 LIR_OprFact::intptrConst(taken_count_offset), 960 LIR_OprFact::intptrConst(not_taken_count_offset), 961 data_offset_reg, as_BasicType(if_instr->x()->type())); 962 963 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 964 LIR_Opr data_reg = new_pointer_register(); 965 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 966 __ move(data_addr, data_reg); 967 // Use leal instead of add to avoid destroying condition codes on x86 968 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 969 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 970 __ move(data_reg, data_addr); 971 } 972 } 973 974 // Phi technique: 975 // This is about passing live values from one basic block to the other. 976 // In code generated with Java it is rather rare that more than one 977 // value is on the stack from one basic block to the other. 978 // We optimize our technique for efficient passing of one value 979 // (of type long, int, double..) but it can be extended. 980 // When entering or leaving a basic block, all registers and all spill 981 // slots are release and empty. We use the released registers 982 // and spill slots to pass the live values from one block 983 // to the other. The topmost value, i.e., the value on TOS of expression 984 // stack is passed in registers. All other values are stored in spilling 985 // area. Every Phi has an index which designates its spill slot 986 // At exit of a basic block, we fill the register(s) and spill slots. 987 // At entry of a basic block, the block_prolog sets up the content of phi nodes 988 // and locks necessary registers and spilling slots. 989 990 991 // move current value to referenced phi function 992 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 993 Phi* phi = sux_val->as_Phi(); 994 // cur_val can be null without phi being null in conjunction with inlining 995 if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) { 996 Phi* cur_phi = cur_val->as_Phi(); 997 if (cur_phi != NULL && cur_phi->is_illegal()) { 998 // Phi and local would need to get invalidated 999 // (which is unexpected for Linear Scan). 1000 // But this case is very rare so we simply bail out. 1001 bailout("propagation of illegal phi"); 1002 return; 1003 } 1004 LIR_Opr operand = cur_val->operand(); 1005 if (operand->is_illegal()) { 1006 assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL, 1007 "these can be produced lazily"); 1008 operand = operand_for_instruction(cur_val); 1009 } 1010 resolver->move(operand, operand_for_instruction(phi)); 1011 } 1012 } 1013 1014 1015 // Moves all stack values into their PHI position 1016 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 1017 BlockBegin* bb = block(); 1018 if (bb->number_of_sux() == 1) { 1019 BlockBegin* sux = bb->sux_at(0); 1020 assert(sux->number_of_preds() > 0, "invalid CFG"); 1021 1022 // a block with only one predecessor never has phi functions 1023 if (sux->number_of_preds() > 1) { 1024 int max_phis = cur_state->stack_size() + cur_state->locals_size(); 1025 PhiResolver resolver(this, _virtual_register_number + max_phis * 2); 1026 1027 ValueStack* sux_state = sux->state(); 1028 Value sux_value; 1029 int index; 1030 1031 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1032 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1033 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1034 1035 for_each_stack_value(sux_state, index, sux_value) { 1036 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1037 } 1038 1039 for_each_local_value(sux_state, index, sux_value) { 1040 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1041 } 1042 1043 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1044 } 1045 } 1046 } 1047 1048 1049 LIR_Opr LIRGenerator::new_register(BasicType type) { 1050 int vreg = _virtual_register_number; 1051 // add a little fudge factor for the bailout, since the bailout is 1052 // only checked periodically. This gives a few extra registers to 1053 // hand out before we really run out, which helps us keep from 1054 // tripping over assertions. 1055 if (vreg + 20 >= LIR_OprDesc::vreg_max) { 1056 bailout("out of virtual registers"); 1057 if (vreg + 2 >= LIR_OprDesc::vreg_max) { 1058 // wrap it around 1059 _virtual_register_number = LIR_OprDesc::vreg_base; 1060 } 1061 } 1062 _virtual_register_number += 1; 1063 return LIR_OprFact::virtual_register(vreg, type); 1064 } 1065 1066 1067 // Try to lock using register in hint 1068 LIR_Opr LIRGenerator::rlock(Value instr) { 1069 return new_register(instr->type()); 1070 } 1071 1072 1073 // does an rlock and sets result 1074 LIR_Opr LIRGenerator::rlock_result(Value x) { 1075 LIR_Opr reg = rlock(x); 1076 set_result(x, reg); 1077 return reg; 1078 } 1079 1080 1081 // does an rlock and sets result 1082 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1083 LIR_Opr reg; 1084 switch (type) { 1085 case T_BYTE: 1086 case T_BOOLEAN: 1087 reg = rlock_byte(type); 1088 break; 1089 default: 1090 reg = rlock(x); 1091 break; 1092 } 1093 1094 set_result(x, reg); 1095 return reg; 1096 } 1097 1098 1099 //--------------------------------------------------------------------- 1100 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1101 ObjectType* oc = value->type()->as_ObjectType(); 1102 if (oc) { 1103 return oc->constant_value(); 1104 } 1105 return NULL; 1106 } 1107 1108 1109 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1110 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1111 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1112 1113 // no moves are created for phi functions at the begin of exception 1114 // handlers, so assign operands manually here 1115 for_each_phi_fun(block(), phi, 1116 operand_for_instruction(phi)); 1117 1118 LIR_Opr thread_reg = getThreadPointer(); 1119 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1120 exceptionOopOpr()); 1121 __ move_wide(LIR_OprFact::oopConst(NULL), 1122 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1123 __ move_wide(LIR_OprFact::oopConst(NULL), 1124 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1125 1126 LIR_Opr result = new_register(T_OBJECT); 1127 __ move(exceptionOopOpr(), result); 1128 set_result(x, result); 1129 } 1130 1131 1132 //---------------------------------------------------------------------- 1133 //---------------------------------------------------------------------- 1134 //---------------------------------------------------------------------- 1135 //---------------------------------------------------------------------- 1136 // visitor functions 1137 //---------------------------------------------------------------------- 1138 //---------------------------------------------------------------------- 1139 //---------------------------------------------------------------------- 1140 //---------------------------------------------------------------------- 1141 1142 void LIRGenerator::do_Phi(Phi* x) { 1143 // phi functions are never visited directly 1144 ShouldNotReachHere(); 1145 } 1146 1147 1148 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1149 void LIRGenerator::do_Constant(Constant* x) { 1150 if (x->state_before() != NULL) { 1151 // Any constant with a ValueStack requires patching so emit the patch here 1152 LIR_Opr reg = rlock_result(x); 1153 CodeEmitInfo* info = state_for(x, x->state_before()); 1154 __ oop2reg_patch(NULL, reg, info); 1155 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1156 if (!x->is_pinned()) { 1157 // unpinned constants are handled specially so that they can be 1158 // put into registers when they are used multiple times within a 1159 // block. After the block completes their operand will be 1160 // cleared so that other blocks can't refer to that register. 1161 set_result(x, load_constant(x)); 1162 } else { 1163 LIR_Opr res = x->operand(); 1164 if (!res->is_valid()) { 1165 res = LIR_OprFact::value_type(x->type()); 1166 } 1167 if (res->is_constant()) { 1168 LIR_Opr reg = rlock_result(x); 1169 __ move(res, reg); 1170 } else { 1171 set_result(x, res); 1172 } 1173 } 1174 } else { 1175 set_result(x, LIR_OprFact::value_type(x->type())); 1176 } 1177 } 1178 1179 1180 void LIRGenerator::do_Local(Local* x) { 1181 // operand_for_instruction has the side effect of setting the result 1182 // so there's no need to do it here. 1183 operand_for_instruction(x); 1184 } 1185 1186 1187 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) { 1188 Unimplemented(); 1189 } 1190 1191 1192 void LIRGenerator::do_Return(Return* x) { 1193 if (compilation()->env()->dtrace_method_probes()) { 1194 BasicTypeList signature; 1195 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1196 signature.append(T_METADATA); // Method* 1197 LIR_OprList* args = new LIR_OprList(); 1198 args->append(getThreadPointer()); 1199 LIR_Opr meth = new_register(T_METADATA); 1200 __ metadata2reg(method()->constant_encoding(), meth); 1201 args->append(meth); 1202 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL); 1203 } 1204 1205 if (x->type()->is_void()) { 1206 __ return_op(LIR_OprFact::illegalOpr); 1207 } else { 1208 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1209 LIRItem result(x->result(), this); 1210 1211 result.load_item_force(reg); 1212 __ return_op(result.result()); 1213 } 1214 set_no_result(x); 1215 } 1216 1217 // Examble: ref.get() 1218 // Combination of LoadField and g1 pre-write barrier 1219 void LIRGenerator::do_Reference_get(Intrinsic* x) { 1220 1221 const int referent_offset = java_lang_ref_Reference::referent_offset; 1222 guarantee(referent_offset > 0, "referent offset not initialized"); 1223 1224 assert(x->number_of_arguments() == 1, "wrong type"); 1225 1226 LIRItem reference(x->argument_at(0), this); 1227 reference.load_item(); 1228 1229 // need to perform the null check on the reference objecy 1230 CodeEmitInfo* info = NULL; 1231 if (x->needs_null_check()) { 1232 info = state_for(x); 1233 } 1234 1235 LIR_Opr result = rlock_result(x, T_OBJECT); 1236 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1237 reference, LIR_OprFact::intConst(referent_offset), result); 1238 } 1239 1240 // Example: clazz.isInstance(object) 1241 void LIRGenerator::do_isInstance(Intrinsic* x) { 1242 assert(x->number_of_arguments() == 2, "wrong type"); 1243 1244 // TODO could try to substitute this node with an equivalent InstanceOf 1245 // if clazz is known to be a constant Class. This will pick up newly found 1246 // constants after HIR construction. I'll leave this to a future change. 1247 1248 // as a first cut, make a simple leaf call to runtime to stay platform independent. 1249 // could follow the aastore example in a future change. 1250 1251 LIRItem clazz(x->argument_at(0), this); 1252 LIRItem object(x->argument_at(1), this); 1253 clazz.load_item(); 1254 object.load_item(); 1255 LIR_Opr result = rlock_result(x); 1256 1257 // need to perform null check on clazz 1258 if (x->needs_null_check()) { 1259 CodeEmitInfo* info = state_for(x); 1260 __ null_check(clazz.result(), info); 1261 } 1262 1263 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1264 CAST_FROM_FN_PTR(address, Runtime1::is_instance_of), 1265 x->type(), 1266 NULL); // NULL CodeEmitInfo results in a leaf call 1267 __ move(call_result, result); 1268 } 1269 1270 // Example: object.getClass () 1271 void LIRGenerator::do_getClass(Intrinsic* x) { 1272 assert(x->number_of_arguments() == 1, "wrong type"); 1273 1274 LIRItem rcvr(x->argument_at(0), this); 1275 rcvr.load_item(); 1276 LIR_Opr temp = new_register(T_METADATA); 1277 LIR_Opr result = rlock_result(x); 1278 1279 // need to perform the null check on the rcvr 1280 CodeEmitInfo* info = NULL; 1281 if (x->needs_null_check()) { 1282 info = state_for(x); 1283 } 1284 1285 // FIXME T_ADDRESS should actually be T_METADATA but it can't because the 1286 // meaning of these two is mixed up (see JDK-8026837). 