1 /* 2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #if !defined(__clang_major__) && defined(__GNUC__) 26 // FIXME, formats have issues. Disable this macro definition, compile, and study warnings for more information. 27 #define ATTRIBUTE_PRINTF(x,y) 28 #endif 29 30 #include "precompiled.hpp" 31 #include "classfile/stringTable.hpp" 32 #include "code/codeCache.hpp" 33 #include "code/icBuffer.hpp" 34 #include "gc_implementation/g1/bufferingOopClosure.hpp" 35 #include "gc_implementation/g1/concurrentG1Refine.hpp" 36 #include "gc_implementation/g1/concurrentG1RefineThread.hpp" 37 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp" 38 #include "gc_implementation/g1/g1AllocRegion.inline.hpp" 39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" 40 #include "gc_implementation/g1/g1CollectorPolicy.hpp" 41 #include "gc_implementation/g1/g1ErgoVerbose.hpp" 42 #include "gc_implementation/g1/g1EvacFailure.hpp" 43 #include "gc_implementation/g1/g1GCPhaseTimes.hpp" 44 #include "gc_implementation/g1/g1Log.hpp" 45 #include "gc_implementation/g1/g1MarkSweep.hpp" 46 #include "gc_implementation/g1/g1OopClosures.inline.hpp" 47 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp" 48 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp" 49 #include "gc_implementation/g1/g1RemSet.inline.hpp" 50 #include "gc_implementation/g1/g1StringDedup.hpp" 51 #include "gc_implementation/g1/g1YCTypes.hpp" 52 #include "gc_implementation/g1/heapRegion.inline.hpp" 53 #include "gc_implementation/g1/heapRegionRemSet.hpp" 54 #include "gc_implementation/g1/heapRegionSet.inline.hpp" 55 #include "gc_implementation/g1/vm_operations_g1.hpp" 56 #include "gc_implementation/shared/gcHeapSummary.hpp" 57 #include "gc_implementation/shared/gcTimer.hpp" 58 #include "gc_implementation/shared/gcTrace.hpp" 59 #include "gc_implementation/shared/gcTraceTime.hpp" 60 #include "gc_implementation/shared/isGCActiveMark.hpp" 61 #include "memory/allocation.hpp" 62 #include "memory/gcLocker.inline.hpp" 63 #include "memory/generationSpec.hpp" 64 #include "memory/iterator.hpp" 65 #include "memory/referenceProcessor.hpp" 66 #include "oops/oop.inline.hpp" 67 #include "oops/oop.pcgc.inline.hpp" 68 #include "runtime/atomic.inline.hpp" 69 #include "runtime/orderAccess.inline.hpp" 70 #include "runtime/vmThread.hpp" 71 #include "utilities/globalDefinitions.hpp" 72 73 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0; 74 75 // turn it on so that the contents of the young list (scan-only / 76 // to-be-collected) are printed at "strategic" points before / during 77 // / after the collection --- this is useful for debugging 78 #define YOUNG_LIST_VERBOSE 0 79 // CURRENT STATUS 80 // This file is under construction. Search for "FIXME". 81 82 // INVARIANTS/NOTES 83 // 84 // All allocation activity covered by the G1CollectedHeap interface is 85 // serialized by acquiring the HeapLock. This happens in mem_allocate 86 // and allocate_new_tlab, which are the "entry" points to the 87 // allocation code from the rest of the JVM. (Note that this does not 88 // apply to TLAB allocation, which is not part of this interface: it 89 // is done by clients of this interface.) 90 91 // Notes on implementation of parallelism in different tasks. 92 // 93 // G1ParVerifyTask uses heap_region_par_iterate() for parallelism. 94 // The number of GC workers is passed to heap_region_par_iterate(). 95 // It does use run_task() which sets _n_workers in the task. 96 // G1ParTask executes g1_process_roots() -> 97 // SharedHeap::process_roots() which calls eventually to 98 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses 99 // SequentialSubTasksDone. SharedHeap::process_roots() also 100 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap). 101 // 102 103 // Local to this file. 104 105 class RefineCardTableEntryClosure: public CardTableEntryClosure { 106 bool _concurrent; 107 public: 108 RefineCardTableEntryClosure() : _concurrent(true) { } 109 110 bool do_card_ptr(jbyte* card_ptr, uint worker_i) { 111 bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false); 112 // This path is executed by the concurrent refine or mutator threads, 113 // concurrently, and so we do not care if card_ptr contains references 114 // that point into the collection set. 115 assert(!oops_into_cset, "should be"); 116 117 if (_concurrent && SuspendibleThreadSet::should_yield()) { 118 // Caller will actually yield. 119 return false; 120 } 121 // Otherwise, we finished successfully; return true. 122 return true; 123 } 124 125 void set_concurrent(bool b) { _concurrent = b; } 126 }; 127 128 129 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure { 130 size_t _num_processed; 131 CardTableModRefBS* _ctbs; 132 int _histo[256]; 133 134 public: 135 ClearLoggedCardTableEntryClosure() : 136 _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set()) 137 { 138 for (int i = 0; i < 256; i++) _histo[i] = 0; 139 } 140 141 bool do_card_ptr(jbyte* card_ptr, uint worker_i) { 142 unsigned char* ujb = (unsigned char*)card_ptr; 143 int ind = (int)(*ujb); 144 _histo[ind]++; 145 146 *card_ptr = (jbyte)CardTableModRefBS::clean_card_val(); 147 _num_processed++; 148 149 return true; 150 } 151 152 size_t num_processed() { return _num_processed; } 153 154 void print_histo() { 155 gclog_or_tty->print_cr("Card table value histogram:"); 156 for (int i = 0; i < 256; i++) { 157 if (_histo[i] != 0) { 158 gclog_or_tty->print_cr(" %d: %d", i, _histo[i]); 159 } 160 } 161 } 162 }; 163 164 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure { 165 private: 166 size_t _num_processed; 167 168 public: 169 RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { } 170 171 bool do_card_ptr(jbyte* card_ptr, uint worker_i) { 172 *card_ptr = CardTableModRefBS::dirty_card_val(); 173 _num_processed++; 174 return true; 175 } 176 177 size_t num_processed() const { return _num_processed; } 178 }; 179 180 YoungList::YoungList(G1CollectedHeap* g1h) : 181 _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0), 182 _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) { 183 guarantee(check_list_empty(false), "just making sure..."); 184 } 185 186 void YoungList::push_region(HeapRegion *hr) { 187 assert(!hr->is_young(), "should not already be young"); 188 assert(hr->get_next_young_region() == NULL, "cause it should!"); 189 190 hr->set_next_young_region(_head); 191 _head = hr; 192 193 _g1h->g1_policy()->set_region_eden(hr, (int) _length); 194 ++_length; 195 } 196 197 void YoungList::add_survivor_region(HeapRegion* hr) { 198 assert(hr->is_survivor(), "should be flagged as survivor region"); 199 assert(hr->get_next_young_region() == NULL, "cause it should!"); 200 201 hr->set_next_young_region(_survivor_head); 202 if (_survivor_head == NULL) { 203 _survivor_tail = hr; 204 } 205 _survivor_head = hr; 206 ++_survivor_length; 207 } 208 209 void YoungList::empty_list(HeapRegion* list) { 210 while (list != NULL) { 211 HeapRegion* next = list->get_next_young_region(); 212 list->set_next_young_region(NULL); 213 list->uninstall_surv_rate_group(); 214 list->set_not_young(); 215 list = next; 216 } 217 } 218 219 void YoungList::empty_list() { 220 assert(check_list_well_formed(), "young list should be well formed"); 221 222 empty_list(_head); 223 _head = NULL; 224 _length = 0; 225 226 empty_list(_survivor_head); 227 _survivor_head = NULL; 228 _survivor_tail = NULL; 229 _survivor_length = 0; 230 231 _last_sampled_rs_lengths = 0; 232 233 assert(check_list_empty(false), "just making sure..."); 234 } 235 236 bool YoungList::check_list_well_formed() { 237 bool ret = true; 238 239 uint length = 0; 240 HeapRegion* curr = _head; 241 HeapRegion* last = NULL; 242 while (curr != NULL) { 243 if (!curr->is_young()) { 244 gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" " 245 "incorrectly tagged (y: %d, surv: %d)", 246 curr->bottom(), curr->end(), 247 curr->is_young(), curr->is_survivor()); 248 ret = false; 249 } 250 ++length; 251 last = curr; 252 curr = curr->get_next_young_region(); 253 } 254 ret = ret && (length == _length); 255 256 if (!ret) { 257 gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!"); 258 gclog_or_tty->print_cr("### list has %u entries, _length is %u", 259 length, _length); 260 } 261 262 return ret; 263 } 264 265 bool YoungList::check_list_empty(bool check_sample) { 266 bool ret = true; 267 268 if (_length != 0) { 269 gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u", 270 _length); 271 ret = false; 272 } 273 if (check_sample && _last_sampled_rs_lengths != 0) { 274 gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths"); 275 ret = false; 276 } 277 if (_head != NULL) { 278 gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head"); 279 ret = false; 280 } 281 if (!ret) { 282 gclog_or_tty->print_cr("### YOUNG LIST does not seem empty"); 283 } 284 285 return ret; 286 } 287 288 void 289 YoungList::rs_length_sampling_init() { 290 _sampled_rs_lengths = 0; 291 _curr = _head; 292 } 293 294 bool 295 YoungList::rs_length_sampling_more() { 296 return _curr != NULL; 297 } 298 299 void 300 YoungList::rs_length_sampling_next() { 301 assert( _curr != NULL, "invariant" ); 302 size_t rs_length = _curr->rem_set()->occupied(); 303 304 _sampled_rs_lengths += rs_length; 305 306 // The current region may not yet have been added to the 307 // incremental collection set (it gets added when it is 308 // retired as the current allocation region). 309 if (_curr->in_collection_set()) { 310 // Update the collection set policy information for this region 311 _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length); 312 } 313 314 _curr = _curr->get_next_young_region(); 315 if (_curr == NULL) { 316 _last_sampled_rs_lengths = _sampled_rs_lengths; 317 // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths); 318 } 319 } 320 321 void 322 YoungList::reset_auxilary_lists() { 323 guarantee( is_empty(), "young list should be empty" ); 324 assert(check_list_well_formed(), "young list should be well formed"); 325 326 // Add survivor regions to SurvRateGroup. 327 _g1h->g1_policy()->note_start_adding_survivor_regions(); 328 _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */); 329 330 int young_index_in_cset = 0; 331 for (HeapRegion* curr = _survivor_head; 332 curr != NULL; 333 curr = curr->get_next_young_region()) { 334 _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset); 335 336 // The region is a non-empty survivor so let's add it to 337 // the incremental collection set for the next evacuation 338 // pause. 339 _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr); 340 young_index_in_cset += 1; 341 } 342 assert((uint) young_index_in_cset == _survivor_length, "post-condition"); 343 _g1h->g1_policy()->note_stop_adding_survivor_regions(); 344 345 _head = _survivor_head; 346 _length = _survivor_length; 347 if (_survivor_head != NULL) { 348 assert(_survivor_tail != NULL, "cause it shouldn't be"); 349 assert(_survivor_length > 0, "invariant"); 350 _survivor_tail->set_next_young_region(NULL); 351 } 352 353 // Don't clear the survivor list handles until the start of 354 // the next evacuation pause - we need it in order to re-tag 355 // the survivor regions from this evacuation pause as 'young' 356 // at the start of the next. 357 358 _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */); 359 360 assert(check_list_well_formed(), "young list should be well formed"); 361 } 362 363 void YoungList::print() { 364 HeapRegion* lists[] = {_head, _survivor_head}; 365 const char* names[] = {"YOUNG", "SURVIVOR"}; 366 367 for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) { 368 gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]); 369 HeapRegion *curr = lists[list]; 370 if (curr == NULL) 371 gclog_or_tty->print_cr(" empty"); 372 while (curr != NULL) { 373 gclog_or_tty->print_cr(" "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d", 374 HR_FORMAT_PARAMS(curr), 375 curr->prev_top_at_mark_start(), 376 curr->next_top_at_mark_start(), 377 curr->age_in_surv_rate_group_cond()); 378 curr = curr->get_next_young_region(); 379 } 380 } 381 382 gclog_or_tty->cr(); 383 } 384 385 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) { 386 OtherRegionsTable::invalidate(start_idx, num_regions); 387 } 388 389 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions) { 390 reset_from_card_cache(start_idx, num_regions); 391 } 392 393 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr) 394 { 395 // Claim the right to put the region on the dirty cards region list 396 // by installing a self pointer. 397 HeapRegion* next = hr->get_next_dirty_cards_region(); 398 if (next == NULL) { 399 HeapRegion* res = (HeapRegion*) 400 Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(), 401 NULL); 402 if (res == NULL) { 403 HeapRegion* head; 404 do { 405 // Put the region to the dirty cards region list. 406 head = _dirty_cards_region_list; 407 next = (HeapRegion*) 408 Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head); 409 if (next == head) { 410 assert(hr->get_next_dirty_cards_region() == hr, 411 "hr->get_next_dirty_cards_region() != hr"); 412 if (next == NULL) { 413 // The last region in the list points to itself. 414 hr->set_next_dirty_cards_region(hr); 415 } else { 416 hr->set_next_dirty_cards_region(next); 417 } 418 } 419 } while (next != head); 420 } 421 } 422 } 423 424 HeapRegion* G1CollectedHeap::pop_dirty_cards_region() 425 { 426 HeapRegion* head; 427 HeapRegion* hr; 428 do { 429 head = _dirty_cards_region_list; 430 if (head == NULL) { 431 return NULL; 432 } 433 HeapRegion* new_head = head->get_next_dirty_cards_region(); 434 if (head == new_head) { 435 // The last region. 436 new_head = NULL; 437 } 438 hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list, 439 head); 440 } while (hr != head); 441 assert(hr != NULL, "invariant"); 442 hr->set_next_dirty_cards_region(NULL); 443 return hr; 444 } 445 446 #ifdef ASSERT 447 // A region is added to the collection set as it is retired 448 // so an address p can point to a region which will be in the 449 // collection set but has not yet been retired. This method 450 // therefore is only accurate during a GC pause after all 451 // regions have been retired. It is used for debugging 452 // to check if an nmethod has references to objects that can 453 // be move during a partial collection. Though it can be 454 // inaccurate, it is sufficient for G1 because the conservative 455 // implementation of is_scavengable() for G1 will indicate that 456 // all nmethods must be scanned during a partial collection. 457 bool G1CollectedHeap::is_in_partial_collection(const void* p) { 458 if (p == NULL) { 459 return false; 460 } 461 return heap_region_containing(p)->in_collection_set(); 462 } 463 #endif 464 465 // Returns true if the reference points to an object that 466 // can move in an incremental collection. 467 bool G1CollectedHeap::is_scavengable(const void* p) { 468 HeapRegion* hr = heap_region_containing(p); 469 return !hr->isHumongous(); 470 } 471 472 void G1CollectedHeap::check_ct_logs_at_safepoint() { 473 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 474 CardTableModRefBS* ct_bs = g1_barrier_set(); 475 476 // Count the dirty cards at the start. 477 CountNonCleanMemRegionClosure count1(this); 478 ct_bs->mod_card_iterate(&count1); 479 int orig_count = count1.n(); 480 481 // First clear the logged cards. 482 ClearLoggedCardTableEntryClosure clear; 483 dcqs.apply_closure_to_all_completed_buffers(&clear); 484 dcqs.iterate_closure_all_threads(&clear, false); 485 clear.print_histo(); 486 487 // Now ensure that there's no dirty cards. 488 CountNonCleanMemRegionClosure count2(this); 489 ct_bs->mod_card_iterate(&count2); 490 if (count2.n() != 0) { 491 gclog_or_tty->print_cr("Card table has %d entries; %d originally", 492 count2.n(), orig_count); 493 } 494 guarantee(count2.n() == 0, "Card table should be clean."); 495 496 RedirtyLoggedCardTableEntryClosure redirty; 497 dcqs.apply_closure_to_all_completed_buffers(&redirty); 498 dcqs.iterate_closure_all_threads(&redirty, false); 499 gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.", 500 clear.num_processed(), orig_count); 501 guarantee(redirty.num_processed() == clear.num_processed(), 502 err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT, 503 redirty.num_processed(), clear.num_processed())); 504 505 CountNonCleanMemRegionClosure count3(this); 506 ct_bs->mod_card_iterate(&count3); 507 if (count3.n() != orig_count) { 508 gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.", 509 orig_count, count3.n()); 510 guarantee(count3.n() >= orig_count, "Should have restored them all."); 511 } 512 } 513 514 // Private class members. 515 516 G1CollectedHeap* G1CollectedHeap::_g1h; 517 518 // Private methods. 519 520 HeapRegion* 521 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) { 522 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 523 while (!_secondary_free_list.is_empty() || free_regions_coming()) { 524 if (!_secondary_free_list.is_empty()) { 525 if (G1ConcRegionFreeingVerbose) { 526 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 527 "secondary_free_list has %u entries", 528 _secondary_free_list.length()); 529 } 530 // It looks as if there are free regions available on the 531 // secondary_free_list. Let's move them to the free_list and try 532 // again to allocate from it. 533 append_secondary_free_list(); 534 535 assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not " 536 "empty we should have moved at least one entry to the free_list"); 537 HeapRegion* res = _hrm.allocate_free_region(is_old); 538 if (G1ConcRegionFreeingVerbose) { 539 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 540 "allocated "HR_FORMAT" from secondary_free_list", 541 HR_FORMAT_PARAMS(res)); 542 } 543 return res; 544 } 545 546 // Wait here until we get notified either when (a) there are no 547 // more free regions coming or (b) some regions have been moved on 548 // the secondary_free_list. 549 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag); 550 } 551 552 if (G1ConcRegionFreeingVerbose) { 553 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 554 "could not allocate from secondary_free_list"); 555 } 556 return NULL; 557 } 558 559 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) { 560 assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords, 561 "the only time we use this to allocate a humongous region is " 562 "when we are allocating a single humongous region"); 563 564 HeapRegion* res; 565 if (G1StressConcRegionFreeing) { 566 if (!_secondary_free_list.is_empty()) { 567 if (G1ConcRegionFreeingVerbose) { 568 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 569 "forced to look at the secondary_free_list"); 570 } 571 res = new_region_try_secondary_free_list(is_old); 572 if (res != NULL) { 573 return res; 574 } 575 } 576 } 577 578 res = _hrm.allocate_free_region(is_old); 579 580 if (res == NULL) { 581 if (G1ConcRegionFreeingVerbose) { 582 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 583 "res == NULL, trying the secondary_free_list"); 584 } 585 res = new_region_try_secondary_free_list(is_old); 586 } 587 if (res == NULL && do_expand && _expand_heap_after_alloc_failure) { 588 // Currently, only attempts to allocate GC alloc regions set 589 // do_expand to true. So, we should only reach here during a 590 // safepoint. If this assumption changes we might have to 591 // reconsider the use of _expand_heap_after_alloc_failure. 592 assert(SafepointSynchronize::is_at_safepoint(), "invariant"); 593 594 ergo_verbose1(ErgoHeapSizing, 595 "attempt heap expansion", 596 ergo_format_reason("region allocation request failed") 597 ergo_format_byte("allocation request"), 598 word_size * HeapWordSize); 599 if (expand(word_size * HeapWordSize)) { 600 // Given that expand() succeeded in expanding the heap, and we 601 // always expand the heap by an amount aligned to the heap 602 // region size, the free list should in theory not be empty. 603 // In either case allocate_free_region() will check for NULL. 604 res = _hrm.allocate_free_region(is_old); 605 } else { 606 _expand_heap_after_alloc_failure = false; 607 } 608 } 609 return res; 610 } 611 612 HeapWord* 613 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first, 614 uint num_regions, 615 size_t word_size) { 616 assert(first != G1_NO_HRM_INDEX, "pre-condition"); 617 assert(isHumongous(word_size), "word_size should be humongous"); 618 assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition"); 619 620 // Index of last region in the series + 1. 621 uint last = first + num_regions; 622 623 // We need to initialize the region(s) we just discovered. This is 624 // a bit tricky given that it can happen concurrently with 625 // refinement threads refining cards on these regions and 626 // potentially wanting to refine the BOT as they are scanning 627 // those cards (this can happen shortly after a cleanup; see CR 628 // 6991377). So we have to set up the region(s) carefully and in 629 // a specific order. 630 631 // The word size sum of all the regions we will allocate. 632 size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords; 633 assert(word_size <= word_size_sum, "sanity"); 634 635 // This will be the "starts humongous" region. 636 HeapRegion* first_hr = region_at(first); 637 // The header of the new object will be placed at the bottom of 638 // the first region. 639 HeapWord* new_obj = first_hr->bottom(); 640 // This will be the new end of the first region in the series that 641 // should also match the end of the last region in the series. 642 HeapWord* new_end = new_obj + word_size_sum; 643 // This will be the new top of the first region that will reflect 644 // this allocation. 645 HeapWord* new_top = new_obj + word_size; 646 647 // First, we need to zero the header of the space that we will be 648 // allocating. When we update top further down, some refinement 649 // threads might try to scan the region. By zeroing the header we 650 // ensure that any thread that will try to scan the region will 651 // come across the zero klass word and bail out. 652 // 653 // NOTE: It would not have been correct to have used 654 // CollectedHeap::fill_with_object() and make the space look like 655 // an int array. The thread that is doing the allocation will 656 // later update the object header to a potentially different array 657 // type and, for a very short period of time, the klass and length 658 // fields will be inconsistent. This could cause a refinement 659 // thread to calculate the object size incorrectly. 660 Copy::fill_to_words(new_obj, oopDesc::header_size(), 0); 661 662 // We will set up the first region as "starts humongous". This 663 // will also update the BOT covering all the regions to reflect 664 // that there is a single object that starts at the bottom of the 665 // first region. 666 first_hr->set_startsHumongous(new_top, new_end); 667 668 // Then, if there are any, we will set up the "continues 669 // humongous" regions. 670 HeapRegion* hr = NULL; 671 for (uint i = first + 1; i < last; ++i) { 672 hr = region_at(i); 673 hr->set_continuesHumongous(first_hr); 674 } 675 // If we have "continues humongous" regions (hr != NULL), then the 676 // end of the last one should match new_end. 677 assert(hr == NULL || hr->end() == new_end, "sanity"); 678 679 // Up to this point no concurrent thread would have been able to 680 // do any scanning on any region in this series. All the top 681 // fields still point to bottom, so the intersection between 682 // [bottom,top] and [card_start,card_end] will be empty. Before we 683 // update the top fields, we'll do a storestore to make sure that 684 // no thread sees the update to top before the zeroing of the 685 // object header and the BOT initialization. 686 OrderAccess::storestore(); 687 688 // Now that the BOT and the object header have been initialized, 689 // we can update top of the "starts humongous" region. 690 assert(first_hr->bottom() < new_top && new_top <= first_hr->end(), 691 "new_top should be in this region"); 692 first_hr->set_top(new_top); 693 if (_hr_printer.is_active()) { 694 HeapWord* bottom = first_hr->bottom(); 695 HeapWord* end = first_hr->orig_end(); 696 if ((first + 1) == last) { 697 // the series has a single humongous region 698 _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top); 699 } else { 700 // the series has more than one humongous regions 701 _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end); 702 } 703 } 704 705 // Now, we will update the top fields of the "continues humongous" 706 // regions. The reason we need to do this is that, otherwise, 707 // these regions would look empty and this will confuse parts of 708 // G1. For example, the code that looks for a consecutive number 709 // of empty regions will consider them empty and try to 710 // re-allocate them. We can extend is_empty() to also include 711 // !continuesHumongous(), but it is easier to just update the top 712 // fields here. The way we set top for all regions (i.e., top == 713 // end for all regions but the last one, top == new_top for the 714 // last one) is actually used when we will free up the humongous 715 // region in free_humongous_region(). 716 hr = NULL; 717 for (uint i = first + 1; i < last; ++i) { 718 hr = region_at(i); 719 if ((i + 1) == last) { 720 // last continues humongous region 721 assert(hr->bottom() < new_top && new_top <= hr->end(), 722 "new_top should fall on this region"); 723 hr->set_top(new_top); 724 _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top); 725 } else { 726 // not last one 727 assert(new_top > hr->end(), "new_top should be above this region"); 728 hr->set_top(hr->end()); 729 _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end()); 730 } 731 } 732 // If we have continues humongous regions (hr != NULL), then the 733 // end of the last one should match new_end and its top should 734 // match new_top. 735 assert(hr == NULL || 736 (hr->end() == new_end && hr->top() == new_top), "sanity"); 737 check_bitmaps("Humongous Region Allocation", first_hr); 738 739 assert(first_hr->used() == word_size * HeapWordSize, "invariant"); 740 _summary_bytes_used += first_hr->used(); 741 _humongous_set.add(first_hr); 742 743 return new_obj; 744 } 745 746 // If could fit into free regions w/o expansion, try. 747 // Otherwise, if can expand, do so. 748 // Otherwise, if using ex regions might help, try with ex given back. 749 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) { 750 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 751 752 verify_region_sets_optional(); 753 754 uint first = G1_NO_HRM_INDEX; 755 uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords); 756 757 if (obj_regions == 1) { 758 // Only one region to allocate, try to use a fast path by directly allocating 759 // from the free lists. Do not try to expand here, we will potentially do that 760 // later. 761 HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */); 762 if (hr != NULL) { 763 first = hr->hrm_index(); 764 } 765 } else { 766 // We can't allocate humongous regions spanning more than one region while 767 // cleanupComplete() is running, since some of the regions we find to be 768 // empty might not yet be added to the free list. It is not straightforward 769 // to know in which list they are on so that we can remove them. We only 770 // need to do this if we need to allocate more than one region to satisfy the 771 // current humongous allocation request. If we are only allocating one region 772 // we use the one-region region allocation code (see above), that already 773 // potentially waits for regions from the secondary free list. 774 wait_while_free_regions_coming(); 775 append_secondary_free_list_if_not_empty_with_lock(); 776 777 // Policy: Try only empty regions (i.e. already committed first). Maybe we 778 // are lucky enough to find some. 779 first = _hrm.find_contiguous_only_empty(obj_regions); 780 if (first != G1_NO_HRM_INDEX) { 781 _hrm.allocate_free_regions_starting_at(first, obj_regions); 782 } 783 } 784 785 if (first == G1_NO_HRM_INDEX) { 786 // Policy: We could not find enough regions for the humongous object in the 787 // free list. Look through the heap to find a mix of free and uncommitted regions. 788 // If so, try expansion. 789 first = _hrm.find_contiguous_empty_or_unavailable(obj_regions); 790 if (first != G1_NO_HRM_INDEX) { 791 // We found something. Make sure these regions are committed, i.e. expand 792 // the heap. Alternatively we could do a defragmentation GC. 793 ergo_verbose1(ErgoHeapSizing, 794 "attempt heap expansion", 795 ergo_format_reason("humongous allocation request failed") 796 ergo_format_byte("allocation request"), 797 word_size * HeapWordSize); 798 799 _hrm.expand_at(first, obj_regions); 800 g1_policy()->record_new_heap_size(num_regions()); 801 802 #ifdef ASSERT 803 for (uint i = first; i < first + obj_regions; ++i) { 804 HeapRegion* hr = region_at(i); 805 assert(hr->is_empty(), "sanity"); 806 assert(is_on_master_free_list(hr), "sanity"); 807 } 808 #endif 809 _hrm.allocate_free_regions_starting_at(first, obj_regions); 810 } else { 811 // Policy: Potentially trigger a defragmentation GC. 812 } 813 } 814 815 HeapWord* result = NULL; 816 if (first != G1_NO_HRM_INDEX) { 817 result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size); 818 assert(result != NULL, "it should always return a valid result"); 819 820 // A successful humongous object allocation changes the used space 821 // information of the old generation so we need to recalculate the 822 // sizes and update the jstat counters here. 823 g1mm()->update_sizes(); 824 } 825 826 verify_region_sets_optional(); 827 828 return result; 829 } 830 831 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) { 832 assert_heap_not_locked_and_not_at_safepoint(); 833 assert(!isHumongous(word_size), "we do not allow humongous TLABs"); 834 835 unsigned int dummy_gc_count_before; 836 int dummy_gclocker_retry_count = 0; 837 return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count); 838 } 839 840 HeapWord* 841 G1CollectedHeap::mem_allocate(size_t word_size, 842 bool* gc_overhead_limit_was_exceeded) { 843 assert_heap_not_locked_and_not_at_safepoint(); 844 845 // Loop until the allocation is satisfied, or unsatisfied after GC. 846 for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) { 847 unsigned int gc_count_before; 848 849 HeapWord* result = NULL; 850 if (!isHumongous(word_size)) { 851 result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count); 852 } else { 853 result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count); 854 } 855 if (result != NULL) { 856 return result; 857 } 858 859 // Create the garbage collection operation... 860 VM_G1CollectForAllocation op(gc_count_before, word_size); 861 // ...and get the VM thread to execute it. 862 VMThread::execute(&op); 863 864 if (op.prologue_succeeded() && op.pause_succeeded()) { 865 // If the operation was successful we'll return the result even 866 // if it is NULL. If the allocation attempt failed immediately 867 // after a Full GC, it's unlikely we'll be able to allocate now. 868 HeapWord* result = op.result(); 869 if (result != NULL && !isHumongous(word_size)) { 870 // Allocations that take place on VM operations do not do any 871 // card dirtying and we have to do it here. We only have to do 872 // this for non-humongous allocations, though. 