1 /* 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/symbolTable.hpp" 27 #include "classfile/systemDictionary.hpp" 28 #include "code/codeCache.hpp" 29 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp" 30 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp" 31 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp" 32 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp" 33 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp" 34 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp" 35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp" 36 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp" 37 #include "gc_implementation/parNew/parNewGeneration.hpp" 38 #include "gc_implementation/shared/collectorCounters.hpp" 39 #include "gc_implementation/shared/gcTimer.hpp" 40 #include "gc_implementation/shared/gcTrace.hpp" 41 #include "gc_implementation/shared/gcTraceTime.hpp" 42 #include "gc_implementation/shared/isGCActiveMark.hpp" 43 #include "gc_interface/collectedHeap.inline.hpp" 44 #include "memory/allocation.hpp" 45 #include "memory/cardTableRS.hpp" 46 #include "memory/collectorPolicy.hpp" 47 #include "memory/gcLocker.inline.hpp" 48 #include "memory/genCollectedHeap.hpp" 49 #include "memory/genMarkSweep.hpp" 50 #include "memory/genOopClosures.inline.hpp" 51 #include "memory/iterator.hpp" 52 #include "memory/referencePolicy.hpp" 53 #include "memory/resourceArea.hpp" 54 #include "oops/oop.inline.hpp" 55 #include "prims/jvmtiExport.hpp" 56 #include "runtime/globals_extension.hpp" 57 #include "runtime/handles.inline.hpp" 58 #include "runtime/java.hpp" 59 #include "runtime/vmThread.hpp" 60 #include "services/memoryService.hpp" 61 #include "services/runtimeService.hpp" 62 63 // statics 64 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL; 65 bool CMSCollector::_full_gc_requested = false; 66 67 ////////////////////////////////////////////////////////////////// 68 // In support of CMS/VM thread synchronization 69 ////////////////////////////////////////////////////////////////// 70 // We split use of the CGC_lock into 2 "levels". 71 // The low-level locking is of the usual CGC_lock monitor. We introduce 72 // a higher level "token" (hereafter "CMS token") built on top of the 73 // low level monitor (hereafter "CGC lock"). 74 // The token-passing protocol gives priority to the VM thread. The 75 // CMS-lock doesn't provide any fairness guarantees, but clients 76 // should ensure that it is only held for very short, bounded 77 // durations. 78 // 79 // When either of the CMS thread or the VM thread is involved in 80 // collection operations during which it does not want the other 81 // thread to interfere, it obtains the CMS token. 82 // 83 // If either thread tries to get the token while the other has 84 // it, that thread waits. However, if the VM thread and CMS thread 85 // both want the token, then the VM thread gets priority while the 86 // CMS thread waits. This ensures, for instance, that the "concurrent" 87 // phases of the CMS thread's work do not block out the VM thread 88 // for long periods of time as the CMS thread continues to hog 89 // the token. (See bug 4616232). 90 // 91 // The baton-passing functions are, however, controlled by the 92 // flags _foregroundGCShouldWait and _foregroundGCIsActive, 93 // and here the low-level CMS lock, not the high level token, 94 // ensures mutual exclusion. 95 // 96 // Two important conditions that we have to satisfy: 97 // 1. if a thread does a low-level wait on the CMS lock, then it 98 // relinquishes the CMS token if it were holding that token 99 // when it acquired the low-level CMS lock. 100 // 2. any low-level notifications on the low-level lock 101 // should only be sent when a thread has relinquished the token. 102 // 103 // In the absence of either property, we'd have potential deadlock. 104 // 105 // We protect each of the CMS (concurrent and sequential) phases 106 // with the CMS _token_, not the CMS _lock_. 107 // 108 // The only code protected by CMS lock is the token acquisition code 109 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the 110 // baton-passing code. 111 // 112 // Unfortunately, i couldn't come up with a good abstraction to factor and 113 // hide the naked CGC_lock manipulation in the baton-passing code 114 // further below. That's something we should try to do. Also, the proof 115 // of correctness of this 2-level locking scheme is far from obvious, 116 // and potentially quite slippery. We have an uneasy supsicion, for instance, 117 // that there may be a theoretical possibility of delay/starvation in the 118 // low-level lock/wait/notify scheme used for the baton-passing because of 119 // potential intereference with the priority scheme embodied in the 120 // CMS-token-passing protocol. See related comments at a CGC_lock->wait() 121 // invocation further below and marked with "XXX 20011219YSR". 122 // Indeed, as we note elsewhere, this may become yet more slippery 123 // in the presence of multiple CMS and/or multiple VM threads. XXX 124 125 class CMSTokenSync: public StackObj { 126 private: 127 bool _is_cms_thread; 128 public: 129 CMSTokenSync(bool is_cms_thread): 130 _is_cms_thread(is_cms_thread) { 131 assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(), 132 "Incorrect argument to constructor"); 133 ConcurrentMarkSweepThread::synchronize(_is_cms_thread); 134 } 135 136 ~CMSTokenSync() { 137 assert(_is_cms_thread ? 138 ConcurrentMarkSweepThread::cms_thread_has_cms_token() : 139 ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 140 "Incorrect state"); 141 ConcurrentMarkSweepThread::desynchronize(_is_cms_thread); 142 } 143 }; 144 145 // Convenience class that does a CMSTokenSync, and then acquires 146 // upto three locks. 147 class CMSTokenSyncWithLocks: public CMSTokenSync { 148 private: 149 // Note: locks are acquired in textual declaration order 150 // and released in the opposite order 151 MutexLockerEx _locker1, _locker2, _locker3; 152 public: 153 CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1, 154 Mutex* mutex2 = NULL, Mutex* mutex3 = NULL): 155 CMSTokenSync(is_cms_thread), 156 _locker1(mutex1, Mutex::_no_safepoint_check_flag), 157 _locker2(mutex2, Mutex::_no_safepoint_check_flag), 158 _locker3(mutex3, Mutex::_no_safepoint_check_flag) 159 { } 160 }; 161 162 163 // Wrapper class to temporarily disable icms during a foreground cms collection. 164 class ICMSDisabler: public StackObj { 165 public: 166 // The ctor disables icms and wakes up the thread so it notices the change; 167 // the dtor re-enables icms. Note that the CMSCollector methods will check 168 // CMSIncrementalMode. 169 ICMSDisabler() { CMSCollector::disable_icms(); CMSCollector::start_icms(); } 170 ~ICMSDisabler() { CMSCollector::enable_icms(); } 171 }; 172 173 ////////////////////////////////////////////////////////////////// 174 // Concurrent Mark-Sweep Generation ///////////////////////////// 175 ////////////////////////////////////////////////////////////////// 176 177 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;) 178 179 // This struct contains per-thread things necessary to support parallel 180 // young-gen collection. 181 class CMSParGCThreadState: public CHeapObj<mtGC> { 182 public: 183 CFLS_LAB lab; 184 PromotionInfo promo; 185 186 // Constructor. 187 CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) { 188 promo.setSpace(cfls); 189 } 190 }; 191 192 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration( 193 ReservedSpace rs, size_t initial_byte_size, int level, 194 CardTableRS* ct, bool use_adaptive_freelists, 195 FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) : 196 CardGeneration(rs, initial_byte_size, level, ct), 197 _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))), 198 _debug_collection_type(Concurrent_collection_type) 199 { 200 HeapWord* bottom = (HeapWord*) _virtual_space.low(); 201 HeapWord* end = (HeapWord*) _virtual_space.high(); 202 203 _direct_allocated_words = 0; 204 NOT_PRODUCT( 205 _numObjectsPromoted = 0; 206 _numWordsPromoted = 0; 207 _numObjectsAllocated = 0; 208 _numWordsAllocated = 0; 209 ) 210 211 _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end), 212 use_adaptive_freelists, 213 dictionaryChoice); 214 NOT_PRODUCT(debug_cms_space = _cmsSpace;) 215 if (_cmsSpace == NULL) { 216 vm_exit_during_initialization( 217 "CompactibleFreeListSpace allocation failure"); 218 } 219 _cmsSpace->_gen = this; 220 221 _gc_stats = new CMSGCStats(); 222 223 // Verify the assumption that FreeChunk::_prev and OopDesc::_klass 224 // offsets match. The ability to tell free chunks from objects 225 // depends on this property. 226 debug_only( 227 FreeChunk* junk = NULL; 228 assert(UseCompressedOops || 229 junk->prev_addr() == (void*)(oop(junk)->klass_addr()), 230 "Offset of FreeChunk::_prev within FreeChunk must match" 231 " that of OopDesc::_klass within OopDesc"); 232 ) 233 if (CollectedHeap::use_parallel_gc_threads()) { 234 typedef CMSParGCThreadState* CMSParGCThreadStatePtr; 235 _par_gc_thread_states = 236 NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC); 237 if (_par_gc_thread_states == NULL) { 238 vm_exit_during_initialization("Could not allocate par gc structs"); 239 } 240 for (uint i = 0; i < ParallelGCThreads; i++) { 241 _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace()); 242 if (_par_gc_thread_states[i] == NULL) { 243 vm_exit_during_initialization("Could not allocate par gc structs"); 244 } 245 } 246 } else { 247 _par_gc_thread_states = NULL; 248 } 249 _incremental_collection_failed = false; 250 // The "dilatation_factor" is the expansion that can occur on 251 // account of the fact that the minimum object size in the CMS 252 // generation may be larger than that in, say, a contiguous young 253 // generation. 254 // Ideally, in the calculation below, we'd compute the dilatation 255 // factor as: MinChunkSize/(promoting_gen's min object size) 256 // Since we do not have such a general query interface for the 257 // promoting generation, we'll instead just use the mimimum 258 // object size (which today is a header's worth of space); 259 // note that all arithmetic is in units of HeapWords. 260 assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking"); 261 assert(_dilatation_factor >= 1.0, "from previous assert"); 262 } 263 264 265 // The field "_initiating_occupancy" represents the occupancy percentage 266 // at which we trigger a new collection cycle. Unless explicitly specified 267 // via CMSInitiating[Perm]OccupancyFraction (argument "io" below), it 268 // is calculated by: 269 // 270 // Let "f" be MinHeapFreeRatio in 271 // 272 // _intiating_occupancy = 100-f + 273 // f * (CMSTrigger[Perm]Ratio/100) 274 // where CMSTrigger[Perm]Ratio is the argument "tr" below. 275 // 276 // That is, if we assume the heap is at its desired maximum occupancy at the 277 // end of a collection, we let CMSTrigger[Perm]Ratio of the (purported) free 278 // space be allocated before initiating a new collection cycle. 279 // 280 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, intx tr) { 281 assert(io <= 100 && tr >= 0 && tr <= 100, "Check the arguments"); 282 if (io >= 0) { 283 _initiating_occupancy = (double)io / 100.0; 284 } else { 285 _initiating_occupancy = ((100 - MinHeapFreeRatio) + 286 (double)(tr * MinHeapFreeRatio) / 100.0) 287 / 100.0; 288 } 289 } 290 291 void ConcurrentMarkSweepGeneration::ref_processor_init() { 292 assert(collector() != NULL, "no collector"); 293 collector()->ref_processor_init(); 294 } 295 296 void CMSCollector::ref_processor_init() { 297 if (_ref_processor == NULL) { 298 // Allocate and initialize a reference processor 299 _ref_processor = 300 new ReferenceProcessor(_span, // span 301 (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing 302 (int) ParallelGCThreads, // mt processing degree 303 _cmsGen->refs_discovery_is_mt(), // mt discovery 304 (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree 305 _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic 306 &_is_alive_closure, // closure for liveness info 307 false); // next field updates do not need write barrier 308 // Initialize the _ref_processor field of CMSGen 309 _cmsGen->set_ref_processor(_ref_processor); 310 311 // Allocate a dummy ref processor for perm gen. 312 ReferenceProcessor* rp2 = new ReferenceProcessor(); 313 if (rp2 == NULL) { 314 vm_exit_during_initialization("Could not allocate ReferenceProcessor object"); 315 } 316 _permGen->set_ref_processor(rp2); 317 } 318 } 319 320 CMSAdaptiveSizePolicy* CMSCollector::size_policy() { 321 GenCollectedHeap* gch = GenCollectedHeap::heap(); 322 assert(gch->kind() == CollectedHeap::GenCollectedHeap, 323 "Wrong type of heap"); 324 CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*) 325 gch->gen_policy()->size_policy(); 326 assert(sp->is_gc_cms_adaptive_size_policy(), 327 "Wrong type of size policy"); 328 return sp; 329 } 330 331 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() { 332 CMSGCAdaptivePolicyCounters* results = 333 (CMSGCAdaptivePolicyCounters*) collector_policy()->counters(); 334 assert( 335 results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind, 336 "Wrong gc policy counter kind"); 337 return results; 338 } 339 340 341 void ConcurrentMarkSweepGeneration::initialize_performance_counters() { 342 343 const char* gen_name = "old"; 344 345 // Generation Counters - generation 1, 1 subspace 346 _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space); 347 348 _space_counters = new GSpaceCounters(gen_name, 0, 349 _virtual_space.reserved_size(), 350 this, _gen_counters); 351 } 352 353 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha): 354 _cms_gen(cms_gen) 355 { 356 assert(alpha <= 100, "bad value"); 357 _saved_alpha = alpha; 358 359 // Initialize the alphas to the bootstrap value of 100. 360 _gc0_alpha = _cms_alpha = 100; 361 362 _cms_begin_time.update(); 363 _cms_end_time.update(); 364 365 _gc0_duration = 0.0; 366 _gc0_period = 0.0; 367 _gc0_promoted = 0; 368 369 _cms_duration = 0.0; 370 _cms_period = 0.0; 371 _cms_allocated = 0; 372 373 _cms_used_at_gc0_begin = 0; 374 _cms_used_at_gc0_end = 0; 375 _allow_duty_cycle_reduction = false; 376 _valid_bits = 0; 377 _icms_duty_cycle = CMSIncrementalDutyCycle; 378 } 379 380 double CMSStats::cms_free_adjustment_factor(size_t free) const { 381 // TBD: CR 6909490 382 return 1.0; 383 } 384 385 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) { 386 } 387 388 // If promotion failure handling is on use 389 // the padded average size of the promotion for each 390 // young generation collection. 391 double CMSStats::time_until_cms_gen_full() const { 392 size_t cms_free = _cms_gen->cmsSpace()->free(); 393 GenCollectedHeap* gch = GenCollectedHeap::heap(); 394 size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(), 395 (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average()); 396 if (cms_free > expected_promotion) { 397 // Start a cms collection if there isn't enough space to promote 398 // for the next minor collection. Use the padded average as 399 // a safety factor. 