1 /* 2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "code/codeCache.hpp" 27 #include "code/icBuffer.hpp" 28 #include "gc_implementation/g1/bufferingOopClosure.hpp" 29 #include "gc_implementation/g1/concurrentG1Refine.hpp" 30 #include "gc_implementation/g1/concurrentG1RefineThread.hpp" 31 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp" 32 #include "gc_implementation/g1/g1AllocRegion.inline.hpp" 33 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" 34 #include "gc_implementation/g1/g1CollectorPolicy.hpp" 35 #include "gc_implementation/g1/g1ErgoVerbose.hpp" 36 #include "gc_implementation/g1/g1EvacFailure.hpp" 37 #include "gc_implementation/g1/g1GCPhaseTimes.hpp" 38 #include "gc_implementation/g1/g1Log.hpp" 39 #include "gc_implementation/g1/g1MarkSweep.hpp" 40 #include "gc_implementation/g1/g1OopClosures.inline.hpp" 41 #include "gc_implementation/g1/g1RemSet.inline.hpp" 42 #include "gc_implementation/g1/g1YCTypes.hpp" 43 #include "gc_implementation/g1/heapRegion.inline.hpp" 44 #include "gc_implementation/g1/heapRegionRemSet.hpp" 45 #include "gc_implementation/g1/heapRegionSeq.inline.hpp" 46 #include "gc_implementation/g1/vm_operations_g1.hpp" 47 #include "gc_implementation/shared/gcHeapSummary.hpp" 48 #include "gc_implementation/shared/gcTimer.hpp" 49 #include "gc_implementation/shared/gcTrace.hpp" 50 #include "gc_implementation/shared/gcTraceTime.hpp" 51 #include "gc_implementation/shared/isGCActiveMark.hpp" 52 #include "memory/gcLocker.inline.hpp" 53 #include "memory/generationSpec.hpp" 54 #include "memory/iterator.hpp" 55 #include "memory/referenceProcessor.hpp" 56 #include "oops/oop.inline.hpp" 57 #include "oops/oop.pcgc.inline.hpp" 58 #include "runtime/vmThread.hpp" 59 #include "utilities/ticks.hpp" 60 61 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0; 62 63 // turn it on so that the contents of the young list (scan-only / 64 // to-be-collected) are printed at "strategic" points before / during 65 // / after the collection --- this is useful for debugging 66 #define YOUNG_LIST_VERBOSE 0 67 // CURRENT STATUS 68 // This file is under construction. Search for "FIXME". 69 70 // INVARIANTS/NOTES 71 // 72 // All allocation activity covered by the G1CollectedHeap interface is 73 // serialized by acquiring the HeapLock. This happens in mem_allocate 74 // and allocate_new_tlab, which are the "entry" points to the 75 // allocation code from the rest of the JVM. (Note that this does not 76 // apply to TLAB allocation, which is not part of this interface: it 77 // is done by clients of this interface.) 78 79 // Notes on implementation of parallelism in different tasks. 80 // 81 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism. 82 // The number of GC workers is passed to heap_region_par_iterate_chunked(). 83 // It does use run_task() which sets _n_workers in the task. 84 // G1ParTask executes g1_process_strong_roots() -> 85 // SharedHeap::process_strong_roots() which calls eventually to 86 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses 87 // SequentialSubTasksDone. SharedHeap::process_strong_roots() also 88 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap). 89 // 90 91 // Local to this file. 92 93 class RefineCardTableEntryClosure: public CardTableEntryClosure { 94 SuspendibleThreadSet* _sts; 95 G1RemSet* _g1rs; 96 ConcurrentG1Refine* _cg1r; 97 bool _concurrent; 98 public: 99 RefineCardTableEntryClosure(SuspendibleThreadSet* sts, 100 G1RemSet* g1rs, 101 ConcurrentG1Refine* cg1r) : 102 _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true) 103 {} 104 bool do_card_ptr(jbyte* card_ptr, int worker_i) { 105 bool oops_into_cset = _g1rs->refine_card(card_ptr, worker_i, false); 106 // This path is executed by the concurrent refine or mutator threads, 107 // concurrently, and so we do not care if card_ptr contains references 108 // that point into the collection set. 109 assert(!oops_into_cset, "should be"); 110 111 if (_concurrent && _sts->should_yield()) { 112 // Caller will actually yield. 113 return false; 114 } 115 // Otherwise, we finished successfully; return true. 116 return true; 117 } 118 void set_concurrent(bool b) { _concurrent = b; } 119 }; 120 121 122 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure { 123 int _calls; 124 G1CollectedHeap* _g1h; 125 CardTableModRefBS* _ctbs; 126 int _histo[256]; 127 public: 128 ClearLoggedCardTableEntryClosure() : 129 _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set()) 130 { 131 for (int i = 0; i < 256; i++) _histo[i] = 0; 132 } 133 bool do_card_ptr(jbyte* card_ptr, int worker_i) { 134 if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) { 135 _calls++; 136 unsigned char* ujb = (unsigned char*)card_ptr; 137 int ind = (int)(*ujb); 138 _histo[ind]++; 139 *card_ptr = -1; 140 } 141 return true; 142 } 143 int calls() { return _calls; } 144 void print_histo() { 145 gclog_or_tty->print_cr("Card table value histogram:"); 146 for (int i = 0; i < 256; i++) { 147 if (_histo[i] != 0) { 148 gclog_or_tty->print_cr(" %d: %d", i, _histo[i]); 149 } 150 } 151 } 152 }; 153 154 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure { 155 int _calls; 156 G1CollectedHeap* _g1h; 157 CardTableModRefBS* _ctbs; 158 public: 159 RedirtyLoggedCardTableEntryClosure() : 160 _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set()) {} 161 162 bool do_card_ptr(jbyte* card_ptr, int worker_i) { 163 if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) { 164 _calls++; 165 *card_ptr = 0; 166 } 167 return true; 168 } 169 int calls() { return _calls; } 170 }; 171 172 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure { 173 public: 174 bool do_card_ptr(jbyte* card_ptr, int worker_i) { 175 *card_ptr = CardTableModRefBS::dirty_card_val(); 176 return true; 177 } 178 }; 179 180 YoungList::YoungList(G1CollectedHeap* g1h) : 181 _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0), 182 _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) { 183 guarantee(check_list_empty(false), "just making sure..."); 184 } 185 186 void YoungList::push_region(HeapRegion *hr) { 187 assert(!hr->is_young(), "should not already be young"); 188 assert(hr->get_next_young_region() == NULL, "cause it should!"); 189 190 hr->set_next_young_region(_head); 191 _head = hr; 192 193 _g1h->g1_policy()->set_region_eden(hr, (int) _length); 194 ++_length; 195 } 196 197 void YoungList::add_survivor_region(HeapRegion* hr) { 198 assert(hr->is_survivor(), "should be flagged as survivor region"); 199 assert(hr->get_next_young_region() == NULL, "cause it should!"); 200 201 hr->set_next_young_region(_survivor_head); 202 if (_survivor_head == NULL) { 203 _survivor_tail = hr; 204 } 205 _survivor_head = hr; 206 ++_survivor_length; 207 } 208 209 void YoungList::empty_list(HeapRegion* list) { 210 while (list != NULL) { 211 HeapRegion* next = list->get_next_young_region(); 212 list->set_next_young_region(NULL); 213 list->uninstall_surv_rate_group(); 214 list->set_not_young(); 215 list = next; 216 } 217 } 218 219 void YoungList::empty_list() { 220 assert(check_list_well_formed(), "young list should be well formed"); 221 222 empty_list(_head); 223 _head = NULL; 224 _length = 0; 225 226 empty_list(_survivor_head); 227 _survivor_head = NULL; 228 _survivor_tail = NULL; 229 _survivor_length = 0; 230 231 _last_sampled_rs_lengths = 0; 232 233 assert(check_list_empty(false), "just making sure..."); 234 } 235 236 bool YoungList::check_list_well_formed() { 237 bool ret = true; 238 239 uint length = 0; 240 HeapRegion* curr = _head; 241 HeapRegion* last = NULL; 242 while (curr != NULL) { 243 if (!curr->is_young()) { 244 gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" " 245 "incorrectly tagged (y: %d, surv: %d)", 246 curr->bottom(), curr->end(), 247 curr->is_young(), curr->is_survivor()); 248 ret = false; 249 } 250 ++length; 251 last = curr; 252 curr = curr->get_next_young_region(); 253 } 254 ret = ret && (length == _length); 255 256 if (!ret) { 257 gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!"); 258 gclog_or_tty->print_cr("### list has %u entries, _length is %u", 259 length, _length); 260 } 261 262 return ret; 263 } 264 265 bool YoungList::check_list_empty(bool check_sample) { 266 bool ret = true; 267 268 if (_length != 0) { 269 gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u", 270 _length); 271 ret = false; 272 } 273 if (check_sample && _last_sampled_rs_lengths != 0) { 274 gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths"); 275 ret = false; 276 } 277 if (_head != NULL) { 278 gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head"); 279 ret = false; 280 } 281 if (!ret) { 282 gclog_or_tty->print_cr("### YOUNG LIST does not seem empty"); 283 } 284 285 return ret; 286 } 287 288 void 289 YoungList::rs_length_sampling_init() { 290 _sampled_rs_lengths = 0; 291 _curr = _head; 292 } 293 294 bool 295 YoungList::rs_length_sampling_more() { 296 return _curr != NULL; 297 } 298 299 void 300 YoungList::rs_length_sampling_next() { 301 assert( _curr != NULL, "invariant" ); 302 size_t rs_length = _curr->rem_set()->occupied(); 303 304 _sampled_rs_lengths += rs_length; 305 306 // The current region may not yet have been added to the 307 // incremental collection set (it gets added when it is 308 // retired as the current allocation region). 309 if (_curr->in_collection_set()) { 310 // Update the collection set policy information for this region 311 _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length); 312 } 313 314 _curr = _curr->get_next_young_region(); 315 if (_curr == NULL) { 316 _last_sampled_rs_lengths = _sampled_rs_lengths; 317 // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths); 318 } 319 } 320 321 void 322 YoungList::reset_auxilary_lists() { 323 guarantee( is_empty(), "young list should be empty" ); 324 assert(check_list_well_formed(), "young list should be well formed"); 325 326 // Add survivor regions to SurvRateGroup. 327 _g1h->g1_policy()->note_start_adding_survivor_regions(); 328 _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */); 329 330 int young_index_in_cset = 0; 331 for (HeapRegion* curr = _survivor_head; 332 curr != NULL; 333 curr = curr->get_next_young_region()) { 334 _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset); 335 336 // The region is a non-empty survivor so let's add it to 337 // the incremental collection set for the next evacuation 338 // pause. 339 _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr); 340 young_index_in_cset += 1; 341 } 342 assert((uint) young_index_in_cset == _survivor_length, "post-condition"); 343 _g1h->g1_policy()->note_stop_adding_survivor_regions(); 344 345 _head = _survivor_head; 346 _length = _survivor_length; 347 if (_survivor_head != NULL) { 348 assert(_survivor_tail != NULL, "cause it shouldn't be"); 349 assert(_survivor_length > 0, "invariant"); 350 _survivor_tail->set_next_young_region(NULL); 351 } 352 353 // Don't clear the survivor list handles until the start of 354 // the next evacuation pause - we need it in order to re-tag 355 // the survivor regions from this evacuation pause as 'young' 356 // at the start of the next. 357 358 _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */); 359 360 assert(check_list_well_formed(), "young list should be well formed"); 361 } 362 363 void YoungList::print() { 364 HeapRegion* lists[] = {_head, _survivor_head}; 365 const char* names[] = {"YOUNG", "SURVIVOR"}; 366 367 for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) { 368 gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]); 369 HeapRegion *curr = lists[list]; 370 if (curr == NULL) 371 gclog_or_tty->print_cr(" empty"); 372 while (curr != NULL) { 373 gclog_or_tty->print_cr(" "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d", 374 HR_FORMAT_PARAMS(curr), 375 curr->prev_top_at_mark_start(), 376 curr->next_top_at_mark_start(), 377 curr->age_in_surv_rate_group_cond()); 378 curr = curr->get_next_young_region(); 379 } 380 } 381 382 gclog_or_tty->print_cr(""); 383 } 384 385 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr) 386 { 387 // Claim the right to put the region on the dirty cards region list 388 // by installing a self pointer. 389 HeapRegion* next = hr->get_next_dirty_cards_region(); 390 if (next == NULL) { 391 HeapRegion* res = (HeapRegion*) 392 Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(), 393 NULL); 394 if (res == NULL) { 395 HeapRegion* head; 396 do { 397 // Put the region to the dirty cards region list. 398 head = _dirty_cards_region_list; 399 next = (HeapRegion*) 400 Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head); 401 if (next == head) { 402 assert(hr->get_next_dirty_cards_region() == hr, 403 "hr->get_next_dirty_cards_region() != hr"); 404 if (next == NULL) { 405 // The last region in the list points to itself. 406 hr->set_next_dirty_cards_region(hr); 407 } else { 408 hr->set_next_dirty_cards_region(next); 409 } 410 } 411 } while (next != head); 412 } 413 } 414 } 415 416 HeapRegion* G1CollectedHeap::pop_dirty_cards_region() 417 { 418 HeapRegion* head; 419 HeapRegion* hr; 420 do { 421 head = _dirty_cards_region_list; 422 if (head == NULL) { 423 return NULL; 424 } 425 HeapRegion* new_head = head->get_next_dirty_cards_region(); 426 if (head == new_head) { 427 // The last region. 428 new_head = NULL; 429 } 430 hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list, 431 head); 432 } while (hr != head); 433 assert(hr != NULL, "invariant"); 434 hr->set_next_dirty_cards_region(NULL); 435 return hr; 436 } 437 438 void G1CollectedHeap::stop_conc_gc_threads() { 439 _cg1r->stop(); 440 _cmThread->stop(); 441 } 442 443 #ifdef ASSERT 444 // A region is added to the collection set as it is retired 445 // so an address p can point to a region which will be in the 446 // collection set but has not yet been retired. This method 447 // therefore is only accurate during a GC pause after all 448 // regions have been retired. It is used for debugging 449 // to check if an nmethod has references to objects that can 450 // be move during a partial collection. Though it can be 451 // inaccurate, it is sufficient for G1 because the conservative 452 // implementation of is_scavengable() for G1 will indicate that 453 // all nmethods must be scanned during a partial collection. 454 bool G1CollectedHeap::is_in_partial_collection(const void* p) { 455 HeapRegion* hr = heap_region_containing(p); 456 return hr != NULL && hr->in_collection_set(); 457 } 458 #endif 459 460 // Returns true if the reference points to an object that 461 // can move in an incremental collection. 462 bool G1CollectedHeap::is_scavengable(const void* p) { 463 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 464 G1CollectorPolicy* g1p = g1h->g1_policy(); 465 HeapRegion* hr = heap_region_containing(p); 466 if (hr == NULL) { 467 // null 468 assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p)); 469 return false; 470 } else { 471 return !hr->isHumongous(); 472 } 473 } 474 475 void G1CollectedHeap::check_ct_logs_at_safepoint() { 476 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 477 CardTableModRefBS* ct_bs = g1_barrier_set(); 478 479 // Count the dirty cards at the start. 480 CountNonCleanMemRegionClosure count1(this); 481 ct_bs->mod_card_iterate(&count1); 482 int orig_count = count1.n(); 483 484 // First clear the logged cards. 485 ClearLoggedCardTableEntryClosure clear; 486 dcqs.set_closure(&clear); 487 dcqs.apply_closure_to_all_completed_buffers(); 488 dcqs.iterate_closure_all_threads(false); 489 clear.print_histo(); 490 491 // Now ensure that there's no dirty cards. 492 CountNonCleanMemRegionClosure count2(this); 493 ct_bs->mod_card_iterate(&count2); 494 if (count2.n() != 0) { 495 gclog_or_tty->print_cr("Card table has %d entries; %d originally", 496 count2.n(), orig_count); 497 } 498 guarantee(count2.n() == 0, "Card table should be clean."); 499 500 RedirtyLoggedCardTableEntryClosure redirty; 501 JavaThread::dirty_card_queue_set().set_closure(&redirty); 502 dcqs.apply_closure_to_all_completed_buffers(); 503 dcqs.iterate_closure_all_threads(false); 504 gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.", 505 clear.calls(), orig_count); 506 guarantee(redirty.calls() == clear.calls(), 507 "Or else mechanism is broken."); 508 509 CountNonCleanMemRegionClosure count3(this); 510 ct_bs->mod_card_iterate(&count3); 511 if (count3.n() != orig_count) { 512 gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.", 513 orig_count, count3.n()); 514 guarantee(count3.n() >= orig_count, "Should have restored them all."); 515 } 516 517 JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl); 518 } 519 520 // Private class members. 521 522 G1CollectedHeap* G1CollectedHeap::_g1h; 523 524 // Private methods. 525 526 HeapRegion* 527 G1CollectedHeap::new_region_try_secondary_free_list() { 528 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 529 while (!_secondary_free_list.is_empty() || free_regions_coming()) { 530 if (!_secondary_free_list.is_empty()) { 531 if (G1ConcRegionFreeingVerbose) { 532 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 533 "secondary_free_list has %u entries", 534 _secondary_free_list.length()); 535 } 536 // It looks as if there are free regions available on the 537 // secondary_free_list. Let's move them to the free_list and try 538 // again to allocate from it. 539 append_secondary_free_list(); 540 541 assert(!_free_list.is_empty(), "if the secondary_free_list was not " 542 "empty we should have moved at least one entry to the free_list"); 543 HeapRegion* res = _free_list.remove_head(); 544 if (G1ConcRegionFreeingVerbose) { 545 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 546 "allocated "HR_FORMAT" from secondary_free_list", 547 HR_FORMAT_PARAMS(res)); 548 } 549 return res; 550 } 551 552 // Wait here until we get notified either when (a) there are no 553 // more free regions coming or (b) some regions have been moved on 554 // the secondary_free_list. 555 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag); 556 } 557 558 if (G1ConcRegionFreeingVerbose) { 559 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 560 "could not allocate from secondary_free_list"); 561 } 562 return NULL; 563 } 564 565 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) { 566 assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords, 567 "the only time we use this to allocate a humongous region is " 568 "when we are allocating a single humongous region"); 569 570 HeapRegion* res; 571 if (G1StressConcRegionFreeing) { 572 if (!_secondary_free_list.is_empty()) { 573 if (G1ConcRegionFreeingVerbose) { 574 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 575 "forced to look at the secondary_free_list"); 576 } 577 res = new_region_try_secondary_free_list(); 578 if (res != NULL) { 579 return res; 580 } 581 } 582 } 583 res = _free_list.remove_head_or_null(); 584 if (res == NULL) { 585 if (G1ConcRegionFreeingVerbose) { 586 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 587 "res == NULL, trying the secondary_free_list"); 588 } 589 res = new_region_try_secondary_free_list(); 590 } 591 if (res == NULL && do_expand && _expand_heap_after_alloc_failure) { 592 // Currently, only attempts to allocate GC alloc regions set 593 // do_expand to true. So, we should only reach here during a 594 // safepoint. If this assumption changes we might have to 595 // reconsider the use of _expand_heap_after_alloc_failure. 596 assert(SafepointSynchronize::is_at_safepoint(), "invariant"); 597 598 ergo_verbose1(ErgoHeapSizing, 599 "attempt heap expansion", 600 ergo_format_reason("region allocation request failed") 601 ergo_format_byte("allocation request"), 602 word_size * HeapWordSize); 603 if (expand(word_size * HeapWordSize)) { 604 // Given that expand() succeeded in expanding the heap, and we 605 // always expand the heap by an amount aligned to the heap 606 // region size, the free list should in theory not be empty. So 607 // it would probably be OK to use remove_head(). But the extra 608 // check for NULL is unlikely to be a performance issue here (we 609 // just expanded the heap!) so let's just be conservative and 610 // use remove_head_or_null(). 611 res = _free_list.remove_head_or_null(); 612 } else { 613 _expand_heap_after_alloc_failure = false; 614 } 615 } 616 return res; 617 } 618 619 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions, 620 size_t word_size) { 621 assert(isHumongous(word_size), "word_size should be humongous"); 622 assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition"); 623 624 uint first = G1_NULL_HRS_INDEX; 625 if (num_regions == 1) { 626 // Only one region to allocate, no need to go through the slower 627 // path. The caller will attempt the expansion if this fails, so 628 // let's not try to expand here too. 629 HeapRegion* hr = new_region(word_size, false /* do_expand */); 630 if (hr != NULL) { 631 first = hr->hrs_index(); 632 } else { 633 first = G1_NULL_HRS_INDEX; 634 } 635 } else { 636 // We can't allocate humongous regions while cleanupComplete() is 637 // running, since some of the regions we find to be empty might not 638 // yet be added to the free list and it is not straightforward to 639 // know which list they are on so that we can remove them. Note 640 // that we only need to do this if we need to allocate more than 641 // one region to satisfy the current humongous allocation 642 // request. If we are only allocating one region we use the common 643 // region allocation code (see above). 644 wait_while_free_regions_coming(); 645 append_secondary_free_list_if_not_empty_with_lock(); 646 647 if (free_regions() >= num_regions) { 648 first = _hrs.find_contiguous(num_regions); 649 if (first != G1_NULL_HRS_INDEX) { 650 for (uint i = first; i < first + num_regions; ++i) { 651 HeapRegion* hr = region_at(i); 652 assert(hr->is_empty(), "sanity"); 653 assert(is_on_master_free_list(hr), "sanity"); 654 hr->set_pending_removal(true); 655 } 656 _free_list.remove_all_pending(num_regions); 657 } 658 } 659 } 660 return first; 661 } 662 663 HeapWord* 664 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first, 665 uint num_regions, 666 size_t word_size) { 667 assert(first != G1_NULL_HRS_INDEX, "pre-condition"); 668 assert(isHumongous(word_size), "word_size should be humongous"); 669 assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition"); 670 671 // Index of last region in the series + 1. 672 uint last = first + num_regions; 673 674 // We need to initialize the region(s) we just discovered. This is 675 // a bit tricky given that it can happen concurrently with 676 // refinement threads refining cards on these regions and 677 // potentially wanting to refine the BOT as they are scanning 678 // those cards (this can happen shortly after a cleanup; see CR 679 // 6991377). So we have to set up the region(s) carefully and in 680 // a specific order. 681 682 // The word size sum of all the regions we will allocate. 683 size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords; 684 assert(word_size <= word_size_sum, "sanity"); 685 686 // This will be the "starts humongous" region. 687 HeapRegion* first_hr = region_at(first); 688 // The header of the new object will be placed at the bottom of 689 // the first region. 690 HeapWord* new_obj = first_hr->bottom(); 691 // This will be the new end of the first region in the series that 692 // should also match the end of the last region in the series. 693 HeapWord* new_end = new_obj + word_size_sum; 694 // This will be the new top of the first region that will reflect 695 // this allocation. 696 HeapWord* new_top = new_obj + word_size; 697 698 // First, we need to zero the header of the space that we will be 699 // allocating. When we update top further down, some refinement 700 // threads might try to scan the region. By zeroing the header we 701 // ensure that any thread that will try to scan the region will 702 // come across the zero klass word and bail out. 703 // 704 // NOTE: It would not have been correct to have used 705 // CollectedHeap::fill_with_object() and make the space look like 706 // an int array. The thread that is doing the allocation will 707 // later update the object header to a potentially different array 708 // type and, for a very short period of time, the klass and length 709 // fields will be inconsistent. This could cause a refinement 710 // thread to calculate the object size incorrectly. 711 Copy::fill_to_words(new_obj, oopDesc::header_size(), 0); 712 713 // We will set up the first region as "starts humongous". This 714 // will also update the BOT covering all the regions to reflect 715 // that there is a single object that starts at the bottom of the 716 // first region. 717 first_hr->set_startsHumongous(new_top, new_end); 718 719 // Then, if there are any, we will set up the "continues 720 // humongous" regions. 721 HeapRegion* hr = NULL; 722 for (uint i = first + 1; i < last; ++i) { 723 hr = region_at(i); 724 hr->set_continuesHumongous(first_hr); 725 } 726 // If we have "continues humongous" regions (hr != NULL), then the 727 // end of the last one should match new_end. 728 assert(hr == NULL || hr->end() == new_end, "sanity"); 729 730 // Up to this point no concurrent thread would have been able to 731 // do any scanning on any region in this series. All the top 732 // fields still point to bottom, so the intersection between 733 // [bottom,top] and [card_start,card_end] will be empty. Before we 734 // update the top fields, we'll do a storestore to make sure that 735 // no thread sees the update to top before the zeroing of the 736 // object header and the BOT initialization. 737 OrderAccess::storestore(); 738 739 // Now that the BOT and the object header have been initialized, 740 // we can update top of the "starts humongous" region. 741 assert(first_hr->bottom() < new_top && new_top <= first_hr->end(), 742 "new_top should be in this region"); 743 first_hr->set_top(new_top); 744 if (_hr_printer.is_active()) { 745 HeapWord* bottom = first_hr->bottom(); 746 HeapWord* end = first_hr->orig_end(); 747 if ((first + 1) == last) { 748 // the series has a single humongous region 749 _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top); 750 } else { 751 // the series has more than one humongous regions 752 _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end); 753 } 754 } 755 756 // Now, we will update the top fields of the "continues humongous" 757 // regions. The reason we need to do this is that, otherwise, 758 // these regions would look empty and this will confuse parts of 759 // G1. For example, the code that looks for a consecutive number 760 // of empty regions will consider them empty and try to 761 // re-allocate them. We can extend is_empty() to also include 762 // !continuesHumongous(), but it is easier to just update the top 763 // fields here. The way we set top for all regions (i.e., top == 764 // end for all regions but the last one, top == new_top for the 765 // last one) is actually used when we will free up the humongous 766 // region in free_humongous_region(). 767 hr = NULL; 768 for (uint i = first + 1; i < last; ++i) { 769 hr = region_at(i); 770 if ((i + 1) == last) { 771 // last continues humongous region 772 assert(hr->bottom() < new_top && new_top <= hr->end(), 773 "new_top should fall on this region"); 774 hr->set_top(new_top); 775 _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top); 776 } else { 777 // not last one 778 assert(new_top > hr->end(), "new_top should be above this region"); 779 hr->set_top(hr->end()); 780 _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end()); 781 } 782 } 783 // If we have continues humongous regions (hr != NULL), then the 784 // end of the last one should match new_end and its top should 785 // match new_top. 786 assert(hr == NULL || 787 (hr->end() == new_end && hr->top() == new_top), "sanity"); 788 789 assert(first_hr->used() == word_size * HeapWordSize, "invariant"); 790 _summary_bytes_used += first_hr->used(); 791 _humongous_set.add(first_hr); 792 793 return new_obj; 794 } 795 796 // If could fit into free regions w/o expansion, try. 797 // Otherwise, if can expand, do so. 798 // Otherwise, if using ex regions might help, try with ex given back. 799 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) { 800 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 801 802 verify_region_sets_optional(); 803 804 size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords); 805 uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords); 806 uint x_num = expansion_regions(); 807 uint fs = _hrs.free_suffix(); 808 uint first = humongous_obj_allocate_find_first(num_regions, word_size); 809 if (first == G1_NULL_HRS_INDEX) { 810 // The only thing we can do now is attempt expansion. 811 if (fs + x_num >= num_regions) { 812 // If the number of regions we're trying to allocate for this 813 // object is at most the number of regions in the free suffix, 814 // then the call to humongous_obj_allocate_find_first() above 815 // should have succeeded and we wouldn't be here. 816 // 817 // We should only be trying to expand when the free suffix is 818 // not sufficient for the object _and_ we have some expansion 819 // room available. 820 assert(num_regions > fs, "earlier allocation should have succeeded"); 821 822 ergo_verbose1(ErgoHeapSizing, 823 "attempt heap expansion", 824 ergo_format_reason("humongous allocation request failed") 825 ergo_format_byte("allocation request"), 826 word_size * HeapWordSize); 827 if (expand((num_regions - fs) * HeapRegion::GrainBytes)) { 828 // Even though the heap was expanded, it might not have 829 // reached the desired size. So, we cannot assume that the 830 // allocation will succeed. 831 first = humongous_obj_allocate_find_first(num_regions, word_size); 832 } 833 } 834 } 835 836 HeapWord* result = NULL; 837 if (first != G1_NULL_HRS_INDEX) { 838 result = 839 humongous_obj_allocate_initialize_regions(first, num_regions, word_size); 840 assert(result != NULL, "it should always return a valid result"); 841 842 // A successful humongous object allocation changes the used space 843 // information of the old generation so we need to recalculate the 844 // sizes and update the jstat counters here. 845 g1mm()->update_sizes(); 846 } 847 848 verify_region_sets_optional(); 849 850 return result; 851 } 852 853 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) { 854 assert_heap_not_locked_and_not_at_safepoint(); 855 assert(!isHumongous(word_size), "we do not allow humongous TLABs"); 856 857 unsigned int dummy_gc_count_before; 858 int dummy_gclocker_retry_count = 0; 859 return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count); 860 } 861 862 HeapWord* 863 G1CollectedHeap::mem_allocate(size_t word_size, 864 bool* gc_overhead_limit_was_exceeded) { 865 assert_heap_not_locked_and_not_at_safepoint(); 866 867 // Loop until the allocation is satisfied, or unsatisfied after GC. 868 for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) { 869 unsigned int gc_count_before; 870 871 HeapWord* result = NULL; 872 if (!isHumongous(word_size)) { 873 result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count); 874 } else { 875 result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count); 876 } 877 if (result != NULL) { 878 return result; 879 } 880 881 // Create the garbage collection operation... 