src/share/vm/gc_implementation/parallelScavenge/parMarkBitMap.hpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File hs-gc-g1-mmap Sdiff src/share/vm/gc_implementation/parallelScavenge

src/share/vm/gc_implementation/parallelScavenge/parMarkBitMap.hpp

Print this page




   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP
  27 
  28 #include "memory/memRegion.hpp"
  29 #include "gc_implementation/parallelScavenge/psVirtualspace.hpp"
  30 #include "utilities/bitMap.inline.hpp"
  31 
  32 class oopDesc;
  33 class ParMarkBitMapClosure;

  34 
  35 class ParMarkBitMap: public CHeapObj<mtGC>
  36 {
  37 public:
  38   typedef BitMap::idx_t idx_t;
  39 
  40   // Values returned by the iterate() methods.
  41   enum IterationStatus { incomplete, complete, full, would_overflow };
  42 
  43   inline ParMarkBitMap();
  44   inline ParMarkBitMap(MemRegion covered_region);
  45   bool initialize(MemRegion covered_region);
  46 
  47   // Atomically mark an object as live.
  48   bool mark_obj(HeapWord* addr, size_t size);
  49   inline bool mark_obj(oop obj, int size);
  50   inline bool mark_obj(oop obj);
  51 
  52   // Return whether the specified begin or end bit is set.
  53   inline bool is_obj_beg(idx_t bit) const;
  54   inline bool is_obj_end(idx_t bit) const;
  55 
  56   // Traditional interface for testing whether an object is marked or not (these
  57   // test only the begin bits).
  58   inline bool is_marked(idx_t bit)      const;
  59   inline bool is_marked(HeapWord* addr) const;
  60   inline bool is_marked(oop obj)        const;
  61 
  62   inline bool is_unmarked(idx_t bit)      const;
  63   inline bool is_unmarked(HeapWord* addr) const;
  64   inline bool is_unmarked(oop obj)        const;
  65 
  66   // Convert sizes from bits to HeapWords and back.  An object that is n bits
  67   // long will be bits_to_words(n) words long.  An object that is m words long
  68   // will take up words_to_bits(m) bits in the bitmap.
  69   inline static size_t bits_to_words(idx_t bits);
  70   inline static idx_t  words_to_bits(size_t words);
  71 
  72   // Return the size in words of an object given a begin bit and an end bit, or
  73   // the equivalent beg_addr and end_addr.
  74   inline size_t obj_size(idx_t beg_bit, idx_t end_bit) const;
  75   inline size_t obj_size(HeapWord* beg_addr, HeapWord* end_addr) const;
  76 
  77   // Return the size in words of the object (a search is done for the end bit).
  78   inline size_t obj_size(idx_t beg_bit)  const;
  79   inline size_t obj_size(HeapWord* addr) const;
  80   inline size_t obj_size(oop obj)        const;
  81 
  82   // Synonyms for the above.
  83   size_t obj_size_in_words(oop obj) const { return obj_size((HeapWord*)obj); }
  84   size_t obj_size_in_words(HeapWord* addr) const { return obj_size(addr); }
  85 
  86   // Apply live_closure to each live object that lies completely within the
  87   // range [live_range_beg, live_range_end).  This is used to iterate over the
  88   // compacted region of the heap.  Return values:
  89   //
  90   // incomplete         The iteration is not complete.  The last object that
  91   //                    begins in the range does not end in the range;
  92   //                    closure->source() is set to the start of that object.
  93   //
  94   // complete           The iteration is complete.  All objects in the range
  95   //                    were processed and the closure is not full;
  96   //                    closure->source() is set one past the end of the range.
  97   //
  98   // full               The closure is full; closure->source() is set to one
  99   //                    past the end of the last object processed.
 100   //
 101   // would_overflow     The next object in the range would overflow the closure;
 102   //                    closure->source() is set to the start of that object.
 103   IterationStatus iterate(ParMarkBitMapClosure* live_closure,
 104                           idx_t range_beg, idx_t range_end) const;