1287 __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info); 1288 __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1289 // mirror = ((OopHandle)mirror)->resolve(); 1290 access_load(IN_NATIVE, T_OBJECT, 1291 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1292 } 1293 1294 // java.lang.Class::isPrimitive() 1295 void LIRGenerator::do_isPrimitive(Intrinsic* x) { 1296 assert(x->number_of_arguments() == 1, "wrong type"); 1297 1298 LIRItem rcvr(x->argument_at(0), this); 1299 rcvr.load_item(); 1300 LIR_Opr temp = new_register(T_METADATA); 1301 LIR_Opr result = rlock_result(x); 1302 1303 CodeEmitInfo* info = NULL; 1304 if (x->needs_null_check()) { 1305 info = state_for(x); 1306 } 1307 1308 __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info); 1309 __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0)); 1310 __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN); 1311 } 1312 1313 1314 // Example: Thread.currentThread() 1315 void LIRGenerator::do_currentThread(Intrinsic* x) { 1316 assert(x->number_of_arguments() == 0, "wrong type"); 1317 LIR_Opr reg = rlock_result(x); 1318 __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg); 1319 } 1320 1321 1322 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1323 assert(x->number_of_arguments() == 1, "wrong type"); 1324 LIRItem receiver(x->argument_at(0), this); 1325 1326 receiver.load_item(); 1327 BasicTypeList signature; 1328 signature.append(T_OBJECT); // receiver 1329 LIR_OprList* args = new LIR_OprList(); 1330 args->append(receiver.result()); 1331 CodeEmitInfo* info = state_for(x, x->state()); 1332 call_runtime(&signature, args, 1333 CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)), 1334 voidType, info); 1335 1336 set_no_result(x); 1337 } 1338 1339 1340 //------------------------local access-------------------------------------- 1341 1342 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1343 if (x->operand()->is_illegal()) { 1344 Constant* c = x->as_Constant(); 1345 if (c != NULL) { 1346 x->set_operand(LIR_OprFact::value_type(c->type())); 1347 } else { 1348 assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local"); 1349 // allocate a virtual register for this local or phi 1350 x->set_operand(rlock(x)); 1351 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL); 1352 } 1353 } 1354 return x->operand(); 1355 } 1356 1357 1358 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) { 1359 if (opr->is_virtual()) { 1360 return instruction_for_vreg(opr->vreg_number()); 1361 } 1362 return NULL; 1363 } 1364 1365 1366 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1367 if (reg_num < _instruction_for_operand.length()) { 1368 return _instruction_for_operand.at(reg_num); 1369 } 1370 return NULL; 1371 } 1372 1373 1374 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1375 if (_vreg_flags.size_in_bits() == 0) { 1376 BitMap2D temp(100, num_vreg_flags); 1377 _vreg_flags = temp; 1378 } 1379 _vreg_flags.at_put_grow(vreg_num, f, true); 1380 } 1381 1382 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1383 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1384 return false; 1385 } 1386 return _vreg_flags.at(vreg_num, f); 1387 } 1388 1389 1390 // Block local constant handling. This code is useful for keeping 1391 // unpinned constants and constants which aren't exposed in the IR in 1392 // registers. Unpinned Constant instructions have their operands 1393 // cleared when the block is finished so that other blocks can't end 1394 // up referring to their registers. 1395 1396 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1397 assert(!x->is_pinned(), "only for unpinned constants"); 1398 _unpinned_constants.append(x); 1399 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1400 } 1401 1402 1403 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1404 BasicType t = c->type(); 1405 for (int i = 0; i < _constants.length(); i++) { 1406 LIR_Const* other = _constants.at(i); 1407 if (t == other->type()) { 1408 switch (t) { 1409 case T_INT: 1410 case T_FLOAT: 1411 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1412 break; 1413 case T_LONG: 1414 case T_DOUBLE: 1415 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1416 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1417 break; 1418 case T_OBJECT: 1419 if (c->as_jobject() != other->as_jobject()) continue; 1420 break; 1421 default: 1422 break; 1423 } 1424 return _reg_for_constants.at(i); 1425 } 1426 } 1427 1428 LIR_Opr result = new_register(t); 1429 __ move((LIR_Opr)c, result); 1430 _constants.append(c); 1431 _reg_for_constants.append(result); 1432 return result; 1433 } 1434 1435 //------------------------field access-------------------------------------- 1436 1437 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1438 assert(x->number_of_arguments() == 4, "wrong type"); 1439 LIRItem obj (x->argument_at(0), this); // object 1440 LIRItem offset(x->argument_at(1), this); // offset of field 1441 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1442 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1443 assert(obj.type()->tag() == objectTag, "invalid type"); 1444 1445 // In 64bit the type can be long, sparc doesn't have this assert 1446 // assert(offset.type()->tag() == intTag, "invalid type"); 1447 1448 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1449 assert(val.type()->tag() == type->tag(), "invalid type"); 1450 1451 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1452 obj, offset, cmp, val); 1453 set_result(x, result); 1454 } 1455 1456 // Comment copied form templateTable_i486.cpp 1457 // ---------------------------------------------------------------------------- 1458 // Volatile variables demand their effects be made known to all CPU's in 1459 // order. Store buffers on most chips allow reads & writes to reorder; the 1460 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1461 // memory barrier (i.e., it's not sufficient that the interpreter does not 1462 // reorder volatile references, the hardware also must not reorder them). 1463 // 1464 // According to the new Java Memory Model (JMM): 1465 // (1) All volatiles are serialized wrt to each other. 1466 // ALSO reads & writes act as aquire & release, so: 1467 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1468 // the read float up to before the read. It's OK for non-volatile memory refs 1469 // that happen before the volatile read to float down below it. 1470 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1471 // that happen BEFORE the write float down to after the write. It's OK for 1472 // non-volatile memory refs that happen after the volatile write to float up 1473 // before it. 1474 // 1475 // We only put in barriers around volatile refs (they are expensive), not 1476 // _between_ memory refs (that would require us to track the flavor of the 1477 // previous memory refs). Requirements (2) and (3) require some barriers 1478 // before volatile stores and after volatile loads. These nearly cover 1479 // requirement (1) but miss the volatile-store-volatile-load case. This final 1480 // case is placed after volatile-stores although it could just as well go 1481 // before volatile-loads. 1482 1483 1484 void LIRGenerator::do_StoreField(StoreField* x) { 1485 bool needs_patching = x->needs_patching(); 1486 bool is_volatile = x->field()->is_volatile(); 1487 BasicType field_type = x->field_type(); 1488 1489 CodeEmitInfo* info = NULL; 1490 if (needs_patching) { 1491 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); 1492 info = state_for(x, x->state_before()); 1493 } else if (x->needs_null_check()) { 1494 NullCheck* nc = x->explicit_null_check(); 1495 if (nc == NULL) { 1496 info = state_for(x); 1497 } else { 1498 info = state_for(nc); 1499 } 1500 } 1501 1502 LIRItem object(x->obj(), this); 1503 LIRItem value(x->value(), this); 1504 1505 object.load_item(); 1506 1507 if (is_volatile || needs_patching) { 1508 // load item if field is volatile (fewer special cases for volatiles) 1509 // load item if field not initialized 1510 // load item if field not constant 1511 // because of code patching we cannot inline constants 1512 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1513 value.load_byte_item(); 1514 } else { 1515 value.load_item(); 1516 } 1517 } else { 1518 value.load_for_store(field_type); 1519 } 1520 1521 set_no_result(x); 1522 1523 #ifndef PRODUCT 1524 if (PrintNotLoaded && needs_patching) { 1525 tty->print_cr(" ###class not loaded at store_%s bci %d", 1526 x->is_static() ? "static" : "field", x->printable_bci()); 1527 } 1528 #endif 1529 1530 if (x->needs_null_check() && 1531 (needs_patching || 1532 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1533 // Emit an explicit null check because the offset is too large. 1534 // If the class is not loaded and the object is NULL, we need to deoptimize to throw a 1535 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1536 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1537 } 1538 1539 DecoratorSet decorators = IN_HEAP; 1540 if (is_volatile) { 1541 decorators |= MO_SEQ_CST; 1542 } 1543 if (needs_patching) { 1544 decorators |= C1_NEEDS_PATCHING; 1545 } 1546 1547 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1548 value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info); 1549 } 1550 1551 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1552 assert(x->is_pinned(),""); 1553 bool needs_range_check = x->compute_needs_range_check(); 1554 bool use_length = x->length() != NULL; 1555 bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT; 1556 bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL || 1557 !get_jobject_constant(x->value())->is_null_object() || 1558 x->should_profile()); 1559 1560 LIRItem array(x->array(), this); 1561 LIRItem index(x->index(), this); 1562 LIRItem value(x->value(), this); 1563 LIRItem length(this); 1564 1565 array.load_item(); 1566 index.load_nonconstant(); 1567 1568 if (use_length && needs_range_check) { 1569 length.set_instruction(x->length()); 1570 length.load_item(); 1571 1572 } 1573 if (needs_store_check || x->check_boolean()) { 1574 value.load_item(); 1575 } else { 1576 value.load_for_store(x->elt_type()); 1577 } 1578 1579 set_no_result(x); 1580 1581 // the CodeEmitInfo must be duplicated for each different 1582 // LIR-instruction because spilling can occur anywhere between two 1583 // instructions and so the debug information must be different 1584 CodeEmitInfo* range_check_info = state_for(x); 1585 CodeEmitInfo* null_check_info = NULL; 1586 if (x->needs_null_check()) { 1587 null_check_info = new CodeEmitInfo(range_check_info); 1588 } 1589 1590 if (GenerateRangeChecks && needs_range_check) { 1591 if (use_length) { 1592 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1593 __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result())); 1594 } else { 1595 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1596 // range_check also does the null check 1597 null_check_info = NULL; 1598 } 1599 } 1600 1601 if (GenerateArrayStoreCheck && needs_store_check) { 1602 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1603 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); 1604 } 1605 1606 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1607 if (x->check_boolean()) { 1608 decorators |= C1_MASK_BOOLEAN; 1609 } 1610 1611 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), 1612 NULL, null_check_info); 1613 } 1614 1615 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 1616 LIRItem& base, LIR_Opr offset, LIR_Opr result, 1617 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 1618 decorators |= ACCESS_READ; 1619 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 1620 if (access.is_raw()) { 1621 _barrier_set->BarrierSetC1::load_at(access, result); 1622 } else { 1623 _barrier_set->load_at(access, result); 1624 } 1625 } 1626 1627 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 1628 LIR_Opr addr, LIR_Opr result) { 1629 decorators |= ACCESS_READ; 1630 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 1631 access.set_resolved_addr(addr); 1632 if (access.is_raw()) { 1633 _barrier_set->BarrierSetC1::load(access, result); 1634 } else { 1635 _barrier_set->load(access, result); 1636 } 1637 } 1638 1639 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 1640 LIRItem& base, LIR_Opr offset, LIR_Opr value, 1641 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) { 1642 decorators |= ACCESS_WRITE; 1643 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info); 1644 if (access.is_raw()) { 1645 _barrier_set->BarrierSetC1::store_at(access, value); 1646 } else { 1647 _barrier_set->store_at(access, value); 1648 } 1649 } 1650 1651 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 1652 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 1653 decorators |= ACCESS_READ; 1654 decorators |= ACCESS_WRITE; 1655 // Atomic operations are SEQ_CST by default 1656 decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0; 1657 LIRAccess access(this, decorators, base, offset, type); 1658 if (access.is_raw()) { 1659 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 1660 } else { 1661 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 1662 } 1663 } 1664 1665 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 1666 LIRItem& base, LIRItem& offset, LIRItem& value) { 1667 decorators |= ACCESS_READ; 1668 decorators |= ACCESS_WRITE; 1669 // Atomic operations are SEQ_CST by default 1670 decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0; 1671 LIRAccess access(this, decorators, base, offset, type); 1672 if (access.is_raw()) { 1673 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 1674 } else { 1675 return _barrier_set->atomic_xchg_at(access, value); 1676 } 1677 } 1678 1679 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 1680 LIRItem& base, LIRItem& offset, LIRItem& value) { 1681 decorators |= ACCESS_READ; 1682 decorators |= ACCESS_WRITE; 1683 // Atomic operations are SEQ_CST by default 1684 decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0; 1685 LIRAccess access(this, decorators, base, offset, type); 1686 if (access.is_raw()) { 1687 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 1688 } else { 1689 return _barrier_set->atomic_add_at(access, value); 1690 } 1691 } 1692 1693 LIR_Opr LIRGenerator::access_resolve(DecoratorSet decorators, LIR_Opr obj) { 1694 // Use stronger ACCESS_WRITE|ACCESS_READ by default. 1695 if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) { 1696 decorators |= ACCESS_READ | ACCESS_WRITE; 1697 } 1698 1699 return _barrier_set->resolve(this, decorators, obj); 1700 } 1701 1702 void LIRGenerator::do_LoadField(LoadField* x) { 1703 bool needs_patching = x->needs_patching(); 1704 bool is_volatile = x->field()->is_volatile(); 1705 BasicType field_type = x->field_type(); 1706 1707 CodeEmitInfo* info = NULL; 1708 if (needs_patching) { 1709 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); 1710 info = state_for(x, x->state_before()); 1711 } else if (x->needs_null_check()) { 1712 NullCheck* nc = x->explicit_null_check(); 1713 if (nc == NULL) { 1714 info = state_for(x); 1715 } else { 1716 info = state_for(nc); 1717 } 1718 } 1719 1720 LIRItem object(x->obj(), this); 1721 1722 object.load_item(); 1723 1724 #ifndef PRODUCT 1725 if (PrintNotLoaded && needs_patching) { 1726 tty->print_cr(" ###class not loaded at load_%s bci %d", 1727 x->is_static() ? "static" : "field", x->printable_bci()); 1728 } 1729 #endif 1730 1731 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 1732 if (x->needs_null_check() && 1733 (needs_patching || 1734 MacroAssembler::needs_explicit_null_check(x->offset()) || 1735 stress_deopt)) { 1736 LIR_Opr obj = object.result(); 1737 if (stress_deopt) { 1738 obj = new_register(T_OBJECT); 1739 __ move(LIR_OprFact::oopConst(NULL), obj); 1740 } 1741 // Emit an explicit null check because the offset is too large. 1742 // If the class is not loaded and the object is NULL, we need to deoptimize to throw a 1743 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1744 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1745 } 1746 1747 DecoratorSet decorators = IN_HEAP; 1748 if (is_volatile) { 1749 decorators |= MO_SEQ_CST; 1750 } 1751 if (needs_patching) { 1752 decorators |= C1_NEEDS_PATCHING; 1753 } 1754 1755 LIR_Opr result = rlock_result(x, field_type); 1756 access_load_at(decorators, field_type, 1757 object, LIR_OprFact::intConst(x->offset()), result, 1758 info ? new CodeEmitInfo(info) : NULL, info); 1759 } 1760 1761 1762 //------------------------java.nio.Buffer.checkIndex------------------------ 1763 1764 // int java.nio.Buffer.checkIndex(int) 1765 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) { 1766 // NOTE: by the time we are in checkIndex() we are guaranteed that 1767 // the buffer is non-null (because checkIndex is package-private and 1768 // only called from within other methods in the buffer). 1769 assert(x->number_of_arguments() == 2, "wrong type"); 1770 LIRItem buf (x->argument_at(0), this); 1771 LIRItem index(x->argument_at(1), this); 1772 buf.load_item(); 1773 index.load_item(); 1774 1775 LIR_Opr result = rlock_result(x); 1776 if (GenerateRangeChecks) { 1777 CodeEmitInfo* info = state_for(x); 1778 CodeStub* stub = new RangeCheckStub(info, index.result()); 1779 LIR_Opr buf_obj = access_resolve(IS_NOT_NULL | ACCESS_READ, buf.result()); 1780 if (index.result()->is_constant()) { 1781 cmp_mem_int(lir_cond_belowEqual, buf_obj, java_nio_Buffer::limit_offset(), index.result()->as_jint(), info); 1782 __ branch(lir_cond_belowEqual, T_INT, stub); 1783 } else { 1784 cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf_obj, 1785 java_nio_Buffer::limit_offset(), T_INT, info); 1786 __ branch(lir_cond_aboveEqual, T_INT, stub); 1787 } 1788 __ move(index.result(), result); 1789 } else { 1790 // Just load the index into the result register 1791 __ move(index.result(), result); 1792 } 1793 } 1794 1795 1796 //------------------------array access-------------------------------------- 1797 1798 1799 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 1800 LIRItem array(x->array(), this); 1801 array.load_item(); 1802 LIR_Opr reg = rlock_result(x); 1803 1804 CodeEmitInfo* info = NULL; 1805 if (x->needs_null_check()) { 1806 NullCheck* nc = x->explicit_null_check(); 1807 if (nc == NULL) { 1808 info = state_for(x); 1809 } else { 1810 info = state_for(nc); 1811 } 1812 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 1813 LIR_Opr obj = new_register(T_OBJECT); 1814 __ move(LIR_OprFact::oopConst(NULL), obj); 1815 __ null_check(obj, new CodeEmitInfo(info)); 1816 } 1817 } 1818 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 1819 } 1820 1821 1822 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 1823 bool use_length = x->length() != NULL; 1824 LIRItem array(x->array(), this); 1825 LIRItem index(x->index(), this); 1826 LIRItem length(this); 1827 bool needs_range_check = x->compute_needs_range_check(); 1828 1829 if (use_length && needs_range_check) { 1830 length.set_instruction(x->length()); 1831 length.load_item(); 1832 } 1833 1834 array.load_item(); 1835 if (index.is_constant() && can_inline_as_constant(x->index())) { 1836 // let it be a constant 1837 index.dont_load_item(); 1838 } else { 1839 index.load_item(); 1840 } 1841 1842 CodeEmitInfo* range_check_info = state_for(x); 1843 CodeEmitInfo* null_check_info = NULL; 1844 if (x->needs_null_check()) { 1845 NullCheck* nc = x->explicit_null_check(); 1846 if (nc != NULL) { 1847 null_check_info = state_for(nc); 1848 } else { 1849 null_check_info = range_check_info; 1850 } 1851 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 1852 LIR_Opr obj = new_register(T_OBJECT); 1853 __ move(LIR_OprFact::oopConst(NULL), obj); 1854 __ null_check(obj, new CodeEmitInfo(null_check_info)); 1855 } 1856 } 1857 1858 if (GenerateRangeChecks && needs_range_check) { 1859 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 1860 __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result(), array.result())); 1861 } else if (use_length) { 1862 // TODO: use a (modified) version of array_range_check that does not require a 1863 // constant length to be loaded to a register 1864 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1865 __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result())); 1866 } else { 1867 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1868 // The range check performs the null check, so clear it out for the load 1869 null_check_info = NULL; 1870 } 1871 } 1872 1873 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1874 1875 LIR_Opr result = rlock_result(x, x->elt_type()); 1876 access_load_at(decorators, x->elt_type(), 1877 array, index.result(), result, 1878 NULL, null_check_info); 1879 } 1880 1881 1882 void LIRGenerator::do_NullCheck(NullCheck* x) { 1883 if (x->can_trap()) { 1884 LIRItem value(x->obj(), this); 1885 value.load_item(); 1886 CodeEmitInfo* info = state_for(x); 1887 __ null_check(value.result(), info); 1888 } 1889 } 1890 1891 1892 void LIRGenerator::do_TypeCast(TypeCast* x) { 1893 LIRItem value(x->obj(), this); 1894 value.load_item(); 1895 // the result is the same as from the node we are casting 1896 set_result(x, value.result()); 1897 } 1898 1899 1900 void LIRGenerator::do_Throw(Throw* x) { 1901 LIRItem exception(x->exception(), this); 1902 exception.load_item(); 1903 set_no_result(x); 1904 LIR_Opr exception_opr = exception.result(); 1905 CodeEmitInfo* info = state_for(x, x->state()); 1906 1907 #ifndef PRODUCT 1908 if (PrintC1Statistics) { 1909 increment_counter(Runtime1::throw_count_address(), T_INT); 1910 } 1911 #endif 1912 1913 // check if the instruction has an xhandler in any of the nested scopes 1914 bool unwind = false; 1915 if (info->exception_handlers()->length() == 0) { 1916 // this throw is not inside an xhandler 1917 unwind = true; 1918 } else { 1919 // get some idea of the throw type 1920 bool type_is_exact = true; 1921 ciType* throw_type = x->exception()->exact_type(); 1922 if (throw_type == NULL) { 1923 type_is_exact = false; 1924 throw_type = x->exception()->declared_type(); 1925 } 1926 if (throw_type != NULL && throw_type->is_instance_klass()) { 1927 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 1928 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 1929 } 1930 } 1931 1932 // do null check before moving exception oop into fixed register 1933 // to avoid a fixed interval with an oop during the null check. 1934 // Use a copy of the CodeEmitInfo because debug information is 1935 // different for null_check and throw. 