882 VM_G1CollectForAllocation op(gc_count_before, word_size); 883 // ...and get the VM thread to execute it. 884 VMThread::execute(&op); 885 886 if (op.prologue_succeeded() && op.pause_succeeded()) { 887 // If the operation was successful we'll return the result even 888 // if it is NULL. If the allocation attempt failed immediately 889 // after a Full GC, it's unlikely we'll be able to allocate now. 890 HeapWord* result = op.result(); 891 if (result != NULL && !isHumongous(word_size)) { 892 // Allocations that take place on VM operations do not do any 893 // card dirtying and we have to do it here. We only have to do 894 // this for non-humongous allocations, though. 895 dirty_young_block(result, word_size); 896 } 897 return result; 898 } else { 899 if (gclocker_retry_count > GCLockerRetryAllocationCount) { 900 return NULL; 901 } 902 assert(op.result() == NULL, 903 "the result should be NULL if the VM op did not succeed"); 904 } 905 906 // Give a warning if we seem to be looping forever. 907 if ((QueuedAllocationWarningCount > 0) && 908 (try_count % QueuedAllocationWarningCount == 0)) { 909 warning("G1CollectedHeap::mem_allocate retries %d times", try_count); 910 } 911 } 912 913 ShouldNotReachHere(); 914 return NULL; 915 } 916 917 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size, 918 unsigned int *gc_count_before_ret, 919 int* gclocker_retry_count_ret) { 920 // Make sure you read the note in attempt_allocation_humongous(). 921 922 assert_heap_not_locked_and_not_at_safepoint(); 923 assert(!isHumongous(word_size), "attempt_allocation_slow() should not " 924 "be called for humongous allocation requests"); 925 926 // We should only get here after the first-level allocation attempt 927 // (attempt_allocation()) failed to allocate. 928 929 // We will loop until a) we manage to successfully perform the 930 // allocation or b) we successfully schedule a collection which 931 // fails to perform the allocation. b) is the only case when we'll 932 // return NULL. 933 HeapWord* result = NULL; 934 for (int try_count = 1; /* we'll return */; try_count += 1) { 935 bool should_try_gc; 936 unsigned int gc_count_before; 937 938 { 939 MutexLockerEx x(Heap_lock); 940 941 result = _mutator_alloc_region.attempt_allocation_locked(word_size, 942 false /* bot_updates */); 943 if (result != NULL) { 944 return result; 945 } 946 947 // If we reach here, attempt_allocation_locked() above failed to 948 // allocate a new region. So the mutator alloc region should be NULL. 949 assert(_mutator_alloc_region.get() == NULL, "only way to get here"); 950 951 if (GC_locker::is_active_and_needs_gc()) { 952 if (g1_policy()->can_expand_young_list()) { 953 // No need for an ergo verbose message here, 954 // can_expand_young_list() does this when it returns true. 955 result = _mutator_alloc_region.attempt_allocation_force(word_size, 956 false /* bot_updates */); 957 if (result != NULL) { 958 return result; 959 } 960 } 961 should_try_gc = false; 962 } else { 963 // The GCLocker may not be active but the GCLocker initiated 964 // GC may not yet have been performed (GCLocker::needs_gc() 965 // returns true). In this case we do not try this GC and 966 // wait until the GCLocker initiated GC is performed, and 967 // then retry the allocation. 968 if (GC_locker::needs_gc()) { 969 should_try_gc = false; 970 } else { 971 // Read the GC count while still holding the Heap_lock. 972 gc_count_before = total_collections(); 973 should_try_gc = true; 974 } 975 } 976 } 977 978 if (should_try_gc) { 979 bool succeeded; 980 result = do_collection_pause(word_size, gc_count_before, &succeeded, 981 GCCause::_g1_inc_collection_pause); 982 if (result != NULL) { 983 assert(succeeded, "only way to get back a non-NULL result"); 984 return result; 985 } 986 987 if (succeeded) { 988 // If we get here we successfully scheduled a collection which 989 // failed to allocate. No point in trying to allocate 990 // further. We'll just return NULL. 991 MutexLockerEx x(Heap_lock); 992 *gc_count_before_ret = total_collections(); 993 return NULL; 994 } 995 } else { 996 if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) { 997 MutexLockerEx x(Heap_lock); 998 *gc_count_before_ret = total_collections(); 999 return NULL; 1000 } 1001 // The GCLocker is either active or the GCLocker initiated 1002 // GC has not yet been performed. Stall until it is and 1003 // then retry the allocation. 1004 GC_locker::stall_until_clear(); 1005 (*gclocker_retry_count_ret) += 1; 1006 } 1007 1008 // We can reach here if we were unsuccessful in scheduling a 1009 // collection (because another thread beat us to it) or if we were 1010 // stalled due to the GC locker. In either can we should retry the 1011 // allocation attempt in case another thread successfully 1012 // performed a collection and reclaimed enough space. We do the 1013 // first attempt (without holding the Heap_lock) here and the 1014 // follow-on attempt will be at the start of the next loop 1015 // iteration (after taking the Heap_lock). 1016 result = _mutator_alloc_region.attempt_allocation(word_size, 1017 false /* bot_updates */); 1018 if (result != NULL) { 1019 return result; 1020 } 1021 1022 // Give a warning if we seem to be looping forever. 1023 if ((QueuedAllocationWarningCount > 0) && 1024 (try_count % QueuedAllocationWarningCount == 0)) { 1025 warning("G1CollectedHeap::attempt_allocation_slow() " 1026 "retries %d times", try_count); 1027 } 1028 } 1029 1030 ShouldNotReachHere(); 1031 return NULL; 1032 } 1033 1034 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size, 1035 unsigned int * gc_count_before_ret, 1036 int* gclocker_retry_count_ret) { 1037 // The structure of this method has a lot of similarities to 1038 // attempt_allocation_slow(). The reason these two were not merged 1039 // into a single one is that such a method would require several "if 1040 // allocation is not humongous do this, otherwise do that" 1041 // conditional paths which would obscure its flow. In fact, an early 1042 // version of this code did use a unified method which was harder to 1043 // follow and, as a result, it had subtle bugs that were hard to 1044 // track down. So keeping these two methods separate allows each to 1045 // be more readable. It will be good to keep these two in sync as 1046 // much as possible. 1047 1048 assert_heap_not_locked_and_not_at_safepoint(); 1049 assert(isHumongous(word_size), "attempt_allocation_humongous() " 1050 "should only be called for humongous allocations"); 1051 1052 // Humongous objects can exhaust the heap quickly, so we should check if we 1053 // need to start a marking cycle at each humongous object allocation. We do 1054 // the check before we do the actual allocation. The reason for doing it 1055 // before the allocation is that we avoid having to keep track of the newly 1056 // allocated memory while we do a GC. 1057 if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation", 1058 word_size)) { 1059 collect(GCCause::_g1_humongous_allocation); 1060 } 1061 1062 // We will loop until a) we manage to successfully perform the 1063 // allocation or b) we successfully schedule a collection which 1064 // fails to perform the allocation. b) is the only case when we'll 1065 // return NULL. 1066 HeapWord* result = NULL; 1067 for (int try_count = 1; /* we'll return */; try_count += 1) { 1068 bool should_try_gc; 1069 unsigned int gc_count_before; 1070 1071 { 1072 MutexLockerEx x(Heap_lock); 1073 1074 // Given that humongous objects are not allocated in young 1075 // regions, we'll first try to do the allocation without doing a 1076 // collection hoping that there's enough space in the heap. 1077 result = humongous_obj_allocate(word_size); 1078 if (result != NULL) { 1079 return result; 1080 } 1081 1082 if (GC_locker::is_active_and_needs_gc()) { 1083 should_try_gc = false; 1084 } else { 1085 // The GCLocker may not be active but the GCLocker initiated 1086 // GC may not yet have been performed (GCLocker::needs_gc() 1087 // returns true). In this case we do not try this GC and 1088 // wait until the GCLocker initiated GC is performed, and 1089 // then retry the allocation. 1090 if (GC_locker::needs_gc()) { 1091 should_try_gc = false; 1092 } else { 1093 // Read the GC count while still holding the Heap_lock. 1094 gc_count_before = total_collections(); 1095 should_try_gc = true; 1096 } 1097 } 1098 } 1099 1100 if (should_try_gc) { 1101 // If we failed to allocate the humongous object, we should try to 1102 // do a collection pause (if we're allowed) in case it reclaims 1103 // enough space for the allocation to succeed after the pause. 1104 1105 bool succeeded; 1106 result = do_collection_pause(word_size, gc_count_before, &succeeded, 1107 GCCause::_g1_humongous_allocation); 1108 if (result != NULL) { 1109 assert(succeeded, "only way to get back a non-NULL result"); 1110 return result; 1111 } 1112 1113 if (succeeded) { 1114 // If we get here we successfully scheduled a collection which 1115 // failed to allocate. No point in trying to allocate 1116 // further. We'll just return NULL. 1117 MutexLockerEx x(Heap_lock); 1118 *gc_count_before_ret = total_collections(); 1119 return NULL; 1120 } 1121 } else { 1122 if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) { 1123 MutexLockerEx x(Heap_lock); 1124 *gc_count_before_ret = total_collections(); 1125 return NULL; 1126 } 1127 // The GCLocker is either active or the GCLocker initiated 1128 // GC has not yet been performed. Stall until it is and 1129 // then retry the allocation. 1130 GC_locker::stall_until_clear(); 1131 (*gclocker_retry_count_ret) += 1; 1132 } 1133 1134 // We can reach here if we were unsuccessful in scheduling a 1135 // collection (because another thread beat us to it) or if we were 1136 // stalled due to the GC locker. In either can we should retry the 1137 // allocation attempt in case another thread successfully 1138 // performed a collection and reclaimed enough space. Give a 1139 // warning if we seem to be looping forever. 1140 1141 if ((QueuedAllocationWarningCount > 0) && 1142 (try_count % QueuedAllocationWarningCount == 0)) { 1143 warning("G1CollectedHeap::attempt_allocation_humongous() " 1144 "retries %d times", try_count); 1145 } 1146 } 1147 1148 ShouldNotReachHere(); 1149 return NULL; 1150 } 1151 1152 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size, 1153 bool expect_null_mutator_alloc_region) { 1154 assert_at_safepoint(true /* should_be_vm_thread */); 1155 assert(_mutator_alloc_region.get() == NULL || 1156 !expect_null_mutator_alloc_region, 1157 "the current alloc region was unexpectedly found to be non-NULL"); 1158 1159 if (!isHumongous(word_size)) { 1160 return _mutator_alloc_region.attempt_allocation_locked(word_size, 1161 false /* bot_updates */); 1162 } else { 1163 HeapWord* result = humongous_obj_allocate(word_size); 1164 if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) { 1165 g1_policy()->set_initiate_conc_mark_if_possible(); 1166 } 1167 return result; 1168 } 1169 1170 ShouldNotReachHere(); 1171 } 1172 1173 class PostMCRemSetClearClosure: public HeapRegionClosure { 1174 G1CollectedHeap* _g1h; 1175 ModRefBarrierSet* _mr_bs; 1176 public: 1177 PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) : 1178 _g1h(g1h), _mr_bs(mr_bs) {} 1179 1180 bool doHeapRegion(HeapRegion* r) { 1181 HeapRegionRemSet* hrrs = r->rem_set(); 1182 1183 if (r->continuesHumongous()) { 1184 // We'll assert that the strong code root list and RSet is empty 1185 assert(hrrs->strong_code_roots_list_length() == 0, "sanity"); 1186 assert(hrrs->occupied() == 0, "RSet should be empty"); 1187 return false; 1188 } 1189 1190 _g1h->reset_gc_time_stamps(r); 1191 hrrs->clear(); 1192 // You might think here that we could clear just the cards 1193 // corresponding to the used region. But no: if we leave a dirty card 1194 // in a region we might allocate into, then it would prevent that card 1195 // from being enqueued, and cause it to be missed. 1196 // Re: the performance cost: we shouldn't be doing full GC anyway! 1197 _mr_bs->clear(MemRegion(r->bottom(), r->end())); 1198 1199 return false; 1200 } 1201 }; 1202 1203 void G1CollectedHeap::clear_rsets_post_compaction() { 1204 PostMCRemSetClearClosure rs_clear(this, g1_barrier_set()); 1205 heap_region_iterate(&rs_clear); 1206 } 1207 1208 class RebuildRSOutOfRegionClosure: public HeapRegionClosure { 1209 G1CollectedHeap* _g1h; 1210 UpdateRSOopClosure _cl; 1211 int _worker_i; 1212 public: 1213 RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) : 1214 _cl(g1->g1_rem_set(), worker_i), 1215 _worker_i(worker_i), 1216 _g1h(g1) 1217 { } 1218 1219 bool doHeapRegion(HeapRegion* r) { 1220 if (!r->continuesHumongous()) { 1221 _cl.set_from(r); 1222 r->oop_iterate(&_cl); 1223 } 1224 return false; 1225 } 1226 }; 1227 1228 class ParRebuildRSTask: public AbstractGangTask { 1229 G1CollectedHeap* _g1; 1230 public: 1231 ParRebuildRSTask(G1CollectedHeap* g1) 1232 : AbstractGangTask("ParRebuildRSTask"), 1233 _g1(g1) 1234 { } 1235 1236 void work(uint worker_id) { 1237 RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id); 1238 _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id, 1239 _g1->workers()->active_workers(), 1240 HeapRegion::RebuildRSClaimValue); 1241 } 1242 }; 1243 1244 class PostCompactionPrinterClosure: public HeapRegionClosure { 1245 private: 1246 G1HRPrinter* _hr_printer; 1247 public: 1248 bool doHeapRegion(HeapRegion* hr) { 1249 assert(!hr->is_young(), "not expecting to find young regions"); 1250 // We only generate output for non-empty regions. 1251 if (!hr->is_empty()) { 1252 if (!hr->isHumongous()) { 1253 _hr_printer->post_compaction(hr, G1HRPrinter::Old); 1254 } else if (hr->startsHumongous()) { 1255 if (hr->region_num() == 1) { 1256 // single humongous region 1257 _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous); 1258 } else { 1259 _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous); 1260 } 1261 } else { 1262 assert(hr->continuesHumongous(), "only way to get here"); 1263 _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous); 1264 } 1265 } 1266 return false; 1267 } 1268 1269 PostCompactionPrinterClosure(G1HRPrinter* hr_printer) 1270 : _hr_printer(hr_printer) { } 1271 }; 1272 1273 void G1CollectedHeap::print_hrs_post_compaction() { 1274 PostCompactionPrinterClosure cl(hr_printer()); 1275 heap_region_iterate(&cl); 1276 } 1277 1278 bool G1CollectedHeap::do_collection(bool explicit_gc, 1279 bool clear_all_soft_refs, 1280 size_t word_size) { 1281 assert_at_safepoint(true /* should_be_vm_thread */); 1282 1283 if (GC_locker::check_active_before_gc()) { 1284 return false; 1285 } 1286 1287 STWGCTimer* gc_timer = G1MarkSweep::gc_timer(); 1288 gc_timer->register_gc_start(); 1289 1290 SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer(); 1291 gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start()); 1292 1293 SvcGCMarker sgcm(SvcGCMarker::FULL); 1294 ResourceMark rm; 1295 1296 print_heap_before_gc(); 1297 trace_heap_before_gc(gc_tracer); 1298 1299 size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes(); 1300 1301 HRSPhaseSetter x(HRSPhaseFullGC); 1302 verify_region_sets_optional(); 1303 1304 const bool do_clear_all_soft_refs = clear_all_soft_refs || 1305 collector_policy()->should_clear_all_soft_refs(); 1306 1307 ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy()); 1308 1309 { 1310 IsGCActiveMark x; 1311 1312 // Timing 1313 assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant"); 1314 gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps); 1315 TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty); 1316 1317 { 1318 GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL); 1319 TraceCollectorStats tcs(g1mm()->full_collection_counters()); 1320 TraceMemoryManagerStats tms(true /* fullGC */, gc_cause()); 1321 1322 double start = os::elapsedTime(); 1323 g1_policy()->record_full_collection_start(); 1324 1325 // Note: When we have a more flexible GC logging framework that 1326 // allows us to add optional attributes to a GC log record we 1327 // could consider timing and reporting how long we wait in the 1328 // following two methods. 1329 wait_while_free_regions_coming(); 1330 // If we start the compaction before the CM threads finish 1331 // scanning the root regions we might trip them over as we'll 1332 // be moving objects / updating references. So let's wait until 1333 // they are done. By telling them to abort, they should complete 1334 // early. 1335 _cm->root_regions()->abort(); 1336 _cm->root_regions()->wait_until_scan_finished(); 1337 append_secondary_free_list_if_not_empty_with_lock(); 1338 1339 gc_prologue(true); 1340 increment_total_collections(true /* full gc */); 1341 increment_old_marking_cycles_started(); 1342 1343 assert(used() == recalculate_used(), "Should be equal"); 1344 1345 verify_before_gc(); 1346 1347 pre_full_gc_dump(gc_timer); 1348 1349 COMPILER2_PRESENT(DerivedPointerTable::clear()); 1350 1351 // Disable discovery and empty the discovered lists 1352 // for the CM ref processor. 1353 ref_processor_cm()->disable_discovery(); 1354 ref_processor_cm()->abandon_partial_discovery(); 1355 ref_processor_cm()->verify_no_references_recorded(); 1356 1357 // Abandon current iterations of concurrent marking and concurrent 1358 // refinement, if any are in progress. We have to do this before 1359 // wait_until_scan_finished() below. 1360 concurrent_mark()->abort(); 1361 1362 // Make sure we'll choose a new allocation region afterwards. 1363 release_mutator_alloc_region(); 1364 abandon_gc_alloc_regions(); 1365 g1_rem_set()->cleanupHRRS(); 1366 1367 // We should call this after we retire any currently active alloc 1368 // regions so that all the ALLOC / RETIRE events are generated 1369 // before the start GC event. 1370 _hr_printer.start_gc(true /* full */, (size_t) total_collections()); 1371 1372 // We may have added regions to the current incremental collection 1373 // set between the last GC or pause and now. We need to clear the 1374 // incremental collection set and then start rebuilding it afresh 1375 // after this full GC. 1376 abandon_collection_set(g1_policy()->inc_cset_head()); 1377 g1_policy()->clear_incremental_cset(); 1378 g1_policy()->stop_incremental_cset_building(); 1379 1380 tear_down_region_sets(false /* free_list_only */); 1381 g1_policy()->set_gcs_are_young(true); 1382 1383 // See the comments in g1CollectedHeap.hpp and 1384 // G1CollectedHeap::ref_processing_init() about 1385 // how reference processing currently works in G1. 1386 1387 // Temporarily make discovery by the STW ref processor single threaded (non-MT). 1388 ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false); 1389 1390 // Temporarily clear the STW ref processor's _is_alive_non_header field. 1391 ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL); 1392 1393 ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/); 1394 ref_processor_stw()->setup_policy(do_clear_all_soft_refs); 1395 1396 // Do collection work 1397 { 1398 HandleMark hm; // Discard invalid handles created during gc 1399 G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs); 1400 } 1401 1402 assert(free_regions() == 0, "we should not have added any free regions"); 1403 rebuild_region_sets(false /* free_list_only */); 1404 1405 // Enqueue any discovered reference objects that have 1406 // not been removed from the discovered lists. 1407 ref_processor_stw()->enqueue_discovered_references(); 1408 1409 COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); 1410 1411 MemoryService::track_memory_usage(); 1412 1413 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 1414 ref_processor_stw()->verify_no_references_recorded(); 1415 1416 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 1417 ClassLoaderDataGraph::purge(); 1418 MetaspaceAux::verify_metrics(); 1419 1420 // Note: since we've just done a full GC, concurrent 1421 // marking is no longer active. Therefore we need not 1422 // re-enable reference discovery for the CM ref processor. 1423 // That will be done at the start of the next marking cycle. 1424 assert(!ref_processor_cm()->discovery_enabled(), "Postcondition"); 1425 ref_processor_cm()->verify_no_references_recorded(); 1426 1427 reset_gc_time_stamp(); 1428 // Since everything potentially moved, we will clear all remembered 1429 // sets, and clear all cards. Later we will rebuild remembered 1430 // sets. We will also reset the GC time stamps of the regions. 1431 clear_rsets_post_compaction(); 1432 check_gc_time_stamps(); 1433 1434 // Resize the heap if necessary. 1435 resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size); 1436 1437 if (_hr_printer.is_active()) { 1438 // We should do this after we potentially resize the heap so 1439 // that all the COMMIT / UNCOMMIT events are generated before 1440 // the end GC event. 1441 1442 print_hrs_post_compaction(); 1443 _hr_printer.end_gc(true /* full */, (size_t) total_collections()); 1444 } 1445 1446 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 1447 if (hot_card_cache->use_cache()) { 1448 hot_card_cache->reset_card_counts(); 1449 hot_card_cache->reset_hot_cache(); 1450 } 1451 1452 // Rebuild remembered sets of all regions. 1453 if (G1CollectedHeap::use_parallel_gc_threads()) { 1454 uint n_workers = 1455 AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(), 1456 workers()->active_workers(), 1457 Threads::number_of_non_daemon_threads()); 1458 assert(UseDynamicNumberOfGCThreads || 1459 n_workers == workers()->total_workers(), 1460 "If not dynamic should be using all the workers"); 1461 workers()->set_active_workers(n_workers); 1462 // Set parallel threads in the heap (_n_par_threads) only 1463 // before a parallel phase and always reset it to 0 after 1464 // the phase so that the number of parallel threads does 1465 // no get carried forward to a serial phase where there 1466 // may be code that is "possibly_parallel". 1467 set_par_threads(n_workers); 1468 1469 ParRebuildRSTask rebuild_rs_task(this); 1470 assert(check_heap_region_claim_values( 1471 HeapRegion::InitialClaimValue), "sanity check"); 1472 assert(UseDynamicNumberOfGCThreads || 1473 workers()->active_workers() == workers()->total_workers(), 1474 "Unless dynamic should use total workers"); 1475 // Use the most recent number of active workers 1476 assert(workers()->active_workers() > 0, 1477 "Active workers not properly set"); 1478 set_par_threads(workers()->active_workers()); 1479 workers()->run_task(&rebuild_rs_task); 1480 set_par_threads(0); 1481 assert(check_heap_region_claim_values( 1482 HeapRegion::RebuildRSClaimValue), "sanity check"); 1483 reset_heap_region_claim_values(); 1484 } else { 1485 RebuildRSOutOfRegionClosure rebuild_rs(this); 1486 heap_region_iterate(&rebuild_rs); 1487 } 1488 1489 // Rebuild the strong code root lists for each region 1490 rebuild_strong_code_roots(); 1491 1492 if (true) { // FIXME 1493 MetaspaceGC::compute_new_size(); 1494 } 1495 1496 #ifdef TRACESPINNING 1497 ParallelTaskTerminator::print_termination_counts(); 1498 #endif 1499 1500 // Discard all rset updates 1501 JavaThread::dirty_card_queue_set().abandon_logs(); 1502 assert(!G1DeferredRSUpdate 1503 || (G1DeferredRSUpdate && 1504 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any"); 1505 1506 _young_list->reset_sampled_info(); 1507 // At this point there should be no regions in the 1508 // entire heap tagged as young. 1509 assert(check_young_list_empty(true /* check_heap */), 1510 "young list should be empty at this point"); 1511 1512 // Update the number of full collections that have been completed. 1513 increment_old_marking_cycles_completed(false /* concurrent */); 1514 1515 _hrs.verify_optional(); 1516 verify_region_sets_optional(); 1517 1518 verify_after_gc(); 1519 1520 // Start a new incremental collection set for the next pause 1521 assert(g1_policy()->collection_set() == NULL, "must be"); 1522 g1_policy()->start_incremental_cset_building(); 1523 1524 // Clear the _cset_fast_test bitmap in anticipation of adding 1525 // regions to the incremental collection set for the next 1526 // evacuation pause. 1527 clear_cset_fast_test(); 1528 1529 init_mutator_alloc_region(); 1530 1531 double end = os::elapsedTime(); 1532 g1_policy()->record_full_collection_end(); 1533 1534 if (G1Log::fine()) { 1535 g1_policy()->print_heap_transition(); 1536 } 1537 1538 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 1539 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 1540 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 1541 // before any GC notifications are raised. 1542 g1mm()->update_sizes(); 1543 1544 gc_epilogue(true); 1545 } 1546 1547 if (G1Log::finer()) { 1548 g1_policy()->print_detailed_heap_transition(true /* full */); 1549 } 1550 1551 print_heap_after_gc(); 1552 trace_heap_after_gc(gc_tracer); 1553 1554 post_full_gc_dump(gc_timer); 1555 1556 gc_timer->register_gc_end(); 1557 gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions()); 1558 } 1559 1560 return true; 1561 } 1562 1563 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) { 1564 // do_collection() will return whether it succeeded in performing 1565 // the GC. Currently, there is no facility on the 1566 // do_full_collection() API to notify the caller than the collection 1567 // did not succeed (e.g., because it was locked out by the GC 1568 // locker). So, right now, we'll ignore the return value. 1569 bool dummy = do_collection(true, /* explicit_gc */ 1570 clear_all_soft_refs, 1571 0 /* word_size */); 1572 } 1573 1574 // This code is mostly copied from TenuredGeneration. 1575 void 1576 G1CollectedHeap:: 1577 resize_if_necessary_after_full_collection(size_t word_size) { 1578 // Include the current allocation, if any, and bytes that will be 1579 // pre-allocated to support collections, as "used". 1580 const size_t used_after_gc = used(); 1581 const size_t capacity_after_gc = capacity(); 1582 const size_t free_after_gc = capacity_after_gc - used_after_gc; 1583 1584 // This is enforced in arguments.cpp. 1585 assert(MinHeapFreeRatio <= MaxHeapFreeRatio, 1586 "otherwise the code below doesn't make sense"); 1587 1588 // We don't have floating point command-line arguments 1589 const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0; 1590 const double maximum_used_percentage = 1.0 - minimum_free_percentage; 1591 const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0; 1592 const double minimum_used_percentage = 1.0 - maximum_free_percentage; 1593 1594 const size_t min_heap_size = collector_policy()->min_heap_byte_size(); 1595 const size_t max_heap_size = collector_policy()->max_heap_byte_size(); 1596 1597 // We have to be careful here as these two calculations can overflow 1598 // 32-bit size_t's. 1599 double used_after_gc_d = (double) used_after_gc; 1600 double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage; 1601 double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage; 1602 1603 // Let's make sure that they are both under the max heap size, which 1604 // by default will make them fit into a size_t. 1605 double desired_capacity_upper_bound = (double) max_heap_size; 1606 minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d, 1607 desired_capacity_upper_bound); 1608 maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d, 1609 desired_capacity_upper_bound); 1610 1611 // We can now safely turn them into size_t's. 1612 size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d; 1613 size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d; 1614 1615 // This assert only makes sense here, before we adjust them 1616 // with respect to the min and max heap size. 1617 assert(minimum_desired_capacity <= maximum_desired_capacity, 1618 err_msg("minimum_desired_capacity = "SIZE_FORMAT", " 1619 "maximum_desired_capacity = "SIZE_FORMAT, 1620 minimum_desired_capacity, maximum_desired_capacity)); 1621 1622 // Should not be greater than the heap max size. No need to adjust 1623 // it with respect to the heap min size as it's a lower bound (i.e., 1624 // we'll try to make the capacity larger than it, not smaller). 1625 minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size); 1626 // Should not be less than the heap min size. No need to adjust it 1627 // with respect to the heap max size as it's an upper bound (i.e., 1628 // we'll try to make the capacity smaller than it, not greater). 1629 maximum_desired_capacity = MAX2(maximum_desired_capacity, min_heap_size); 1630 1631 if (capacity_after_gc < minimum_desired_capacity) { 1632 // Don't expand unless it's significant 1633 size_t expand_bytes = minimum_desired_capacity - capacity_after_gc; 1634 ergo_verbose4(ErgoHeapSizing, 1635 "attempt heap expansion", 1636 ergo_format_reason("capacity lower than " 1637 "min desired capacity after Full GC") 1638 ergo_format_byte("capacity") 1639 ergo_format_byte("occupancy") 1640 ergo_format_byte_perc("min desired capacity"), 1641 capacity_after_gc, used_after_gc, 1642 minimum_desired_capacity, (double) MinHeapFreeRatio); 1643 expand(expand_bytes); 1644 1645 // No expansion, now see if we want to shrink 1646 } else if (capacity_after_gc > maximum_desired_capacity) { 1647 // Capacity too large, compute shrinking size 1648 size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity; 1649 ergo_verbose4(ErgoHeapSizing, 1650 "attempt heap shrinking", 1651 ergo_format_reason("capacity higher than " 1652 "max desired capacity after Full GC") 1653 ergo_format_byte("capacity") 1654 ergo_format_byte("occupancy") 1655 ergo_format_byte_perc("max desired capacity"), 1656 capacity_after_gc, used_after_gc, 1657 maximum_desired_capacity, (double) MaxHeapFreeRatio); 1658 shrink(shrink_bytes); 1659 } 1660 } 1661 1662 1663 HeapWord* 1664 G1CollectedHeap::satisfy_failed_allocation(size_t word_size, 1665 bool* succeeded) { 1666 assert_at_safepoint(true /* should_be_vm_thread */); 1667 1668 *succeeded = true; 1669 // Let's attempt the allocation first. 1670 HeapWord* result = 1671 attempt_allocation_at_safepoint(word_size, 1672 false /* expect_null_mutator_alloc_region */); 1673 if (result != NULL) { 1674 assert(*succeeded, "sanity"); 1675 return result; 1676 } 1677 1678 // In a G1 heap, we're supposed to keep allocation from failing by 1679 // incremental pauses. Therefore, at least for now, we'll favor 1680 // expansion over collection. (This might change in the future if we can 1681 // do something smarter than full collection to satisfy a failed alloc.) 1682 result = expand_and_allocate(word_size); 1683 if (result != NULL) { 1684 assert(*succeeded, "sanity"); 1685 return result; 1686 } 1687 1688 // Expansion didn't work, we'll try to do a Full GC. 1689 bool gc_succeeded = do_collection(false, /* explicit_gc */ 1690 false, /* clear_all_soft_refs */ 1691 word_size); 1692 if (!gc_succeeded) { 1693 *succeeded = false; 1694 return NULL; 1695 } 1696 1697 // Retry the allocation 1698 result = attempt_allocation_at_safepoint(word_size, 1699 true /* expect_null_mutator_alloc_region */); 1700 if (result != NULL) { 1701 assert(*succeeded, "sanity"); 1702 return result; 1703 } 1704 1705 // Then, try a Full GC that will collect all soft references. 