873 dirty_young_block(result, word_size); 874 } 875 return result; 876 } else { 877 if (gclocker_retry_count > GCLockerRetryAllocationCount) { 878 return NULL; 879 } 880 assert(op.result() == NULL, 881 "the result should be NULL if the VM op did not succeed"); 882 } 883 884 // Give a warning if we seem to be looping forever. 885 if ((QueuedAllocationWarningCount > 0) && 886 (try_count % QueuedAllocationWarningCount == 0)) { 887 warning("G1CollectedHeap::mem_allocate retries %d times", try_count); 888 } 889 } 890 891 ShouldNotReachHere(); 892 return NULL; 893 } 894 895 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size, 896 unsigned int *gc_count_before_ret, 897 int* gclocker_retry_count_ret) { 898 // Make sure you read the note in attempt_allocation_humongous(). 899 900 assert_heap_not_locked_and_not_at_safepoint(); 901 assert(!isHumongous(word_size), "attempt_allocation_slow() should not " 902 "be called for humongous allocation requests"); 903 904 // We should only get here after the first-level allocation attempt 905 // (attempt_allocation()) failed to allocate. 906 907 // We will loop until a) we manage to successfully perform the 908 // allocation or b) we successfully schedule a collection which 909 // fails to perform the allocation. b) is the only case when we'll 910 // return NULL. 911 HeapWord* result = NULL; 912 for (int try_count = 1; /* we'll return */; try_count += 1) { 913 bool should_try_gc; 914 unsigned int gc_count_before; 915 916 { 917 MutexLockerEx x(Heap_lock); 918 919 result = _mutator_alloc_region.attempt_allocation_locked(word_size, 920 false /* bot_updates */); 921 if (result != NULL) { 922 return result; 923 } 924 925 // If we reach here, attempt_allocation_locked() above failed to 926 // allocate a new region. So the mutator alloc region should be NULL. 927 assert(_mutator_alloc_region.get() == NULL, "only way to get here"); 928 929 if (GC_locker::is_active_and_needs_gc()) { 930 if (g1_policy()->can_expand_young_list()) { 931 // No need for an ergo verbose message here, 932 // can_expand_young_list() does this when it returns true. 933 result = _mutator_alloc_region.attempt_allocation_force(word_size, 934 false /* bot_updates */); 935 if (result != NULL) { 936 return result; 937 } 938 } 939 should_try_gc = false; 940 } else { 941 // The GCLocker may not be active but the GCLocker initiated 942 // GC may not yet have been performed (GCLocker::needs_gc() 943 // returns true). In this case we do not try this GC and 944 // wait until the GCLocker initiated GC is performed, and 945 // then retry the allocation. 946 if (GC_locker::needs_gc()) { 947 should_try_gc = false; 948 } else { 949 // Read the GC count while still holding the Heap_lock. 950 gc_count_before = total_collections(); 951 should_try_gc = true; 952 } 953 } 954 } 955 956 if (should_try_gc) { 957 bool succeeded; 958 result = do_collection_pause(word_size, gc_count_before, &succeeded, 959 GCCause::_g1_inc_collection_pause); 960 if (result != NULL) { 961 assert(succeeded, "only way to get back a non-NULL result"); 962 return result; 963 } 964 965 if (succeeded) { 966 // If we get here we successfully scheduled a collection which 967 // failed to allocate. No point in trying to allocate 968 // further. We'll just return NULL. 969 MutexLockerEx x(Heap_lock); 970 *gc_count_before_ret = total_collections(); 971 return NULL; 972 } 973 } else { 974 if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) { 975 MutexLockerEx x(Heap_lock); 976 *gc_count_before_ret = total_collections(); 977 return NULL; 978 } 979 // The GCLocker is either active or the GCLocker initiated 980 // GC has not yet been performed. Stall until it is and 981 // then retry the allocation. 982 GC_locker::stall_until_clear(); 983 (*gclocker_retry_count_ret) += 1; 984 } 985 986 // We can reach here if we were unsuccessful in scheduling a 987 // collection (because another thread beat us to it) or if we were 988 // stalled due to the GC locker. In either can we should retry the 989 // allocation attempt in case another thread successfully 990 // performed a collection and reclaimed enough space. We do the 991 // first attempt (without holding the Heap_lock) here and the 992 // follow-on attempt will be at the start of the next loop 993 // iteration (after taking the Heap_lock). 994 result = _mutator_alloc_region.attempt_allocation(word_size, 995 false /* bot_updates */); 996 if (result != NULL) { 997 return result; 998 } 999 1000 // Give a warning if we seem to be looping forever. 1001 if ((QueuedAllocationWarningCount > 0) && 1002 (try_count % QueuedAllocationWarningCount == 0)) { 1003 warning("G1CollectedHeap::attempt_allocation_slow() " 1004 "retries %d times", try_count); 1005 } 1006 } 1007 1008 ShouldNotReachHere(); 1009 return NULL; 1010 } 1011 1012 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size, 1013 unsigned int * gc_count_before_ret, 1014 int* gclocker_retry_count_ret) { 1015 // The structure of this method has a lot of similarities to 1016 // attempt_allocation_slow(). The reason these two were not merged 1017 // into a single one is that such a method would require several "if 1018 // allocation is not humongous do this, otherwise do that" 1019 // conditional paths which would obscure its flow. In fact, an early 1020 // version of this code did use a unified method which was harder to 1021 // follow and, as a result, it had subtle bugs that were hard to 1022 // track down. So keeping these two methods separate allows each to 1023 // be more readable. It will be good to keep these two in sync as 1024 // much as possible. 1025 1026 assert_heap_not_locked_and_not_at_safepoint(); 1027 assert(isHumongous(word_size), "attempt_allocation_humongous() " 1028 "should only be called for humongous allocations"); 1029 1030 // Humongous objects can exhaust the heap quickly, so we should check if we 1031 // need to start a marking cycle at each humongous object allocation. We do 1032 // the check before we do the actual allocation. The reason for doing it 1033 // before the allocation is that we avoid having to keep track of the newly 1034 // allocated memory while we do a GC. 1035 if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation", 1036 word_size)) { 1037 collect(GCCause::_g1_humongous_allocation); 1038 } 1039 1040 // We will loop until a) we manage to successfully perform the 1041 // allocation or b) we successfully schedule a collection which 1042 // fails to perform the allocation. b) is the only case when we'll 1043 // return NULL. 1044 HeapWord* result = NULL; 1045 for (int try_count = 1; /* we'll return */; try_count += 1) { 1046 bool should_try_gc; 1047 unsigned int gc_count_before; 1048 1049 { 1050 MutexLockerEx x(Heap_lock); 1051 1052 // Given that humongous objects are not allocated in young 1053 // regions, we'll first try to do the allocation without doing a 1054 // collection hoping that there's enough space in the heap. 1055 result = humongous_obj_allocate(word_size); 1056 if (result != NULL) { 1057 return result; 1058 } 1059 1060 if (GC_locker::is_active_and_needs_gc()) { 1061 should_try_gc = false; 1062 } else { 1063 // The GCLocker may not be active but the GCLocker initiated 1064 // GC may not yet have been performed (GCLocker::needs_gc() 1065 // returns true). In this case we do not try this GC and 1066 // wait until the GCLocker initiated GC is performed, and 1067 // then retry the allocation. 1068 if (GC_locker::needs_gc()) { 1069 should_try_gc = false; 1070 } else { 1071 // Read the GC count while still holding the Heap_lock. 1072 gc_count_before = total_collections(); 1073 should_try_gc = true; 1074 } 1075 } 1076 } 1077 1078 if (should_try_gc) { 1079 // If we failed to allocate the humongous object, we should try to 1080 // do a collection pause (if we're allowed) in case it reclaims 1081 // enough space for the allocation to succeed after the pause. 1082 1083 bool succeeded; 1084 result = do_collection_pause(word_size, gc_count_before, &succeeded, 1085 GCCause::_g1_humongous_allocation); 1086 if (result != NULL) { 1087 assert(succeeded, "only way to get back a non-NULL result"); 1088 return result; 1089 } 1090 1091 if (succeeded) { 1092 // If we get here we successfully scheduled a collection which 1093 // failed to allocate. No point in trying to allocate 1094 // further. We'll just return NULL. 1095 MutexLockerEx x(Heap_lock); 1096 *gc_count_before_ret = total_collections(); 1097 return NULL; 1098 } 1099 } else { 1100 if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) { 1101 MutexLockerEx x(Heap_lock); 1102 *gc_count_before_ret = total_collections(); 1103 return NULL; 1104 } 1105 // The GCLocker is either active or the GCLocker initiated 1106 // GC has not yet been performed. Stall until it is and 1107 // then retry the allocation. 1108 GC_locker::stall_until_clear(); 1109 (*gclocker_retry_count_ret) += 1; 1110 } 1111 1112 // We can reach here if we were unsuccessful in scheduling a 1113 // collection (because another thread beat us to it) or if we were 1114 // stalled due to the GC locker. In either can we should retry the 1115 // allocation attempt in case another thread successfully 1116 // performed a collection and reclaimed enough space. Give a 1117 // warning if we seem to be looping forever. 1118 1119 if ((QueuedAllocationWarningCount > 0) && 1120 (try_count % QueuedAllocationWarningCount == 0)) { 1121 warning("G1CollectedHeap::attempt_allocation_humongous() " 1122 "retries %d times", try_count); 1123 } 1124 } 1125 1126 ShouldNotReachHere(); 1127 return NULL; 1128 } 1129 1130 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size, 1131 bool expect_null_mutator_alloc_region) { 1132 assert_at_safepoint(true /* should_be_vm_thread */); 1133 assert(_mutator_alloc_region.get() == NULL || 1134 !expect_null_mutator_alloc_region, 1135 "the current alloc region was unexpectedly found to be non-NULL"); 1136 1137 if (!isHumongous(word_size)) { 1138 return _mutator_alloc_region.attempt_allocation_locked(word_size, 1139 false /* bot_updates */); 1140 } else { 1141 HeapWord* result = humongous_obj_allocate(word_size); 1142 if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) { 1143 g1_policy()->set_initiate_conc_mark_if_possible(); 1144 } 1145 return result; 1146 } 1147 1148 ShouldNotReachHere(); 1149 } 1150 1151 class PostMCRemSetClearClosure: public HeapRegionClosure { 1152 G1CollectedHeap* _g1h; 1153 ModRefBarrierSet* _mr_bs; 1154 public: 1155 PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) : 1156 _g1h(g1h), _mr_bs(mr_bs) {} 1157 1158 bool doHeapRegion(HeapRegion* r) { 1159 HeapRegionRemSet* hrrs = r->rem_set(); 1160 1161 if (r->continuesHumongous()) { 1162 // We'll assert that the strong code root list and RSet is empty 1163 assert(hrrs->strong_code_roots_list_length() == 0, "sanity"); 1164 assert(hrrs->occupied() == 0, "RSet should be empty"); 1165 return false; 1166 } 1167 1168 _g1h->reset_gc_time_stamps(r); 1169 hrrs->clear(); 1170 // You might think here that we could clear just the cards 1171 // corresponding to the used region. But no: if we leave a dirty card 1172 // in a region we might allocate into, then it would prevent that card 1173 // from being enqueued, and cause it to be missed. 1174 // Re: the performance cost: we shouldn't be doing full GC anyway! 1175 _mr_bs->clear(MemRegion(r->bottom(), r->end())); 1176 1177 return false; 1178 } 1179 }; 1180 1181 void G1CollectedHeap::clear_rsets_post_compaction() { 1182 PostMCRemSetClearClosure rs_clear(this, g1_barrier_set()); 1183 heap_region_iterate(&rs_clear); 1184 } 1185 1186 class RebuildRSOutOfRegionClosure: public HeapRegionClosure { 1187 G1CollectedHeap* _g1h; 1188 UpdateRSOopClosure _cl; 1189 int _worker_i; 1190 public: 1191 RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) : 1192 _cl(g1->g1_rem_set(), worker_i), 1193 _worker_i(worker_i), 1194 _g1h(g1) 1195 { } 1196 1197 bool doHeapRegion(HeapRegion* r) { 1198 if (!r->continuesHumongous()) { 1199 _cl.set_from(r); 1200 r->oop_iterate(&_cl); 1201 } 1202 return false; 1203 } 1204 }; 1205 1206 class ParRebuildRSTask: public AbstractGangTask { 1207 G1CollectedHeap* _g1; 1208 HeapRegionClaimer _hrclaimer; 1209 1210 public: 1211 ParRebuildRSTask(G1CollectedHeap* g1) : 1212 AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {} 1213 1214 void work(uint worker_id) { 1215 RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id); 1216 _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer); 1217 } 1218 }; 1219 1220 class PostCompactionPrinterClosure: public HeapRegionClosure { 1221 private: 1222 G1HRPrinter* _hr_printer; 1223 public: 1224 bool doHeapRegion(HeapRegion* hr) { 1225 assert(!hr->is_young(), "not expecting to find young regions"); 1226 // We only generate output for non-empty regions. 1227 if (!hr->is_empty()) { 1228 if (!hr->isHumongous()) { 1229 _hr_printer->post_compaction(hr, G1HRPrinter::Old); 1230 } else if (hr->startsHumongous()) { 1231 if (hr->region_num() == 1) { 1232 // single humongous region 1233 _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous); 1234 } else { 1235 _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous); 1236 } 1237 } else { 1238 assert(hr->continuesHumongous(), "only way to get here"); 1239 _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous); 1240 } 1241 } 1242 return false; 1243 } 1244 1245 PostCompactionPrinterClosure(G1HRPrinter* hr_printer) 1246 : _hr_printer(hr_printer) { } 1247 }; 1248 1249 void G1CollectedHeap::print_hrm_post_compaction() { 1250 PostCompactionPrinterClosure cl(hr_printer()); 1251 heap_region_iterate(&cl); 1252 } 1253 1254 bool G1CollectedHeap::do_collection(bool explicit_gc, 1255 bool clear_all_soft_refs, 1256 size_t word_size) { 1257 assert_at_safepoint(true /* should_be_vm_thread */); 1258 1259 if (GC_locker::check_active_before_gc()) { 1260 return false; 1261 } 1262 1263 STWGCTimer* gc_timer = G1MarkSweep::gc_timer(); 1264 gc_timer->register_gc_start(); 1265 1266 SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer(); 1267 gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start()); 1268 1269 SvcGCMarker sgcm(SvcGCMarker::FULL); 1270 ResourceMark rm; 1271 1272 print_heap_before_gc(); 1273 trace_heap_before_gc(gc_tracer); 1274 1275 size_t metadata_prev_used = MetaspaceAux::used_bytes(); 1276 1277 verify_region_sets_optional(); 1278 1279 const bool do_clear_all_soft_refs = clear_all_soft_refs || 1280 collector_policy()->should_clear_all_soft_refs(); 1281 1282 ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy()); 1283 1284 { 1285 IsGCActiveMark x; 1286 1287 // Timing 1288 assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant"); 1289 gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps); 1290 TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty); 1291 1292 { 1293 GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id()); 1294 TraceCollectorStats tcs(g1mm()->full_collection_counters()); 1295 TraceMemoryManagerStats tms(true /* fullGC */, gc_cause()); 1296 1297 double start = os::elapsedTime(); 1298 g1_policy()->record_full_collection_start(); 1299 1300 // Note: When we have a more flexible GC logging framework that 1301 // allows us to add optional attributes to a GC log record we 1302 // could consider timing and reporting how long we wait in the 1303 // following two methods. 1304 wait_while_free_regions_coming(); 1305 // If we start the compaction before the CM threads finish 1306 // scanning the root regions we might trip them over as we'll 1307 // be moving objects / updating references. So let's wait until 1308 // they are done. By telling them to abort, they should complete 1309 // early. 1310 _cm->root_regions()->abort(); 1311 _cm->root_regions()->wait_until_scan_finished(); 1312 append_secondary_free_list_if_not_empty_with_lock(); 1313 1314 gc_prologue(true); 1315 increment_total_collections(true /* full gc */); 1316 increment_old_marking_cycles_started(); 1317 1318 assert(used() == recalculate_used(), "Should be equal"); 1319 1320 verify_before_gc(); 1321 1322 check_bitmaps("Full GC Start"); 1323 pre_full_gc_dump(gc_timer); 1324 1325 COMPILER2_PRESENT(DerivedPointerTable::clear()); 1326 1327 // Disable discovery and empty the discovered lists 1328 // for the CM ref processor. 1329 ref_processor_cm()->disable_discovery(); 1330 ref_processor_cm()->abandon_partial_discovery(); 1331 ref_processor_cm()->verify_no_references_recorded(); 1332 1333 // Abandon current iterations of concurrent marking and concurrent 1334 // refinement, if any are in progress. We have to do this before 1335 // wait_until_scan_finished() below. 1336 concurrent_mark()->abort(); 1337 1338 // Make sure we'll choose a new allocation region afterwards. 1339 release_mutator_alloc_region(); 1340 abandon_gc_alloc_regions(); 1341 g1_rem_set()->cleanupHRRS(); 1342 1343 // We should call this after we retire any currently active alloc 1344 // regions so that all the ALLOC / RETIRE events are generated 1345 // before the start GC event. 1346 _hr_printer.start_gc(true /* full */, (size_t) total_collections()); 1347 1348 // We may have added regions to the current incremental collection 1349 // set between the last GC or pause and now. We need to clear the 1350 // incremental collection set and then start rebuilding it afresh 1351 // after this full GC. 1352 abandon_collection_set(g1_policy()->inc_cset_head()); 1353 g1_policy()->clear_incremental_cset(); 1354 g1_policy()->stop_incremental_cset_building(); 1355 1356 tear_down_region_sets(false /* free_list_only */); 1357 g1_policy()->set_gcs_are_young(true); 1358 1359 // See the comments in g1CollectedHeap.hpp and 1360 // G1CollectedHeap::ref_processing_init() about 1361 // how reference processing currently works in G1. 1362 1363 // Temporarily make discovery by the STW ref processor single threaded (non-MT). 1364 ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false); 1365 1366 // Temporarily clear the STW ref processor's _is_alive_non_header field. 1367 ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL); 1368 1369 ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/); 1370 ref_processor_stw()->setup_policy(do_clear_all_soft_refs); 1371 1372 // Do collection work 1373 { 1374 HandleMark hm; // Discard invalid handles created during gc 1375 G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs); 1376 } 1377 1378 assert(num_free_regions() == 0, "we should not have added any free regions"); 1379 rebuild_region_sets(false /* free_list_only */); 1380 1381 // Enqueue any discovered reference objects that have 1382 // not been removed from the discovered lists. 1383 ref_processor_stw()->enqueue_discovered_references(); 1384 1385 COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); 1386 1387 MemoryService::track_memory_usage(); 1388 1389 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 1390 ref_processor_stw()->verify_no_references_recorded(); 1391 1392 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 1393 ClassLoaderDataGraph::purge(); 1394 MetaspaceAux::verify_metrics(); 1395 1396 // Note: since we've just done a full GC, concurrent 1397 // marking is no longer active. Therefore we need not 1398 // re-enable reference discovery for the CM ref processor. 1399 // That will be done at the start of the next marking cycle. 1400 assert(!ref_processor_cm()->discovery_enabled(), "Postcondition"); 1401 ref_processor_cm()->verify_no_references_recorded(); 1402 1403 reset_gc_time_stamp(); 1404 // Since everything potentially moved, we will clear all remembered 1405 // sets, and clear all cards. Later we will rebuild remembered 1406 // sets. We will also reset the GC time stamps of the regions. 1407 clear_rsets_post_compaction(); 1408 check_gc_time_stamps(); 1409 1410 // Resize the heap if necessary. 1411 resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size); 1412 1413 if (_hr_printer.is_active()) { 1414 // We should do this after we potentially resize the heap so 1415 // that all the COMMIT / UNCOMMIT events are generated before 1416 // the end GC event. 1417 1418 print_hrm_post_compaction(); 1419 _hr_printer.end_gc(true /* full */, (size_t) total_collections()); 1420 } 1421 1422 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 1423 if (hot_card_cache->use_cache()) { 1424 hot_card_cache->reset_card_counts(); 1425 hot_card_cache->reset_hot_cache(); 1426 } 1427 1428 // Rebuild remembered sets of all regions. 1429 if (G1CollectedHeap::use_parallel_gc_threads()) { 1430 uint n_workers = 1431 AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(), 1432 workers()->active_workers(), 1433 Threads::number_of_non_daemon_threads()); 1434 assert(UseDynamicNumberOfGCThreads || 1435 n_workers == workers()->total_workers(), 1436 "If not dynamic should be using all the workers"); 1437 workers()->set_active_workers(n_workers); 1438 // Set parallel threads in the heap (_n_par_threads) only 1439 // before a parallel phase and always reset it to 0 after 1440 // the phase so that the number of parallel threads does 1441 // no get carried forward to a serial phase where there 1442 // may be code that is "possibly_parallel". 1443 set_par_threads(n_workers); 1444 1445 ParRebuildRSTask rebuild_rs_task(this); 1446 assert(UseDynamicNumberOfGCThreads || 1447 workers()->active_workers() == workers()->total_workers(), 1448 "Unless dynamic should use total workers"); 1449 // Use the most recent number of active workers 1450 assert(workers()->active_workers() > 0, 1451 "Active workers not properly set"); 1452 set_par_threads(workers()->active_workers()); 1453 workers()->run_task(&rebuild_rs_task); 1454 set_par_threads(0); 1455 } else { 1456 RebuildRSOutOfRegionClosure rebuild_rs(this); 1457 heap_region_iterate(&rebuild_rs); 1458 } 1459 1460 // Rebuild the strong code root lists for each region 1461 rebuild_strong_code_roots(); 1462 1463 if (true) { // FIXME 1464 MetaspaceGC::compute_new_size(); 1465 } 1466 1467 #ifdef TRACESPINNING 1468 ParallelTaskTerminator::print_termination_counts(); 1469 #endif 1470 1471 // Discard all rset updates 1472 JavaThread::dirty_card_queue_set().abandon_logs(); 1473 assert(!G1DeferredRSUpdate 1474 || (G1DeferredRSUpdate && 1475 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any"); 1476 1477 _young_list->reset_sampled_info(); 1478 // At this point there should be no regions in the 1479 // entire heap tagged as young. 1480 assert(check_young_list_empty(true /* check_heap */), 1481 "young list should be empty at this point"); 1482 1483 // Update the number of full collections that have been completed. 1484 increment_old_marking_cycles_completed(false /* concurrent */); 1485 1486 _hrm.verify_optional(); 1487 verify_region_sets_optional(); 1488 1489 verify_after_gc(); 1490 1491 // Clear the previous marking bitmap, if needed for bitmap verification. 1492 // Note we cannot do this when we clear the next marking bitmap in 1493 // ConcurrentMark::abort() above since VerifyDuringGC verifies the 1494 // objects marked during a full GC against the previous bitmap. 1495 // But we need to clear it before calling check_bitmaps below since 1496 // the full GC has compacted objects and updated TAMS but not updated 1497 // the prev bitmap. 1498 if (G1VerifyBitmaps) { 1499 ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll(); 1500 } 1501 check_bitmaps("Full GC End"); 1502 1503 // Start a new incremental collection set for the next pause 1504 assert(g1_policy()->collection_set() == NULL, "must be"); 1505 g1_policy()->start_incremental_cset_building(); 1506 1507 clear_cset_fast_test(); 1508 1509 init_mutator_alloc_region(); 1510 1511 double end = os::elapsedTime(); 1512 g1_policy()->record_full_collection_end(); 1513 1514 if (G1Log::fine()) { 1515 g1_policy()->print_heap_transition(); 1516 } 1517 1518 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 1519 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 1520 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 1521 // before any GC notifications are raised. 1522 g1mm()->update_sizes(); 1523 1524 gc_epilogue(true); 1525 } 1526 1527 if (G1Log::finer()) { 1528 g1_policy()->print_detailed_heap_transition(true /* full */); 1529 } 1530 1531 print_heap_after_gc(); 1532 trace_heap_after_gc(gc_tracer); 1533 1534 post_full_gc_dump(gc_timer); 1535 1536 gc_timer->register_gc_end(); 1537 gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions()); 1538 } 1539 1540 return true; 1541 } 1542 1543 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) { 1544 // do_collection() will return whether it succeeded in performing 1545 // the GC. Currently, there is no facility on the 1546 // do_full_collection() API to notify the caller than the collection 1547 // did not succeed (e.g., because it was locked out by the GC 1548 // locker). So, right now, we'll ignore the return value. 1549 bool dummy = do_collection(true, /* explicit_gc */ 1550 clear_all_soft_refs, 1551 0 /* word_size */); 1552 } 1553 1554 // This code is mostly copied from TenuredGeneration. 1555 void 1556 G1CollectedHeap:: 1557 resize_if_necessary_after_full_collection(size_t word_size) { 1558 // Include the current allocation, if any, and bytes that will be 1559 // pre-allocated to support collections, as "used". 1560 const size_t used_after_gc = used(); 1561 const size_t capacity_after_gc = capacity(); 1562 const size_t free_after_gc = capacity_after_gc - used_after_gc; 1563 1564 // This is enforced in arguments.cpp. 1565 assert(MinHeapFreeRatio <= MaxHeapFreeRatio, 1566 "otherwise the code below doesn't make sense"); 1567 1568 // We don't have floating point command-line arguments 1569 const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0; 1570 const double maximum_used_percentage = 1.0 - minimum_free_percentage; 1571 const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0; 1572 const double minimum_used_percentage = 1.0 - maximum_free_percentage; 1573 1574 const size_t min_heap_size = collector_policy()->min_heap_byte_size(); 1575 const size_t max_heap_size = collector_policy()->max_heap_byte_size(); 1576 1577 // We have to be careful here as these two calculations can overflow 1578 // 32-bit size_t's. 1579 double used_after_gc_d = (double) used_after_gc; 1580 double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage; 1581 double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage; 1582 1583 // Let's make sure that they are both under the max heap size, which 1584 // by default will make them fit into a size_t. 1585 double desired_capacity_upper_bound = (double) max_heap_size; 1586 minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d, 1587 desired_capacity_upper_bound); 1588 maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d, 1589 desired_capacity_upper_bound); 1590 1591 // We can now safely turn them into size_t's. 1592 size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d; 1593 size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d; 1594 1595 // This assert only makes sense here, before we adjust them 1596 // with respect to the min and max heap size. 1597 assert(minimum_desired_capacity <= maximum_desired_capacity, 1598 err_msg("minimum_desired_capacity = "SIZE_FORMAT", " 1599 "maximum_desired_capacity = "SIZE_FORMAT, 1600 minimum_desired_capacity, maximum_desired_capacity)); 1601 1602 // Should not be greater than the heap max size. No need to adjust 1603 // it with respect to the heap min size as it's a lower bound (i.e., 1604 // we'll try to make the capacity larger than it, not smaller). 1605 minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size); 1606 // Should not be less than the heap min size. No need to adjust it 1607 // with respect to the heap max size as it's an upper bound (i.e., 1608 // we'll try to make the capacity smaller than it, not greater). 1609 maximum_desired_capacity = MAX2(maximum_desired_capacity, min_heap_size); 1610 1611 if (capacity_after_gc < minimum_desired_capacity) { 1612 // Don't expand unless it's significant 1613 size_t expand_bytes = minimum_desired_capacity - capacity_after_gc; 1614 ergo_verbose4(ErgoHeapSizing, 1615 "attempt heap expansion", 1616 ergo_format_reason("capacity lower than " 1617 "min desired capacity after Full GC") 1618 ergo_format_byte("capacity") 1619 ergo_format_byte("occupancy") 1620 ergo_format_byte_perc("min desired capacity"), 1621 capacity_after_gc, used_after_gc, 1622 minimum_desired_capacity, (double) MinHeapFreeRatio); 1623 expand(expand_bytes); 1624 1625 // No expansion, now see if we want to shrink 1626 } else if (capacity_after_gc > maximum_desired_capacity) { 1627 // Capacity too large, compute shrinking size 1628 size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity; 1629 ergo_verbose4(ErgoHeapSizing, 1630 "attempt heap shrinking", 1631 ergo_format_reason("capacity higher than " 1632 "max desired capacity after Full GC") 1633 ergo_format_byte("capacity") 1634 ergo_format_byte("occupancy") 1635 ergo_format_byte_perc("max desired capacity"), 1636 capacity_after_gc, used_after_gc, 1637 maximum_desired_capacity, (double) MaxHeapFreeRatio); 1638 shrink(shrink_bytes); 1639 } 1640 } 1641 1642 1643 HeapWord* 1644 G1CollectedHeap::satisfy_failed_allocation(size_t word_size, 1645 bool* succeeded) { 1646 assert_at_safepoint(true /* should_be_vm_thread */); 1647 1648 *succeeded = true; 1649 // Let's attempt the allocation first. 1650 HeapWord* result = 1651 attempt_allocation_at_safepoint(word_size, 1652 false /* expect_null_mutator_alloc_region */); 1653 if (result != NULL) { 1654 assert(*succeeded, "sanity"); 1655 return result; 1656 } 1657 1658 // In a G1 heap, we're supposed to keep allocation from failing by 1659 // incremental pauses. Therefore, at least for now, we'll favor 1660 // expansion over collection. (This might change in the future if we can 1661 // do something smarter than full collection to satisfy a failed alloc.) 1662 result = expand_and_allocate(word_size); 1663 if (result != NULL) { 1664 assert(*succeeded, "sanity"); 1665 return result; 1666 } 1667 1668 // Expansion didn't work, we'll try to do a Full GC. 1669 bool gc_succeeded = do_collection(false, /* explicit_gc */ 1670 false, /* clear_all_soft_refs */ 1671 word_size); 1672 if (!gc_succeeded) { 1673 *succeeded = false; 1674 return NULL; 1675 } 1676 1677 // Retry the allocation 1678 result = attempt_allocation_at_safepoint(word_size, 1679 true /* expect_null_mutator_alloc_region */); 1680 if (result != NULL) { 1681 assert(*succeeded, "sanity"); 1682 return result; 1683 } 1684 1685 // Then, try a Full GC that will collect all soft references. 