400 cms_free -= expected_promotion; 401 402 // Adjust by the safety factor. 403 double cms_free_dbl = (double)cms_free; 404 double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0; 405 // Apply a further correction factor which tries to adjust 406 // for recent occurance of concurrent mode failures. 407 cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free); 408 cms_free_dbl = cms_free_dbl * cms_adjustment; 409 410 if (PrintGCDetails && Verbose) { 411 gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free " 412 SIZE_FORMAT " expected_promotion " SIZE_FORMAT, 413 cms_free, expected_promotion); 414 gclog_or_tty->print_cr(" cms_free_dbl %f cms_consumption_rate %f", 415 cms_free_dbl, cms_consumption_rate() + 1.0); 416 } 417 // Add 1 in case the consumption rate goes to zero. 418 return cms_free_dbl / (cms_consumption_rate() + 1.0); 419 } 420 return 0.0; 421 } 422 423 // Compare the duration of the cms collection to the 424 // time remaining before the cms generation is empty. 425 // Note that the time from the start of the cms collection 426 // to the start of the cms sweep (less than the total 427 // duration of the cms collection) can be used. This 428 // has been tried and some applications experienced 429 // promotion failures early in execution. This was 430 // possibly because the averages were not accurate 431 // enough at the beginning. 432 double CMSStats::time_until_cms_start() const { 433 // We add "gc0_period" to the "work" calculation 434 // below because this query is done (mostly) at the 435 // end of a scavenge, so we need to conservatively 436 // account for that much possible delay 437 // in the query so as to avoid concurrent mode failures 438 // due to starting the collection just a wee bit too 439 // late. 440 double work = cms_duration() + gc0_period(); 441 double deadline = time_until_cms_gen_full(); 442 // If a concurrent mode failure occurred recently, we want to be 443 // more conservative and halve our expected time_until_cms_gen_full() 444 if (work > deadline) { 445 if (Verbose && PrintGCDetails) { 446 gclog_or_tty->print( 447 " CMSCollector: collect because of anticipated promotion " 448 "before full %3.7f + %3.7f > %3.7f ", cms_duration(), 449 gc0_period(), time_until_cms_gen_full()); 450 } 451 return 0.0; 452 } 453 return work - deadline; 454 } 455 456 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the 457 // amount of change to prevent wild oscillation. 458 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle, 459 unsigned int new_duty_cycle) { 460 assert(old_duty_cycle <= 100, "bad input value"); 461 assert(new_duty_cycle <= 100, "bad input value"); 462 463 // Note: use subtraction with caution since it may underflow (values are 464 // unsigned). Addition is safe since we're in the range 0-100. 465 unsigned int damped_duty_cycle = new_duty_cycle; 466 if (new_duty_cycle < old_duty_cycle) { 467 const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U); 468 if (new_duty_cycle + largest_delta < old_duty_cycle) { 469 damped_duty_cycle = old_duty_cycle - largest_delta; 470 } 471 } else if (new_duty_cycle > old_duty_cycle) { 472 const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U); 473 if (new_duty_cycle > old_duty_cycle + largest_delta) { 474 damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U); 475 } 476 } 477 assert(damped_duty_cycle <= 100, "invalid duty cycle computed"); 478 479 if (CMSTraceIncrementalPacing) { 480 gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ", 481 old_duty_cycle, new_duty_cycle, damped_duty_cycle); 482 } 483 return damped_duty_cycle; 484 } 485 486 unsigned int CMSStats::icms_update_duty_cycle_impl() { 487 assert(CMSIncrementalPacing && valid(), 488 "should be handled in icms_update_duty_cycle()"); 489 490 double cms_time_so_far = cms_timer().seconds(); 491 double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M; 492 double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far); 493 494 // Avoid division by 0. 495 double time_until_full = MAX2(time_until_cms_gen_full(), 0.01); 496 double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full; 497 498 unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U); 499 if (new_duty_cycle > _icms_duty_cycle) { 500 // Avoid very small duty cycles (1 or 2); 0 is allowed. 501 if (new_duty_cycle > 2) { 502 _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, 503 new_duty_cycle); 504 } 505 } else if (_allow_duty_cycle_reduction) { 506 // The duty cycle is reduced only once per cms cycle (see record_cms_end()). 507 new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle); 508 // Respect the minimum duty cycle. 509 unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin; 510 _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle); 511 } 512 513 if (PrintGCDetails || CMSTraceIncrementalPacing) { 514 gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle); 515 } 516 517 _allow_duty_cycle_reduction = false; 518 return _icms_duty_cycle; 519 } 520 521 #ifndef PRODUCT 522 void CMSStats::print_on(outputStream *st) const { 523 st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha); 524 st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT, 525 gc0_duration(), gc0_period(), gc0_promoted()); 526 st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT, 527 cms_duration(), cms_duration_per_mb(), 528 cms_period(), cms_allocated()); 529 st->print(",cms_since_beg=%g,cms_since_end=%g", 530 cms_time_since_begin(), cms_time_since_end()); 531 st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT, 532 _cms_used_at_gc0_begin, _cms_used_at_gc0_end); 533 if (CMSIncrementalMode) { 534 st->print(",dc=%d", icms_duty_cycle()); 535 } 536 537 if (valid()) { 538 st->print(",promo_rate=%g,cms_alloc_rate=%g", 539 promotion_rate(), cms_allocation_rate()); 540 st->print(",cms_consumption_rate=%g,time_until_full=%g", 541 cms_consumption_rate(), time_until_cms_gen_full()); 542 } 543 st->print(" "); 544 } 545 #endif // #ifndef PRODUCT 546 547 CMSCollector::CollectorState CMSCollector::_collectorState = 548 CMSCollector::Idling; 549 bool CMSCollector::_foregroundGCIsActive = false; 550 bool CMSCollector::_foregroundGCShouldWait = false; 551 552 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen, 553 ConcurrentMarkSweepGeneration* permGen, 554 CardTableRS* ct, 555 ConcurrentMarkSweepPolicy* cp): 556 _cmsGen(cmsGen), 557 _permGen(permGen), 558 _ct(ct), 559 _ref_processor(NULL), // will be set later 560 _conc_workers(NULL), // may be set later 561 _abort_preclean(false), 562 _start_sampling(false), 563 _between_prologue_and_epilogue(false), 564 _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"), 565 _perm_gen_verify_bit_map(0, -1 /* no mutex */, "No_lock"), 566 _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize), 567 -1 /* lock-free */, "No_lock" /* dummy */), 568 _modUnionClosure(&_modUnionTable), 569 _modUnionClosurePar(&_modUnionTable), 570 // Adjust my span to cover old (cms) gen and perm gen 571 _span(cmsGen->reserved()._union(permGen->reserved())), 572 // Construct the is_alive_closure with _span & markBitMap 573 _is_alive_closure(_span, &_markBitMap), 574 _restart_addr(NULL), 575 _overflow_list(NULL), 576 _stats(cmsGen), 577 _eden_chunk_array(NULL), // may be set in ctor body 578 _eden_chunk_capacity(0), // -- ditto -- 579 _eden_chunk_index(0), // -- ditto -- 580 _survivor_plab_array(NULL), // -- ditto -- 581 _survivor_chunk_array(NULL), // -- ditto -- 582 _survivor_chunk_capacity(0), // -- ditto -- 583 _survivor_chunk_index(0), // -- ditto -- 584 _ser_pmc_preclean_ovflw(0), 585 _ser_kac_preclean_ovflw(0), 586 _ser_pmc_remark_ovflw(0), 587 _par_pmc_remark_ovflw(0), 588 _ser_kac_ovflw(0), 589 _par_kac_ovflw(0), 590 #ifndef PRODUCT 591 _num_par_pushes(0), 592 #endif 593 _collection_count_start(0), 594 _verifying(false), 595 _icms_start_limit(NULL), 596 _icms_stop_limit(NULL), 597 _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"), 598 _completed_initialization(false), 599 _collector_policy(cp), 600 _should_unload_classes(false), 601 _concurrent_cycles_since_last_unload(0), 602 _roots_scanning_options(0), 603 _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding), 604 _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding), 605 _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()), 606 _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()), 607 _cms_start_registered(false) 608 { 609 if (ExplicitGCInvokesConcurrentAndUnloadsClasses) { 610 ExplicitGCInvokesConcurrent = true; 611 } 612 // Now expand the span and allocate the collection support structures 613 // (MUT, marking bit map etc.) to cover both generations subject to 614 // collection. 615 616 // First check that _permGen is adjacent to _cmsGen and above it. 617 assert( _cmsGen->reserved().word_size() > 0 618 && _permGen->reserved().word_size() > 0, 619 "generations should not be of zero size"); 620 assert(_cmsGen->reserved().intersection(_permGen->reserved()).is_empty(), 621 "_cmsGen and _permGen should not overlap"); 622 assert(_cmsGen->reserved().end() == _permGen->reserved().start(), 623 "_cmsGen->end() different from _permGen->start()"); 624 625 // For use by dirty card to oop closures. 626 _cmsGen->cmsSpace()->set_collector(this); 627 _permGen->cmsSpace()->set_collector(this); 628 629 // Allocate MUT and marking bit map 630 { 631 MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag); 632 if (!_markBitMap.allocate(_span)) { 633 warning("Failed to allocate CMS Bit Map"); 634 return; 635 } 636 assert(_markBitMap.covers(_span), "_markBitMap inconsistency?"); 637 } 638 { 639 _modUnionTable.allocate(_span); 640 assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?"); 641 } 642 643 if (!_markStack.allocate(MarkStackSize)) { 644 warning("Failed to allocate CMS Marking Stack"); 645 return; 646 } 647 if (!_revisitStack.allocate(CMSRevisitStackSize)) { 648 warning("Failed to allocate CMS Revisit Stack"); 649 return; 650 } 651 652 // Support for multi-threaded concurrent phases 653 if (CMSConcurrentMTEnabled) { 654 if (FLAG_IS_DEFAULT(ConcGCThreads)) { 655 // just for now 656 FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4); 657 } 658 if (ConcGCThreads > 1) { 659 _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads", 660 ConcGCThreads, true); 661 if (_conc_workers == NULL) { 662 warning("GC/CMS: _conc_workers allocation failure: " 663 "forcing -CMSConcurrentMTEnabled"); 664 CMSConcurrentMTEnabled = false; 665 } else { 666 _conc_workers->initialize_workers(); 667 } 668 } else { 669 CMSConcurrentMTEnabled = false; 670 } 671 } 672 if (!CMSConcurrentMTEnabled) { 673 ConcGCThreads = 0; 674 } else { 675 // Turn off CMSCleanOnEnter optimization temporarily for 676 // the MT case where it's not fixed yet; see 6178663. 677 CMSCleanOnEnter = false; 678 } 679 assert((_conc_workers != NULL) == (ConcGCThreads > 1), 680 "Inconsistency"); 681 682 // Parallel task queues; these are shared for the 683 // concurrent and stop-world phases of CMS, but 684 // are not shared with parallel scavenge (ParNew). 685 { 686 uint i; 687 uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads); 688 689 if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled 690 || ParallelRefProcEnabled) 691 && num_queues > 0) { 692 _task_queues = new OopTaskQueueSet(num_queues); 693 if (_task_queues == NULL) { 694 warning("task_queues allocation failure."); 695 return; 696 } 697 _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC); 698 if (_hash_seed == NULL) { 699 warning("_hash_seed array allocation failure"); 700 return; 701 } 702 703 typedef Padded<OopTaskQueue> PaddedOopTaskQueue; 704 for (i = 0; i < num_queues; i++) { 705 PaddedOopTaskQueue *q = new PaddedOopTaskQueue(); 706 if (q == NULL) { 707 warning("work_queue allocation failure."); 708 return; 709 } 710 _task_queues->register_queue(i, q); 711 } 712 for (i = 0; i < num_queues; i++) { 713 _task_queues->queue(i)->initialize(); 714 _hash_seed[i] = 17; // copied from ParNew 715 } 716 } 717 } 718 719 _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio); 720 _permGen->init_initiating_occupancy(CMSInitiatingPermOccupancyFraction, CMSTriggerPermRatio); 721 722 // Clip CMSBootstrapOccupancy between 0 and 100. 723 _bootstrap_occupancy = ((double)MIN2((uintx)100, MAX2((uintx)0, CMSBootstrapOccupancy))) 724 /(double)100; 725 726 _full_gcs_since_conc_gc = 0; 727 728 // Now tell CMS generations the identity of their collector 729 ConcurrentMarkSweepGeneration::set_collector(this); 730 731 // Create & start a CMS thread for this CMS collector 732 _cmsThread = ConcurrentMarkSweepThread::start(this); 733 assert(cmsThread() != NULL, "CMS Thread should have been created"); 734 assert(cmsThread()->collector() == this, 735 "CMS Thread should refer to this gen"); 736 assert(CGC_lock != NULL, "Where's the CGC_lock?"); 737 738 // Support for parallelizing young gen rescan 739 GenCollectedHeap* gch = GenCollectedHeap::heap(); 740 _young_gen = gch->prev_gen(_cmsGen); 741 if (gch->supports_inline_contig_alloc()) { 742 _top_addr = gch->top_addr(); 743 _end_addr = gch->end_addr(); 744 assert(_young_gen != NULL, "no _young_gen"); 745 _eden_chunk_index = 0; 746 _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain; 747 _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC); 748 if (_eden_chunk_array == NULL) { 749 _eden_chunk_capacity = 0; 750 warning("GC/CMS: _eden_chunk_array allocation failure"); 751 } 752 } 753 assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error"); 754 755 // Support for parallelizing survivor space rescan 756 if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) { 757 const size_t max_plab_samples = 758 ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize; 759 760 _survivor_plab_array = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC); 761 _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC); 762 _cursor = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC); 763 if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL 764 || _cursor == NULL) { 765 warning("Failed to allocate survivor plab/chunk array"); 766 if (_survivor_plab_array != NULL) { 767 FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC); 768 _survivor_plab_array = NULL; 769 } 770 if (_survivor_chunk_array != NULL) { 771 FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC); 772 _survivor_chunk_array = NULL; 773 } 774 if (_cursor != NULL) { 775 FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC); 776 _cursor = NULL; 777 } 778 } else { 779 _survivor_chunk_capacity = 2*max_plab_samples; 780 for (uint i = 0; i < ParallelGCThreads; i++) { 781 HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC); 782 if (vec == NULL) { 783 warning("Failed to