1706 gc_succeeded = do_collection(false, /* explicit_gc */ 1707 true, /* clear_all_soft_refs */ 1708 word_size); 1709 if (!gc_succeeded) { 1710 *succeeded = false; 1711 return NULL; 1712 } 1713 1714 // Retry the allocation once more 1715 result = attempt_allocation_at_safepoint(word_size, 1716 true /* expect_null_mutator_alloc_region */); 1717 if (result != NULL) { 1718 assert(*succeeded, "sanity"); 1719 return result; 1720 } 1721 1722 assert(!collector_policy()->should_clear_all_soft_refs(), 1723 "Flag should have been handled and cleared prior to this point"); 1724 1725 // What else? We might try synchronous finalization later. If the total 1726 // space available is large enough for the allocation, then a more 1727 // complete compaction phase than we've tried so far might be 1728 // appropriate. 1729 assert(*succeeded, "sanity"); 1730 return NULL; 1731 } 1732 1733 // Attempting to expand the heap sufficiently 1734 // to support an allocation of the given "word_size". If 1735 // successful, perform the allocation and return the address of the 1736 // allocated block, or else "NULL". 1737 1738 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) { 1739 assert_at_safepoint(true /* should_be_vm_thread */); 1740 1741 verify_region_sets_optional(); 1742 1743 size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes); 1744 ergo_verbose1(ErgoHeapSizing, 1745 "attempt heap expansion", 1746 ergo_format_reason("allocation request failed") 1747 ergo_format_byte("allocation request"), 1748 word_size * HeapWordSize); 1749 if (expand(expand_bytes)) { 1750 _hrs.verify_optional(); 1751 verify_region_sets_optional(); 1752 return attempt_allocation_at_safepoint(word_size, 1753 false /* expect_null_mutator_alloc_region */); 1754 } 1755 return NULL; 1756 } 1757 1758 void G1CollectedHeap::update_committed_space(HeapWord* old_end, 1759 HeapWord* new_end) { 1760 assert(old_end != new_end, "don't call this otherwise"); 1761 assert((HeapWord*) _g1_storage.high() == new_end, "invariant"); 1762 1763 // Update the committed mem region. 1764 _g1_committed.set_end(new_end); 1765 // Tell the card table about the update. 1766 Universe::heap()->barrier_set()->resize_covered_region(_g1_committed); 1767 // Tell the BOT about the update. 1768 _bot_shared->resize(_g1_committed.word_size()); 1769 // Tell the hot card cache about the update 1770 _cg1r->hot_card_cache()->resize_card_counts(capacity()); 1771 } 1772 1773 bool G1CollectedHeap::expand(size_t expand_bytes) { 1774 size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes); 1775 aligned_expand_bytes = align_size_up(aligned_expand_bytes, 1776 HeapRegion::GrainBytes); 1777 ergo_verbose2(ErgoHeapSizing, 1778 "expand the heap", 1779 ergo_format_byte("requested expansion amount") 1780 ergo_format_byte("attempted expansion amount"), 1781 expand_bytes, aligned_expand_bytes); 1782 1783 if (_g1_storage.uncommitted_size() == 0) { 1784 ergo_verbose0(ErgoHeapSizing, 1785 "did not expand the heap", 1786 ergo_format_reason("heap already fully expanded")); 1787 return false; 1788 } 1789 1790 // First commit the memory. 1791 HeapWord* old_end = (HeapWord*) _g1_storage.high(); 1792 bool successful = _g1_storage.expand_by(aligned_expand_bytes); 1793 if (successful) { 1794 // Then propagate this update to the necessary data structures. 1795 HeapWord* new_end = (HeapWord*) _g1_storage.high(); 1796 update_committed_space(old_end, new_end); 1797 1798 FreeRegionList expansion_list("Local Expansion List"); 1799 MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list); 1800 assert(mr.start() == old_end, "post-condition"); 1801 // mr might be a smaller region than what was requested if 1802 // expand_by() was unable to allocate the HeapRegion instances 1803 assert(mr.end() <= new_end, "post-condition"); 1804 1805 size_t actual_expand_bytes = mr.byte_size(); 1806 assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition"); 1807 assert(actual_expand_bytes == expansion_list.total_capacity_bytes(), 1808 "post-condition"); 1809 if (actual_expand_bytes < aligned_expand_bytes) { 1810 // We could not expand _hrs to the desired size. In this case we 1811 // need to shrink the committed space accordingly. 1812 assert(mr.end() < new_end, "invariant"); 1813 1814 size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes; 1815 // First uncommit the memory. 1816 _g1_storage.shrink_by(diff_bytes); 1817 // Then propagate this update to the necessary data structures. 1818 update_committed_space(new_end, mr.end()); 1819 } 1820 _free_list.add_as_tail(&expansion_list); 1821 1822 if (_hr_printer.is_active()) { 1823 HeapWord* curr = mr.start(); 1824 while (curr < mr.end()) { 1825 HeapWord* curr_end = curr + HeapRegion::GrainWords; 1826 _hr_printer.commit(curr, curr_end); 1827 curr = curr_end; 1828 } 1829 assert(curr == mr.end(), "post-condition"); 1830 } 1831 g1_policy()->record_new_heap_size(n_regions()); 1832 } else { 1833 ergo_verbose0(ErgoHeapSizing, 1834 "did not expand the heap", 1835 ergo_format_reason("heap expansion operation failed")); 1836 // The expansion of the virtual storage space was unsuccessful. 1837 // Let's see if it was because we ran out of swap. 1838 if (G1ExitOnExpansionFailure && 1839 _g1_storage.uncommitted_size() >= aligned_expand_bytes) { 1840 // We had head room... 1841 vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion"); 1842 } 1843 } 1844 return successful; 1845 } 1846 1847 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) { 1848 size_t aligned_shrink_bytes = 1849 ReservedSpace::page_align_size_down(shrink_bytes); 1850 aligned_shrink_bytes = align_size_down(aligned_shrink_bytes, 1851 HeapRegion::GrainBytes); 1852 uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes); 1853 1854 uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove); 1855 HeapWord* old_end = (HeapWord*) _g1_storage.high(); 1856 size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes; 1857 1858 ergo_verbose3(ErgoHeapSizing, 1859 "shrink the heap", 1860 ergo_format_byte("requested shrinking amount") 1861 ergo_format_byte("aligned shrinking amount") 1862 ergo_format_byte("attempted shrinking amount"), 1863 shrink_bytes, aligned_shrink_bytes, shrunk_bytes); 1864 if (num_regions_removed > 0) { 1865 _g1_storage.shrink_by(shrunk_bytes); 1866 HeapWord* new_end = (HeapWord*) _g1_storage.high(); 1867 1868 if (_hr_printer.is_active()) { 1869 HeapWord* curr = old_end; 1870 while (curr > new_end) { 1871 HeapWord* curr_end = curr; 1872 curr -= HeapRegion::GrainWords; 1873 _hr_printer.uncommit(curr, curr_end); 1874 } 1875 } 1876 1877 _expansion_regions += num_regions_removed; 1878 update_committed_space(old_end, new_end); 1879 HeapRegionRemSet::shrink_heap(n_regions()); 1880 g1_policy()->record_new_heap_size(n_regions()); 1881 } else { 1882 ergo_verbose0(ErgoHeapSizing, 1883 "did not shrink the heap", 1884 ergo_format_reason("heap shrinking operation failed")); 1885 } 1886 } 1887 1888 void G1CollectedHeap::shrink(size_t shrink_bytes) { 1889 verify_region_sets_optional(); 1890 1891 // We should only reach here at the end of a Full GC which means we 1892 // should not not be holding to any GC alloc regions. The method 1893 // below will make sure of that and do any remaining clean up. 1894 abandon_gc_alloc_regions(); 1895 1896 // Instead of tearing down / rebuilding the free lists here, we 1897 // could instead use the remove_all_pending() method on free_list to 1898 // remove only the ones that we need to remove. 1899 tear_down_region_sets(true /* free_list_only */); 1900 shrink_helper(shrink_bytes); 1901 rebuild_region_sets(true /* free_list_only */); 1902 1903 _hrs.verify_optional(); 1904 verify_region_sets_optional(); 1905 } 1906 1907 // Public methods. 1908 1909 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away 1910 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 1911 #endif // _MSC_VER 1912 1913 1914 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) : 1915 SharedHeap(policy_), 1916 _g1_policy(policy_), 1917 _dirty_card_queue_set(false), 1918 _into_cset_dirty_card_queue_set(false), 1919 _is_alive_closure_cm(this), 1920 _is_alive_closure_stw(this), 1921 _ref_processor_cm(NULL), 1922 _ref_processor_stw(NULL), 1923 _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)), 1924 _bot_shared(NULL), 1925 _evac_failure_scan_stack(NULL), 1926 _mark_in_progress(false), 1927 _cg1r(NULL), _summary_bytes_used(0), 1928 _g1mm(NULL), 1929 _refine_cte_cl(NULL), 1930 _full_collection(false), 1931 _free_list("Master Free List"), 1932 _secondary_free_list("Secondary Free List"), 1933 _old_set("Old Set"), 1934 _humongous_set("Master Humongous Set"), 1935 _free_regions_coming(false), 1936 _young_list(new YoungList(this)), 1937 _gc_time_stamp(0), 1938 _retained_old_gc_alloc_region(NULL), 1939 _survivor_plab_stats(YoungPLABSize, PLABWeight), 1940 _old_plab_stats(OldPLABSize, PLABWeight), 1941 _expand_heap_after_alloc_failure(true), 1942 _surviving_young_words(NULL), 1943 _old_marking_cycles_started(0), 1944 _old_marking_cycles_completed(0), 1945 _concurrent_cycle_started(false), 1946 _in_cset_fast_test(NULL), 1947 _in_cset_fast_test_base(NULL), 1948 _dirty_cards_region_list(NULL), 1949 _worker_cset_start_region(NULL), 1950 _worker_cset_start_region_time_stamp(NULL), 1951 _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()), 1952 _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()), 1953 _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()), 1954 _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) { 1955 1956 _g1h = this; 1957 if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) { 1958 vm_exit_during_initialization("Failed necessary allocation."); 1959 } 1960 1961 _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2; 1962 1963 int n_queues = MAX2((int)ParallelGCThreads, 1); 1964 _task_queues = new RefToScanQueueSet(n_queues); 1965 1966 int n_rem_sets = HeapRegionRemSet::num_par_rem_sets(); 1967 assert(n_rem_sets > 0, "Invariant."); 1968 1969 _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC); 1970 _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC); 1971 _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC); 1972 1973 for (int i = 0; i < n_queues; i++) { 1974 RefToScanQueue* q = new RefToScanQueue(); 1975 q->initialize(); 1976 _task_queues->register_queue(i, q); 1977 ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo(); 1978 } 1979 clear_cset_start_regions(); 1980 1981 // Initialize the G1EvacuationFailureALot counters and flags. 1982 NOT_PRODUCT(reset_evacuation_should_fail();) 1983 1984 guarantee(_task_queues != NULL, "task_queues allocation failure."); 1985 } 1986 1987 jint G1CollectedHeap::initialize() { 1988 CollectedHeap::pre_initialize(); 1989 os::enable_vtime(); 1990 1991 G1Log::init(); 1992 1993 // Necessary to satisfy locking discipline assertions. 1994 1995 MutexLocker x(Heap_lock); 1996 1997 // We have to initialize the printer before committing the heap, as 1998 // it will be used then. 1999 _hr_printer.set_active(G1PrintHeapRegions); 2000 2001 // While there are no constraints in the GC code that HeapWordSize 2002 // be any particular value, there are multiple other areas in the 2003 // system which believe this to be true (e.g. oop->object_size in some 2004 // cases incorrectly returns the size in wordSize units rather than 2005 // HeapWordSize). 2006 guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize"); 2007 2008 size_t init_byte_size = collector_policy()->initial_heap_byte_size(); 2009 size_t max_byte_size = collector_policy()->max_heap_byte_size(); 2010 size_t heap_alignment = collector_policy()->heap_alignment(); 2011 2012 // Ensure that the sizes are properly aligned. 2013 Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap"); 2014 Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap"); 2015 Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap"); 2016 2017 _cg1r = new ConcurrentG1Refine(this); 2018 2019 // Reserve the maximum. 2020 2021 // When compressed oops are enabled, the preferred heap base 2022 // is calculated by subtracting the requested size from the 2023 // 32Gb boundary and using the result as the base address for 2024 // heap reservation. If the requested size is not aligned to 2025 // HeapRegion::GrainBytes (i.e. the alignment that is passed 2026 // into the ReservedHeapSpace constructor) then the actual 2027 // base of the reserved heap may end up differing from the 2028 // address that was requested (i.e. the preferred heap base). 2029 // If this happens then we could end up using a non-optimal 2030 // compressed oops mode. 2031 2032 ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size, 2033 heap_alignment); 2034 2035 // It is important to do this in a way such that concurrent readers can't 2036 // temporarily think something is in the heap. (I've actually seen this 2037 // happen in asserts: DLD.) 2038 _reserved.set_word_size(0); 2039 _reserved.set_start((HeapWord*)heap_rs.base()); 2040 _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size())); 2041 2042 _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes); 2043 2044 // Create the gen rem set (and barrier set) for the entire reserved region. 2045 _rem_set = collector_policy()->create_rem_set(_reserved, 2); 2046 set_barrier_set(rem_set()->bs()); 2047 if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) { 2048 vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS"); 2049 return JNI_ENOMEM; 2050 } 2051 2052 // Also create a G1 rem set. 2053 _g1_rem_set = new G1RemSet(this, g1_barrier_set()); 2054 2055 // Carve out the G1 part of the heap. 2056 2057 ReservedSpace g1_rs = heap_rs.first_part(max_byte_size); 2058 _g1_reserved = MemRegion((HeapWord*)g1_rs.base(), 2059 g1_rs.size()/HeapWordSize); 2060 2061 _g1_storage.initialize(g1_rs, 0); 2062 _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0); 2063 _hrs.initialize((HeapWord*) _g1_reserved.start(), 2064 (HeapWord*) _g1_reserved.end()); 2065 assert(_hrs.max_length() == _expansion_regions, 2066 err_msg("max length: %u expansion regions: %u", 2067 _hrs.max_length(), _expansion_regions)); 2068 2069 // Do later initialization work for concurrent refinement. 2070 _cg1r->init(); 2071 2072 // 6843694 - ensure that the maximum region index can fit 2073 // in the remembered set structures. 2074 const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1; 2075 guarantee((max_regions() - 1) <= max_region_idx, "too many regions"); 2076 2077 size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1; 2078 guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized"); 2079 guarantee(HeapRegion::CardsPerRegion < max_cards_per_region, 2080 "too many cards per region"); 2081 2082 HeapRegionSet::set_unrealistically_long_length(max_regions() + 1); 2083 2084 _bot_shared = new G1BlockOffsetSharedArray(_reserved, 2085 heap_word_size(init_byte_size)); 2086 2087 _g1h = this; 2088 2089 _in_cset_fast_test_length = max_regions(); 2090 _in_cset_fast_test_base = 2091 NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC); 2092 2093 // We're biasing _in_cset_fast_test to avoid subtracting the 2094 // beginning of the heap every time we want to index; basically 2095 // it's the same with what we do with the card table. 2096 _in_cset_fast_test = _in_cset_fast_test_base - 2097 ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes); 2098 2099 // Clear the _cset_fast_test bitmap in anticipation of adding 2100 // regions to the incremental collection set for the first 2101 // evacuation pause. 2102 clear_cset_fast_test(); 2103 2104 // Create the ConcurrentMark data structure and thread. 2105 // (Must do this late, so that "max_regions" is defined.) 2106 _cm = new ConcurrentMark(this, heap_rs); 2107 if (_cm == NULL || !_cm->completed_initialization()) { 2108 vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark"); 2109 return JNI_ENOMEM; 2110 } 2111 _cmThread = _cm->cmThread(); 2112 2113 // Initialize the from_card cache structure of HeapRegionRemSet. 2114 HeapRegionRemSet::init_heap(max_regions()); 2115 2116 // Now expand into the initial heap size. 2117 if (!expand(init_byte_size)) { 2118 vm_shutdown_during_initialization("Failed to allocate initial heap."); 2119 return JNI_ENOMEM; 2120 } 2121 2122 // Perform any initialization actions delegated to the policy. 2123 g1_policy()->init(); 2124 2125 _refine_cte_cl = 2126 new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(), 2127 g1_rem_set(), 2128 concurrent_g1_refine()); 2129 JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl); 2130 2131 JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon, 2132 SATB_Q_FL_lock, 2133 G1SATBProcessCompletedThreshold, 2134 Shared_SATB_Q_lock); 2135 2136 JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon, 2137 DirtyCardQ_FL_lock, 2138 concurrent_g1_refine()->yellow_zone(), 2139 concurrent_g1_refine()->red_zone(), 2140 Shared_DirtyCardQ_lock); 2141 2142 if (G1DeferredRSUpdate) { 2143 dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon, 2144 DirtyCardQ_FL_lock, 2145 -1, // never trigger processing 2146 -1, // no limit on length 2147 Shared_DirtyCardQ_lock, 2148 &JavaThread::dirty_card_queue_set()); 2149 } 2150 2151 // Initialize the card queue set used to hold cards containing 2152 // references into the collection set. 2153 _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon, 2154 DirtyCardQ_FL_lock, 2155 -1, // never trigger processing 2156 -1, // no limit on length 2157 Shared_DirtyCardQ_lock, 2158 &JavaThread::dirty_card_queue_set()); 2159 2160 // In case we're keeping closure specialization stats, initialize those 2161 // counts and that mechanism. 2162 SpecializationStats::clear(); 2163 2164 // Here we allocate the dummy full region that is required by the 2165 // G1AllocRegion class. If we don't pass an address in the reserved 2166 // space here, lots of asserts fire. 2167 2168 HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */, 2169 _g1_reserved.start()); 2170 // We'll re-use the same region whether the alloc region will 2171 // require BOT updates or not and, if it doesn't, then a non-young 2172 // region will complain that it cannot support allocations without 2173 // BOT updates. So we'll tag the dummy region as young to avoid that. 2174 dummy_region->set_young(); 2175 // Make sure it's full. 2176 dummy_region->set_top(dummy_region->end()); 2177 G1AllocRegion::setup(this, dummy_region); 2178 2179 init_mutator_alloc_region(); 2180 2181 // Do create of the monitoring and management support so that 2182 // values in the heap have been properly initialized. 2183 _g1mm = new G1MonitoringSupport(this); 2184 2185 return JNI_OK; 2186 } 2187 2188 size_t G1CollectedHeap::conservative_max_heap_alignment() { 2189 return HeapRegion::max_region_size(); 2190 } 2191 2192 void G1CollectedHeap::ref_processing_init() { 2193 // Reference processing in G1 currently works as follows: 2194 // 2195 // * There are two reference processor instances. One is 2196 // used to record and process discovered references 2197 // during concurrent marking; the other is used to 2198 // record and process references during STW pauses 2199 // (both full and incremental). 2200 // * Both ref processors need to 'span' the entire heap as 2201 // the regions in the collection set may be dotted around. 2202 // 2203 // * For the concurrent marking ref processor: 2204 // * Reference discovery is enabled at initial marking. 2205 // * Reference discovery is disabled and the discovered 2206 // references processed etc during remarking. 2207 // * Reference discovery is MT (see below). 2208 // * Reference discovery requires a barrier (see below). 2209 // * Reference processing may or may not be MT 2210 // (depending on the value of ParallelRefProcEnabled 2211 // and ParallelGCThreads). 2212 // * A full GC disables reference discovery by the CM 2213 // ref processor and abandons any entries on it's 2214 // discovered lists. 2215 // 2216 // * For the STW processor: 2217 // * Non MT discovery is enabled at the start of a full GC. 2218 // * Processing and enqueueing during a full GC is non-MT. 2219 // * During a full GC, references are processed after marking. 2220 // 2221 // * Discovery (may or may not be MT) is enabled at the start 2222 // of an incremental evacuation pause. 2223 // * References are processed near the end of a STW evacuation pause. 2224 // * For both types of GC: 2225 // * Discovery is atomic - i.e. not concurrent. 2226 // * Reference discovery will not need a barrier. 2227 2228 SharedHeap::ref_processing_init(); 2229 MemRegion mr = reserved_region(); 2230 2231 // Concurrent Mark ref processor 2232 _ref_processor_cm = 2233 new ReferenceProcessor(mr, // span 2234 ParallelRefProcEnabled && (ParallelGCThreads > 1), 2235 // mt processing 2236 (int) ParallelGCThreads, 2237 // degree of mt processing 2238 (ParallelGCThreads > 1) || (ConcGCThreads > 1), 2239 // mt discovery 2240 (int) MAX2(ParallelGCThreads, ConcGCThreads), 2241 // degree of mt discovery 2242 false, 2243 // Reference discovery is not atomic 2244 &_is_alive_closure_cm, 2245 // is alive closure 2246 // (for efficiency/performance) 2247 true); 2248 // Setting next fields of discovered 2249 // lists requires a barrier. 2250 2251 // STW ref processor 2252 _ref_processor_stw = 2253 new ReferenceProcessor(mr, // span 2254 ParallelRefProcEnabled && (ParallelGCThreads > 1), 2255 // mt processing 2256 MAX2((int)ParallelGCThreads, 1), 2257 // degree of mt processing 2258 (ParallelGCThreads > 1), 2259 // mt discovery 2260 MAX2((int)ParallelGCThreads, 1), 2261 // degree of mt discovery 2262 true, 2263 // Reference discovery is atomic 2264 &_is_alive_closure_stw, 2265 // is alive closure 2266 // (for efficiency/performance) 2267 false); 2268 // Setting next fields of discovered 2269 // lists does not require a barrier. 2270 } 2271 2272 size_t G1CollectedHeap::capacity() const { 2273 return _g1_committed.byte_size(); 2274 } 2275 2276 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) { 2277 assert(!hr->continuesHumongous(), "pre-condition"); 2278 hr->reset_gc_time_stamp(); 2279 if (hr->startsHumongous()) { 2280 uint first_index = hr->hrs_index() + 1; 2281 uint last_index = hr->last_hc_index(); 2282 for (uint i = first_index; i < last_index; i += 1) { 2283 HeapRegion* chr = region_at(i); 2284 assert(chr->continuesHumongous(), "sanity"); 2285 chr->reset_gc_time_stamp(); 2286 } 2287 } 2288 } 2289 2290 #ifndef PRODUCT 2291 class CheckGCTimeStampsHRClosure : public HeapRegionClosure { 2292 private: 2293 unsigned _gc_time_stamp; 2294 bool _failures; 2295 2296 public: 2297 CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) : 2298 _gc_time_stamp(gc_time_stamp), _failures(false) { } 2299 2300 virtual bool doHeapRegion(HeapRegion* hr) { 2301 unsigned region_gc_time_stamp = hr->get_gc_time_stamp(); 2302 if (_gc_time_stamp != region_gc_time_stamp) { 2303 gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, " 2304 "expected %d", HR_FORMAT_PARAMS(hr), 2305 region_gc_time_stamp, _gc_time_stamp); 2306 _failures = true; 2307 } 2308 return false; 2309 } 2310 2311 bool failures() { return _failures; } 2312 }; 2313 2314 void G1CollectedHeap::check_gc_time_stamps() { 2315 CheckGCTimeStampsHRClosure cl(_gc_time_stamp); 2316 heap_region_iterate(&cl); 2317 guarantee(!cl.failures(), "all GC time stamps should have been reset"); 2318 } 2319 #endif // PRODUCT 2320 2321 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, 2322 DirtyCardQueue* into_cset_dcq, 2323 bool concurrent, 2324 int worker_i) { 2325 // Clean cards in the hot card cache 2326 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 2327 hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq); 2328 2329 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 2330 int n_completed_buffers = 0; 2331 while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) { 2332 n_completed_buffers++; 2333 } 2334 g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers); 2335 dcqs.clear_n_completed_buffers(); 2336 assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!"); 2337 } 2338 2339 2340 // Computes the sum of the storage used by the various regions. 2341 2342 size_t G1CollectedHeap::used() const { 2343 assert(Heap_lock->owner() != NULL, 2344 "Should be owned on this thread's behalf."); 2345 size_t result = _summary_bytes_used; 2346 // Read only once in case it is set to NULL concurrently 2347 HeapRegion* hr = _mutator_alloc_region.get(); 2348 if (hr != NULL) 2349 result += hr->used(); 2350 return result; 2351 } 2352 2353 size_t G1CollectedHeap::used_unlocked() const { 2354 size_t result = _summary_bytes_used; 2355 return result; 2356 } 2357 2358 class SumUsedClosure: public HeapRegionClosure { 2359 size_t _used; 2360 public: 2361 SumUsedClosure() : _used(0) {} 2362 bool doHeapRegion(HeapRegion* r) { 2363 if (!r->continuesHumongous()) { 2364 _used += r->used(); 2365 } 2366 return false; 2367 } 2368 size_t result() { return _used; } 2369 }; 2370 2371 size_t G1CollectedHeap::recalculate_used() const { 2372 SumUsedClosure blk; 2373 heap_region_iterate(&blk); 2374 return blk.result(); 2375 } 2376 2377 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) { 2378 switch (cause) { 2379 case GCCause::_gc_locker: return GCLockerInvokesConcurrent; 2380 case GCCause::_java_lang_system_gc: return ExplicitGCInvokesConcurrent; 2381 case GCCause::_g1_humongous_allocation: return true; 2382 default: return false; 2383 } 2384 } 2385 2386 #ifndef PRODUCT 2387 void G1CollectedHeap::allocate_dummy_regions() { 2388 // Let's fill up most of the region 2389 size_t word_size = HeapRegion::GrainWords - 1024; 2390 // And as a result the region we'll allocate will be humongous. 2391 guarantee(isHumongous(word_size), "sanity"); 2392 2393 for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) { 2394 // Let's use the existing mechanism for the allocation 2395 HeapWord* dummy_obj = humongous_obj_allocate(word_size); 2396 if (dummy_obj != NULL) { 2397 MemRegion mr(dummy_obj, word_size); 2398 CollectedHeap::fill_with_object(mr); 2399 } else { 2400 // If we can't allocate once, we probably cannot allocate 2401 // again. Let's get out of the loop. 2402 break; 2403 } 2404 } 2405 } 2406 #endif // !PRODUCT 2407 2408 void G1CollectedHeap::increment_old_marking_cycles_started() { 2409 assert(_old_marking_cycles_started == _old_marking_cycles_completed || 2410 _old_marking_cycles_started == _old_marking_cycles_completed + 1, 2411 err_msg("Wrong marking cycle count (started: %d, completed: %d)", 2412 _old_marking_cycles_started, _old_marking_cycles_completed)); 2413 2414 _old_marking_cycles_started++; 2415 } 2416 2417 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) { 2418 MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag); 2419 2420 // We assume that if concurrent == true, then the caller is a 2421 // concurrent thread that was joined the Suspendible Thread 2422 // Set. If there's ever a cheap way to check this, we should add an 2423 // assert here. 2424 2425 // Given that this method is called at the end of a Full GC or of a 2426 // concurrent cycle, and those can be nested (i.e., a Full GC can 2427 // interrupt a concurrent cycle), the number of full collections 2428 // completed should be either one (in the case where there was no 2429 // nesting) or two (when a Full GC interrupted a concurrent cycle) 2430 // behind the number of full collections started. 2431 2432 // This is the case for the inner caller, i.e. a Full GC. 2433 assert(concurrent || 2434 (_old_marking_cycles_started == _old_marking_cycles_completed + 1) || 2435 (_old_marking_cycles_started == _old_marking_cycles_completed + 2), 2436 err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u " 2437 "is inconsistent with _old_marking_cycles_completed = %u", 2438 _old_marking_cycles_started, _old_marking_cycles_completed)); 2439 2440 // This is the case for the outer caller, i.e. the concurrent cycle. 2441 assert(!concurrent || 2442 (_old_marking_cycles_started == _old_marking_cycles_completed + 1), 2443 err_msg("for outer caller (concurrent cycle): " 2444 "_old_marking_cycles_started = %u " 2445 "is inconsistent with _old_marking_cycles_completed = %u", 2446 _old_marking_cycles_started, _old_marking_cycles_completed)); 2447 2448 _old_marking_cycles_completed += 1; 2449 2450 // We need to clear the "in_progress" flag in the CM thread before 2451 // we wake up any waiters (especially when ExplicitInvokesConcurrent 2452 // is set) so that if a waiter requests another System.gc() it doesn't 2453 // incorrectly see that a marking cycle is still in progress. 2454 if (concurrent) { 2455 _cmThread->clear_in_progress(); 2456 } 2457 2458 // This notify_all() will ensure that a thread that called 2459 // System.gc() with (with ExplicitGCInvokesConcurrent set or not) 2460 // and it's waiting for a full GC to finish will be woken up. It is 2461 // waiting in VM_G1IncCollectionPause::doit_epilogue(). 2462 FullGCCount_lock->notify_all(); 2463 } 2464 2465 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) { 2466 _concurrent_cycle_started = true; 2467 _gc_timer_cm->register_gc_start(start_time); 2468 2469 _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start()); 2470 trace_heap_before_gc(_gc_tracer_cm); 2471 } 2472 2473 void G1CollectedHeap::register_concurrent_cycle_end() { 2474 if (_concurrent_cycle_started) { 2475 if (_cm->has_aborted()) { 2476 _gc_tracer_cm->report_concurrent_mode_failure(); 2477 } 2478 2479 _gc_timer_cm->register_gc_end(); 2480 _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions()); 2481 2482 _concurrent_cycle_started = false; 2483 } 2484 } 2485 2486 void G1CollectedHeap::trace_heap_after_concurrent_cycle() { 2487 if (_concurrent_cycle_started) { 2488 trace_heap_after_gc(_gc_tracer_cm); 2489 } 2490 } 2491 2492 G1YCType G1CollectedHeap::yc_type() { 2493 bool is_young = g1_policy()->gcs_are_young(); 2494 bool is_initial_mark = g1_policy()->during_initial_mark_pause(); 2495 bool is_during_mark = mark_in_progress(); 2496 2497 if (is_initial_mark) { 2498 return InitialMark; 2499 } else if (is_during_mark) { 2500 return DuringMark; 2501 } else if (is_young) { 2502 return Normal; 2503 } else { 2504 return Mixed; 2505 } 2506 } 2507 2508 void G1CollectedHeap::collect(GCCause::Cause cause) { 2509 assert_heap_not_locked(); 2510 2511 unsigned int gc_count_before; 2512 unsigned int old_marking_count_before; 2513 bool retry_gc; 2514 2515 do { 2516 retry_gc = false; 2517 2518 { 2519 MutexLocker ml(Heap_lock); 2520 2521 // Read the GC count while holding the Heap_lock 2522 gc_count_before = total_collections(); 2523 old_marking_count_before = _old_marking_cycles_started; 2524 } 2525 2526 if (should_do_concurrent_full_gc(cause)) { 2527 // Schedule an initial-mark evacuation pause that will start a 2528 // concurrent cycle. We're setting word_size to 0 which means that 2529 // we are not requesting a post-GC allocation. 2530 VM_G1IncCollectionPause op(gc_count_before, 2531 0, /* word_size */ 2532 true, /* should_initiate_conc_mark */ 2533 g1_policy()->max_pause_time_ms(), 2534 cause); 2535 2536 VMThread::execute(&op); 2537 if (!op.pause_succeeded()) { 2538 if (old_marking_count_before == _old_marking_cycles_started) { 2539 retry_gc = op.should_retry_gc(); 2540 } else { 2541 // A Full GC happened while we were trying to schedule the 2542 // initial-mark GC. No point in starting a new cycle given 2543 // that the whole heap was collected anyway. 