1686 gc_succeeded = do_collection(false, /* explicit_gc */ 1687 true, /* clear_all_soft_refs */ 1688 word_size); 1689 if (!gc_succeeded) { 1690 *succeeded = false; 1691 return NULL; 1692 } 1693 1694 // Retry the allocation once more 1695 result = attempt_allocation_at_safepoint(word_size, 1696 true /* expect_null_mutator_alloc_region */); 1697 if (result != NULL) { 1698 assert(*succeeded, "sanity"); 1699 return result; 1700 } 1701 1702 assert(!collector_policy()->should_clear_all_soft_refs(), 1703 "Flag should have been handled and cleared prior to this point"); 1704 1705 // What else? We might try synchronous finalization later. If the total 1706 // space available is large enough for the allocation, then a more 1707 // complete compaction phase than we've tried so far might be 1708 // appropriate. 1709 assert(*succeeded, "sanity"); 1710 return NULL; 1711 } 1712 1713 // Attempting to expand the heap sufficiently 1714 // to support an allocation of the given "word_size". If 1715 // successful, perform the allocation and return the address of the 1716 // allocated block, or else "NULL". 1717 1718 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) { 1719 assert_at_safepoint(true /* should_be_vm_thread */); 1720 1721 verify_region_sets_optional(); 1722 1723 size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes); 1724 ergo_verbose1(ErgoHeapSizing, 1725 "attempt heap expansion", 1726 ergo_format_reason("allocation request failed") 1727 ergo_format_byte("allocation request"), 1728 word_size * HeapWordSize); 1729 if (expand(expand_bytes)) { 1730 _hrm.verify_optional(); 1731 verify_region_sets_optional(); 1732 return attempt_allocation_at_safepoint(word_size, 1733 false /* expect_null_mutator_alloc_region */); 1734 } 1735 return NULL; 1736 } 1737 1738 bool G1CollectedHeap::expand(size_t expand_bytes) { 1739 size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes); 1740 aligned_expand_bytes = align_size_up(aligned_expand_bytes, 1741 HeapRegion::GrainBytes); 1742 ergo_verbose2(ErgoHeapSizing, 1743 "expand the heap", 1744 ergo_format_byte("requested expansion amount") 1745 ergo_format_byte("attempted expansion amount"), 1746 expand_bytes, aligned_expand_bytes); 1747 1748 if (is_maximal_no_gc()) { 1749 ergo_verbose0(ErgoHeapSizing, 1750 "did not expand the heap", 1751 ergo_format_reason("heap already fully expanded")); 1752 return false; 1753 } 1754 1755 uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes); 1756 assert(regions_to_expand > 0, "Must expand by at least one region"); 1757 1758 uint expanded_by = _hrm.expand_by(regions_to_expand); 1759 1760 if (expanded_by > 0) { 1761 size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes; 1762 assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition"); 1763 g1_policy()->record_new_heap_size(num_regions()); 1764 } else { 1765 ergo_verbose0(ErgoHeapSizing, 1766 "did not expand the heap", 1767 ergo_format_reason("heap expansion operation failed")); 1768 // The expansion of the virtual storage space was unsuccessful. 1769 // Let's see if it was because we ran out of swap. 1770 if (G1ExitOnExpansionFailure && 1771 _hrm.available() >= regions_to_expand) { 1772 // We had head room... 1773 vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion"); 1774 } 1775 } 1776 return regions_to_expand > 0; 1777 } 1778 1779 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) { 1780 size_t aligned_shrink_bytes = 1781 ReservedSpace::page_align_size_down(shrink_bytes); 1782 aligned_shrink_bytes = align_size_down(aligned_shrink_bytes, 1783 HeapRegion::GrainBytes); 1784 uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes); 1785 1786 uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove); 1787 size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes; 1788 1789 ergo_verbose3(ErgoHeapSizing, 1790 "shrink the heap", 1791 ergo_format_byte("requested shrinking amount") 1792 ergo_format_byte("aligned shrinking amount") 1793 ergo_format_byte("attempted shrinking amount"), 1794 shrink_bytes, aligned_shrink_bytes, shrunk_bytes); 1795 if (num_regions_removed > 0) { 1796 g1_policy()->record_new_heap_size(num_regions()); 1797 } else { 1798 ergo_verbose0(ErgoHeapSizing, 1799 "did not shrink the heap", 1800 ergo_format_reason("heap shrinking operation failed")); 1801 } 1802 } 1803 1804 void G1CollectedHeap::shrink(size_t shrink_bytes) { 1805 verify_region_sets_optional(); 1806 1807 // We should only reach here at the end of a Full GC which means we 1808 // should not not be holding to any GC alloc regions. The method 1809 // below will make sure of that and do any remaining clean up. 1810 abandon_gc_alloc_regions(); 1811 1812 // Instead of tearing down / rebuilding the free lists here, we 1813 // could instead use the remove_all_pending() method on free_list to 1814 // remove only the ones that we need to remove. 1815 tear_down_region_sets(true /* free_list_only */); 1816 shrink_helper(shrink_bytes); 1817 rebuild_region_sets(true /* free_list_only */); 1818 1819 _hrm.verify_optional(); 1820 verify_region_sets_optional(); 1821 } 1822 1823 // Public methods. 1824 1825 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away 1826 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 1827 #endif // _MSC_VER 1828 1829 1830 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) : 1831 SharedHeap(policy_), 1832 _g1_policy(policy_), 1833 _dirty_card_queue_set(false), 1834 _into_cset_dirty_card_queue_set(false), 1835 _is_alive_closure_cm(this), 1836 _is_alive_closure_stw(this), 1837 _ref_processor_cm(NULL), 1838 _ref_processor_stw(NULL), 1839 _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)), 1840 _bot_shared(NULL), 1841 _evac_failure_scan_stack(NULL), 1842 _mark_in_progress(false), 1843 _cg1r(NULL), _summary_bytes_used(0), 1844 _g1mm(NULL), 1845 _refine_cte_cl(NULL), 1846 _full_collection(false), 1847 _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()), 1848 _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()), 1849 _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()), 1850 _humongous_is_live(), 1851 _has_humongous_reclaim_candidates(false), 1852 _free_regions_coming(false), 1853 _young_list(new YoungList(this)), 1854 _gc_time_stamp(0), 1855 _retained_old_gc_alloc_region(NULL), 1856 _survivor_plab_stats(YoungPLABSize, PLABWeight), 1857 _old_plab_stats(OldPLABSize, PLABWeight), 1858 _expand_heap_after_alloc_failure(true), 1859 _surviving_young_words(NULL), 1860 _old_marking_cycles_started(0), 1861 _old_marking_cycles_completed(0), 1862 _concurrent_cycle_started(false), 1863 _heap_summary_sent(false), 1864 _in_cset_fast_test(), 1865 _dirty_cards_region_list(NULL), 1866 _worker_cset_start_region(NULL), 1867 _worker_cset_start_region_time_stamp(NULL), 1868 _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()), 1869 _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()), 1870 _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()), 1871 _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) { 1872 1873 _g1h = this; 1874 if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) { 1875 vm_exit_during_initialization("Failed necessary allocation."); 1876 } 1877 1878 _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2; 1879 1880 int n_queues = MAX2((int)ParallelGCThreads, 1); 1881 _task_queues = new RefToScanQueueSet(n_queues); 1882 1883 uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets(); 1884 assert(n_rem_sets > 0, "Invariant."); 1885 1886 _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC); 1887 _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC); 1888 _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC); 1889 1890 for (int i = 0; i < n_queues; i++) { 1891 RefToScanQueue* q = new RefToScanQueue(); 1892 q->initialize(); 1893 _task_queues->register_queue(i, q); 1894 ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo(); 1895 } 1896 clear_cset_start_regions(); 1897 1898 // Initialize the G1EvacuationFailureALot counters and flags. 1899 NOT_PRODUCT(reset_evacuation_should_fail();) 1900 1901 guarantee(_task_queues != NULL, "task_queues allocation failure."); 1902 } 1903 1904 jint G1CollectedHeap::initialize() { 1905 CollectedHeap::pre_initialize(); 1906 os::enable_vtime(); 1907 1908 G1Log::init(); 1909 1910 // Necessary to satisfy locking discipline assertions. 1911 1912 MutexLocker x(Heap_lock); 1913 1914 // We have to initialize the printer before committing the heap, as 1915 // it will be used then. 1916 _hr_printer.set_active(G1PrintHeapRegions); 1917 1918 // While there are no constraints in the GC code that HeapWordSize 1919 // be any particular value, there are multiple other areas in the 1920 // system which believe this to be true (e.g. oop->object_size in some 1921 // cases incorrectly returns the size in wordSize units rather than 1922 // HeapWordSize). 1923 guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize"); 1924 1925 size_t init_byte_size = collector_policy()->initial_heap_byte_size(); 1926 size_t max_byte_size = collector_policy()->max_heap_byte_size(); 1927 size_t heap_alignment = collector_policy()->heap_alignment(); 1928 1929 // Ensure that the sizes are properly aligned. 1930 Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap"); 1931 Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap"); 1932 Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap"); 1933 1934 _refine_cte_cl = new RefineCardTableEntryClosure(); 1935 1936 _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl); 1937 1938 // Reserve the maximum. 1939 1940 // When compressed oops are enabled, the preferred heap base 1941 // is calculated by subtracting the requested size from the 1942 // 32Gb boundary and using the result as the base address for 1943 // heap reservation. If the requested size is not aligned to 1944 // HeapRegion::GrainBytes (i.e. the alignment that is passed 1945 // into the ReservedHeapSpace constructor) then the actual 1946 // base of the reserved heap may end up differing from the 1947 // address that was requested (i.e. the preferred heap base). 1948 // If this happens then we could end up using a non-optimal 1949 // compressed oops mode. 1950 1951 ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size, 1952 heap_alignment); 1953 1954 // It is important to do this in a way such that concurrent readers can't 1955 // temporarily think something is in the heap. (I've actually seen this 1956 // happen in asserts: DLD.) 1957 _reserved.set_word_size(0); 1958 _reserved.set_start((HeapWord*)heap_rs.base()); 1959 _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size())); 1960 1961 // Create the gen rem set (and barrier set) for the entire reserved region. 1962 _rem_set = collector_policy()->create_rem_set(_reserved, 2); 1963 set_barrier_set(rem_set()->bs()); 1964 if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) { 1965 vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS"); 1966 return JNI_ENOMEM; 1967 } 1968 1969 // Also create a G1 rem set. 1970 _g1_rem_set = new G1RemSet(this, g1_barrier_set()); 1971 1972 // Carve out the G1 part of the heap. 1973 1974 ReservedSpace g1_rs = heap_rs.first_part(max_byte_size); 1975 G1RegionToSpaceMapper* heap_storage = 1976 G1RegionToSpaceMapper::create_mapper(g1_rs, 1977 UseLargePages ? os::large_page_size() : os::vm_page_size(), 1978 HeapRegion::GrainBytes, 1979 1, 1980 mtJavaHeap); 1981 heap_storage->set_mapping_changed_listener(&_listener); 1982 1983 // Reserve space for the block offset table. We do not support automatic uncommit 1984 // for the card table at this time. BOT only. 1985 ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize)); 1986 G1RegionToSpaceMapper* bot_storage = 1987 G1RegionToSpaceMapper::create_mapper(bot_rs, 1988 os::vm_page_size(), 1989 HeapRegion::GrainBytes, 1990 G1BlockOffsetSharedArray::N_bytes, 1991 mtGC); 1992 1993 ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize)); 1994 G1RegionToSpaceMapper* cardtable_storage = 1995 G1RegionToSpaceMapper::create_mapper(cardtable_rs, 1996 os::vm_page_size(), 1997 HeapRegion::GrainBytes, 1998 G1BlockOffsetSharedArray::N_bytes, 1999 mtGC); 2000 2001 // Reserve space for the card counts table. 2002 ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize)); 2003 G1RegionToSpaceMapper* card_counts_storage = 2004 G1RegionToSpaceMapper::create_mapper(card_counts_rs, 2005 os::vm_page_size(), 2006 HeapRegion::GrainBytes, 2007 G1BlockOffsetSharedArray::N_bytes, 2008 mtGC); 2009 2010 // Reserve space for prev and next bitmap. 2011 size_t bitmap_size = CMBitMap::compute_size(g1_rs.size()); 2012 2013 ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size)); 2014 G1RegionToSpaceMapper* prev_bitmap_storage = 2015 G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs, 2016 os::vm_page_size(), 2017 HeapRegion::GrainBytes, 2018 CMBitMap::mark_distance(), 2019 mtGC); 2020 2021 ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size)); 2022 G1RegionToSpaceMapper* next_bitmap_storage = 2023 G1RegionToSpaceMapper::create_mapper(next_bitmap_rs, 2024 os::vm_page_size(), 2025 HeapRegion::GrainBytes, 2026 CMBitMap::mark_distance(), 2027 mtGC); 2028 2029 _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage); 2030 g1_barrier_set()->initialize(cardtable_storage); 2031 // Do later initialization work for concurrent refinement. 2032 _cg1r->init(card_counts_storage); 2033 2034 // 6843694 - ensure that the maximum region index can fit 2035 // in the remembered set structures. 2036 const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1; 2037 guarantee((max_regions() - 1) <= max_region_idx, "too many regions"); 2038 2039 size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1; 2040 guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized"); 2041 guarantee(HeapRegion::CardsPerRegion < max_cards_per_region, 2042 "too many cards per region"); 2043 2044 FreeRegionList::set_unrealistically_long_length(max_regions() + 1); 2045 2046 _bot_shared = new G1BlockOffsetSharedArray(_reserved, bot_storage); 2047 2048 _g1h = this; 2049 2050 _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes); 2051 _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes); 2052 2053 // Create the ConcurrentMark data structure and thread. 2054 // (Must do this late, so that "max_regions" is defined.) 2055 _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage); 2056 if (_cm == NULL || !_cm->completed_initialization()) { 2057 vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark"); 2058 return JNI_ENOMEM; 2059 } 2060 _cmThread = _cm->cmThread(); 2061 2062 // Initialize the from_card cache structure of HeapRegionRemSet. 2063 HeapRegionRemSet::init_heap(max_regions()); 2064 2065 // Now expand into the initial heap size. 2066 if (!expand(init_byte_size)) { 2067 vm_shutdown_during_initialization("Failed to allocate initial heap."); 2068 return JNI_ENOMEM; 2069 } 2070 2071 // Perform any initialization actions delegated to the policy. 2072 g1_policy()->init(); 2073 2074 JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon, 2075 SATB_Q_FL_lock, 2076 G1SATBProcessCompletedThreshold, 2077 Shared_SATB_Q_lock); 2078 2079 JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl, 2080 DirtyCardQ_CBL_mon, 2081 DirtyCardQ_FL_lock, 2082 concurrent_g1_refine()->yellow_zone(), 2083 concurrent_g1_refine()->red_zone(), 2084 Shared_DirtyCardQ_lock); 2085 2086 if (G1DeferredRSUpdate) { 2087 dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code 2088 DirtyCardQ_CBL_mon, 2089 DirtyCardQ_FL_lock, 2090 -1, // never trigger processing 2091 -1, // no limit on length 2092 Shared_DirtyCardQ_lock, 2093 &JavaThread::dirty_card_queue_set()); 2094 } 2095 2096 // Initialize the card queue set used to hold cards containing 2097 // references into the collection set. 2098 _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code 2099 DirtyCardQ_CBL_mon, 2100 DirtyCardQ_FL_lock, 2101 -1, // never trigger processing 2102 -1, // no limit on length 2103 Shared_DirtyCardQ_lock, 2104 &JavaThread::dirty_card_queue_set()); 2105 2106 // In case we're keeping closure specialization stats, initialize those 2107 // counts and that mechanism. 2108 SpecializationStats::clear(); 2109 2110 // Here we allocate the dummy HeapRegion that is required by the 2111 // G1AllocRegion class. 2112 HeapRegion* dummy_region = _hrm.get_dummy_region(); 2113 2114 // We'll re-use the same region whether the alloc region will 2115 // require BOT updates or not and, if it doesn't, then a non-young 2116 // region will complain that it cannot support allocations without 2117 // BOT updates. So we'll tag the dummy region as young to avoid that. 2118 dummy_region->set_young(); 2119 // Make sure it's full. 2120 dummy_region->set_top(dummy_region->end()); 2121 G1AllocRegion::setup(this, dummy_region); 2122 2123 init_mutator_alloc_region(); 2124 2125 // Do create of the monitoring and management support so that 2126 // values in the heap have been properly initialized. 2127 _g1mm = new G1MonitoringSupport(this); 2128 2129 G1StringDedup::initialize(); 2130 2131 return JNI_OK; 2132 } 2133 2134 void G1CollectedHeap::stop() { 2135 // Stop all concurrent threads. We do this to make sure these threads 2136 // do not continue to execute and access resources (e.g. gclog_or_tty) 2137 // that are destroyed during shutdown. 2138 _cg1r->stop(); 2139 _cmThread->stop(); 2140 if (G1StringDedup::is_enabled()) { 2141 G1StringDedup::stop(); 2142 } 2143 } 2144 2145 void G1CollectedHeap::clear_humongous_is_live_table() { 2146 guarantee(G1ReclaimDeadHumongousObjectsAtYoungGC, "Should only be called if true"); 2147 _humongous_is_live.clear(); 2148 } 2149 2150 size_t G1CollectedHeap::conservative_max_heap_alignment() { 2151 return HeapRegion::max_region_size(); 2152 } 2153 2154 void G1CollectedHeap::ref_processing_init() { 2155 // Reference processing in G1 currently works as follows: 2156 // 2157 // * There are two reference processor instances. One is 2158 // used to record and process discovered references 2159 // during concurrent marking; the other is used to 2160 // record and process references during STW pauses 2161 // (both full and incremental). 2162 // * Both ref processors need to 'span' the entire heap as 2163 // the regions in the collection set may be dotted around. 2164 // 2165 // * For the concurrent marking ref processor: 2166 // * Reference discovery is enabled at initial marking. 2167 // * Reference discovery is disabled and the discovered 2168 // references processed etc during remarking. 2169 // * Reference discovery is MT (see below). 2170 // * Reference discovery requires a barrier (see below). 2171 // * Reference processing may or may not be MT 2172 // (depending on the value of ParallelRefProcEnabled 2173 // and ParallelGCThreads). 2174 // * A full GC disables reference discovery by the CM 2175 // ref processor and abandons any entries on it's 2176 // discovered lists. 2177 // 2178 // * For the STW processor: 2179 // * Non MT discovery is enabled at the start of a full GC. 2180 // * Processing and enqueueing during a full GC is non-MT. 2181 // * During a full GC, references are processed after marking. 2182 // 2183 // * Discovery (may or may not be MT) is enabled at the start 2184 // of an incremental evacuation pause. 2185 // * References are processed near the end of a STW evacuation pause. 2186 // * For both types of GC: 2187 // * Discovery is atomic - i.e. not concurrent. 2188 // * Reference discovery will not need a barrier. 2189 2190 SharedHeap::ref_processing_init(); 2191 MemRegion mr = reserved_region(); 2192 2193 // Concurrent Mark ref processor 2194 _ref_processor_cm = 2195 new ReferenceProcessor(mr, // span 2196 ParallelRefProcEnabled && (ParallelGCThreads > 1), 2197 // mt processing 2198 (int) ParallelGCThreads, 2199 // degree of mt processing 2200 (ParallelGCThreads > 1) || (ConcGCThreads > 1), 2201 // mt discovery 2202 (int) MAX2(ParallelGCThreads, ConcGCThreads), 2203 // degree of mt discovery 2204 false, 2205 // Reference discovery is not atomic 2206 &_is_alive_closure_cm); 2207 // is alive closure 2208 // (for efficiency/performance) 2209 2210 // STW ref processor 2211 _ref_processor_stw = 2212 new ReferenceProcessor(mr, // span 2213 ParallelRefProcEnabled && (ParallelGCThreads > 1), 2214 // mt processing 2215 MAX2((int)ParallelGCThreads, 1), 2216 // degree of mt processing 2217 (ParallelGCThreads > 1), 2218 // mt discovery 2219 MAX2((int)ParallelGCThreads, 1), 2220 // degree of mt discovery 2221 true, 2222 // Reference discovery is atomic 2223 &_is_alive_closure_stw); 2224 // is alive closure 2225 // (for efficiency/performance) 2226 } 2227 2228 size_t G1CollectedHeap::capacity() const { 2229 return _hrm.length() * HeapRegion::GrainBytes; 2230 } 2231 2232 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) { 2233 assert(!hr->continuesHumongous(), "pre-condition"); 2234 hr->reset_gc_time_stamp(); 2235 if (hr->startsHumongous()) { 2236 uint first_index = hr->hrm_index() + 1; 2237 uint last_index = hr->last_hc_index(); 2238 for (uint i = first_index; i < last_index; i += 1) { 2239 HeapRegion* chr = region_at(i); 2240 assert(chr->continuesHumongous(), "sanity"); 2241 chr->reset_gc_time_stamp(); 2242 } 2243 } 2244 } 2245 2246 #ifndef PRODUCT 2247 class CheckGCTimeStampsHRClosure : public HeapRegionClosure { 2248 private: 2249 unsigned _gc_time_stamp; 2250 bool _failures; 2251 2252 public: 2253 CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) : 2254 _gc_time_stamp(gc_time_stamp), _failures(false) { } 2255 2256 virtual bool doHeapRegion(HeapRegion* hr) { 2257 unsigned region_gc_time_stamp = hr->get_gc_time_stamp(); 2258 if (_gc_time_stamp != region_gc_time_stamp) { 2259 gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, " 2260 "expected %d", HR_FORMAT_PARAMS(hr), 2261 region_gc_time_stamp, _gc_time_stamp); 2262 _failures = true; 2263 } 2264 return false; 2265 } 2266 2267 bool failures() { return _failures; } 2268 }; 2269 2270 void G1CollectedHeap::check_gc_time_stamps() { 2271 CheckGCTimeStampsHRClosure cl(_gc_time_stamp); 2272 heap_region_iterate(&cl); 2273 guarantee(!cl.failures(), "all GC time stamps should have been reset"); 2274 } 2275 #endif // PRODUCT 2276 2277 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, 2278 DirtyCardQueue* into_cset_dcq, 2279 bool concurrent, 2280 uint worker_i) { 2281 // Clean cards in the hot card cache 2282 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 2283 hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq); 2284 2285 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 2286 int n_completed_buffers = 0; 2287 while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) { 2288 n_completed_buffers++; 2289 } 2290 g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers); 2291 dcqs.clear_n_completed_buffers(); 2292 assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!"); 2293 } 2294 2295 2296 // Computes the sum of the storage used by the various regions. 2297 2298 size_t G1CollectedHeap::used() const { 2299 assert(Heap_lock->owner() != NULL, 2300 "Should be owned on this thread's behalf."); 2301 size_t result = _summary_bytes_used; 2302 // Read only once in case it is set to NULL concurrently 2303 HeapRegion* hr = _mutator_alloc_region.get(); 2304 if (hr != NULL) 2305 result += hr->used(); 2306 return result; 2307 } 2308 2309 size_t G1CollectedHeap::used_unlocked() const { 2310 size_t result = _summary_bytes_used; 2311 return result; 2312 } 2313 2314 class SumUsedClosure: public HeapRegionClosure { 2315 size_t _used; 2316 public: 2317 SumUsedClosure() : _used(0) {} 2318 bool doHeapRegion(HeapRegion* r) { 2319 if (!r->continuesHumongous()) { 2320 _used += r->used(); 2321 } 2322 return false; 2323 } 2324 size_t result() { return _used; } 2325 }; 2326 2327 size_t G1CollectedHeap::recalculate_used() const { 2328 double recalculate_used_start = os::elapsedTime(); 2329 2330 SumUsedClosure blk; 2331 heap_region_iterate(&blk); 2332 2333 g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0); 2334 return blk.result(); 2335 } 2336 2337 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) { 2338 switch (cause) { 2339 case GCCause::_gc_locker: return GCLockerInvokesConcurrent; 2340 case GCCause::_java_lang_system_gc: return ExplicitGCInvokesConcurrent; 2341 case GCCause::_g1_humongous_allocation: return true; 2342 default: return false; 2343 } 2344 } 2345 2346 #ifndef PRODUCT 2347 void G1CollectedHeap::allocate_dummy_regions() { 2348 // Let's fill up most of the region 2349 size_t word_size = HeapRegion::GrainWords - 1024; 2350 // And as a result the region we'll allocate will be humongous. 2351 guarantee(isHumongous(word_size), "sanity"); 2352 2353 for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) { 2354 // Let's use the existing mechanism for the allocation 2355 HeapWord* dummy_obj = humongous_obj_allocate(word_size); 2356 if (dummy_obj != NULL) { 2357 MemRegion mr(dummy_obj, word_size); 2358 CollectedHeap::fill_with_object(mr); 2359 } else { 2360 // If we can't allocate once, we probably cannot allocate 2361 // again. Let's get out of the loop. 2362 break; 2363 } 2364 } 2365 } 2366 #endif // !PRODUCT 2367 2368 void G1CollectedHeap::increment_old_marking_cycles_started() { 2369 assert(_old_marking_cycles_started == _old_marking_cycles_completed || 2370 _old_marking_cycles_started == _old_marking_cycles_completed + 1, 2371 err_msg("Wrong marking cycle count (started: %d, completed: %d)", 2372 _old_marking_cycles_started, _old_marking_cycles_completed)); 2373 2374 _old_marking_cycles_started++; 2375 } 2376 2377 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) { 2378 MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag); 2379 2380 // We assume that if concurrent == true, then the caller is a 2381 // concurrent thread that was joined the Suspendible Thread 2382 // Set. If there's ever a cheap way to check this, we should add an 2383 // assert here. 2384 2385 // Given that this method is called at the end of a Full GC or of a 2386 // concurrent cycle, and those can be nested (i.e., a Full GC can 2387 // interrupt a concurrent cycle), the number of full collections 2388 // completed should be either one (in the case where there was no 2389 // nesting) or two (when a Full GC interrupted a concurrent cycle) 2390 // behind the number of full collections started. 2391 2392 // This is the case for the inner caller, i.e. a Full GC. 2393 assert(concurrent || 2394 (_old_marking_cycles_started == _old_marking_cycles_completed + 1) || 2395 (_old_marking_cycles_started == _old_marking_cycles_completed + 2), 2396 err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u " 2397 "is inconsistent with _old_marking_cycles_completed = %u", 2398 _old_marking_cycles_started, _old_marking_cycles_completed)); 2399 2400 // This is the case for the outer caller, i.e. the concurrent cycle. 2401 assert(!concurrent || 2402 (_old_marking_cycles_started == _old_marking_cycles_completed + 1), 2403 err_msg("for outer caller (concurrent cycle): " 2404 "_old_marking_cycles_started = %u " 2405 "is inconsistent with _old_marking_cycles_completed = %u", 2406 _old_marking_cycles_started, _old_marking_cycles_completed)); 2407 2408 _old_marking_cycles_completed += 1; 2409 2410 // We need to clear the "in_progress" flag in the CM thread before 2411 // we wake up any waiters (especially when ExplicitInvokesConcurrent 2412 // is set) so that if a waiter requests another System.gc() it doesn't 2413 // incorrectly see that a marking cycle is still in progress. 2414 if (concurrent) { 2415 _cmThread->clear_in_progress(); 2416 } 2417 2418 // This notify_all() will ensure that a thread that called 2419 // System.gc() with (with ExplicitGCInvokesConcurrent set or not) 2420 // and it's waiting for a full GC to finish will be woken up. It is 2421 // waiting in VM_G1IncCollectionPause::doit_epilogue(). 2422 FullGCCount_lock->notify_all(); 2423 } 2424 2425 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) { 2426 _concurrent_cycle_started = true; 2427 _gc_timer_cm->register_gc_start(start_time); 2428 2429 _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start()); 2430 trace_heap_before_gc(_gc_tracer_cm); 2431 } 2432 2433 void G1CollectedHeap::register_concurrent_cycle_end() { 2434 if (_concurrent_cycle_started) { 2435 if (_cm->has_aborted()) { 2436 _gc_tracer_cm->report_concurrent_mode_failure(); 2437 } 2438 2439 _gc_timer_cm->register_gc_end(); 2440 _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions()); 2441 2442 // Clear state variables to prepare for the next concurrent cycle. 2443 _concurrent_cycle_started = false; 2444 _heap_summary_sent = false; 2445 } 2446 } 2447 2448 void G1CollectedHeap::trace_heap_after_concurrent_cycle() { 2449 if (_concurrent_cycle_started) { 2450 // This function can be called when: 2451 // the cleanup pause is run 2452 // the concurrent cycle is aborted before the cleanup pause. 2453 // the concurrent cycle is aborted after the cleanup pause, 2454 // but before the concurrent cycle end has been registered. 2455 // Make sure that we only send the heap information once. 2456 if (!_heap_summary_sent) { 2457 trace_heap_after_gc(_gc_tracer_cm); 2458 _heap_summary_sent = true; 2459 } 2460 } 2461 } 2462 2463 G1YCType G1CollectedHeap::yc_type() { 2464 bool is_young = g1_policy()->gcs_are_young(); 2465 bool is_initial_mark = g1_policy()->during_initial_mark_pause(); 2466 bool is_during_mark = mark_in_progress(); 2467 2468 if (is_initial_mark) { 2469 return InitialMark; 2470 } else if (is_during_mark) { 2471 return DuringMark; 2472 } else if (is_young) { 2473 return Normal; 2474 } else { 2475 return Mixed; 2476 } 2477 } 2478 2479 void G1CollectedHeap::collect(GCCause::Cause cause) { 2480 assert_heap_not_locked(); 2481 2482 unsigned int gc_count_before; 2483 unsigned int old_marking_count_before; 2484 bool retry_gc; 2485 2486 do { 2487 retry_gc = false; 2488 2489 { 2490 MutexLocker ml(Heap_lock); 2491 2492 // Read the GC count while holding the Heap_lock 2493 gc_count_before = total_collections(); 2494 old_marking_count_before = _old_marking_cycles_started; 2495 } 2496 2497 if (should_do_concurrent_full_gc(cause)) { 2498 // Schedule an initial-mark evacuation pause that will start a 2499 // concurrent cycle. We're setting word_size to 0 which means that 2500 // we are not requesting a post-GC allocation. 2501 VM_G1IncCollectionPause op(gc_count_before, 2502 0, /* word_size */ 2503 true, /* should_initiate_conc_mark */ 2504 g1_policy()->max_pause_time_ms(), 2505 cause); 2506 2507 VMThread::execute(&op); 2508 if (!op.pause_succeeded()) { 2509 if (old_marking_count_before == _old_marking_cycles_started) { 2510 retry_gc = op.should_retry_gc(); 2511 } else { 2512 // A Full GC happened while we were trying to schedule the 2513 // initial-mark GC. No point in starting a new cycle given 2514 // that the whole heap was collected anyway. 2515 } 2516 2517 if (retry_gc) { 2518 if (GC_locker::is_active_and_needs_gc()) { 2519 GC_locker::stall_until_clear(); 2520 } 2521 } 2522 } 2523 } else { 2524 if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc 2525 DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) { 2526 2527 // Schedule a standard evacuation pause. We're setting word_size 2528 // to 0 which means that we are not requesting a post-GC allocation. 