allocate survivor plab array"); 784 for (int j = i; j > 0; j--) { 785 FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC); 786 } 787 FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC); 788 FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC); 789 _survivor_plab_array = NULL; 790 _survivor_chunk_array = NULL; 791 _survivor_chunk_capacity = 0; 792 break; 793 } else { 794 ChunkArray* cur = 795 ::new (&_survivor_plab_array[i]) ChunkArray(vec, 796 max_plab_samples); 797 assert(cur->end() == 0, "Should be 0"); 798 assert(cur->array() == vec, "Should be vec"); 799 assert(cur->capacity() == max_plab_samples, "Error"); 800 } 801 } 802 } 803 } 804 assert( ( _survivor_plab_array != NULL 805 && _survivor_chunk_array != NULL) 806 || ( _survivor_chunk_capacity == 0 807 && _survivor_chunk_index == 0), 808 "Error"); 809 810 // Choose what strong roots should be scanned depending on verification options 811 // and perm gen collection mode. 812 if (!CMSClassUnloadingEnabled) { 813 // If class unloading is disabled we want to include all classes into the root set. 814 add_root_scanning_option(SharedHeap::SO_AllClasses); 815 } else { 816 add_root_scanning_option(SharedHeap::SO_SystemClasses); 817 } 818 819 NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;) 820 _gc_counters = new CollectorCounters("CMS", 1); 821 _completed_initialization = true; 822 _inter_sweep_timer.start(); // start of time 823 } 824 825 const char* ConcurrentMarkSweepGeneration::name() const { 826 return "concurrent mark-sweep generation"; 827 } 828 void ConcurrentMarkSweepGeneration::update_counters() { 829 if (UsePerfData) { 830 _space_counters->update_all(); 831 _gen_counters->update_all(); 832 } 833 } 834 835 // this is an optimized version of update_counters(). it takes the 836 // used value as a parameter rather than computing it. 837 // 838 void ConcurrentMarkSweepGeneration::update_counters(size_t used) { 839 if (UsePerfData) { 840 _space_counters->update_used(used); 841 _space_counters->update_capacity(); 842 _gen_counters->update_all(); 843 } 844 } 845 846 void ConcurrentMarkSweepGeneration::print() const { 847 Generation::print(); 848 cmsSpace()->print(); 849 } 850 851 #ifndef PRODUCT 852 void ConcurrentMarkSweepGeneration::print_statistics() { 853 cmsSpace()->printFLCensus(0); 854 } 855 #endif 856 857 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) { 858 GenCollectedHeap* gch = GenCollectedHeap::heap(); 859 if (PrintGCDetails) { 860 if (Verbose) { 861 gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]", 862 level(), short_name(), s, used(), capacity()); 863 } else { 864 gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]", 865 level(), short_name(), s, used() / K, capacity() / K); 866 } 867 } 868 if (Verbose) { 869 gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")", 870 gch->used(), gch->capacity()); 871 } else { 872 gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)", 873 gch->used() / K, gch->capacity() / K); 874 } 875 } 876 877 size_t 878 ConcurrentMarkSweepGeneration::contiguous_available() const { 879 // dld proposes an improvement in precision here. If the committed 880 // part of the space ends in a free block we should add that to 881 // uncommitted size in the calculation below. Will make this 882 // change later, staying with the approximation below for the 883 // time being. -- ysr. 884 return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc()); 885 } 886 887 size_t 888 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const { 889 return _cmsSpace->max_alloc_in_words() * HeapWordSize; 890 } 891 892 size_t ConcurrentMarkSweepGeneration::max_available() const { 893 return free() + _virtual_space.uncommitted_size(); 894 } 895 896 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const { 897 size_t available = max_available(); 898 size_t av_promo = (size_t)gc_stats()->avg_promoted()->padded_average(); 899 bool res = (available >= av_promo) || (available >= max_promotion_in_bytes); 900 if (Verbose && PrintGCDetails) { 901 gclog_or_tty->print_cr( 902 "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT")," 903 "max_promo("SIZE_FORMAT")", 904 res? "":" not", available, res? ">=":"<", 905 av_promo, max_promotion_in_bytes); 906 } 907 return res; 908 } 909 910 // At a promotion failure dump information on block layout in heap 911 // (cms old generation). 912 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() { 913 if (CMSDumpAtPromotionFailure) { 914 cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty); 915 } 916 } 917 918 CompactibleSpace* 919 ConcurrentMarkSweepGeneration::first_compaction_space() const { 920 return _cmsSpace; 921 } 922 923 void ConcurrentMarkSweepGeneration::reset_after_compaction() { 924 // Clear the promotion information. These pointers can be adjusted 925 // along with all the other pointers into the heap but 926 // compaction is expected to be a rare event with 927 // a heap using cms so don't do it without seeing the need. 928 if (CollectedHeap::use_parallel_gc_threads()) { 929 for (uint i = 0; i < ParallelGCThreads; i++) { 930 _par_gc_thread_states[i]->promo.reset(); 931 } 932 } 933 } 934 935 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) { 936 blk->do_space(_cmsSpace); 937 } 938 939 void ConcurrentMarkSweepGeneration::compute_new_size() { 940 assert_locked_or_safepoint(Heap_lock); 941 942 // If incremental collection failed, we just want to expand 943 // to the limit. 944 if (incremental_collection_failed()) { 945 clear_incremental_collection_failed(); 946 grow_to_reserved(); 947 return; 948 } 949 950 size_t expand_bytes = 0; 951 double free_percentage = ((double) free()) / capacity(); 952 double desired_free_percentage = (double) MinHeapFreeRatio / 100; 953 double maximum_free_percentage = (double) MaxHeapFreeRatio / 100; 954 955 // compute expansion delta needed for reaching desired free percentage 956 if (free_percentage < desired_free_percentage) { 957 size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage)); 958 assert(desired_capacity >= capacity(), "invalid expansion size"); 959 expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes); 960 } 961 if (expand_bytes > 0) { 962 if (PrintGCDetails && Verbose) { 963 size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage)); 964 gclog_or_tty->print_cr("\nFrom compute_new_size: "); 965 gclog_or_tty->print_cr(" Free fraction %f", free_percentage); 966 gclog_or_tty->print_cr(" Desired free fraction %f", 967 desired_free_percentage); 968 gclog_or_tty->print_cr(" Maximum free fraction %f", 969 maximum_free_percentage); 970 gclog_or_tty->print_cr(" Capactiy "SIZE_FORMAT, capacity()/1000); 971 gclog_or_tty->print_cr(" Desired capacity "SIZE_FORMAT, 972 desired_capacity/1000); 973 int prev_level = level() - 1; 974 if (prev_level >= 0) { 975 size_t prev_size = 0; 976 GenCollectedHeap* gch = GenCollectedHeap::heap(); 977 Generation* prev_gen = gch->_gens[prev_level]; 978 prev_size = prev_gen->capacity(); 979 gclog_or_tty->print_cr(" Younger gen size "SIZE_FORMAT, 980 prev_size/1000); 981 } 982 gclog_or_tty->print_cr(" unsafe_max_alloc_nogc "SIZE_FORMAT, 983 unsafe_max_alloc_nogc()/1000); 984 gclog_or_tty->print_cr(" contiguous available "SIZE_FORMAT, 985 contiguous_available()/1000); 986 gclog_or_tty->print_cr(" Expand by "SIZE_FORMAT" (bytes)", 987 expand_bytes); 988 } 989 // safe if expansion fails 990 expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio); 991 if (PrintGCDetails && Verbose) { 992 gclog_or_tty->print_cr(" Expanded free fraction %f", 993 ((double) free()) / capacity()); 994 } 995 } 996 } 997 998 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const { 999 return cmsSpace()->freelistLock(); 1000 } 1001 1002 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, 1003 bool tlab) { 1004 CMSSynchronousYieldRequest yr; 1005 MutexLockerEx x(freelistLock(), 1006 Mutex::_no_safepoint_check_flag); 1007 return have_lock_and_allocate(size, tlab); 1008 } 1009 1010 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size, 1011 bool tlab /* ignored */) { 1012 assert_lock_strong(freelistLock()); 1013 size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size); 1014 HeapWord* res = cmsSpace()->allocate(adjustedSize); 1015 // Allocate the object live (grey) if the background collector has 1016 // started marking. This is necessary because the marker may 1017 // have passed this address and consequently this object will 1018 // not otherwise be greyed and would be incorrectly swept up. 1019 // Note that if this object contains references, the writing 1020 // of those references will dirty the card containing this object 1021 // allowing the object to be blackened (and its references scanned) 1022 // either during a preclean phase or at the final checkpoint. 1023 if (res != NULL) { 1024 // We may block here with an uninitialized object with 1025 // its mark-bit or P-bits not yet set. Such objects need 1026 // to be safely navigable by block_start(). 1027 assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here."); 1028 assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size"); 1029 collector()->direct_allocated(res, adjustedSize); 1030 _direct_allocated_words += adjustedSize; 1031 // allocation counters 1032 NOT_PRODUCT( 1033 _numObjectsAllocated++; 1034 _numWordsAllocated += (int)adjustedSize; 1035 ) 1036 } 1037 return res; 1038 } 1039 1040 // In the case of direct allocation by mutators in a generation that 1041 // is being concurrently collected, the object must be allocated 1042 // live (grey) if the background collector has started marking. 1043 // This is necessary because the marker may 1044 // have passed this address and consequently this object will 1045 // not otherwise be greyed and would be incorrectly swept up. 1046 // Note that if this object contains references, the writing 1047 // of those references will dirty the card containing this object 1048 // allowing the object to be blackened (and its references scanned) 1049 // either during a preclean phase or at the final checkpoint. 1050 void CMSCollector::direct_allocated(HeapWord* start, size_t size) { 1051 assert(_markBitMap.covers(start, size), "Out of bounds"); 1052 if (_collectorState >= Marking) { 1053 MutexLockerEx y(_markBitMap.lock(), 1054 Mutex::_no_safepoint_check_flag); 1055 // [see comments preceding SweepClosure::do_blk() below for details] 1056 // 1. need to mark the object as live so it isn't collected 1057 // 2. need to mark the 2nd bit to indicate the object may be uninitialized 1058 // 3. need to mark the end of the object so marking, precleaning or sweeping 1059 // can skip over uninitialized or unparsable objects. An allocated 1060 // object is considered uninitialized for our purposes as long as 1061 // its klass word is NULL. (Unparsable objects are those which are 1062 // initialized in the sense just described, but whose sizes can still 1063 // not be correctly determined. Note that the class of unparsable objects 1064 // can only occur in the perm gen. All old gen objects are parsable 1065 // as soon as they are initialized.) 1066 _markBitMap.mark(start); // object is live 1067 _markBitMap.mark(start + 1); // object is potentially uninitialized? 1068 _markBitMap.mark(start + size - 1); 1069 // mark end of object 1070 } 1071 // check that oop looks uninitialized 1072 assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL"); 1073 } 1074 1075 void CMSCollector::promoted(bool par, HeapWord* start, 1076 bool is_obj_array, size_t obj_size) { 1077 assert(_markBitMap.covers(start), "Out of bounds"); 1078 // See comment in direct_allocated() about when objects should 1079 // be allocated live. 1080 if (_collectorState >= Marking) { 1081 // we already hold the marking bit map lock, taken in 1082 // the prologue 1083 if (par) { 1084 _markBitMap.par_mark(start); 1085 } else { 1086 _markBitMap.mark(start); 1087 } 1088 // We don't need to mark the object as uninitialized (as 1089 // in direct_allocated above) because this is being done with the 1090 // world stopped and the object will be initialized by the 1091 // time the marking, precleaning or sweeping get to look at it. 1092 // But see the code for copying objects into the CMS generation, 1093 // where we need to ensure that concurrent readers of the 1094 // block offset table are able to safely navigate a block that 1095 // is in flux from being free to being allocated (and in 1096 // transition while being copied into) and subsequently 1097 // becoming a bona-fide object when the copy/promotion is complete. 1098 assert(SafepointSynchronize::is_at_safepoint(), 1099 "expect promotion only at safepoints"); 1100 1101 if (_collectorState < Sweeping) { 1102 // Mark the appropriate cards in the modUnionTable, so that 1103 // this object gets scanned before the sweep. If this is 1104 // not done, CMS generation references in the object might 1105 // not get marked. 1106 // For the case of arrays, which are otherwise precisely 1107 // marked, we need to dirty the entire array, not just its head. 1108 if (is_obj_array) { 1109 // The [par_]mark_range() method expects mr.end() below to 1110 // be aligned to the granularity of a bit's representation 1111 // in the heap. In the case of the MUT below, that's a 1112 // card size. 1113 MemRegion mr(start, 1114 (HeapWord*)round_to((intptr_t)(start + obj_size), 1115 CardTableModRefBS::card_size /* bytes */)); 1116 if (par) { 1117 _modUnionTable.par_mark_range(mr); 1118 } else { 1119 _modUnionTable.mark_range(mr); 1120 } 1121 } else { // not an obj array; we can just mark the head 1122 if (par) { 1123 _modUnionTable.par_mark(start); 1124 } else { 1125 _modUnionTable.mark(start); 1126 } 1127 } 1128 } 1129 } 1130 } 1131 1132 static inline size_t percent_of_space(Space* space, HeapWord* addr) 1133 { 1134 size_t delta = pointer_delta(addr, space->bottom()); 1135 return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize)); 1136 } 1137 1138 void CMSCollector::icms_update_allocation_limits() 1139 { 1140 Generation* gen0 = GenCollectedHeap::heap()->get_gen(0); 1141 EdenSpace* eden = gen0->as_DefNewGeneration()->eden(); 1142 1143 const unsigned int duty_cycle = stats().icms_update_duty_cycle(); 1144 if (CMSTraceIncrementalPacing) { 1145 stats().print(); 1146 } 1147 1148 assert(duty_cycle <= 100, "invalid duty cycle"); 1149 if (duty_cycle != 0) { 1150 // The duty_cycle is a percentage between 0 and 100; convert to words and 1151 // then compute the offset from the endpoints of the space. 