2544 } 2545 2546 if (retry_gc) { 2547 if (GC_locker::is_active_and_needs_gc()) { 2548 GC_locker::stall_until_clear(); 2549 } 2550 } 2551 } 2552 } else { 2553 if (cause == GCCause::_gc_locker 2554 DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) { 2555 2556 // Schedule a standard evacuation pause. We're setting word_size 2557 // to 0 which means that we are not requesting a post-GC allocation. 2558 VM_G1IncCollectionPause op(gc_count_before, 2559 0, /* word_size */ 2560 false, /* should_initiate_conc_mark */ 2561 g1_policy()->max_pause_time_ms(), 2562 cause); 2563 VMThread::execute(&op); 2564 } else { 2565 // Schedule a Full GC. 2566 VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause); 2567 VMThread::execute(&op); 2568 } 2569 } 2570 } while (retry_gc); 2571 } 2572 2573 bool G1CollectedHeap::is_in(const void* p) const { 2574 if (_g1_committed.contains(p)) { 2575 // Given that we know that p is in the committed space, 2576 // heap_region_containing_raw() should successfully 2577 // return the containing region. 2578 HeapRegion* hr = heap_region_containing_raw(p); 2579 return hr->is_in(p); 2580 } else { 2581 return false; 2582 } 2583 } 2584 2585 // Iteration functions. 2586 2587 // Iterates an OopClosure over all ref-containing fields of objects 2588 // within a HeapRegion. 2589 2590 class IterateOopClosureRegionClosure: public HeapRegionClosure { 2591 MemRegion _mr; 2592 ExtendedOopClosure* _cl; 2593 public: 2594 IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl) 2595 : _mr(mr), _cl(cl) {} 2596 bool doHeapRegion(HeapRegion* r) { 2597 if (!r->continuesHumongous()) { 2598 r->oop_iterate(_cl); 2599 } 2600 return false; 2601 } 2602 }; 2603 2604 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) { 2605 IterateOopClosureRegionClosure blk(_g1_committed, cl); 2606 heap_region_iterate(&blk); 2607 } 2608 2609 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) { 2610 IterateOopClosureRegionClosure blk(mr, cl); 2611 heap_region_iterate(&blk); 2612 } 2613 2614 // Iterates an ObjectClosure over all objects within a HeapRegion. 2615 2616 class IterateObjectClosureRegionClosure: public HeapRegionClosure { 2617 ObjectClosure* _cl; 2618 public: 2619 IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {} 2620 bool doHeapRegion(HeapRegion* r) { 2621 if (! r->continuesHumongous()) { 2622 r->object_iterate(_cl); 2623 } 2624 return false; 2625 } 2626 }; 2627 2628 void G1CollectedHeap::object_iterate(ObjectClosure* cl) { 2629 IterateObjectClosureRegionClosure blk(cl); 2630 heap_region_iterate(&blk); 2631 } 2632 2633 // Calls a SpaceClosure on a HeapRegion. 2634 2635 class SpaceClosureRegionClosure: public HeapRegionClosure { 2636 SpaceClosure* _cl; 2637 public: 2638 SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {} 2639 bool doHeapRegion(HeapRegion* r) { 2640 _cl->do_space(r); 2641 return false; 2642 } 2643 }; 2644 2645 void G1CollectedHeap::space_iterate(SpaceClosure* cl) { 2646 SpaceClosureRegionClosure blk(cl); 2647 heap_region_iterate(&blk); 2648 } 2649 2650 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const { 2651 _hrs.iterate(cl); 2652 } 2653 2654 void 2655 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl, 2656 uint worker_id, 2657 uint no_of_par_workers, 2658 jint claim_value) { 2659 const uint regions = n_regions(); 2660 const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ? 2661 no_of_par_workers : 2662 1); 2663 assert(UseDynamicNumberOfGCThreads || 2664 no_of_par_workers == workers()->total_workers(), 2665 "Non dynamic should use fixed number of workers"); 2666 // try to spread out the starting points of the workers 2667 const HeapRegion* start_hr = 2668 start_region_for_worker(worker_id, no_of_par_workers); 2669 const uint start_index = start_hr->hrs_index(); 2670 2671 // each worker will actually look at all regions 2672 for (uint count = 0; count < regions; ++count) { 2673 const uint index = (start_index + count) % regions; 2674 assert(0 <= index && index < regions, "sanity"); 2675 HeapRegion* r = region_at(index); 2676 // we'll ignore "continues humongous" regions (we'll process them 2677 // when we come across their corresponding "start humongous" 2678 // region) and regions already claimed 2679 if (r->claim_value() == claim_value || r->continuesHumongous()) { 2680 continue; 2681 } 2682 // OK, try to claim it 2683 if (r->claimHeapRegion(claim_value)) { 2684 // success! 2685 assert(!r->continuesHumongous(), "sanity"); 2686 if (r->startsHumongous()) { 2687 // If the region is "starts humongous" we'll iterate over its 2688 // "continues humongous" first; in fact we'll do them 2689 // first. The order is important. In on case, calling the 2690 // closure on the "starts humongous" region might de-allocate 2691 // and clear all its "continues humongous" regions and, as a 2692 // result, we might end up processing them twice. So, we'll do 2693 // them first (notice: most closures will ignore them anyway) and 2694 // then we'll do the "starts humongous" region. 2695 for (uint ch_index = index + 1; ch_index < regions; ++ch_index) { 2696 HeapRegion* chr = region_at(ch_index); 2697 2698 // if the region has already been claimed or it's not 2699 // "continues humongous" we're done 2700 if (chr->claim_value() == claim_value || 2701 !chr->continuesHumongous()) { 2702 break; 2703 } 2704 2705 // No one should have claimed it directly. We can given 2706 // that we claimed its "starts humongous" region. 2707 assert(chr->claim_value() != claim_value, "sanity"); 2708 assert(chr->humongous_start_region() == r, "sanity"); 2709 2710 if (chr->claimHeapRegion(claim_value)) { 2711 // we should always be able to claim it; no one else should 2712 // be trying to claim this region 2713 2714 bool res2 = cl->doHeapRegion(chr); 2715 assert(!res2, "Should not abort"); 2716 2717 // Right now, this holds (i.e., no closure that actually 2718 // does something with "continues humongous" regions 2719 // clears them). We might have to weaken it in the future, 2720 // but let's leave these two asserts here for extra safety. 2721 assert(chr->continuesHumongous(), "should still be the case"); 2722 assert(chr->humongous_start_region() == r, "sanity"); 2723 } else { 2724 guarantee(false, "we should not reach here"); 2725 } 2726 } 2727 } 2728 2729 assert(!r->continuesHumongous(), "sanity"); 2730 bool res = cl->doHeapRegion(r); 2731 assert(!res, "Should not abort"); 2732 } 2733 } 2734 } 2735 2736 class ResetClaimValuesClosure: public HeapRegionClosure { 2737 public: 2738 bool doHeapRegion(HeapRegion* r) { 2739 r->set_claim_value(HeapRegion::InitialClaimValue); 2740 return false; 2741 } 2742 }; 2743 2744 void G1CollectedHeap::reset_heap_region_claim_values() { 2745 ResetClaimValuesClosure blk; 2746 heap_region_iterate(&blk); 2747 } 2748 2749 void G1CollectedHeap::reset_cset_heap_region_claim_values() { 2750 ResetClaimValuesClosure blk; 2751 collection_set_iterate(&blk); 2752 } 2753 2754 #ifdef ASSERT 2755 // This checks whether all regions in the heap have the correct claim 2756 // value. I also piggy-backed on this a check to ensure that the 2757 // humongous_start_region() information on "continues humongous" 2758 // regions is correct. 2759 2760 class CheckClaimValuesClosure : public HeapRegionClosure { 2761 private: 2762 jint _claim_value; 2763 uint _failures; 2764 HeapRegion* _sh_region; 2765 2766 public: 2767 CheckClaimValuesClosure(jint claim_value) : 2768 _claim_value(claim_value), _failures(0), _sh_region(NULL) { } 2769 bool doHeapRegion(HeapRegion* r) { 2770 if (r->claim_value() != _claim_value) { 2771 gclog_or_tty->print_cr("Region " HR_FORMAT ", " 2772 "claim value = %d, should be %d", 2773 HR_FORMAT_PARAMS(r), 2774 r->claim_value(), _claim_value); 2775 ++_failures; 2776 } 2777 if (!r->isHumongous()) { 2778 _sh_region = NULL; 2779 } else if (r->startsHumongous()) { 2780 _sh_region = r; 2781 } else if (r->continuesHumongous()) { 2782 if (r->humongous_start_region() != _sh_region) { 2783 gclog_or_tty->print_cr("Region " HR_FORMAT ", " 2784 "HS = "PTR_FORMAT", should be "PTR_FORMAT, 2785 HR_FORMAT_PARAMS(r), 2786 r->humongous_start_region(), 2787 _sh_region); 2788 ++_failures; 2789 } 2790 } 2791 return false; 2792 } 2793 uint failures() { return _failures; } 2794 }; 2795 2796 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) { 2797 CheckClaimValuesClosure cl(claim_value); 2798 heap_region_iterate(&cl); 2799 return cl.failures() == 0; 2800 } 2801 2802 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure { 2803 private: 2804 jint _claim_value; 2805 uint _failures; 2806 2807 public: 2808 CheckClaimValuesInCSetHRClosure(jint claim_value) : 2809 _claim_value(claim_value), _failures(0) { } 2810 2811 uint failures() { return _failures; } 2812 2813 bool doHeapRegion(HeapRegion* hr) { 2814 assert(hr->in_collection_set(), "how?"); 2815 assert(!hr->isHumongous(), "H-region in CSet"); 2816 if (hr->claim_value() != _claim_value) { 2817 gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", " 2818 "claim value = %d, should be %d", 2819 HR_FORMAT_PARAMS(hr), 2820 hr->claim_value(), _claim_value); 2821 _failures += 1; 2822 } 2823 return false; 2824 } 2825 }; 2826 2827 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) { 2828 CheckClaimValuesInCSetHRClosure cl(claim_value); 2829 collection_set_iterate(&cl); 2830 return cl.failures() == 0; 2831 } 2832 #endif // ASSERT 2833 2834 // Clear the cached CSet starting regions and (more importantly) 2835 // the time stamps. Called when we reset the GC time stamp. 2836 void G1CollectedHeap::clear_cset_start_regions() { 2837 assert(_worker_cset_start_region != NULL, "sanity"); 2838 assert(_worker_cset_start_region_time_stamp != NULL, "sanity"); 2839 2840 int n_queues = MAX2((int)ParallelGCThreads, 1); 2841 for (int i = 0; i < n_queues; i++) { 2842 _worker_cset_start_region[i] = NULL; 2843 _worker_cset_start_region_time_stamp[i] = 0; 2844 } 2845 } 2846 2847 // Given the id of a worker, obtain or calculate a suitable 2848 // starting region for iterating over the current collection set. 2849 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) { 2850 assert(get_gc_time_stamp() > 0, "should have been updated by now"); 2851 2852 HeapRegion* result = NULL; 2853 unsigned gc_time_stamp = get_gc_time_stamp(); 2854 2855 if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) { 2856 // Cached starting region for current worker was set 2857 // during the current pause - so it's valid. 2858 // Note: the cached starting heap region may be NULL 2859 // (when the collection set is empty). 2860 result = _worker_cset_start_region[worker_i]; 2861 assert(result == NULL || result->in_collection_set(), "sanity"); 2862 return result; 2863 } 2864 2865 // The cached entry was not valid so let's calculate 2866 // a suitable starting heap region for this worker. 2867 2868 // We want the parallel threads to start their collection 2869 // set iteration at different collection set regions to 2870 // avoid contention. 2871 // If we have: 2872 // n collection set regions 2873 // p threads 2874 // Then thread t will start at region floor ((t * n) / p) 2875 2876 result = g1_policy()->collection_set(); 2877 if (G1CollectedHeap::use_parallel_gc_threads()) { 2878 uint cs_size = g1_policy()->cset_region_length(); 2879 uint active_workers = workers()->active_workers(); 2880 assert(UseDynamicNumberOfGCThreads || 2881 active_workers == workers()->total_workers(), 2882 "Unless dynamic should use total workers"); 2883 2884 uint end_ind = (cs_size * worker_i) / active_workers; 2885 uint start_ind = 0; 2886 2887 if (worker_i > 0 && 2888 _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) { 2889 // Previous workers starting region is valid 2890 // so let's iterate from there 2891 start_ind = (cs_size * (worker_i - 1)) / active_workers; 2892 result = _worker_cset_start_region[worker_i - 1]; 2893 } 2894 2895 for (uint i = start_ind; i < end_ind; i++) { 2896 result = result->next_in_collection_set(); 2897 } 2898 } 2899 2900 // Note: the calculated starting heap region may be NULL 2901 // (when the collection set is empty). 2902 assert(result == NULL || result->in_collection_set(), "sanity"); 2903 assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp, 2904 "should be updated only once per pause"); 2905 _worker_cset_start_region[worker_i] = result; 2906 OrderAccess::storestore(); 2907 _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp; 2908 return result; 2909 } 2910 2911 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i, 2912 uint no_of_par_workers) { 2913 uint worker_num = 2914 G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U; 2915 assert(UseDynamicNumberOfGCThreads || 2916 no_of_par_workers == workers()->total_workers(), 2917 "Non dynamic should use fixed number of workers"); 2918 const uint start_index = n_regions() * worker_i / worker_num; 2919 return region_at(start_index); 2920 } 2921 2922 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) { 2923 HeapRegion* r = g1_policy()->collection_set(); 2924 while (r != NULL) { 2925 HeapRegion* next = r->next_in_collection_set(); 2926 if (cl->doHeapRegion(r)) { 2927 cl->incomplete(); 2928 return; 2929 } 2930 r = next; 2931 } 2932 } 2933 2934 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r, 2935 HeapRegionClosure *cl) { 2936 if (r == NULL) { 2937 // The CSet is empty so there's nothing to do. 2938 return; 2939 } 2940 2941 assert(r->in_collection_set(), 2942 "Start region must be a member of the collection set."); 2943 HeapRegion* cur = r; 2944 while (cur != NULL) { 2945 HeapRegion* next = cur->next_in_collection_set(); 2946 if (cl->doHeapRegion(cur) && false) { 2947 cl->incomplete(); 2948 return; 2949 } 2950 cur = next; 2951 } 2952 cur = g1_policy()->collection_set(); 2953 while (cur != r) { 2954 HeapRegion* next = cur->next_in_collection_set(); 2955 if (cl->doHeapRegion(cur) && false) { 2956 cl->incomplete(); 2957 return; 2958 } 2959 cur = next; 2960 } 2961 } 2962 2963 CompactibleSpace* G1CollectedHeap::first_compactible_space() { 2964 return n_regions() > 0 ? region_at(0) : NULL; 2965 } 2966 2967 2968 Space* G1CollectedHeap::space_containing(const void* addr) const { 2969 Space* res = heap_region_containing(addr); 2970 return res; 2971 } 2972 2973 HeapWord* G1CollectedHeap::block_start(const void* addr) const { 2974 Space* sp = space_containing(addr); 2975 if (sp != NULL) { 2976 return sp->block_start(addr); 2977 } 2978 return NULL; 2979 } 2980 2981 size_t G1CollectedHeap::block_size(const HeapWord* addr) const { 2982 Space* sp = space_containing(addr); 2983 assert(sp != NULL, "block_size of address outside of heap"); 2984 return sp->block_size(addr); 2985 } 2986 2987 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const { 2988 Space* sp = space_containing(addr); 2989 return sp->block_is_obj(addr); 2990 } 2991 2992 bool G1CollectedHeap::supports_tlab_allocation() const { 2993 return true; 2994 } 2995 2996 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const { 2997 return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes; 2998 } 2999 3000 size_t G1CollectedHeap::tlab_used(Thread* ignored) const { 3001 return young_list()->eden_used_bytes(); 3002 } 3003 3004 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size 3005 // must be smaller than the humongous object limit. 3006 size_t G1CollectedHeap::max_tlab_size() const { 3007 return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment); 3008 } 3009 3010 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const { 3011 // Return the remaining space in the cur alloc region, but not less than 3012 // the min TLAB size. 3013 3014 // Also, this value can be at most the humongous object threshold, 3015 // since we can't allow tlabs to grow big enough to accommodate 3016 // humongous objects. 3017 3018 HeapRegion* hr = _mutator_alloc_region.get(); 3019 size_t max_tlab = max_tlab_size() * wordSize; 3020 if (hr == NULL) { 3021 return max_tlab; 3022 } else { 3023 return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab); 3024 } 3025 } 3026 3027 size_t G1CollectedHeap::max_capacity() const { 3028 return _g1_reserved.byte_size(); 3029 } 3030 3031 jlong G1CollectedHeap::millis_since_last_gc() { 3032 // assert(false, "NYI"); 3033 return 0; 3034 } 3035 3036 void G1CollectedHeap::prepare_for_verify() { 3037 if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) { 3038 ensure_parsability(false); 3039 } 3040 g1_rem_set()->prepare_for_verify(); 3041 } 3042 3043 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr, 3044 VerifyOption vo) { 3045 switch (vo) { 3046 case VerifyOption_G1UsePrevMarking: 3047 return hr->obj_allocated_since_prev_marking(obj); 3048 case VerifyOption_G1UseNextMarking: 3049 return hr->obj_allocated_since_next_marking(obj); 3050 case VerifyOption_G1UseMarkWord: 3051 return false; 3052 default: 3053 ShouldNotReachHere(); 3054 } 3055 return false; // keep some compilers happy 3056 } 3057 3058 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) { 3059 switch (vo) { 3060 case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start(); 3061 case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start(); 3062 case VerifyOption_G1UseMarkWord: return NULL; 3063 default: ShouldNotReachHere(); 3064 } 3065 return NULL; // keep some compilers happy 3066 } 3067 3068 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) { 3069 switch (vo) { 3070 case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj); 3071 case VerifyOption_G1UseNextMarking: return isMarkedNext(obj); 3072 case VerifyOption_G1UseMarkWord: return obj->is_gc_marked(); 3073 default: ShouldNotReachHere(); 3074 } 3075 return false; // keep some compilers happy 3076 } 3077 3078 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) { 3079 switch (vo) { 3080 case VerifyOption_G1UsePrevMarking: return "PTAMS"; 3081 case VerifyOption_G1UseNextMarking: return "NTAMS"; 3082 case VerifyOption_G1UseMarkWord: return "NONE"; 3083 default: ShouldNotReachHere(); 3084 } 3085 return NULL; // keep some compilers happy 3086 } 3087 3088 class VerifyRootsClosure: public OopClosure { 3089 private: 3090 G1CollectedHeap* _g1h; 3091 VerifyOption _vo; 3092 bool _failures; 3093 public: 3094 // _vo == UsePrevMarking -> use "prev" marking information, 3095 // _vo == UseNextMarking -> use "next" marking information, 3096 // _vo == UseMarkWord -> use mark word from object header. 3097 VerifyRootsClosure(VerifyOption vo) : 3098 _g1h(G1CollectedHeap::heap()), 3099 _vo(vo), 3100 _failures(false) { } 3101 3102 bool failures() { return _failures; } 3103 3104 template <class T> void do_oop_nv(T* p) { 3105 T heap_oop = oopDesc::load_heap_oop(p); 3106 if (!oopDesc::is_null(heap_oop)) { 3107 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 3108 if (_g1h->is_obj_dead_cond(obj, _vo)) { 3109 gclog_or_tty->print_cr("Root location "PTR_FORMAT" " 3110 "points to dead obj "PTR_FORMAT, p, (void*) obj); 3111 if (_vo == VerifyOption_G1UseMarkWord) { 3112 gclog_or_tty->print_cr(" Mark word: "PTR_FORMAT, (void*)(obj->mark())); 3113 } 3114 obj->print_on(gclog_or_tty); 3115 _failures = true; 3116 } 3117 } 3118 } 3119 3120 void do_oop(oop* p) { do_oop_nv(p); } 3121 void do_oop(narrowOop* p) { do_oop_nv(p); } 3122 }; 3123 3124 class G1VerifyCodeRootOopClosure: public OopClosure { 3125 G1CollectedHeap* _g1h; 3126 OopClosure* _root_cl; 3127 nmethod* _nm; 3128 VerifyOption _vo; 3129 bool _failures; 3130 3131 template <class T> void do_oop_work(T* p) { 3132 // First verify that this root is live 3133 _root_cl->do_oop(p); 3134 3135 if (!G1VerifyHeapRegionCodeRoots) { 3136 // We're not verifying the code roots attached to heap region. 3137 return; 3138 } 3139 3140 // Don't check the code roots during marking verification in a full GC 3141 if (_vo == VerifyOption_G1UseMarkWord) { 3142 return; 3143 } 3144 3145 // Now verify that the current nmethod (which contains p) is 3146 // in the code root list of the heap region containing the 3147 // object referenced by p. 3148 3149 T heap_oop = oopDesc::load_heap_oop(p); 3150 if (!oopDesc::is_null(heap_oop)) { 3151 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 3152 3153 // Now fetch the region containing the object 3154 HeapRegion* hr = _g1h->heap_region_containing(obj); 3155 HeapRegionRemSet* hrrs = hr->rem_set(); 3156 // Verify that the strong code root list for this region 3157 // contains the nmethod 3158 if (!hrrs->strong_code_roots_list_contains(_nm)) { 3159 gclog_or_tty->print_cr("Code root location "PTR_FORMAT" " 3160 "from nmethod "PTR_FORMAT" not in strong " 3161 "code roots for region ["PTR_FORMAT","PTR_FORMAT")", 3162 p, _nm, hr->bottom(), hr->end()); 3163 _failures = true; 3164 } 3165 } 3166 } 3167 3168 public: 3169 G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo): 3170 _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {} 3171 3172 void do_oop(oop* p) { do_oop_work(p); } 3173 void do_oop(narrowOop* p) { do_oop_work(p); } 3174 3175 void set_nmethod(nmethod* nm) { _nm = nm; } 3176 bool failures() { return _failures; } 3177 }; 3178 3179 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure { 3180 G1VerifyCodeRootOopClosure* _oop_cl; 3181 3182 public: 3183 G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl): 3184 _oop_cl(oop_cl) {} 3185 3186 void do_code_blob(CodeBlob* cb) { 3187 nmethod* nm = cb->as_nmethod_or_null(); 3188 if (nm != NULL) { 3189 _oop_cl->set_nmethod(nm); 3190 nm->oops_do(_oop_cl); 3191 } 3192 } 3193 }; 3194 3195 class YoungRefCounterClosure : public OopClosure { 3196 G1CollectedHeap* _g1h; 3197 int _count; 3198 public: 3199 YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {} 3200 void do_oop(oop* p) { if (_g1h->is_in_young(*p)) { _count++; } } 3201 void do_oop(narrowOop* p) { ShouldNotReachHere(); } 3202 3203 int count() { return _count; } 3204 void reset_count() { _count = 0; }; 3205 }; 3206 3207 class VerifyKlassClosure: public KlassClosure { 3208 YoungRefCounterClosure _young_ref_counter_closure; 3209 OopClosure *_oop_closure; 3210 public: 3211 VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {} 3212 void do_klass(Klass* k) { 3213 k->oops_do(_oop_closure); 3214 3215 _young_ref_counter_closure.reset_count(); 3216 k->oops_do(&_young_ref_counter_closure); 3217 if (_young_ref_counter_closure.count() > 0) { 3218 guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k)); 3219 } 3220 } 3221 }; 3222 3223 class VerifyLivenessOopClosure: public OopClosure { 3224 G1CollectedHeap* _g1h; 3225 VerifyOption _vo; 3226 public: 3227 VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo): 3228 _g1h(g1h), _vo(vo) 3229 { } 3230 void do_oop(narrowOop *p) { do_oop_work(p); } 3231 void do_oop( oop *p) { do_oop_work(p); } 3232 3233 template <class T> void do_oop_work(T *p) { 3234 oop obj = oopDesc::load_decode_heap_oop(p); 3235 guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo), 3236 "Dead object referenced by a not dead object"); 3237 } 3238 }; 3239 3240 class VerifyObjsInRegionClosure: public ObjectClosure { 3241 private: 3242 G1CollectedHeap* _g1h; 3243 size_t _live_bytes; 3244 HeapRegion *_hr; 3245 VerifyOption _vo; 3246 public: 3247 // _vo == UsePrevMarking -> use "prev" marking information, 3248 // _vo == UseNextMarking -> use "next" marking information, 3249 // _vo == UseMarkWord -> use mark word from object header. 3250 VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo) 3251 : _live_bytes(0), _hr(hr), _vo(vo) { 3252 _g1h = G1CollectedHeap::heap(); 3253 } 3254 void do_object(oop o) { 3255 VerifyLivenessOopClosure isLive(_g1h, _vo); 3256 assert(o != NULL, "Huh?"); 3257 if (!_g1h->is_obj_dead_cond(o, _vo)) { 3258 // If the object is alive according to the mark word, 3259 // then verify that the marking information agrees. 3260 // Note we can't verify the contra-positive of the 3261 // above: if the object is dead (according to the mark 3262 // word), it may not be marked, or may have been marked 3263 // but has since became dead, or may have been allocated 3264 // since the last marking. 3265 if (_vo == VerifyOption_G1UseMarkWord) { 3266 guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch"); 3267 } 3268 3269 o->oop_iterate_no_header(&isLive); 3270 if (!_hr->obj_allocated_since_prev_marking(o)) { 3271 size_t obj_size = o->size(); // Make sure we don't overflow 3272 _live_bytes += (obj_size * HeapWordSize); 3273 } 3274 } 3275 } 3276 size_t live_bytes() { return _live_bytes; } 3277 }; 3278 3279 class PrintObjsInRegionClosure : public ObjectClosure { 3280 HeapRegion *_hr; 3281 G1CollectedHeap *_g1; 3282 public: 3283 PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) { 3284 _g1 = G1CollectedHeap::heap(); 3285 }; 3286 3287 void do_object(oop o) { 3288 if (o != NULL) { 3289 HeapWord *start = (HeapWord *) o; 3290 size_t word_sz = o->size(); 3291 gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT 3292 " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n", 3293 (void*) o, word_sz, 3294 _g1->isMarkedPrev(o), 3295 _g1->isMarkedNext(o), 3296 _hr->obj_allocated_since_prev_marking(o)); 3297 HeapWord *end = start + word_sz; 3298 HeapWord *cur; 3299 int *val; 3300 for (cur = start; cur < end; cur++) { 3301 val = (int *) cur; 3302 gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val); 3303 } 3304 } 3305 } 3306 }; 3307 3308 class VerifyRegionClosure: public HeapRegionClosure { 3309 private: 3310 bool _par; 3311 VerifyOption _vo; 3312 bool _failures; 3313 public: 3314 // _vo == UsePrevMarking -> use "prev" marking information, 3315 // _vo == UseNextMarking -> use "next" marking information, 3316 // _vo == UseMarkWord -> use mark word from object header. 3317 VerifyRegionClosure(bool par, VerifyOption vo) 3318 : _par(par), 3319 _vo(vo), 3320 _failures(false) {} 3321 3322 bool failures() { 3323 return _failures; 3324 } 3325 3326 bool doHeapRegion(HeapRegion* r) { 3327 if (!r->continuesHumongous()) { 3328 bool failures = false; 3329 r->verify(_vo, &failures); 3330 if (failures) { 3331 _failures = true; 3332 } else { 3333 VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo); 3334 r->object_iterate(¬_dead_yet_cl); 3335 if (_vo != VerifyOption_G1UseNextMarking) { 3336 if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) { 3337 gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] " 3338 "max_live_bytes "SIZE_FORMAT" " 3339 "< calculated "SIZE_FORMAT, 3340 r->bottom(), r->end(), 3341 r->max_live_bytes(), 3342 not_dead_yet_cl.live_bytes()); 3343 _failures = true; 3344 } 3345 } else { 3346 // When vo == UseNextMarking we cannot currently do a sanity 3347 // check on the live bytes as the calculation has not been 3348 // finalized yet. 3349 } 3350 } 3351 } 3352 return false; // stop the region iteration if we hit a failure 3353 } 3354 }; 3355 3356 // This is the task used for parallel verification of the heap regions 3357 3358 class G1ParVerifyTask: public AbstractGangTask { 3359 private: 3360 G1CollectedHeap* _g1h; 3361 VerifyOption _vo; 3362 bool _failures; 3363 3364 public: 3365 // _vo == UsePrevMarking -> use "prev" marking information, 3366 // _vo == UseNextMarking -> use "next" marking information, 3367 // _vo == UseMarkWord -> use mark word from object header. 3368 G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) : 3369 AbstractGangTask("Parallel verify task"), 3370 _g1h(g1h), 3371 _vo(vo), 3372 _failures(false) { } 3373 3374 bool failures() { 3375 return _failures; 3376 } 3377 3378 void work(uint worker_id) { 3379 HandleMark hm; 3380 VerifyRegionClosure blk(true, _vo); 3381 _g1h->heap_region_par_iterate_chunked(&blk, worker_id, 3382 _g1h->workers()->active_workers(), 3383 HeapRegion::ParVerifyClaimValue); 3384 if (blk.failures()) { 3385 _failures = true; 3386 } 3387 } 3388 }; 3389 3390 void G1CollectedHeap::verify(bool silent, VerifyOption vo) { 3391 if (SafepointSynchronize::is_at_safepoint()) { 3392 assert(Thread::current()->is_VM_thread(), 3393 "Expected to be executed serially by the VM thread at this point"); 3394 3395 if (!silent) { gclog_or_tty->print("Roots "); } 3396 VerifyRootsClosure rootsCl(vo); 3397 G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo); 3398 G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl); 3399 VerifyKlassClosure klassCl(this, &rootsCl); 3400 3401 // We apply the relevant closures to all the oops in the 3402 // system dictionary, the string table and the code cache. 3403 const int so = SO_AllClasses | SO_Strings | SO_AllCodeCache; 3404 3405 // Need cleared claim bits for the strong roots processing 3406 ClassLoaderDataGraph::clear_claimed_marks(); 3407 3408 process_strong_roots(true, // activate StrongRootsScope 3409 ScanningOption(so), // roots scanning options 3410 &rootsCl, 3411 &blobsCl, 3412 &klassCl 3413 ); 3414 3415 bool failures = rootsCl.failures() || codeRootsCl.failures(); 3416 3417 if (vo != VerifyOption_G1UseMarkWord) { 3418 // If we're verifying during a full GC then the region sets 3419 // will have been torn down at the start of the GC. Therefore 3420 // verifying the region sets will fail. So we only verify 3421 // the region sets when not in a full GC. 3422 if (!silent) { gclog_or_tty->print("HeapRegionSets "); } 3423 verify_region_sets(); 3424 } 3425 3426 if (!silent) { gclog_or_tty->print("HeapRegions "); } 3427 if (GCParallelVerificationEnabled && ParallelGCThreads > 1) { 3428 assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue), 3429 "sanity check"); 3430 3431 G1ParVerifyTask task(this, vo); 3432 assert(UseDynamicNumberOfGCThreads || 3433 workers()->active_workers() == workers()->total_workers(), 3434 "If not dynamic should be using all the workers"); 3435 int n_workers = workers()->active_workers(); 3436 set_par_threads(n_workers); 3437 workers()->run_task(&task); 3438 set_par_threads(0); 3439 if (task.failures()) { 3440 failures = true; 3441 } 3442 3443 // Checks that the expected amount of parallel work was done. 3444 // The implication is that n_workers is > 0. 3445 assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue), 3446 "sanity check"); 3447 3448 reset_heap_region_claim_values(); 3449 3450 assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue), 3451 "sanity check"); 3452 } else { 3453 VerifyRegionClosure blk(false, vo); 3454 heap_region_iterate(&blk); 3455 if (blk.failures()) { 3456 failures = true; 3457 } 3458 } 3459 if (!silent) gclog_or_tty->print("RemSet "); 3460 rem_set()->verify(); 3461 3462 if (failures) { 3463 gclog_or_tty->print_cr("Heap:"); 3464 // It helps to have the per-region information in the output to 3465 // help us track down what went wrong. This is why we call 3466 // print_extended_on() instead of print_on(). 