 107                                  HeapWord* range_end) const;
 108 
 109   // Apply live closure as above and additionally apply dead_closure to all dead
 110   // space in the range [range_beg, dead_range_end).  Note that dead_range_end
 111   // must be >= range_end.  This is used to iterate over the dense prefix.
 112   //
 113   // This method assumes that if the first bit in the range (range_beg) is not
 114   // marked, then dead space begins at that point and the dead_closure is
 115   // applied.  Thus callers must ensure that range_beg is not in the middle of a
 116   // live object.
 117   IterationStatus iterate(ParMarkBitMapClosure* live_closure,
 118                           ParMarkBitMapClosure* dead_closure,
 119                           idx_t range_beg, idx_t range_end,
 120                           idx_t dead_range_end) const;
 121   inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
 122                                  ParMarkBitMapClosure* dead_closure,
 123                                  HeapWord* range_beg,
 124                                  HeapWord* range_end,
 125                                  HeapWord* dead_range_end) const;
 126 
 127   // Return the number of live words in the range [beg_addr, end_addr) due to
 128   // objects that start in the range.  If a live object extends onto the range,
 129   // the caller must detect and account for any live words due to that object.
 130   // If a live object extends beyond the end of the range, only the words within
 131   // the range are included in the result.
 132   size_t live_words_in_range(HeapWord* beg_addr, HeapWord* end_addr) const;
 133 
 134   // Same as the above, except the end of the range must be a live object, which
 135   // is the case when updating pointers.  This allows a branch to be removed
 136   // from inside the loop.
 137   size_t live_words_in_range(HeapWord* beg_addr, oop end_obj) const;
 138 
 139   inline HeapWord* region_start() const;
 140   inline HeapWord* region_end() const;
 141   inline size_t    region_size() const;
 142   inline size_t    size() const;
 143 
 144   // Convert a heap address to/from a bit index.
 145   inline idx_t     addr_to_bit(HeapWord* addr) const;
 146   inline HeapWord* bit_to_addr(idx_t bit) const;
 147 
 148   // Return the bit index of the first marked object that begins (or ends,
 149   // respectively) in the range [beg, end).  If no object is found, return end.
 150   inline idx_t find_obj_beg(idx_t beg, idx_t end) const;
 151   inline idx_t find_obj_end(idx_t beg, idx_t end) const;
 152 
 153   inline HeapWord* find_obj_beg(HeapWord* beg, HeapWord* end) const;
 154   inline HeapWord* find_obj_end(HeapWord* beg, HeapWord* end) const;
 155 
 156   // Clear a range of bits or the entire bitmap (both begin and end bits are
 157   // cleared).
 158   inline void clear_range(idx_t beg, idx_t end);
 159   inline void clear() { clear_range(0, size()); }
 160 
 161   // Return the number of bits required to represent the specified number of
 162   // HeapWords, or the specified region.
 163   static inline idx_t bits_required(size_t words);
 164   static inline idx_t bits_required(MemRegion covered_region);
 165   static inline idx_t words_required(MemRegion covered_region);
 166 
 167 #ifndef PRODUCT
 168   // CAS statistics.
 169   size_t cas_tries() { return _cas_tries; }
 170   size_t cas_retries() { return _cas_retries; }
 171   size_t cas_by_another() { return _cas_by_another; }
 172 
 173   void reset_counters();
 174 #endif  // #ifndef PRODUCT
 175 
 176   void print_on_error(outputStream* st) const {
 177     st->print_cr("Marking Bits: (ParMarkBitMap*) " PTR_FORMAT, this);
 178     _beg_bits.print_on_error(st, " Begin Bits: ");
 179     _end_bits.print_on_error(st, " End Bits:   ");
 180   }
 181 
 182 #ifdef  ASSERT
 183   void verify_clear() const;
 184   inline void verify_bit(idx_t bit) const;
 185   inline void verify_addr(HeapWord* addr) const;
 186 #endif  // #ifdef ASSERT
 187 
 188 private:
 189   // Each bit in the bitmap represents one unit of 'object granularity.' Objects
 190   // are double-word aligned in 32-bit VMs, but not in 64-bit VMs, so the 32-bit
 191   // granularity is 2, 64-bit is 1.
 192   static inline size_t obj_granularity() { return size_t(MinObjAlignment); }
 193   static inline int obj_granularity_shift() { return LogMinObjAlignment; }
 194 
 195   HeapWord*       _region_start;
 196   size_t          _region_size;
 197   BitMap          _beg_bits;
 198   BitMap          _end_bits;
 199   PSVirtualSpace* _virtual_space;
 200 
 201 #ifndef PRODUCT
 202   size_t _cas_tries;
 203   size_t _cas_retries;
 204   size_t _cas_by_another;
 205 #endif  // #ifndef PRODUCT
 206 };
 207 
 208 inline ParMarkBitMap::ParMarkBitMap():
 209   _beg_bits(),
 210   _end_bits()
 211 {
 212   _region_start = 0;
 213   _virtual_space = 0;
 214 }
 215 
 216 inline ParMarkBitMap::ParMarkBitMap(MemRegion covered_region):
 217   _beg_bits(),
 218   _end_bits()
 219 {
 220   initialize(covered_region);
 221 }
 222 
 223 inline void ParMarkBitMap::clear_range(idx_t beg, idx_t end)
 224 {
 225   _beg_bits.clear_range(beg, end);
 226   _end_bits.clear_range(beg, end);
 227 }
 228 
 229 inline ParMarkBitMap::idx_t
 230 ParMarkBitMap::bits_required(size_t words)
 231 {
 232   // Need two bits (one begin bit, one end bit) for each unit of 'object
 233   // granularity' in the heap.
 234   return words_to_bits(words * 2);
 235 }
 236 
 237 inline ParMarkBitMap::idx_t
 238 ParMarkBitMap::bits_required(MemRegion covered_region)
 239 {
 240   return bits_required(covered_region.word_size());
 241 }
 242 
 243 inline ParMarkBitMap::idx_t
 244 ParMarkBitMap::words_required(MemRegion covered_region)
 245 {
 246   return bits_required(covered_region) / BitsPerWord;
 247 }
 248 
 249 inline HeapWord*
 250 ParMarkBitMap::region_start() const
 251 {
 252   return _region_start;
 253 }
 254 
 255 inline HeapWord*
 256 ParMarkBitMap::region_end() const
 257 {
 258   return region_start() + region_size();
 259 }
 260 
 261 inline size_t
 262 ParMarkBitMap::region_size() const
 263 {
 264   return _region_size;
 265 }
 266 
 267 inline size_t
 268 ParMarkBitMap::size() const