2529 VM_G1IncCollectionPause op(gc_count_before, 2530 0, /* word_size */ 2531 false, /* should_initiate_conc_mark */ 2532 g1_policy()->max_pause_time_ms(), 2533 cause); 2534 VMThread::execute(&op); 2535 } else { 2536 // Schedule a Full GC. 2537 VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause); 2538 VMThread::execute(&op); 2539 } 2540 } 2541 } while (retry_gc); 2542 } 2543 2544 bool G1CollectedHeap::is_in(const void* p) const { 2545 if (_hrm.reserved().contains(p)) { 2546 // Given that we know that p is in the reserved space, 2547 // heap_region_containing_raw() should successfully 2548 // return the containing region. 2549 HeapRegion* hr = heap_region_containing_raw(p); 2550 return hr->is_in(p); 2551 } else { 2552 return false; 2553 } 2554 } 2555 2556 #ifdef ASSERT 2557 bool G1CollectedHeap::is_in_exact(const void* p) const { 2558 bool contains = reserved_region().contains(p); 2559 bool available = _hrm.is_available(addr_to_region((HeapWord*)p)); 2560 if (contains && available) { 2561 return true; 2562 } else { 2563 return false; 2564 } 2565 } 2566 #endif 2567 2568 // Iteration functions. 2569 2570 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion. 2571 2572 class IterateOopClosureRegionClosure: public HeapRegionClosure { 2573 ExtendedOopClosure* _cl; 2574 public: 2575 IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {} 2576 bool doHeapRegion(HeapRegion* r) { 2577 if (!r->continuesHumongous()) { 2578 r->oop_iterate(_cl); 2579 } 2580 return false; 2581 } 2582 }; 2583 2584 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) { 2585 IterateOopClosureRegionClosure blk(cl); 2586 heap_region_iterate(&blk); 2587 } 2588 2589 // Iterates an ObjectClosure over all objects within a HeapRegion. 2590 2591 class IterateObjectClosureRegionClosure: public HeapRegionClosure { 2592 ObjectClosure* _cl; 2593 public: 2594 IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {} 2595 bool doHeapRegion(HeapRegion* r) { 2596 if (! r->continuesHumongous()) { 2597 r->object_iterate(_cl); 2598 } 2599 return false; 2600 } 2601 }; 2602 2603 void G1CollectedHeap::object_iterate(ObjectClosure* cl) { 2604 IterateObjectClosureRegionClosure blk(cl); 2605 heap_region_iterate(&blk); 2606 } 2607 2608 // Calls a SpaceClosure on a HeapRegion. 2609 2610 class SpaceClosureRegionClosure: public HeapRegionClosure { 2611 SpaceClosure* _cl; 2612 public: 2613 SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {} 2614 bool doHeapRegion(HeapRegion* r) { 2615 _cl->do_space(r); 2616 return false; 2617 } 2618 }; 2619 2620 void G1CollectedHeap::space_iterate(SpaceClosure* cl) { 2621 SpaceClosureRegionClosure blk(cl); 2622 heap_region_iterate(&blk); 2623 } 2624 2625 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const { 2626 _hrm.iterate(cl); 2627 } 2628 2629 void G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl, 2630 uint worker_id, 2631 HeapRegionClaimer* hrclaimer) const { 2632 _hrm.par_iterate(cl, worker_id, hrclaimer); 2633 } 2634 2635 // Clear the cached CSet starting regions and (more importantly) 2636 // the time stamps. Called when we reset the GC time stamp. 2637 void G1CollectedHeap::clear_cset_start_regions() { 2638 assert(_worker_cset_start_region != NULL, "sanity"); 2639 assert(_worker_cset_start_region_time_stamp != NULL, "sanity"); 2640 2641 int n_queues = MAX2((int)ParallelGCThreads, 1); 2642 for (int i = 0; i < n_queues; i++) { 2643 _worker_cset_start_region[i] = NULL; 2644 _worker_cset_start_region_time_stamp[i] = 0; 2645 } 2646 } 2647 2648 // Given the id of a worker, obtain or calculate a suitable 2649 // starting region for iterating over the current collection set. 2650 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) { 2651 assert(get_gc_time_stamp() > 0, "should have been updated by now"); 2652 2653 HeapRegion* result = NULL; 2654 unsigned gc_time_stamp = get_gc_time_stamp(); 2655 2656 if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) { 2657 // Cached starting region for current worker was set 2658 // during the current pause - so it's valid. 2659 // Note: the cached starting heap region may be NULL 2660 // (when the collection set is empty). 2661 result = _worker_cset_start_region[worker_i]; 2662 assert(result == NULL || result->in_collection_set(), "sanity"); 2663 return result; 2664 } 2665 2666 // The cached entry was not valid so let's calculate 2667 // a suitable starting heap region for this worker. 2668 2669 // We want the parallel threads to start their collection 2670 // set iteration at different collection set regions to 2671 // avoid contention. 2672 // If we have: 2673 // n collection set regions 2674 // p threads 2675 // Then thread t will start at region floor ((t * n) / p) 2676 2677 result = g1_policy()->collection_set(); 2678 if (G1CollectedHeap::use_parallel_gc_threads()) { 2679 uint cs_size = g1_policy()->cset_region_length(); 2680 uint active_workers = workers()->active_workers(); 2681 assert(UseDynamicNumberOfGCThreads || 2682 active_workers == workers()->total_workers(), 2683 "Unless dynamic should use total workers"); 2684 2685 uint end_ind = (cs_size * worker_i) / active_workers; 2686 uint start_ind = 0; 2687 2688 if (worker_i > 0 && 2689 _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) { 2690 // Previous workers starting region is valid 2691 // so let's iterate from there 2692 start_ind = (cs_size * (worker_i - 1)) / active_workers; 2693 result = _worker_cset_start_region[worker_i - 1]; 2694 } 2695 2696 for (uint i = start_ind; i < end_ind; i++) { 2697 result = result->next_in_collection_set(); 2698 } 2699 } 2700 2701 // Note: the calculated starting heap region may be NULL 2702 // (when the collection set is empty). 2703 assert(result == NULL || result->in_collection_set(), "sanity"); 2704 assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp, 2705 "should be updated only once per pause"); 2706 _worker_cset_start_region[worker_i] = result; 2707 OrderAccess::storestore(); 2708 _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp; 2709 return result; 2710 } 2711 2712 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) { 2713 HeapRegion* r = g1_policy()->collection_set(); 2714 while (r != NULL) { 2715 HeapRegion* next = r->next_in_collection_set(); 2716 if (cl->doHeapRegion(r)) { 2717 cl->incomplete(); 2718 return; 2719 } 2720 r = next; 2721 } 2722 } 2723 2724 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r, 2725 HeapRegionClosure *cl) { 2726 if (r == NULL) { 2727 // The CSet is empty so there's nothing to do. 2728 return; 2729 } 2730 2731 assert(r->in_collection_set(), 2732 "Start region must be a member of the collection set."); 2733 HeapRegion* cur = r; 2734 while (cur != NULL) { 2735 HeapRegion* next = cur->next_in_collection_set(); 2736 if (cl->doHeapRegion(cur) && false) { 2737 cl->incomplete(); 2738 return; 2739 } 2740 cur = next; 2741 } 2742 cur = g1_policy()->collection_set(); 2743 while (cur != r) { 2744 HeapRegion* next = cur->next_in_collection_set(); 2745 if (cl->doHeapRegion(cur) && false) { 2746 cl->incomplete(); 2747 return; 2748 } 2749 cur = next; 2750 } 2751 } 2752 2753 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const { 2754 HeapRegion* result = _hrm.next_region_in_heap(from); 2755 while (result != NULL && result->isHumongous()) { 2756 result = _hrm.next_region_in_heap(result); 2757 } 2758 return result; 2759 } 2760 2761 Space* G1CollectedHeap::space_containing(const void* addr) const { 2762 return heap_region_containing(addr); 2763 } 2764 2765 HeapWord* G1CollectedHeap::block_start(const void* addr) const { 2766 Space* sp = space_containing(addr); 2767 return sp->block_start(addr); 2768 } 2769 2770 size_t G1CollectedHeap::block_size(const HeapWord* addr) const { 2771 Space* sp = space_containing(addr); 2772 return sp->block_size(addr); 2773 } 2774 2775 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const { 2776 Space* sp = space_containing(addr); 2777 return sp->block_is_obj(addr); 2778 } 2779 2780 bool G1CollectedHeap::supports_tlab_allocation() const { 2781 return true; 2782 } 2783 2784 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const { 2785 return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes; 2786 } 2787 2788 size_t G1CollectedHeap::tlab_used(Thread* ignored) const { 2789 return young_list()->eden_used_bytes(); 2790 } 2791 2792 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size 2793 // must be smaller than the humongous object limit. 2794 size_t G1CollectedHeap::max_tlab_size() const { 2795 return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment); 2796 } 2797 2798 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const { 2799 // Return the remaining space in the cur alloc region, but not less than 2800 // the min TLAB size. 2801 2802 // Also, this value can be at most the humongous object threshold, 2803 // since we can't allow tlabs to grow big enough to accommodate 2804 // humongous objects. 2805 2806 HeapRegion* hr = _mutator_alloc_region.get(); 2807 size_t max_tlab = max_tlab_size() * wordSize; 2808 if (hr == NULL) { 2809 return max_tlab; 2810 } else { 2811 return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab); 2812 } 2813 } 2814 2815 size_t G1CollectedHeap::max_capacity() const { 2816 return _hrm.reserved().byte_size(); 2817 } 2818 2819 jlong G1CollectedHeap::millis_since_last_gc() { 2820 // assert(false, "NYI"); 2821 return 0; 2822 } 2823 2824 void G1CollectedHeap::prepare_for_verify() { 2825 if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) { 2826 ensure_parsability(false); 2827 } 2828 g1_rem_set()->prepare_for_verify(); 2829 } 2830 2831 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr, 2832 VerifyOption vo) { 2833 switch (vo) { 2834 case VerifyOption_G1UsePrevMarking: 2835 return hr->obj_allocated_since_prev_marking(obj); 2836 case VerifyOption_G1UseNextMarking: 2837 return hr->obj_allocated_since_next_marking(obj); 2838 case VerifyOption_G1UseMarkWord: 2839 return false; 2840 default: 2841 ShouldNotReachHere(); 2842 } 2843 return false; // keep some compilers happy 2844 } 2845 2846 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) { 2847 switch (vo) { 2848 case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start(); 2849 case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start(); 2850 case VerifyOption_G1UseMarkWord: return NULL; 2851 default: ShouldNotReachHere(); 2852 } 2853 return NULL; // keep some compilers happy 2854 } 2855 2856 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) { 2857 switch (vo) { 2858 case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj); 2859 case VerifyOption_G1UseNextMarking: return isMarkedNext(obj); 2860 case VerifyOption_G1UseMarkWord: return obj->is_gc_marked(); 2861 default: ShouldNotReachHere(); 2862 } 2863 return false; // keep some compilers happy 2864 } 2865 2866 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) { 2867 switch (vo) { 2868 case VerifyOption_G1UsePrevMarking: return "PTAMS"; 2869 case VerifyOption_G1UseNextMarking: return "NTAMS"; 2870 case VerifyOption_G1UseMarkWord: return "NONE"; 2871 default: ShouldNotReachHere(); 2872 } 2873 return NULL; // keep some compilers happy 2874 } 2875 2876 class VerifyRootsClosure: public OopClosure { 2877 private: 2878 G1CollectedHeap* _g1h; 2879 VerifyOption _vo; 2880 bool _failures; 2881 public: 2882 // _vo == UsePrevMarking -> use "prev" marking information, 2883 // _vo == UseNextMarking -> use "next" marking information, 2884 // _vo == UseMarkWord -> use mark word from object header. 2885 VerifyRootsClosure(VerifyOption vo) : 2886 _g1h(G1CollectedHeap::heap()), 2887 _vo(vo), 2888 _failures(false) { } 2889 2890 bool failures() { return _failures; } 2891 2892 template <class T> void do_oop_nv(T* p) { 2893 T heap_oop = oopDesc::load_heap_oop(p); 2894 if (!oopDesc::is_null(heap_oop)) { 2895 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 2896 if (_g1h->is_obj_dead_cond(obj, _vo)) { 2897 gclog_or_tty->print_cr("Root location "PTR_FORMAT" " 2898 "points to dead obj "PTR_FORMAT, p, (void*) obj); 2899 if (_vo == VerifyOption_G1UseMarkWord) { 2900 gclog_or_tty->print_cr(" Mark word: "PTR_FORMAT, (void*)(obj->mark())); 2901 } 2902 obj->print_on(gclog_or_tty); 2903 _failures = true; 2904 } 2905 } 2906 } 2907 2908 void do_oop(oop* p) { do_oop_nv(p); } 2909 void do_oop(narrowOop* p) { do_oop_nv(p); } 2910 }; 2911 2912 class G1VerifyCodeRootOopClosure: public OopClosure { 2913 G1CollectedHeap* _g1h; 2914 OopClosure* _root_cl; 2915 nmethod* _nm; 2916 VerifyOption _vo; 2917 bool _failures; 2918 2919 template <class T> void do_oop_work(T* p) { 2920 // First verify that this root is live 2921 _root_cl->do_oop(p); 2922 2923 if (!G1VerifyHeapRegionCodeRoots) { 2924 // We're not verifying the code roots attached to heap region. 2925 return; 2926 } 2927 2928 // Don't check the code roots during marking verification in a full GC 2929 if (_vo == VerifyOption_G1UseMarkWord) { 2930 return; 2931 } 2932 2933 // Now verify that the current nmethod (which contains p) is 2934 // in the code root list of the heap region containing the 2935 // object referenced by p. 2936 2937 T heap_oop = oopDesc::load_heap_oop(p); 2938 if (!oopDesc::is_null(heap_oop)) { 2939 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 2940 2941 // Now fetch the region containing the object 2942 HeapRegion* hr = _g1h->heap_region_containing(obj); 2943 HeapRegionRemSet* hrrs = hr->rem_set(); 2944 // Verify that the strong code root list for this region 2945 // contains the nmethod 2946 if (!hrrs->strong_code_roots_list_contains(_nm)) { 2947 gclog_or_tty->print_cr("Code root location "PTR_FORMAT" " 2948 "from nmethod "PTR_FORMAT" not in strong " 2949 "code roots for region ["PTR_FORMAT","PTR_FORMAT")", 2950 p, _nm, hr->bottom(), hr->end()); 2951 _failures = true; 2952 } 2953 } 2954 } 2955 2956 public: 2957 G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo): 2958 _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {} 2959 2960 void do_oop(oop* p) { do_oop_work(p); } 2961 void do_oop(narrowOop* p) { do_oop_work(p); } 2962 2963 void set_nmethod(nmethod* nm) { _nm = nm; } 2964 bool failures() { return _failures; } 2965 }; 2966 2967 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure { 2968 G1VerifyCodeRootOopClosure* _oop_cl; 2969 2970 public: 2971 G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl): 2972 _oop_cl(oop_cl) {} 2973 2974 void do_code_blob(CodeBlob* cb) { 2975 nmethod* nm = cb->as_nmethod_or_null(); 2976 if (nm != NULL) { 2977 _oop_cl->set_nmethod(nm); 2978 nm->oops_do(_oop_cl); 2979 } 2980 } 2981 }; 2982 2983 class YoungRefCounterClosure : public OopClosure { 2984 G1CollectedHeap* _g1h; 2985 int _count; 2986 public: 2987 YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {} 2988 void do_oop(oop* p) { if (_g1h->is_in_young(*p)) { _count++; } } 2989 void do_oop(narrowOop* p) { ShouldNotReachHere(); } 2990 2991 int count() { return _count; } 2992 void reset_count() { _count = 0; }; 2993 }; 2994 2995 class VerifyKlassClosure: public KlassClosure { 2996 YoungRefCounterClosure _young_ref_counter_closure; 2997 OopClosure *_oop_closure; 2998 public: 2999 VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {} 3000 void do_klass(Klass* k) { 3001 k->oops_do(_oop_closure); 3002 3003 _young_ref_counter_closure.reset_count(); 3004 k->oops_do(&_young_ref_counter_closure); 3005 if (_young_ref_counter_closure.count() > 0) { 3006 guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k)); 3007 } 3008 } 3009 }; 3010 3011 class VerifyLivenessOopClosure: public OopClosure { 3012 G1CollectedHeap* _g1h; 3013 VerifyOption _vo; 3014 public: 3015 VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo): 3016 _g1h(g1h), _vo(vo) 3017 { } 3018 void do_oop(narrowOop *p) { do_oop_work(p); } 3019 void do_oop( oop *p) { do_oop_work(p); } 3020 3021 template <class T> void do_oop_work(T *p) { 3022 oop obj = oopDesc::load_decode_heap_oop(p); 3023 guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo), 3024 "Dead object referenced by a not dead object"); 3025 } 3026 }; 3027 3028 class VerifyObjsInRegionClosure: public ObjectClosure { 3029 private: 3030 G1CollectedHeap* _g1h; 3031 size_t _live_bytes; 3032 HeapRegion *_hr; 3033 VerifyOption _vo; 3034 public: 3035 // _vo == UsePrevMarking -> use "prev" marking information, 3036 // _vo == UseNextMarking -> use "next" marking information, 3037 // _vo == UseMarkWord -> use mark word from object header. 3038 VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo) 3039 : _live_bytes(0), _hr(hr), _vo(vo) { 3040 _g1h = G1CollectedHeap::heap(); 3041 } 3042 void do_object(oop o) { 3043 VerifyLivenessOopClosure isLive(_g1h, _vo); 3044 assert(o != NULL, "Huh?"); 3045 if (!_g1h->is_obj_dead_cond(o, _vo)) { 3046 // If the object is alive according to the mark word, 3047 // then verify that the marking information agrees. 3048 // Note we can't verify the contra-positive of the 3049 // above: if the object is dead (according to the mark 3050 // word), it may not be marked, or may have been marked 3051 // but has since became dead, or may have been allocated 3052 // since the last marking. 3053 if (_vo == VerifyOption_G1UseMarkWord) { 3054 guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch"); 3055 } 3056 3057 o->oop_iterate_no_header(&isLive); 3058 if (!_hr->obj_allocated_since_prev_marking(o)) { 3059 size_t obj_size = o->size(); // Make sure we don't overflow 3060 _live_bytes += (obj_size * HeapWordSize); 3061 } 3062 } 3063 } 3064 size_t live_bytes() { return _live_bytes; } 3065 }; 3066 3067 class PrintObjsInRegionClosure : public ObjectClosure { 3068 HeapRegion *_hr; 3069 G1CollectedHeap *_g1; 3070 public: 3071 PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) { 3072 _g1 = G1CollectedHeap::heap(); 3073 }; 3074 3075 void do_object(oop o) { 3076 if (o != NULL) { 3077 HeapWord *start = (HeapWord *) o; 3078 size_t word_sz = o->size(); 3079 gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT 3080 " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n", 3081 (void*) o, word_sz, 3082 _g1->isMarkedPrev(o), 3083 _g1->isMarkedNext(o), 3084 _hr->obj_allocated_since_prev_marking(o)); 3085 HeapWord *end = start + word_sz; 3086 HeapWord *cur; 3087 int *val; 3088 for (cur = start; cur < end; cur++) { 3089 val = (int *) cur; 3090 gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val); 3091 } 3092 } 3093 } 3094 }; 3095 3096 class VerifyRegionClosure: public HeapRegionClosure { 3097 private: 3098 bool _par; 3099 VerifyOption _vo; 3100 bool _failures; 3101 public: 3102 // _vo == UsePrevMarking -> use "prev" marking information, 3103 // _vo == UseNextMarking -> use "next" marking information, 3104 // _vo == UseMarkWord -> use mark word from object header. 3105 VerifyRegionClosure(bool par, VerifyOption vo) 3106 : _par(par), 3107 _vo(vo), 3108 _failures(false) {} 3109 3110 bool failures() { 3111 return _failures; 3112 } 3113 3114 bool doHeapRegion(HeapRegion* r) { 3115 if (!r->continuesHumongous()) { 3116 bool failures = false; 3117 r->verify(_vo, &failures); 3118 if (failures) { 3119 _failures = true; 3120 } else { 3121 VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo); 3122 r->object_iterate(¬_dead_yet_cl); 3123 if (_vo != VerifyOption_G1UseNextMarking) { 3124 if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) { 3125 gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] " 3126 "max_live_bytes "SIZE_FORMAT" " 3127 "< calculated "SIZE_FORMAT, 3128 r->bottom(), r->end(), 3129 r->max_live_bytes(), 3130 not_dead_yet_cl.live_bytes()); 3131 _failures = true; 3132 } 3133 } else { 3134 // When vo == UseNextMarking we cannot currently do a sanity 3135 // check on the live bytes as the calculation has not been 3136 // finalized yet. 3137 } 3138 } 3139 } 3140 return false; // stop the region iteration if we hit a failure 3141 } 3142 }; 3143 3144 // This is the task used for parallel verification of the heap regions 3145 3146 class G1ParVerifyTask: public AbstractGangTask { 3147 private: 3148 G1CollectedHeap* _g1h; 3149 VerifyOption _vo; 3150 bool _failures; 3151 HeapRegionClaimer _hrclaimer; 3152 3153 public: 3154 // _vo == UsePrevMarking -> use "prev" marking information, 3155 // _vo == UseNextMarking -> use "next" marking information, 3156 // _vo == UseMarkWord -> use mark word from object header. 3157 G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) : 3158 AbstractGangTask("Parallel verify task"), 3159 _g1h(g1h), 3160 _vo(vo), 3161 _failures(false), 3162 _hrclaimer(g1h->workers()->active_workers()) {} 3163 3164 bool failures() { 3165 return _failures; 3166 } 3167 3168 void work(uint worker_id) { 3169 HandleMark hm; 3170 VerifyRegionClosure blk(true, _vo); 3171 _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer); 3172 if (blk.failures()) { 3173 _failures = true; 3174 } 3175 } 3176 }; 3177 3178 void G1CollectedHeap::verify(bool silent, VerifyOption vo) { 3179 if (SafepointSynchronize::is_at_safepoint()) { 3180 assert(Thread::current()->is_VM_thread(), 3181 "Expected to be executed serially by the VM thread at this point"); 3182 3183 if (!silent) { gclog_or_tty->print("Roots "); } 3184 VerifyRootsClosure rootsCl(vo); 3185 VerifyKlassClosure klassCl(this, &rootsCl); 3186 CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false); 3187 3188 // We apply the relevant closures to all the oops in the 3189 // system dictionary, class loader data graph, the string table 3190 // and the nmethods in the code cache. 3191 G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo); 3192 G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl); 3193 3194 process_all_roots(true, // activate StrongRootsScope 3195 SO_AllCodeCache, // roots scanning options 3196 &rootsCl, 3197 &cldCl, 3198 &blobsCl); 3199 3200 bool failures = rootsCl.failures() || codeRootsCl.failures(); 3201 3202 if (vo != VerifyOption_G1UseMarkWord) { 3203 // If we're verifying during a full GC then the region sets 3204 // will have been torn down at the start of the GC. Therefore 3205 // verifying the region sets will fail. So we only verify 3206 // the region sets when not in a full GC. 3207 if (!silent) { gclog_or_tty->print("HeapRegionSets "); } 3208 verify_region_sets(); 3209 } 3210 3211 if (!silent) { gclog_or_tty->print("HeapRegions "); } 3212 if (GCParallelVerificationEnabled && ParallelGCThreads > 1) { 3213 3214 G1ParVerifyTask task(this, vo); 3215 assert(UseDynamicNumberOfGCThreads || 3216 workers()->active_workers() == workers()->total_workers(), 3217 "If not dynamic should be using all the workers"); 3218 int n_workers = workers()->active_workers(); 3219 set_par_threads(n_workers); 3220 workers()->run_task(&task); 3221 set_par_threads(0); 3222 if (task.failures()) { 3223 failures = true; 3224 } 3225 3226 } else { 3227 VerifyRegionClosure blk(false, vo); 3228 heap_region_iterate(&blk); 3229 if (blk.failures()) { 3230 failures = true; 3231 } 3232 } 3233 if (!silent) gclog_or_tty->print("RemSet "); 3234 rem_set()->verify(); 3235 3236 if (G1StringDedup::is_enabled()) { 3237 if (!silent) gclog_or_tty->print("StrDedup "); 3238 G1StringDedup::verify(); 3239 } 3240 3241 if (failures) { 3242 gclog_or_tty->print_cr("Heap:"); 3243 // It helps to have the per-region information in the output to 3244 // help us track down what went wrong. This is why we call 3245 // print_extended_on() instead of print_on(). 3246 print_extended_on(gclog_or_tty); 3247 gclog_or_tty->cr(); 3248 #ifndef PRODUCT 3249 if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) { 3250 concurrent_mark()->print_reachable("at-verification-failure", 3251 vo, false /* all */); 3252 } 3253 #endif 3254 gclog_or_tty->flush(); 3255 } 3256 guarantee(!failures, "there should not have been any failures"); 3257 } else { 3258 if (!silent) { 3259 gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet"); 3260 if (G1StringDedup::is_enabled()) { 3261 gclog_or_tty->print(", StrDedup"); 3262 } 3263 gclog_or_tty->print(") "); 3264 } 3265 } 3266 } 3267 3268 void G1CollectedHeap::verify(bool silent) { 3269 verify(silent, VerifyOption_G1UsePrevMarking); 3270 } 3271 3272 double G1CollectedHeap::verify(bool guard, const char* msg) { 3273 double verify_time_ms = 0.0; 3274 3275 if (guard && total_collections() >= VerifyGCStartAt) { 3276 double verify_start = os::elapsedTime(); 3277 HandleMark hm; // Discard invalid handles created during verification 3278 prepare_for_verify(); 3279 Universe::verify(VerifyOption_G1UsePrevMarking, msg); 3280 verify_time_ms = (os::elapsedTime() - verify_start) * 1000; 3281 } 3282 3283 return verify_time_ms; 3284 } 3285 3286 void G1CollectedHeap::verify_before_gc() { 3287 double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:"); 3288 g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms); 3289 } 3290 3291 void G1CollectedHeap::verify_after_gc() { 3292 double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:"); 3293 g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms); 3294 } 3295 3296 class PrintRegionClosure: public HeapRegionClosure { 3297 outputStream* _st; 3298 public: 3299 PrintRegionClosure(outputStream* st) : _st(st) {} 3300 bool doHeapRegion(HeapRegion* r) { 3301 r->print_on(_st); 3302 return false; 3303 } 3304 }; 3305 3306 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 3307 const HeapRegion* hr, 3308 const VerifyOption vo) const { 3309 switch (vo) { 3310 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr); 3311 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr); 3312 case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked(); 3313 default: ShouldNotReachHere(); 3314 } 3315 return false; // keep some compilers happy 3316 } 3317 3318 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 3319 const VerifyOption vo) const { 3320 switch (vo) { 3321 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj); 3322 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj); 3323 case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked(); 3324 default: ShouldNotReachHere(); 3325 } 3326 return false; // keep some compilers happy 3327 } 3328 3329 void G1CollectedHeap::print_on(outputStream* st) const { 3330 st->print(" %-20s", "garbage-first heap"); 3331 st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K", 3332 capacity()/K, used_unlocked()/K); 3333 st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")", 3334 _hrm.reserved().start(), 3335 _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords, 3336 _hrm.reserved().end()); 3337 st->cr(); 3338 st->print(" region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K); 3339 uint young_regions = _young_list->length(); 3340 st->print("%u young (" SIZE_FORMAT "K), ", young_regions, 3341 (size_t) young_regions * HeapRegion::GrainBytes / K); 3342 uint survivor_regions = g1_policy()->recorded_survivor_regions(); 3343 st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions, 3344 (size_t) survivor_regions * HeapRegion::GrainBytes / K); 3345 st->cr(); 3346 MetaspaceAux::print_on(st); 3347 } 3348 3349 void G1CollectedHeap::print_extended_on(outputStream* st) const { 3350 print_on(st); 3351 3352 // Print the per-region information. 3353 st->cr(); 3354 st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), " 3355 "HS=humongous(starts), HC=humongous(continues), " 3356 "CS=collection set, F=free, TS=gc time stamp, " 3357 "PTAMS=previous top-at-mark-start, " 3358 "NTAMS=next top-at-mark-start)"); 3359 PrintRegionClosure blk(st); 3360 heap_region_iterate(&blk); 3361 } 3362 3363 void G1CollectedHeap::print_on_error(outputStream* st) const { 3364 this->CollectedHeap::print_on_error(st); 3365 3366 if (_cm != NULL) { 3367 st->cr(); 3368 _cm->print_on_error(st); 3369 } 3370 } 3371 3372 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const { 3373 if (G1CollectedHeap::use_parallel_gc_threads()) { 3374 workers()->print_worker_threads_on(st); 3375 } 3376 _cmThread->print_on(st); 3377 st->cr(); 3378 _cm->print_worker_threads_on(st); 3379 _cg1r->print_worker_threads_on(st); 3380 if (G1StringDedup::is_enabled()) { 3381 G1StringDedup::print_worker_threads_on(st); 3382 } 3383 } 3384 3385 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const { 3386 if (G1CollectedHeap::use_parallel_gc_threads()) { 3387 workers()->threads_do(tc); 3388 } 3389 tc->do_thread(_cmThread); 3390 _cg1r->threads_do(tc); 3391 if (G1StringDedup::is_enabled()) { 3392 G1StringDedup::threads_do(tc); 3393 } 3394 } 3395 3396 void G1CollectedHeap::print_tracing_info() const { 3397 // We'll overload this to mean "trace GC pause statistics." 3398 if (TraceYoungGenTime || TraceOldGenTime) { 3399 // The "G1CollectorPolicy" is keeping track of these stats, so delegate 3400 // to that. 3401 g1_policy()->print_tracing_info(); 3402 } 3403 if (G1SummarizeRSetStats) { 3404 g1_rem_set()->print_summary_info(); 3405 } 3406 if (G1SummarizeConcMark) { 3407 concurrent_mark()->print_summary_info(); 3408 } 3409 g1_policy()->print_yg_surv_rate_info(); 3410 SpecializationStats::print(); 3411 } 3412 3413 #ifndef PRODUCT 3414 // Helpful for debugging RSet issues. 3415 3416 class PrintRSetsClosure : public HeapRegionClosure { 3417 private: 3418 const char* _msg; 3419 size_t _occupied_sum; 3420 3421 public: 3422 bool doHeapRegion(HeapRegion* r) { 3423 HeapRegionRemSet* hrrs = r->rem_set(); 3424 size_t occupied = hrrs->occupied(); 3425 _occupied_sum += occupied; 3426 3427 gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT, 3428 HR_FORMAT_PARAMS(r)); 3429 if (occupied == 0) { 3430 gclog_or_tty->print_cr(" RSet is empty"); 3431 } else { 3432 hrrs->print(); 3433 } 3434 gclog_or_tty->print_cr("----------"); 3435 return false; 3436 } 3437 3438 PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) { 3439 gclog_or_tty->cr(); 3440 gclog_or_tty->print_cr("========================================"); 3441 gclog_or_tty->print_cr("%s", msg); 3442 gclog_or_tty->cr(); 3443 } 3444 3445 ~PrintRSetsClosure() { 3446 gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum); 3447 gclog_or_tty->print_cr("========================================"); 3448 gclog_or_tty->cr(); 3449 } 3450 }; 3451 3452 void G1CollectedHeap::print_cset_rsets() { 3453 PrintRSetsClosure cl("Printing CSet RSets"); 3454 collection_set_iterate(&cl); 3455 } 3456 3457 void G1CollectedHeap::print_all_rsets() { 3458 PrintRSetsClosure cl("Printing All RSets");; 3459 heap_region_iterate(&cl); 3460 } 3461 #endif // PRODUCT 3462 3463 G1CollectedHeap* G1CollectedHeap::heap() { 3464 assert(_sh->kind() == CollectedHeap::G1CollectedHeap, 3465 "not a garbage-first heap"); 3466 return _g1h; 3467 } 3468 3469 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) { 3470 // always_do_update_barrier = false; 3471 assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer"); 3472 // Fill TLAB's and such 3473 accumulate_statistics_all_tlabs(); 3474 ensure_parsability(true); 3475 3476 if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) && 3477 (total_collections() % G1SummarizeRSetStatsPeriod == 0)) { 3478 g1_rem_set()->print_periodic_summary_info("Before GC RS summary"); 3479 } 3480 } 3481 3482 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) { 3483 3484 if (G1SummarizeRSetStats && 3485 (G1SummarizeRSetStatsPeriod > 0) && 3486 // we are at the end of the GC. Total collections has already been increased. 