1936 if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) { 1937 // if the exception object wasn't created using new then it might be null. 1938 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 1939 } 1940 1941 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 1942 // we need to go through the exception lookup path to get JVMTI 1943 // notification done 1944 unwind = false; 1945 } 1946 1947 // move exception oop into fixed register 1948 __ move(exception_opr, exceptionOopOpr()); 1949 1950 if (unwind) { 1951 __ unwind_exception(exceptionOopOpr()); 1952 } else { 1953 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 1954 } 1955 } 1956 1957 1958 void LIRGenerator::do_RoundFP(RoundFP* x) { 1959 LIRItem input(x->input(), this); 1960 input.load_item(); 1961 LIR_Opr input_opr = input.result(); 1962 assert(input_opr->is_register(), "why round if value is not in a register?"); 1963 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value"); 1964 if (input_opr->is_single_fpu()) { 1965 set_result(x, round_item(input_opr)); // This code path not currently taken 1966 } else { 1967 LIR_Opr result = new_register(T_DOUBLE); 1968 set_vreg_flag(result, must_start_in_memory); 1969 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result); 1970 set_result(x, result); 1971 } 1972 } 1973 1974 // Here UnsafeGetRaw may have x->base() and x->index() be int or long 1975 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit. 1976 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) { 1977 LIRItem base(x->base(), this); 1978 LIRItem idx(this); 1979 1980 base.load_item(); 1981 if (x->has_index()) { 1982 idx.set_instruction(x->index()); 1983 idx.load_nonconstant(); 1984 } 1985 1986 LIR_Opr reg = rlock_result(x, x->basic_type()); 1987 1988 int log2_scale = 0; 1989 if (x->has_index()) { 1990 log2_scale = x->log2_scale(); 1991 } 1992 1993 assert(!x->has_index() || idx.value() == x->index(), "should match"); 1994 1995 LIR_Opr base_op = base.result(); 1996 LIR_Opr index_op = idx.result(); 1997 #ifndef _LP64 1998 if (base_op->type() == T_LONG) { 1999 base_op = new_register(T_INT); 2000 __ convert(Bytecodes::_l2i, base.result(), base_op); 2001 } 2002 if (x->has_index()) { 2003 if (index_op->type() == T_LONG) { 2004 LIR_Opr long_index_op = index_op; 2005 if (index_op->is_constant()) { 2006 long_index_op = new_register(T_LONG); 2007 __ move(index_op, long_index_op); 2008 } 2009 index_op = new_register(T_INT); 2010 __ convert(Bytecodes::_l2i, long_index_op, index_op); 2011 } else { 2012 assert(x->index()->type()->tag() == intTag, "must be"); 2013 } 2014 } 2015 // At this point base and index should be all ints. 2016 assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int"); 2017 assert(!x->has_index() || index_op->type() == T_INT, "index should be an int"); 2018 #else 2019 if (x->has_index()) { 2020 if (index_op->type() == T_INT) { 2021 if (!index_op->is_constant()) { 2022 index_op = new_register(T_LONG); 2023 __ convert(Bytecodes::_i2l, idx.result(), index_op); 2024 } 2025 } else { 2026 assert(index_op->type() == T_LONG, "must be"); 2027 if (index_op->is_constant()) { 2028 index_op = new_register(T_LONG); 2029 __ move(idx.result(), index_op); 2030 } 2031 } 2032 } 2033 // At this point base is a long non-constant 2034 // Index is a long register or a int constant. 2035 // We allow the constant to stay an int because that would allow us a more compact encoding by 2036 // embedding an immediate offset in the address expression. If we have a long constant, we have to 2037 // move it into a register first. 2038 assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant"); 2039 assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) || 2040 (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type"); 2041 #endif 2042 2043 BasicType dst_type = x->basic_type(); 2044 2045 LIR_Address* addr; 2046 if (index_op->is_constant()) { 2047 assert(log2_scale == 0, "must not have a scale"); 2048 assert(index_op->type() == T_INT, "only int constants supported"); 2049 addr = new LIR_Address(base_op, index_op->as_jint(), dst_type); 2050 } else { 2051 #ifdef X86 2052 addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type); 2053 #elif defined(GENERATE_ADDRESS_IS_PREFERRED) 2054 addr = generate_address(base_op, index_op, log2_scale, 0, dst_type); 2055 #else 2056 if (index_op->is_illegal() || log2_scale == 0) { 2057 addr = new LIR_Address(base_op, index_op, dst_type); 2058 } else { 2059 LIR_Opr tmp = new_pointer_register(); 2060 __ shift_left(index_op, log2_scale, tmp); 2061 addr = new LIR_Address(base_op, tmp, dst_type); 2062 } 2063 #endif 2064 } 2065 2066 if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) { 2067 __ unaligned_move(addr, reg); 2068 } else { 2069 if (dst_type == T_OBJECT && x->is_wide()) { 2070 __ move_wide(addr, reg); 2071 } else { 2072 __ move(addr, reg); 2073 } 2074 } 2075 } 2076 2077 2078 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) { 2079 int log2_scale = 0; 2080 BasicType type = x->basic_type(); 2081 2082 if (x->has_index()) { 2083 log2_scale = x->log2_scale(); 2084 } 2085 2086 LIRItem base(x->base(), this); 2087 LIRItem value(x->value(), this); 2088 LIRItem idx(this); 2089 2090 base.load_item(); 2091 if (x->has_index()) { 2092 idx.set_instruction(x->index()); 2093 idx.load_item(); 2094 } 2095 2096 if (type == T_BYTE || type == T_BOOLEAN) { 2097 value.load_byte_item(); 2098 } else { 2099 value.load_item(); 2100 } 2101 2102 set_no_result(x); 2103 2104 LIR_Opr base_op = base.result(); 2105 LIR_Opr index_op = idx.result(); 2106 2107 #ifdef GENERATE_ADDRESS_IS_PREFERRED 2108 LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type()); 2109 #else 2110 #ifndef _LP64 2111 if (base_op->type() == T_LONG) { 2112 base_op = new_register(T_INT); 2113 __ convert(Bytecodes::_l2i, base.result(), base_op); 2114 } 2115 if (x->has_index()) { 2116 if (index_op->type() == T_LONG) { 2117 index_op = new_register(T_INT); 2118 __ convert(Bytecodes::_l2i, idx.result(), index_op); 2119 } 2120 } 2121 // At this point base and index should be all ints and not constants 2122 assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int"); 2123 assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int"); 2124 #else 2125 if (x->has_index()) { 2126 if (index_op->type() == T_INT) { 2127 index_op = new_register(T_LONG); 2128 __ convert(Bytecodes::_i2l, idx.result(), index_op); 2129 } 2130 } 2131 // At this point base and index are long and non-constant 2132 assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long"); 2133 assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long"); 2134 #endif 2135 2136 if (log2_scale != 0) { 2137 // temporary fix (platform dependent code without shift on Intel would be better) 2138 // TODO: ARM also allows embedded shift in the address 2139 LIR_Opr tmp = new_pointer_register(); 2140 if (TwoOperandLIRForm) { 2141 __ move(index_op, tmp); 2142 index_op = tmp; 2143 } 2144 __ shift_left(index_op, log2_scale, tmp); 2145 if (!TwoOperandLIRForm) { 2146 index_op = tmp; 2147 } 2148 } 2149 2150 LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type()); 2151 #endif // !GENERATE_ADDRESS_IS_PREFERRED 2152 __ move(value.result(), addr); 2153 } 2154 2155 2156 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) { 2157 BasicType type = x->basic_type(); 2158 LIRItem src(x->object(), this); 2159 LIRItem off(x->offset(), this); 2160 2161 off.load_item(); 2162 src.load_item(); 2163 2164 DecoratorSet decorators = IN_HEAP; 2165 2166 if (x->is_volatile()) { 2167 decorators |= MO_SEQ_CST; 2168 } 2169 if (type == T_BOOLEAN) { 2170 decorators |= C1_MASK_BOOLEAN; 2171 } 2172 if (type == T_ARRAY || type == T_OBJECT) { 2173 decorators |= ON_UNKNOWN_OOP_REF; 2174 } 2175 2176 LIR_Opr result = rlock_result(x, type); 2177 access_load_at(decorators, type, 2178 src, off.result(), result); 2179 } 2180 2181 2182 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) { 2183 BasicType type = x->basic_type(); 2184 LIRItem src(x->object(), this); 2185 LIRItem off(x->offset(), this); 2186 LIRItem data(x->value(), this); 2187 2188 src.load_item(); 2189 if (type == T_BOOLEAN || type == T_BYTE) { 2190 data.load_byte_item(); 2191 } else { 2192 data.load_item(); 2193 } 2194 off.load_item(); 2195 2196 set_no_result(x); 2197 2198 DecoratorSet decorators = IN_HEAP; 2199 if (type == T_ARRAY || type == T_OBJECT) { 2200 decorators |= ON_UNKNOWN_OOP_REF; 2201 } 2202 if (x->is_volatile()) { 2203 decorators |= MO_SEQ_CST; 2204 } 2205 access_store_at(decorators, type, src, off.result(), data.result()); 2206 } 2207 2208 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) { 2209 BasicType type = x->basic_type(); 2210 LIRItem src(x->object(), this); 2211 LIRItem off(x->offset(), this); 2212 LIRItem value(x->value(), this); 2213 2214 DecoratorSet decorators = IN_HEAP | MO_SEQ_CST; 2215 2216 if (type == T_ARRAY || type == T_OBJECT) { 2217 decorators |= ON_UNKNOWN_OOP_REF; 2218 } 2219 2220 LIR_Opr result; 2221 if (x->is_add()) { 2222 result = access_atomic_add_at(decorators, type, src, off, value); 2223 } else { 2224 result = access_atomic_xchg_at(decorators, type, src, off, value); 2225 } 2226 set_result(x, result); 2227 } 2228 2229 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2230 int lng = x->length(); 2231 2232 for (int i = 0; i < lng; i++) { 2233 SwitchRange* one_range = x->at(i); 2234 int low_key = one_range->low_key(); 2235 int high_key = one_range->high_key(); 2236 BlockBegin* dest = one_range->sux(); 2237 if (low_key == high_key) { 2238 __ cmp(lir_cond_equal, value, low_key); 2239 __ branch(lir_cond_equal, T_INT, dest); 2240 } else if (high_key - low_key == 1) { 2241 __ cmp(lir_cond_equal, value, low_key); 2242 __ branch(lir_cond_equal, T_INT, dest); 2243 __ cmp(lir_cond_equal, value, high_key); 2244 __ branch(lir_cond_equal, T_INT, dest); 2245 } else { 2246 LabelObj* L = new LabelObj(); 2247 __ cmp(lir_cond_less, value, low_key); 2248 __ branch(lir_cond_less, T_INT, L->label()); 2249 __ cmp(lir_cond_lessEqual, value, high_key); 2250 __ branch(lir_cond_lessEqual, T_INT, dest); 2251 __ branch_destination(L->label()); 2252 } 2253 } 2254 __ jump(default_sux); 2255 } 2256 2257 2258 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2259 SwitchRangeList* res = new SwitchRangeList(); 2260 int len = x->length(); 2261 if (len > 0) { 2262 BlockBegin* sux = x->sux_at(0); 2263 int key = x->lo_key(); 2264 BlockBegin* default_sux = x->default_sux(); 2265 SwitchRange* range = new SwitchRange(key, sux); 2266 for (int i = 0; i < len; i++, key++) { 2267 BlockBegin* new_sux = x->sux_at(i); 2268 if (sux == new_sux) { 2269 // still in same range 2270 range->set_high_key(key); 2271 } else { 2272 // skip tests which explicitly dispatch to the default 2273 if (sux != default_sux) { 2274 res->append(range); 2275 } 2276 range = new SwitchRange(key, new_sux); 2277 } 2278 sux = new_sux; 2279 } 2280 if (res->length() == 0 || res->last() != range) res->append(range); 2281 } 2282 return res; 2283 } 2284 2285 2286 // we expect the keys to be sorted by increasing value 2287 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2288 SwitchRangeList* res = new SwitchRangeList(); 2289 int len = x->length(); 2290 if (len > 0) { 2291 BlockBegin* default_sux = x->default_sux(); 2292 int key = x->key_at(0); 2293 BlockBegin* sux = x->sux_at(0); 2294 SwitchRange* range = new SwitchRange(key, sux); 2295 for (int i = 1; i < len; i++) { 2296 int new_key = x->key_at(i); 2297 BlockBegin* new_sux = x->sux_at(i); 2298 if (key+1 == new_key && sux == new_sux) { 2299 // still in same range 2300 range->set_high_key(new_key); 2301 } else { 2302 // skip tests which explicitly dispatch to the default 2303 if (range->sux() != default_sux) { 2304 res->append(range); 2305 } 2306 range = new SwitchRange(new_key, new_sux); 2307 } 2308 key = new_key; 2309 sux = new_sux; 2310 } 2311 if (res->length() == 0 || res->last() != range) res->append(range); 2312 } 2313 return res; 2314 } 2315 2316 2317 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2318 LIRItem tag(x->tag(), this); 2319 tag.load_item(); 2320 set_no_result(x); 2321 2322 if (x->is_safepoint()) { 2323 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2324 } 2325 2326 // move values into phi locations 2327 move_to_phi(x->state()); 2328 2329 int lo_key = x->lo_key(); 2330 int len = x->length(); 2331 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2332 LIR_Opr value = tag.result(); 2333 2334 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2335 ciMethod* method = x->state()->scope()->method(); 2336 ciMethodData* md = method->method_data_or_null(); 2337 assert(md != NULL, "Sanity"); 2338 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2339 assert(data != NULL, "must have profiling data"); 2340 assert(data->is_MultiBranchData(), "bad