 333 ParMarkBitMap::obj_size(HeapWord* beg_addr, HeapWord* end_addr) const
 334 {
 335   DEBUG_ONLY(verify_addr(beg_addr);)
 336   DEBUG_ONLY(verify_addr(end_addr);)
 337   return pointer_delta(end_addr, beg_addr) + obj_granularity();
 338 }
 339 
 340 inline size_t ParMarkBitMap::obj_size(idx_t beg_bit) const
 341 {
 342   const idx_t end_bit = _end_bits.get_next_one_offset_inline(beg_bit, size());
 343   assert(is_marked(beg_bit), "obj not marked");
 344   assert(end_bit < size(), "end bit missing");
 345   return obj_size(beg_bit, end_bit);
 346 }
 347 
 348 inline size_t ParMarkBitMap::obj_size(HeapWord* addr) const
 349 {
 350   return obj_size(addr_to_bit(addr));
 351 }
 352 
 353 inline size_t ParMarkBitMap::obj_size(oop obj) const
 354 {
 355   return obj_size((HeapWord*)obj);
 356 }
 357 
 358 inline ParMarkBitMap::IterationStatus
 359 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
 360                        HeapWord* range_beg,
 361                        HeapWord* range_end) const
 362 {
 363   return iterate(live_closure, addr_to_bit(range_beg), addr_to_bit(range_end));
 364 }
 365 
 366 inline ParMarkBitMap::IterationStatus
 367 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
 368                        ParMarkBitMapClosure* dead_closure,
 369                        HeapWord* range_beg,
 370                        HeapWord* range_end,
 371                        HeapWord* dead_range_end) const
 372 {
 373   return iterate(live_closure, dead_closure,
 374                  addr_to_bit(range_beg), addr_to_bit(range_end),
 375                  addr_to_bit(dead_range_end));
 376 }
 377 