3487 ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) { 3488 g1_rem_set()->print_periodic_summary_info("After GC RS summary"); 3489 } 3490 3491 // FIXME: what is this about? 3492 // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled" 3493 // is set. 3494 COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(), 3495 "derived pointer present")); 3496 // always_do_update_barrier = true; 3497 3498 resize_all_tlabs(); 3499 3500 // We have just completed a GC. Update the soft reference 3501 // policy with the new heap occupancy 3502 Universe::update_heap_info_at_gc(); 3503 } 3504 3505 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size, 3506 unsigned int gc_count_before, 3507 bool* succeeded, 3508 GCCause::Cause gc_cause) { 3509 assert_heap_not_locked_and_not_at_safepoint(); 3510 g1_policy()->record_stop_world_start(); 3511 VM_G1IncCollectionPause op(gc_count_before, 3512 word_size, 3513 false, /* should_initiate_conc_mark */ 3514 g1_policy()->max_pause_time_ms(), 3515 gc_cause); 3516 VMThread::execute(&op); 3517 3518 HeapWord* result = op.result(); 3519 bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded(); 3520 assert(result == NULL || ret_succeeded, 3521 "the result should be NULL if the VM did not succeed"); 3522 *succeeded = ret_succeeded; 3523 3524 assert_heap_not_locked(); 3525 return result; 3526 } 3527 3528 void 3529 G1CollectedHeap::doConcurrentMark() { 3530 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 3531 if (!_cmThread->in_progress()) { 3532 _cmThread->set_started(); 3533 CGC_lock->notify(); 3534 } 3535 } 3536 3537 size_t G1CollectedHeap::pending_card_num() { 3538 size_t extra_cards = 0; 3539 JavaThread *curr = Threads::first(); 3540 while (curr != NULL) { 3541 DirtyCardQueue& dcq = curr->dirty_card_queue(); 3542 extra_cards += dcq.size(); 3543 curr = curr->next(); 3544 } 3545 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 3546 size_t buffer_size = dcqs.buffer_size(); 3547 size_t buffer_num = dcqs.completed_buffers_num(); 3548 3549 // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes 3550 // in bytes - not the number of 'entries'. We need to convert 3551 // into a number of cards. 3552 return (buffer_size * buffer_num + extra_cards) / oopSize; 3553 } 3554 3555 size_t G1CollectedHeap::cards_scanned() { 3556 return g1_rem_set()->cardsScanned(); 3557 } 3558 3559 bool G1CollectedHeap::humongous_region_is_always_live(uint index) { 3560 HeapRegion* region = region_at(index); 3561 assert(region->startsHumongous(), "Must start a humongous object"); 3562 return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty(); 3563 } 3564 3565 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure { 3566 private: 3567 size_t _total_humongous; 3568 size_t _candidate_humongous; 3569 public: 3570 RegisterHumongousWithInCSetFastTestClosure() : _total_humongous(0), _candidate_humongous(0) { 3571 } 3572 3573 virtual bool doHeapRegion(HeapRegion* r) { 3574 if (!r->startsHumongous()) { 3575 return false; 3576 } 3577 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 3578 3579 uint region_idx = r->hrm_index(); 3580 bool is_candidate = !g1h->humongous_region_is_always_live(region_idx); 3581 // Is_candidate already filters out humongous regions with some remembered set. 3582 // This will not lead to humongous object that we mistakenly keep alive because 3583 // during young collection the remembered sets will only be added to. 3584 if (is_candidate) { 3585 g1h->register_humongous_region_with_in_cset_fast_test(region_idx); 3586 _candidate_humongous++; 3587 } 3588 _total_humongous++; 3589 3590 return false; 3591 } 3592 3593 size_t total_humongous() const { return _total_humongous; } 3594 size_t candidate_humongous() const { return _candidate_humongous; } 3595 }; 3596 3597 void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() { 3598 if (!G1ReclaimDeadHumongousObjectsAtYoungGC) { 3599 g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0, 0); 3600 return; 3601 } 3602 3603 RegisterHumongousWithInCSetFastTestClosure cl; 3604 heap_region_iterate(&cl); 3605 g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(cl.total_humongous(), 3606 cl.candidate_humongous()); 3607 _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0; 3608 3609 if (_has_humongous_reclaim_candidates) { 3610 clear_humongous_is_live_table(); 3611 } 3612 } 3613 3614 void 3615 G1CollectedHeap::setup_surviving_young_words() { 3616 assert(_surviving_young_words == NULL, "pre-condition"); 3617 uint array_length = g1_policy()->young_cset_region_length(); 3618 _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC); 3619 if (_surviving_young_words == NULL) { 3620 vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR, 3621 "Not enough space for young surv words summary."); 3622 } 3623 memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t)); 3624 #ifdef ASSERT 3625 for (uint i = 0; i < array_length; ++i) { 3626 assert( _surviving_young_words[i] == 0, "memset above" ); 3627 } 3628 #endif // !ASSERT 3629 } 3630 3631 void 3632 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) { 3633 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); 3634 uint array_length = g1_policy()->young_cset_region_length(); 3635 for (uint i = 0; i < array_length; ++i) { 3636 _surviving_young_words[i] += surv_young_words[i]; 3637 } 3638 } 3639 3640 void 3641 G1CollectedHeap::cleanup_surviving_young_words() { 3642 guarantee( _surviving_young_words != NULL, "pre-condition" ); 3643 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC); 3644 _surviving_young_words = NULL; 3645 } 3646 3647 #ifdef ASSERT 3648 class VerifyCSetClosure: public HeapRegionClosure { 3649 public: 3650 bool doHeapRegion(HeapRegion* hr) { 3651 // Here we check that the CSet region's RSet is ready for parallel 3652 // iteration. The fields that we'll verify are only manipulated 3653 // when the region is part of a CSet and is collected. Afterwards, 3654 // we reset these fields when we clear the region's RSet (when the 3655 // region is freed) so they are ready when the region is 3656 // re-allocated. The only exception to this is if there's an 3657 // evacuation failure and instead of freeing the region we leave 3658 // it in the heap. In that case, we reset these fields during 3659 // evacuation failure handling. 3660 guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification"); 3661 3662 // Here's a good place to add any other checks we'd like to 3663 // perform on CSet regions. 3664 return false; 3665 } 3666 }; 3667 #endif // ASSERT 3668 3669 #if TASKQUEUE_STATS 3670 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) { 3671 st->print_raw_cr("GC Task Stats"); 3672 st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr(); 3673 st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr(); 3674 } 3675 3676 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const { 3677 print_taskqueue_stats_hdr(st); 3678 3679 TaskQueueStats totals; 3680 const int n = workers() != NULL ? workers()->total_workers() : 1; 3681 for (int i = 0; i < n; ++i) { 3682 st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr(); 3683 totals += task_queue(i)->stats; 3684 } 3685 st->print_raw("tot "); totals.print(st); st->cr(); 3686 3687 DEBUG_ONLY(totals.verify()); 3688 } 3689 3690 void G1CollectedHeap::reset_taskqueue_stats() { 3691 const int n = workers() != NULL ? workers()->total_workers() : 1; 3692 for (int i = 0; i < n; ++i) { 3693 task_queue(i)->stats.reset(); 3694 } 3695 } 3696 #endif // TASKQUEUE_STATS 3697 3698 void G1CollectedHeap::log_gc_header() { 3699 if (!G1Log::fine()) { 3700 return; 3701 } 3702 3703 gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id()); 3704 3705 GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause()) 3706 .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)") 3707 .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : ""); 3708 3709 gclog_or_tty->print("[%s", (const char*)gc_cause_str); 3710 } 3711 3712 void G1CollectedHeap::log_gc_footer(double pause_time_sec) { 3713 if (!G1Log::fine()) { 3714 return; 3715 } 3716 3717 if (G1Log::finer()) { 3718 if (evacuation_failed()) { 3719 gclog_or_tty->print(" (to-space exhausted)"); 3720 } 3721 gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec); 3722 g1_policy()->phase_times()->note_gc_end(); 3723 g1_policy()->phase_times()->print(pause_time_sec); 3724 g1_policy()->print_detailed_heap_transition(); 3725 } else { 3726 if (evacuation_failed()) { 3727 gclog_or_tty->print("--"); 3728 } 3729 g1_policy()->print_heap_transition(); 3730 gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec); 3731 } 3732 gclog_or_tty->flush(); 3733 } 3734 3735 bool 3736 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) { 3737 assert_at_safepoint(true /* should_be_vm_thread */); 3738 guarantee(!is_gc_active(), "collection is not reentrant"); 3739 3740 if (GC_locker::check_active_before_gc()) { 3741 return false; 3742 } 3743 3744 _gc_timer_stw->register_gc_start(); 3745 3746 _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start()); 3747 3748 SvcGCMarker sgcm(SvcGCMarker::MINOR); 3749 ResourceMark rm; 3750 3751 print_heap_before_gc(); 3752 trace_heap_before_gc(_gc_tracer_stw); 3753 3754 verify_region_sets_optional(); 3755 verify_dirty_young_regions(); 3756 3757 // This call will decide whether this pause is an initial-mark 3758 // pause. If it is, during_initial_mark_pause() will return true 3759 // for the duration of this pause. 3760 g1_policy()->decide_on_conc_mark_initiation(); 3761 3762 // We do not allow initial-mark to be piggy-backed on a mixed GC. 3763 assert(!g1_policy()->during_initial_mark_pause() || 3764 g1_policy()->gcs_are_young(), "sanity"); 3765 3766 // We also do not allow mixed GCs during marking. 3767 assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity"); 3768 3769 // Record whether this pause is an initial mark. When the current 3770 // thread has completed its logging output and it's safe to signal 3771 // the CM thread, the flag's value in the policy has been reset. 3772 bool should_start_conc_mark = g1_policy()->during_initial_mark_pause(); 3773 3774 // Inner scope for scope based logging, timers, and stats collection 3775 { 3776 EvacuationInfo evacuation_info; 3777 3778 if (g1_policy()->during_initial_mark_pause()) { 3779 // We are about to start a marking cycle, so we increment the 3780 // full collection counter. 3781 increment_old_marking_cycles_started(); 3782 register_concurrent_cycle_start(_gc_timer_stw->gc_start()); 3783 } 3784 3785 _gc_tracer_stw->report_yc_type(yc_type()); 3786 3787 TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty); 3788 3789 int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ? 3790 workers()->active_workers() : 1); 3791 double pause_start_sec = os::elapsedTime(); 3792 g1_policy()->phase_times()->note_gc_start(active_workers); 3793 log_gc_header(); 3794 3795 TraceCollectorStats tcs(g1mm()->incremental_collection_counters()); 3796 TraceMemoryManagerStats tms(false /* fullGC */, gc_cause()); 3797 3798 // If the secondary_free_list is not empty, append it to the 3799 // free_list. No need to wait for the cleanup operation to finish; 3800 // the region allocation code will check the secondary_free_list 3801 // and wait if necessary. If the G1StressConcRegionFreeing flag is 3802 // set, skip this step so that the region allocation code has to 3803 // get entries from the secondary_free_list. 3804 if (!G1StressConcRegionFreeing) { 3805 append_secondary_free_list_if_not_empty_with_lock(); 3806 } 3807 3808 assert(check_young_list_well_formed(), "young list should be well formed"); 3809 3810 // Don't dynamically change the number of GC threads this early. A value of 3811 // 0 is used to indicate serial work. When parallel work is done, 3812 // it will be set. 3813 3814 { // Call to jvmpi::post_class_unload_events must occur outside of active GC 3815 IsGCActiveMark x; 3816 3817 gc_prologue(false); 3818 increment_total_collections(false /* full gc */); 3819 increment_gc_time_stamp(); 3820 3821 verify_before_gc(); 3822 3823 check_bitmaps("GC Start"); 3824 3825 COMPILER2_PRESENT(DerivedPointerTable::clear()); 3826 3827 // Please see comment in g1CollectedHeap.hpp and 3828 // G1CollectedHeap::ref_processing_init() to see how 3829 // reference processing currently works in G1. 3830 3831 // Enable discovery in the STW reference processor 3832 ref_processor_stw()->enable_discovery(true /*verify_disabled*/, 3833 true /*verify_no_refs*/); 3834 3835 { 3836 // We want to temporarily turn off discovery by the 3837 // CM ref processor, if necessary, and turn it back on 3838 // on again later if we do. Using a scoped 3839 // NoRefDiscovery object will do this. 3840 NoRefDiscovery no_cm_discovery(ref_processor_cm()); 3841 3842 // Forget the current alloc region (we might even choose it to be part 3843 // of the collection set!). 3844 release_mutator_alloc_region(); 3845 3846 // We should call this after we retire the mutator alloc 3847 // region(s) so that all the ALLOC / RETIRE events are generated 3848 // before the start GC event. 3849 _hr_printer.start_gc(false /* full */, (size_t) total_collections()); 3850 3851 // This timing is only used by the ergonomics to handle our pause target. 3852 // It is unclear why this should not include the full pause. We will 3853 // investigate this in CR 7178365. 3854 // 3855 // Preserving the old comment here if that helps the investigation: 3856 // 3857 // The elapsed time induced by the start time below deliberately elides 3858 // the possible verification above. 3859 double sample_start_time_sec = os::elapsedTime(); 3860 3861 #if YOUNG_LIST_VERBOSE 3862 gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:"); 3863 _young_list->print(); 3864 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); 3865 #endif // YOUNG_LIST_VERBOSE 3866 3867 g1_policy()->record_collection_pause_start(sample_start_time_sec); 3868 3869 double scan_wait_start = os::elapsedTime(); 3870 // We have to wait until the CM threads finish scanning the 3871 // root regions as it's the only way to ensure that all the 3872 // objects on them have been correctly scanned before we start 3873 // moving them during the GC. 3874 bool waited = _cm->root_regions()->wait_until_scan_finished(); 3875 double wait_time_ms = 0.0; 3876 if (waited) { 3877 double scan_wait_end = os::elapsedTime(); 3878 wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0; 3879 } 3880 g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms); 3881 3882 #if YOUNG_LIST_VERBOSE 3883 gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:"); 3884 _young_list->print(); 3885 #endif // YOUNG_LIST_VERBOSE 3886 3887 if (g1_policy()->during_initial_mark_pause()) { 3888 concurrent_mark()->checkpointRootsInitialPre(); 3889 } 3890 3891 #if YOUNG_LIST_VERBOSE 3892 gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:"); 3893 _young_list->print(); 3894 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); 3895 #endif // YOUNG_LIST_VERBOSE 3896 3897 g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info); 3898 3899 register_humongous_regions_with_in_cset_fast_test(); 3900 3901 _cm->note_start_of_gc(); 3902 // We should not verify the per-thread SATB buffers given that 3903 // we have not filtered them yet (we'll do so during the 3904 // GC). We also call this after finalize_cset() to 3905 // ensure that the CSet has been finalized. 3906 _cm->verify_no_cset_oops(true /* verify_stacks */, 3907 true /* verify_enqueued_buffers */, 3908 false /* verify_thread_buffers */, 3909 true /* verify_fingers */); 3910 3911 if (_hr_printer.is_active()) { 3912 HeapRegion* hr = g1_policy()->collection_set(); 3913 while (hr != NULL) { 3914 G1HRPrinter::RegionType type; 3915 if (!hr->is_young()) { 3916 type = G1HRPrinter::Old; 3917 } else if (hr->is_survivor()) { 3918 type = G1HRPrinter::Survivor; 3919 } else { 3920 type = G1HRPrinter::Eden; 3921 } 3922 _hr_printer.cset(hr); 3923 hr = hr->next_in_collection_set(); 3924 } 3925 } 3926 3927 #ifdef ASSERT 3928 VerifyCSetClosure cl; 3929 collection_set_iterate(&cl); 3930 #endif // ASSERT 3931 3932 setup_surviving_young_words(); 3933 3934 // Initialize the GC alloc regions. 3935 init_gc_alloc_regions(evacuation_info); 3936 3937 // Actually do the work... 3938 evacuate_collection_set(evacuation_info); 3939 3940 // We do this to mainly verify the per-thread SATB buffers 3941 // (which have been filtered by now) since we didn't verify 3942 // them earlier. No point in re-checking the stacks / enqueued 3943 // buffers given that the CSet has not changed since last time 3944 // we checked. 3945 _cm->verify_no_cset_oops(false /* verify_stacks */, 3946 false /* verify_enqueued_buffers */, 3947 true /* verify_thread_buffers */, 3948 true /* verify_fingers */); 3949 3950 free_collection_set(g1_policy()->collection_set(), evacuation_info); 3951 3952 eagerly_reclaim_humongous_regions(); 3953 3954 g1_policy()->clear_collection_set(); 3955 3956 cleanup_surviving_young_words(); 3957 3958 // Start a new incremental collection set for the next pause. 3959 g1_policy()->start_incremental_cset_building(); 3960 3961 clear_cset_fast_test(); 3962 3963 _young_list->reset_sampled_info(); 3964 3965 // Don't check the whole heap at this point as the 3966 // GC alloc regions from this pause have been tagged 3967 // as survivors and moved on to the survivor list. 3968 // Survivor regions will fail the !is_young() check. 3969 assert(check_young_list_empty(false /* check_heap */), 3970 "young list should be empty"); 3971 3972 #if YOUNG_LIST_VERBOSE 3973 gclog_or_tty->print_cr("Before recording survivors.\nYoung List:"); 3974 _young_list->print(); 3975 #endif // YOUNG_LIST_VERBOSE 3976 3977 g1_policy()->record_survivor_regions(_young_list->survivor_length(), 3978 _young_list->first_survivor_region(), 3979 _young_list->last_survivor_region()); 3980 3981 _young_list->reset_auxilary_lists(); 3982 3983 if (evacuation_failed()) { 3984 _summary_bytes_used = recalculate_used(); 3985 uint n_queues = MAX2((int)ParallelGCThreads, 1); 3986 for (uint i = 0; i < n_queues; i++) { 3987 if (_evacuation_failed_info_array[i].has_failed()) { 3988 _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]); 3989 } 3990 } 3991 } else { 3992 // The "used" of the the collection set have already been subtracted 3993 // when they were freed. Add in the bytes evacuated. 3994 _summary_bytes_used += g1_policy()->bytes_copied_during_gc(); 3995 } 3996 3997 if (g1_policy()->during_initial_mark_pause()) { 3998 // We have to do this before we notify the CM threads that 3999 // they can start working to make sure that all the 4000 // appropriate initialization is done on the CM object. 4001 concurrent_mark()->checkpointRootsInitialPost(); 4002 set_marking_started(); 4003 // Note that we don't actually trigger the CM thread at 4004 // this point. We do that later when we're sure that 4005 // the current thread has completed its logging output. 4006 } 4007 4008 allocate_dummy_regions(); 4009 4010 #if YOUNG_LIST_VERBOSE 4011 gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:"); 4012 _young_list->print(); 4013 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); 4014 #endif // YOUNG_LIST_VERBOSE 4015 4016 init_mutator_alloc_region(); 4017 4018 { 4019 size_t expand_bytes = g1_policy()->expansion_amount(); 4020 if (expand_bytes > 0) { 4021 size_t bytes_before = capacity(); 4022 // No need for an ergo verbose message here, 4023 // expansion_amount() does this when it returns a value > 0. 4024 if (!expand(expand_bytes)) { 4025 // We failed to expand the heap. Cannot do anything about it. 4026 } 4027 } 4028 } 4029 4030 // We redo the verification but now wrt to the new CSet which 4031 // has just got initialized after the previous CSet was freed. 4032 _cm->verify_no_cset_oops(true /* verify_stacks */, 4033 true /* verify_enqueued_buffers */, 4034 true /* verify_thread_buffers */, 4035 true /* verify_fingers */); 4036 _cm->note_end_of_gc(); 4037 4038 // This timing is only used by the ergonomics to handle our pause target. 4039 // It is unclear why this should not include the full pause. We will 4040 // investigate this in CR 7178365. 4041 double sample_end_time_sec = os::elapsedTime(); 4042 double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS; 4043 g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info); 4044 4045 MemoryService::track_memory_usage(); 4046 4047 // In prepare_for_verify() below we'll need to scan the deferred 4048 // update buffers to bring the RSets up-to-date if 4049 // G1HRRSFlushLogBuffersOnVerify has been set. While scanning 4050 // the update buffers we'll probably need to scan cards on the 4051 // regions we just allocated to (i.e., the GC alloc 4052 // regions). However, during the last GC we called 4053 // set_saved_mark() on all the GC alloc regions, so card 4054 // scanning might skip the [saved_mark_word()...top()] area of 4055 // those regions (i.e., the area we allocated objects into 4056 // during the last GC). But it shouldn't. Given that 4057 // saved_mark_word() is conditional on whether the GC time stamp 4058 // on the region is current or not, by incrementing the GC time 4059 // stamp here we invalidate all the GC time stamps on all the 4060 // regions and saved_mark_word() will simply return top() for 4061 // all the regions. This is a nicer way of ensuring this rather 4062 // than iterating over the regions and fixing them. In fact, the 4063 // GC time stamp increment here also ensures that 4064 // saved_mark_word() will return top() between pauses, i.e., 4065 // during concurrent refinement. So we don't need the 4066 // is_gc_active() check to decided which top to use when 4067 // scanning cards (see CR 7039627). 4068 increment_gc_time_stamp(); 4069 4070 verify_after_gc(); 4071 check_bitmaps("GC End"); 4072 4073 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 4074 ref_processor_stw()->verify_no_references_recorded(); 4075 4076 // CM reference discovery will be re-enabled if necessary. 4077 } 4078 4079 // We should do this after we potentially expand the heap so 4080 // that all the COMMIT events are generated before the end GC 4081 // event, and after we retire the GC alloc regions so that all 4082 // RETIRE events are generated before the end GC event. 4083 _hr_printer.end_gc(false /* full */, (size_t) total_collections()); 4084 4085 #ifdef TRACESPINNING 4086 ParallelTaskTerminator::print_termination_counts(); 4087 #endif 4088 4089 gc_epilogue(false); 4090 } 4091 4092 // Print the remainder of the GC log output. 4093 log_gc_footer(os::elapsedTime() - pause_start_sec); 4094 4095 // It is not yet to safe to tell the concurrent mark to 4096 // start as we have some optional output below. We don't want the 4097 // output from the concurrent mark thread interfering with this 4098 // logging output either. 4099 4100 _hrm.verify_optional(); 4101 verify_region_sets_optional(); 4102 4103 TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats()); 4104 TASKQUEUE_STATS_ONLY(reset_taskqueue_stats()); 4105 4106 print_heap_after_gc(); 4107 trace_heap_after_gc(_gc_tracer_stw); 4108 4109 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 4110 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 4111 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 4112 // before any GC notifications are raised. 4113 g1mm()->update_sizes(); 4114 4115 _gc_tracer_stw->report_evacuation_info(&evacuation_info); 4116 _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold()); 4117 _gc_timer_stw->register_gc_end(); 4118 _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions()); 4119 } 4120 // It should now be safe to tell the concurrent mark thread to start 4121 // without its logging output interfering with the logging output 4122 // that came from the pause. 4123 4124 if (should_start_conc_mark) { 4125 // CAUTION: after the doConcurrentMark() call below, 4126 // the concurrent marking thread(s) could be running 4127 // concurrently with us. Make sure that anything after 4128 // this point does not assume that we are the only GC thread 4129 // running. Note: of course, the actual marking work will 4130 // not start until the safepoint itself is released in 4131 // SuspendibleThreadSet::desynchronize(). 4132 doConcurrentMark(); 4133 } 4134 4135 return true; 4136 } 4137 4138 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose) 4139 { 4140 size_t gclab_word_size; 4141 switch (purpose) { 4142 case GCAllocForSurvived: 4143 gclab_word_size = _survivor_plab_stats.desired_plab_sz(); 4144 break; 4145 case GCAllocForTenured: 4146 gclab_word_size = _old_plab_stats.desired_plab_sz(); 4147 break; 4148 default: 4149 assert(false, "unknown GCAllocPurpose"); 4150 gclab_word_size = _old_plab_stats.desired_plab_sz(); 4151 break; 4152 } 4153 4154 // Prevent humongous PLAB sizes for two reasons: 4155 // * PLABs are allocated using a similar paths as oops, but should 4156 // never be in a humongous region 4157 // * Allowing humongous PLABs needlessly churns the region free lists 4158 return MIN2(_humongous_object_threshold_in_words, gclab_word_size); 4159 } 4160 4161 void G1CollectedHeap::init_mutator_alloc_region() { 4162 assert(_mutator_alloc_region.get() == NULL, "pre-condition"); 4163 _mutator_alloc_region.init(); 4164 } 4165 4166 void G1CollectedHeap::release_mutator_alloc_region() { 4167 _mutator_alloc_region.release(); 4168 assert(_mutator_alloc_region.get() == NULL, "post-condition"); 4169 } 4170 4171 void G1CollectedHeap::use_retained_old_gc_alloc_region(EvacuationInfo& evacuation_info) { 4172 HeapRegion* retained_region = _retained_old_gc_alloc_region; 4173 _retained_old_gc_alloc_region = NULL; 4174 4175 // We will discard the current GC alloc region if: 4176 // a) it's in the collection set (it can happen!), 4177 // b) it's already full (no point in using it), 4178 // c) it's empty (this means that it was emptied during 4179 // a cleanup and it should be on the free list now), or 4180 // d) it's humongous (this means that it was emptied 4181 // during a cleanup and was added to the free list, but 4182 // has been subsequently used to allocate a humongous 4183 // object that may be less than the region size). 4184 if (retained_region != NULL && 4185 !retained_region->in_collection_set() && 4186 !(retained_region->top() == retained_region->end()) && 4187 !retained_region->is_empty() && 4188 !retained_region->isHumongous()) { 4189 retained_region->record_top_and_timestamp(); 4190 // The retained region was added to the old region set when it was 4191 // retired. We have to remove it now, since we don't allow regions 4192 // we allocate to in the region sets. We'll re-add it later, when 4193 // it's retired again. 4194 _old_set.remove(retained_region); 4195 bool during_im = g1_policy()->during_initial_mark_pause(); 4196 retained_region->note_start_of_copying(during_im); 4197 _old_gc_alloc_region.set(retained_region); 4198 _hr_printer.reuse(retained_region); 4199 evacuation_info.set_alloc_regions_used_before(retained_region->used()); 4200 } 4201 } 4202 4203 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) { 4204 assert_at_safepoint(true /* should_be_vm_thread */); 4205 4206 _survivor_gc_alloc_region.init(); 4207 _old_gc_alloc_region.init(); 4208 4209 use_retained_old_gc_alloc_region(evacuation_info); 4210 } 4211 4212 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) { 4213 evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() + 4214 _old_gc_alloc_region.count()); 4215 _survivor_gc_alloc_region.release(); 4216 // If we have an old GC alloc region to release, we'll save it in 4217 // _retained_old_gc_alloc_region. If we don't 4218 // _retained_old_gc_alloc_region will become NULL. This is what we 4219 // want either way so no reason to check explicitly for either 4220 // condition. 4221 _retained_old_gc_alloc_region = _old_gc_alloc_region.release(); 4222 4223 if (ResizePLAB) { 4224 _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers); 4225 _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers); 4226 } 4227 } 4228 4229 void G1CollectedHeap::abandon_gc_alloc_regions() { 4230 assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition"); 4231 assert(_old_gc_alloc_region.get() == NULL, "pre-condition"); 4232 _retained_old_gc_alloc_region = NULL; 4233 } 4234 4235 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) { 4236 _drain_in_progress = false; 4237 set_evac_failure_closure(cl); 4238 _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true); 4239 } 4240 4241 void G1CollectedHeap::finalize_for_evac_failure() { 4242 assert(_evac_failure_scan_stack != NULL && 4243 _evac_failure_scan_stack->length() == 0, 4244 "Postcondition"); 4245 assert(!_drain_in_progress, "Postcondition"); 4246 delete _evac_failure_scan_stack; 4247 _evac_failure_scan_stack = NULL; 4248 } 4249 4250 void G1CollectedHeap::remove_self_forwarding_pointers() { 4251 double remove_self_forwards_start = os::elapsedTime(); 4252 4253 HeapRegionClaimer hrclaimer; 4254 G1ParRemoveSelfForwardPtrsTask rsfp_task(this, &hrclaimer); 4255 4256 if (G1CollectedHeap::use_parallel_gc_threads()) { 4257 set_par_threads(); 4258 hrclaimer.initialize(workers()->active_workers()); 4259 workers()->run_task(&rsfp_task); 4260 set_par_threads(0); 4261 } else { 4262 rsfp_task.work(0); 4263 } 4264 4265 // Now restore saved marks, if any. 4266 assert(_objs_with_preserved_marks.size() == 4267 _preserved_marks_of_objs.size(), "Both or none."); 4268 while (!_objs_with_preserved_marks.is_empty()) { 4269 oop obj = _objs_with_preserved_marks.pop(); 4270 markOop m = _preserved_marks_of_objs.pop(); 4271 obj->set_mark(m); 4272 } 4273 _objs_with_preserved_marks.clear(true); 4274 _preserved_marks_of_objs.clear(true); 4275 4276 g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0); 4277 } 4278 4279 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) { 4280 _evac_failure_scan_stack->push(obj); 4281 } 4282 4283 void G1CollectedHeap::drain_evac_failure_scan_stack() { 4284 assert(_evac_failure_scan_stack != NULL, "precondition"); 4285 4286 while (_evac_failure_scan_stack->length() > 0) { 4287 oop obj = _evac_failure_scan_stack->pop(); 4288 _evac_failure_closure->set_region(heap_region_containing(obj)); 4289 obj->oop_iterate_backwards(_evac_failure_closure); 4290 } 4291 } 4292 4293 oop 4294 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, 4295 oop old) { 4296 assert(obj_in_cs(old), 4297 err_msg("obj: "PTR_FORMAT" should still be in the CSet", 4298 (HeapWord*) old)); 4299 markOop m = old->mark(); 4300 oop forward_ptr = old->forward_to_atomic(old); 4301 if (forward_ptr == NULL) { 4302 // Forward-to-self succeeded. 4303 assert(_par_scan_state != NULL, "par scan state"); 4304 OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure(); 4305 uint queue_num = _par_scan_state->queue_num(); 4306 4307 _evacuation_failed = true; 4308 _evacuation_failed_info_array[queue_num].register_copy_failure(old->size()); 4309 if (_evac_failure_closure != cl) { 4310 MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag); 4311 assert(!