1152 size_t free_words = eden->free() / HeapWordSize; 1153 double free_words_dbl = (double)free_words; 1154 size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0); 1155 size_t offset_words = (free_words - duty_cycle_words) / 2; 1156 1157 _icms_start_limit = eden->top() + offset_words; 1158 _icms_stop_limit = eden->end() - offset_words; 1159 1160 // The limits may be adjusted (shifted to the right) by 1161 // CMSIncrementalOffset, to allow the application more mutator time after a 1162 // young gen gc (when all mutators were stopped) and before CMS starts and 1163 // takes away one or more cpus. 1164 if (CMSIncrementalOffset != 0) { 1165 double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0; 1166 size_t adjustment = (size_t)adjustment_dbl; 1167 HeapWord* tmp_stop = _icms_stop_limit + adjustment; 1168 if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) { 1169 _icms_start_limit += adjustment; 1170 _icms_stop_limit = tmp_stop; 1171 } 1172 } 1173 } 1174 if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) { 1175 _icms_start_limit = _icms_stop_limit = eden->end(); 1176 } 1177 1178 // Install the new start limit. 1179 eden->set_soft_end(_icms_start_limit); 1180 1181 if (CMSTraceIncrementalMode) { 1182 gclog_or_tty->print(" icms alloc limits: " 1183 PTR_FORMAT "," PTR_FORMAT 1184 " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ", 1185 _icms_start_limit, _icms_stop_limit, 1186 percent_of_space(eden, _icms_start_limit), 1187 percent_of_space(eden, _icms_stop_limit)); 1188 if (Verbose) { 1189 gclog_or_tty->print("eden: "); 1190 eden->print_on(gclog_or_tty); 1191 } 1192 } 1193 } 1194 1195 // Any changes here should try to maintain the invariant 1196 // that if this method is called with _icms_start_limit 1197 // and _icms_stop_limit both NULL, then it should return NULL 1198 // and not notify the icms thread. 1199 HeapWord* 1200 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top, 1201 size_t word_size) 1202 { 1203 // A start_limit equal to end() means the duty cycle is 0, so treat that as a 1204 // nop. 1205 if (CMSIncrementalMode && _icms_start_limit != space->end()) { 1206 if (top <= _icms_start_limit) { 1207 if (CMSTraceIncrementalMode) { 1208 space->print_on(gclog_or_tty); 1209 gclog_or_tty->stamp(); 1210 gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT 1211 ", new limit=" PTR_FORMAT 1212 " (" SIZE_FORMAT "%%)", 1213 top, _icms_stop_limit, 1214 percent_of_space(space, _icms_stop_limit)); 1215 } 1216 ConcurrentMarkSweepThread::start_icms(); 1217 assert(top < _icms_stop_limit, "Tautology"); 1218 if (word_size < pointer_delta(_icms_stop_limit, top)) { 1219 return _icms_stop_limit; 1220 } 1221 1222 // The allocation will cross both the _start and _stop limits, so do the 1223 // stop notification also and return end(). 1224 if (CMSTraceIncrementalMode) { 1225 space->print_on(gclog_or_tty); 1226 gclog_or_tty->stamp(); 1227 gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT 1228 ", new limit=" PTR_FORMAT 1229 " (" SIZE_FORMAT "%%)", 1230 top, space->end(), 1231 percent_of_space(space, space->end())); 1232 } 1233 ConcurrentMarkSweepThread::stop_icms(); 1234 return space->end(); 1235 } 1236 1237 if (top <= _icms_stop_limit) { 1238 if (CMSTraceIncrementalMode) { 1239 space->print_on(gclog_or_tty); 1240 gclog_or_tty->stamp(); 1241 gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT 1242 ", new limit=" PTR_FORMAT 1243 " (" SIZE_FORMAT "%%)", 1244 top, space->end(), 1245 percent_of_space(space, space->end())); 1246 } 1247 ConcurrentMarkSweepThread::stop_icms(); 1248 return space->end(); 1249 } 1250 1251 if (CMSTraceIncrementalMode) { 1252 space->print_on(gclog_or_tty); 1253 gclog_or_tty->stamp(); 1254 gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT 1255 ", new limit=" PTR_FORMAT, 1256 top, NULL); 1257 } 1258 } 1259 1260 return NULL; 1261 } 1262 1263 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) { 1264 assert(obj_size == (size_t)obj->size(), "bad obj_size passed in"); 1265 // allocate, copy and if necessary update promoinfo -- 1266 // delegate to underlying space. 1267 assert_lock_strong(freelistLock()); 1268 1269 #ifndef PRODUCT 1270 if (Universe::heap()->promotion_should_fail()) { 1271 return NULL; 1272 } 1273 #endif // #ifndef PRODUCT 1274 1275 oop res = _cmsSpace->promote(obj, obj_size); 1276 if (res == NULL) { 1277 // expand and retry 1278 size_t s = _cmsSpace->expansionSpaceRequired(obj_size); // HeapWords 1279 expand(s*HeapWordSize, MinHeapDeltaBytes, 1280 CMSExpansionCause::_satisfy_promotion); 1281 // Since there's currently no next generation, we don't try to promote 1282 // into a more senior generation. 1283 assert(next_gen() == NULL, "assumption, based upon which no attempt " 1284 "is made to pass on a possibly failing " 1285 "promotion to next generation"); 1286 res = _cmsSpace->promote(obj, obj_size); 1287 } 1288 if (res != NULL) { 1289 // See comment in allocate() about when objects should 1290 // be allocated live. 1291 assert(obj->is_oop(), "Will dereference klass pointer below"); 1292 collector()->promoted(false, // Not parallel 1293 (HeapWord*)res, obj->is_objArray(), obj_size); 1294 // promotion counters 1295 NOT_PRODUCT( 1296 _numObjectsPromoted++; 1297 _numWordsPromoted += 1298 (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size())); 1299 ) 1300 } 1301 return res; 1302 } 1303 1304 1305 HeapWord* 1306 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space, 1307 HeapWord* top, 1308 size_t word_sz) 1309 { 1310 return collector()->allocation_limit_reached(space, top, word_sz); 1311 } 1312 1313 // IMPORTANT: Notes on object size recognition in CMS. 1314 // --------------------------------------------------- 1315 // A block of storage in the CMS generation is always in 1316 // one of three states. A free block (FREE), an allocated 1317 // object (OBJECT) whose size() method reports the correct size, 1318 // and an intermediate state (TRANSIENT) in which its size cannot 1319 // be accurately determined. 1320 // STATE IDENTIFICATION: (32 bit and 64 bit w/o COOPS) 1321 // ----------------------------------------------------- 1322 // FREE: klass_word & 1 == 1; mark_word holds block size 1323 // 1324 // OBJECT: klass_word installed; klass_word != 0 && klass_word & 1 == 0; 1325 // obj->size() computes correct size 1326 // [Perm Gen objects needs to be "parsable" before they can be navigated] 1327 // 1328 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT 1329 // 1330 // STATE IDENTIFICATION: (64 bit+COOPS) 1331 // ------------------------------------ 1332 // FREE: mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size 1333 // 1334 // OBJECT: klass_word installed; klass_word != 0; 1335 // obj->size() computes correct size 1336 // [Perm Gen comment above continues to hold] 1337 // 1338 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT 1339 // 1340 // 1341 // STATE TRANSITION DIAGRAM 1342 // 1343 // mut / parnew mut / parnew 1344 // FREE --------------------> TRANSIENT ---------------------> OBJECT --| 1345 // ^ | 1346 // |------------------------ DEAD <------------------------------------| 1347 // sweep mut 1348 // 1349 // While a block is in TRANSIENT state its size cannot be determined 1350 // so readers will either need to come back later or stall until 1351 // the size can be determined. Note that for the case of direct 1352 // allocation, P-bits, when available, may be used to determine the 1353 // size of an object that may not yet have been initialized. 1354 1355 // Things to support parallel young-gen collection. 1356 oop 1357 ConcurrentMarkSweepGeneration::par_promote(int thread_num, 1358 oop old, markOop m, 1359 size_t word_sz) { 1360 #ifndef PRODUCT 1361 if (Universe::heap()->promotion_should_fail()) { 1362 return NULL; 1363 } 1364 #endif // #ifndef PRODUCT 1365 1366 CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; 1367 PromotionInfo* promoInfo = &ps->promo; 1368 // if we are tracking promotions, then first ensure space for 1369 // promotion (including spooling space for saving header if necessary). 1370 // then allocate and copy, then track promoted info if needed. 1371 // When tracking (see PromotionInfo::track()), the mark word may 1372 // be displaced and in this case restoration of the mark word 1373 // occurs in the (oop_since_save_marks_)iterate phase. 1374 if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) { 1375 // Out of space for allocating spooling buffers; 1376 // try expanding and allocating spooling buffers. 1377 if (!expand_and_ensure_spooling_space(promoInfo)) { 1378 return NULL; 1379 } 1380 } 1381 assert(promoInfo->has_spooling_space(), "Control point invariant"); 1382 const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz); 1383 HeapWord* obj_ptr = ps->lab.alloc(alloc_sz); 1384 if (obj_ptr == NULL) { 1385 obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz); 1386 if (obj_ptr == NULL) { 1387 return NULL; 1388 } 1389 } 1390 oop obj = oop(obj_ptr); 1391 OrderAccess::storestore(); 1392 assert(obj->klass_or_null() == NULL, "Object should be uninitialized here."); 1393 assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size"); 1394 // IMPORTANT: See note on object initialization for CMS above. 1395 // Otherwise, copy the object. Here we must be careful to insert the 1396 // klass pointer last, since this marks the block as an allocated object. 1397 // Except with compressed oops it's the mark word. 1398 HeapWord* old_ptr = (HeapWord*)old; 1399 // Restore the mark word copied above. 1400 obj->set_mark(m); 1401 assert(obj->klass_or_null() == NULL, "Object should be uninitialized here."); 1402 assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size"); 1403 OrderAccess::storestore(); 1404 1405 if (UseCompressedOops) { 1406 // Copy gap missed by (aligned) header size calculation below 1407 obj->set_klass_gap(old->klass_gap()); 1408 } 1409 if (word_sz > (size_t)oopDesc::header_size()) { 1410 Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(), 1411 obj_ptr + oopDesc::header_size(), 1412 word_sz - oopDesc::header_size()); 1413 } 1414 1415 // Now we can track the promoted object, if necessary. We take care 1416 // to delay the transition from uninitialized to full object 1417 // (i.e., insertion of klass pointer) until after, so that it 1418 // atomically becomes a promoted object. 1419 if (promoInfo->tracking()) { 1420 promoInfo->track((PromotedObject*)obj, old->klass()); 1421 } 1422 assert(obj->klass_or_null() == NULL, "Object should be uninitialized here."); 1423 assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size"); 1424 assert(old->is_oop(), "Will use and dereference old klass ptr below"); 1425 1426 // Finally, install the klass pointer (this should be volatile). 1427 OrderAccess::storestore(); 1428 obj->set_klass(old->klass()); 1429 // We should now be able to calculate the right size for this object 1430 assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object"); 1431 1432 collector()->promoted(true, // parallel 1433 obj_ptr, old->is_objArray(), word_sz); 1434 1435 NOT_PRODUCT( 1436 Atomic::inc_ptr(&_numObjectsPromoted); 1437 Atomic::add_ptr(alloc_sz, &_numWordsPromoted); 1438 ) 1439 1440 return obj; 1441 } 1442 1443 void 1444 ConcurrentMarkSweepGeneration:: 1445 par_promote_alloc_undo(int thread_num, 1446 HeapWord* obj, size_t word_sz) { 1447 // CMS does not support promotion undo. 1448 ShouldNotReachHere(); 1449 } 1450 1451 void 1452 ConcurrentMarkSweepGeneration:: 1453 par_promote_alloc_done(int thread_num) { 1454 CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; 1455 ps->lab.retire(thread_num); 1456 } 1457 1458 void 1459 ConcurrentMarkSweepGeneration:: 1460 par_oop_since_save_marks_iterate_done(int thread_num) { 1461 CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; 1462 ParScanWithoutBarrierClosure* dummy_cl = NULL; 1463 ps->promo.promoted_oops_iterate_nv(dummy_cl); 1464 } 1465 1466 // XXXPERM 1467 bool ConcurrentMarkSweepGeneration::should_collect(bool full, 1468 size_t size, 1469 bool tlab) 1470 { 1471 // We allow a STW collection only if a full 1472 // collection was requested. 1473 return full || should_allocate(size, tlab); // FIX ME !!! 1474 // This and promotion failure handling are connected at the 1475 // hip and should be fixed by untying them. 1476 } 1477 1478 bool CMSCollector::shouldConcurrentCollect() { 1479 if (_full_gc_requested) { 1480 if (Verbose && PrintGCDetails) { 1481 gclog_or_tty->print_cr("CMSCollector: collect because of explicit " 1482 " gc request (or gc_locker)"); 1483 } 1484 return true; 1485 } 1486 1487 // For debugging purposes, change the type of collection. 1488 // If the rotation is not on the concurrent collection 1489 // type, don't start a concurrent collection. 1490 NOT_PRODUCT( 1491 if (RotateCMSCollectionTypes && 1492 (_cmsGen->debug_collection_type() != 1493 ConcurrentMarkSweepGeneration::Concurrent_collection_type)) { 1494 assert(_cmsGen->debug_collection_type() != 1495 ConcurrentMarkSweepGeneration::Unknown_collection_type, 1496 "Bad cms collection type"); 1497 return false; 1498 } 1499 ) 1500 1501 FreelistLocker x(this); 1502 // ------------------------------------------------------------------ 1503 // Print out lots of information which affects the initiation of 1504 // a collection. 1505 if (PrintCMSInitiationStatistics && stats().valid()) { 1506 gclog_or_tty->print("CMSCollector shouldConcurrentCollect: "); 1507 gclog_or_tty->stamp(); 1508 gclog_or_tty->print_cr(""); 1509 stats().print_on(gclog_or_tty); 1510 gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f", 1511 stats().time_until_cms_gen_full()); 1512 gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free()); 1513 gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT, 1514 _cmsGen->contiguous_available()); 1515 gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate()); 1516 gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate()); 1517 gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy()); 1518 gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy()); 1519 gclog_or_tty->print_cr("initiatingPermOccupancy=%3.7f", _permGen->initiating_occupancy()); 1520 } 1521 // ------------------------------------------------------------------ 1522 1523 // If the estimated time to complete a cms collection (cms_duration()) 1524 // is less than the estimated time remaining until the cms generation 1525 // is full, start a collection. 1526 if (!UseCMSInitiatingOccupancyOnly) { 1527 if (stats().valid()) { 1528 if (stats().time_until_cms_start() == 0.0) { 1529 return true; 1530 } 1531 } else { 1532 // We want to conservatively collect somewhat early in order 1533 // to try and "bootstrap" our CMS/promotion statistics; 1534 // this branch will not fire after the first successful CMS 1535 // collection because the stats should then be valid. 1536 if (_cmsGen->occupancy() >= _bootstrap_occupancy) { 1537 if (Verbose && PrintGCDetails) { 1538 gclog_or_tty->print_cr( 1539 " CMSCollector: collect for bootstrapping statistics:" 1540 " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(), 1541 _bootstrap_occupancy); 1542 } 1543 return true; 1544 } 1545 } 1546 } 1547 1548 // Otherwise, we start a collection cycle if either the perm gen or 1549 // old gen want a collection cycle started. Each may use 1550 // an appropriate criterion for making this decision. 