 418 }
 419 
 420 inline HeapWord*
 421 ParMarkBitMap::find_obj_end(HeapWord* beg, HeapWord* end) const
 422 {
 423   const idx_t beg_bit = addr_to_bit(beg);
 424   const idx_t end_bit = addr_to_bit(end);
 425   const idx_t search_end = BitMap::word_align_up(end_bit);
 426   const idx_t res_bit = MIN2(find_obj_end(beg_bit, search_end), end_bit);
 427   return bit_to_addr(res_bit);
 428 }
 429 
 430 #ifdef  ASSERT
 431 inline void ParMarkBitMap::verify_bit(idx_t bit) const {
 432   // Allow one past the last valid bit; useful for loop bounds.
 433   assert(bit <= _beg_bits.size(), "bit out of range");
 434 }
 435 
 436 inline void ParMarkBitMap::verify_addr(HeapWord* addr) const {
 437   // Allow one past the last valid address; useful for loop bounds.
 438   assert(addr >= region_start(), "addr too small");
 439   assert(addr <= region_start() + region_size(), "addr too big");


 440 }
 441 #endif  // #ifdef ASSERT
 442 
 443 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP


   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP
  27 
  28 #include "memory/memRegion.hpp"
  29 #include "oops/oop.hpp"
  30 #include "utilities/bitMap.hpp"
  31 

  32 class ParMarkBitMapClosure;
  33 class PSVirtualSpace;
  34 
  35 class ParMarkBitMap: public CHeapObj<mtGC>
  36 {
  37 public:
  38   typedef BitMap::idx_t idx_t;
  39 
  40   // Values returned by the iterate() methods.
  41   enum IterationStatus { incomplete, complete, full, would_overflow };
  42 
  43   inline ParMarkBitMap();

  44   bool initialize(MemRegion covered_region);
  45 
  46   // Atomically mark an object as live.
  47   bool mark_obj(HeapWord* addr, size_t size);
  48   inline bool mark_obj(oop obj, int size);

  49 
  50   // Return whether the specified begin or end bit is set.
  51   inline bool is_obj_beg(idx_t bit) const;
  52   inline bool is_obj_end(idx_t bit) const;
  53 
  54   // Traditional interface for testing whether an object is marked or not (these
  55   // test only the begin bits).
  56   inline bool is_marked(idx_t bit)      const;
  57   inline bool is_marked(HeapWord* addr) const;
  58   inline bool is_marked(oop obj)        const;
  59 
  60   inline bool is_unmarked(idx_t bit)      const;
  61   inline bool is_unmarked(HeapWord* addr) const;
  62   inline bool is_unmarked(oop obj)        const;
  63 
  64   // Convert sizes from bits to HeapWords and back.  An object that is n bits
  65   // long will be bits_to_words(n) words long.  An object that is m words long
  66   // will take up words_to_bits(m) bits in the bitmap.
  67   inline static size_t bits_to_words(idx_t bits);
  68   inline static idx_t  words_to_bits(size_t words);
  69 
  70   // Return the size in words of an object given a begin bit and an end bit, or
  71   // the equivalent beg_addr and end_addr.
  72   inline size_t obj_size(idx_t beg_bit, idx_t end_bit) const;
  73   inline size_t obj_size(HeapWord* beg_addr, HeapWord* end_addr) const;
  74 
  75   // Return the size in words of the object (a search is done for the end bit).
  76   inline size_t obj_size(idx_t beg_bit)  const;
  77   inline size_t obj_size(HeapWord* addr) const;





  78 
  79   // Apply live_closure to each live object that lies completely within the
  80   // range [live_range_beg, live_range_end).  This is used to iterate over the
  81   // compacted region of the heap.  Return values:
  82   //
  83   // incomplete         The iteration is not complete.  The last object that
  84   //                    begins in the range does not end in the range;
  85   //                    closure->source() is set to the start of that object.
  86   //
  87   // complete           The iteration is complete.  All objects in the range
  88   //                    were processed and the closure is not full;
  89   //                    closure->source() is set one past the end of the range.
  90   //
  91   // full               The closure is full; closure->source() is set to one
  92   //                    past the end of the last object processed.
  93   //
  94   // would_overflow     The next object in the range would overflow the closure;
  95   //                    closure->source() is set to the start of that object.
  96   IterationStatus iterate(ParMarkBitMapClosure* live_closure,
  97                           idx_t range_beg, idx_t range_end) const;