_drain_in_progress, 4312 "Should only be true while someone holds the lock."); 4313 // Set the global evac-failure closure to the current thread's. 4314 assert(_evac_failure_closure == NULL, "Or locking has failed."); 4315 set_evac_failure_closure(cl); 4316 // Now do the common part. 4317 handle_evacuation_failure_common(old, m); 4318 // Reset to NULL. 4319 set_evac_failure_closure(NULL); 4320 } else { 4321 // The lock is already held, and this is recursive. 4322 assert(_drain_in_progress, "This should only be the recursive case."); 4323 handle_evacuation_failure_common(old, m); 4324 } 4325 return old; 4326 } else { 4327 // Forward-to-self failed. Either someone else managed to allocate 4328 // space for this object (old != forward_ptr) or they beat us in 4329 // self-forwarding it (old == forward_ptr). 4330 assert(old == forward_ptr || !obj_in_cs(forward_ptr), 4331 err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" " 4332 "should not be in the CSet", 4333 (HeapWord*) old, (HeapWord*) forward_ptr)); 4334 return forward_ptr; 4335 } 4336 } 4337 4338 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) { 4339 preserve_mark_if_necessary(old, m); 4340 4341 HeapRegion* r = heap_region_containing(old); 4342 if (!r->evacuation_failed()) { 4343 r->set_evacuation_failed(true); 4344 _hr_printer.evac_failure(r); 4345 } 4346 4347 push_on_evac_failure_scan_stack(old); 4348 4349 if (!_drain_in_progress) { 4350 // prevent recursion in copy_to_survivor_space() 4351 _drain_in_progress = true; 4352 drain_evac_failure_scan_stack(); 4353 _drain_in_progress = false; 4354 } 4355 } 4356 4357 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) { 4358 assert(evacuation_failed(), "Oversaving!"); 4359 // We want to call the "for_promotion_failure" version only in the 4360 // case of a promotion failure. 4361 if (m->must_be_preserved_for_promotion_failure(obj)) { 4362 _objs_with_preserved_marks.push(obj); 4363 _preserved_marks_of_objs.push(m); 4364 } 4365 } 4366 4367 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose, 4368 size_t word_size) { 4369 if (purpose == GCAllocForSurvived) { 4370 HeapWord* result = survivor_attempt_allocation(word_size); 4371 if (result != NULL) { 4372 return result; 4373 } else { 4374 // Let's try to allocate in the old gen in case we can fit the 4375 // object there. 4376 return old_attempt_allocation(word_size); 4377 } 4378 } else { 4379 assert(purpose == GCAllocForTenured, "sanity"); 4380 HeapWord* result = old_attempt_allocation(word_size); 4381 if (result != NULL) { 4382 return result; 4383 } else { 4384 // Let's try to allocate in the survivors in case we can fit the 4385 // object there. 4386 return survivor_attempt_allocation(word_size); 4387 } 4388 } 4389 4390 ShouldNotReachHere(); 4391 // Trying to keep some compilers happy. 4392 return NULL; 4393 } 4394 4395 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) : 4396 ParGCAllocBuffer(gclab_word_size), _retired(true) { } 4397 4398 void G1ParCopyHelper::mark_object(oop obj) { 4399 assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet"); 4400 4401 // We know that the object is not moving so it's safe to read its size. 4402 _cm->grayRoot(obj, (size_t) obj->size(), _worker_id); 4403 } 4404 4405 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) { 4406 assert(from_obj->is_forwarded(), "from obj should be forwarded"); 4407 assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee"); 4408 assert(from_obj != to_obj, "should not be self-forwarded"); 4409 4410 assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet"); 4411 assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet"); 4412 4413 // The object might be in the process of being copied by another 4414 // worker so we cannot trust that its to-space image is 4415 // well-formed. So we have to read its size from its from-space 4416 // image which we know should not be changing. 4417 _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id); 4418 } 4419 4420 template <class T> 4421 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) { 4422 if (_g1->heap_region_containing_raw(new_obj)->is_young()) { 4423 _scanned_klass->record_modified_oops(); 4424 } 4425 } 4426 4427 template <G1Barrier barrier, G1Mark do_mark_object> 4428 template <class T> 4429 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) { 4430 T heap_oop = oopDesc::load_heap_oop(p); 4431 4432 if (oopDesc::is_null(heap_oop)) { 4433 return; 4434 } 4435 4436 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 4437 4438 assert(_worker_id == _par_scan_state->queue_num(), "sanity"); 4439 4440 G1CollectedHeap::in_cset_state_t state = _g1->in_cset_state(obj); 4441 4442 if (state == G1CollectedHeap::InCSet) { 4443 oop forwardee; 4444 if (obj->is_forwarded()) { 4445 forwardee = obj->forwardee(); 4446 } else { 4447 forwardee = _par_scan_state->copy_to_survivor_space(obj); 4448 } 4449 assert(forwardee != NULL, "forwardee should not be NULL"); 4450 oopDesc::encode_store_heap_oop(p, forwardee); 4451 if (do_mark_object != G1MarkNone && forwardee != obj) { 4452 // If the object is self-forwarded we don't need to explicitly 4453 // mark it, the evacuation failure protocol will do so. 4454 mark_forwarded_object(obj, forwardee); 4455 } 4456 4457 if (barrier == G1BarrierKlass) { 4458 do_klass_barrier(p, forwardee); 4459 } 4460 } else { 4461 if (state == G1CollectedHeap::IsHumongous) { 4462 _g1->set_humongous_is_live(obj); 4463 } 4464 // The object is not in collection set. If we're a root scanning 4465 // closure during an initial mark pause then attempt to mark the object. 4466 if (do_mark_object == G1MarkFromRoot) { 4467 mark_object(obj); 4468 } 4469 } 4470 4471 if (barrier == G1BarrierEvac) { 4472 _par_scan_state->update_rs(_from, p, _worker_id); 4473 } 4474 } 4475 4476 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p); 4477 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p); 4478 4479 class G1ParEvacuateFollowersClosure : public VoidClosure { 4480 protected: 4481 G1CollectedHeap* _g1h; 4482 G1ParScanThreadState* _par_scan_state; 4483 RefToScanQueueSet* _queues; 4484 ParallelTaskTerminator* _terminator; 4485 4486 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 4487 RefToScanQueueSet* queues() { return _queues; } 4488 ParallelTaskTerminator* terminator() { return _terminator; } 4489 4490 public: 4491 G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h, 4492 G1ParScanThreadState* par_scan_state, 4493 RefToScanQueueSet* queues, 4494 ParallelTaskTerminator* terminator) 4495 : _g1h(g1h), _par_scan_state(par_scan_state), 4496 _queues(queues), _terminator(terminator) {} 4497 4498 void do_void(); 4499 4500 private: 4501 inline bool offer_termination(); 4502 }; 4503 4504 bool G1ParEvacuateFollowersClosure::offer_termination() { 4505 G1ParScanThreadState* const pss = par_scan_state(); 4506 pss->start_term_time(); 4507 const bool res = terminator()->offer_termination(); 4508 pss->end_term_time(); 4509 return res; 4510 } 4511 4512 void G1ParEvacuateFollowersClosure::do_void() { 4513 G1ParScanThreadState* const pss = par_scan_state(); 4514 pss->trim_queue(); 4515 do { 4516 pss->steal_and_trim_queue(queues()); 4517 } while (!offer_termination()); 4518 } 4519 4520 class G1KlassScanClosure : public KlassClosure { 4521 G1ParCopyHelper* _closure; 4522 bool _process_only_dirty; 4523 int _count; 4524 public: 4525 G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty) 4526 : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {} 4527 void do_klass(Klass* klass) { 4528 // If the klass has not been dirtied we know that there's 4529 // no references into the young gen and we can skip it. 4530 if (!_process_only_dirty || klass->has_modified_oops()) { 4531 // Clean the klass since we're going to scavenge all the metadata. 4532 klass->clear_modified_oops(); 4533 4534 // Tell the closure that this klass is the Klass to scavenge 4535 // and is the one to dirty if oops are left pointing into the young gen. 4536 _closure->set_scanned_klass(klass); 4537 4538 klass->oops_do(_closure); 4539 4540 _closure->set_scanned_klass(NULL); 4541 } 4542 _count++; 4543 } 4544 }; 4545 4546 class G1CodeBlobClosure : public CodeBlobClosure { 4547 class HeapRegionGatheringOopClosure : public OopClosure { 4548 G1CollectedHeap* _g1h; 4549 OopClosure* _work; 4550 nmethod* _nm; 4551 4552 template <typename T> 4553 void do_oop_work(T* p) { 4554 _work->do_oop(p); 4555 T oop_or_narrowoop = oopDesc::load_heap_oop(p); 4556 if (!oopDesc::is_null(oop_or_narrowoop)) { 4557 oop o = oopDesc::decode_heap_oop_not_null(oop_or_narrowoop); 4558 HeapRegion* hr = _g1h->heap_region_containing_raw(o); 4559 assert(!_g1h->obj_in_cs(o) || hr->rem_set()->strong_code_roots_list_contains(_nm), "if o still in CS then evacuation failed and nm must already be in the remset"); 4560 hr->add_strong_code_root(_nm); 4561 } 4562 } 4563 4564 public: 4565 HeapRegionGatheringOopClosure(OopClosure* oc) : _g1h(G1CollectedHeap::heap()), _work(oc), _nm(NULL) {} 4566 4567 void do_oop(oop* o) { 4568 do_oop_work(o); 4569 } 4570 4571 void do_oop(narrowOop* o) { 4572 do_oop_work(o); 4573 } 4574 4575 void set_nm(nmethod* nm) { 4576 _nm = nm; 4577 } 4578 }; 4579 4580 HeapRegionGatheringOopClosure _oc; 4581 public: 4582 G1CodeBlobClosure(OopClosure* oc) : _oc(oc) {} 4583 4584 void do_code_blob(CodeBlob* cb) { 4585 nmethod* nm = cb->as_nmethod_or_null(); 4586 if (nm != NULL) { 4587 if (!nm->test_set_oops_do_mark()) { 4588 _oc.set_nm(nm); 4589 nm->oops_do(&_oc); 4590 nm->fix_oop_relocations(); 4591 } 4592 } 4593 } 4594 }; 4595 4596 class G1ParTask : public AbstractGangTask { 4597 protected: 4598 G1CollectedHeap* _g1h; 4599 RefToScanQueueSet *_queues; 4600 ParallelTaskTerminator _terminator; 4601 uint _n_workers; 4602 4603 Mutex _stats_lock; 4604 Mutex* stats_lock() { return &_stats_lock; } 4605 4606 public: 4607 G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues) 4608 : AbstractGangTask("G1 collection"), 4609 _g1h(g1h), 4610 _queues(task_queues), 4611 _terminator(0, _queues), 4612 _stats_lock(Mutex::leaf, "parallel G1 stats lock", true) 4613 {} 4614 4615 RefToScanQueueSet* queues() { return _queues; } 4616 4617 RefToScanQueue *work_queue(int i) { 4618 return queues()->queue(i); 4619 } 4620 4621 ParallelTaskTerminator* terminator() { return &_terminator; } 4622 4623 virtual void set_for_termination(int active_workers) { 4624 // This task calls set_n_termination() in par_non_clean_card_iterate_work() 4625 // in the young space (_par_seq_tasks) in the G1 heap 4626 // for SequentialSubTasksDone. 4627 // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap 4628 // both of which need setting by set_n_termination(). 4629 _g1h->SharedHeap::set_n_termination(active_workers); 4630 _g1h->set_n_termination(active_workers); 4631 terminator()->reset_for_reuse(active_workers); 4632 _n_workers = active_workers; 4633 } 4634 4635 // Helps out with CLD processing. 4636 // 4637 // During InitialMark we need to: 4638 // 1) Scavenge all CLDs for the young GC. 4639 // 2) Mark all objects directly reachable from strong CLDs. 4640 template <G1Mark do_mark_object> 4641 class G1CLDClosure : public CLDClosure { 4642 G1ParCopyClosure<G1BarrierNone, do_mark_object>* _oop_closure; 4643 G1ParCopyClosure<G1BarrierKlass, do_mark_object> _oop_in_klass_closure; 4644 G1KlassScanClosure _klass_in_cld_closure; 4645 bool _claim; 4646 4647 public: 4648 G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure, 4649 bool only_young, bool claim) 4650 : _oop_closure(oop_closure), 4651 _oop_in_klass_closure(oop_closure->g1(), 4652 oop_closure->pss(), 4653 oop_closure->rp()), 4654 _klass_in_cld_closure(&_oop_in_klass_closure, only_young), 4655 _claim(claim) { 4656 4657 } 4658 4659 void do_cld(ClassLoaderData* cld) { 4660 cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim); 4661 } 4662 }; 4663 4664 void work(uint worker_id) { 4665 if (worker_id >= _n_workers) return; // no work needed this round 4666 4667 double start_time_ms = os::elapsedTime() * 1000.0; 4668 _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms); 4669 4670 { 4671 ResourceMark rm; 4672 HandleMark hm; 4673 4674 ReferenceProcessor* rp = _g1h->ref_processor_stw(); 4675 4676 G1ParScanThreadState pss(_g1h, worker_id, rp); 4677 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp); 4678 4679 pss.set_evac_failure_closure(&evac_failure_cl); 4680 4681 bool only_young = _g1h->g1_policy()->gcs_are_young(); 4682 4683 // Non-IM young GC. 4684 G1ParCopyClosure<G1BarrierNone, G1MarkNone> scan_only_root_cl(_g1h, &pss, rp); 4685 G1CLDClosure<G1MarkNone> scan_only_cld_cl(&scan_only_root_cl, 4686 only_young, // Only process dirty klasses. 4687 false); // No need to claim CLDs. 4688 // IM young GC. 4689 // Strong roots closures. 4690 G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot> scan_mark_root_cl(_g1h, &pss, rp); 4691 G1CLDClosure<G1MarkFromRoot> scan_mark_cld_cl(&scan_mark_root_cl, 4692 false, // Process all klasses. 4693 true); // Need to claim CLDs. 4694 // Weak roots closures. 4695 G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp); 4696 G1CLDClosure<G1MarkPromotedFromRoot> scan_mark_weak_cld_cl(&scan_mark_weak_root_cl, 4697 false, // Process all klasses. 4698 true); // Need to claim CLDs. 4699 4700 G1CodeBlobClosure scan_only_code_cl(&scan_only_root_cl); 4701 G1CodeBlobClosure scan_mark_code_cl(&scan_mark_root_cl); 4702 // IM Weak code roots are handled later. 4703 4704 OopClosure* strong_root_cl; 4705 OopClosure* weak_root_cl; 4706 CLDClosure* strong_cld_cl; 4707 CLDClosure* weak_cld_cl; 4708 CodeBlobClosure* strong_code_cl; 4709 4710 if (_g1h->g1_policy()->during_initial_mark_pause()) { 4711 // We also need to mark copied objects. 4712 strong_root_cl = &scan_mark_root_cl; 4713 strong_cld_cl = &scan_mark_cld_cl; 4714 strong_code_cl = &scan_mark_code_cl; 4715 if (ClassUnloadingWithConcurrentMark) { 4716 weak_root_cl = &scan_mark_weak_root_cl; 4717 weak_cld_cl = &scan_mark_weak_cld_cl; 4718 } else { 4719 weak_root_cl = &scan_mark_root_cl; 4720 weak_cld_cl = &scan_mark_cld_cl; 4721 } 4722 } else { 4723 strong_root_cl = &scan_only_root_cl; 4724 weak_root_cl = &scan_only_root_cl; 4725 strong_cld_cl = &scan_only_cld_cl; 4726 weak_cld_cl = &scan_only_cld_cl; 4727 strong_code_cl = &scan_only_code_cl; 4728 } 4729 4730 4731 G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss); 4732 4733 pss.start_strong_roots(); 4734 _g1h->g1_process_roots(strong_root_cl, 4735 weak_root_cl, 4736 &push_heap_rs_cl, 4737 strong_cld_cl, 4738 weak_cld_cl, 4739 strong_code_cl, 4740 worker_id); 4741 4742 pss.end_strong_roots(); 4743 4744 { 4745 double start = os::elapsedTime(); 4746 G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator); 4747 evac.do_void(); 4748 double elapsed_ms = (os::elapsedTime()-start)*1000.0; 4749 double term_ms = pss.term_time()*1000.0; 4750 _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms); 4751 _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts()); 4752 } 4753 _g1h->g1_policy()->record_thread_age_table(pss.age_table()); 4754 _g1h->update_surviving_young_words(pss.surviving_young_words()+1); 4755 4756 if (ParallelGCVerbose) { 4757 MutexLocker x(stats_lock()); 4758 pss.print_termination_stats(worker_id); 4759 } 4760 4761 assert(pss.queue_is_empty(), "should be empty"); 4762 4763 // Close the inner scope so that the ResourceMark and HandleMark 4764 // destructors are executed here and are included as part of the 4765 // "GC Worker Time". 4766 } 4767 4768 double end_time_ms = os::elapsedTime() * 1000.0; 4769 _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms); 4770 } 4771 }; 4772 4773 // *** Common G1 Evacuation Stuff 4774 4775 // This method is run in a GC worker. 4776 4777 void 4778 G1CollectedHeap:: 4779 g1_process_roots(OopClosure* scan_non_heap_roots, 4780 OopClosure* scan_non_heap_weak_roots, 4781 OopsInHeapRegionClosure* scan_rs, 4782 CLDClosure* scan_strong_clds, 4783 CLDClosure* scan_weak_clds, 4784 CodeBlobClosure* scan_strong_code, 4785 uint worker_i) { 4786 4787 // First scan the shared roots. 4788 double ext_roots_start = os::elapsedTime(); 4789 double closure_app_time_sec = 0.0; 4790 4791 bool during_im = _g1h->g1_policy()->during_initial_mark_pause(); 4792 bool trace_metadata = during_im && ClassUnloadingWithConcurrentMark; 4793 4794 BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots); 4795 BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots); 4796 4797 process_roots(false, // no scoping; this is parallel code 4798 SharedHeap::SO_None, 4799 &buf_scan_non_heap_roots, 4800 &buf_scan_non_heap_weak_roots, 4801 scan_strong_clds, 4802 // Unloading Initial Marks handle the weak CLDs separately. 4803 (trace_metadata ? NULL : scan_weak_clds), 4804 scan_strong_code); 4805 4806 // Now the CM ref_processor roots. 4807 if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) { 4808 // We need to treat the discovered reference lists of the 4809 // concurrent mark ref processor as roots and keep entries 4810 // (which are added by the marking threads) on them live 4811 // until they can be processed at the end of marking. 4812 ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots); 4813 } 4814 4815 if (trace_metadata) { 4816 // Barrier to make sure all workers passed 4817 // the strong CLD and strong nmethods phases. 4818 active_strong_roots_scope()->wait_until_all_workers_done_with_threads(n_par_threads()); 4819 4820 // Now take the complement of the strong CLDs. 4821 ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds); 4822 } 4823 4824 // Finish up any enqueued closure apps (attributed as object copy time). 4825 buf_scan_non_heap_roots.done(); 4826 buf_scan_non_heap_weak_roots.done(); 4827 4828 double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds() 4829 + buf_scan_non_heap_weak_roots.closure_app_seconds(); 4830 4831 g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0); 4832 4833 double ext_root_time_ms = 4834 ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0; 4835 4836 g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms); 4837 4838 // During conc marking we have to filter the per-thread SATB buffers 4839 // to make sure we remove any oops into the CSet (which will show up 4840 // as implicitly live). 4841 double satb_filtering_ms = 0.0; 4842 if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) { 4843 if (mark_in_progress()) { 4844 double satb_filter_start = os::elapsedTime(); 4845 4846 JavaThread::satb_mark_queue_set().filter_thread_buffers(); 4847 4848 satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0; 4849 } 4850 } 4851 g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms); 4852 4853 // Now scan the complement of the collection set. 4854 G1CodeBlobClosure scavenge_cs_nmethods(scan_non_heap_weak_roots); 4855 4856 g1_rem_set()->oops_into_collection_set_do(scan_rs, &scavenge_cs_nmethods, worker_i); 4857 4858 _process_strong_tasks->all_tasks_completed(); 4859 } 4860 4861 class G1StringSymbolTableUnlinkTask : public AbstractGangTask { 4862 private: 4863 BoolObjectClosure* _is_alive; 4864 int _initial_string_table_size; 4865 int _initial_symbol_table_size; 4866 4867 bool _process_strings; 4868 int _strings_processed; 4869 int _strings_removed; 4870 4871 bool _process_symbols; 4872 int _symbols_processed; 4873 int _symbols_removed; 4874 4875 bool _do_in_parallel; 4876 public: 4877 G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) : 4878 AbstractGangTask("String/Symbol Unlinking"), 4879 _is_alive(is_alive), 4880 _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()), 4881 _process_strings(process_strings), _strings_processed(0), _strings_removed(0), 4882 _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) { 4883 4884 _initial_string_table_size = StringTable::the_table()->table_size(); 4885 _initial_symbol_table_size = SymbolTable::the_table()->table_size(); 4886 if (process_strings) { 4887 StringTable::clear_parallel_claimed_index(); 4888 } 4889 if (process_symbols) { 4890 SymbolTable::clear_parallel_claimed_index(); 4891 } 4892 } 4893 4894 ~G1StringSymbolTableUnlinkTask() { 4895 guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size, 4896 err_msg("claim value %d after unlink less than initial string table size %d", 4897 StringTable::parallel_claimed_index(), _initial_string_table_size)); 4898 guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size, 4899 err_msg("claim value %d after unlink less than initial symbol table size %d", 4900 SymbolTable::parallel_claimed_index(), _initial_symbol_table_size)); 4901 4902 if (G1TraceStringSymbolTableScrubbing) { 4903 gclog_or_tty->print_cr("Cleaned string and symbol table, " 4904 "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, " 4905 "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed", 4906 strings_processed(), strings_removed(), 4907 symbols_processed(), symbols_removed()); 4908 } 4909 } 4910 4911 void work(uint worker_id) { 4912 if (_do_in_parallel) { 4913 int strings_processed = 0; 4914 int strings_removed = 0; 4915 int symbols_processed = 0; 4916 int symbols_removed = 0; 4917 if (_process_strings) { 4918 StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed); 4919 Atomic::add(strings_processed, &_strings_processed); 4920 Atomic::add(strings_removed, &_strings_removed); 4921 } 4922 if (_process_symbols) { 4923 SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed); 4924 Atomic::add(symbols_processed, &_symbols_processed); 4925 Atomic::add(symbols_removed, &_symbols_removed); 4926 } 4927 } else { 4928 if (_process_strings) { 4929 StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed); 4930 } 4931 if (_process_symbols) { 4932 SymbolTable::unlink(&_symbols_processed, &_symbols_removed); 4933 } 4934 } 4935 } 4936 4937 size_t strings_processed() const { return (size_t)_strings_processed; } 4938 size_t strings_removed() const { return (size_t)_strings_removed; } 4939 4940 size_t symbols_processed() const { return (size_t)_symbols_processed; } 4941 size_t symbols_removed() const { return (size_t)_symbols_removed; } 4942 }; 4943 4944 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC { 4945 private: 4946 static Monitor* _lock; 4947 4948 BoolObjectClosure* const _is_alive; 4949 const bool _unloading_occurred; 4950 const uint _num_workers; 4951 4952 // Variables used to claim nmethods. 4953 nmethod* _first_nmethod; 4954 volatile nmethod* _claimed_nmethod; 4955 4956 // The list of nmethods that need to be processed by the second pass. 4957 volatile nmethod* _postponed_list; 4958 volatile uint _num_entered_barrier; 4959 4960 public: 4961 G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) : 4962 _is_alive(is_alive), 4963 _unloading_occurred(unloading_occurred), 4964 _num_workers(num_workers), 4965 _first_nmethod(NULL), 4966 _claimed_nmethod(NULL), 4967 _postponed_list(NULL), 4968 _num_entered_barrier(0) 4969 { 4970 nmethod::increase_unloading_clock(); 4971 _first_nmethod = CodeCache::alive_nmethod(CodeCache::first()); 4972 _claimed_nmethod = (volatile nmethod*)_first_nmethod; 4973 } 4974 4975 ~G1CodeCacheUnloadingTask() { 4976 CodeCache::verify_clean_inline_caches(); 4977 4978 CodeCache::set_needs_cache_clean(false); 4979 guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be"); 4980 4981 CodeCache::verify_icholder_relocations(); 4982 } 4983 4984 private: 4985 void add_to_postponed_list(nmethod* nm) { 4986 nmethod* old; 4987 do { 4988 old = (nmethod*)_postponed_list; 4989 nm->set_unloading_next(old); 4990 } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old); 4991 } 4992 4993 void clean_nmethod(nmethod* nm) { 4994 bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred); 4995 4996 if (postponed) { 4997 // This nmethod referred to an nmethod that has not been cleaned/unloaded yet. 4998 add_to_postponed_list(nm); 4999 } 5000 5001 // Mark that this thread has been cleaned/unloaded. 5002 // After this call, it will be safe to ask if this nmethod was unloaded or not. 5003 nm->set_unloading_clock(nmethod::global_unloading_clock()); 5004 } 5005 5006 void clean_nmethod_postponed(nmethod* nm) { 5007 nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred); 5008 } 5009 5010 static const int MaxClaimNmethods = 16; 5011 5012 void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) { 5013 nmethod* first; 5014 nmethod* last; 5015 5016 do { 5017 *num_claimed_nmethods = 0; 5018 5019 first = last = (nmethod*)_claimed_nmethod; 5020 5021 if (first != NULL) { 5022 for (int i = 0; i < MaxClaimNmethods; i++) { 5023 last = CodeCache::alive_nmethod(CodeCache::next(last)); 5024 5025 if (last == NULL) { 5026 break; 5027 } 5028 5029 claimed_nmethods[i] = last; 5030 (*num_claimed_nmethods)++; 5031 } 5032 } 5033 5034 } while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first); 5035 } 5036 5037 nmethod* claim_postponed_nmethod() { 5038 nmethod* claim; 5039 nmethod* next; 5040 5041 do { 5042 claim = (nmethod*)_postponed_list; 5043 if (claim == NULL) { 5044 return NULL; 5045 } 5046 5047 next = claim->unloading_next(); 5048 5049 } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim); 5050 5051 return claim; 5052 } 5053 5054 public: 5055 // Mark that we're done with the first pass of nmethod cleaning. 5056 void barrier_mark(uint worker_id) { 5057 MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag); 5058 _num_entered_barrier++; 5059 if (_num_entered_barrier == _num_workers) { 5060 ml.notify_all(); 5061 } 5062 } 5063 5064 // See if we have to wait for the other workers to 5065 // finish their first-pass nmethod cleaning work. 5066 void barrier_wait(uint worker_id) { 5067 if (_num_entered_barrier < _num_workers) { 5068 MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag); 5069 while (_num_entered_barrier < _num_workers) { 5070 ml.wait(Mutex::_no_safepoint_check_flag, 0, false); 5071 } 5072 } 5073 } 5074 5075 // Cleaning and unloading of nmethods. Some work has to be postponed 5076 // to the second pass, when we know which nmethods survive. 5077 void work_first_pass(uint worker_id) { 5078 // The first nmethods is claimed by the first worker. 5079 if (worker_id == 0 && _first_nmethod != NULL) { 5080 clean_nmethod(_first_nmethod); 5081 _first_nmethod = NULL; 5082 } 5083 5084 int num_claimed_nmethods; 5085 nmethod* claimed_nmethods[MaxClaimNmethods]; 5086 5087 while (true) { 5088 claim_nmethods(claimed_nmethods, &num_claimed_nmethods); 5089 5090 if (num_claimed_nmethods == 0) { 5091 break; 5092 } 5093 5094 for (int i = 0; i < num_claimed_nmethods; i++) { 5095 clean_nmethod(claimed_nmethods[i]); 5096 } 5097 } 5098 } 5099 5100 void work_second_pass(uint worker_id) { 5101 nmethod* nm; 5102 // Take care of postponed nmethods. 5103 while ((nm = claim_postponed_nmethod()) != NULL) { 5104 clean_nmethod_postponed(nm); 5105 } 5106 } 5107 }; 5108 5109 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock"); 5110 5111 class G1KlassCleaningTask : public StackObj { 5112 BoolObjectClosure* _is_alive; 5113 volatile jint _clean_klass_tree_claimed; 5114 ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator; 5115 5116 public: 5117 G1KlassCleaningTask(BoolObjectClosure* is_alive) : 5118 _is_alive(is_alive), 5119 _clean_klass_tree_claimed(0), 5120 _klass_iterator() { 5121 } 5122 5123 private: 5124 bool claim_clean_klass_tree_task() { 5125 if (_clean_klass_tree_claimed) { 5126 return false; 5127 } 5128 5129 return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0; 5130 } 5131 5132 InstanceKlass* claim_next_klass() { 5133 Klass* klass; 5134 do { 5135 klass =_klass_iterator.next_klass(); 5136 } while (klass != NULL && !klass->oop_is_instance()); 5137 5138 return (InstanceKlass*)klass; 5139 } 5140 5141 public: 5142 5143 void clean_klass(InstanceKlass* ik) { 5144 ik->clean_implementors_list(_is_alive); 5145 ik->clean_method_data(_is_alive); 5146 5147 // G1 specific cleanup work that has 5148 // been moved here to be done in parallel. 5149 ik->clean_dependent_nmethods(); 5150 } 5151 5152 void work() { 5153 ResourceMark rm; 5154 5155 // One worker will clean the subklass/sibling klass tree. 5156 if (claim_clean_klass_tree_task()) { 5157 Klass::clean_subklass_tree(_is_alive); 5158 } 5159 5160 // All workers will help cleaning the classes, 5161 InstanceKlass* klass; 5162 while ((klass = claim_next_klass()) != NULL) { 5163 clean_klass(klass); 5164 } 5165 } 5166 }; 5167 5168 // To minimize the remark pause times, the tasks below are done in parallel. 5169 class G1ParallelCleaningTask : public AbstractGangTask { 5170 private: 5171 G1StringSymbolTableUnlinkTask _string_symbol_task; 5172 G1CodeCacheUnloadingTask _code_cache_task; 5173 G1KlassCleaningTask _klass_cleaning_task; 5174 5175 public: 5176 // The constructor is run in the VMThread. 5177 G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) : 5178 AbstractGangTask("Parallel Cleaning"), 5179 _string_symbol_task(is_alive, process_strings, process_symbols), 5180 _code_cache_task(num_workers, is_alive, unloading_occurred), 5181 _klass_cleaning_task(is_alive) { 5182 } 5183 5184 // The parallel work done by all worker threads. 5185 void work(uint worker_id) { 5186 // Do first pass of code cache cleaning. 5187 _code_cache_task.work_first_pass(worker_id); 5188 5189 // Let the threads mark that the first pass is done. 5190 _code_cache_task.barrier_mark(worker_id); 5191 5192 // Clean the Strings and Symbols. 5193 _string_symbol_task.work(worker_id); 5194 5195 // Wait for all workers to finish the first code cache cleaning pass. 5196 _code_cache_task.barrier_wait(worker_id); 5197 5198 // Do the second code cache cleaning work, which realize on 5199 // the liveness information gathered during the first pass. 5200 _code_cache_task.work_second_pass(worker_id); 5201 5202 // Clean all klasses that were not unloaded. 5203 _klass_cleaning_task.work(); 5204 } 5205 }; 5206 5207 5208 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive, 5209 bool process_strings, 5210 bool process_symbols, 5211 bool class_unloading_occurred) { 5212 uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ? 5213 workers()->active_workers() : 1); 5214 5215 G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, 5216 n_workers, class_unloading_occurred); 5217 if (G1CollectedHeap::use_parallel_gc_threads()) { 5218 set_par_threads(n_workers); 5219 workers()->run_task(&g1_unlink_task); 5220 set_par_threads(0); 5221 } else { 5222 g1_unlink_task.work(0); 5223 } 5224 } 5225 5226 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive, 5227 bool process_strings, bool process_symbols) { 5228 { 5229 uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ? 