3467 print_extended_on(gclog_or_tty); 3468 gclog_or_tty->print_cr(""); 3469 #ifndef PRODUCT 3470 if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) { 3471 concurrent_mark()->print_reachable("at-verification-failure", 3472 vo, false /* all */); 3473 } 3474 #endif 3475 gclog_or_tty->flush(); 3476 } 3477 guarantee(!failures, "there should not have been any failures"); 3478 } else { 3479 if (!silent) 3480 gclog_or_tty->print("(SKIPPING roots, heapRegionSets, heapRegions, remset) "); 3481 } 3482 } 3483 3484 void G1CollectedHeap::verify(bool silent) { 3485 verify(silent, VerifyOption_G1UsePrevMarking); 3486 } 3487 3488 double G1CollectedHeap::verify(bool guard, const char* msg) { 3489 double verify_time_ms = 0.0; 3490 3491 if (guard && total_collections() >= VerifyGCStartAt) { 3492 double verify_start = os::elapsedTime(); 3493 HandleMark hm; // Discard invalid handles created during verification 3494 prepare_for_verify(); 3495 Universe::verify(VerifyOption_G1UsePrevMarking, msg); 3496 verify_time_ms = (os::elapsedTime() - verify_start) * 1000; 3497 } 3498 3499 return verify_time_ms; 3500 } 3501 3502 void G1CollectedHeap::verify_before_gc() { 3503 double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:"); 3504 g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms); 3505 } 3506 3507 void G1CollectedHeap::verify_after_gc() { 3508 double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:"); 3509 g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms); 3510 } 3511 3512 class PrintRegionClosure: public HeapRegionClosure { 3513 outputStream* _st; 3514 public: 3515 PrintRegionClosure(outputStream* st) : _st(st) {} 3516 bool doHeapRegion(HeapRegion* r) { 3517 r->print_on(_st); 3518 return false; 3519 } 3520 }; 3521 3522 void G1CollectedHeap::print_on(outputStream* st) const { 3523 st->print(" %-20s", "garbage-first heap"); 3524 st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K", 3525 capacity()/K, used_unlocked()/K); 3526 st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")", 3527 _g1_storage.low_boundary(), 3528 _g1_storage.high(), 3529 _g1_storage.high_boundary()); 3530 st->cr(); 3531 st->print(" region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K); 3532 uint young_regions = _young_list->length(); 3533 st->print("%u young (" SIZE_FORMAT "K), ", young_regions, 3534 (size_t) young_regions * HeapRegion::GrainBytes / K); 3535 uint survivor_regions = g1_policy()->recorded_survivor_regions(); 3536 st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions, 3537 (size_t) survivor_regions * HeapRegion::GrainBytes / K); 3538 st->cr(); 3539 MetaspaceAux::print_on(st); 3540 } 3541 3542 void G1CollectedHeap::print_extended_on(outputStream* st) const { 3543 print_on(st); 3544 3545 // Print the per-region information. 3546 st->cr(); 3547 st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), " 3548 "HS=humongous(starts), HC=humongous(continues), " 3549 "CS=collection set, F=free, TS=gc time stamp, " 3550 "PTAMS=previous top-at-mark-start, " 3551 "NTAMS=next top-at-mark-start)"); 3552 PrintRegionClosure blk(st); 3553 heap_region_iterate(&blk); 3554 } 3555 3556 void G1CollectedHeap::print_on_error(outputStream* st) const { 3557 this->CollectedHeap::print_on_error(st); 3558 3559 if (_cm != NULL) { 3560 st->cr(); 3561 _cm->print_on_error(st); 3562 } 3563 } 3564 3565 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const { 3566 if (G1CollectedHeap::use_parallel_gc_threads()) { 3567 workers()->print_worker_threads_on(st); 3568 } 3569 _cmThread->print_on(st); 3570 st->cr(); 3571 _cm->print_worker_threads_on(st); 3572 _cg1r->print_worker_threads_on(st); 3573 } 3574 3575 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const { 3576 if (G1CollectedHeap::use_parallel_gc_threads()) { 3577 workers()->threads_do(tc); 3578 } 3579 tc->do_thread(_cmThread); 3580 _cg1r->threads_do(tc); 3581 } 3582 3583 void G1CollectedHeap::print_tracing_info() const { 3584 // We'll overload this to mean "trace GC pause statistics." 3585 if (TraceGen0Time || TraceGen1Time) { 3586 // The "G1CollectorPolicy" is keeping track of these stats, so delegate 3587 // to that. 3588 g1_policy()->print_tracing_info(); 3589 } 3590 if (G1SummarizeRSetStats) { 3591 g1_rem_set()->print_summary_info(); 3592 } 3593 if (G1SummarizeConcMark) { 3594 concurrent_mark()->print_summary_info(); 3595 } 3596 g1_policy()->print_yg_surv_rate_info(); 3597 SpecializationStats::print(); 3598 } 3599 3600 #ifndef PRODUCT 3601 // Helpful for debugging RSet issues. 3602 3603 class PrintRSetsClosure : public HeapRegionClosure { 3604 private: 3605 const char* _msg; 3606 size_t _occupied_sum; 3607 3608 public: 3609 bool doHeapRegion(HeapRegion* r) { 3610 HeapRegionRemSet* hrrs = r->rem_set(); 3611 size_t occupied = hrrs->occupied(); 3612 _occupied_sum += occupied; 3613 3614 gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT, 3615 HR_FORMAT_PARAMS(r)); 3616 if (occupied == 0) { 3617 gclog_or_tty->print_cr(" RSet is empty"); 3618 } else { 3619 hrrs->print(); 3620 } 3621 gclog_or_tty->print_cr("----------"); 3622 return false; 3623 } 3624 3625 PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) { 3626 gclog_or_tty->cr(); 3627 gclog_or_tty->print_cr("========================================"); 3628 gclog_or_tty->print_cr(msg); 3629 gclog_or_tty->cr(); 3630 } 3631 3632 ~PrintRSetsClosure() { 3633 gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum); 3634 gclog_or_tty->print_cr("========================================"); 3635 gclog_or_tty->cr(); 3636 } 3637 }; 3638 3639 void G1CollectedHeap::print_cset_rsets() { 3640 PrintRSetsClosure cl("Printing CSet RSets"); 3641 collection_set_iterate(&cl); 3642 } 3643 3644 void G1CollectedHeap::print_all_rsets() { 3645 PrintRSetsClosure cl("Printing All RSets");; 3646 heap_region_iterate(&cl); 3647 } 3648 #endif // PRODUCT 3649 3650 G1CollectedHeap* G1CollectedHeap::heap() { 3651 assert(_sh->kind() == CollectedHeap::G1CollectedHeap, 3652 "not a garbage-first heap"); 3653 return _g1h; 3654 } 3655 3656 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) { 3657 // always_do_update_barrier = false; 3658 assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer"); 3659 // Fill TLAB's and such 3660 accumulate_statistics_all_tlabs(); 3661 ensure_parsability(true); 3662 3663 if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) && 3664 (total_collections() % G1SummarizeRSetStatsPeriod == 0)) { 3665 g1_rem_set()->print_periodic_summary_info("Before GC RS summary"); 3666 } 3667 } 3668 3669 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) { 3670 3671 if (G1SummarizeRSetStats && 3672 (G1SummarizeRSetStatsPeriod > 0) && 3673 // we are at the end of the GC. Total collections has already been increased. 3674 ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) { 3675 g1_rem_set()->print_periodic_summary_info("After GC RS summary"); 3676 } 3677 3678 // FIXME: what is this about? 3679 // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled" 3680 // is set. 3681 COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(), 3682 "derived pointer present")); 3683 // always_do_update_barrier = true; 3684 3685 resize_all_tlabs(); 3686 3687 // We have just completed a GC. Update the soft reference 3688 // policy with the new heap occupancy 3689 Universe::update_heap_info_at_gc(); 3690 } 3691 3692 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size, 3693 unsigned int gc_count_before, 3694 bool* succeeded, 3695 GCCause::Cause gc_cause) { 3696 assert_heap_not_locked_and_not_at_safepoint(); 3697 g1_policy()->record_stop_world_start(); 3698 VM_G1IncCollectionPause op(gc_count_before, 3699 word_size, 3700 false, /* should_initiate_conc_mark */ 3701 g1_policy()->max_pause_time_ms(), 3702 gc_cause); 3703 VMThread::execute(&op); 3704 3705 HeapWord* result = op.result(); 3706 bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded(); 3707 assert(result == NULL || ret_succeeded, 3708 "the result should be NULL if the VM did not succeed"); 3709 *succeeded = ret_succeeded; 3710 3711 assert_heap_not_locked(); 3712 return result; 3713 } 3714 3715 void 3716 G1CollectedHeap::doConcurrentMark() { 3717 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 3718 if (!_cmThread->in_progress()) { 3719 _cmThread->set_started(); 3720 CGC_lock->notify(); 3721 } 3722 } 3723 3724 size_t G1CollectedHeap::pending_card_num() { 3725 size_t extra_cards = 0; 3726 JavaThread *curr = Threads::first(); 3727 while (curr != NULL) { 3728 DirtyCardQueue& dcq = curr->dirty_card_queue(); 3729 extra_cards += dcq.size(); 3730 curr = curr->next(); 3731 } 3732 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 3733 size_t buffer_size = dcqs.buffer_size(); 3734 size_t buffer_num = dcqs.completed_buffers_num(); 3735 3736 // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes 3737 // in bytes - not the number of 'entries'. We need to convert 3738 // into a number of cards. 3739 return (buffer_size * buffer_num + extra_cards) / oopSize; 3740 } 3741 3742 size_t G1CollectedHeap::cards_scanned() { 3743 return g1_rem_set()->cardsScanned(); 3744 } 3745 3746 void 3747 G1CollectedHeap::setup_surviving_young_words() { 3748 assert(_surviving_young_words == NULL, "pre-condition"); 3749 uint array_length = g1_policy()->young_cset_region_length(); 3750 _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC); 3751 if (_surviving_young_words == NULL) { 3752 vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR, 3753 "Not enough space for young surv words summary."); 3754 } 3755 memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t)); 3756 #ifdef ASSERT 3757 for (uint i = 0; i < array_length; ++i) { 3758 assert( _surviving_young_words[i] == 0, "memset above" ); 3759 } 3760 #endif // !ASSERT 3761 } 3762 3763 void 3764 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) { 3765 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); 3766 uint array_length = g1_policy()->young_cset_region_length(); 3767 for (uint i = 0; i < array_length; ++i) { 3768 _surviving_young_words[i] += surv_young_words[i]; 3769 } 3770 } 3771 3772 void 3773 G1CollectedHeap::cleanup_surviving_young_words() { 3774 guarantee( _surviving_young_words != NULL, "pre-condition" ); 3775 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC); 3776 _surviving_young_words = NULL; 3777 } 3778 3779 #ifdef ASSERT 3780 class VerifyCSetClosure: public HeapRegionClosure { 3781 public: 3782 bool doHeapRegion(HeapRegion* hr) { 3783 // Here we check that the CSet region's RSet is ready for parallel 3784 // iteration. The fields that we'll verify are only manipulated 3785 // when the region is part of a CSet and is collected. Afterwards, 3786 // we reset these fields when we clear the region's RSet (when the 3787 // region is freed) so they are ready when the region is 3788 // re-allocated. The only exception to this is if there's an 3789 // evacuation failure and instead of freeing the region we leave 3790 // it in the heap. In that case, we reset these fields during 3791 // evacuation failure handling. 3792 guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification"); 3793 3794 // Here's a good place to add any other checks we'd like to 3795 // perform on CSet regions. 3796 return false; 3797 } 3798 }; 3799 #endif // ASSERT 3800 3801 #if TASKQUEUE_STATS 3802 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) { 3803 st->print_raw_cr("GC Task Stats"); 3804 st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr(); 3805 st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr(); 3806 } 3807 3808 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const { 3809 print_taskqueue_stats_hdr(st); 3810 3811 TaskQueueStats totals; 3812 const int n = workers() != NULL ? workers()->total_workers() : 1; 3813 for (int i = 0; i < n; ++i) { 3814 st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr(); 3815 totals += task_queue(i)->stats; 3816 } 3817 st->print_raw("tot "); totals.print(st); st->cr(); 3818 3819 DEBUG_ONLY(totals.verify()); 3820 } 3821 3822 void G1CollectedHeap::reset_taskqueue_stats() { 3823 const int n = workers() != NULL ? workers()->total_workers() : 1; 3824 for (int i = 0; i < n; ++i) { 3825 task_queue(i)->stats.reset(); 3826 } 3827 } 3828 #endif // TASKQUEUE_STATS 3829 3830 void G1CollectedHeap::log_gc_header() { 3831 if (!G1Log::fine()) { 3832 return; 3833 } 3834 3835 gclog_or_tty->date_stamp(PrintGCDateStamps); 3836 gclog_or_tty->stamp(PrintGCTimeStamps); 3837 3838 GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause()) 3839 .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)") 3840 .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : ""); 3841 3842 gclog_or_tty->print("[%s", (const char*)gc_cause_str); 3843 } 3844 3845 void G1CollectedHeap::log_gc_footer(double pause_time_sec) { 3846 if (!G1Log::fine()) { 3847 return; 3848 } 3849 3850 if (G1Log::finer()) { 3851 if (evacuation_failed()) { 3852 gclog_or_tty->print(" (to-space exhausted)"); 3853 } 3854 gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec); 3855 g1_policy()->phase_times()->note_gc_end(); 3856 g1_policy()->phase_times()->print(pause_time_sec); 3857 g1_policy()->print_detailed_heap_transition(); 3858 } else { 3859 if (evacuation_failed()) { 3860 gclog_or_tty->print("--"); 3861 } 3862 g1_policy()->print_heap_transition(); 3863 gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec); 3864 } 3865 gclog_or_tty->flush(); 3866 } 3867 3868 bool 3869 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) { 3870 assert_at_safepoint(true /* should_be_vm_thread */); 3871 guarantee(!is_gc_active(), "collection is not reentrant"); 3872 3873 if (GC_locker::check_active_before_gc()) { 3874 return false; 3875 } 3876 3877 _gc_timer_stw->register_gc_start(); 3878 3879 _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start()); 3880 3881 SvcGCMarker sgcm(SvcGCMarker::MINOR); 3882 ResourceMark rm; 3883 3884 print_heap_before_gc(); 3885 trace_heap_before_gc(_gc_tracer_stw); 3886 3887 HRSPhaseSetter x(HRSPhaseEvacuation); 3888 verify_region_sets_optional(); 3889 verify_dirty_young_regions(); 3890 3891 // This call will decide whether this pause is an initial-mark 3892 // pause. If it is, during_initial_mark_pause() will return true 3893 // for the duration of this pause. 3894 g1_policy()->decide_on_conc_mark_initiation(); 3895 3896 // We do not allow initial-mark to be piggy-backed on a mixed GC. 3897 assert(!g1_policy()->during_initial_mark_pause() || 3898 g1_policy()->gcs_are_young(), "sanity"); 3899 3900 // We also do not allow mixed GCs during marking. 3901 assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity"); 3902 3903 // Record whether this pause is an initial mark. When the current 3904 // thread has completed its logging output and it's safe to signal 3905 // the CM thread, the flag's value in the policy has been reset. 3906 bool should_start_conc_mark = g1_policy()->during_initial_mark_pause(); 3907 3908 // Inner scope for scope based logging, timers, and stats collection 3909 { 3910 EvacuationInfo evacuation_info; 3911 3912 if (g1_policy()->during_initial_mark_pause()) { 3913 // We are about to start a marking cycle, so we increment the 3914 // full collection counter. 3915 increment_old_marking_cycles_started(); 3916 register_concurrent_cycle_start(_gc_timer_stw->gc_start()); 3917 } 3918 3919 _gc_tracer_stw->report_yc_type(yc_type()); 3920 3921 TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty); 3922 3923 int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ? 3924 workers()->active_workers() : 1); 3925 double pause_start_sec = os::elapsedTime(); 3926 g1_policy()->phase_times()->note_gc_start(active_workers); 3927 log_gc_header(); 3928 3929 TraceCollectorStats tcs(g1mm()->incremental_collection_counters()); 3930 TraceMemoryManagerStats tms(false /* fullGC */, gc_cause()); 3931 3932 // If the secondary_free_list is not empty, append it to the 3933 // free_list. No need to wait for the cleanup operation to finish; 3934 // the region allocation code will check the secondary_free_list 3935 // and wait if necessary. If the G1StressConcRegionFreeing flag is 3936 // set, skip this step so that the region allocation code has to 3937 // get entries from the secondary_free_list. 3938 if (!G1StressConcRegionFreeing) { 3939 append_secondary_free_list_if_not_empty_with_lock(); 3940 } 3941 3942 assert(check_young_list_well_formed(), "young list should be well formed"); 3943 assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue), 3944 "sanity check"); 3945 3946 // Don't dynamically change the number of GC threads this early. A value of 3947 // 0 is used to indicate serial work. When parallel work is done, 3948 // it will be set. 3949 3950 { // Call to jvmpi::post_class_unload_events must occur outside of active GC 3951 IsGCActiveMark x; 3952 3953 gc_prologue(false); 3954 increment_total_collections(false /* full gc */); 3955 increment_gc_time_stamp(); 3956 3957 verify_before_gc(); 3958 3959 COMPILER2_PRESENT(DerivedPointerTable::clear()); 3960 3961 // Please see comment in g1CollectedHeap.hpp and 3962 // G1CollectedHeap::ref_processing_init() to see how 3963 // reference processing currently works in G1. 3964 3965 // Enable discovery in the STW reference processor 3966 ref_processor_stw()->enable_discovery(true /*verify_disabled*/, 3967 true /*verify_no_refs*/); 3968 3969 { 3970 // We want to temporarily turn off discovery by the 3971 // CM ref processor, if necessary, and turn it back on 3972 // on again later if we do. Using a scoped 3973 // NoRefDiscovery object will do this. 3974 NoRefDiscovery no_cm_discovery(ref_processor_cm()); 3975 3976 // Forget the current alloc region (we might even choose it to be part 3977 // of the collection set!). 3978 release_mutator_alloc_region(); 3979 3980 // We should call this after we retire the mutator alloc 3981 // region(s) so that all the ALLOC / RETIRE events are generated 3982 // before the start GC event. 3983 _hr_printer.start_gc(false /* full */, (size_t) total_collections()); 3984 3985 // This timing is only used by the ergonomics to handle our pause target. 3986 // It is unclear why this should not include the full pause. We will 3987 // investigate this in CR 7178365. 3988 // 3989 // Preserving the old comment here if that helps the investigation: 3990 // 3991 // The elapsed time induced by the start time below deliberately elides 3992 // the possible verification above. 3993 double sample_start_time_sec = os::elapsedTime(); 3994 3995 #if YOUNG_LIST_VERBOSE 3996 gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:"); 3997 _young_list->print(); 3998 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); 3999 #endif // YOUNG_LIST_VERBOSE 4000 4001 g1_policy()->record_collection_pause_start(sample_start_time_sec); 4002 4003 double scan_wait_start = os::elapsedTime(); 4004 // We have to wait until the CM threads finish scanning the 4005 // root regions as it's the only way to ensure that all the 4006 // objects on them have been correctly scanned before we start 4007 // moving them during the GC. 4008 bool waited = _cm->root_regions()->wait_until_scan_finished(); 4009 double wait_time_ms = 0.0; 4010 if (waited) { 4011 double scan_wait_end = os::elapsedTime(); 4012 wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0; 4013 } 4014 g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms); 4015 4016 #if YOUNG_LIST_VERBOSE 4017 gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:"); 4018 _young_list->print(); 4019 #endif // YOUNG_LIST_VERBOSE 4020 4021 if (g1_policy()->during_initial_mark_pause()) { 4022 concurrent_mark()->checkpointRootsInitialPre(); 4023 } 4024 4025 #if YOUNG_LIST_VERBOSE 4026 gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:"); 4027 _young_list->print(); 4028 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); 4029 #endif // YOUNG_LIST_VERBOSE 4030 4031 g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info); 4032 4033 _cm->note_start_of_gc(); 4034 // We should not verify the per-thread SATB buffers given that 4035 // we have not filtered them yet (we'll do so during the 4036 // GC). We also call this after finalize_cset() to 4037 // ensure that the CSet has been finalized. 4038 _cm->verify_no_cset_oops(true /* verify_stacks */, 4039 true /* verify_enqueued_buffers */, 4040 false /* verify_thread_buffers */, 4041 true /* verify_fingers */); 4042 4043 if (_hr_printer.is_active()) { 4044 HeapRegion* hr = g1_policy()->collection_set(); 4045 while (hr != NULL) { 4046 G1HRPrinter::RegionType type; 4047 if (!hr->is_young()) { 4048 type = G1HRPrinter::Old; 4049 } else if (hr->is_survivor()) { 4050 type = G1HRPrinter::Survivor; 4051 } else { 4052 type = G1HRPrinter::Eden; 4053 } 4054 _hr_printer.cset(hr); 4055 hr = hr->next_in_collection_set(); 4056 } 4057 } 4058 4059 #ifdef ASSERT 4060 VerifyCSetClosure cl; 4061 collection_set_iterate(&cl); 4062 #endif // ASSERT 4063 4064 setup_surviving_young_words(); 4065 4066 // Initialize the GC alloc regions. 4067 init_gc_alloc_regions(evacuation_info); 4068 4069 // Actually do the work... 4070 evacuate_collection_set(evacuation_info); 4071 4072 // We do this to mainly verify the per-thread SATB buffers 4073 // (which have been filtered by now) since we didn't verify 4074 // them earlier. No point in re-checking the stacks / enqueued 4075 // buffers given that the CSet has not changed since last time 4076 // we checked. 4077 _cm->verify_no_cset_oops(false /* verify_stacks */, 4078 false /* verify_enqueued_buffers */, 4079 true /* verify_thread_buffers */, 4080 true /* verify_fingers */); 4081 4082 free_collection_set(g1_policy()->collection_set(), evacuation_info); 4083 g1_policy()->clear_collection_set(); 4084 4085 cleanup_surviving_young_words(); 4086 4087 // Start a new incremental collection set for the next pause. 4088 g1_policy()->start_incremental_cset_building(); 4089 4090 // Clear the _cset_fast_test bitmap in anticipation of adding 4091 // regions to the incremental collection set for the next 4092 // evacuation pause. 4093 clear_cset_fast_test(); 4094 4095 _young_list->reset_sampled_info(); 4096 4097 // Don't check the whole heap at this point as the 4098 // GC alloc regions from this pause have been tagged 4099 // as survivors and moved on to the survivor list. 4100 // Survivor regions will fail the !is_young() check. 4101 assert(check_young_list_empty(false /* check_heap */), 4102 "young list should be empty"); 4103 4104 #if YOUNG_LIST_VERBOSE 4105 gclog_or_tty->print_cr("Before recording survivors.\nYoung List:"); 4106 _young_list->print(); 4107 #endif // YOUNG_LIST_VERBOSE 4108 4109 g1_policy()->record_survivor_regions(_young_list->survivor_length(), 4110 _young_list->first_survivor_region(), 4111 _young_list->last_survivor_region()); 4112 4113 _young_list->reset_auxilary_lists(); 4114 4115 if (evacuation_failed()) { 4116 _summary_bytes_used = recalculate_used(); 4117 uint n_queues = MAX2((int)ParallelGCThreads, 1); 4118 for (uint i = 0; i < n_queues; i++) { 4119 if (_evacuation_failed_info_array[i].has_failed()) { 4120 _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]); 4121 } 4122 } 4123 } else { 4124 // The "used" of the the collection set have already been subtracted 4125 // when they were freed. Add in the bytes evacuated. 4126 _summary_bytes_used += g1_policy()->bytes_copied_during_gc(); 4127 } 4128 4129 if (g1_policy()->during_initial_mark_pause()) { 4130 // We have to do this before we notify the CM threads that 4131 // they can start working to make sure that all the 4132 // appropriate initialization is done on the CM object. 4133 concurrent_mark()->checkpointRootsInitialPost(); 4134 set_marking_started(); 4135 // Note that we don't actually trigger the CM thread at 4136 // this point. We do that later when we're sure that 4137 // the current thread has completed its logging output. 4138 } 4139 4140 allocate_dummy_regions(); 4141 4142 #if YOUNG_LIST_VERBOSE 4143 gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:"); 4144 _young_list->print(); 4145 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); 4146 #endif // YOUNG_LIST_VERBOSE 4147 4148 init_mutator_alloc_region(); 4149 4150 { 4151 size_t expand_bytes = g1_policy()->expansion_amount(); 4152 if (expand_bytes > 0) { 4153 size_t bytes_before = capacity(); 4154 // No need for an ergo verbose message here, 4155 // expansion_amount() does this when it returns a value > 0. 4156 if (!expand(expand_bytes)) { 4157 // We failed to expand the heap so let's verify that 4158 // committed/uncommitted amount match the backing store 4159 assert(capacity() == _g1_storage.committed_size(), "committed size mismatch"); 4160 assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch"); 4161 } 4162 } 4163 } 4164 4165 // We redo the verification but now wrt to the new CSet which 4166 // has just got initialized after the previous CSet was freed. 4167 _cm->verify_no_cset_oops(true /* verify_stacks */, 4168 true /* verify_enqueued_buffers */, 4169 true /* verify_thread_buffers */, 4170 true /* verify_fingers */); 4171 _cm->note_end_of_gc(); 4172 4173 // This timing is only used by the ergonomics to handle our pause target. 4174 // It is unclear why this should not include the full pause. We will 4175 // investigate this in CR 7178365. 4176 double sample_end_time_sec = os::elapsedTime(); 4177 double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS; 4178 g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info); 4179 4180 MemoryService::track_memory_usage(); 4181 4182 // In prepare_for_verify() below we'll need to scan the deferred 4183 // update buffers to bring the RSets up-to-date if 4184 // G1HRRSFlushLogBuffersOnVerify has been set. While scanning 4185 // the update buffers we'll probably need to scan cards on the 4186 // regions we just allocated to (i.e., the GC alloc 4187 // regions). However, during the last GC we called 4188 // set_saved_mark() on all the GC alloc regions, so card 4189 // scanning might skip the [saved_mark_word()...top()] area of 4190 // those regions (i.e., the area we allocated objects into 4191 // during the last GC). But it shouldn't. Given that 4192 // saved_mark_word() is conditional on whether the GC time stamp 4193 // on the region is current or not, by incrementing the GC time 4194 // stamp here we invalidate all the GC time stamps on all the 4195 // regions and saved_mark_word() will simply return top() for 4196 // all the regions. This is a nicer way of ensuring this rather 4197 // than iterating over the regions and fixing them. In fact, the 4198 // GC time stamp increment here also ensures that 4199 // saved_mark_word() will return top() between pauses, i.e., 4200 // during concurrent refinement. So we don't need the 4201 // is_gc_active() check to decided which top to use when 4202 // scanning cards (see CR 7039627). 4203 increment_gc_time_stamp(); 4204 4205 verify_after_gc(); 4206 4207 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 4208 ref_processor_stw()->verify_no_references_recorded(); 4209 4210 // CM reference discovery will be re-enabled if necessary. 4211 } 4212 4213 // We should do this after we potentially expand the heap so 4214 // that all the COMMIT events are generated before the end GC 4215 // event, and after we retire the GC alloc regions so that all 4216 // RETIRE events are generated before the end GC event. 4217 _hr_printer.end_gc(false /* full */, (size_t) total_collections()); 4218 4219 if (mark_in_progress()) { 4220 concurrent_mark()->update_g1_committed(); 4221 } 4222 4223 #ifdef TRACESPINNING 4224 ParallelTaskTerminator::print_termination_counts(); 4225 #endif 4226 4227 gc_epilogue(false); 4228 } 4229 4230 // Print the remainder of the GC log output. 4231 log_gc_footer(os::elapsedTime() - pause_start_sec); 4232 4233 // It is not yet to safe to tell the concurrent mark to 4234 // start as we have some optional output below. We don't want the 4235 // output from the concurrent mark thread interfering with this 4236 // logging output either. 4237 4238 _hrs.verify_optional(); 4239 verify_region_sets_optional(); 4240 4241 TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats()); 4242 TASKQUEUE_STATS_ONLY(reset_taskqueue_stats()); 4243 4244 print_heap_after_gc(); 4245 trace_heap_after_gc(_gc_tracer_stw); 4246 4247 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 4248 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 4249 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 4250 // before any GC notifications are raised. 4251 g1mm()->update_sizes(); 4252 4253 _gc_tracer_stw->report_evacuation_info(&evacuation_info); 4254 _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold()); 4255 _gc_timer_stw->register_gc_end(); 4256 _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions()); 4257 } 4258 // It should now be safe to tell the concurrent mark thread to start 4259 // without its logging output interfering with the logging output 4260 // that came from the pause. 4261 4262 if (should_start_conc_mark) { 4263 // CAUTION: after the doConcurrentMark() call below, 4264 // the concurrent marking thread(s) could be running 4265 // concurrently with us. Make sure that anything after 4266 // this point does not assume that we are the only GC thread 4267 // running. Note: of course, the actual marking work will 4268 // not start until the safepoint itself is released in 4269 // ConcurrentGCThread::safepoint_desynchronize(). 4270 doConcurrentMark(); 4271 } 4272 4273 return true; 4274 } 4275 4276 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose) 4277 { 4278 size_t gclab_word_size; 4279 switch (purpose) { 4280 case GCAllocForSurvived: 4281 gclab_word_size = _survivor_plab_stats.desired_plab_sz(); 4282 break; 4283 case GCAllocForTenured: 4284 gclab_word_size = _old_plab_stats.desired_plab_sz(); 4285 break; 4286 default: 4287 assert(false, "unknown GCAllocPurpose"); 4288 gclab_word_size = _old_plab_stats.desired_plab_sz(); 4289 break; 4290 } 4291 4292 // Prevent humongous PLAB sizes for two reasons: 4293 // * PLABs are allocated using a similar paths as oops, but should 4294 // never be in a humongous region 4295 // * Allowing humongous PLABs needlessly churns the region free lists 4296 return MIN2(_humongous_object_threshold_in_words, gclab_word_size); 4297 } 4298 4299 void G1CollectedHeap::init_mutator_alloc_region() { 4300 assert(_mutator_alloc_region.get() == NULL, "pre-condition"); 4301 _mutator_alloc_region.init(); 4302 } 4303 4304 void G1CollectedHeap::release_mutator_alloc_region() { 4305 _mutator_alloc_region.release(); 4306 assert(_mutator_alloc_region.get() == NULL, "post-condition"); 4307 } 4308 4309 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) { 4310 assert_at_safepoint(true /* should_be_vm_thread */); 4311 4312 _survivor_gc_alloc_region.init(); 4313 _old_gc_alloc_region.init(); 4314 HeapRegion* retained_region = _retained_old_gc_alloc_region; 4315 _retained_old_gc_alloc_region = NULL; 4316 4317 // We will discard the current GC alloc region if: 4318 // a) it's in the collection set (it can happen!), 4319 // b) it's already full (no point in using it), 4320 // c) it's empty (this means that it was emptied during 4321 // a cleanup and it should be on the free list now), or 4322 // d) it's humongous (this means that it was emptied 4323 // during a cleanup and was added to the free list, but 4324 // has been subsequently used to allocate a humongous 4325 // object that may be less than the region size). 4326 if (retained_region != NULL && 4327 !retained_region->in_collection_set() && 4328 !(retained_region->top() == retained_region->end()) && 4329 !retained_region->is_empty() && 4330 !retained_region->isHumongous()) { 4331 retained_region->set_saved_mark(); 4332 // The retained region was added to the old region set when it was 4333 // retired. We have to remove it now, since we don't allow regions 4334 // we allocate to in the region sets. We'll re-add it later, when 4335 // it's retired again. 