1551 // XXX We need to make sure that the gen expansion 1552 // criterion dovetails well with this. XXX NEED TO FIX THIS 1553 if (_cmsGen->should_concurrent_collect()) { 1554 if (Verbose && PrintGCDetails) { 1555 gclog_or_tty->print_cr("CMS old gen initiated"); 1556 } 1557 return true; 1558 } 1559 1560 // We start a collection if we believe an incremental collection may fail; 1561 // this is not likely to be productive in practice because it's probably too 1562 // late anyway. 1563 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1564 assert(gch->collector_policy()->is_two_generation_policy(), 1565 "You may want to check the correctness of the following"); 1566 if (gch->incremental_collection_will_fail(true /* consult_young */)) { 1567 if (Verbose && PrintGCDetails) { 1568 gclog_or_tty->print("CMSCollector: collect because incremental collection will fail "); 1569 } 1570 return true; 1571 } 1572 1573 if (CMSClassUnloadingEnabled && _permGen->should_concurrent_collect()) { 1574 bool res = update_should_unload_classes(); 1575 if (res) { 1576 if (Verbose && PrintGCDetails) { 1577 gclog_or_tty->print_cr("CMS perm gen initiated"); 1578 } 1579 return true; 1580 } 1581 } 1582 return false; 1583 } 1584 1585 // Clear _expansion_cause fields of constituent generations 1586 void CMSCollector::clear_expansion_cause() { 1587 _cmsGen->clear_expansion_cause(); 1588 _permGen->clear_expansion_cause(); 1589 } 1590 1591 // We should be conservative in starting a collection cycle. To 1592 // start too eagerly runs the risk of collecting too often in the 1593 // extreme. To collect too rarely falls back on full collections, 1594 // which works, even if not optimum in terms of concurrent work. 1595 // As a work around for too eagerly collecting, use the flag 1596 // UseCMSInitiatingOccupancyOnly. This also has the advantage of 1597 // giving the user an easily understandable way of controlling the 1598 // collections. 1599 // We want to start a new collection cycle if any of the following 1600 // conditions hold: 1601 // . our current occupancy exceeds the configured initiating occupancy 1602 // for this generation, or 1603 // . we recently needed to expand this space and have not, since that 1604 // expansion, done a collection of this generation, or 1605 // . the underlying space believes that it may be a good idea to initiate 1606 // a concurrent collection (this may be based on criteria such as the 1607 // following: the space uses linear allocation and linear allocation is 1608 // going to fail, or there is believed to be excessive fragmentation in 1609 // the generation, etc... or ... 1610 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for 1611 // the case of the old generation, not the perm generation; see CR 6543076): 1612 // we may be approaching a point at which allocation requests may fail because 1613 // we will be out of sufficient free space given allocation rate estimates.] 1614 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const { 1615 1616 assert_lock_strong(freelistLock()); 1617 if (occupancy() > initiating_occupancy()) { 1618 if (PrintGCDetails && Verbose) { 1619 gclog_or_tty->print(" %s: collect because of occupancy %f / %f ", 1620 short_name(), occupancy(), initiating_occupancy()); 1621 } 1622 return true; 1623 } 1624 if (UseCMSInitiatingOccupancyOnly) { 1625 return false; 1626 } 1627 if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) { 1628 if (PrintGCDetails && Verbose) { 1629 gclog_or_tty->print(" %s: collect because expanded for allocation ", 1630 short_name()); 1631 } 1632 return true; 1633 } 1634 if (_cmsSpace->should_concurrent_collect()) { 1635 if (PrintGCDetails && Verbose) { 1636 gclog_or_tty->print(" %s: collect because cmsSpace says so ", 1637 short_name()); 1638 } 1639 return true; 1640 } 1641 return false; 1642 } 1643 1644 void ConcurrentMarkSweepGeneration::collect(bool full, 1645 bool clear_all_soft_refs, 1646 size_t size, 1647 bool tlab) 1648 { 1649 collector()->collect(full, clear_all_soft_refs, size, tlab); 1650 } 1651 1652 void CMSCollector::collect(bool full, 1653 bool clear_all_soft_refs, 1654 size_t size, 1655 bool tlab) 1656 { 1657 if (!UseCMSCollectionPassing && _collectorState > Idling) { 1658 // For debugging purposes skip the collection if the state 1659 // is not currently idle 1660 if (TraceCMSState) { 1661 gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d", 1662 Thread::current(), full, _collectorState); 1663 } 1664 return; 1665 } 1666 1667 // The following "if" branch is present for defensive reasons. 1668 // In the current uses of this interface, it can be replaced with: 1669 // assert(!GC_locker.is_active(), "Can't be called otherwise"); 1670 // But I am not placing that assert here to allow future 1671 // generality in invoking this interface. 1672 if (GC_locker::is_active()) { 1673 // A consistency test for GC_locker 1674 assert(GC_locker::needs_gc(), "Should have been set already"); 1675 // Skip this foreground collection, instead 1676 // expanding the heap if necessary. 1677 // Need the free list locks for the call to free() in compute_new_size() 1678 compute_new_size(); 1679 return; 1680 } 1681 acquire_control_and_collect(full, clear_all_soft_refs); 1682 _full_gcs_since_conc_gc++; 1683 1684 } 1685 1686 void CMSCollector::request_full_gc(unsigned int full_gc_count) { 1687 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1688 unsigned int gc_count = gch->total_full_collections(); 1689 if (gc_count == full_gc_count) { 1690 MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag); 1691 _full_gc_requested = true; 1692 CGC_lock->notify(); // nudge CMS thread 1693 } else { 1694 assert(gc_count > full_gc_count, "Error: causal loop"); 1695 } 1696 } 1697 1698 1699 // The foreground and background collectors need to coordinate in order 1700 // to make sure that they do not mutually interfere with CMS collections. 1701 // When a background collection is active, 1702 // the foreground collector may need to take over (preempt) and 1703 // synchronously complete an ongoing collection. Depending on the 1704 // frequency of the background collections and the heap usage 1705 // of the application, this preemption can be seldom or frequent. 1706 // There are only certain 1707 // points in the background collection that the "collection-baton" 1708 // can be passed to the foreground collector. 1709 // 1710 // The foreground collector will wait for the baton before 1711 // starting any part of the collection. The foreground collector 1712 // will only wait at one location. 1713 // 1714 // The background collector will yield the baton before starting a new 1715 // phase of the collection (e.g., before initial marking, marking from roots, 1716 // precleaning, final re-mark, sweep etc.) This is normally done at the head 1717 // of the loop which switches the phases. The background collector does some 1718 // of the phases (initial mark, final re-mark) with the world stopped. 1719 // Because of locking involved in stopping the world, 1720 // the foreground collector should not block waiting for the background 1721 // collector when it is doing a stop-the-world phase. The background 1722 // collector will yield the baton at an additional point just before 1723 // it enters a stop-the-world phase. Once the world is stopped, the 1724 // background collector checks the phase of the collection. If the 1725 // phase has not changed, it proceeds with the collection. If the 1726 // phase has changed, it skips that phase of the collection. See 1727 // the comments on the use of the Heap_lock in collect_in_background(). 1728 // 1729 // Variable used in baton passing. 1730 // _foregroundGCIsActive - Set to true by the foreground collector when 1731 // it wants the baton. The foreground clears it when it has finished 1732 // the collection. 1733 // _foregroundGCShouldWait - Set to true by the background collector 1734 // when it is running. The foreground collector waits while 1735 // _foregroundGCShouldWait is true. 1736 // CGC_lock - monitor used to protect access to the above variables 1737 // and to notify the foreground and background collectors. 1738 // _collectorState - current state of the CMS collection. 1739 // 1740 // The foreground collector 1741 // acquires the CGC_lock 1742 // sets _foregroundGCIsActive 1743 // waits on the CGC_lock for _foregroundGCShouldWait to be false 1744 // various locks acquired in preparation for the collection 1745 // are released so as not to block the background collector 1746 // that is in the midst of a collection 1747 // proceeds with the collection 1748 // clears _foregroundGCIsActive 1749 // returns 1750 // 1751 // The background collector in a loop iterating on the phases of the 1752 // collection 1753 // acquires the CGC_lock 1754 // sets _foregroundGCShouldWait 1755 // if _foregroundGCIsActive is set 1756 // clears _foregroundGCShouldWait, notifies _CGC_lock 1757 // waits on _CGC_lock for _foregroundGCIsActive to become false 1758 // and exits the loop. 1759 // otherwise 1760 // proceed with that phase of the collection 1761 // if the phase is a stop-the-world phase, 1762 // yield the baton once more just before enqueueing 1763 // the stop-world CMS operation (executed by the VM thread). 1764 // returns after all phases of the collection are done 1765 // 1766 1767 void CMSCollector::acquire_control_and_collect(bool full, 1768 bool clear_all_soft_refs) { 1769 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); 1770 assert(!Thread::current()->is_ConcurrentGC_thread(), 1771 "shouldn't try to acquire control from self!"); 1772 1773 // Start the protocol for acquiring control of the 1774 // collection from the background collector (aka CMS thread). 1775 assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 1776 "VM thread should have CMS token"); 1777 // Remember the possibly interrupted state of an ongoing 1778 // concurrent collection 1779 CollectorState first_state = _collectorState; 1780 1781 // Signal to a possibly ongoing concurrent collection that 1782 // we want to do a foreground collection. 1783 _foregroundGCIsActive = true; 1784 1785 // Disable incremental mode during a foreground collection. 1786 ICMSDisabler icms_disabler; 1787 1788 // release locks and wait for a notify from the background collector 1789 // releasing the locks in only necessary for phases which 1790 // do yields to improve the granularity of the collection. 1791 assert_lock_strong(bitMapLock()); 1792 // We need to lock the Free list lock for the space that we are 1793 // currently collecting. 1794 assert(haveFreelistLocks(), "Must be holding free list locks"); 1795 bitMapLock()->unlock(); 1796 releaseFreelistLocks(); 1797 { 1798 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 1799 if (_foregroundGCShouldWait) { 1800 // We are going to be waiting for action for the CMS thread; 1801 // it had better not be gone (for instance at shutdown)! 1802 assert(ConcurrentMarkSweepThread::cmst() != NULL, 1803 "CMS thread must be running"); 1804 // Wait here until the background collector gives us the go-ahead 1805 ConcurrentMarkSweepThread::clear_CMS_flag( 1806 ConcurrentMarkSweepThread::CMS_vm_has_token); // release token 1807 // Get a possibly blocked CMS thread going: 1808 // Note that we set _foregroundGCIsActive true above, 1809 // without protection of the CGC_lock. 1810 CGC_lock->notify(); 1811 assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(), 1812 "Possible deadlock"); 1813 while (_foregroundGCShouldWait) { 1814 // wait for notification 1815 CGC_lock->wait(Mutex::_no_safepoint_check_flag); 1816 // Possibility of delay/starvation here, since CMS token does 1817 // not know to give priority to VM thread? Actually, i think 1818 // there wouldn't be any delay/starvation, but the proof of 1819 // that "fact" (?) appears non-trivial. XXX 20011219YSR 1820 } 1821 ConcurrentMarkSweepThread::set_CMS_flag( 1822 ConcurrentMarkSweepThread::CMS_vm_has_token); 1823 } 1824 } 1825 // The CMS_token is already held. Get back the other locks. 1826 assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 1827 "VM thread should have CMS token"); 1828 getFreelistLocks(); 1829 bitMapLock()->lock_without_safepoint_check(); 1830 if (TraceCMSState) { 1831 gclog_or_tty->print_cr("CMS foreground collector has asked for control " 1832 INTPTR_FORMAT " with first state %d", Thread::current(), first_state); 1833 gclog_or_tty->print_cr(" gets control with state %d", _collectorState); 1834 } 1835 1836 // Check if we need to do a compaction, or if not, whether 1837 // we need to start the mark-sweep from scratch. 1838 bool should_compact = false; 1839 bool should_start_over = false; 1840 decide_foreground_collection_type(clear_all_soft_refs, 1841 &should_compact, &should_start_over); 1842 1843 NOT_PRODUCT( 1844 if (RotateCMSCollectionTypes) { 1845 if (_cmsGen->debug_collection_type() == 1846 ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) { 1847 should_compact = true; 1848 } else if (_cmsGen->debug_collection_type() == 1849 ConcurrentMarkSweepGeneration::MS_foreground_collection_type) { 1850 should_compact = false; 1851 } 1852 } 1853 ) 1854 1855 if (PrintGCDetails && first_state > Idling) { 1856 GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause(); 1857 if (GCCause::is_user_requested_gc(cause) || 1858 GCCause::is_serviceability_requested_gc(cause)) { 1859 gclog_or_tty->print(" (concurrent mode interrupted)"); 1860 } else { 1861 gclog_or_tty->print(" (concurrent mode failure)"); 1862 } 1863 } 1864 1865 if (should_compact) { 1866 // If the collection is being acquired from the background 1867 // collector, there may be references on the discovered 1868 // references lists that have NULL referents (being those 1869 // that were concurrently cleared by a mutator) or 1870 // that are no longer active (having been enqueued concurrently 1871 // by the mutator). 1872 // Scrub the list of those references because Mark-Sweep-Compact 1873 // code assumes referents are not NULL and that all discovered 1874 // Reference objects are active. 1875 ref_processor()->clean_up_discovered_references(); 1876 1877 do_compaction_work(clear_all_soft_refs); 1878 1879 // Has the GC time limit been exceeded? 1880 DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration(); 1881 size_t max_eden_size = young_gen->max_capacity() - 1882 young_gen->to()->capacity() - 1883 young_gen->from()->capacity(); 1884 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1885 GCCause::Cause gc_cause = gch->gc_cause(); 1886 size_policy()->check_gc_overhead_limit(_young_gen->used(), 1887 young_gen->eden()->used(), 1888 _cmsGen->max_capacity(), 1889 max_eden_size, 1890 full, 1891 gc_cause, 1892 gch->collector_policy()); 1893 } else { 1894 do_mark_sweep_work(clear_all_soft_refs, first_state, 1895 should_start_over); 1896 } 1897 // Reset the expansion cause, now that we just completed 1898 // a collection cycle. 