5230 _g1h->workers()->active_workers() : 1); 5231 G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols); 5232 if (G1CollectedHeap::use_parallel_gc_threads()) { 5233 set_par_threads(n_workers); 5234 workers()->run_task(&g1_unlink_task); 5235 set_par_threads(0); 5236 } else { 5237 g1_unlink_task.work(0); 5238 } 5239 } 5240 5241 if (G1StringDedup::is_enabled()) { 5242 G1StringDedup::unlink(is_alive); 5243 } 5244 } 5245 5246 class G1RedirtyLoggedCardsTask : public AbstractGangTask { 5247 private: 5248 DirtyCardQueueSet* _queue; 5249 public: 5250 G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { } 5251 5252 virtual void work(uint worker_id) { 5253 double start_time = os::elapsedTime(); 5254 5255 RedirtyLoggedCardTableEntryClosure cl; 5256 if (G1CollectedHeap::heap()->use_parallel_gc_threads()) { 5257 _queue->par_apply_closure_to_all_completed_buffers(&cl); 5258 } else { 5259 _queue->apply_closure_to_all_completed_buffers(&cl); 5260 } 5261 5262 G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times(); 5263 timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0); 5264 timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed()); 5265 } 5266 }; 5267 5268 void G1CollectedHeap::redirty_logged_cards() { 5269 guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates."); 5270 double redirty_logged_cards_start = os::elapsedTime(); 5271 5272 uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ? 5273 _g1h->workers()->active_workers() : 1); 5274 5275 G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set()); 5276 dirty_card_queue_set().reset_for_par_iteration(); 5277 if (use_parallel_gc_threads()) { 5278 set_par_threads(n_workers); 5279 workers()->run_task(&redirty_task); 5280 set_par_threads(0); 5281 } else { 5282 redirty_task.work(0); 5283 } 5284 5285 DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set(); 5286 dcq.merge_bufferlists(&dirty_card_queue_set()); 5287 assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed"); 5288 5289 g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0); 5290 } 5291 5292 // Weak Reference Processing support 5293 5294 // An always "is_alive" closure that is used to preserve referents. 5295 // If the object is non-null then it's alive. Used in the preservation 5296 // of referent objects that are pointed to by reference objects 5297 // discovered by the CM ref processor. 5298 class G1AlwaysAliveClosure: public BoolObjectClosure { 5299 G1CollectedHeap* _g1; 5300 public: 5301 G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 5302 bool do_object_b(oop p) { 5303 if (p != NULL) { 5304 return true; 5305 } 5306 return false; 5307 } 5308 }; 5309 5310 bool G1STWIsAliveClosure::do_object_b(oop p) { 5311 // An object is reachable if it is outside the collection set, 5312 // or is inside and copied. 5313 return !_g1->obj_in_cs(p) || p->is_forwarded(); 5314 } 5315 5316 // Non Copying Keep Alive closure 5317 class G1KeepAliveClosure: public OopClosure { 5318 G1CollectedHeap* _g1; 5319 public: 5320 G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 5321 void do_oop(narrowOop* p) { guarantee(false, "Not needed"); } 5322 void do_oop(oop* p) { 5323 oop obj = *p; 5324 assert(obj != NULL, "the caller should have filtered out NULL values"); 5325 5326 G1CollectedHeap::in_cset_state_t cset_state = _g1->in_cset_state(obj); 5327 if (cset_state == G1CollectedHeap::InNeither) { 5328 return; 5329 } 5330 if (cset_state == G1CollectedHeap::InCSet) { 5331 assert( obj->is_forwarded(), "invariant" ); 5332 *p = obj->forwardee(); 5333 } else { 5334 assert(!obj->is_forwarded(), "invariant" ); 5335 assert(cset_state == G1CollectedHeap::IsHumongous, 5336 err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state)); 5337 _g1->set_humongous_is_live(obj); 5338 } 5339 } 5340 }; 5341 5342 // Copying Keep Alive closure - can be called from both 5343 // serial and parallel code as long as different worker 5344 // threads utilize different G1ParScanThreadState instances 5345 // and different queues. 5346 5347 class G1CopyingKeepAliveClosure: public OopClosure { 5348 G1CollectedHeap* _g1h; 5349 OopClosure* _copy_non_heap_obj_cl; 5350 G1ParScanThreadState* _par_scan_state; 5351 5352 public: 5353 G1CopyingKeepAliveClosure(G1CollectedHeap* g1h, 5354 OopClosure* non_heap_obj_cl, 5355 G1ParScanThreadState* pss): 5356 _g1h(g1h), 5357 _copy_non_heap_obj_cl(non_heap_obj_cl), 5358 _par_scan_state(pss) 5359 {} 5360 5361 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 5362 virtual void do_oop( oop* p) { do_oop_work(p); } 5363 5364 template <class T> void do_oop_work(T* p) { 5365 oop obj = oopDesc::load_decode_heap_oop(p); 5366 5367 if (_g1h->is_in_cset_or_humongous(obj)) { 5368 // If the referent object has been forwarded (either copied 5369 // to a new location or to itself in the event of an 5370 // evacuation failure) then we need to update the reference 5371 // field and, if both reference and referent are in the G1 5372 // heap, update the RSet for the referent. 5373 // 5374 // If the referent has not been forwarded then we have to keep 5375 // it alive by policy. Therefore we have copy the referent. 5376 // 5377 // If the reference field is in the G1 heap then we can push 5378 // on the PSS queue. When the queue is drained (after each 5379 // phase of reference processing) the object and it's followers 5380 // will be copied, the reference field set to point to the 5381 // new location, and the RSet updated. Otherwise we need to 5382 // use the the non-heap or metadata closures directly to copy 5383 // the referent object and update the pointer, while avoiding 5384 // updating the RSet. 5385 5386 if (_g1h->is_in_g1_reserved(p)) { 5387 _par_scan_state->push_on_queue(p); 5388 } else { 5389 assert(!Metaspace::contains((const void*)p), 5390 err_msg("Unexpectedly found a pointer from metadata: " 5391 PTR_FORMAT, p)); 5392 _copy_non_heap_obj_cl->do_oop(p); 5393 } 5394 } 5395 } 5396 }; 5397 5398 // Serial drain queue closure. Called as the 'complete_gc' 5399 // closure for each discovered list in some of the 5400 // reference processing phases. 5401 5402 class G1STWDrainQueueClosure: public VoidClosure { 5403 protected: 5404 G1CollectedHeap* _g1h; 5405 G1ParScanThreadState* _par_scan_state; 5406 5407 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 5408 5409 public: 5410 G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) : 5411 _g1h(g1h), 5412 _par_scan_state(pss) 5413 { } 5414 5415 void do_void() { 5416 G1ParScanThreadState* const pss = par_scan_state(); 5417 pss->trim_queue(); 5418 } 5419 }; 5420 5421 // Parallel Reference Processing closures 5422 5423 // Implementation of AbstractRefProcTaskExecutor for parallel reference 5424 // processing during G1 evacuation pauses. 5425 5426 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor { 5427 private: 5428 G1CollectedHeap* _g1h; 5429 RefToScanQueueSet* _queues; 5430 FlexibleWorkGang* _workers; 5431 int _active_workers; 5432 5433 public: 5434 G1STWRefProcTaskExecutor(G1CollectedHeap* g1h, 5435 FlexibleWorkGang* workers, 5436 RefToScanQueueSet *task_queues, 5437 int n_workers) : 5438 _g1h(g1h), 5439 _queues(task_queues), 5440 _workers(workers), 5441 _active_workers(n_workers) 5442 { 5443 assert(n_workers > 0, "shouldn't call this otherwise"); 5444 } 5445 5446 // Executes the given task using concurrent marking worker threads. 5447 virtual void execute(ProcessTask& task); 5448 virtual void execute(EnqueueTask& task); 5449 }; 5450 5451 // Gang task for possibly parallel reference processing 5452 5453 class G1STWRefProcTaskProxy: public AbstractGangTask { 5454 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; 5455 ProcessTask& _proc_task; 5456 G1CollectedHeap* _g1h; 5457 RefToScanQueueSet *_task_queues; 5458 ParallelTaskTerminator* _terminator; 5459 5460 public: 5461 G1STWRefProcTaskProxy(ProcessTask& proc_task, 5462 G1CollectedHeap* g1h, 5463 RefToScanQueueSet *task_queues, 5464 ParallelTaskTerminator* terminator) : 5465 AbstractGangTask("Process reference objects in parallel"), 5466 _proc_task(proc_task), 5467 _g1h(g1h), 5468 _task_queues(task_queues), 5469 _terminator(terminator) 5470 {} 5471 5472 virtual void work(uint worker_id) { 5473 // The reference processing task executed by a single worker. 5474 ResourceMark rm; 5475 HandleMark hm; 5476 5477 G1STWIsAliveClosure is_alive(_g1h); 5478 5479 G1ParScanThreadState pss(_g1h, worker_id, NULL); 5480 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL); 5481 5482 pss.set_evac_failure_closure(&evac_failure_cl); 5483 5484 G1ParScanExtRootClosure only_copy_non_heap_cl(_g1h, &pss, NULL); 5485 5486 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL); 5487 5488 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl; 5489 5490 if (_g1h->g1_policy()->during_initial_mark_pause()) { 5491 // We also need to mark copied objects. 5492 copy_non_heap_cl = ©_mark_non_heap_cl; 5493 } 5494 5495 // Keep alive closure. 5496 G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss); 5497 5498 // Complete GC closure 5499 G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator); 5500 5501 // Call the reference processing task's work routine. 5502 _proc_task.work(worker_id, is_alive, keep_alive, drain_queue); 5503 5504 // Note we cannot assert that the refs array is empty here as not all 5505 // of the processing tasks (specifically phase2 - pp2_work) execute 5506 // the complete_gc closure (which ordinarily would drain the queue) so 5507 // the queue may not be empty. 5508 } 5509 }; 5510 5511 // Driver routine for parallel reference processing. 5512 // Creates an instance of the ref processing gang 5513 // task and has the worker threads execute it. 5514 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) { 5515 assert(_workers != NULL, "Need parallel worker threads."); 5516 5517 ParallelTaskTerminator terminator(_active_workers, _queues); 5518 G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator); 5519 5520 _g1h->set_par_threads(_active_workers); 5521 _workers->run_task(&proc_task_proxy); 5522 _g1h->set_par_threads(0); 5523 } 5524 5525 // Gang task for parallel reference enqueueing. 5526 5527 class G1STWRefEnqueueTaskProxy: public AbstractGangTask { 5528 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask; 5529 EnqueueTask& _enq_task; 5530 5531 public: 5532 G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) : 5533 AbstractGangTask("Enqueue reference objects in parallel"), 5534 _enq_task(enq_task) 5535 { } 5536 5537 virtual void work(uint worker_id) { 5538 _enq_task.work(worker_id); 5539 } 5540 }; 5541 5542 // Driver routine for parallel reference enqueueing. 5543 // Creates an instance of the ref enqueueing gang 5544 // task and has the worker threads execute it. 5545 5546 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) { 5547 assert(_workers != NULL, "Need parallel worker threads."); 5548 5549 G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task); 5550 5551 _g1h->set_par_threads(_active_workers); 5552 _workers->run_task(&enq_task_proxy); 5553 _g1h->set_par_threads(0); 5554 } 5555 5556 // End of weak reference support closures 5557 5558 // Abstract task used to preserve (i.e. copy) any referent objects 5559 // that are in the collection set and are pointed to by reference 5560 // objects discovered by the CM ref processor. 5561 5562 class G1ParPreserveCMReferentsTask: public AbstractGangTask { 5563 protected: 5564 G1CollectedHeap* _g1h; 5565 RefToScanQueueSet *_queues; 5566 ParallelTaskTerminator _terminator; 5567 uint _n_workers; 5568 5569 public: 5570 G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) : 5571 AbstractGangTask("ParPreserveCMReferents"), 5572 _g1h(g1h), 5573 _queues(task_queues), 5574 _terminator(workers, _queues), 5575 _n_workers(workers) 5576 { } 5577 5578 void work(uint worker_id) { 5579 ResourceMark rm; 5580 HandleMark hm; 5581 5582 G1ParScanThreadState pss(_g1h, worker_id, NULL); 5583 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL); 5584 5585 pss.set_evac_failure_closure(&evac_failure_cl); 5586 5587 assert(pss.queue_is_empty(), "both queue and overflow should be empty"); 5588 5589 G1ParScanExtRootClosure only_copy_non_heap_cl(_g1h, &pss, NULL); 5590 5591 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL); 5592 5593 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl; 5594 5595 if (_g1h->g1_policy()->during_initial_mark_pause()) { 5596 // We also need to mark copied objects. 5597 copy_non_heap_cl = ©_mark_non_heap_cl; 5598 } 5599 5600 // Is alive closure 5601 G1AlwaysAliveClosure always_alive(_g1h); 5602 5603 // Copying keep alive closure. Applied to referent objects that need 5604 // to be copied. 5605 G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss); 5606 5607 ReferenceProcessor* rp = _g1h->ref_processor_cm(); 5608 5609 uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q(); 5610 uint stride = MIN2(MAX2(_n_workers, 1U), limit); 5611 5612 // limit is set using max_num_q() - which was set using ParallelGCThreads. 5613 // So this must be true - but assert just in case someone decides to 5614 // change the worker ids. 5615 assert(0 <= worker_id && worker_id < limit, "sanity"); 5616 assert(!rp->discovery_is_atomic(), "check this code"); 5617 5618 // Select discovered lists [i, i+stride, i+2*stride,...,limit) 5619 for (uint idx = worker_id; idx < limit; idx += stride) { 5620 DiscoveredList& ref_list = rp->discovered_refs()[idx]; 5621 5622 DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive); 5623 while (iter.has_next()) { 5624 // Since discovery is not atomic for the CM ref processor, we 5625 // can see some null referent objects. 5626 iter.load_ptrs(DEBUG_ONLY(true)); 5627 oop ref = iter.obj(); 5628 5629 // This will filter nulls. 5630 if (iter.is_referent_alive()) { 5631 iter.make_referent_alive(); 5632 } 5633 iter.move_to_next(); 5634 } 5635 } 5636 5637 // Drain the queue - which may cause stealing 5638 G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator); 5639 drain_queue.do_void(); 5640 // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure 5641 assert(pss.queue_is_empty(), "should be"); 5642 } 5643 }; 5644 5645 // Weak Reference processing during an evacuation pause (part 1). 5646 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) { 5647 double ref_proc_start = os::elapsedTime(); 5648 5649 ReferenceProcessor* rp = _ref_processor_stw; 5650 assert(rp->discovery_enabled(), "should have been enabled"); 5651 5652 // Any reference objects, in the collection set, that were 'discovered' 5653 // by the CM ref processor should have already been copied (either by 5654 // applying the external root copy closure to the discovered lists, or 5655 // by following an RSet entry). 5656 // 5657 // But some of the referents, that are in the collection set, that these 5658 // reference objects point to may not have been copied: the STW ref 5659 // processor would have seen that the reference object had already 5660 // been 'discovered' and would have skipped discovering the reference, 5661 // but would not have treated the reference object as a regular oop. 5662 // As a result the copy closure would not have been applied to the 5663 // referent object. 5664 // 5665 // We need to explicitly copy these referent objects - the references 5666 // will be processed at the end of remarking. 5667 // 5668 // We also need to do this copying before we process the reference 5669 // objects discovered by the STW ref processor in case one of these 5670 // referents points to another object which is also referenced by an 5671 // object discovered by the STW ref processor. 5672 5673 assert(!G1CollectedHeap::use_parallel_gc_threads() || 5674 no_of_gc_workers == workers()->active_workers(), 5675 "Need to reset active GC workers"); 5676 5677 set_par_threads(no_of_gc_workers); 5678 G1ParPreserveCMReferentsTask keep_cm_referents(this, 5679 no_of_gc_workers, 5680 _task_queues); 5681 5682 if (G1CollectedHeap::use_parallel_gc_threads()) { 5683 workers()->run_task(&keep_cm_referents); 5684 } else { 5685 keep_cm_referents.work(0); 5686 } 5687 5688 set_par_threads(0); 5689 5690 // Closure to test whether a referent is alive. 5691 G1STWIsAliveClosure is_alive(this); 5692 5693 // Even when parallel reference processing is enabled, the processing 5694 // of JNI refs is serial and performed serially by the current thread 5695 // rather than by a worker. The following PSS will be used for processing 5696 // JNI refs. 5697 5698 // Use only a single queue for this PSS. 5699 G1ParScanThreadState pss(this, 0, NULL); 5700 5701 // We do not embed a reference processor in the copying/scanning 5702 // closures while we're actually processing the discovered 5703 // reference objects. 5704 G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL); 5705 5706 pss.set_evac_failure_closure(&evac_failure_cl); 5707 5708 assert(pss.queue_is_empty(), "pre-condition"); 5709 5710 G1ParScanExtRootClosure only_copy_non_heap_cl(this, &pss, NULL); 5711 5712 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL); 5713 5714 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl; 5715 5716 if (_g1h->g1_policy()->during_initial_mark_pause()) { 5717 // We also need to mark copied objects. 5718 copy_non_heap_cl = ©_mark_non_heap_cl; 5719 } 5720 5721 // Keep alive closure. 5722 G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss); 5723 5724 // Serial Complete GC closure 5725 G1STWDrainQueueClosure drain_queue(this, &pss); 5726 5727 // Setup the soft refs policy... 5728 rp->setup_policy(false); 5729 5730 ReferenceProcessorStats stats; 5731 if (!rp->processing_is_mt()) { 5732 // Serial reference processing... 5733 stats = rp->process_discovered_references(&is_alive, 5734 &keep_alive, 5735 &drain_queue, 5736 NULL, 5737 _gc_timer_stw, 5738 _gc_tracer_stw->gc_id()); 5739 } else { 5740 // Parallel reference processing 5741 assert(rp->num_q() == no_of_gc_workers, "sanity"); 5742 assert(no_of_gc_workers <= rp->max_num_q(), "sanity"); 5743 5744 G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers); 5745 stats = rp->process_discovered_references(&is_alive, 5746 &keep_alive, 5747 &drain_queue, 5748 &par_task_executor, 5749 _gc_timer_stw, 5750 _gc_tracer_stw->gc_id()); 5751 } 5752 5753 _gc_tracer_stw->report_gc_reference_stats(stats); 5754 5755 // We have completed copying any necessary live referent objects. 5756 assert(pss.queue_is_empty(), "both queue and overflow should be empty"); 5757 5758 double ref_proc_time = os::elapsedTime() - ref_proc_start; 5759 g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0); 5760 } 5761 5762 // Weak Reference processing during an evacuation pause (part 2). 5763 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) { 5764 double ref_enq_start = os::elapsedTime(); 5765 5766 ReferenceProcessor* rp = _ref_processor_stw; 5767 assert(!rp->discovery_enabled(), "should have been disabled as part of processing"); 5768 5769 // Now enqueue any remaining on the discovered lists on to 5770 // the pending list. 5771 if (!rp->processing_is_mt()) { 5772 // Serial reference processing... 5773 rp->enqueue_discovered_references(); 5774 } else { 5775 // Parallel reference enqueueing 5776 5777 assert(no_of_gc_workers == workers()->active_workers(), 5778 "Need to reset active workers"); 5779 assert(rp->num_q() == no_of_gc_workers, "sanity"); 5780 assert(no_of_gc_workers <= rp->max_num_q(), "sanity"); 5781 5782 G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers); 5783 rp->enqueue_discovered_references(&par_task_executor); 5784 } 5785 5786 rp->verify_no_references_recorded(); 5787 assert(!rp->discovery_enabled(), "should have been disabled"); 5788 5789 // FIXME 5790 // CM's reference processing also cleans up the string and symbol tables. 5791 // Should we do that here also? We could, but it is a serial operation 5792 // and could significantly increase the pause time. 5793 5794 double ref_enq_time = os::elapsedTime() - ref_enq_start; 5795 g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0); 5796 } 5797 5798 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) { 5799 _expand_heap_after_alloc_failure = true; 5800 _evacuation_failed = false; 5801 5802 // Should G1EvacuationFailureALot be in effect for this GC? 5803 NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();) 5804 5805 g1_rem_set()->prepare_for_oops_into_collection_set_do(); 5806 5807 // Disable the hot card cache. 5808 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 5809 hot_card_cache->reset_hot_cache_claimed_index(); 5810 hot_card_cache->set_use_cache(false); 5811 5812 uint n_workers; 5813 if (G1CollectedHeap::use_parallel_gc_threads()) { 5814 n_workers = 5815 AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(), 5816 workers()->active_workers(), 5817 Threads::number_of_non_daemon_threads()); 5818 assert(UseDynamicNumberOfGCThreads || 5819 n_workers == workers()->total_workers(), 5820 "If not dynamic should be using all the workers"); 5821 workers()->set_active_workers(n_workers); 5822 set_par_threads(n_workers); 5823 } else { 5824 assert(n_par_threads() == 0, 5825 "Should be the original non-parallel value"); 5826 n_workers = 1; 5827 } 5828 5829 G1ParTask g1_par_task(this, _task_queues); 5830 5831 init_for_evac_failure(NULL); 5832 5833 rem_set()->prepare_for_younger_refs_iterate(true); 5834 5835 assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty"); 5836 double start_par_time_sec = os::elapsedTime(); 5837 double end_par_time_sec; 5838 5839 { 5840 StrongRootsScope srs(this); 5841 // InitialMark needs claim bits to keep track of the marked-through CLDs. 5842 if (g1_policy()->during_initial_mark_pause()) { 5843 ClassLoaderDataGraph::clear_claimed_marks(); 5844 } 5845 5846 if (G1CollectedHeap::use_parallel_gc_threads()) { 5847 // The individual threads will set their evac-failure closures. 5848 if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr(); 5849 // These tasks use ShareHeap::_process_strong_tasks 5850 assert(UseDynamicNumberOfGCThreads || 5851 workers()->active_workers() == workers()->total_workers(), 5852 "If not dynamic should be using all the workers"); 5853 workers()->run_task(&g1_par_task); 5854 } else { 5855 g1_par_task.set_for_termination(n_workers); 5856 g1_par_task.work(0); 5857 } 5858 end_par_time_sec = os::elapsedTime(); 5859 5860 // Closing the inner scope will execute the destructor 5861 // for the StrongRootsScope object. We record the current 5862 // elapsed time before closing the scope so that time 5863 // taken for the SRS destructor is NOT included in the 5864 // reported parallel time. 5865 } 5866 5867 double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0; 5868 g1_policy()->phase_times()->record_par_time(par_time_ms); 5869 5870 double code_root_fixup_time_ms = 5871 (os::elapsedTime() - end_par_time_sec) * 1000.0; 5872 g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms); 5873 5874 set_par_threads(0); 5875 5876 // Process any discovered reference objects - we have 5877 // to do this _before_ we retire the GC alloc regions 5878 // as we may have to copy some 'reachable' referent 5879 // objects (and their reachable sub-graphs) that were 5880 // not copied during the pause. 5881 process_discovered_references(n_workers); 5882 5883 // Weak root processing. 5884 { 5885 G1STWIsAliveClosure is_alive(this); 5886 G1KeepAliveClosure keep_alive(this); 5887 JNIHandles::weak_oops_do(&is_alive, &keep_alive); 5888 if (G1StringDedup::is_enabled()) { 5889 G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive); 5890 } 5891 } 5892 5893 release_gc_alloc_regions(n_workers, evacuation_info); 5894 g1_rem_set()->cleanup_after_oops_into_collection_set_do(); 5895 5896 // Reset and re-enable the hot card cache. 5897 // Note the counts for the cards in the regions in the 5898 // collection set are reset when the collection set is freed. 5899 hot_card_cache->reset_hot_cache(); 5900 hot_card_cache->set_use_cache(true); 5901 5902 purge_code_root_memory(); 5903 5904 finalize_for_evac_failure(); 5905 5906 if (evacuation_failed()) { 5907 remove_self_forwarding_pointers(); 5908 5909 // Reset the G1EvacuationFailureALot counters and flags 5910 // Note: the values are reset only when an actual 5911 // evacuation failure occurs. 5912 NOT_PRODUCT(reset_evacuation_should_fail();) 5913 } 5914 5915 // Enqueue any remaining references remaining on the STW 5916 // reference processor's discovered lists. We need to do 5917 // this after the card table is cleaned (and verified) as 5918 // the act of enqueueing entries on to the pending list 5919 // will log these updates (and dirty their associated 5920 // cards). We need these updates logged to update any 5921 // RSets. 5922 enqueue_discovered_references(n_workers); 5923 5924 if (G1DeferredRSUpdate) { 5925 redirty_logged_cards(); 5926 } 5927 COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); 5928 } 5929 5930 void G1CollectedHeap::free_region(HeapRegion* hr, 5931 FreeRegionList* free_list, 5932 bool par, 5933 bool locked) { 5934 assert(!hr->isHumongous(), "this is only for non-humongous regions"); 5935 assert(!hr->is_empty(), "the region should not be empty"); 5936 assert(_hrm.is_available(hr->hrm_index()), "region should be committed"); 5937 assert(free_list != NULL, "pre-condition"); 5938 5939 if (G1VerifyBitmaps) { 5940 MemRegion mr(hr->bottom(), hr->end()); 5941 concurrent_mark()->clearRangePrevBitmap(mr); 5942 } 5943 5944 // Clear the card counts for this region. 5945 // Note: we only need to do this if the region is not young 5946 // (since we don't refine cards in young regions). 5947 if (!hr->is_young()) { 5948 _cg1r->hot_card_cache()->reset_card_counts(hr); 5949 } 5950 hr->hr_clear(par, true /* clear_space */, locked /* locked */); 5951 free_list->add_ordered(hr); 5952 } 5953 5954 void G1CollectedHeap::free_humongous_region(HeapRegion* hr, 5955 FreeRegionList* free_list, 5956 bool par) { 5957 assert(hr->startsHumongous(), "this is only for starts humongous regions"); 5958 assert(free_list != NULL, "pre-condition"); 5959 5960 size_t hr_capacity = hr->capacity(); 5961 // We need to read this before we make the region non-humongous, 5962 // otherwise the information will be gone. 5963 uint last_index = hr->last_hc_index(); 5964 hr->set_notHumongous(); 5965 free_region(hr, free_list, par); 5966 5967 uint i = hr->hrm_index() + 1; 5968 while (i < last_index) { 5969 HeapRegion* curr_hr = region_at(i); 5970 assert(curr_hr->continuesHumongous(), "invariant"); 5971 curr_hr->set_notHumongous(); 5972 free_region(curr_hr, free_list, par); 5973 i += 1; 5974 } 5975 } 5976 5977 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, 5978 const HeapRegionSetCount& humongous_regions_removed) { 5979 if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) { 5980 MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag); 5981 _old_set.bulk_remove(old_regions_removed); 5982 _humongous_set.bulk_remove(humongous_regions_removed); 5983 } 5984 5985 } 5986 5987 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) { 5988 assert(list != NULL, "list can't be null"); 5989 if (!list->is_empty()) { 5990 MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag); 5991 _hrm.insert_list_into_free_list(list); 5992 } 5993 } 5994 5995 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) { 5996 assert(_summary_bytes_used >= bytes, 5997 err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT, 5998 _summary_bytes_used, bytes)); 5999 _summary_bytes_used -= bytes; 6000 } 6001 6002 class G1ParCleanupCTTask : public AbstractGangTask { 6003 G1SATBCardTableModRefBS* _ct_bs; 6004 G1CollectedHeap* _g1h; 6005 HeapRegion* volatile _su_head; 6006 public: 6007 G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs, 6008 G1CollectedHeap* g1h) : 6009 AbstractGangTask("G1 Par Cleanup CT Task"), 6010 _ct_bs(ct_bs), _g1h(g1h) { } 6011 6012 void work(uint worker_id) { 6013 HeapRegion* r; 6014 while (r = _g1h->pop_dirty_cards_region()) { 6015 clear_cards(r); 6016 } 6017 } 6018 6019 void clear_cards(HeapRegion* r) { 6020 // Cards of the survivors should have already been dirtied. 6021 if (!r->is_survivor()) { 6022 _ct_bs->clear(MemRegion(r->bottom(), r->end())); 6023 } 6024 } 6025 }; 6026 6027 #ifndef PRODUCT 6028 class G1VerifyCardTableCleanup: public HeapRegionClosure { 6029 G1CollectedHeap* _g1h; 6030 G1SATBCardTableModRefBS* _ct_bs; 6031 public: 6032 G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs) 6033 : _g1h(g1h), _ct_bs(ct_bs) { } 6034 virtual bool doHeapRegion(HeapRegion* r) { 6035 if (r->is_survivor()) { 6036 _g1h->verify_dirty_region(r); 6037 } else { 6038 _g1h->verify_not_dirty_region(r); 6039 } 6040 return false; 6041 } 6042 }; 6043 6044 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) { 6045 // All of the region should be clean. 6046 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 6047 MemRegion mr(hr->bottom(), hr->end()); 6048 ct_bs->verify_not_dirty_region(mr); 6049 } 6050 6051 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) { 6052 // We cannot guarantee that [bottom(),end()] is dirty. Threads 6053 // dirty allocated blocks as they allocate them. The thread that 6054 // retires each region and replaces it with a new one will do a 6055 // maximal allocation to fill in [pre_dummy_top(),end()] but will 6056 // not dirty that area (one less thing to have to do while holding 6057 // a lock). So we can only verify that [bottom(),pre_dummy_top()] 6058 // is dirty. 6059 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 6060 MemRegion mr(hr->bottom(), hr->pre_dummy_top()); 6061 if (hr->is_young()) { 6062 ct_bs->verify_g1_young_region(mr); 6063 } else { 6064 ct_bs->verify_dirty_region(mr); 6065 } 6066 } 6067 6068 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) { 6069 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 6070 for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) { 6071 verify_dirty_region(hr); 6072 } 6073 } 6074 6075 void G1CollectedHeap::verify_dirty_young_regions() { 6076 verify_dirty_young_list(_young_list->first_region()); 6077 } 6078 6079 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap, 6080 HeapWord* tams, HeapWord* end) { 6081 guarantee(tams <= end, 6082 err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end)); 6083 HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end); 6084 if (result < end) { 6085 gclog_or_tty->cr(); 6086 gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT, 6087 bitmap_name, result); 6088 gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT, 6089 bitmap_name, tams, end); 6090 return false; 6091 } 6092 return true; 6093 } 6094 6095 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) { 6096 CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap(); 6097 CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap(); 6098 6099 HeapWord* bottom = hr->bottom(); 6100 HeapWord* ptams = hr->prev_top_at_mark_start(); 6101 HeapWord* ntams = hr->next_top_at_mark_start(); 6102 HeapWord* end = hr->end(); 6103 6104 bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end); 6105 6106 bool res_n = true; 6107 // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window 6108 // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap 6109 // if we happen to be in that state. 6110 if (mark_in_progress() || !