4336 _old_set.remove(retained_region); 4337 bool during_im = g1_policy()->during_initial_mark_pause(); 4338 retained_region->note_start_of_copying(during_im); 4339 _old_gc_alloc_region.set(retained_region); 4340 _hr_printer.reuse(retained_region); 4341 evacuation_info.set_alloc_regions_used_before(retained_region->used()); 4342 } 4343 } 4344 4345 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) { 4346 evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() + 4347 _old_gc_alloc_region.count()); 4348 _survivor_gc_alloc_region.release(); 4349 // If we have an old GC alloc region to release, we'll save it in 4350 // _retained_old_gc_alloc_region. If we don't 4351 // _retained_old_gc_alloc_region will become NULL. This is what we 4352 // want either way so no reason to check explicitly for either 4353 // condition. 4354 _retained_old_gc_alloc_region = _old_gc_alloc_region.release(); 4355 4356 if (ResizePLAB) { 4357 _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers); 4358 _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers); 4359 } 4360 } 4361 4362 void G1CollectedHeap::abandon_gc_alloc_regions() { 4363 assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition"); 4364 assert(_old_gc_alloc_region.get() == NULL, "pre-condition"); 4365 _retained_old_gc_alloc_region = NULL; 4366 } 4367 4368 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) { 4369 _drain_in_progress = false; 4370 set_evac_failure_closure(cl); 4371 _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true); 4372 } 4373 4374 void G1CollectedHeap::finalize_for_evac_failure() { 4375 assert(_evac_failure_scan_stack != NULL && 4376 _evac_failure_scan_stack->length() == 0, 4377 "Postcondition"); 4378 assert(!_drain_in_progress, "Postcondition"); 4379 delete _evac_failure_scan_stack; 4380 _evac_failure_scan_stack = NULL; 4381 } 4382 4383 void G1CollectedHeap::remove_self_forwarding_pointers() { 4384 assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity"); 4385 4386 G1ParRemoveSelfForwardPtrsTask rsfp_task(this); 4387 4388 if (G1CollectedHeap::use_parallel_gc_threads()) { 4389 set_par_threads(); 4390 workers()->run_task(&rsfp_task); 4391 set_par_threads(0); 4392 } else { 4393 rsfp_task.work(0); 4394 } 4395 4396 assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity"); 4397 4398 // Reset the claim values in the regions in the collection set. 4399 reset_cset_heap_region_claim_values(); 4400 4401 assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity"); 4402 4403 // Now restore saved marks, if any. 4404 assert(_objs_with_preserved_marks.size() == 4405 _preserved_marks_of_objs.size(), "Both or none."); 4406 while (!_objs_with_preserved_marks.is_empty()) { 4407 oop obj = _objs_with_preserved_marks.pop(); 4408 markOop m = _preserved_marks_of_objs.pop(); 4409 obj->set_mark(m); 4410 } 4411 _objs_with_preserved_marks.clear(true); 4412 _preserved_marks_of_objs.clear(true); 4413 } 4414 4415 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) { 4416 _evac_failure_scan_stack->push(obj); 4417 } 4418 4419 void G1CollectedHeap::drain_evac_failure_scan_stack() { 4420 assert(_evac_failure_scan_stack != NULL, "precondition"); 4421 4422 while (_evac_failure_scan_stack->length() > 0) { 4423 oop obj = _evac_failure_scan_stack->pop(); 4424 _evac_failure_closure->set_region(heap_region_containing(obj)); 4425 obj->oop_iterate_backwards(_evac_failure_closure); 4426 } 4427 } 4428 4429 oop 4430 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, 4431 oop old) { 4432 assert(obj_in_cs(old), 4433 err_msg("obj: "PTR_FORMAT" should still be in the CSet", 4434 (HeapWord*) old)); 4435 markOop m = old->mark(); 4436 oop forward_ptr = old->forward_to_atomic(old); 4437 if (forward_ptr == NULL) { 4438 // Forward-to-self succeeded. 4439 assert(_par_scan_state != NULL, "par scan state"); 4440 OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure(); 4441 uint queue_num = _par_scan_state->queue_num(); 4442 4443 _evacuation_failed = true; 4444 _evacuation_failed_info_array[queue_num].register_copy_failure(old->size()); 4445 if (_evac_failure_closure != cl) { 4446 MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag); 4447 assert(!_drain_in_progress, 4448 "Should only be true while someone holds the lock."); 4449 // Set the global evac-failure closure to the current thread's. 4450 assert(_evac_failure_closure == NULL, "Or locking has failed."); 4451 set_evac_failure_closure(cl); 4452 // Now do the common part. 4453 handle_evacuation_failure_common(old, m); 4454 // Reset to NULL. 4455 set_evac_failure_closure(NULL); 4456 } else { 4457 // The lock is already held, and this is recursive. 4458 assert(_drain_in_progress, "This should only be the recursive case."); 4459 handle_evacuation_failure_common(old, m); 4460 } 4461 return old; 4462 } else { 4463 // Forward-to-self failed. Either someone else managed to allocate 4464 // space for this object (old != forward_ptr) or they beat us in 4465 // self-forwarding it (old == forward_ptr). 4466 assert(old == forward_ptr || !obj_in_cs(forward_ptr), 4467 err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" " 4468 "should not be in the CSet", 4469 (HeapWord*) old, (HeapWord*) forward_ptr)); 4470 return forward_ptr; 4471 } 4472 } 4473 4474 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) { 4475 preserve_mark_if_necessary(old, m); 4476 4477 HeapRegion* r = heap_region_containing(old); 4478 if (!r->evacuation_failed()) { 4479 r->set_evacuation_failed(true); 4480 _hr_printer.evac_failure(r); 4481 } 4482 4483 push_on_evac_failure_scan_stack(old); 4484 4485 if (!_drain_in_progress) { 4486 // prevent recursion in copy_to_survivor_space() 4487 _drain_in_progress = true; 4488 drain_evac_failure_scan_stack(); 4489 _drain_in_progress = false; 4490 } 4491 } 4492 4493 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) { 4494 assert(evacuation_failed(), "Oversaving!"); 4495 // We want to call the "for_promotion_failure" version only in the 4496 // case of a promotion failure. 4497 if (m->must_be_preserved_for_promotion_failure(obj)) { 4498 _objs_with_preserved_marks.push(obj); 4499 _preserved_marks_of_objs.push(m); 4500 } 4501 } 4502 4503 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose, 4504 size_t word_size) { 4505 if (purpose == GCAllocForSurvived) { 4506 HeapWord* result = survivor_attempt_allocation(word_size); 4507 if (result != NULL) { 4508 return result; 4509 } else { 4510 // Let's try to allocate in the old gen in case we can fit the 4511 // object there. 4512 return old_attempt_allocation(word_size); 4513 } 4514 } else { 4515 assert(purpose == GCAllocForTenured, "sanity"); 4516 HeapWord* result = old_attempt_allocation(word_size); 4517 if (result != NULL) { 4518 return result; 4519 } else { 4520 // Let's try to allocate in the survivors in case we can fit the 4521 // object there. 4522 return survivor_attempt_allocation(word_size); 4523 } 4524 } 4525 4526 ShouldNotReachHere(); 4527 // Trying to keep some compilers happy. 4528 return NULL; 4529 } 4530 4531 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) : 4532 ParGCAllocBuffer(gclab_word_size), _retired(false) { } 4533 4534 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num) 4535 : _g1h(g1h), 4536 _refs(g1h->task_queue(queue_num)), 4537 _dcq(&g1h->dirty_card_queue_set()), 4538 _ct_bs(g1h->g1_barrier_set()), 4539 _g1_rem(g1h->g1_rem_set()), 4540 _hash_seed(17), _queue_num(queue_num), 4541 _term_attempts(0), 4542 _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)), 4543 _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)), 4544 _age_table(false), 4545 _strong_roots_time(0), _term_time(0), 4546 _alloc_buffer_waste(0), _undo_waste(0) { 4547 // we allocate G1YoungSurvRateNumRegions plus one entries, since 4548 // we "sacrifice" entry 0 to keep track of surviving bytes for 4549 // non-young regions (where the age is -1) 4550 // We also add a few elements at the beginning and at the end in 4551 // an attempt to eliminate cache contention 4552 uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length(); 4553 uint array_length = PADDING_ELEM_NUM + 4554 real_length + 4555 PADDING_ELEM_NUM; 4556 _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC); 4557 if (_surviving_young_words_base == NULL) 4558 vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR, 4559 "Not enough space for young surv histo."); 4560 _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM; 4561 memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t)); 4562 4563 _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer; 4564 _alloc_buffers[GCAllocForTenured] = &_tenured_alloc_buffer; 4565 4566 _start = os::elapsedTime(); 4567 } 4568 4569 void 4570 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st) 4571 { 4572 st->print_raw_cr("GC Termination Stats"); 4573 st->print_raw_cr(" elapsed --strong roots-- -------termination-------" 4574 " ------waste (KiB)------"); 4575 st->print_raw_cr("thr ms ms % ms % attempts" 4576 " total alloc undo"); 4577 st->print_raw_cr("--- --------- --------- ------ --------- ------ --------" 4578 " ------- ------- -------"); 4579 } 4580 4581 void 4582 G1ParScanThreadState::print_termination_stats(int i, 4583 outputStream* const st) const 4584 { 4585 const double elapsed_ms = elapsed_time() * 1000.0; 4586 const double s_roots_ms = strong_roots_time() * 1000.0; 4587 const double term_ms = term_time() * 1000.0; 4588 st->print_cr("%3d %9.2f %9.2f %6.2f " 4589 "%9.2f %6.2f " SIZE_FORMAT_W(8) " " 4590 SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7), 4591 i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms, 4592 term_ms, term_ms * 100 / elapsed_ms, term_attempts(), 4593 (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K, 4594 alloc_buffer_waste() * HeapWordSize / K, 4595 undo_waste() * HeapWordSize / K); 4596 } 4597 4598 #ifdef ASSERT 4599 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const { 4600 assert(ref != NULL, "invariant"); 4601 assert(UseCompressedOops, "sanity"); 4602 assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref)); 4603 oop p = oopDesc::load_decode_heap_oop(ref); 4604 assert(_g1h->is_in_g1_reserved(p), 4605 err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p)); 4606 return true; 4607 } 4608 4609 bool G1ParScanThreadState::verify_ref(oop* ref) const { 4610 assert(ref != NULL, "invariant"); 4611 if (has_partial_array_mask(ref)) { 4612 // Must be in the collection set--it's already been copied. 4613 oop p = clear_partial_array_mask(ref); 4614 assert(_g1h->obj_in_cs(p), 4615 err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p)); 4616 } else { 4617 oop p = oopDesc::load_decode_heap_oop(ref); 4618 assert(_g1h->is_in_g1_reserved(p), 4619 err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p)); 4620 } 4621 return true; 4622 } 4623 4624 bool G1ParScanThreadState::verify_task(StarTask ref) const { 4625 if (ref.is_narrow()) { 4626 return verify_ref((narrowOop*) ref); 4627 } else { 4628 return verify_ref((oop*) ref); 4629 } 4630 } 4631 #endif // ASSERT 4632 4633 void G1ParScanThreadState::trim_queue() { 4634 assert(_evac_cl != NULL, "not set"); 4635 assert(_evac_failure_cl != NULL, "not set"); 4636 assert(_partial_scan_cl != NULL, "not set"); 4637 4638 StarTask ref; 4639 do { 4640 // Drain the overflow stack first, so other threads can steal. 4641 while (refs()->pop_overflow(ref)) { 4642 deal_with_reference(ref); 4643 } 4644 4645 while (refs()->pop_local(ref)) { 4646 deal_with_reference(ref); 4647 } 4648 } while (!refs()->is_empty()); 4649 } 4650 4651 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, 4652 G1ParScanThreadState* par_scan_state) : 4653 _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()), 4654 _par_scan_state(par_scan_state), 4655 _worker_id(par_scan_state->queue_num()), 4656 _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()), 4657 _mark_in_progress(_g1->mark_in_progress()) { } 4658 4659 template <G1Barrier barrier, bool do_mark_object> 4660 void G1ParCopyClosure<barrier, do_mark_object>::mark_object(oop obj) { 4661 #ifdef ASSERT 4662 HeapRegion* hr = _g1->heap_region_containing(obj); 4663 assert(hr != NULL, "sanity"); 4664 assert(!hr->in_collection_set(), "should not mark objects in the CSet"); 4665 #endif // ASSERT 4666 4667 // We know that the object is not moving so it's safe to read its size. 4668 _cm->grayRoot(obj, (size_t) obj->size(), _worker_id); 4669 } 4670 4671 template <G1Barrier barrier, bool do_mark_object> 4672 void G1ParCopyClosure<barrier, do_mark_object> 4673 ::mark_forwarded_object(oop from_obj, oop to_obj) { 4674 #ifdef ASSERT 4675 assert(from_obj->is_forwarded(), "from obj should be forwarded"); 4676 assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee"); 4677 assert(from_obj != to_obj, "should not be self-forwarded"); 4678 4679 HeapRegion* from_hr = _g1->heap_region_containing(from_obj); 4680 assert(from_hr != NULL, "sanity"); 4681 assert(from_hr->in_collection_set(), "from obj should be in the CSet"); 4682 4683 HeapRegion* to_hr = _g1->heap_region_containing(to_obj); 4684 assert(to_hr != NULL, "sanity"); 4685 assert(!to_hr->in_collection_set(), "should not mark objects in the CSet"); 4686 #endif // ASSERT 4687 4688 // The object might be in the process of being copied by another 4689 // worker so we cannot trust that its to-space image is 4690 // well-formed. So we have to read its size from its from-space 4691 // image which we know should not be changing. 4692 _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id); 4693 } 4694 4695 template <G1Barrier barrier, bool do_mark_object> 4696 oop G1ParCopyClosure<barrier, do_mark_object> 4697 ::copy_to_survivor_space(oop old) { 4698 size_t word_sz = old->size(); 4699 HeapRegion* from_region = _g1->heap_region_containing_raw(old); 4700 // +1 to make the -1 indexes valid... 4701 int young_index = from_region->young_index_in_cset()+1; 4702 assert( (from_region->is_young() && young_index > 0) || 4703 (!from_region->is_young() && young_index == 0), "invariant" ); 4704 G1CollectorPolicy* g1p = _g1->g1_policy(); 4705 markOop m = old->mark(); 4706 int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age() 4707 : m->age(); 4708 GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age, 4709 word_sz); 4710 HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz); 4711 #ifndef PRODUCT 4712 // Should this evacuation fail? 4713 if (_g1->evacuation_should_fail()) { 4714 if (obj_ptr != NULL) { 4715 _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz); 4716 obj_ptr = NULL; 4717 } 4718 } 4719 #endif // !PRODUCT 4720 4721 if (obj_ptr == NULL) { 4722 // This will either forward-to-self, or detect that someone else has 4723 // installed a forwarding pointer. 4724 return _g1->handle_evacuation_failure_par(_par_scan_state, old); 4725 } 4726 4727 oop obj = oop(obj_ptr); 4728 4729 // We're going to allocate linearly, so might as well prefetch ahead. 4730 Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes); 4731 4732 oop forward_ptr = old->forward_to_atomic(obj); 4733 if (forward_ptr == NULL) { 4734 Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz); 4735 if (g1p->track_object_age(alloc_purpose)) { 4736 // We could simply do obj->incr_age(). However, this causes a 4737 // performance issue. obj->incr_age() will first check whether 4738 // the object has a displaced mark by checking its mark word; 4739 // getting the mark word from the new location of the object 4740 // stalls. So, given that we already have the mark word and we 4741 // are about to install it anyway, it's better to increase the 4742 // age on the mark word, when the object does not have a 4743 // displaced mark word. We're not expecting many objects to have 4744 // a displaced marked word, so that case is not optimized 4745 // further (it could be...) and we simply call obj->incr_age(). 4746 4747 if (m->has_displaced_mark_helper()) { 4748 // in this case, we have to install the mark word first, 4749 // otherwise obj looks to be forwarded (the old mark word, 4750 // which contains the forward pointer, was copied) 4751 obj->set_mark(m); 4752 obj->incr_age(); 4753 } else { 4754 m = m->incr_age(); 4755 obj->set_mark(m); 4756 } 4757 _par_scan_state->age_table()->add(obj, word_sz); 4758 } else { 4759 obj->set_mark(m); 4760 } 4761 4762 size_t* surv_young_words = _par_scan_state->surviving_young_words(); 4763 surv_young_words[young_index] += word_sz; 4764 4765 if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) { 4766 // We keep track of the next start index in the length field of 4767 // the from-space object. The actual length can be found in the 4768 // length field of the to-space object. 4769 arrayOop(old)->set_length(0); 4770 oop* old_p = set_partial_array_mask(old); 4771 _par_scan_state->push_on_queue(old_p); 4772 } else { 4773 // No point in using the slower heap_region_containing() method, 4774 // given that we know obj is in the heap. 4775 _scanner.set_region(_g1->heap_region_containing_raw(obj)); 4776 obj->oop_iterate_backwards(&_scanner); 4777 } 4778 } else { 4779 _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz); 4780 obj = forward_ptr; 4781 } 4782 return obj; 4783 } 4784 4785 template <class T> 4786 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) { 4787 if (_g1->heap_region_containing_raw(new_obj)->is_young()) { 4788 _scanned_klass->record_modified_oops(); 4789 } 4790 } 4791 4792 template <G1Barrier barrier, bool do_mark_object> 4793 template <class T> 4794 void G1ParCopyClosure<barrier, do_mark_object> 4795 ::do_oop_work(T* p) { 4796 oop obj = oopDesc::load_decode_heap_oop(p); 4797 4798 assert(_worker_id == _par_scan_state->queue_num(), "sanity"); 4799 4800 // here the null check is implicit in the cset_fast_test() test 4801 if (_g1->in_cset_fast_test(obj)) { 4802 oop forwardee; 4803 if (obj->is_forwarded()) { 4804 forwardee = obj->forwardee(); 4805 } else { 4806 forwardee = copy_to_survivor_space(obj); 4807 } 4808 assert(forwardee != NULL, "forwardee should not be NULL"); 4809 oopDesc::encode_store_heap_oop(p, forwardee); 4810 if (do_mark_object && forwardee != obj) { 4811 // If the object is self-forwarded we don't need to explicitly 4812 // mark it, the evacuation failure protocol will do so. 4813 mark_forwarded_object(obj, forwardee); 4814 } 4815 4816 if (barrier == G1BarrierKlass) { 4817 do_klass_barrier(p, forwardee); 4818 } 4819 } else { 4820 // The object is not in collection set. If we're a root scanning 4821 // closure during an initial mark pause (i.e. do_mark_object will 4822 // be true) then attempt to mark the object. 4823 if (do_mark_object && _g1->is_in_g1_reserved(obj)) { 4824 mark_object(obj); 4825 } 4826 } 4827 4828 if (barrier == G1BarrierEvac && obj != NULL) { 4829 _par_scan_state->update_rs(_from, p, _worker_id); 4830 } 4831 } 4832 4833 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(oop* p); 4834 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(narrowOop* p); 4835 4836 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) { 4837 assert(has_partial_array_mask(p), "invariant"); 4838 oop from_obj = clear_partial_array_mask(p); 4839 4840 assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap."); 4841 assert(from_obj->is_objArray(), "must be obj array"); 4842 objArrayOop from_obj_array = objArrayOop(from_obj); 4843 // We keep track of the next start index in the length field of the 4844 // from-space object. 4845 int next_index = from_obj_array->length(); 4846 4847 assert(from_obj->is_forwarded(), "must be forwarded"); 4848 oop to_obj = from_obj->forwardee(); 4849 assert(from_obj != to_obj, "should not be chunking self-forwarded objects"); 4850 objArrayOop to_obj_array = objArrayOop(to_obj); 4851 // The to-space object contains the real length. 4852 int length = to_obj_array->length(); 4853 assert(0 <= next_index && next_index < length, 4854 err_msg("invariant, next index: %d, length: %d", next_index, length)); 4855 4856 int start = next_index; 4857 int end = length; 4858 int remainder = end - start; 4859 // We'll try not to push a range that's smaller than ParGCArrayScanChunk. 4860 if (remainder > 2 * ParGCArrayScanChunk) { 4861 end = start + ParGCArrayScanChunk; 4862 from_obj_array->set_length(end); 4863 // Push the remainder before we process the range in case another 4864 // worker has run out of things to do and can steal it. 4865 oop* from_obj_p = set_partial_array_mask(from_obj); 4866 _par_scan_state->push_on_queue(from_obj_p); 4867 } else { 4868 assert(length == end, "sanity"); 4869 // We'll process the final range for this object. Restore the length 4870 // so that the heap remains parsable in case of evacuation failure. 4871 from_obj_array->set_length(end); 4872 } 4873 _scanner.set_region(_g1->heap_region_containing_raw(to_obj)); 4874 // Process indexes [start,end). It will also process the header 4875 // along with the first chunk (i.e., the chunk with start == 0). 4876 // Note that at this point the length field of to_obj_array is not 4877 // correct given that we are using it to keep track of the next 4878 // start index. oop_iterate_range() (thankfully!) ignores the length 4879 // field and only relies on the start / end parameters. It does 4880 // however return the size of the object which will be incorrect. So 4881 // we have to ignore it even if we wanted to use it. 4882 to_obj_array->oop_iterate_range(&_scanner, start, end); 4883 } 4884 4885 class G1ParEvacuateFollowersClosure : public VoidClosure { 4886 protected: 4887 G1CollectedHeap* _g1h; 4888 G1ParScanThreadState* _par_scan_state; 4889 RefToScanQueueSet* _queues; 4890 ParallelTaskTerminator* _terminator; 4891 4892 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 4893 RefToScanQueueSet* queues() { return _queues; } 4894 ParallelTaskTerminator* terminator() { return _terminator; } 4895 4896 public: 4897 G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h, 4898 G1ParScanThreadState* par_scan_state, 4899 RefToScanQueueSet* queues, 4900 ParallelTaskTerminator* terminator) 4901 : _g1h(g1h), _par_scan_state(par_scan_state), 4902 _queues(queues), _terminator(terminator) {} 4903 4904 void do_void(); 4905 4906 private: 4907 inline bool offer_termination(); 4908 }; 4909 4910 bool G1ParEvacuateFollowersClosure::offer_termination() { 4911 G1ParScanThreadState* const pss = par_scan_state(); 4912 pss->start_term_time(); 4913 const bool res = terminator()->offer_termination(); 4914 pss->end_term_time(); 4915 return res; 4916 } 4917 4918 void G1ParEvacuateFollowersClosure::do_void() { 4919 StarTask stolen_task; 4920 G1ParScanThreadState* const pss = par_scan_state(); 4921 pss->trim_queue(); 4922 4923 do { 4924 while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) { 4925 assert(pss->verify_task(stolen_task), "sanity"); 4926 if (stolen_task.is_narrow()) { 4927 pss->deal_with_reference((narrowOop*) stolen_task); 4928 } else { 4929 pss->deal_with_reference((oop*) stolen_task); 4930 } 4931 4932 // We've just processed a reference and we might have made 4933 // available new entries on the queues. So we have to make sure 4934 // we drain the queues as necessary. 4935 pss->trim_queue(); 4936 } 4937 } while (!offer_termination()); 4938 4939 pss->retire_alloc_buffers(); 4940 } 4941 4942 class G1KlassScanClosure : public KlassClosure { 4943 G1ParCopyHelper* _closure; 4944 bool _process_only_dirty; 4945 int _count; 4946 public: 4947 G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty) 4948 : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {} 4949 void do_klass(Klass* klass) { 4950 // If the klass has not been dirtied we know that there's 4951 // no references into the young gen and we can skip it. 4952 if (!_process_only_dirty || klass->has_modified_oops()) { 4953 // Clean the klass since we're going to scavenge all the metadata. 4954 klass->clear_modified_oops(); 4955 4956 // Tell the closure that this klass is the Klass to scavenge 4957 // and is the one to dirty if oops are left pointing into the young gen. 4958 _closure->set_scanned_klass(klass); 4959 4960 klass->oops_do(_closure); 4961 4962 _closure->set_scanned_klass(NULL); 4963 } 4964 _count++; 4965 } 4966 }; 4967 4968 class G1ParTask : public AbstractGangTask { 4969 protected: 4970 G1CollectedHeap* _g1h; 4971 RefToScanQueueSet *_queues; 4972 ParallelTaskTerminator _terminator; 4973 uint _n_workers; 4974 4975 Mutex _stats_lock; 4976 Mutex* stats_lock() { return &_stats_lock; } 4977 4978 size_t getNCards() { 4979 return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1) 4980 / G1BlockOffsetSharedArray::N_bytes; 4981 } 4982 4983 public: 4984 G1ParTask(G1CollectedHeap* g1h, 4985 RefToScanQueueSet *task_queues) 4986 : AbstractGangTask("G1 collection"), 4987 _g1h(g1h), 4988 _queues(task_queues), 4989 _terminator(0, _queues), 4990 _stats_lock(Mutex::leaf, "parallel G1 stats lock", true) 4991 {} 4992 4993 RefToScanQueueSet* queues() { return _queues; } 4994 4995 RefToScanQueue *work_queue(int i) { 4996 return queues()->queue(i); 4997 } 4998 4999 ParallelTaskTerminator* terminator() { return &_terminator; } 5000 5001 virtual void set_for_termination(int active_workers) { 5002 // This task calls set_n_termination() in par_non_clean_card_iterate_work() 5003 // in the young space (_par_seq_tasks) in the G1 heap 5004 // for SequentialSubTasksDone. 5005 // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap 5006 // both of which need setting by set_n_termination(). 5007 _g1h->SharedHeap::set_n_termination(active_workers); 5008 _g1h->set_n_termination(active_workers); 5009 terminator()->reset_for_reuse(active_workers); 5010 _n_workers = active_workers; 5011 } 5012 5013 void work(uint worker_id) { 5014 if (worker_id >= _n_workers) return; // no work needed this round 5015 5016 double start_time_ms = os::elapsedTime() * 1000.0; 5017 _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms); 5018 5019 { 5020 ResourceMark rm; 5021 HandleMark hm; 5022 5023 ReferenceProcessor* rp = _g1h->ref_processor_stw(); 5024 5025 G1ParScanThreadState pss(_g1h, worker_id); 5026 G1ParScanHeapEvacClosure scan_evac_cl(_g1h, &pss, rp); 5027 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp); 5028 G1ParScanPartialArrayClosure partial_scan_cl(_g1h, &pss, rp); 5029 5030 pss.set_evac_closure(&scan_evac_cl); 5031 pss.set_evac_failure_closure(&evac_failure_cl); 5032 pss.set_partial_scan_closure(&partial_scan_cl); 5033 5034 G1ParScanExtRootClosure only_scan_root_cl(_g1h, &pss, rp); 5035 G1ParScanMetadataClosure only_scan_metadata_cl(_g1h, &pss, rp); 5036 5037 G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp); 5038 G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp); 5039 5040 bool only_young = _g1h->g1_policy()->gcs_are_young(); 5041 G1KlassScanClosure scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false); 5042 G1KlassScanClosure only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young); 5043 5044 OopClosure* scan_root_cl = &only_scan_root_cl; 5045 G1KlassScanClosure* scan_klasses_cl = &only_scan_klasses_cl_s; 5046 5047 if (_g1h->g1_policy()->during_initial_mark_pause()) { 5048 // We also need to mark copied objects. 5049 scan_root_cl = &scan_mark_root_cl; 5050 scan_klasses_cl = &scan_mark_klasses_cl_s; 5051 } 5052 5053 G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss); 5054 5055 // Don't scan the scavengable methods in the code cache as part 5056 // of strong root scanning. The code roots that point into a 5057 // region in the collection set are scanned when we scan the 5058 // region's RSet. 5059 int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings; 5060 5061 pss.start_strong_roots(); 5062 _g1h->g1_process_strong_roots(/* is scavenging */ true, 5063 SharedHeap::ScanningOption(so), 5064 scan_root_cl, 5065 &push_heap_rs_cl, 5066 scan_klasses_cl, 5067 worker_id); 5068 pss.end_strong_roots(); 5069 5070 { 5071 double start = os::elapsedTime(); 5072 G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator); 5073 evac.do_void(); 5074 double elapsed_ms = (os::elapsedTime()-start)*1000.0; 5075 double term_ms = pss.term_time()*1000.0; 5076 _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms); 5077 _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts()); 5078 } 5079 _g1h->g1_policy()->record_thread_age_table(pss.age_table()); 5080 _g1h->update_surviving_young_words(pss.surviving_young_words()+1); 5081 5082 if (ParallelGCVerbose) { 5083 MutexLocker x(stats_lock()); 5084 pss.print_termination_stats(worker_id); 5085 } 5086 5087 assert(pss.refs()->is_empty(), "should be empty"); 5088 5089 // Close the inner scope so that the ResourceMark and HandleMark 5090 // destructors are executed here and are included as part of the 5091 // "GC Worker Time". 5092 } 5093 5094 double end_time_ms = os::elapsedTime() * 1000.0; 5095 _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms); 5096 } 5097 }; 5098 5099 // *** Common G1 Evacuation Stuff 5100 5101 // This method is run in a GC worker. 5102 5103 void 5104 G1CollectedHeap:: 5105 g1_process_strong_roots(bool is_scavenging, 5106 ScanningOption so, 5107 OopClosure* scan_non_heap_roots, 5108 OopsInHeapRegionClosure* scan_rs, 5109 G1KlassScanClosure* scan_klasses, 5110 int worker_i) { 5111 5112 // First scan the strong roots 5113 double ext_roots_start = os::elapsedTime(); 5114 double closure_app_time_sec = 0.0; 5115 5116 BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots); 5117 5118 assert(so & SO_AllCodeCache || scan_rs != NULL, "must scan code roots somehow"); 5119 // Walk the code cache/strong code roots w/o buffering, because StarTask 5120 // cannot handle unaligned oop locations. 5121 CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, true /* do_marking */); 5122 5123 process_strong_roots(false, // no scoping; this is parallel code 5124 so, 5125 &buf_scan_non_heap_roots, 5126 &eager_scan_code_roots, 5127 scan_klasses 5128 ); 5129 5130 // Now the CM ref_processor roots. 5131 if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) { 5132 // We need to treat the discovered reference lists of the 5133 // concurrent mark ref processor as roots and keep entries 5134 // (which are added by the marking threads) on them live 5135 // until they can be processed at the end of marking. 5136 ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots); 5137 } 5138 5139 // Finish up any enqueued closure apps (attributed as object copy time). 5140 buf_scan_non_heap_roots.done(); 5141 5142 double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds(); 5143 5144 g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0); 5145 5146 double ext_root_time_ms = 5147 ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0; 5148 5149 g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms); 5150 5151 // During conc marking we have to filter the per-thread SATB buffers 5152 // to make sure we remove any oops into the CSet (which will show up 5153 // as implicitly live). 5154 double satb_filtering_ms = 0.0; 5155 if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) { 5156 if (mark_in_progress()) { 5157 double satb_filter_start = os::elapsedTime(); 5158 5159 JavaThread::satb_mark_queue_set().filter_thread_buffers(); 5160 5161 satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0; 5162 } 5163 } 5164 g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms); 5165 5166 // If this is an initial mark pause, and we're not scanning 5167 // the entire code cache, we need to mark the oops in the 5168 // strong code root lists for the regions that are not in 5169 // the collection set. 5170 // Note all threads participate in this set of root tasks. 