profile data?"); 2341 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2342 LIR_Opr md_reg = new_register(T_METADATA); 2343 __ metadata2reg(md->constant_encoding(), md_reg); 2344 LIR_Opr data_offset_reg = new_pointer_register(); 2345 LIR_Opr tmp_reg = new_pointer_register(); 2346 2347 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2348 for (int i = 0; i < len; i++) { 2349 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2350 __ cmp(lir_cond_equal, value, i + lo_key); 2351 __ move(data_offset_reg, tmp_reg); 2352 __ cmove(lir_cond_equal, 2353 LIR_OprFact::intptrConst(count_offset), 2354 tmp_reg, 2355 data_offset_reg, T_INT); 2356 } 2357 2358 LIR_Opr data_reg = new_pointer_register(); 2359 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2360 __ move(data_addr, data_reg); 2361 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2362 __ move(data_reg, data_addr); 2363 } 2364 2365 if (UseTableRanges) { 2366 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2367 } else { 2368 for (int i = 0; i < len; i++) { 2369 __ cmp(lir_cond_equal, value, i + lo_key); 2370 __ branch(lir_cond_equal, T_INT, x->sux_at(i)); 2371 } 2372 __ jump(x->default_sux()); 2373 } 2374 } 2375 2376 2377 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2378 LIRItem tag(x->tag(), this); 2379 tag.load_item(); 2380 set_no_result(x); 2381 2382 if (x->is_safepoint()) { 2383 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2384 } 2385 2386 // move values into phi locations 2387 move_to_phi(x->state()); 2388 2389 LIR_Opr value = tag.result(); 2390 int len = x->length(); 2391 2392 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2393 ciMethod* method = x->state()->scope()->method(); 2394 ciMethodData* md = method->method_data_or_null(); 2395 assert(md != NULL, "Sanity"); 2396 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2397 assert(data != NULL, "must have profiling data"); 2398 assert(data->is_MultiBranchData(), "bad profile data?"); 2399 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2400 LIR_Opr md_reg = new_register(T_METADATA); 2401 __ metadata2reg(md->constant_encoding(), md_reg); 2402 LIR_Opr data_offset_reg = new_pointer_register(); 2403 LIR_Opr tmp_reg = new_pointer_register(); 2404 2405 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2406 for (int i = 0; i < len; i++) { 2407 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2408 __ cmp(lir_cond_equal, value, x->key_at(i)); 2409 __ move(data_offset_reg, tmp_reg); 2410 __ cmove(lir_cond_equal, 2411 LIR_OprFact::intptrConst(count_offset), 2412 tmp_reg, 2413 data_offset_reg, T_INT); 2414 } 2415 2416 LIR_Opr data_reg = new_pointer_register(); 2417 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2418 __ move(data_addr, data_reg); 2419 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2420 __ move(data_reg, data_addr); 2421 } 2422 2423 if (UseTableRanges) { 2424 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2425 } else { 2426 int len = x->length(); 2427 for (int i = 0; i < len; i++) { 2428 __ cmp(lir_cond_equal, value, x->key_at(i)); 2429 __ branch(lir_cond_equal, T_INT, x->sux_at(i)); 2430 } 2431 __ jump(x->default_sux()); 2432 } 2433 } 2434 2435 2436 void LIRGenerator::do_Goto(Goto* x) { 2437 set_no_result(x); 2438 2439 if (block()->next()->as_OsrEntry()) { 2440 // need to free up storage used for OSR entry point 2441 LIR_Opr osrBuffer = block()->next()->operand(); 2442 BasicTypeList signature; 2443 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2444 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2445 __ move(osrBuffer, cc->args()->at(0)); 2446 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2447 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2448 } 2449 2450 if (x->is_safepoint()) { 2451 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2452 2453 // increment backedge counter if needed 2454 CodeEmitInfo* info = state_for(x, state); 2455 increment_backedge_counter(info, x->profiled_bci()); 2456 CodeEmitInfo* safepoint_info = state_for(x, state); 2457 __ safepoint(safepoint_poll_register(), safepoint_info); 2458 } 2459 2460 // Gotos can be folded Ifs, handle this case. 2461 if (x->should_profile()) { 2462 ciMethod* method = x->profiled_method(); 2463 assert(method != NULL, "method should be set if branch is profiled"); 2464 ciMethodData* md = method->method_data_or_null(); 2465 assert(md != NULL, "Sanity"); 2466 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2467 assert(data != NULL, "must have profiling data"); 2468 int offset; 2469 if (x->direction() == Goto::taken) { 2470 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2471 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2472 } else if (x->direction() == Goto::not_taken) { 2473 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2474 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2475 } else { 2476 assert(data->is_JumpData(), "need JumpData for branches"); 2477 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2478 } 2479 LIR_Opr md_reg = new_register(T_METADATA); 2480 __ metadata2reg(md->constant_encoding(), md_reg); 2481 2482 increment_counter(new LIR_Address(md_reg, offset, 2483 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2484 } 2485 2486 // emit phi-instruction move after safepoint since this simplifies 2487 // describing the state as the safepoint. 2488 move_to_phi(x->state()); 2489 2490 __ jump(x->default_sux()); 2491 } 2492 2493 /** 2494 * Emit profiling code if needed for arguments, parameters, return value types 2495 * 2496 * @param md MDO the code will update at runtime 2497 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2498 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2499 * @param profiled_k current profile 2500 * @param obj IR node for the object to be profiled 2501 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2502 * Set once we find an update to make and use for next ones. 2503 * @param not_null true if we know obj cannot be null 2504 * @param signature_at_call_k signature at call for obj 2505 * @param callee_signature_k signature of callee for obj 2506 * at call and callee signatures differ at method handle call 2507 * @return the only klass we know will ever be seen at this profile point 2508 */ 2509 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2510 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2511 ciKlass* callee_signature_k) { 2512 ciKlass* result = NULL; 2513 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2514 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2515 // known not to be null or null bit already set and already set to 2516 // unknown: nothing we can do to improve profiling 2517 if (!do_null && !do_update) { 2518 return result; 2519 } 2520 2521 ciKlass* exact_klass = NULL; 2522 Compilation* comp = Compilation::current(); 2523 if (do_update) { 2524 // try to find exact type, using CHA if possible, so that loading 2525 // the klass from the object can be avoided 2526 ciType* type = obj->exact_type(); 2527 if (type == NULL) { 2528 type = obj->declared_type(); 2529 type = comp->cha_exact_type(type); 2530 } 2531 assert(type == NULL || type->is_klass(), "type should be class"); 2532 exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL; 2533 2534 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2535 } 2536 2537 if (!do_null && !do_update) { 2538 return result; 2539 } 2540 2541 ciKlass* exact_signature_k = NULL; 2542 if (do_update) { 2543 // Is the type from the signature exact (the only one possible)? 2544 exact_signature_k = signature_at_call_k->exact_klass(); 2545 if (exact_signature_k == NULL) { 2546 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2547 } else { 2548 result = exact_signature_k; 2549 // Known statically. No need to emit any code: prevent 2550 // LIR_Assembler::emit_profile_type() from emitting useless code 2551 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2552 } 2553 // exact_klass and exact_signature_k can be both non NULL but 2554 // different if exact_klass is loaded after the ciObject for 2555 // exact_signature_k is created. 2556 if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) { 2557 // sometimes the type of the signature is better than the best type 2558 // the compiler has 2559 exact_klass = exact_signature_k; 2560 } 2561 if (callee_signature_k != NULL && 2562 callee_signature_k != signature_at_call_k) { 2563 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2564 if (improved_klass == NULL) { 2565 improved_klass = comp->cha_exact_type(callee_signature_k); 2566 } 2567 if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) { 2568 exact_klass = exact_signature_k; 2569 } 2570 } 2571 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2572 } 2573 2574 if (!do_null && !do_update) { 2575 return result; 2576 } 2577 2578 if (mdp == LIR_OprFact::illegalOpr) { 2579 mdp = new_register(T_METADATA); 2580 __ metadata2reg(md->constant_encoding(), mdp); 2581 if (md_base_offset != 0) { 2582 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2583 mdp = new_pointer_register(); 2584 __ leal(LIR_OprFact::address(base_type_address), mdp); 2585 } 2586 } 2587 LIRItem value(obj, this); 2588 value.load_item(); 2589 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2590 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL); 2591 return result; 2592 } 2593 2594 // profile parameters on entry to the root of the compilation 2595 void LIRGenerator::profile_parameters(Base* x) { 2596 if (compilation()->profile_parameters()) { 2597 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2598 ciMethodData* md = scope()->method()->method_data_or_null(); 2599 assert(md != NULL, "Sanity"); 2600 2601 if (md->parameters_type_data() != NULL) { 2602 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2603 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2604 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2605 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2606 LIR_Opr src = args->at(i); 2607 assert(!src->is_illegal(), "check"); 2608 BasicType t = src->type(); 2609 if (t == T_OBJECT || t == T_ARRAY) { 2610 intptr_t profiled_k = parameters->type(j); 2611 Local* local = x->state()->local_at(java_index)->as_Local(); 2612 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2613 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2614 profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL); 2615 // If the profile is known statically set it once for all and do not emit any code 2616 if (exact != NULL) { 2617 md->set_parameter_type(j, exact); 2618 } 2619 j++; 2620 } 2621 java_index += type2size[t]; 2622 } 2623 } 2624 } 2625 } 2626 2627 void LIRGenerator::do_Base(Base* x) { 2628 __ std_entry(LIR_OprFact::illegalOpr); 2629 // Emit moves from physical registers / stack slots to virtual registers 2630 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2631 IRScope* irScope = compilation()->hir()->top_scope(); 2632 int java_index = 0; 2633 for (int i = 0; i < args->length(); i++) { 2634 LIR_Opr src = args->at(i); 2635 assert(!src->is_illegal(), "check"); 2636 BasicType t = src->type(); 2637 2638 // Types which are smaller than int are passed as int, so 2639 // correct the type which passed. 