1899 clear_expansion_cause(); 1900 _foregroundGCIsActive = false; 1901 return; 1902 } 1903 1904 // Resize the perm generation and the tenured generation 1905 // after obtaining the free list locks for the 1906 // two generations. 1907 void CMSCollector::compute_new_size() { 1908 assert_locked_or_safepoint(Heap_lock); 1909 FreelistLocker z(this); 1910 _permGen->compute_new_size(); 1911 _cmsGen->compute_new_size(); 1912 } 1913 1914 // A work method used by foreground collection to determine 1915 // what type of collection (compacting or not, continuing or fresh) 1916 // it should do. 1917 // NOTE: the intent is to make UseCMSCompactAtFullCollection 1918 // and CMSCompactWhenClearAllSoftRefs the default in the future 1919 // and do away with the flags after a suitable period. 1920 void CMSCollector::decide_foreground_collection_type( 1921 bool clear_all_soft_refs, bool* should_compact, 1922 bool* should_start_over) { 1923 // Normally, we'll compact only if the UseCMSCompactAtFullCollection 1924 // flag is set, and we have either requested a System.gc() or 1925 // the number of full gc's since the last concurrent cycle 1926 // has exceeded the threshold set by CMSFullGCsBeforeCompaction, 1927 // or if an incremental collection has failed 1928 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1929 assert(gch->collector_policy()->is_two_generation_policy(), 1930 "You may want to check the correctness of the following"); 1931 // Inform cms gen if this was due to partial collection failing. 1932 // The CMS gen may use this fact to determine its expansion policy. 1933 if (gch->incremental_collection_will_fail(false /* don't consult_young */)) { 1934 assert(!_cmsGen->incremental_collection_failed(), 1935 "Should have been noticed, reacted to and cleared"); 1936 _cmsGen->set_incremental_collection_failed(); 1937 } 1938 *should_compact = 1939 UseCMSCompactAtFullCollection && 1940 ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) || 1941 GCCause::is_user_requested_gc(gch->gc_cause()) || 1942 gch->incremental_collection_will_fail(true /* consult_young */)); 1943 *should_start_over = false; 1944 if (clear_all_soft_refs && !*should_compact) { 1945 // We are about to do a last ditch collection attempt 1946 // so it would normally make sense to do a compaction 1947 // to reclaim as much space as possible. 1948 if (CMSCompactWhenClearAllSoftRefs) { 1949 // Default: The rationale is that in this case either 1950 // we are past the final marking phase, in which case 1951 // we'd have to start over, or so little has been done 1952 // that there's little point in saving that work. Compaction 1953 // appears to be the sensible choice in either case. 1954 *should_compact = true; 1955 } else { 1956 // We have been asked to clear all soft refs, but not to 1957 // compact. Make sure that we aren't past the final checkpoint 1958 // phase, for that is where we process soft refs. If we are already 1959 // past that phase, we'll need to redo the refs discovery phase and 1960 // if necessary clear soft refs that weren't previously 1961 // cleared. We do so by remembering the phase in which 1962 // we came in, and if we are past the refs processing 1963 // phase, we'll choose to just redo the mark-sweep 1964 // collection from scratch. 1965 if (_collectorState > FinalMarking) { 1966 // We are past the refs processing phase; 1967 // start over and do a fresh synchronous CMS cycle 1968 _collectorState = Resetting; // skip to reset to start new cycle 1969 reset(false /* == !asynch */); 1970 *should_start_over = true; 1971 } // else we can continue a possibly ongoing current cycle 1972 } 1973 } 1974 } 1975 1976 // A work method used by the foreground collector to do 1977 // a mark-sweep-compact. 1978 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) { 1979 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1980 1981 STWGCTimer* gc_timer = GenMarkSweep::gc_timer(); 1982 gc_timer->register_gc_start(os::elapsed_counter()); 1983 1984 SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer(); 1985 gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start()); 1986 1987 GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL); 1988 if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) { 1989 gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d " 1990 "collections passed to foreground collector", _full_gcs_since_conc_gc); 1991 } 1992 1993 // Sample collection interval time and reset for collection pause. 1994 if (UseAdaptiveSizePolicy) { 1995 size_policy()->msc_collection_begin(); 1996 } 1997 1998 // Temporarily widen the span of the weak reference processing to 1999 // the entire heap. 2000 MemRegion new_span(GenCollectedHeap::heap()->reserved_region()); 2001 ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span); 2002 // Temporarily, clear the "is_alive_non_header" field of the 2003 // reference processor. 2004 ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL); 2005 // Temporarily make reference _processing_ single threaded (non-MT). 2006 ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false); 2007 // Temporarily make refs discovery atomic 2008 ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true); 2009 // Temporarily make reference _discovery_ single threaded (non-MT) 2010 ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false); 2011 2012 ref_processor()->set_enqueuing_is_done(false); 2013 ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/); 2014 ref_processor()->setup_policy(clear_all_soft_refs); 2015 // If an asynchronous collection finishes, the _modUnionTable is 2016 // all clear. If we are assuming the collection from an asynchronous 2017 // collection, clear the _modUnionTable. 2018 assert(_collectorState != Idling || _modUnionTable.isAllClear(), 2019 "_modUnionTable should be clear if the baton was not passed"); 2020 _modUnionTable.clear_all(); 2021 2022 // We must adjust the allocation statistics being maintained 2023 // in the free list space. We do so by reading and clearing 2024 // the sweep timer and updating the block flux rate estimates below. 2025 assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive"); 2026 if (_inter_sweep_timer.is_active()) { 2027 _inter_sweep_timer.stop(); 2028 // Note that we do not use this sample to update the _inter_sweep_estimate. 2029 _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()), 2030 _inter_sweep_estimate.padded_average(), 2031 _intra_sweep_estimate.padded_average()); 2032 } 2033 2034 GenMarkSweep::invoke_at_safepoint(_cmsGen->level(), 2035 ref_processor(), clear_all_soft_refs); 2036 #ifdef ASSERT 2037 CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); 2038 size_t free_size = cms_space->free(); 2039 assert(free_size == 2040 pointer_delta(cms_space->end(), cms_space->compaction_top()) 2041 * HeapWordSize, 2042 "All the free space should be compacted into one chunk at top"); 2043 assert(cms_space->dictionary()->total_chunk_size( 2044 debug_only(cms_space->freelistLock())) == 0 || 2045 cms_space->totalSizeInIndexedFreeLists() == 0, 2046 "All the free space should be in a single chunk"); 2047 size_t num = cms_space->totalCount(); 2048 assert((free_size == 0 && num == 0) || 2049 (free_size > 0 && (num == 1 || num == 2)), 2050 "There should be at most 2 free chunks after compaction"); 2051 #endif // ASSERT 2052 _collectorState = Resetting; 2053 assert(_restart_addr == NULL, 2054 "Should have been NULL'd before baton was passed"); 2055 reset(false /* == !asynch */); 2056 _cmsGen->reset_after_compaction(); 2057 _concurrent_cycles_since_last_unload = 0; 2058 2059 if (verifying() && !should_unload_classes()) { 2060 perm_gen_verify_bit_map()->clear_all(); 2061 } 2062 2063 // Clear any data recorded in the PLAB chunk arrays. 2064 if (_survivor_plab_array != NULL) { 2065 reset_survivor_plab_arrays(); 2066 } 2067 2068 // Adjust the per-size allocation stats for the next epoch. 2069 _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */); 2070 // Restart the "inter sweep timer" for the next epoch. 2071 _inter_sweep_timer.reset(); 2072 _inter_sweep_timer.start(); 2073 2074 // Sample collection pause time and reset for collection interval. 2075 if (UseAdaptiveSizePolicy) { 2076 size_policy()->msc_collection_end(gch->gc_cause()); 2077 } 2078 2079 gc_timer->register_gc_end(os::elapsed_counter()); 2080 2081 gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions()); 2082 2083 // For a mark-sweep-compact, compute_new_size() will be called 2084 // in the heap's do_collection() method. 2085 } 2086 2087 // A work method used by the foreground collector to do 2088 // a mark-sweep, after taking over from a possibly on-going 2089 // concurrent mark-sweep collection. 2090 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs, 2091 CollectorState first_state, bool should_start_over) { 2092 if (PrintGC && Verbose) { 2093 gclog_or_tty->print_cr("Pass concurrent collection to foreground " 2094 "collector with count %d", 2095 _full_gcs_since_conc_gc); 2096 } 2097 switch (_collectorState) { 2098 case Idling: 2099 if (first_state == Idling || should_start_over) { 2100 // The background GC was not active, or should 2101 // restarted from scratch; start the cycle. 2102 _collectorState = InitialMarking; 2103 } 2104 // If first_state was not Idling, then a background GC 2105 // was in progress and has now finished. No need to do it 2106 // again. Leave the state as Idling. 2107 break; 2108 case Precleaning: 2109 // In the foreground case don't do the precleaning since 2110 // it is not done concurrently and there is extra work 2111 // required. 2112 _collectorState = FinalMarking; 2113 } 2114 if (PrintGCDetails && 2115 (_collectorState > Idling || 2116 !GCCause::is_user_requested_gc(GenCollectedHeap::heap()->gc_cause()))) { 2117 gclog_or_tty->print(" (concurrent mode failure)"); 2118 } 2119 collect_in_foreground(clear_all_soft_refs); 2120 2121 // For a mark-sweep, compute_new_size() will be called 2122 // in the heap's do_collection() method. 2123 } 2124 2125 2126 void CMSCollector::getFreelistLocks() const { 2127 // Get locks for all free lists in all generations that this 2128 // collector is responsible for 2129 _cmsGen->freelistLock()->lock_without_safepoint_check(); 2130 _permGen->freelistLock()->lock_without_safepoint_check(); 2131 } 2132 2133 void CMSCollector::releaseFreelistLocks() const { 2134 // Release locks for all free lists in all generations that this 2135 // collector is responsible for 2136 _cmsGen->freelistLock()->unlock(); 2137 _permGen->freelistLock()->unlock(); 2138 } 2139 2140 bool CMSCollector::haveFreelistLocks() const { 2141 // Check locks for all free lists in all generations that this 2142 // collector is responsible for 2143 assert_lock_strong(_cmsGen->freelistLock()); 2144 assert_lock_strong(_permGen->freelistLock()); 2145 PRODUCT_ONLY(ShouldNotReachHere()); 2146 return true; 2147 } 2148 2149 // A utility class that is used by the CMS collector to 2150 // temporarily "release" the foreground collector from its 2151 // usual obligation to wait for the background collector to 2152 // complete an ongoing phase before proceeding. 2153 class ReleaseForegroundGC: public StackObj { 2154 private: 2155 CMSCollector* _c; 2156 public: 2157 ReleaseForegroundGC(CMSCollector* c) : _c(c) { 2158 assert(_c->_foregroundGCShouldWait, "Else should not need to call"); 2159 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2160 // allow a potentially blocked foreground collector to proceed 2161 _c->_foregroundGCShouldWait = false; 2162 if (_c->_foregroundGCIsActive) { 2163 CGC_lock->notify(); 2164 } 2165 assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 2166 "Possible deadlock"); 2167 } 2168 2169 ~ReleaseForegroundGC() { 2170 assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?"); 2171 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2172 _c->_foregroundGCShouldWait = true; 2173 } 2174 }; 2175 2176 // There are separate collect_in_background and collect_in_foreground because of 2177 // the different locking requirements of the background collector and the 2178 // foreground collector. There was originally an attempt to share 2179 // one "collect" method between the background collector and the foreground 2180 // collector but the if-then-else required made it cleaner to have 2181 // separate methods. 2182 void CMSCollector::collect_in_background(bool clear_all_soft_refs) { 2183 assert(Thread::current()->is_ConcurrentGC_thread(), 2184 "A CMS asynchronous collection is only allowed on a CMS thread."); 2185 2186 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2187 { 2188 bool safepoint_check = Mutex::_no_safepoint_check_flag; 2189 MutexLockerEx hl(Heap_lock, safepoint_check); 2190 FreelistLocker fll(this); 2191 MutexLockerEx x(CGC_lock, safepoint_check); 2192 if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) { 2193 // The foreground collector is active or we're 2194 // not using asynchronous collections. Skip this 2195 // background collection. 2196 assert(!_foregroundGCShouldWait, "Should be clear"); 2197 return; 2198 } else { 2199 assert(_collectorState == Idling, "Should be idling before start."); 2200 _collectorState = InitialMarking; 2201 // Reset the expansion cause, now that we are about to begin 2202 // a new cycle. 2203 clear_expansion_cause(); 2204 } 2205 // Decide if we want to enable class unloading as part of the 2206 // ensuing concurrent GC cycle. 2207 update_should_unload_classes(); 2208 _full_gc_requested = false; // acks all outstanding full gc requests 2209 // Signal that we are about to start a collection 2210 gch->increment_total_full_collections(); // ... starting a collection cycle 2211 _collection_count_start = gch->total_full_collections(); 2212 } 2213 2214 // Used for PrintGC 2215 size_t prev_used; 2216 if (PrintGC && Verbose) { 2217 prev_used = _cmsGen->used(); // XXXPERM 2218 } 2219 2220 // The change of the collection state is normally done at this level; 2221 // the exceptions are phases that are executed while the world is 2222 // stopped. For those phases the change of state is done while the 2223 // world is stopped. For baton passing purposes this allows the 2224 // background collector to finish the phase and change state atomically. 2225 // The foreground collector cannot wait on a phase that is done 2226 // while the world is stopped because the foreground collector already 2227 // has the world stopped and would deadlock. 2228 while (_collectorState != Idling) { 2229 if (TraceCMSState) { 2230 gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d", 2231 Thread::current(), _collectorState); 2232 } 2233 // The foreground collector 2234 // holds the Heap_lock throughout its collection. 2235 // holds the CMS token (but not the lock) 2236 // except while it is waiting for the background collector to yield. 