5171 double mark_strong_code_roots_ms = 0.0; 5172 if (g1_policy()->during_initial_mark_pause() && !(so & SO_AllCodeCache)) { 5173 double mark_strong_roots_start = os::elapsedTime(); 5174 mark_strong_code_roots(worker_i); 5175 mark_strong_code_roots_ms = (os::elapsedTime() - mark_strong_roots_start) * 1000.0; 5176 } 5177 g1_policy()->phase_times()->record_strong_code_root_mark_time(worker_i, mark_strong_code_roots_ms); 5178 5179 // Now scan the complement of the collection set. 5180 if (scan_rs != NULL) { 5181 g1_rem_set()->oops_into_collection_set_do(scan_rs, &eager_scan_code_roots, worker_i); 5182 } 5183 _process_strong_tasks->all_tasks_completed(); 5184 } 5185 5186 void 5187 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure) { 5188 CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false); 5189 SharedHeap::process_weak_roots(root_closure, &roots_in_blobs); 5190 } 5191 5192 class G1StringSymbolTableUnlinkTask : public AbstractGangTask { 5193 private: 5194 BoolObjectClosure* _is_alive; 5195 int _initial_string_table_size; 5196 int _initial_symbol_table_size; 5197 5198 bool _process_strings; 5199 int _strings_processed; 5200 int _strings_removed; 5201 5202 bool _process_symbols; 5203 int _symbols_processed; 5204 int _symbols_removed; 5205 5206 bool _do_in_parallel; 5207 public: 5208 G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) : 5209 AbstractGangTask("Par String/Symbol table unlink"), _is_alive(is_alive), 5210 _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()), 5211 _process_strings(process_strings), _strings_processed(0), _strings_removed(0), 5212 _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) { 5213 5214 _initial_string_table_size = StringTable::the_table()->table_size(); 5215 _initial_symbol_table_size = SymbolTable::the_table()->table_size(); 5216 if (process_strings) { 5217 StringTable::clear_parallel_claimed_index(); 5218 } 5219 if (process_symbols) { 5220 SymbolTable::clear_parallel_claimed_index(); 5221 } 5222 } 5223 5224 ~G1StringSymbolTableUnlinkTask() { 5225 guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size, 5226 err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT, 5227 StringTable::parallel_claimed_index(), _initial_string_table_size)); 5228 guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size, 5229 err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT, 5230 SymbolTable::parallel_claimed_index(), _initial_symbol_table_size)); 5231 } 5232 5233 void work(uint worker_id) { 5234 if (_do_in_parallel) { 5235 int strings_processed = 0; 5236 int strings_removed = 0; 5237 int symbols_processed = 0; 5238 int symbols_removed = 0; 5239 if (_process_strings) { 5240 StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed); 5241 Atomic::add(strings_processed, &_strings_processed); 5242 Atomic::add(strings_removed, &_strings_removed); 5243 } 5244 if (_process_symbols) { 5245 SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed); 5246 Atomic::add(symbols_processed, &_symbols_processed); 5247 Atomic::add(symbols_removed, &_symbols_removed); 5248 } 5249 } else { 5250 if (_process_strings) { 5251 StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed); 5252 } 5253 if (_process_symbols) { 5254 SymbolTable::unlink(&_symbols_processed, &_symbols_removed); 5255 } 5256 } 5257 } 5258 5259 size_t strings_processed() const { return (size_t)_strings_processed; } 5260 size_t strings_removed() const { return (size_t)_strings_removed; } 5261 5262 size_t symbols_processed() const { return (size_t)_symbols_processed; } 5263 size_t symbols_removed() const { return (size_t)_symbols_removed; } 5264 }; 5265 5266 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive, 5267 bool process_strings, bool process_symbols) { 5268 uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ? 5269 _g1h->workers()->active_workers() : 1); 5270 5271 G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols); 5272 if (G1CollectedHeap::use_parallel_gc_threads()) { 5273 set_par_threads(n_workers); 5274 workers()->run_task(&g1_unlink_task); 5275 set_par_threads(0); 5276 } else { 5277 g1_unlink_task.work(0); 5278 } 5279 if (G1TraceStringSymbolTableScrubbing) { 5280 gclog_or_tty->print_cr("Cleaned string and symbol table, " 5281 "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, " 5282 "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed", 5283 g1_unlink_task.strings_processed(), g1_unlink_task.strings_removed(), 5284 g1_unlink_task.symbols_processed(), g1_unlink_task.symbols_removed()); 5285 } 5286 } 5287 5288 // Weak Reference Processing support 5289 5290 // An always "is_alive" closure that is used to preserve referents. 5291 // If the object is non-null then it's alive. Used in the preservation 5292 // of referent objects that are pointed to by reference objects 5293 // discovered by the CM ref processor. 5294 class G1AlwaysAliveClosure: public BoolObjectClosure { 5295 G1CollectedHeap* _g1; 5296 public: 5297 G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 5298 bool do_object_b(oop p) { 5299 if (p != NULL) { 5300 return true; 5301 } 5302 return false; 5303 } 5304 }; 5305 5306 bool G1STWIsAliveClosure::do_object_b(oop p) { 5307 // An object is reachable if it is outside the collection set, 5308 // or is inside and copied. 5309 return !_g1->obj_in_cs(p) || p->is_forwarded(); 5310 } 5311 5312 // Non Copying Keep Alive closure 5313 class G1KeepAliveClosure: public OopClosure { 5314 G1CollectedHeap* _g1; 5315 public: 5316 G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 5317 void do_oop(narrowOop* p) { guarantee(false, "Not needed"); } 5318 void do_oop( oop* p) { 5319 oop obj = *p; 5320 5321 if (_g1->obj_in_cs(obj)) { 5322 assert( obj->is_forwarded(), "invariant" ); 5323 *p = obj->forwardee(); 5324 } 5325 } 5326 }; 5327 5328 // Copying Keep Alive closure - can be called from both 5329 // serial and parallel code as long as different worker 5330 // threads utilize different G1ParScanThreadState instances 5331 // and different queues. 5332 5333 class G1CopyingKeepAliveClosure: public OopClosure { 5334 G1CollectedHeap* _g1h; 5335 OopClosure* _copy_non_heap_obj_cl; 5336 OopsInHeapRegionClosure* _copy_metadata_obj_cl; 5337 G1ParScanThreadState* _par_scan_state; 5338 5339 public: 5340 G1CopyingKeepAliveClosure(G1CollectedHeap* g1h, 5341 OopClosure* non_heap_obj_cl, 5342 OopsInHeapRegionClosure* metadata_obj_cl, 5343 G1ParScanThreadState* pss): 5344 _g1h(g1h), 5345 _copy_non_heap_obj_cl(non_heap_obj_cl), 5346 _copy_metadata_obj_cl(metadata_obj_cl), 5347 _par_scan_state(pss) 5348 {} 5349 5350 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 5351 virtual void do_oop( oop* p) { do_oop_work(p); } 5352 5353 template <class T> void do_oop_work(T* p) { 5354 oop obj = oopDesc::load_decode_heap_oop(p); 5355 5356 if (_g1h->obj_in_cs(obj)) { 5357 // If the referent object has been forwarded (either copied 5358 // to a new location or to itself in the event of an 5359 // evacuation failure) then we need to update the reference 5360 // field and, if both reference and referent are in the G1 5361 // heap, update the RSet for the referent. 5362 // 5363 // If the referent has not been forwarded then we have to keep 5364 // it alive by policy. Therefore we have copy the referent. 5365 // 5366 // If the reference field is in the G1 heap then we can push 5367 // on the PSS queue. When the queue is drained (after each 5368 // phase of reference processing) the object and it's followers 5369 // will be copied, the reference field set to point to the 5370 // new location, and the RSet updated. Otherwise we need to 5371 // use the the non-heap or metadata closures directly to copy 5372 // the referent object and update the pointer, while avoiding 5373 // updating the RSet. 5374 5375 if (_g1h->is_in_g1_reserved(p)) { 5376 _par_scan_state->push_on_queue(p); 5377 } else { 5378 assert(!ClassLoaderDataGraph::contains((address)p), 5379 err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) " 5380 PTR_FORMAT, p)); 5381 _copy_non_heap_obj_cl->do_oop(p); 5382 } 5383 } 5384 } 5385 }; 5386 5387 // Serial drain queue closure. Called as the 'complete_gc' 5388 // closure for each discovered list in some of the 5389 // reference processing phases. 5390 5391 class G1STWDrainQueueClosure: public VoidClosure { 5392 protected: 5393 G1CollectedHeap* _g1h; 5394 G1ParScanThreadState* _par_scan_state; 5395 5396 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 5397 5398 public: 5399 G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) : 5400 _g1h(g1h), 5401 _par_scan_state(pss) 5402 { } 5403 5404 void do_void() { 5405 G1ParScanThreadState* const pss = par_scan_state(); 5406 pss->trim_queue(); 5407 } 5408 }; 5409 5410 // Parallel Reference Processing closures 5411 5412 // Implementation of AbstractRefProcTaskExecutor for parallel reference 5413 // processing during G1 evacuation pauses. 5414 5415 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor { 5416 private: 5417 G1CollectedHeap* _g1h; 5418 RefToScanQueueSet* _queues; 5419 FlexibleWorkGang* _workers; 5420 int _active_workers; 5421 5422 public: 5423 G1STWRefProcTaskExecutor(G1CollectedHeap* g1h, 5424 FlexibleWorkGang* workers, 5425 RefToScanQueueSet *task_queues, 5426 int n_workers) : 5427 _g1h(g1h), 5428 _queues(task_queues), 5429 _workers(workers), 5430 _active_workers(n_workers) 5431 { 5432 assert(n_workers > 0, "shouldn't call this otherwise"); 5433 } 5434 5435 // Executes the given task using concurrent marking worker threads. 5436 virtual void execute(ProcessTask& task); 5437 virtual void execute(EnqueueTask& task); 5438 }; 5439 5440 // Gang task for possibly parallel reference processing 5441 5442 class G1STWRefProcTaskProxy: public AbstractGangTask { 5443 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; 5444 ProcessTask& _proc_task; 5445 G1CollectedHeap* _g1h; 5446 RefToScanQueueSet *_task_queues; 5447 ParallelTaskTerminator* _terminator; 5448 5449 public: 5450 G1STWRefProcTaskProxy(ProcessTask& proc_task, 5451 G1CollectedHeap* g1h, 5452 RefToScanQueueSet *task_queues, 5453 ParallelTaskTerminator* terminator) : 5454 AbstractGangTask("Process reference objects in parallel"), 5455 _proc_task(proc_task), 5456 _g1h(g1h), 5457 _task_queues(task_queues), 5458 _terminator(terminator) 5459 {} 5460 5461 virtual void work(uint worker_id) { 5462 // The reference processing task executed by a single worker. 5463 ResourceMark rm; 5464 HandleMark hm; 5465 5466 G1STWIsAliveClosure is_alive(_g1h); 5467 5468 G1ParScanThreadState pss(_g1h, worker_id); 5469 5470 G1ParScanHeapEvacClosure scan_evac_cl(_g1h, &pss, NULL); 5471 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL); 5472 G1ParScanPartialArrayClosure partial_scan_cl(_g1h, &pss, NULL); 5473 5474 pss.set_evac_closure(&scan_evac_cl); 5475 pss.set_evac_failure_closure(&evac_failure_cl); 5476 pss.set_partial_scan_closure(&partial_scan_cl); 5477 5478 G1ParScanExtRootClosure only_copy_non_heap_cl(_g1h, &pss, NULL); 5479 G1ParScanMetadataClosure only_copy_metadata_cl(_g1h, &pss, NULL); 5480 5481 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL); 5482 G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL); 5483 5484 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl; 5485 OopsInHeapRegionClosure* copy_metadata_cl = &only_copy_metadata_cl; 5486 5487 if (_g1h->g1_policy()->during_initial_mark_pause()) { 5488 // We also need to mark copied objects. 5489 copy_non_heap_cl = ©_mark_non_heap_cl; 5490 copy_metadata_cl = ©_mark_metadata_cl; 5491 } 5492 5493 // Keep alive closure. 5494 G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss); 5495 5496 // Complete GC closure 5497 G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator); 5498 5499 // Call the reference processing task's work routine. 5500 _proc_task.work(worker_id, is_alive, keep_alive, drain_queue); 5501 5502 // Note we cannot assert that the refs array is empty here as not all 5503 // of the processing tasks (specifically phase2 - pp2_work) execute 5504 // the complete_gc closure (which ordinarily would drain the queue) so 5505 // the queue may not be empty. 5506 } 5507 }; 5508 5509 // Driver routine for parallel reference processing. 5510 // Creates an instance of the ref processing gang 5511 // task and has the worker threads execute it. 5512 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) { 5513 assert(_workers != NULL, "Need parallel worker threads."); 5514 5515 ParallelTaskTerminator terminator(_active_workers, _queues); 5516 G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator); 5517 5518 _g1h->set_par_threads(_active_workers); 5519 _workers->run_task(&proc_task_proxy); 5520 _g1h->set_par_threads(0); 5521 } 5522 5523 // Gang task for parallel reference enqueueing. 5524 5525 class G1STWRefEnqueueTaskProxy: public AbstractGangTask { 5526 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask; 5527 EnqueueTask& _enq_task; 5528 5529 public: 5530 G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) : 5531 AbstractGangTask("Enqueue reference objects in parallel"), 5532 _enq_task(enq_task) 5533 { } 5534 5535 virtual void work(uint worker_id) { 5536 _enq_task.work(worker_id); 5537 } 5538 }; 5539 5540 // Driver routine for parallel reference enqueueing. 5541 // Creates an instance of the ref enqueueing gang 5542 // task and has the worker threads execute it. 5543 5544 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) { 5545 assert(_workers != NULL, "Need parallel worker threads."); 5546 5547 G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task); 5548 5549 _g1h->set_par_threads(_active_workers); 5550 _workers->run_task(&enq_task_proxy); 5551 _g1h->set_par_threads(0); 5552 } 5553 5554 // End of weak reference support closures 5555 5556 // Abstract task used to preserve (i.e. copy) any referent objects 5557 // that are in the collection set and are pointed to by reference 5558 // objects discovered by the CM ref processor. 5559 5560 class G1ParPreserveCMReferentsTask: public AbstractGangTask { 5561 protected: 5562 G1CollectedHeap* _g1h; 5563 RefToScanQueueSet *_queues; 5564 ParallelTaskTerminator _terminator; 5565 uint _n_workers; 5566 5567 public: 5568 G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) : 5569 AbstractGangTask("ParPreserveCMReferents"), 5570 _g1h(g1h), 5571 _queues(task_queues), 5572 _terminator(workers, _queues), 5573 _n_workers(workers) 5574 { } 5575 5576 void work(uint worker_id) { 5577 ResourceMark rm; 5578 HandleMark hm; 5579 5580 G1ParScanThreadState pss(_g1h, worker_id); 5581 G1ParScanHeapEvacClosure scan_evac_cl(_g1h, &pss, NULL); 5582 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL); 5583 G1ParScanPartialArrayClosure partial_scan_cl(_g1h, &pss, NULL); 5584 5585 pss.set_evac_closure(&scan_evac_cl); 5586 pss.set_evac_failure_closure(&evac_failure_cl); 5587 pss.set_partial_scan_closure(&partial_scan_cl); 5588 5589 assert(pss.refs()->is_empty(), "both queue and overflow should be empty"); 5590 5591 5592 G1ParScanExtRootClosure only_copy_non_heap_cl(_g1h, &pss, NULL); 5593 G1ParScanMetadataClosure only_copy_metadata_cl(_g1h, &pss, NULL); 5594 5595 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL); 5596 G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL); 5597 5598 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl; 5599 OopsInHeapRegionClosure* copy_metadata_cl = &only_copy_metadata_cl; 5600 5601 if (_g1h->g1_policy()->during_initial_mark_pause()) { 5602 // We also need to mark copied objects. 5603 copy_non_heap_cl = ©_mark_non_heap_cl; 5604 copy_metadata_cl = ©_mark_metadata_cl; 5605 } 5606 5607 // Is alive closure 5608 G1AlwaysAliveClosure always_alive(_g1h); 5609 5610 // Copying keep alive closure. Applied to referent objects that need 5611 // to be copied. 5612 G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss); 5613 5614 ReferenceProcessor* rp = _g1h->ref_processor_cm(); 5615 5616 uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q(); 5617 uint stride = MIN2(MAX2(_n_workers, 1U), limit); 5618 5619 // limit is set using max_num_q() - which was set using ParallelGCThreads. 5620 // So this must be true - but assert just in case someone decides to 5621 // change the worker ids. 5622 assert(0 <= worker_id && worker_id < limit, "sanity"); 5623 assert(!rp->discovery_is_atomic(), "check this code"); 5624 5625 // Select discovered lists [i, i+stride, i+2*stride,...,limit) 5626 for (uint idx = worker_id; idx < limit; idx += stride) { 5627 DiscoveredList& ref_list = rp->discovered_refs()[idx]; 5628 5629 DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive); 5630 while (iter.has_next()) { 5631 // Since discovery is not atomic for the CM ref processor, we 5632 // can see some null referent objects. 5633 iter.load_ptrs(DEBUG_ONLY(true)); 5634 oop ref = iter.obj(); 5635 5636 // This will filter nulls. 5637 if (iter.is_referent_alive()) { 5638 iter.make_referent_alive(); 5639 } 5640 iter.move_to_next(); 5641 } 5642 } 5643 5644 // Drain the queue - which may cause stealing 5645 G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator); 5646 drain_queue.do_void(); 5647 // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure 5648 assert(pss.refs()->is_empty(), "should be"); 5649 } 5650 }; 5651 5652 // Weak Reference processing during an evacuation pause (part 1). 5653 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) { 5654 double ref_proc_start = os::elapsedTime(); 5655 5656 ReferenceProcessor* rp = _ref_processor_stw; 5657 assert(rp->discovery_enabled(), "should have been enabled"); 5658 5659 // Any reference objects, in the collection set, that were 'discovered' 5660 // by the CM ref processor should have already been copied (either by 5661 // applying the external root copy closure to the discovered lists, or 5662 // by following an RSet entry). 5663 // 5664 // But some of the referents, that are in the collection set, that these 5665 // reference objects point to may not have been copied: the STW ref 5666 // processor would have seen that the reference object had already 5667 // been 'discovered' and would have skipped discovering the reference, 5668 // but would not have treated the reference object as a regular oop. 5669 // As a result the copy closure would not have been applied to the 5670 // referent object. 5671 // 5672 // We need to explicitly copy these referent objects - the references 5673 // will be processed at the end of remarking. 5674 // 5675 // We also need to do this copying before we process the reference 5676 // objects discovered by the STW ref processor in case one of these 5677 // referents points to another object which is also referenced by an 5678 // object discovered by the STW ref processor. 5679 5680 assert(!G1CollectedHeap::use_parallel_gc_threads() || 5681 no_of_gc_workers == workers()->active_workers(), 5682 "Need to reset active GC workers"); 5683 5684 set_par_threads(no_of_gc_workers); 5685 G1ParPreserveCMReferentsTask keep_cm_referents(this, 5686 no_of_gc_workers, 5687 _task_queues); 5688 5689 if (G1CollectedHeap::use_parallel_gc_threads()) { 5690 workers()->run_task(&keep_cm_referents); 5691 } else { 5692 keep_cm_referents.work(0); 5693 } 5694 5695 set_par_threads(0); 5696 5697 // Closure to test whether a referent is alive. 5698 G1STWIsAliveClosure is_alive(this); 5699 5700 // Even when parallel reference processing is enabled, the processing 5701 // of JNI refs is serial and performed serially by the current thread 5702 // rather than by a worker. The following PSS will be used for processing 5703 // JNI refs. 5704 5705 // Use only a single queue for this PSS. 5706 G1ParScanThreadState pss(this, 0); 5707 5708 // We do not embed a reference processor in the copying/scanning 5709 // closures while we're actually processing the discovered 5710 // reference objects. 5711 G1ParScanHeapEvacClosure scan_evac_cl(this, &pss, NULL); 5712 G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL); 5713 G1ParScanPartialArrayClosure partial_scan_cl(this, &pss, NULL); 5714 5715 pss.set_evac_closure(&scan_evac_cl); 5716 pss.set_evac_failure_closure(&evac_failure_cl); 5717 pss.set_partial_scan_closure(&partial_scan_cl); 5718 5719 assert(pss.refs()->is_empty(), "pre-condition"); 5720 5721 G1ParScanExtRootClosure only_copy_non_heap_cl(this, &pss, NULL); 5722 G1ParScanMetadataClosure only_copy_metadata_cl(this, &pss, NULL); 5723 5724 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL); 5725 G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL); 5726 5727 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl; 5728 OopsInHeapRegionClosure* copy_metadata_cl = &only_copy_metadata_cl; 5729 5730 if (_g1h->g1_policy()->during_initial_mark_pause()) { 5731 // We also need to mark copied objects. 5732 copy_non_heap_cl = ©_mark_non_heap_cl; 5733 copy_metadata_cl = ©_mark_metadata_cl; 5734 } 5735 5736 // Keep alive closure. 5737 G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss); 5738 5739 // Serial Complete GC closure 5740 G1STWDrainQueueClosure drain_queue(this, &pss); 5741 5742 // Setup the soft refs policy... 5743 rp->setup_policy(false); 5744 5745 ReferenceProcessorStats stats; 5746 if (!rp->processing_is_mt()) { 5747 // Serial reference processing... 5748 stats = rp->process_discovered_references(&is_alive, 5749 &keep_alive, 5750 &drain_queue, 5751 NULL, 5752 _gc_timer_stw); 5753 } else { 5754 // Parallel reference processing 5755 assert(rp->num_q() == no_of_gc_workers, "sanity"); 5756 assert(no_of_gc_workers <= rp->max_num_q(), "sanity"); 5757 5758 G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers); 5759 stats = rp->process_discovered_references(&is_alive, 5760 &keep_alive, 5761 &drain_queue, 5762 &par_task_executor, 5763 _gc_timer_stw); 5764 } 5765 5766 _gc_tracer_stw->report_gc_reference_stats(stats); 5767 // We have completed copying any necessary live referent objects 5768 // (that were not copied during the actual pause) so we can 5769 // retire any active alloc buffers 5770 pss.retire_alloc_buffers(); 5771 assert(pss.refs()->is_empty(), "both queue and overflow should be empty"); 5772 5773 double ref_proc_time = os::elapsedTime() - ref_proc_start; 5774 g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0); 5775 } 5776 5777 // Weak Reference processing during an evacuation pause (part 2). 5778 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) { 5779 double ref_enq_start = os::elapsedTime(); 5780 5781 ReferenceProcessor* rp = _ref_processor_stw; 5782 assert(!rp->discovery_enabled(), "should have been disabled as part of processing"); 5783 5784 // Now enqueue any remaining on the discovered lists on to 5785 // the pending list. 5786 if (!rp->processing_is_mt()) { 5787 // Serial reference processing... 5788 rp->enqueue_discovered_references(); 5789 } else { 5790 // Parallel reference enqueueing 5791 5792 assert(no_of_gc_workers == workers()->active_workers(), 5793 "Need to reset active workers"); 5794 assert(rp->num_q() == no_of_gc_workers, "sanity"); 5795 assert(no_of_gc_workers <= rp->max_num_q(), "sanity"); 5796 5797 G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers); 5798 rp->enqueue_discovered_references(&par_task_executor); 5799 } 5800 5801 rp->verify_no_references_recorded(); 5802 assert(!rp->discovery_enabled(), "should have been disabled"); 5803 5804 // FIXME 5805 // CM's reference processing also cleans up the string and symbol tables. 5806 // Should we do that here also? We could, but it is a serial operation 5807 // and could significantly increase the pause time. 5808 5809 double ref_enq_time = os::elapsedTime() - ref_enq_start; 5810 g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0); 5811 } 5812 5813 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) { 5814 _expand_heap_after_alloc_failure = true; 5815 _evacuation_failed = false; 5816 5817 // Should G1EvacuationFailureALot be in effect for this GC? 5818 NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();) 5819 5820 g1_rem_set()->prepare_for_oops_into_collection_set_do(); 5821 5822 // Disable the hot card cache. 5823 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 5824 hot_card_cache->reset_hot_cache_claimed_index(); 5825 hot_card_cache->set_use_cache(false); 5826 5827 uint n_workers; 5828 if (G1CollectedHeap::use_parallel_gc_threads()) { 5829 n_workers = 5830 AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(), 5831 workers()->active_workers(), 5832 Threads::number_of_non_daemon_threads()); 5833 assert(UseDynamicNumberOfGCThreads || 5834 n_workers == workers()->total_workers(), 5835 "If not dynamic should be using all the workers"); 5836 workers()->set_active_workers(n_workers); 5837 set_par_threads(n_workers); 5838 } else { 5839 assert(n_par_threads() == 0, 5840 "Should be the original non-parallel value"); 5841 n_workers = 1; 5842 } 5843 5844 G1ParTask g1_par_task(this, _task_queues); 5845 5846 init_for_evac_failure(NULL); 5847 5848 rem_set()->prepare_for_younger_refs_iterate(true); 5849 5850 assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty"); 5851 double start_par_time_sec = os::elapsedTime(); 5852 double end_par_time_sec; 5853 5854 { 5855 StrongRootsScope srs(this); 5856 5857 if (G1CollectedHeap::use_parallel_gc_threads()) { 5858 // The individual threads will set their evac-failure closures. 5859 if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr(); 5860 // These tasks use ShareHeap::_process_strong_tasks 5861 assert(UseDynamicNumberOfGCThreads || 5862 workers()->active_workers() == workers()->total_workers(), 5863 "If not dynamic should be using all the workers"); 5864 workers()->run_task(&g1_par_task); 5865 } else { 5866 g1_par_task.set_for_termination(n_workers); 5867 g1_par_task.work(0); 5868 } 5869 end_par_time_sec = os::elapsedTime(); 5870 5871 // Closing the inner scope will execute the destructor 5872 // for the StrongRootsScope object. We record the current 5873 // elapsed time before closing the scope so that time 5874 // taken for the SRS destructor is NOT included in the 5875 // reported parallel time. 5876 } 5877 5878 double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0; 5879 g1_policy()->phase_times()->record_par_time(par_time_ms); 5880 5881 double code_root_fixup_time_ms = 5882 (os::elapsedTime() - end_par_time_sec) * 1000.0; 5883 g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms); 5884 5885 set_par_threads(0); 5886 5887 // Process any discovered reference objects - we have 5888 // to do this _before_ we retire the GC alloc regions 5889 // as we may have to copy some 'reachable' referent 5890 // objects (and their reachable sub-graphs) that were 5891 // not copied during the pause. 5892 process_discovered_references(n_workers); 5893 5894 // Weak root processing. 5895 { 5896 G1STWIsAliveClosure is_alive(this); 5897 G1KeepAliveClosure keep_alive(this); 5898 JNIHandles::weak_oops_do(&is_alive, &keep_alive); 5899 } 5900 5901 release_gc_alloc_regions(n_workers, evacuation_info); 5902 g1_rem_set()->cleanup_after_oops_into_collection_set_do(); 5903 5904 // Reset and re-enable the hot card cache. 5905 // Note the counts for the cards in the regions in the 5906 // collection set are reset when the collection set is freed. 5907 hot_card_cache->reset_hot_cache(); 5908 hot_card_cache->set_use_cache(true); 5909 5910 // Migrate the strong code roots attached to each region in 5911 // the collection set. Ideally we would like to do this 5912 // after we have finished the scanning/evacuation of the 5913 // strong code roots for a particular heap region. 5914 migrate_strong_code_roots(); 5915 5916 if (g1_policy()->during_initial_mark_pause()) { 5917 // Reset the claim values set during marking the strong code roots 5918 reset_heap_region_claim_values(); 5919 } 5920 5921 finalize_for_evac_failure(); 5922 5923 if (evacuation_failed()) { 5924 remove_self_forwarding_pointers(); 5925 5926 // Reset the G1EvacuationFailureALot counters and flags 5927 // Note: the values are reset only when an actual 5928 // evacuation failure occurs. 5929 NOT_PRODUCT(reset_evacuation_should_fail();) 5930 } 5931 5932 // Enqueue any remaining references remaining on the STW 5933 // reference processor's discovered lists. We need to do 5934 // this after the card table is cleaned (and verified) as 5935 // the act of enqueueing entries on to the pending list 5936 // will log these updates (and dirty their associated 5937 // cards). We need these updates logged to update any 5938 // RSets. 5939 enqueue_discovered_references(n_workers); 5940 5941 if (G1DeferredRSUpdate) { 5942 RedirtyLoggedCardTableEntryFastClosure redirty; 5943 dirty_card_queue_set().set_closure(&redirty); 5944 dirty_card_queue_set().apply_closure_to_all_completed_buffers(); 5945 5946 DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set(); 5947 dcq.merge_bufferlists(&dirty_card_queue_set()); 5948 assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed"); 5949 } 5950 COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); 5951 } 5952 5953 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr, 5954 size_t* pre_used, 5955 FreeRegionList* free_list, 5956 OldRegionSet* old_proxy_set, 5957 HumongousRegionSet* humongous_proxy_set, 5958 HRRSCleanupTask* hrrs_cleanup_task, 5959 bool par) { 5960 if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) { 5961 if (hr->isHumongous()) { 5962 assert(hr->startsHumongous(), "we should only see starts humongous"); 5963 free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par); 5964 } else { 5965 _old_set.remove_with_proxy(hr, old_proxy_set); 5966 free_region(hr, pre_used, free_list, par); 5967 } 5968 } else { 5969 hr->rem_set()->do_cleanup_work(hrrs_cleanup_task); 5970 } 5971 } 5972 5973 void G1CollectedHeap::free_region(HeapRegion* hr, 5974 size_t* pre_used, 5975 FreeRegionList* free_list, 5976 bool par) { 5977 assert(!hr->isHumongous(), "this is only for non-humongous regions"); 5978 assert(!hr->is_empty(), "the region should not be empty"); 5979 assert(free_list != NULL, "pre-condition"); 5980 5981 // Clear the card counts for this region. 5982 // Note: we only need to do this if the region is not young 5983 // (since we don't refine cards in young regions). 