2640 switch (t) { 2641 case T_BYTE: 2642 case T_BOOLEAN: 2643 case T_SHORT: 2644 case T_CHAR: 2645 t = T_INT; 2646 break; 2647 default: 2648 break; 2649 } 2650 2651 LIR_Opr dest = new_register(t); 2652 __ move(src, dest); 2653 2654 // Assign new location to Local instruction for this local 2655 Local* local = x->state()->local_at(java_index)->as_Local(); 2656 assert(local != NULL, "Locals for incoming arguments must have been created"); 2657 #ifndef __SOFTFP__ 2658 // The java calling convention passes double as long and float as int. 2659 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 2660 #endif // __SOFTFP__ 2661 local->set_operand(dest); 2662 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL); 2663 java_index += type2size[t]; 2664 } 2665 2666 if (compilation()->env()->dtrace_method_probes()) { 2667 BasicTypeList signature; 2668 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2669 signature.append(T_METADATA); // Method* 2670 LIR_OprList* args = new LIR_OprList(); 2671 args->append(getThreadPointer()); 2672 LIR_Opr meth = new_register(T_METADATA); 2673 __ metadata2reg(method()->constant_encoding(), meth); 2674 args->append(meth); 2675 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL); 2676 } 2677 2678 if (method()->is_synchronized()) { 2679 LIR_Opr obj; 2680 if (method()->is_static()) { 2681 obj = new_register(T_OBJECT); 2682 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 2683 } else { 2684 Local* receiver = x->state()->local_at(0)->as_Local(); 2685 assert(receiver != NULL, "must already exist"); 2686 obj = receiver->operand(); 2687 } 2688 assert(obj->is_valid(), "must be valid"); 2689 2690 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2691 LIR_Opr lock = syncLockOpr(); 2692 __ load_stack_address_monitor(0, lock); 2693 2694 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException)); 2695 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 2696 2697 // receiver is guaranteed non-NULL so don't need CodeEmitInfo 2698 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL); 2699 } 2700 } 2701 if (compilation()->age_code()) { 2702 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false); 2703 decrement_age(info); 2704 } 2705 // increment invocation counters if needed 2706 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 2707 profile_parameters(x); 2708 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false); 2709 increment_invocation_counter(info); 2710 } 2711 2712 // all blocks with a successor must end with an unconditional jump 2713 // to the successor even if they are consecutive 2714 __ jump(x->default_sux()); 2715 } 2716 2717 2718 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 2719 // construct our frame and model the production of incoming pointer 2720 // to the OSR buffer. 2721 __ osr_entry(LIR_Assembler::osrBufferPointer()); 2722 LIR_Opr result = rlock_result(x); 2723 __ move(LIR_Assembler::osrBufferPointer(), result); 2724 } 2725 2726 2727 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 2728 assert(args->length() == arg_list->length(), 2729 "args=%d, arg_list=%d", args->length(), arg_list->length()); 2730 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 2731 LIRItem* param = args->at(i); 2732 LIR_Opr loc = arg_list->at(i); 2733 if (loc->is_register()) { 2734 param->load_item_force(loc); 2735 } else { 2736 LIR_Address* addr = loc->as_address_ptr(); 2737 param->load_for_store(addr->type()); 2738 if (addr->type() == T_OBJECT) { 2739 __ move_wide(param->result(), addr); 2740 } else 2741 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { 2742 __ unaligned_move(param->result(), addr); 2743 } else { 2744 __ move(param->result(), addr); 2745 } 2746 } 2747 } 2748 2749 if (x->has_receiver()) { 2750 LIRItem* receiver = args->at(0); 2751 LIR_Opr loc = arg_list->at(0); 2752 if (loc->is_register()) { 2753 receiver->load_item_force(loc); 2754 } else { 2755 assert(loc->is_address(), "just checking"); 2756 receiver->load_for_store(T_OBJECT); 2757 __ move_wide(receiver->result(), loc->as_address_ptr()); 2758 } 2759 } 2760 } 2761 2762 2763 // Visits all arguments, returns appropriate items without loading them 2764 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 2765 LIRItemList* argument_items = new LIRItemList(); 2766 if (x->has_receiver()) { 2767 LIRItem* receiver = new LIRItem(x->receiver(), this); 2768 argument_items->append(receiver); 2769 } 2770 for (int i = 0; i < x->number_of_arguments(); i++) { 2771 LIRItem* param = new LIRItem(x->argument_at(i), this); 2772 argument_items->append(param); 2773 } 2774 return argument_items; 2775 } 2776 2777 2778 // The invoke with receiver has following phases: 2779 // a) traverse and load/lock receiver; 2780 // b) traverse all arguments -> item-array (invoke_visit_argument) 2781 // c) push receiver on stack 2782 // d) load each of the items and push on stack 2783 // e) unlock receiver 2784 // f) move receiver into receiver-register %o0 2785 // g) lock result registers and emit call operation 2786 // 2787 // Before issuing a call, we must spill-save all values on stack 2788 // that are in caller-save register. "spill-save" moves those registers 2789 // either in a free callee-save register or spills them if no free 2790 // callee save register is available. 2791 // 2792 // The problem is where to invoke spill-save. 2793 // - if invoked between e) and f), we may lock callee save 2794 // register in "spill-save" that destroys the receiver register 2795 // before f) is executed 2796 // - if we rearrange f) to be earlier (by loading %o0) it 2797 // may destroy a value on the stack that is currently in %o0 2798 // and is waiting to be spilled 2799 // - if we keep the receiver locked while doing spill-save, 2800 // we cannot spill it as it is spill-locked 2801 // 2802 void LIRGenerator::do_Invoke(Invoke* x) { 2803 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 2804 2805 LIR_OprList* arg_list = cc->args(); 2806 LIRItemList* args = invoke_visit_arguments(x); 2807 LIR_Opr receiver = LIR_OprFact::illegalOpr; 2808 2809 // setup result register 2810 LIR_Opr result_register = LIR_OprFact::illegalOpr; 2811 if (x->type() != voidType) { 2812 result_register = result_register_for(x->type()); 2813 } 2814 2815 CodeEmitInfo* info = state_for(x, x->state()); 2816 2817 invoke_load_arguments(x, args, arg_list); 2818 2819 if (x->has_receiver()) { 2820 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 2821 receiver = args->at(0)->result(); 2822 } 2823 2824 // emit invoke code 2825 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 2826 2827 // JSR 292 2828 // Preserve the SP over MethodHandle call sites, if needed. 2829 ciMethod* target = x->target(); 2830 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 2831 target->is_method_handle_intrinsic() || 2832 target->is_compiled_lambda_form()); 2833 if (is_method_handle_invoke) { 2834 info->set_is_method_handle_invoke(true); 2835 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2836 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 2837 } 2838 } 2839 2840 switch (x->code()) { 2841 case Bytecodes::_invokestatic: 2842 __ call_static(target, result_register, 2843 SharedRuntime::get_resolve_static_call_stub(), 2844 arg_list, info); 2845 break; 2846 case Bytecodes::_invokespecial: 2847 case Bytecodes::_invokevirtual: 2848 case Bytecodes::_invokeinterface: 2849 // for loaded and final (method or class) target we still produce an inline cache, 2850 // in order to be able to call mixed mode 2851 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 2852 __ call_opt_virtual(target, receiver, result_register, 2853 SharedRuntime::get_resolve_opt_virtual_call_stub(), 2854 arg_list, info); 2855 } else if (x->vtable_index() < 0) { 2856 __ call_icvirtual(target, receiver, result_register, 2857 SharedRuntime::get_resolve_virtual_call_stub(), 2858 arg_list, info); 2859 } else { 2860 int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes(); 2861 int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes(); 2862 __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info); 2863 } 2864 break; 2865 case Bytecodes::_invokedynamic: { 2866 __ call_dynamic(target, receiver, result_register, 2867 SharedRuntime::get_resolve_static_call_stub(), 2868 arg_list, info); 2869 break; 2870 } 2871 default: 2872 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 2873 break; 2874 } 2875 2876 // JSR 292 2877 // Restore the SP after MethodHandle call sites, if needed. 2878 if (is_method_handle_invoke 2879 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2880 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 2881 } 2882 2883 if (x->type()->is_float() || x->type()->is_double()) { 2884 // Force rounding of results from non-strictfp when in strictfp 2885 // scope (or when we don't know the strictness of the callee, to 2886 // be safe.) 2887 if (method()->is_strict()) { 2888 if (!x->target_is_loaded() || !x->target_is_strictfp()) { 2889 result_register = round_item(result_register); 2890 } 2891 } 2892 } 2893 2894 if (result_register->is_valid()) { 2895 LIR_Opr result = rlock_result(x); 2896 __ move(result_register, result); 2897 } 2898 } 2899 2900 2901 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 2902 assert(x->number_of_arguments() == 1, "wrong type"); 2903 LIRItem value (x->argument_at(0), this); 2904 LIR_Opr reg = rlock_result(x); 2905 value.load_item(); 2906 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 2907 __ move(tmp, reg); 2908 } 2909 2910 2911 2912 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 2913 void LIRGenerator::do_IfOp(IfOp* x) { 2914 #ifdef ASSERT 2915 { 2916 ValueTag xtag = x->x()->type()->tag(); 2917 ValueTag ttag = x->tval()->type()->tag(); 2918 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 2919 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 2920 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 2921 } 2922 #endif 2923 2924 LIRItem left(x->x(), this); 2925 LIRItem right(x->y(), this); 2926 left.load_item(); 2927 if (can_inline_as_constant(right.value())) { 2928 right.dont_load_item(); 2929 } else { 2930 right.load_item(); 2931 } 2932 2933 LIRItem t_val(x->tval(), this); 2934 LIRItem f_val(x->fval(), this); 2935 t_val.dont_load_item(); 2936 f_val.dont_load_item(); 2937 LIR_Opr reg = rlock_result(x); 2938 2939 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 2940 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 2941 } 2942 2943 #ifdef JFR_HAVE_INTRINSICS 2944 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) { 2945 CodeEmitInfo* info = state_for(x); 2946 CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check 2947 2948 assert(info != NULL, "must have info"); 2949 LIRItem arg(x->argument_at(0), this); 2950 2951 arg.load_item(); 2952 LIR_Opr klass = new_register(T_METADATA); 2953 __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info); 2954 LIR_Opr id = new_register(T_LONG); 2955 ByteSize offset = KLASS_TRACE_ID_OFFSET; 2956 LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG); 2957 2958 __ move(trace_id_addr, id); 2959 __ logical_or(id, LIR_OprFact::longConst(0x01l), id); 2960 __ store(id, trace_id_addr); 2961 2962 #ifdef TRACE_ID_META_BITS 2963 __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id); 2964 #endif 2965 #ifdef TRACE_ID_SHIFT 2966 __ unsigned_shift_right(id, TRACE_ID_SHIFT, id); 2967 #endif 2968 2969 __ move(id, rlock_result(x)); 2970 } 2971 2972 void LIRGenerator::do_getEventWriter(Intrinsic* x) { 2973 LabelObj* L_end = new LabelObj(); 2974 2975 LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(), 2976 in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR), 2977 T_OBJECT); 2978 LIR_Opr result = rlock_result(x); 2979 __ move_wide(jobj_addr, result); 2980 __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL)); 2981 __ branch(lir_cond_equal, T_OBJECT, L_end->label()); 2982 2983 LIR_Opr jobj = new_register(T_OBJECT); 2984 __ move(result, jobj); 2985 access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result); 2986 2987 __ branch_destination(L_end->label()); 2988 } 2989 2990 #endif 2991 2992 2993 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 2994 assert(x->number_of_arguments() == 0, "wrong type"); 2995 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 2996 BasicTypeList