2237 // 2238 // The foreground collector should be blocked (not for long) 2239 // if the background collector is about to start a phase 2240 // executed with world stopped. If the background 2241 // collector has already started such a phase, the 2242 // foreground collector is blocked waiting for the 2243 // Heap_lock. The stop-world phases (InitialMarking and FinalMarking) 2244 // are executed in the VM thread. 2245 // 2246 // The locking order is 2247 // PendingListLock (PLL) -- if applicable (FinalMarking) 2248 // Heap_lock (both this & PLL locked in VM_CMS_Operation::prologue()) 2249 // CMS token (claimed in 2250 // stop_world_and_do() --> 2251 // safepoint_synchronize() --> 2252 // CMSThread::synchronize()) 2253 2254 { 2255 // Check if the FG collector wants us to yield. 2256 CMSTokenSync x(true); // is cms thread 2257 if (waitForForegroundGC()) { 2258 // We yielded to a foreground GC, nothing more to be 2259 // done this round. 2260 assert(_foregroundGCShouldWait == false, "We set it to false in " 2261 "waitForForegroundGC()"); 2262 if (TraceCMSState) { 2263 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT 2264 " exiting collection CMS state %d", 2265 Thread::current(), _collectorState); 2266 } 2267 return; 2268 } else { 2269 // The background collector can run but check to see if the 2270 // foreground collector has done a collection while the 2271 // background collector was waiting to get the CGC_lock 2272 // above. If yes, break so that _foregroundGCShouldWait 2273 // is cleared before returning. 2274 if (_collectorState == Idling) { 2275 break; 2276 } 2277 } 2278 } 2279 2280 assert(_foregroundGCShouldWait, "Foreground collector, if active, " 2281 "should be waiting"); 2282 2283 switch (_collectorState) { 2284 case InitialMarking: 2285 { 2286 ReleaseForegroundGC x(this); 2287 stats().record_cms_begin(); 2288 VM_CMS_Initial_Mark initial_mark_op(this); 2289 VMThread::execute(&initial_mark_op); 2290 } 2291 // The collector state may be any legal state at this point 2292 // since the background collector may have yielded to the 2293 // foreground collector. 2294 break; 2295 case Marking: 2296 // initial marking in checkpointRootsInitialWork has been completed 2297 if (markFromRoots(true)) { // we were successful 2298 assert(_collectorState == Precleaning, "Collector state should " 2299 "have changed"); 2300 } else { 2301 assert(_foregroundGCIsActive, "Internal state inconsistency"); 2302 } 2303 break; 2304 case Precleaning: 2305 if (UseAdaptiveSizePolicy) { 2306 size_policy()->concurrent_precleaning_begin(); 2307 } 2308 // marking from roots in markFromRoots has been completed 2309 preclean(); 2310 if (UseAdaptiveSizePolicy) { 2311 size_policy()->concurrent_precleaning_end(); 2312 } 2313 assert(_collectorState == AbortablePreclean || 2314 _collectorState == FinalMarking, 2315 "Collector state should have changed"); 2316 break; 2317 case AbortablePreclean: 2318 if (UseAdaptiveSizePolicy) { 2319 size_policy()->concurrent_phases_resume(); 2320 } 2321 abortable_preclean(); 2322 if (UseAdaptiveSizePolicy) { 2323 size_policy()->concurrent_precleaning_end(); 2324 } 2325 assert(_collectorState == FinalMarking, "Collector state should " 2326 "have changed"); 2327 break; 2328 case FinalMarking: 2329 { 2330 ReleaseForegroundGC x(this); 2331 2332 VM_CMS_Final_Remark final_remark_op(this); 2333 VMThread::execute(&final_remark_op); 2334 } 2335 assert(_foregroundGCShouldWait, "block post-condition"); 2336 break; 2337 case Sweeping: 2338 if (UseAdaptiveSizePolicy) { 2339 size_policy()->concurrent_sweeping_begin(); 2340 } 2341 // final marking in checkpointRootsFinal has been completed 2342 sweep(true); 2343 assert(_collectorState == Resizing, "Collector state change " 2344 "to Resizing must be done under the free_list_lock"); 2345 _full_gcs_since_conc_gc = 0; 2346 2347 // Stop the timers for adaptive size policy for the concurrent phases 2348 if (UseAdaptiveSizePolicy) { 2349 size_policy()->concurrent_sweeping_end(); 2350 size_policy()->concurrent_phases_end(gch->gc_cause(), 2351 gch->prev_gen(_cmsGen)->capacity(), 2352 _cmsGen->free()); 2353 } 2354 2355 case Resizing: { 2356 // Sweeping has been completed... 2357 // At this point the background collection has completed. 2358 // Don't move the call to compute_new_size() down 2359 // into code that might be executed if the background 2360 // collection was preempted. 2361 { 2362 ReleaseForegroundGC x(this); // unblock FG collection 2363 MutexLockerEx y(Heap_lock, Mutex::_no_safepoint_check_flag); 2364 CMSTokenSync z(true); // not strictly needed. 2365 if (_collectorState == Resizing) { 2366 compute_new_size(); 2367 _collectorState = Resetting; 2368 } else { 2369 assert(_collectorState == Idling, "The state should only change" 2370 " because the foreground collector has finished the collection"); 2371 } 2372 } 2373 break; 2374 } 2375 case Resetting: 2376 // CMS heap resizing has been completed 2377 reset(true); 2378 assert(_collectorState == Idling, "Collector state should " 2379 "have changed"); 2380 stats().record_cms_end(); 2381 // Don't move the concurrent_phases_end() and compute_new_size() 2382 // calls to here because a preempted background collection 2383 // has it's state set to "Resetting". 2384 break; 2385 case Idling: 2386 default: 2387 ShouldNotReachHere(); 2388 break; 2389 } 2390 if (TraceCMSState) { 2391 gclog_or_tty->print_cr(" Thread " INTPTR_FORMAT " done - next CMS state %d", 2392 Thread::current(), _collectorState); 2393 } 2394 assert(_foregroundGCShouldWait, "block post-condition"); 2395 } 2396 2397 // Should this be in gc_epilogue? 2398 collector_policy()->counters()->update_counters(); 2399 2400 { 2401 // Clear _foregroundGCShouldWait and, in the event that the 2402 // foreground collector is waiting, notify it, before 2403 // returning. 2404 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2405 _foregroundGCShouldWait = false; 2406 if (_foregroundGCIsActive) { 2407 CGC_lock->notify(); 2408 } 2409 assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 2410 "Possible deadlock"); 2411 } 2412 if (TraceCMSState) { 2413 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT 2414 " exiting collection CMS state %d", 2415 Thread::current(), _collectorState); 2416 } 2417 if (PrintGC && Verbose) { 2418 _cmsGen->print_heap_change(prev_used); 2419 } 2420 } 2421 2422 void CMSCollector::register_gc_start(GCCause::Cause cause) { 2423 _cms_start_registered = true; 2424 _gc_timer_cm->register_gc_start(os::elapsed_counter()); 2425 _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start()); 2426 } 2427 2428 void CMSCollector::register_gc_end() { 2429 if (_cms_start_registered) { 2430 _gc_timer_cm->register_gc_end(os::elapsed_counter()); 2431 _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions()); 2432 _cms_start_registered = false; 2433 } 2434 } 2435 2436 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs) { 2437 assert(_foregroundGCIsActive && !_foregroundGCShouldWait, 2438 "Foreground collector should be waiting, not executing"); 2439 assert(Thread::current()->is_VM_thread(), "A foreground collection" 2440 "may only be done by the VM Thread with the world stopped"); 2441 assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 2442 "VM thread should have CMS token"); 2443 2444 NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose, 2445 true, NULL);) 2446 if (UseAdaptiveSizePolicy) { 2447 size_policy()->ms_collection_begin(); 2448 } 2449 COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact); 2450 2451 HandleMark hm; // Discard invalid handles created during verification 2452 2453 if (VerifyBeforeGC && 2454 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2455 Universe::verify(); 2456 } 2457 2458 // Snapshot the soft reference policy to be used in this collection cycle. 2459 ref_processor()->setup_policy(clear_all_soft_refs); 2460 2461 bool init_mark_was_synchronous = false; // until proven otherwise 2462 while (_collectorState != Idling) { 2463 if (TraceCMSState) { 2464 gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d", 2465 Thread::current(), _collectorState); 2466 } 2467 switch (_collectorState) { 2468 case InitialMarking: 2469 register_gc_start(GenCollectedHeap::heap()->gc_cause()); 2470 init_mark_was_synchronous = true; // fact to be exploited in re-mark 2471 checkpointRootsInitial(false); 2472 assert(_collectorState == Marking, "Collector state should have changed" 2473 " within checkpointRootsInitial()"); 2474 break; 2475 case Marking: 2476 // initial marking in checkpointRootsInitialWork has been completed 2477 if (VerifyDuringGC && 2478 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2479 gclog_or_tty->print("Verify before initial mark: "); 2480 Universe::verify(); 2481 } 2482 { 2483 bool res = markFromRoots(false); 2484 assert(res && _collectorState == FinalMarking, "Collector state should " 2485 "have changed"); 2486 break; 2487 } 2488 case FinalMarking: 2489 if (VerifyDuringGC && 2490 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2491 gclog_or_tty->print("Verify before re-mark: "); 2492 Universe::verify(); 2493 } 2494 checkpointRootsFinal(false, clear_all_soft_refs, 2495 init_mark_was_synchronous); 2496 assert(_collectorState == Sweeping, "Collector state should not " 2497 "have changed within checkpointRootsFinal()"); 2498 break; 2499 case Sweeping: 2500 // final marking in checkpointRootsFinal has been completed 2501 if (VerifyDuringGC && 2502 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2503 gclog_or_tty->print("Verify before sweep: "); 2504 Universe::verify(); 2505 } 2506 sweep(false); 2507 assert(_collectorState == Resizing, "Incorrect state"); 2508 break; 2509 case Resizing: { 2510 // Sweeping has been completed; the actual resize in this case 2511 // is done separately; nothing to be done in this state. 2512 _collectorState = Resetting; 2513 break; 2514 } 2515 case Resetting: 2516 // The heap has been resized. 2517 if (VerifyDuringGC && 2518 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2519 gclog_or_tty->print("Verify before reset: "); 2520 Universe::verify(); 2521 } 2522 reset(false); 2523 assert(_collectorState == Idling, "Collector state should " 2524 "have changed"); 2525 break; 2526 case Precleaning: 2527 case AbortablePreclean: 2528 // Elide the preclean phase 2529 _collectorState = FinalMarking; 2530 break; 2531 default: 2532 ShouldNotReachHere(); 2533 } 2534 if (TraceCMSState) { 2535 gclog_or_tty->print_cr(" Thread " INTPTR_FORMAT " done - next CMS state %d", 2536 Thread::current(), _collectorState); 2537 } 2538 } 2539 2540 if (UseAdaptiveSizePolicy) { 2541 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2542 size_policy()->ms_collection_end(gch->gc_cause()); 2543 } 2544 2545 if (VerifyAfterGC && 2546 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2547 Universe::verify(); 2548 } 2549 if (TraceCMSState) { 2550 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT 2551 " exiting collection CMS state %d", 2552 Thread::current(), _collectorState); 2553 } 2554 } 2555 2556 bool CMSCollector::waitForForegroundGC() { 2557 bool res = false; 2558 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 2559 "CMS thread should have CMS token"); 2560 // Block the foreground collector until the 2561 // background collectors decides whether to 2562 // yield. 2563 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2564 _foregroundGCShouldWait = true; 2565 if (_foregroundGCIsActive) { 2566 // The background collector yields to the 2567 // foreground collector and returns a value 2568 // indicating that it has yielded. The foreground 2569 // collector can proceed. 2570 res = true; 2571 _foregroundGCShouldWait = false; 2572 ConcurrentMarkSweepThread::clear_CMS_flag( 2573 ConcurrentMarkSweepThread::CMS_cms_has_token); 2574 ConcurrentMarkSweepThread::set_CMS_flag( 2575 ConcurrentMarkSweepThread::CMS_cms_wants_token); 2576 // Get a possibly blocked foreground thread going 2577 CGC_lock->notify(); 2578 if (TraceCMSState) { 2579 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d", 2580 Thread::current(), _collectorState); 2581 } 2582 while (_foregroundGCIsActive) { 2583 CGC_lock->wait(Mutex::_no_safepoint_check_flag); 2584 } 2585 ConcurrentMarkSweepThread::set_CMS_flag( 2586 ConcurrentMarkSweepThread::CMS_cms_has_token); 2587 ConcurrentMarkSweepThread::clear_CMS_flag( 2588 ConcurrentMarkSweepThread::CMS_cms_wants_token); 2589 } 2590 if (TraceCMSState) { 2591 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d", 2592 Thread::current(), _collectorState); 2593 } 2594 return res; 2595 } 2596 2597 // Because of the need to lock the free lists and other structures in 2598 // the collector, common to all the generations that the collector is 2599 // collecting, we need the gc_prologues of individual CMS generations 2600 // delegate to their collector. It may have been simpler had the 2601 // current infrastructure allowed one to call a prologue on a 2602 // collector. In the absence of that we have the generation's 2603 // prologue delegate to the collector, which delegates back 2604 // some "local" work to a worker method in the individual generations 2605 // that it's responsible for collecting, while itself doing any 2606 // work common to all generations it's responsible for. A similar 2607 // comment applies to the gc_epilogue()'s. 2608 // The role of the varaible _between_prologue_and_epilogue is to 2609 // enforce the invocation protocol. 2610 void CMSCollector::gc_prologue(bool full) { 2611 // Call gc_prologue_work() for each CMSGen and PermGen that 2612 // we are responsible for. 2613 2614 // The following locking discipline assumes that we are only called 2615 // when the world is stopped. 2616 assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption"); 2617 2618 // The CMSCollector prologue must call the gc_prologues for the 2619 // "generations" (including PermGen if any) that it's responsible 2620 // for. 2621 2622 assert( Thread::current()->is_VM_thread() 2623 || ( CMSScavengeBeforeRemark 2624 && Thread::current()->is_ConcurrentGC_thread()), 2625 "Incorrect thread type for prologue execution"); 2626 2627 if (_between_prologue_and_epilogue) { 2628 // We have already been invoked; this is a gc_prologue delegation 2629 // from yet another CMS generation that we are responsible for, just 2630 // ignore it since all relevant work has already been done. 2631 return; 2632 } 2633 2634 // set a bit saying prologue has been called; cleared in epilogue 2635 _between_prologue_and_epilogue = true; 2636 // Claim locks for common data structures, then call gc_prologue_work() 2637 // for each CMSGen and PermGen that we are responsible for. 2638 2639 getFreelistLocks(); // gets free list locks on constituent spaces 2640 bitMapLock()->lock_without_safepoint_check(); 2641 2642 // Should call gc_prologue_work() for all cms gens we are responsible for 2643 bool registerClosure = _collectorState >= Marking 2644 && _collectorState < Sweeping; 2645 ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ? 