5984 if (!hr->is_young()) { 5985 _cg1r->hot_card_cache()->reset_card_counts(hr); 5986 } 5987 *pre_used += hr->used(); 5988 hr->hr_clear(par, true /* clear_space */); 5989 free_list->add_as_head(hr); 5990 } 5991 5992 void G1CollectedHeap::free_humongous_region(HeapRegion* hr, 5993 size_t* pre_used, 5994 FreeRegionList* free_list, 5995 HumongousRegionSet* humongous_proxy_set, 5996 bool par) { 5997 assert(hr->startsHumongous(), "this is only for starts humongous regions"); 5998 assert(free_list != NULL, "pre-condition"); 5999 assert(humongous_proxy_set != NULL, "pre-condition"); 6000 6001 size_t hr_used = hr->used(); 6002 size_t hr_capacity = hr->capacity(); 6003 size_t hr_pre_used = 0; 6004 _humongous_set.remove_with_proxy(hr, humongous_proxy_set); 6005 // We need to read this before we make the region non-humongous, 6006 // otherwise the information will be gone. 6007 uint last_index = hr->last_hc_index(); 6008 hr->set_notHumongous(); 6009 free_region(hr, &hr_pre_used, free_list, par); 6010 6011 uint i = hr->hrs_index() + 1; 6012 while (i < last_index) { 6013 HeapRegion* curr_hr = region_at(i); 6014 assert(curr_hr->continuesHumongous(), "invariant"); 6015 curr_hr->set_notHumongous(); 6016 free_region(curr_hr, &hr_pre_used, free_list, par); 6017 i += 1; 6018 } 6019 assert(hr_pre_used == hr_used, 6020 err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" " 6021 "should be the same", hr_pre_used, hr_used)); 6022 *pre_used += hr_pre_used; 6023 } 6024 6025 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used, 6026 FreeRegionList* free_list, 6027 OldRegionSet* old_proxy_set, 6028 HumongousRegionSet* humongous_proxy_set, 6029 bool par) { 6030 if (pre_used > 0) { 6031 Mutex* lock = (par) ? ParGCRareEvent_lock : NULL; 6032 MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag); 6033 assert(_summary_bytes_used >= pre_used, 6034 err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" " 6035 "should be >= pre_used: "SIZE_FORMAT, 6036 _summary_bytes_used, pre_used)); 6037 _summary_bytes_used -= pre_used; 6038 } 6039 if (free_list != NULL && !free_list->is_empty()) { 6040 MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag); 6041 _free_list.add_as_head(free_list); 6042 } 6043 if (old_proxy_set != NULL && !old_proxy_set->is_empty()) { 6044 MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag); 6045 _old_set.update_from_proxy(old_proxy_set); 6046 } 6047 if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) { 6048 MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag); 6049 _humongous_set.update_from_proxy(humongous_proxy_set); 6050 } 6051 } 6052 6053 class G1ParCleanupCTTask : public AbstractGangTask { 6054 G1SATBCardTableModRefBS* _ct_bs; 6055 G1CollectedHeap* _g1h; 6056 HeapRegion* volatile _su_head; 6057 public: 6058 G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs, 6059 G1CollectedHeap* g1h) : 6060 AbstractGangTask("G1 Par Cleanup CT Task"), 6061 _ct_bs(ct_bs), _g1h(g1h) { } 6062 6063 void work(uint worker_id) { 6064 HeapRegion* r; 6065 while (r = _g1h->pop_dirty_cards_region()) { 6066 clear_cards(r); 6067 } 6068 } 6069 6070 void clear_cards(HeapRegion* r) { 6071 // Cards of the survivors should have already been dirtied. 6072 if (!r->is_survivor()) { 6073 _ct_bs->clear(MemRegion(r->bottom(), r->end())); 6074 } 6075 } 6076 }; 6077 6078 #ifndef PRODUCT 6079 class G1VerifyCardTableCleanup: public HeapRegionClosure { 6080 G1CollectedHeap* _g1h; 6081 G1SATBCardTableModRefBS* _ct_bs; 6082 public: 6083 G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs) 6084 : _g1h(g1h), _ct_bs(ct_bs) { } 6085 virtual bool doHeapRegion(HeapRegion* r) { 6086 if (r->is_survivor()) { 6087 _g1h->verify_dirty_region(r); 6088 } else { 6089 _g1h->verify_not_dirty_region(r); 6090 } 6091 return false; 6092 } 6093 }; 6094 6095 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) { 6096 // All of the region should be clean. 6097 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 6098 MemRegion mr(hr->bottom(), hr->end()); 6099 ct_bs->verify_not_dirty_region(mr); 6100 } 6101 6102 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) { 6103 // We cannot guarantee that [bottom(),end()] is dirty. Threads 6104 // dirty allocated blocks as they allocate them. The thread that 6105 // retires each region and replaces it with a new one will do a 6106 // maximal allocation to fill in [pre_dummy_top(),end()] but will 6107 // not dirty that area (one less thing to have to do while holding 6108 // a lock). So we can only verify that [bottom(),pre_dummy_top()] 6109 // is dirty. 6110 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 6111 MemRegion mr(hr->bottom(), hr->pre_dummy_top()); 6112 if (hr->is_young()) { 6113 ct_bs->verify_g1_young_region(mr); 6114 } else { 6115 ct_bs->verify_dirty_region(mr); 6116 } 6117 } 6118 6119 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) { 6120 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 6121 for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) { 6122 verify_dirty_region(hr); 6123 } 6124 } 6125 6126 void G1CollectedHeap::verify_dirty_young_regions() { 6127 verify_dirty_young_list(_young_list->first_region()); 6128 } 6129 #endif 6130 6131 void G1CollectedHeap::cleanUpCardTable() { 6132 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 6133 double start = os::elapsedTime(); 6134 6135 { 6136 // Iterate over the dirty cards region list. 6137 G1ParCleanupCTTask cleanup_task(ct_bs, this); 6138 6139 if (G1CollectedHeap::use_parallel_gc_threads()) { 6140 set_par_threads(); 6141 workers()->run_task(&cleanup_task); 6142 set_par_threads(0); 6143 } else { 6144 while (_dirty_cards_region_list) { 6145 HeapRegion* r = _dirty_cards_region_list; 6146 cleanup_task.clear_cards(r); 6147 _dirty_cards_region_list = r->get_next_dirty_cards_region(); 6148 if (_dirty_cards_region_list == r) { 6149 // The last region. 6150 _dirty_cards_region_list = NULL; 6151 } 6152 r->set_next_dirty_cards_region(NULL); 6153 } 6154 } 6155 #ifndef PRODUCT 6156 if (G1VerifyCTCleanup || VerifyAfterGC) { 6157 G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs); 6158 heap_region_iterate(&cleanup_verifier); 6159 } 6160 #endif 6161 } 6162 6163 double elapsed = os::elapsedTime() - start; 6164 g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0); 6165 } 6166 6167 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) { 6168 size_t pre_used = 0; 6169 FreeRegionList local_free_list("Local List for CSet Freeing"); 6170 6171 double young_time_ms = 0.0; 6172 double non_young_time_ms = 0.0; 6173 6174 // Since the collection set is a superset of the the young list, 6175 // all we need to do to clear the young list is clear its 6176 // head and length, and unlink any young regions in the code below 6177 _young_list->clear(); 6178 6179 G1CollectorPolicy* policy = g1_policy(); 6180 6181 double start_sec = os::elapsedTime(); 6182 bool non_young = true; 6183 6184 HeapRegion* cur = cs_head; 6185 int age_bound = -1; 6186 size_t rs_lengths = 0; 6187 6188 while (cur != NULL) { 6189 assert(!is_on_master_free_list(cur), "sanity"); 6190 if (non_young) { 6191 if (cur->is_young()) { 6192 double end_sec = os::elapsedTime(); 6193 double elapsed_ms = (end_sec - start_sec) * 1000.0; 6194 non_young_time_ms += elapsed_ms; 6195 6196 start_sec = os::elapsedTime(); 6197 non_young = false; 6198 } 6199 } else { 6200 if (!cur->is_young()) { 6201 double end_sec = os::elapsedTime(); 6202 double elapsed_ms = (end_sec - start_sec) * 1000.0; 6203 young_time_ms += elapsed_ms; 6204 6205 start_sec = os::elapsedTime(); 6206 non_young = true; 6207 } 6208 } 6209 6210 rs_lengths += cur->rem_set()->occupied(); 6211 6212 HeapRegion* next = cur->next_in_collection_set(); 6213 assert(cur->in_collection_set(), "bad CS"); 6214 cur->set_next_in_collection_set(NULL); 6215 cur->set_in_collection_set(false); 6216 6217 if (cur->is_young()) { 6218 int index = cur->young_index_in_cset(); 6219 assert(index != -1, "invariant"); 6220 assert((uint) index < policy->young_cset_region_length(), "invariant"); 6221 size_t words_survived = _surviving_young_words[index]; 6222 cur->record_surv_words_in_group(words_survived); 6223 6224 // At this point the we have 'popped' cur from the collection set 6225 // (linked via next_in_collection_set()) but it is still in the 6226 // young list (linked via next_young_region()). Clear the 6227 // _next_young_region field. 6228 cur->set_next_young_region(NULL); 6229 } else { 6230 int index = cur->young_index_in_cset(); 6231 assert(index == -1, "invariant"); 6232 } 6233 6234 assert( (cur->is_young() && cur->young_index_in_cset() > -1) || 6235 (!cur->is_young() && cur->young_index_in_cset() == -1), 6236 "invariant" ); 6237 6238 if (!cur->evacuation_failed()) { 6239 MemRegion used_mr = cur->used_region(); 6240 6241 // And the region is empty. 6242 assert(!used_mr.is_empty(), "Should not have empty regions in a CS."); 6243 free_region(cur, &pre_used, &local_free_list, false /* par */); 6244 } else { 6245 cur->uninstall_surv_rate_group(); 6246 if (cur->is_young()) { 6247 cur->set_young_index_in_cset(-1); 6248 } 6249 cur->set_not_young(); 6250 cur->set_evacuation_failed(false); 6251 // The region is now considered to be old. 6252 _old_set.add(cur); 6253 evacuation_info.increment_collectionset_used_after(cur->used()); 6254 } 6255 cur = next; 6256 } 6257 6258 evacuation_info.set_regions_freed(local_free_list.length()); 6259 policy->record_max_rs_lengths(rs_lengths); 6260 policy->cset_regions_freed(); 6261 6262 double end_sec = os::elapsedTime(); 6263 double elapsed_ms = (end_sec - start_sec) * 1000.0; 6264 6265 if (non_young) { 6266 non_young_time_ms += elapsed_ms; 6267 } else { 6268 young_time_ms += elapsed_ms; 6269 } 6270 6271 update_sets_after_freeing_regions(pre_used, &local_free_list, 6272 NULL /* old_proxy_set */, 6273 NULL /* humongous_proxy_set */, 6274 false /* par */); 6275 policy->phase_times()->record_young_free_cset_time_ms(young_time_ms); 6276 policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms); 6277 } 6278 6279 // This routine is similar to the above but does not record 6280 // any policy statistics or update free lists; we are abandoning 6281 // the current incremental collection set in preparation of a 6282 // full collection. After the full GC we will start to build up 6283 // the incremental collection set again. 6284 // This is only called when we're doing a full collection 6285 // and is immediately followed by the tearing down of the young list. 6286 6287 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) { 6288 HeapRegion* cur = cs_head; 6289 6290 while (cur != NULL) { 6291 HeapRegion* next = cur->next_in_collection_set(); 6292 assert(cur->in_collection_set(), "bad CS"); 6293 cur->set_next_in_collection_set(NULL); 6294 cur->set_in_collection_set(false); 6295 cur->set_young_index_in_cset(-1); 6296 cur = next; 6297 } 6298 } 6299 6300 void G1CollectedHeap::set_free_regions_coming() { 6301 if (G1ConcRegionFreeingVerbose) { 6302 gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : " 6303 "setting free regions coming"); 6304 } 6305 6306 assert(!free_regions_coming(), "pre-condition"); 6307 _free_regions_coming = true; 6308 } 6309 6310 void G1CollectedHeap::reset_free_regions_coming() { 6311 assert(free_regions_coming(), "pre-condition"); 6312 6313 { 6314 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 6315 _free_regions_coming = false; 6316 SecondaryFreeList_lock->notify_all(); 6317 } 6318 6319 if (G1ConcRegionFreeingVerbose) { 6320 gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : " 6321 "reset free regions coming"); 6322 } 6323 } 6324 6325 void G1CollectedHeap::wait_while_free_regions_coming() { 6326 // Most of the time we won't have to wait, so let's do a quick test 6327 // first before we take the lock. 6328 if (!free_regions_coming()) { 6329 return; 6330 } 6331 6332 if (G1ConcRegionFreeingVerbose) { 6333 gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : " 6334 "waiting for free regions"); 6335 } 6336 6337 { 6338 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 6339 while (free_regions_coming()) { 6340 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag); 6341 } 6342 } 6343 6344 if (G1ConcRegionFreeingVerbose) { 6345 gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : " 6346 "done waiting for free regions"); 6347 } 6348 } 6349 6350 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) { 6351 assert(heap_lock_held_for_gc(), 6352 "the heap lock should already be held by or for this thread"); 6353 _young_list->push_region(hr); 6354 } 6355 6356 class NoYoungRegionsClosure: public HeapRegionClosure { 6357 private: 6358 bool _success; 6359 public: 6360 NoYoungRegionsClosure() : _success(true) { } 6361 bool doHeapRegion(HeapRegion* r) { 6362 if (r->is_young()) { 6363 gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young", 6364 r->bottom(), r->end()); 6365 _success = false; 6366 } 6367 return false; 6368 } 6369 bool success() { return _success; } 6370 }; 6371 6372 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) { 6373 bool ret = _young_list->check_list_empty(check_sample); 6374 6375 if (check_heap) { 6376 NoYoungRegionsClosure closure; 6377 heap_region_iterate(&closure); 6378 ret = ret && closure.success(); 6379 } 6380 6381 return ret; 6382 } 6383 6384 class TearDownRegionSetsClosure : public HeapRegionClosure { 6385 private: 6386 OldRegionSet *_old_set; 6387 6388 public: 6389 TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { } 6390 6391 bool doHeapRegion(HeapRegion* r) { 6392 if (r->is_empty()) { 6393 // We ignore empty regions, we'll empty the free list afterwards 6394 } else if (r->is_young()) { 6395 // We ignore young regions, we'll empty the young list afterwards 6396 } else if (r->isHumongous()) { 6397 // We ignore humongous regions, we're not tearing down the 6398 // humongous region set 6399 } else { 6400 // The rest should be old 6401 _old_set->remove(r); 6402 } 6403 return false; 6404 } 6405 6406 ~TearDownRegionSetsClosure() { 6407 assert(_old_set->is_empty(), "post-condition"); 6408 } 6409 }; 6410 6411 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) { 6412 assert_at_safepoint(true /* should_be_vm_thread */); 6413 6414 if (!free_list_only) { 6415 TearDownRegionSetsClosure cl(&_old_set); 6416 heap_region_iterate(&cl); 6417 6418 // Need to do this after the heap iteration to be able to 6419 // recognize the young regions and ignore them during the iteration. 6420 _young_list->empty_list(); 6421 } 6422 _free_list.remove_all(); 6423 } 6424 6425 class RebuildRegionSetsClosure : public HeapRegionClosure { 6426 private: 6427 bool _free_list_only; 6428 OldRegionSet* _old_set; 6429 FreeRegionList* _free_list; 6430 size_t _total_used; 6431 6432 public: 6433 RebuildRegionSetsClosure(bool free_list_only, 6434 OldRegionSet* old_set, FreeRegionList* free_list) : 6435 _free_list_only(free_list_only), 6436 _old_set(old_set), _free_list(free_list), _total_used(0) { 6437 assert(_free_list->is_empty(), "pre-condition"); 6438 if (!free_list_only) { 6439 assert(_old_set->is_empty(), "pre-condition"); 6440 } 6441 } 6442 6443 bool doHeapRegion(HeapRegion* r) { 6444 if (r->continuesHumongous()) { 6445 return false; 6446 } 6447 6448 if (r->is_empty()) { 6449 // Add free regions to the free list 6450 _free_list->add_as_tail(r); 6451 } else if (!_free_list_only) { 6452 assert(!r->is_young(), "we should not come across young regions"); 6453 6454 if (r->isHumongous()) { 6455 // We ignore humongous regions, we left the humongous set unchanged 6456 } else { 6457 // The rest should be old, add them to the old set 6458 _old_set->add(r); 6459 } 6460 _total_used += r->used(); 6461 } 6462 6463 return false; 6464 } 6465 6466 size_t total_used() { 6467 return _total_used; 6468 } 6469 }; 6470 6471 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) { 6472 assert_at_safepoint(true /* should_be_vm_thread */); 6473 6474 RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list); 6475 heap_region_iterate(&cl); 6476 6477 if (!free_list_only) { 6478 _summary_bytes_used = cl.total_used(); 6479 } 6480 assert(_summary_bytes_used == recalculate_used(), 6481 err_msg("inconsistent _summary_bytes_used, " 6482 "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT, 6483 _summary_bytes_used, recalculate_used())); 6484 } 6485 6486 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) { 6487 _refine_cte_cl->set_concurrent(concurrent); 6488 } 6489 6490 bool G1CollectedHeap::is_in_closed_subset(const void* p) const { 6491 HeapRegion* hr = heap_region_containing(p); 6492 if (hr == NULL) { 6493 return false; 6494 } else { 6495 return hr->is_in(p); 6496 } 6497 } 6498 6499 // Methods for the mutator alloc region 6500 6501 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size, 6502 bool force) { 6503 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6504 assert(!force || g1_policy()->can_expand_young_list(), 6505 "if force is true we should be able to expand the young list"); 6506 bool young_list_full = g1_policy()->is_young_list_full(); 6507 if (force || !young_list_full) { 6508 HeapRegion* new_alloc_region = new_region(word_size, 6509 false /* do_expand */); 6510 if (new_alloc_region != NULL) { 6511 set_region_short_lived_locked(new_alloc_region); 6512 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full); 6513 return new_alloc_region; 6514 } 6515 } 6516 return NULL; 6517 } 6518 6519 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region, 6520 size_t allocated_bytes) { 6521 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6522 assert(alloc_region->is_young(), "all mutator alloc regions should be young"); 6523 6524 g1_policy()->add_region_to_incremental_cset_lhs(alloc_region); 6525 _summary_bytes_used += allocated_bytes; 6526 _hr_printer.retire(alloc_region); 6527 // We update the eden sizes here, when the region is retired, 6528 // instead of when it's allocated, since this is the point that its 6529 // used space has been recored in _summary_bytes_used. 6530 g1mm()->update_eden_size(); 6531 } 6532 6533 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size, 6534 bool force) { 6535 return _g1h->new_mutator_alloc_region(word_size, force); 6536 } 6537 6538 void G1CollectedHeap::set_par_threads() { 6539 // Don't change the number of workers. Use the value previously set 6540 // in the workgroup. 6541 assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise"); 6542 uint n_workers = workers()->active_workers(); 6543 assert(UseDynamicNumberOfGCThreads || 6544 n_workers == workers()->total_workers(), 6545 "Otherwise should be using the total number of workers"); 6546 if (n_workers == 0) { 6547 assert(false, "Should have been set in prior evacuation pause."); 6548 n_workers = ParallelGCThreads; 6549 workers()->set_active_workers(n_workers); 6550 } 6551 set_par_threads(n_workers); 6552 } 6553 6554 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region, 6555 size_t allocated_bytes) { 6556 _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes); 6557 } 6558 6559 // Methods for the GC alloc regions 6560 6561 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, 6562 uint count, 6563 GCAllocPurpose ap) { 6564 assert(FreeList_lock->owned_by_self(), "pre-condition"); 6565 6566 if (count < g1_policy()->max_regions(ap)) { 6567 HeapRegion* new_alloc_region = new_region(word_size, 6568 true /* do_expand */); 6569 if (new_alloc_region != NULL) { 6570 // We really only need to do this for old regions given that we 6571 // should never scan survivors. But it doesn't hurt to do it 6572 // for survivors too. 6573 new_alloc_region->set_saved_mark(); 6574 if (ap == GCAllocForSurvived) { 6575 new_alloc_region->set_survivor(); 6576 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor); 6577 } else { 6578 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old); 6579 } 6580 bool during_im = g1_policy()->during_initial_mark_pause(); 6581 new_alloc_region->note_start_of_copying(during_im); 6582 return new_alloc_region; 6583 } else { 6584 g1_policy()->note_alloc_region_limit_reached(ap); 6585 } 6586 } 6587 return NULL; 6588 } 6589 6590 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region, 6591 size_t allocated_bytes, 6592 GCAllocPurpose ap) { 6593 bool during_im = g1_policy()->during_initial_mark_pause(); 6594 alloc_region->note_end_of_copying(during_im); 6595 g1_policy()->record_bytes_copied_during_gc(allocated_bytes); 6596 if (ap == GCAllocForSurvived) { 6597 young_list()->add_survivor_region(alloc_region); 6598 } else { 6599 _old_set.add(alloc_region); 6600 } 6601 _hr_printer.retire(alloc_region); 6602 } 6603 6604 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size, 6605 bool force) { 6606 assert(!force, "not supported for GC alloc regions"); 6607 return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived); 6608 } 6609 6610 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region, 6611 size_t allocated_bytes) { 6612 _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes, 6613 GCAllocForSurvived); 6614 } 6615 6616 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size, 6617 bool force) { 6618 assert(!force, "not supported for GC alloc regions"); 6619 return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured); 6620 } 6621 6622 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region, 6623 size_t allocated_bytes) { 6624 _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes, 6625 GCAllocForTenured); 6626 } 6627 // Heap region set verification 6628 6629 class VerifyRegionListsClosure : public HeapRegionClosure { 6630 private: 6631 FreeRegionList* _free_list; 6632 OldRegionSet* _old_set; 6633 HumongousRegionSet* _humongous_set; 6634 uint _region_count; 6635 6636 public: 6637 VerifyRegionListsClosure(OldRegionSet* old_set, 6638 HumongousRegionSet* humongous_set, 6639 FreeRegionList* free_list) : 6640 _old_set(old_set), _humongous_set(humongous_set), 6641 _free_list(free_list), _region_count(0) { } 6642 6643 uint region_count() { return _region_count; } 6644 6645 bool doHeapRegion(HeapRegion* hr) { 6646 _region_count += 1; 6647 6648 if (hr->continuesHumongous()) { 6649 return false; 6650 } 6651 6652 if (hr->is_young()) { 6653 // TODO 6654 } else if (hr->startsHumongous()) { 6655 _humongous_set->verify_next_region(hr); 6656 } else if (hr->is_empty()) { 6657 _free_list->verify_next_region(hr); 6658 } else { 6659 _old_set->verify_next_region(hr); 6660 } 6661 return false; 6662 } 6663 }; 6664 6665 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index, 6666 HeapWord* bottom) { 6667 HeapWord* end = bottom + HeapRegion::GrainWords; 6668 MemRegion mr(bottom, end); 6669 assert(_g1_reserved.contains(mr), "invariant"); 6670 // This might return NULL if the allocation fails 6671 return new HeapRegion(hrs_index, _bot_shared, mr); 6672 } 6673 6674 void G1CollectedHeap::verify_region_sets() { 6675 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6676 6677 // First, check the explicit lists. 6678 _free_list.verify(); 6679 { 6680 // Given that a concurrent operation might be adding regions to 6681 // the secondary free list we have to take the lock before 6682 // verifying it. 6683 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 6684 _secondary_free_list.verify(); 6685 } 6686 _old_set.verify(); 6687 _humongous_set.verify(); 6688 6689 // If a concurrent region freeing operation is in progress it will 6690 // be difficult to correctly attributed any free regions we come 6691 // across to the correct free list given that they might belong to 6692 // one of several (free_list, secondary_free_list, any local lists, 6693 // etc.). So, if that's the case we will skip the rest of the 6694 // verification operation. Alternatively, waiting for the concurrent 6695 // operation to complete will have a non-trivial effect on the GC's 6696 // operation (no concurrent operation will last longer than the 6697 // interval between two calls to verification) and it might hide 6698 // any issues that we would like to catch during testing. 6699 if (free_regions_coming()) { 6700 return; 6701 } 6702 6703 // Make sure we append the secondary_free_list on the free_list so 6704 // that all free regions we will come across can be safely 6705 // attributed to the free_list. 6706 append_secondary_free_list_if_not_empty_with_lock(); 6707 6708 // Finally, make sure that the region accounting in the lists is 6709 // consistent with what we see in the heap. 6710 _old_set.verify_start(); 6711 _humongous_set.verify_start(); 6712 _free_list.verify_start(); 6713 6714 VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list); 6715 heap_region_iterate(&cl); 6716 6717 _old_set.verify_end(); 6718 _humongous_set.verify_end(); 6719 _free_list.verify_end(); 6720 } 6721 6722 // Optimized nmethod scanning 6723 6724 class RegisterNMethodOopClosure: public OopClosure { 6725 G1CollectedHeap* _g1h; 6726 nmethod* _nm; 6727 6728 template <class T> void do_oop_work(T* p) { 6729 T heap_oop = oopDesc::load_heap_oop(p); 6730 if (!oopDesc::is_null(heap_oop)) { 6731 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 6732 HeapRegion* hr = _g1h->heap_region_containing(obj); 6733 assert(!hr->continuesHumongous(), 6734 err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT 6735 " starting at "HR_FORMAT, 6736 _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()))); 6737 6738 // HeapRegion::add_strong_code_root() avoids adding duplicate 6739 // entries but having duplicates is OK since we "mark" nmethods 6740 // as visited when we scan the strong code root lists during the GC. 6741 hr->add_strong_code_root(_nm); 6742 assert(hr->rem_set()->strong_code_roots_list_contains(_nm), 6743 err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT, 6744 _nm, HR_FORMAT_PARAMS(hr))); 6745 } 6746 } 6747 6748 public: 6749 RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 6750 _g1h(g1h), _nm(nm) {} 6751 6752 void do_oop(oop* p) { do_oop_work(p); } 6753 void do_oop(narrowOop* p) { do_oop_work(p); } 6754 }; 6755 6756 class UnregisterNMethodOopClosure: public OopClosure { 6757 G1CollectedHeap* _g1h; 6758 nmethod* _nm; 6759 6760 template <class T> void do_oop_work(T* p) { 6761 T heap_oop = oopDesc::load_heap_oop(p); 6762 if (!oopDesc::is_null(heap_oop)) { 6763 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 6764 HeapRegion* hr = _g1h->heap_region_containing(obj); 6765 assert(!hr->continuesHumongous(), 6766 err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT 6767 " starting at "HR_FORMAT, 6768 _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()))); 6769 6770 hr->remove_strong_code_root(_nm); 6771 assert(!hr->rem_set()->strong_code_roots_list_contains(_nm), 6772 err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT, 6773 _nm, HR_FORMAT_PARAMS(hr))); 6774 } 6775 } 6776 6777 public: 6778 UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 6779 _g1h(g1h), _nm(nm) {} 6780 6781 void do_oop(oop* p) { do_oop_work(p); } 6782 void do_oop(narrowOop* p) { do_oop_work(p); } 6783 }; 6784 6785 void G1CollectedHeap::register_nmethod(nmethod* nm) { 6786 CollectedHeap::register_nmethod(nm); 6787 6788 guarantee(nm != NULL, "sanity"); 6789 RegisterNMethodOopClosure reg_cl(this, nm); 6790 nm->oops_do(®_cl); 6791 } 6792 6793 void G1CollectedHeap::unregister_nmethod(nmethod* nm) { 6794 CollectedHeap::unregister_nmethod(nm); 6795 6796 guarantee(nm != NULL, "sanity"); 6797 UnregisterNMethodOopClosure reg_cl(this, nm); 6798 nm->oops_do(®_cl, true); 6799 } 6800 6801 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure { 6802 public: 6803 bool doHeapRegion(HeapRegion *hr) { 6804 assert(!hr->isHumongous(), 6805 err_msg("humongous region "HR_FORMAT" should not have been added to collection set", 6806 HR_FORMAT_PARAMS(hr))); 6807 hr->migrate_strong_code_roots(); 6808 return false; 6809 } 6810 }; 6811 6812 void G1CollectedHeap::migrate_strong_code_roots() { 6813 MigrateCodeRootsHeapRegionClosure cl; 6814 double migrate_start = os::elapsedTime(); 6815 collection_set_iterate(&cl); 6816 double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0; 6817 g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms); 6818 } 6819 6820 // Mark all the code roots that point into regions *not* in the 6821 // collection set. 6822 // 6823 // Note we do not want to use a "marking" CodeBlobToOopClosure while 6824 // walking the the code roots lists of regions not in the collection 6825 // set. Suppose we have an nmethod (M) that points to objects in two 6826 // separate regions - one in the collection set (R1) and one not (R2). 6827 // Using a "marking" CodeBlobToOopClosure here would result in "marking" 6828 // nmethod M when walking the code roots for R1. When we come to scan 6829 // the code roots for R2, we would see that M is already marked and it 6830 // would be skipped and the objects in R2 that are referenced from M 6831 // would not be evacuated. 6832 6833 class MarkStrongCodeRootCodeBlobClosure: public CodeBlobClosure { 6834 6835 class MarkStrongCodeRootOopClosure: public OopClosure { 6836 ConcurrentMark* _cm; 6837 HeapRegion* _hr; 6838 uint _worker_id; 6839 6840 template <class T> void do_oop_work(T* p) { 6841 T heap_oop = oopDesc::load_heap_oop(p); 6842 if (!oopDesc::is_null(heap_oop)) { 6843 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 6844 // Only mark objects in the region (which is assumed 6845 // to be not in the collection set). 6846 if (_hr->is_in(obj)) { 6847 _cm->grayRoot(obj, (size_t) obj->size(), _worker_id); 6848 } 6849 } 6850 } 6851 6852 public: 6853 MarkStrongCodeRootOopClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id) : 6854 _cm(cm), _hr(hr), _worker_id(worker_id) { 6855 assert(!_hr->in_collection_set(), "sanity"); 6856 } 6857 6858 void do_oop(narrowOop* p) { do_oop_work(p); } 6859 void do_oop(oop* p) { do_oop_work(p); } 6860 }; 6861 6862 MarkStrongCodeRootOopClosure _oop_cl; 6863 6864 public: 6865 MarkStrongCodeRootCodeBlobClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id): 6866 _oop_cl(cm, hr, worker_id) {} 6867 6868 void do_code_blob(CodeBlob* cb) { 6869 nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null(); 6870 if (nm != NULL) { 6871 nm->oops_do(&_oop_cl); 6872 } 6873 } 6874 }; 6875 6876 class MarkStrongCodeRootsHRClosure: public HeapRegionClosure { 6877 G1CollectedHeap* _g1h; 6878 uint _worker_id; 6879 6880 public: 6881 MarkStrongCodeRootsHRClosure(G1CollectedHeap* g1h, uint worker_id) : 6882 _g1h(g1h), _worker_id(worker_id) {} 6883 6884 bool doHeapRegion(HeapRegion *hr) { 6885 HeapRegionRemSet* hrrs = hr->rem_set(); 6886 if (hr->continuesHumongous()) { 6887 // Code roots should never be attached to a continuation of a humongous region 6888 assert(hrrs->strong_code_roots_list_length() == 0, 6889 err_msg("code roots should never be attached to continuations of humongous region "HR_FORMAT 6890 " starting at "HR_FORMAT", but has "INT32_FORMAT, 6891 HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()), 6892 hrrs->strong_code_roots_list_length())); 6893 return false; 6894 } 6895 6896 if (hr->in_collection_set()) { 6897 // Don't mark code roots into regions in the collection set here. 6898 // They will be marked when we scan them. 6899 return false; 6900 } 6901 6902 MarkStrongCodeRootCodeBlobClosure cb_cl(_g1h->concurrent_mark(), hr, _worker_id); 6903 hr->strong_code_roots_do(&cb_cl); 6904 return false; 6905 } 6906 }; 6907 6908 void G1CollectedHeap::mark_strong_code_roots(uint worker_id) { 6909 MarkStrongCodeRootsHRClosure cl(this, worker_id); 6910 if (G1CollectedHeap::use_parallel_gc_threads()) { 6911 heap_region_par_iterate_chunked(&cl, 6912 worker_id, 6913 workers()->active_workers(), 6914 HeapRegion::ParMarkRootClaimValue); 6915 } else { 6916 heap_region_iterate(&cl); 6917 } 6918 } 6919 6920 class RebuildStrongCodeRootClosure: public CodeBlobClosure { 6921 G1CollectedHeap* _g1h; 6922 6923 public: 6924 RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) : 6925 _g1h(g1h) {} 6926 6927 void do_code_blob(CodeBlob* cb) { 6928 nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL; 6929 if (nm == NULL) { 6930 return; 6931 } 6932 6933 if (ScavengeRootsInCode && nm->detect_scavenge_root_oops()) { 6934 _g1h->register_nmethod(nm); 6935 } 6936 } 6937 }; 6938 6939 void G1CollectedHeap::rebuild_strong_code_roots() { 6940 RebuildStrongCodeRootClosure blob_cl(this); 6941 CodeCache::blobs_do(&blob_cl); 6942 }