 100                                  HeapWord* range_end) const;
 101 
 102   // Apply live closure as above and additionally apply dead_closure to all dead
 103   // space in the range [range_beg, dead_range_end).  Note that dead_range_end
 104   // must be >= range_end.  This is used to iterate over the dense prefix.
 105   //
 106   // This method assumes that if the first bit in the range (range_beg) is not
 107   // marked, then dead space begins at that point and the dead_closure is
 108   // applied.  Thus callers must ensure that range_beg is not in the middle of a
 109   // live object.
 110   IterationStatus iterate(ParMarkBitMapClosure* live_closure,
 111                           ParMarkBitMapClosure* dead_closure,
 112                           idx_t range_beg, idx_t range_end,
 113                           idx_t dead_range_end) const;
 114   inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
 115                                  ParMarkBitMapClosure* dead_closure,
 116                                  HeapWord* range_beg,
 117                                  HeapWord* range_end,
 118                                  HeapWord* dead_range_end) const;
 119 
 120   // Return the number of live words in the range [beg_addr, end_obj) due to
 121   // objects that start in the range.  If a live object extends onto the range,
 122   // the caller must detect and account for any live words due to that object.
 123   // If a live object extends beyond the end of the range, only the words within
 124   // the range are included in the result. The end of the range must be a live object,
 125   // which is the case when updating pointers.  This allows a branch to be removed



 126   // from inside the loop.
 127   size_t live_words_in_range(HeapWord* beg_addr, oop end_obj) const;
 128 
 129   inline HeapWord* region_start() const;
 130   inline HeapWord* region_end() const;
 131   inline size_t    region_size() const;
 132   inline size_t    size() const;
 133 
 134   // Convert a heap address to/from a bit index.
 135   inline idx_t     addr_to_bit(HeapWord* addr) const;
 136   inline HeapWord* bit_to_addr(idx_t bit) const;
 137 
 138   // Return the bit index of the first marked object that begins (or ends,
 139   // respectively) in the range [beg, end).  If no object is found, return end.
 140   inline idx_t find_obj_beg(idx_t beg, idx_t end) const;
 141   inline idx_t find_obj_end(idx_t beg, idx_t end) const;
 142 
 143   inline HeapWord* find_obj_beg(HeapWord* beg, HeapWord* end) const;
 144   inline HeapWord* find_obj_end(HeapWord* beg, HeapWord* end) const;
 145 
 146   // Clear a range of bits or the entire bitmap (both begin and end bits are
 147   // cleared).
 148   inline void clear_range(idx_t beg, idx_t end);

 149 
 150   // Return the number of bits required to represent the specified number of
 151   // HeapWords, or the specified region.
 152   static inline idx_t bits_required(size_t words);
 153   static inline idx_t bits_required(MemRegion covered_region);
 154   //static inline idx_t words_required(MemRegion covered_region);









 155 
 156   void print_on_error(outputStream* st) const {
 157     st->print_cr("Marking Bits: (ParMarkBitMap*) " PTR_FORMAT, this);
 158     _beg_bits.print_on_error(st, " Begin Bits: ");
 159     _end_bits.print_on_error(st, " End Bits:   ");
 160   }
 161 
 162 #ifdef  ASSERT
 163   void verify_clear() const;
 164   inline void verify_bit(idx_t bit) const;
 165   inline void verify_addr(HeapWord* addr) const;
 166 #endif  // #ifdef ASSERT
 167 
 168 private:
 169   // Each bit in the bitmap represents one unit of 'object granularity.' Objects
 170   // are double-word aligned in 32-bit VMs, but not in 64-bit VMs, so the 32-bit
 171   // granularity is 2, 64-bit is 1.
 172   static inline size_t obj_granularity() { return size_t(MinObjAlignment); }
 173   static inline int obj_granularity_shift() { return LogMinObjAlignment; }
 174 
 175   HeapWord*       _region_start;
 176   size_t          _region_size;
 177   BitMap          _beg_bits;
 178   BitMap          _end_bits;
 179   PSVirtualSpace* _virtual_space;






 180 };
 181 
 182 inline ParMarkBitMap::ParMarkBitMap():
 183   _beg_bits(), _end_bits(), _region_start(NULL), _region_size(0), _virtual_space(NULL)
 184 { }