_cmThread->in_progress()) { 6111 res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end); 6112 } 6113 if (!res_p || !res_n) { 6114 gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT, 6115 HR_FORMAT_PARAMS(hr)); 6116 gclog_or_tty->print_cr("#### Caller: %s", caller); 6117 return false; 6118 } 6119 return true; 6120 } 6121 6122 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) { 6123 if (!G1VerifyBitmaps) return; 6124 6125 guarantee(verify_bitmaps(caller, hr), "bitmap verification"); 6126 } 6127 6128 class G1VerifyBitmapClosure : public HeapRegionClosure { 6129 private: 6130 const char* _caller; 6131 G1CollectedHeap* _g1h; 6132 bool _failures; 6133 6134 public: 6135 G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) : 6136 _caller(caller), _g1h(g1h), _failures(false) { } 6137 6138 bool failures() { return _failures; } 6139 6140 virtual bool doHeapRegion(HeapRegion* hr) { 6141 if (hr->continuesHumongous()) return false; 6142 6143 bool result = _g1h->verify_bitmaps(_caller, hr); 6144 if (!result) { 6145 _failures = true; 6146 } 6147 return false; 6148 } 6149 }; 6150 6151 void G1CollectedHeap::check_bitmaps(const char* caller) { 6152 if (!G1VerifyBitmaps) return; 6153 6154 G1VerifyBitmapClosure cl(caller, this); 6155 heap_region_iterate(&cl); 6156 guarantee(!cl.failures(), "bitmap verification"); 6157 } 6158 #endif // PRODUCT 6159 6160 void G1CollectedHeap::cleanUpCardTable() { 6161 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 6162 double start = os::elapsedTime(); 6163 6164 { 6165 // Iterate over the dirty cards region list. 6166 G1ParCleanupCTTask cleanup_task(ct_bs, this); 6167 6168 if (G1CollectedHeap::use_parallel_gc_threads()) { 6169 set_par_threads(); 6170 workers()->run_task(&cleanup_task); 6171 set_par_threads(0); 6172 } else { 6173 while (_dirty_cards_region_list) { 6174 HeapRegion* r = _dirty_cards_region_list; 6175 cleanup_task.clear_cards(r); 6176 _dirty_cards_region_list = r->get_next_dirty_cards_region(); 6177 if (_dirty_cards_region_list == r) { 6178 // The last region. 6179 _dirty_cards_region_list = NULL; 6180 } 6181 r->set_next_dirty_cards_region(NULL); 6182 } 6183 } 6184 #ifndef PRODUCT 6185 if (G1VerifyCTCleanup || VerifyAfterGC) { 6186 G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs); 6187 heap_region_iterate(&cleanup_verifier); 6188 } 6189 #endif 6190 } 6191 6192 double elapsed = os::elapsedTime() - start; 6193 g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0); 6194 } 6195 6196 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) { 6197 size_t pre_used = 0; 6198 FreeRegionList local_free_list("Local List for CSet Freeing"); 6199 6200 double young_time_ms = 0.0; 6201 double non_young_time_ms = 0.0; 6202 6203 // Since the collection set is a superset of the the young list, 6204 // all we need to do to clear the young list is clear its 6205 // head and length, and unlink any young regions in the code below 6206 _young_list->clear(); 6207 6208 G1CollectorPolicy* policy = g1_policy(); 6209 6210 double start_sec = os::elapsedTime(); 6211 bool non_young = true; 6212 6213 HeapRegion* cur = cs_head; 6214 int age_bound = -1; 6215 size_t rs_lengths = 0; 6216 6217 while (cur != NULL) { 6218 assert(!is_on_master_free_list(cur), "sanity"); 6219 if (non_young) { 6220 if (cur->is_young()) { 6221 double end_sec = os::elapsedTime(); 6222 double elapsed_ms = (end_sec - start_sec) * 1000.0; 6223 non_young_time_ms += elapsed_ms; 6224 6225 start_sec = os::elapsedTime(); 6226 non_young = false; 6227 } 6228 } else { 6229 if (!cur->is_young()) { 6230 double end_sec = os::elapsedTime(); 6231 double elapsed_ms = (end_sec - start_sec) * 1000.0; 6232 young_time_ms += elapsed_ms; 6233 6234 start_sec = os::elapsedTime(); 6235 non_young = true; 6236 } 6237 } 6238 6239 rs_lengths += cur->rem_set()->occupied_locked(); 6240 6241 HeapRegion* next = cur->next_in_collection_set(); 6242 assert(cur->in_collection_set(), "bad CS"); 6243 cur->set_next_in_collection_set(NULL); 6244 cur->set_in_collection_set(false); 6245 6246 if (cur->is_young()) { 6247 int index = cur->young_index_in_cset(); 6248 assert(index != -1, "invariant"); 6249 assert((uint) index < policy->young_cset_region_length(), "invariant"); 6250 size_t words_survived = _surviving_young_words[index]; 6251 cur->record_surv_words_in_group(words_survived); 6252 6253 // At this point the we have 'popped' cur from the collection set 6254 // (linked via next_in_collection_set()) but it is still in the 6255 // young list (linked via next_young_region()). Clear the 6256 // _next_young_region field. 6257 cur->set_next_young_region(NULL); 6258 } else { 6259 int index = cur->young_index_in_cset(); 6260 assert(index == -1, "invariant"); 6261 } 6262 6263 assert( (cur->is_young() && cur->young_index_in_cset() > -1) || 6264 (!cur->is_young() && cur->young_index_in_cset() == -1), 6265 "invariant" ); 6266 6267 if (!cur->evacuation_failed()) { 6268 MemRegion used_mr = cur->used_region(); 6269 6270 // And the region is empty. 6271 assert(!used_mr.is_empty(), "Should not have empty regions in a CS."); 6272 pre_used += cur->used(); 6273 free_region(cur, &local_free_list, false /* par */, true /* locked */); 6274 } else { 6275 cur->uninstall_surv_rate_group(); 6276 if (cur->is_young()) { 6277 cur->set_young_index_in_cset(-1); 6278 } 6279 cur->set_not_young(); 6280 cur->set_evacuation_failed(false); 6281 // The region is now considered to be old. 6282 _old_set.add(cur); 6283 evacuation_info.increment_collectionset_used_after(cur->used()); 6284 } 6285 cur = next; 6286 } 6287 6288 evacuation_info.set_regions_freed(local_free_list.length()); 6289 policy->record_max_rs_lengths(rs_lengths); 6290 policy->cset_regions_freed(); 6291 6292 double end_sec = os::elapsedTime(); 6293 double elapsed_ms = (end_sec - start_sec) * 1000.0; 6294 6295 if (non_young) { 6296 non_young_time_ms += elapsed_ms; 6297 } else { 6298 young_time_ms += elapsed_ms; 6299 } 6300 6301 prepend_to_freelist(&local_free_list); 6302 decrement_summary_bytes(pre_used); 6303 policy->phase_times()->record_young_free_cset_time_ms(young_time_ms); 6304 policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms); 6305 } 6306 6307 class G1FreeHumongousRegionClosure : public HeapRegionClosure { 6308 private: 6309 FreeRegionList* _free_region_list; 6310 HeapRegionSet* _proxy_set; 6311 HeapRegionSetCount _humongous_regions_removed; 6312 size_t _freed_bytes; 6313 public: 6314 6315 G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) : 6316 _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) { 6317 } 6318 6319 virtual bool doHeapRegion(HeapRegion* r) { 6320 if (!r->startsHumongous()) { 6321 return false; 6322 } 6323 6324 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 6325 6326 oop obj = (oop)r->bottom(); 6327 CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap(); 6328 6329 // The following checks whether the humongous object is live are sufficient. 6330 // The main additional check (in addition to having a reference from the roots 6331 // or the young gen) is whether the humongous object has a remembered set entry. 6332 // 6333 // A humongous object cannot be live if there is no remembered set for it 6334 // because: 6335 // - there can be no references from within humongous starts regions referencing 6336 // the object because we never allocate other objects into them. 6337 // (I.e. there are no intra-region references that may be missed by the 6338 // remembered set) 6339 // - as soon there is a remembered set entry to the humongous starts region 6340 // (i.e. it has "escaped" to an old object) this remembered set entry will stay 6341 // until the end of a concurrent mark. 6342 // 6343 // It is not required to check whether the object has been found dead by marking 6344 // or not, in fact it would prevent reclamation within a concurrent cycle, as 6345 // all objects allocated during that time are considered live. 6346 // SATB marking is even more conservative than the remembered set. 6347 // So if at this point in the collection there is no remembered set entry, 6348 // nobody has a reference to it. 6349 // At the start of collection we flush all refinement logs, and remembered sets 6350 // are completely up-to-date wrt to references to the humongous object. 6351 // 6352 // Other implementation considerations: 6353 // - never consider object arrays: while they are a valid target, they have not 6354 // been observed to be used as temporary objects. 6355 // - they would also pose considerable effort for cleaning up the the remembered 6356 // sets. 6357 // While this cleanup is not strictly necessary to be done (or done instantly), 6358 // given that their occurrence is very low, this saves us this additional 6359 // complexity. 6360 uint region_idx = r->hrm_index(); 6361 if (g1h->humongous_is_live(region_idx) || 6362 g1h->humongous_region_is_always_live(region_idx)) { 6363 6364 if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) { 6365 gclog_or_tty->print_cr("Live humongous %d region %d with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d", 6366 r->isHumongous(), 6367 region_idx, 6368 r->rem_set()->occupied(), 6369 r->rem_set()->strong_code_roots_list_length(), 6370 next_bitmap->isMarked(r->bottom()), 6371 g1h->humongous_is_live(region_idx), 6372 obj->is_objArray() 6373 ); 6374 } 6375 6376 return false; 6377 } 6378 6379 guarantee(!obj->is_objArray(), 6380 err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.", 6381 r->bottom())); 6382 6383 if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) { 6384 gclog_or_tty->print_cr("Reclaim humongous region %d start "PTR_FORMAT" region %d length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d", 6385 r->isHumongous(), 6386 r->bottom(), 6387 region_idx, 6388 r->region_num(), 6389 r->rem_set()->occupied(), 6390 r->rem_set()->strong_code_roots_list_length(), 6391 next_bitmap->isMarked(r->bottom()), 6392 g1h->humongous_is_live(region_idx), 6393 obj->is_objArray() 6394 ); 6395 } 6396 // Need to clear mark bit of the humongous object if already set. 6397 if (next_bitmap->isMarked(r->bottom())) { 6398 next_bitmap->clear(r->bottom()); 6399 } 6400 _freed_bytes += r->used(); 6401 r->set_containing_set(NULL); 6402 _humongous_regions_removed.increment(1u, r->capacity()); 6403 g1h->free_humongous_region(r, _free_region_list, false); 6404 6405 return false; 6406 } 6407 6408 HeapRegionSetCount& humongous_free_count() { 6409 return _humongous_regions_removed; 6410 } 6411 6412 size_t bytes_freed() const { 6413 return _freed_bytes; 6414 } 6415 6416 size_t humongous_reclaimed() const { 6417 return _humongous_regions_removed.length(); 6418 } 6419 }; 6420 6421 void G1CollectedHeap::eagerly_reclaim_humongous_regions() { 6422 assert_at_safepoint(true); 6423 6424 if (!G1ReclaimDeadHumongousObjectsAtYoungGC || !_has_humongous_reclaim_candidates) { 6425 g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0); 6426 return; 6427 } 6428 6429 double start_time = os::elapsedTime(); 6430 6431 FreeRegionList local_cleanup_list("Local Humongous Cleanup List"); 6432 6433 G1FreeHumongousRegionClosure cl(&local_cleanup_list); 6434 heap_region_iterate(&cl); 6435 6436 HeapRegionSetCount empty_set; 6437 remove_from_old_sets(empty_set, cl.humongous_free_count()); 6438 6439 G1HRPrinter* hr_printer = _g1h->hr_printer(); 6440 if (hr_printer->is_active()) { 6441 FreeRegionListIterator iter(&local_cleanup_list); 6442 while (iter.more_available()) { 6443 HeapRegion* hr = iter.get_next(); 6444 hr_printer->cleanup(hr); 6445 } 6446 } 6447 6448 prepend_to_freelist(&local_cleanup_list); 6449 decrement_summary_bytes(cl.bytes_freed()); 6450 6451 g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0, 6452 cl.humongous_reclaimed()); 6453 } 6454 6455 // This routine is similar to the above but does not record 6456 // any policy statistics or update free lists; we are abandoning 6457 // the current incremental collection set in preparation of a 6458 // full collection. After the full GC we will start to build up 6459 // the incremental collection set again. 6460 // This is only called when we're doing a full collection 6461 // and is immediately followed by the tearing down of the young list. 6462 6463 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) { 6464 HeapRegion* cur = cs_head; 6465 6466 while (cur != NULL) { 6467 HeapRegion* next = cur->next_in_collection_set(); 6468 assert(cur->in_collection_set(), "bad CS"); 6469 cur->set_next_in_collection_set(NULL); 6470 cur->set_in_collection_set(false); 6471 cur->set_young_index_in_cset(-1); 6472 cur = next; 6473 } 6474 } 6475 6476 void G1CollectedHeap::set_free_regions_coming() { 6477 if (G1ConcRegionFreeingVerbose) { 6478 gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : " 6479 "setting free regions coming"); 6480 } 6481 6482 assert(!free_regions_coming(), "pre-condition"); 6483 _free_regions_coming = true; 6484 } 6485 6486 void G1CollectedHeap::reset_free_regions_coming() { 6487 assert(free_regions_coming(), "pre-condition"); 6488 6489 { 6490 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 6491 _free_regions_coming = false; 6492 SecondaryFreeList_lock->notify_all(); 6493 } 6494 6495 if (G1ConcRegionFreeingVerbose) { 6496 gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : " 6497 "reset free regions coming"); 6498 } 6499 } 6500 6501 void G1CollectedHeap::wait_while_free_regions_coming() { 6502 // Most of the time we won't have to wait, so let's do a quick test 6503 // first before we take the lock. 6504 if (!free_regions_coming()) { 6505 return; 6506 } 6507 6508 if (G1ConcRegionFreeingVerbose) { 6509 gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : " 6510 "waiting for free regions"); 6511 } 6512 6513 { 6514 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 6515 while (free_regions_coming()) { 6516 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag); 6517 } 6518 } 6519 6520 if (G1ConcRegionFreeingVerbose) { 6521 gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : " 6522 "done waiting for free regions"); 6523 } 6524 } 6525 6526 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) { 6527 assert(heap_lock_held_for_gc(), 6528 "the heap lock should already be held by or for this thread"); 6529 _young_list->push_region(hr); 6530 } 6531 6532 class NoYoungRegionsClosure: public HeapRegionClosure { 6533 private: 6534 bool _success; 6535 public: 6536 NoYoungRegionsClosure() : _success(true) { } 6537 bool doHeapRegion(HeapRegion* r) { 6538 if (r->is_young()) { 6539 gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young", 6540 r->bottom(), r->end()); 6541 _success = false; 6542 } 6543 return false; 6544 } 6545 bool success() { return _success; } 6546 }; 6547 6548 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) { 6549 bool ret = _young_list->check_list_empty(check_sample); 6550 6551 if (check_heap) { 6552 NoYoungRegionsClosure closure; 6553 heap_region_iterate(&closure); 6554 ret = ret && closure.success(); 6555 } 6556 6557 return ret; 6558 } 6559 6560 class TearDownRegionSetsClosure : public HeapRegionClosure { 6561 private: 6562 HeapRegionSet *_old_set; 6563 6564 public: 6565 TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { } 6566 6567 bool doHeapRegion(HeapRegion* r) { 6568 if (r->is_empty()) { 6569 // We ignore empty regions, we'll empty the free list afterwards 6570 } else if (r->is_young()) { 6571 // We ignore young regions, we'll empty the young list afterwards 6572 } else if (r->isHumongous()) { 6573 // We ignore humongous regions, we're not tearing down the 6574 // humongous region set 6575 } else { 6576 // The rest should be old 6577 _old_set->remove(r); 6578 } 6579 return false; 6580 } 6581 6582 ~TearDownRegionSetsClosure() { 6583 assert(_old_set->is_empty(), "post-condition"); 6584 } 6585 }; 6586 6587 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) { 6588 assert_at_safepoint(true /* should_be_vm_thread */); 6589 6590 if (!free_list_only) { 6591 TearDownRegionSetsClosure cl(&_old_set); 6592 heap_region_iterate(&cl); 6593 6594 // Note that emptying the _young_list is postponed and instead done as 6595 // the first step when rebuilding the regions sets again. The reason for 6596 // this is that during a full GC string deduplication needs to know if 6597 // a collected region was young or old when the full GC was initiated. 6598 } 6599 _hrm.remove_all_free_regions(); 6600 } 6601 6602 class RebuildRegionSetsClosure : public HeapRegionClosure { 6603 private: 6604 bool _free_list_only; 6605 HeapRegionSet* _old_set; 6606 HeapRegionManager* _hrm; 6607 size_t _total_used; 6608 6609 public: 6610 RebuildRegionSetsClosure(bool free_list_only, 6611 HeapRegionSet* old_set, HeapRegionManager* hrm) : 6612 _free_list_only(free_list_only), 6613 _old_set(old_set), _hrm(hrm), _total_used(0) { 6614 assert(_hrm->num_free_regions() == 0, "pre-condition"); 6615 if (!free_list_only) { 6616 assert(_old_set->is_empty(), "pre-condition"); 6617 } 6618 } 6619 6620 bool doHeapRegion(HeapRegion* r) { 6621 if (r->continuesHumongous()) { 6622 return false; 6623 } 6624 6625 if (r->is_empty()) { 6626 // Add free regions to the free list 6627 _hrm->insert_into_free_list(r); 6628 } else if (!_free_list_only) { 6629 assert(!r->is_young(), "we should not come across young regions"); 6630 6631 if (r->isHumongous()) { 6632 // We ignore humongous regions, we left the humongous set unchanged 6633 } else { 6634 // The rest should be old, add them to the old set 6635 _old_set->add(r); 6636 } 6637 _total_used += r->used(); 6638 } 6639 6640 return false; 6641 } 6642 6643 size_t total_used() { 6644 return _total_used; 6645 } 6646 }; 6647 6648 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) { 6649 assert_at_safepoint(true /* should_be_vm_thread */); 6650 6651 if (!free_list_only) { 6652 _young_list->empty_list(); 6653 } 6654 6655 RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm); 6656 heap_region_iterate(&cl); 6657 6658 if (!free_list_only) { 6659 _summary_bytes_used = cl.total_used(); 6660 } 6661 assert(_summary_bytes_used == recalculate_used(), 6662 err_msg("inconsistent _summary_bytes_used, " 6663 "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT, 6664 _summary_bytes_used, recalculate_used())); 6665 } 6666 6667 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) { 6668 _refine_cte_cl->set_concurrent(concurrent); 6669 } 6670 6671 bool G1CollectedHeap::is_in_closed_subset(const void* p) const { 6672 HeapRegion* hr = heap_region_containing(p); 6673 return hr->is_in(p); 6674 } 6675 6676 // Methods for the mutator alloc region 6677 6678 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size, 6679 bool force) { 6680 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6681 assert(!force || g1_policy()->can_expand_young_list(), 6682 "if force is true we should be able to expand the young list"); 6683 bool young_list_full = g1_policy()->is_young_list_full(); 6684 if (force || !young_list_full) { 6685 HeapRegion* new_alloc_region = new_region(word_size, 6686 false /* is_old */, 6687 false /* do_expand */); 6688 if (new_alloc_region != NULL) { 6689 set_region_short_lived_locked(new_alloc_region); 6690 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full); 6691 check_bitmaps("Mutator Region Allocation", new_alloc_region); 6692 return new_alloc_region; 6693 } 6694 } 6695 return NULL; 6696 } 6697 6698 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region, 6699 size_t allocated_bytes) { 6700 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6701 assert(alloc_region->is_young(), "all mutator alloc regions should be young"); 6702 6703 g1_policy()->add_region_to_incremental_cset_lhs(alloc_region); 6704 _summary_bytes_used += allocated_bytes; 6705 _hr_printer.retire(alloc_region); 6706 // We update the eden sizes here, when the region is retired, 6707 // instead of when it's allocated, since this is the point that its 6708 // used space has been recored in _summary_bytes_used. 6709 g1mm()->update_eden_size(); 6710 } 6711 6712 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size, 6713 bool force) { 6714 return _g1h->new_mutator_alloc_region(word_size, force); 6715 } 6716 6717 void G1CollectedHeap::set_par_threads() { 6718 // Don't change the number of workers. Use the value previously set 6719 // in the workgroup. 6720 assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise"); 6721 uint n_workers = workers()->active_workers(); 6722 assert(UseDynamicNumberOfGCThreads || 6723 n_workers == workers()->total_workers(), 6724 "Otherwise should be using the total number of workers"); 6725 if (n_workers == 0) { 6726 assert(false, "Should have been set in prior evacuation pause."); 6727 n_workers = ParallelGCThreads; 6728 workers()->set_active_workers(n_workers); 6729 } 6730 set_par_threads(n_workers); 6731 } 6732 6733 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region, 6734 size_t allocated_bytes) { 6735 _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes); 6736 } 6737 6738 // Methods for the GC alloc regions 6739 6740 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, 6741 uint count, 6742 GCAllocPurpose ap) { 6743 assert(FreeList_lock->owned_by_self(), "pre-condition"); 6744 6745 if (count < g1_policy()->max_regions(ap)) { 6746 bool survivor = (ap == GCAllocForSurvived); 6747 HeapRegion* new_alloc_region = new_region(word_size, 6748 !survivor, 6749 true /* do_expand */); 6750 if (new_alloc_region != NULL) { 6751 // We really only need to do this for old regions given that we 6752 // should never scan survivors. But it doesn't hurt to do it 6753 // for survivors too. 6754 new_alloc_region->record_top_and_timestamp(); 6755 if (survivor) { 6756 new_alloc_region->set_survivor(); 6757 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor); 6758 check_bitmaps("Survivor Region Allocation", new_alloc_region); 6759 } else { 6760 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old); 6761 check_bitmaps("Old Region Allocation", new_alloc_region); 6762 } 6763 bool during_im = g1_policy()->during_initial_mark_pause(); 6764 new_alloc_region->note_start_of_copying(during_im); 6765 return new_alloc_region; 6766 } else { 6767 g1_policy()->note_alloc_region_limit_reached(ap); 6768 } 6769 } 6770 return NULL; 6771 } 6772 6773 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region, 6774 size_t allocated_bytes, 6775 GCAllocPurpose ap) { 6776 bool during_im = g1_policy()->during_initial_mark_pause(); 6777 alloc_region->note_end_of_copying(during_im); 6778 g1_policy()->record_bytes_copied_during_gc(allocated_bytes); 6779 if (ap == GCAllocForSurvived) { 6780 young_list()->add_survivor_region(alloc_region); 6781 } else { 6782 _old_set.add(alloc_region); 6783 } 6784 _hr_printer.retire(alloc_region); 6785 } 6786 6787 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size, 6788 bool force) { 6789 assert(!force, "not supported for GC alloc regions"); 6790 return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived); 6791 } 6792 6793 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region, 6794 size_t allocated_bytes) { 6795 _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes, 6796 GCAllocForSurvived); 6797 } 6798 6799 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size, 6800 bool force) { 6801 assert(!force, "not supported for GC alloc regions"); 6802 return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured); 6803 } 6804 6805 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region, 6806 size_t allocated_bytes) { 6807 _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes, 6808 GCAllocForTenured); 6809 } 6810 6811 HeapRegion* OldGCAllocRegion::release() { 6812 HeapRegion* cur = get(); 6813 if (cur != NULL) { 6814 // Determine how far we are from the next card boundary. If it is smaller than 6815 // the minimum object size we can allocate into, expand into the next card. 6816 HeapWord* top = cur->top(); 6817 HeapWord* aligned_top = (HeapWord*)align_ptr_up(top, G1BlockOffsetSharedArray::N_bytes); 6818 6819 size_t to_allocate_words = pointer_delta(aligned_top, top, HeapWordSize); 6820 6821 if (to_allocate_words != 0) { 6822 // We are not at a card boundary. Fill up, possibly into the next, taking the 6823 // end of the region and the minimum object size into account. 6824 to_allocate_words = MIN2(pointer_delta(cur->end(), cur->top(), HeapWordSize), 6825 MAX2(to_allocate_words, G1CollectedHeap::min_fill_size())); 6826 6827 // Skip allocation if there is not enough space to allocate even the smallest 6828 // possible object. In this case this region will not be retained, so the 6829 // original problem cannot occur. 6830 if (to_allocate_words >= G1CollectedHeap::min_fill_size()) { 6831 HeapWord* dummy = attempt_allocation(to_allocate_words, true /* bot_updates */); 6832 CollectedHeap::fill_with_object(dummy, to_allocate_words); 6833 } 6834 } 6835 } 6836 return G1AllocRegion::release(); 6837 } 6838 6839 // Heap region set verification 6840 6841 class VerifyRegionListsClosure : public HeapRegionClosure { 6842 private: 6843 HeapRegionSet* _old_set; 6844 HeapRegionSet* _humongous_set; 6845 HeapRegionManager* _hrm; 6846 6847 public: 6848 HeapRegionSetCount _old_count; 6849 HeapRegionSetCount _humongous_count; 6850 HeapRegionSetCount _free_count; 6851 6852 VerifyRegionListsClosure(HeapRegionSet* old_set, 6853 HeapRegionSet* humongous_set, 6854 HeapRegionManager* hrm) : 6855 _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm), 6856 _old_count(), _humongous_count(), _free_count(){ } 6857 6858 bool doHeapRegion(HeapRegion* hr) { 6859 if (hr->continuesHumongous()) { 6860 return false; 6861 } 6862 6863 if (hr->is_young()) { 6864 // TODO 6865 } else if (hr->startsHumongous()) { 6866 assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index())); 6867 _humongous_count.increment(1u, hr->capacity()); 6868 } else if (hr->is_empty()) { 6869 assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index())); 6870 _free_count.increment(1u, hr->capacity()); 6871 } else { 6872 assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index())); 6873 _old_count.increment(1u, hr->capacity()); 6874 } 6875 return false; 6876 } 6877 6878 void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) { 6879 guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length())); 6880 guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT, 6881 old_set->total_capacity_bytes(), _old_count.capacity())); 6882 6883 guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length())); 6884 guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT, 6885 humongous_set->total_capacity_bytes(), _humongous_count.capacity())); 6886 6887 guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length())); 6888 guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT, 6889 free_list->total_capacity_bytes(), _free_count.capacity())); 6890 } 6891 }; 6892 6893 void G1CollectedHeap::verify_region_sets() { 6894 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6895 6896 // First, check the explicit lists. 6897 _hrm.verify(); 6898 { 6899 // Given that a concurrent operation might be adding regions to 6900 // the secondary free list we have to take the lock before 6901 // verifying it. 6902 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 6903 _secondary_free_list.verify_list(); 6904 } 6905 6906 // If a concurrent region freeing operation is in progress it will 6907 // be difficult to correctly attributed any free regions we come 6908 // across to the correct free list given that they might belong to 6909 // one of several (free_list, secondary_free_list, any local lists, 6910 // etc.). So, if that's the case we will skip the rest of the 6911 // verification operation. Alternatively, waiting for the concurrent 6912 // operation to complete will have a non-trivial effect on the GC's 6913 // operation (no concurrent operation will last longer than the 6914 // interval between two calls to verification) and it might hide 6915 // any issues that we would like to catch during testing. 6916 if (free_regions_coming()) { 6917 return; 6918 } 6919 6920 // Make sure we append the secondary_free_list on the free_list so 6921 // that all free regions we will come across can be safely 6922 // attributed to the free_list. 6923 append_secondary_free_list_if_not_empty_with_lock(); 6924 6925 // Finally, make sure that the region accounting in the lists is 6926 // consistent with what we see in the heap. 6927 6928 VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm); 6929 heap_region_iterate(&cl); 6930 cl.verify_counts(&_old_set, &_humongous_set, &_hrm); 6931 } 6932 6933 // Optimized nmethod scanning 6934 6935 class RegisterNMethodOopClosure: public OopClosure { 6936 G1CollectedHeap* _g1h; 6937 nmethod* _nm; 6938 6939 template <class T> void do_oop_work(T* p) { 6940 T heap_oop = oopDesc::load_heap_oop(p); 6941 if (!oopDesc::is_null(heap_oop)) { 6942 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 6943 HeapRegion* hr = _g1h->heap_region_containing(obj); 6944 assert(!hr->continuesHumongous(), 6945 err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT 6946 " starting at "HR_FORMAT, 6947 _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()))); 6948 6949 // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries. 6950 hr->add_strong_code_root_locked(_nm); 6951 } 6952 } 6953 6954 public: 6955 RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 6956 _g1h(g1h), _nm(nm) {} 6957 6958 void do_oop(oop* p) { do_oop_work(p); } 6959 void do_oop(narrowOop* p) { do_oop_work(p); } 6960 }; 6961 6962 class UnregisterNMethodOopClosure: public OopClosure { 6963 G1CollectedHeap* _g1h; 6964 nmethod* _nm; 6965 6966 template <class T> void do_oop_work(T* p) { 6967 T heap_oop = oopDesc::load_heap_oop(p); 6968 if (!oopDesc::is_null(heap_oop)) { 6969 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 6970 HeapRegion* hr = _g1h->heap_region_containing(obj); 6971 assert(!hr->continuesHumongous(), 6972 err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT 6973 " starting at "HR_FORMAT, 6974 _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()))); 6975 6976 hr->remove_strong_code_root(_nm); 6977 } 6978 } 6979 6980 public: 6981 UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 6982 _g1h(g1h), _nm(nm) {} 6983 6984 void do_oop(oop* p) { do_oop_work(p); } 6985 void do_oop(narrowOop* p) { do_oop_work(p); } 6986 }; 6987 6988 void G1CollectedHeap::register_nmethod(nmethod* nm) { 6989 CollectedHeap::register_nmethod(nm); 6990 6991 guarantee(nm != NULL, "sanity"); 6992 RegisterNMethodOopClosure reg_cl(this, nm); 6993 nm->oops_do(®_cl); 6994 } 6995 6996 void G1CollectedHeap::unregister_nmethod(nmethod* nm) { 6997 CollectedHeap::unregister_nmethod(nm); 6998 6999 guarantee(nm != NULL, "sanity"); 7000 UnregisterNMethodOopClosure reg_cl(this, nm); 7001 nm->oops_do(®_cl, true); 7002 } 7003 7004 void G1CollectedHeap::purge_code_root_memory() { 7005 double purge_start = os::elapsedTime(); 7006 G1CodeRootSet::purge(); 7007 double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0; 7008 g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms); 7009 } 7010 7011 class RebuildStrongCodeRootClosure: public CodeBlobClosure { 7012 G1CollectedHeap* _g1h; 7013 7014 public: 7015 RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) : 7016 _g1h(g1h) {} 7017 7018 void do_code_blob(CodeBlob* cb) { 7019 nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL; 7020 if (nm == NULL) { 7021 return; 7022 } 7023 7024 if (ScavengeRootsInCode) { 7025 _g1h->register_nmethod(nm); 7026 } 7027 } 7028 }; 7029 7030 void G1CollectedHeap::rebuild_strong_code_roots() { 7031 RebuildStrongCodeRootClosure blob_cl(this); 7032 CodeCache::blobs_do(&blob_cl); 7033 }