signature; 2997 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2998 LIR_Opr reg = result_register_for(x->type()); 2999 __ call_runtime_leaf(routine, getThreadTemp(), 3000 reg, new LIR_OprList()); 3001 LIR_Opr result = rlock_result(x); 3002 __ move(reg, result); 3003 } 3004 3005 3006 3007 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 3008 switch (x->id()) { 3009 case vmIntrinsics::_intBitsToFloat : 3010 case vmIntrinsics::_doubleToRawLongBits : 3011 case vmIntrinsics::_longBitsToDouble : 3012 case vmIntrinsics::_floatToRawIntBits : { 3013 do_FPIntrinsics(x); 3014 break; 3015 } 3016 3017 #ifdef JFR_HAVE_INTRINSICS 3018 case vmIntrinsics::_getClassId: 3019 do_ClassIDIntrinsic(x); 3020 break; 3021 case vmIntrinsics::_getEventWriter: 3022 do_getEventWriter(x); 3023 break; 3024 case vmIntrinsics::_counterTime: 3025 do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x); 3026 break; 3027 #endif 3028 3029 case vmIntrinsics::_currentTimeMillis: 3030 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 3031 break; 3032 3033 case vmIntrinsics::_nanoTime: 3034 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 3035 break; 3036 3037 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 3038 case vmIntrinsics::_isInstance: do_isInstance(x); break; 3039 case vmIntrinsics::_isPrimitive: do_isPrimitive(x); break; 3040 case vmIntrinsics::_getClass: do_getClass(x); break; 3041 case vmIntrinsics::_currentThread: do_currentThread(x); break; 3042 3043 case vmIntrinsics::_setBit: // fall through 3044 case vmIntrinsics::_clrBit: do_BitIntrinsic(x); break; 3045 3046 case vmIntrinsics::_dlog: // fall through 3047 case vmIntrinsics::_dlog10: // fall through 3048 case vmIntrinsics::_dabs: // fall through 3049 case vmIntrinsics::_dsqrt: // fall through 3050 case vmIntrinsics::_dtan: // fall through 3051 case vmIntrinsics::_dsin : // fall through 3052 case vmIntrinsics::_dcos : // fall through 3053 case vmIntrinsics::_dexp : // fall through 3054 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 3055 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 3056 3057 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 3058 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 3059 3060 // java.nio.Buffer.checkIndex 3061 case vmIntrinsics::_checkIndex: do_NIOCheckIndex(x); break; 3062 3063 case vmIntrinsics::_compareAndSetObject: 3064 do_CompareAndSwap(x, objectType); 3065 break; 3066 case vmIntrinsics::_compareAndSetInt: 3067 do_CompareAndSwap(x, intType); 3068 break; 3069 case vmIntrinsics::_compareAndSetLong: 3070 do_CompareAndSwap(x, longType); 3071 break; 3072 3073 case vmIntrinsics::_loadFence : 3074 if (os::is_MP()) __ membar_acquire(); 3075 break; 3076 case vmIntrinsics::_storeFence: 3077 if (os::is_MP()) __ membar_release(); 3078 break; 3079 case vmIntrinsics::_fullFence : 3080 if (os::is_MP()) __ membar(); 3081 break; 3082 case vmIntrinsics::_onSpinWait: 3083 __ on_spin_wait(); 3084 break; 3085 case vmIntrinsics::_Reference_get: 3086 do_Reference_get(x); 3087 break; 3088 3089 case vmIntrinsics::_updateCRC32: 3090 case vmIntrinsics::_updateBytesCRC32: 3091 case vmIntrinsics::_updateByteBufferCRC32: 3092 do_update_CRC32(x); 3093 break; 3094 3095 case vmIntrinsics::_updateBytesCRC32C: 3096 case vmIntrinsics::_updateDirectByteBufferCRC32C: 3097 do_update_CRC32C(x); 3098 break; 3099 3100 case vmIntrinsics::_vectorizedMismatch: 3101 do_vectorizedMismatch(x); 3102 break; 3103 3104 default: ShouldNotReachHere(); break; 3105 } 3106 } 3107 3108 void LIRGenerator::profile_arguments(ProfileCall* x) { 3109 if (compilation()->profile_arguments()) { 3110 int bci = x->bci_of_invoke(); 3111 ciMethodData* md = x->method()->method_data_or_null(); 3112 assert(md != NULL, "Sanity"); 3113 ciProfileData* data = md->bci_to_data(bci); 3114 if (data != NULL) { 3115 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 3116 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 3117 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 3118 int base_offset = md->byte_offset_of_slot(data, extra); 3119 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3120 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 3121 3122 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3123 int start = 0; 3124 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 3125 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 3126 // first argument is not profiled at call (method handle invoke) 3127 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 3128 start = 1; 3129 } 3130 ciSignature* callee_signature = x->callee()->signature(); 3131 // method handle call to virtual method 3132 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 3133 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL); 3134 3135 bool ignored_will_link; 3136 ciSignature* signature_at_call = NULL; 3137 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3138 ciSignatureStream signature_at_call_stream(signature_at_call); 3139 3140 // if called through method handle invoke, some arguments may have been popped 3141 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 3142 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 3143 ciKlass* exact = profile_type(md, base_offset, off, 3144 args->type(i), x->profiled_arg_at(i+start), mdp, 3145 !x->arg_needs_null_check(i+start), 3146 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 3147 if (exact != NULL) { 3148 md->set_argument_type(bci, i, exact); 3149 } 3150 } 3151 } else { 3152 #ifdef ASSERT 3153 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3154 int n = x->nb_profiled_args(); 3155 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3156 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3157 "only at JSR292 bytecodes"); 3158 #endif 3159 } 3160 } 3161 } 3162 } 3163 3164 // profile parameters on entry to an inlined method 3165 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3166 if (compilation()->profile_parameters() && x->inlined()) { 3167 ciMethodData* md = x->callee()->method_data_or_null(); 3168 if (md != NULL) { 3169 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3170 if (parameters_type_data != NULL) { 3171 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3172 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3173 bool has_receiver = !x->callee()->is_static(); 3174 ciSignature* sig = x->callee()->signature(); 3175 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL); 3176 int i = 0; // to iterate on the Instructions 3177 Value arg = x->recv(); 3178 bool not_null = false; 3179 int bci = x->bci_of_invoke(); 3180 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3181 // The first parameter is the receiver so that's what we start 3182 // with if it exists. One exception is method handle call to 3183 // virtual method: the receiver is in the args list 3184 if (arg == NULL || !Bytecodes::has_receiver(bc)) { 3185 i = 1; 3186 arg = x->profiled_arg_at(0); 3187 not_null = !x->arg_needs_null_check(0); 3188 } 3189 int k = 0; // to iterate on the profile data 3190 for (;;) { 3191 intptr_t profiled_k = parameters->type(k); 3192 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3193 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3194 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL); 3195 // If the profile is known statically set it once for all and do not emit any code 3196 if (exact != NULL) { 3197 md->set_parameter_type(k, exact); 3198 } 3199 k++; 3200 if (k >= parameters_type_data->number_of_parameters()) { 3201 #ifdef ASSERT 3202 int extra = 0; 3203 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3204 x->nb_profiled_args() >= TypeProfileParmsLimit && 3205 x->recv() != NULL && Bytecodes::has_receiver(bc)) { 3206 extra += 1; 3207 } 3208 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3209 #endif 3210 break; 3211 } 3212 arg = x->profiled_arg_at(i); 3213 not_null = !x->arg_needs_null_check(i); 3214 i++; 3215 } 3216 } 3217 } 3218 } 3219 } 3220 3221 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3222 // Need recv in a temporary register so it interferes with the other temporaries 3223 LIR_Opr recv = LIR_OprFact::illegalOpr; 3224 LIR_Opr mdo = new_register(T_METADATA); 3225 // tmp is used to hold the counters on SPARC 3226 LIR_Opr tmp = new_pointer_register(); 3227 3228 if (x->nb_profiled_args() > 0) { 3229 profile_arguments(x); 3230 } 3231 3232 // profile parameters on inlined method entry including receiver 3233 if (x->recv() != NULL || x->nb_profiled_args() > 0) { 3234 profile_parameters_at_call(x); 3235 } 3236 3237 if (x->recv() != NULL) { 3238 LIRItem value(x->recv(), this); 3239 value.load_item(); 3240 recv = new_register(T_OBJECT); 3241 __ move(value.result(), recv); 3242 } 3243 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3244 } 3245 3246 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3247 int bci = x->bci_of_invoke(); 3248 ciMethodData* md = x->method()->method_data_or_null(); 3249 assert(md != NULL, "Sanity"); 3250 ciProfileData* data = md->bci_to_data(bci); 3251 if (data != NULL) { 3252 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3253 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3254 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3255 3256 bool ignored_will_link; 3257 ciSignature* signature_at_call = NULL; 3258 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3259 3260 // The offset within the MDO of the entry to update may be too large 3261 // to be used in load/store instructions on some platforms. So have 3262 // profile_type() compute the address of the profile in a register. 3263 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3264 ret->type(), x->ret(), mdp, 3265 !x->needs_null_check(), 3266 signature_at_call->return_type()->as_klass(), 3267 x->callee()->signature()->return_type()->as_klass()); 3268 if (exact != NULL) { 3269 md->set_return_type(bci, exact); 3270 } 3271 } 3272 } 3273 3274 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3275 // We can safely ignore accessors here, since c2 will inline them anyway, 3276 // accessors are also always mature. 3277 if (!x->inlinee()->is_accessor()) { 3278 CodeEmitInfo* info = state_for(x, x->state(), true); 3279 // Notify the runtime very infrequently only to take care of counter overflows 3280 int freq_log = Tier23InlineeNotifyFreqLog; 3281 double scale; 3282 if (_method->has_option_value("CompileThresholdScaling", scale)) { 3283 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3284 } 3285 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3286 } 3287 } 3288 3289 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3290 if (compilation()->count_backedges()) { 3291 __ cmp(cond, left, right); 3292 LIR_Opr step = new_register(T_INT); 3293 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3294 LIR_Opr zero = LIR_OprFact::intConst(0); 3295 __ cmove(cond, 3296 (left_bci < bci) ? plus_one : zero, 3297 (right_bci < bci) ? plus_one : zero, 3298 step, left->type()); 3299 increment_backedge_counter(info, step, bci); 3300 } 3301 } 3302 3303 3304 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3305 int freq_log = 0; 3306 int level = compilation()->env()->comp_level(); 3307 if (level == CompLevel_limited_profile) { 3308 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3309 } else if (level == CompLevel_full_profile) { 3310 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3311 } else { 3312 ShouldNotReachHere(); 3313 } 3314 // Increment the appropriate invocation/backedge counter and notify the runtime. 