 185 
 186 inline void ParMarkBitMap::clear_range(idx_t beg, idx_t end)
 187 {
 188   _beg_bits.clear_range(beg, end);
 189   _end_bits.clear_range(beg, end);
 190 }
 191 
 192 inline ParMarkBitMap::idx_t
 193 ParMarkBitMap::bits_required(size_t words)
 194 {
 195   // Need two bits (one begin bit, one end bit) for each unit of 'object
 196   // granularity' in the heap.
 197   return words_to_bits(words * 2);
 198 }
 199 
 200 inline ParMarkBitMap::idx_t
 201 ParMarkBitMap::bits_required(MemRegion covered_region)
 202 {
 203   return bits_required(covered_region.word_size());
 204 }
 205 






 206 inline HeapWord*
 207 ParMarkBitMap::region_start() const
 208 {
 209   return _region_start;
 210 }
 211 
 212 inline HeapWord*
 213 ParMarkBitMap::region_end() const
 214 {
 215   return region_start() + region_size();
 216 }
 217 
 218 inline size_t
 219 ParMarkBitMap::region_size() const
 220 {
 221   return _region_size;
 222 }
 223 
 224 inline size_t
 225 ParMarkBitMap::size() const


 290 ParMarkBitMap::obj_size(HeapWord* beg_addr, HeapWord* end_addr) const
 291 {
 292   DEBUG_ONLY(verify_addr(beg_addr);)
 293   DEBUG_ONLY(verify_addr(end_addr);)
 294   return pointer_delta(end_addr, beg_addr) + obj_granularity();
 295 }
 296 
 297 inline size_t ParMarkBitMap::obj_size(idx_t beg_bit) const
 298 {
 299   const idx_t end_bit = _end_bits.get_next_one_offset_inline(beg_bit, size());
 300   assert(is_marked(beg_bit), "obj not marked");
 301   assert(end_bit < size(), "end bit missing");
 302   return obj_size(beg_bit, end_bit);
 303 }
 304 
 305 inline size_t ParMarkBitMap::obj_size(HeapWord* addr) const
 306 {
 307   return obj_size(addr_to_bit(addr));
 308 }
 309 





 310 inline ParMarkBitMap::IterationStatus
 311 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
 312                        HeapWord* range_beg,
 313                        HeapWord* range_end) const
 314 {
 315   return iterate(live_closure, addr_to_bit(range_beg), addr_to_bit(range_end));
 316 }
 317 
 318 inline ParMarkBitMap::IterationStatus
 319 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
 320                        ParMarkBitMapClosure* dead_closure,
 321                        HeapWord* range_beg,
 322                        HeapWord* range_end,
 323                        HeapWord* dead_range_end) const
 324 {
 325   return iterate(live_closure, dead_closure,
 326                  addr_to_bit(range_beg), addr_to_bit(range_end),
 327                  addr_to_bit(dead_range_end));
 328 }
 329 


 370 }
 371 
 372 inline HeapWord*
 373 ParMarkBitMap::find_obj_end(HeapWord* beg, HeapWord* end) const
 374 {
 375   const idx_t beg_bit = addr_to_bit(beg);
 376   const idx_t end_bit = addr_to_bit(end);
 377   const idx_t search_end = BitMap::word_align_up(end_bit);
 378   const idx_t res_bit = MIN2(find_obj_end(beg_bit, search_end), end_bit);
 379   return bit_to_addr(res_bit);
 380 }
 381 
 382 #ifdef  ASSERT
 383 inline void ParMarkBitMap::verify_bit(idx_t bit) const {
 384   // Allow one past the last valid bit; useful for loop bounds.
 385   assert(bit <= _beg_bits.size(), "bit out of range");
 386 }
 387 
 388 inline void ParMarkBitMap::verify_addr(HeapWord* addr) const {
 389   // Allow one past the last valid address; useful for loop bounds.
 390   assert(addr >= region_start(),
 391       err_msg("addr too small, addr: " PTR_FORMAT " region start: " PTR_FORMAT, addr, region_start()));
 392   assert(addr <= region_end(),
 393       err_msg("addr too big, addr: " PTR_FORMAT " region end: " PTR_FORMAT, addr, region_end()));
 394 }
 395 #endif  // #ifdef ASSERT
 396 
 397 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP
src/share/vm/gc_implementation/parallelScavenge/parMarkBitMap.hpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File