3315 double scale; 3316 if (_method->has_option_value("CompileThresholdScaling", scale)) { 3317 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3318 } 3319 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3320 } 3321 3322 void LIRGenerator::decrement_age(CodeEmitInfo* info) { 3323 ciMethod* method = info->scope()->method(); 3324 MethodCounters* mc_adr = method->ensure_method_counters(); 3325 if (mc_adr != NULL) { 3326 LIR_Opr mc = new_pointer_register(); 3327 __ move(LIR_OprFact::intptrConst(mc_adr), mc); 3328 int offset = in_bytes(MethodCounters::nmethod_age_offset()); 3329 LIR_Address* counter = new LIR_Address(mc, offset, T_INT); 3330 LIR_Opr result = new_register(T_INT); 3331 __ load(counter, result); 3332 __ sub(result, LIR_OprFact::intConst(1), result); 3333 __ store(result, counter); 3334 // DeoptimizeStub will reexecute from the current state in code info. 3335 CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured, 3336 Deoptimization::Action_make_not_entrant); 3337 __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0)); 3338 __ branch(lir_cond_lessEqual, T_INT, deopt); 3339 } 3340 } 3341 3342 3343 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3344 ciMethod *method, LIR_Opr step, int frequency, 3345 int bci, bool backedge, bool notify) { 3346 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3347 int level = _compilation->env()->comp_level(); 3348 assert(level > CompLevel_simple, "Shouldn't be here"); 3349 3350 int offset = -1; 3351 LIR_Opr counter_holder = NULL; 3352 if (level == CompLevel_limited_profile) { 3353 MethodCounters* counters_adr = method->ensure_method_counters(); 3354 if (counters_adr == NULL) { 3355 bailout("method counters allocation failed"); 3356 return; 3357 } 3358 counter_holder = new_pointer_register(); 3359 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3360 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3361 MethodCounters::invocation_counter_offset()); 3362 } else if (level == CompLevel_full_profile) { 3363 counter_holder = new_register(T_METADATA); 3364 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3365 MethodData::invocation_counter_offset()); 3366 ciMethodData* md = method->method_data_or_null(); 3367 assert(md != NULL, "Sanity"); 3368 __ metadata2reg(md->constant_encoding(), counter_holder); 3369 } else { 3370 ShouldNotReachHere(); 3371 } 3372 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3373 LIR_Opr result = new_register(T_INT); 3374 __ load(counter, result); 3375 __ add(result, step, result); 3376 __ store(result, counter); 3377 if (notify && (!backedge || UseOnStackReplacement)) { 3378 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3379 // The bci for info can point to cmp for if's we want the if bci 3380 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3381 int freq = frequency << InvocationCounter::count_shift; 3382 if (freq == 0) { 3383 if (!step->is_constant()) { 3384 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3385 __ branch(lir_cond_notEqual, T_ILLEGAL, overflow); 3386 } else { 3387 __ branch(lir_cond_always, T_ILLEGAL, overflow); 3388 } 3389 } else { 3390 LIR_Opr mask = load_immediate(freq, T_INT); 3391 if (!step->is_constant()) { 3392 // If step is 0, make sure the overflow check below always fails 3393 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3394 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3395 } 3396 __ logical_and(result, mask, result); 3397 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3398 __ branch(lir_cond_equal, T_INT, overflow); 3399 } 3400 __ branch_destination(overflow->continuation()); 3401 } 3402 } 3403 3404 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3405 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3406 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3407 3408 if (x->pass_thread()) { 3409 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3410 args->append(getThreadPointer()); 3411 } 3412 3413 for (int i = 0; i < x->number_of_arguments(); i++) { 3414 Value a = x->argument_at(i); 3415 LIRItem* item = new LIRItem(a, this); 3416 item->load_item(); 3417 args->append(item->result()); 3418 signature->append(as_BasicType(a->type())); 3419 } 3420 3421 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL); 3422 if (x->type() == voidType) { 3423 set_no_result(x); 3424 } else { 3425 __ move(result, rlock_result(x)); 3426 } 3427 } 3428 3429 #ifdef ASSERT 3430 void LIRGenerator::do_Assert(Assert *x) { 3431 ValueTag tag = x->x()->type()->tag(); 3432 If::Condition cond = x->cond(); 3433 3434 LIRItem xitem(x->x(), this); 3435 LIRItem yitem(x->y(), this); 3436 LIRItem* xin = &xitem; 3437 LIRItem* yin = &yitem; 3438 3439 assert(tag == intTag, "Only integer assertions are valid!"); 3440 3441 xin->load_item(); 3442 yin->dont_load_item(); 3443 3444 set_no_result(x); 3445 3446 LIR_Opr left = xin->result(); 3447 LIR_Opr right = yin->result(); 3448 3449 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3450 } 3451 #endif 3452 3453 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3454 3455 3456 Instruction *a = x->x(); 3457 Instruction *b = x->y(); 3458 if (!a || StressRangeCheckElimination) { 3459 assert(!b || StressRangeCheckElimination, "B must also be null"); 3460 3461 CodeEmitInfo *info = state_for(x, x->state()); 3462 CodeStub* stub = new PredicateFailedStub(info); 3463 3464 __ jump(stub); 3465 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3466 int a_int = a->type()->as_IntConstant()->value(); 3467 int b_int = b->type()->as_IntConstant()->value(); 3468 3469 bool ok = false; 3470 3471 switch(x->cond()) { 3472 case Instruction::eql: ok = (a_int == b_int); break; 3473 case Instruction::neq: ok = (a_int != b_int); break; 3474 case Instruction::lss: ok = (a_int < b_int); break; 3475 case Instruction::leq: ok = (a_int <= b_int); break; 3476 case Instruction::gtr: ok = (a_int > b_int); break; 3477 case Instruction::geq: ok = (a_int >= b_int); break; 3478 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3479 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3480 default: ShouldNotReachHere(); 3481 } 3482 3483 if (ok) { 3484 3485 CodeEmitInfo *info = state_for(x, x->state()); 3486 CodeStub* stub = new PredicateFailedStub(info); 3487 3488 __ jump(stub); 3489 } 3490 } else { 3491 3492 ValueTag tag = x->x()->type()->tag(); 3493 If::Condition cond = x->cond(); 3494 LIRItem xitem(x->x(), this); 3495 LIRItem yitem(x->y(), this); 3496 LIRItem* xin = &xitem; 3497 LIRItem* yin = &yitem; 3498 3499 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3500 3501 xin->load_item(); 3502 yin->dont_load_item(); 3503 set_no_result(x); 3504 3505 LIR_Opr left = xin->result(); 3506 LIR_Opr right = yin->result(); 3507 3508 CodeEmitInfo *info = state_for(x, x->state()); 3509 CodeStub* stub = new PredicateFailedStub(info); 3510 3511 __ cmp(lir_cond(cond), left, right); 3512 __ branch(lir_cond(cond), right->type(), stub); 3513 } 3514 } 3515 3516 3517 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3518 LIRItemList args(1); 3519 LIRItem value(arg1, this); 3520 args.append(&value); 3521 BasicTypeList signature; 3522 signature.append(as_BasicType(arg1->type())); 3523 3524 return call_runtime(&signature, &args, entry, result_type, info); 3525 } 3526 3527 3528 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3529 LIRItemList args(2); 3530 LIRItem value1(arg1, this); 3531 LIRItem value2(arg2, this); 3532 args.append(&value1); 3533 args.append(&value2); 3534 BasicTypeList signature; 3535 signature.append(as_BasicType(arg1->type())); 3536 signature.append(as_BasicType(arg2->type())); 3537 3538 return call_runtime(&signature, &args, entry, result_type, info); 3539 } 3540 3541 3542 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 3543 address entry, ValueType* result_type, CodeEmitInfo* info) { 3544 // get a result register 3545 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3546 LIR_Opr result = LIR_OprFact::illegalOpr; 3547 if (result_type->tag() != voidTag) { 3548 result = new_register(result_type); 3549 phys_reg = result_register_for(result_type); 3550 } 3551 3552 // move the arguments into the correct location 3553 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3554 assert(cc->length() == args->length(), "argument mismatch"); 3555 for (int i = 0; i < args->length(); i++) { 3556 LIR_Opr arg = args->at(i); 3557 LIR_Opr loc = cc->at(i); 3558 if (loc->is_register()) { 3559 __ move(arg, loc); 3560 } else { 3561 LIR_Address* addr = loc->as_address_ptr(); 3562 // if (!can_store_as_constant(arg)) { 3563 // LIR_Opr tmp = new_register(arg->type()); 3564 // __ move(arg, tmp); 3565 // arg = tmp; 3566 // } 3567 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { 3568 __ unaligned_move(arg, addr); 3569 } else { 3570 __ move(arg, addr); 3571 } 3572 } 3573 } 3574 3575 if (info) { 3576 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3577 } else { 3578 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3579 } 3580 if (result->is_valid()) { 3581 __ move(phys_reg, result); 3582 } 3583 return result; 3584 } 3585 3586 3587 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 3588 address entry, ValueType* result_type, CodeEmitInfo* info) { 3589 // get a result register 3590 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3591 LIR_Opr result = LIR_OprFact::illegalOpr; 3592 if (result_type->tag() != voidTag) { 3593 result = new_register(result_type); 3594 phys_reg = result_register_for(result_type); 3595 } 3596 3597 // move the arguments into the correct location 3598 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3599 3600 assert(cc->length() == args->length(), "argument mismatch"); 3601 for (int i = 0; i < args->length(); i++) { 3602 LIRItem* arg = args->at(i); 3603 LIR_Opr loc = cc->at(i); 3604 if (loc->is_register()) { 3605 arg->load_item_force(loc); 3606 } else { 3607 LIR_Address* addr = loc->as_address_ptr(); 3608 arg->load_for_store(addr->type()); 3609 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { 3610 __ unaligned_move(arg->result(), addr); 3611 } else { 3612 __ move(arg->result(), addr); 3613 } 3614 } 3615 } 3616 3617 if (info) { 3618 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3619 } else { 3620 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3621 } 3622 if (result->is_valid()) { 3623 __ move(phys_reg, result); 3624 } 3625 return result; 3626 } 3627 3628 void LIRGenerator::do_MemBar(MemBar* x) { 3629 if (os::is_MP()) { 3630 LIR_Code code = x->code(); 3631 switch(code) { 3632 case lir_membar_acquire : __ membar_acquire(); break; 3633 case lir_membar_release : __ membar_release(); break; 3634 case lir_membar : __ membar(); break; 3635 case lir_membar_loadload : __ membar_loadload(); break; 3636 case lir_membar_storestore: __ membar_storestore(); break; 3637 case lir_membar_loadstore : __ membar_loadstore(); break; 3638 case lir_membar_storeload : __ membar_storeload(); break; 3639 default : ShouldNotReachHere(); break; 3640 } 3641 } 3642 } 3643 3644 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3645 LIR_Opr value_fixed = rlock_byte(T_BYTE); 3646 if (TwoOperandLIRForm) { 3647 __ move(value, value_fixed); 3648 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 3649 } else { 3650 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 3651 } 3652 LIR_Opr klass = new_register(T_METADATA); 3653 __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info); 3654 null_check_info = NULL; 3655 LIR_Opr layout = new_register(T_INT); 3656 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 3657 int diffbit = Klass::layout_helper_boolean_diffbit(); 3658 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 3659 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 3660 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 3661 value = value_fixed; 3662 return value; 3663 } 3664 3665 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3666 if (x->check_boolean()) { 3667 value = mask_boolean(array, value, null_check_info); 3668 } 3669 return value; 3670 } --- EOF ---