2646 &_modUnionClosurePar 2647 : &_modUnionClosure; 2648 _cmsGen->gc_prologue_work(full, registerClosure, muc); 2649 _permGen->gc_prologue_work(full, registerClosure, muc); 2650 2651 if (!full) { 2652 stats().record_gc0_begin(); 2653 } 2654 } 2655 2656 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) { 2657 // Delegate to CMScollector which knows how to coordinate between 2658 // this and any other CMS generations that it is responsible for 2659 // collecting. 2660 collector()->gc_prologue(full); 2661 } 2662 2663 // This is a "private" interface for use by this generation's CMSCollector. 2664 // Not to be called directly by any other entity (for instance, 2665 // GenCollectedHeap, which calls the "public" gc_prologue method above). 2666 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full, 2667 bool registerClosure, ModUnionClosure* modUnionClosure) { 2668 assert(!incremental_collection_failed(), "Shouldn't be set yet"); 2669 assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL, 2670 "Should be NULL"); 2671 if (registerClosure) { 2672 cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure); 2673 } 2674 cmsSpace()->gc_prologue(); 2675 // Clear stat counters 2676 NOT_PRODUCT( 2677 assert(_numObjectsPromoted == 0, "check"); 2678 assert(_numWordsPromoted == 0, "check"); 2679 if (Verbose && PrintGC) { 2680 gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, " 2681 SIZE_FORMAT" bytes concurrently", 2682 _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord)); 2683 } 2684 _numObjectsAllocated = 0; 2685 _numWordsAllocated = 0; 2686 ) 2687 } 2688 2689 void CMSCollector::gc_epilogue(bool full) { 2690 // The following locking discipline assumes that we are only called 2691 // when the world is stopped. 2692 assert(SafepointSynchronize::is_at_safepoint(), 2693 "world is stopped assumption"); 2694 2695 // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks 2696 // if linear allocation blocks need to be appropriately marked to allow the 2697 // the blocks to be parsable. We also check here whether we need to nudge the 2698 // CMS collector thread to start a new cycle (if it's not already active). 2699 assert( Thread::current()->is_VM_thread() 2700 || ( CMSScavengeBeforeRemark 2701 && Thread::current()->is_ConcurrentGC_thread()), 2702 "Incorrect thread type for epilogue execution"); 2703 2704 if (!_between_prologue_and_epilogue) { 2705 // We have already been invoked; this is a gc_epilogue delegation 2706 // from yet another CMS generation that we are responsible for, just 2707 // ignore it since all relevant work has already been done. 2708 return; 2709 } 2710 assert(haveFreelistLocks(), "must have freelist locks"); 2711 assert_lock_strong(bitMapLock()); 2712 2713 _cmsGen->gc_epilogue_work(full); 2714 _permGen->gc_epilogue_work(full); 2715 2716 if (_collectorState == AbortablePreclean || _collectorState == Precleaning) { 2717 // in case sampling was not already enabled, enable it 2718 _start_sampling = true; 2719 } 2720 // reset _eden_chunk_array so sampling starts afresh 2721 _eden_chunk_index = 0; 2722 2723 size_t cms_used = _cmsGen->cmsSpace()->used(); 2724 size_t perm_used = _permGen->cmsSpace()->used(); 2725 2726 // update performance counters - this uses a special version of 2727 // update_counters() that allows the utilization to be passed as a 2728 // parameter, avoiding multiple calls to used(). 2729 // 2730 _cmsGen->update_counters(cms_used); 2731 _permGen->update_counters(perm_used); 2732 2733 if (CMSIncrementalMode) { 2734 icms_update_allocation_limits(); 2735 } 2736 2737 bitMapLock()->unlock(); 2738 releaseFreelistLocks(); 2739 2740 if (!CleanChunkPoolAsync) { 2741 Chunk::clean_chunk_pool(); 2742 } 2743 2744 _between_prologue_and_epilogue = false; // ready for next cycle 2745 } 2746 2747 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) { 2748 collector()->gc_epilogue(full); 2749 2750 // Also reset promotion tracking in par gc thread states. 2751 if (CollectedHeap::use_parallel_gc_threads()) { 2752 for (uint i = 0; i < ParallelGCThreads; i++) { 2753 _par_gc_thread_states[i]->promo.stopTrackingPromotions(i); 2754 } 2755 } 2756 } 2757 2758 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) { 2759 assert(!incremental_collection_failed(), "Should have been cleared"); 2760 cmsSpace()->setPreconsumptionDirtyCardClosure(NULL); 2761 cmsSpace()->gc_epilogue(); 2762 // Print stat counters 2763 NOT_PRODUCT( 2764 assert(_numObjectsAllocated == 0, "check"); 2765 assert(_numWordsAllocated == 0, "check"); 2766 if (Verbose && PrintGC) { 2767 gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, " 2768 SIZE_FORMAT" bytes", 2769 _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord)); 2770 } 2771 _numObjectsPromoted = 0; 2772 _numWordsPromoted = 0; 2773 ) 2774 2775 if (PrintGC && Verbose) { 2776 // Call down the chain in contiguous_available needs the freelistLock 2777 // so print this out before releasing the freeListLock. 2778 gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ", 2779 contiguous_available()); 2780 } 2781 } 2782 2783 #ifndef PRODUCT 2784 bool CMSCollector::have_cms_token() { 2785 Thread* thr = Thread::current(); 2786 if (thr->is_VM_thread()) { 2787 return ConcurrentMarkSweepThread::vm_thread_has_cms_token(); 2788 } else if (thr->is_ConcurrentGC_thread()) { 2789 return ConcurrentMarkSweepThread::cms_thread_has_cms_token(); 2790 } else if (thr->is_GC_task_thread()) { 2791 return ConcurrentMarkSweepThread::vm_thread_has_cms_token() && 2792 ParGCRareEvent_lock->owned_by_self(); 2793 } 2794 return false; 2795 } 2796 #endif 2797 2798 // Check reachability of the given heap address in CMS generation, 2799 // treating all other generations as roots. 2800 bool CMSCollector::is_cms_reachable(HeapWord* addr) { 2801 // We could "guarantee" below, rather than assert, but i'll 2802 // leave these as "asserts" so that an adventurous debugger 2803 // could try this in the product build provided some subset of 2804 // the conditions were met, provided they were intersted in the 2805 // results and knew that the computation below wouldn't interfere 2806 // with other concurrent computations mutating the structures 2807 // being read or written. 2808 assert(SafepointSynchronize::is_at_safepoint(), 2809 "Else mutations in object graph will make answer suspect"); 2810 assert(have_cms_token(), "Should hold cms token"); 2811 assert(haveFreelistLocks(), "must hold free list locks"); 2812 assert_lock_strong(bitMapLock()); 2813 2814 // Clear the marking bit map array before starting, but, just 2815 // for kicks, first report if the given address is already marked 2816 gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr, 2817 _markBitMap.isMarked(addr) ? "" : " not"); 2818 2819 if (verify_after_remark()) { 2820 MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag); 2821 bool result = verification_mark_bm()->isMarked(addr); 2822 gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr, 2823 result ? "IS" : "is NOT"); 2824 return result; 2825 } else { 2826 gclog_or_tty->print_cr("Could not compute result"); 2827 return false; 2828 } 2829 } 2830 2831 //////////////////////////////////////////////////////// 2832 // CMS Verification Support 2833 //////////////////////////////////////////////////////// 2834 // Following the remark phase, the following invariant 2835 // should hold -- each object in the CMS heap which is 2836 // marked in markBitMap() should be marked in the verification_mark_bm(). 2837 2838 class VerifyMarkedClosure: public BitMapClosure { 2839 CMSBitMap* _marks; 2840 bool _failed; 2841 2842 public: 2843 VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {} 2844 2845 bool do_bit(size_t offset) { 2846 HeapWord* addr = _marks->offsetToHeapWord(offset); 2847 if (!_marks->isMarked(addr)) { 2848 oop(addr)->print_on(gclog_or_tty); 2849 gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr); 2850 _failed = true; 2851 } 2852 return true; 2853 } 2854 2855 bool failed() { return _failed; } 2856 }; 2857 2858 bool CMSCollector::verify_after_remark() { 2859 gclog_or_tty->print(" [Verifying CMS Marking... "); 2860 MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag); 2861 static bool init = false; 2862 2863 assert(SafepointSynchronize::is_at_safepoint(), 2864 "Else mutations in object graph will make answer suspect"); 2865 assert(have_cms_token(), 2866 "Else there may be mutual interference in use of " 2867 " verification data structures"); 2868 assert(_collectorState > Marking && _collectorState <= Sweeping, 2869 "Else marking info checked here may be obsolete"); 2870 assert(haveFreelistLocks(), "must hold free list locks"); 2871 assert_lock_strong(bitMapLock()); 2872 2873 2874 // Allocate marking bit map if not already allocated 2875 if (!init) { // first time 2876 if (!verification_mark_bm()->allocate(_span)) { 2877 return false; 2878 } 2879 init = true; 2880 } 2881 2882 assert(verification_mark_stack()->isEmpty(), "Should be empty"); 2883 2884 // Turn off refs discovery -- so we will be tracing through refs. 2885 // This is as intended, because by this time 2886 // GC must already have cleared any refs that need to be cleared, 2887 // and traced those that need to be marked; moreover, 2888 // the marking done here is not going to intefere in any 2889 // way with the marking information used by GC. 2890 NoRefDiscovery no_discovery(ref_processor()); 2891 2892 COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;) 2893 2894 // Clear any marks from a previous round 2895 verification_mark_bm()->clear_all(); 2896 assert(verification_mark_stack()->isEmpty(), "markStack should be empty"); 2897 verify_work_stacks_empty(); 2898 2899 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2900 gch->ensure_parsability(false); // fill TLABs, but no need to retire them 2901 // Update the saved marks which may affect the root scans. 2902 gch->save_marks(); 2903 2904 if (CMSRemarkVerifyVariant == 1) { 2905 // In this first variant of verification, we complete 2906 // all marking, then check if the new marks-verctor is 2907 // a subset of the CMS marks-vector. 2908 verify_after_remark_work_1(); 2909 } else if (CMSRemarkVerifyVariant == 2) { 2910 // In this second variant of verification, we flag an error 2911 // (i.e. an object reachable in the new marks-vector not reachable 2912 // in the CMS marks-vector) immediately, also indicating the 2913 // identify of an object (A) that references the unmarked object (B) -- 2914 // presumably, a mutation to A failed to be picked up by preclean/remark? 2915 verify_after_remark_work_2(); 2916 } else { 2917 warning("Unrecognized value %d for CMSRemarkVerifyVariant", 2918 CMSRemarkVerifyVariant); 2919 } 2920 gclog_or_tty->print(" done] "); 2921 return true; 2922 } 2923 2924 void CMSCollector::verify_after_remark_work_1() { 2925 ResourceMark rm; 2926 HandleMark hm; 2927 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2928 2929 // Mark from roots one level into CMS 2930 MarkRefsIntoClosure notOlder(_span, verification_mark_bm()); 2931 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 2932 2933 gch->gen_process_strong_roots(_cmsGen->level(), 2934 true, // younger gens are roots 2935 true, // activate StrongRootsScope 2936 true, // collecting perm gen 2937 SharedHeap::ScanningOption(roots_scanning_options()), 2938 ¬Older, 2939 true, // walk code active on stacks 2940 NULL); 2941 2942 // Now mark from the roots 2943 assert(_revisitStack.isEmpty(), "Should be empty"); 2944 MarkFromRootsClosure markFromRootsClosure(this, _span, 2945 verification_mark_bm(), verification_mark_stack(), &_revisitStack, 2946 false /* don't yield */, true /* verifying */); 2947 assert(_restart_addr == NULL, "Expected pre-condition"); 2948 verification_mark_bm()->iterate(&markFromRootsClosure); 2949 while (_restart_addr != NULL) { 2950 // Deal with stack overflow: by restarting at the indicated 2951 // address. 2952 HeapWord* ra = _restart_addr; 2953 markFromRootsClosure.reset(ra); 2954 _restart_addr = NULL; 2955 verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end()); 2956 } 2957 assert(verification_mark_stack()->isEmpty(), "Should have been drained"); 2958 verify_work_stacks_empty(); 2959 // Should reset the revisit stack above, since no class tree 2960 // surgery is forthcoming. 2961 _revisitStack.reset(); // throwing away all contents 2962 2963 // Marking completed -- now verify that each bit marked in 2964 // verification_mark_bm() is also marked in markBitMap(); flag all 2965 // errors by printing corresponding objects. 2966 VerifyMarkedClosure vcl(markBitMap()); 2967 verification_mark_bm()->iterate(&vcl); 2968 if (vcl.failed()) { 2969 gclog_or_tty->print("Verification failed"); 2970 Universe::heap()->print_on(gclog_or_tty); 2971 fatal("CMS: failed marking verification after remark"); 2972 } 2973 } 2974 2975 void CMSCollector::verify_after_remark_work_2() { 2976 ResourceMark rm; 2977 HandleMark hm; 2978 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2979 2980 // Mark from roots one level into CMS 2981 MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(), 2982 markBitMap()); 2983 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 2984 gch->gen_process_strong_roots(_cmsGen->level(), 2985 true, // younger gens are roots 2986 true, // activate StrongRootsScope 2987 true, // collecting perm gen 2988 SharedHeap::ScanningOption(roots_scanning_options()), 2989 ¬Older, 2990 true, // walk code active on stacks 2991 NULL); 2992 2993 // Now mark from the roots 2994 assert(_revisitStack.isEmpty(), "Should be empty"); 2995 MarkFromRootsVerifyClosure markFromRootsClosure(this, _span, 2996 verification_mark_bm(), markBitMap(), verification_mark_stack()); 2997 assert(_restart_addr == NULL, "Expected pre-condition"); 2998 verification_mark_bm()->iterate(&markFromRootsClosure); 2999 while (_restart_addr != NULL) { 3000 // Deal with stack overflow: by restarting at the indicated 3001 // address. 3002 HeapWord* ra = _restart_addr; 3003 markFromRootsClosure.reset(ra); 3004 _restart_addr = NULL; 3005 verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end()); 3006 } 3007 assert(verification_mark_stack()->isEmpty(), "Should have been drained"); 3008 verify_work_stacks_empty(); 3009 // Should reset the revisit stack above, since no class tree 3010 // surgery is forthcoming. 3011 _revisitStack.reset(); // throwing away all contents 3012 3013 // Marking completed -- now verify that each bit marked in 3014 // verification_mark_bm() is also marked in markBitMap(); flag all 3015 // errors by printing corresponding objects. 3016 VerifyMarkedClosure vcl(markBitMap()); 3017 verification_mark_bm()->iterate(&vcl); 3018 assert(!vcl.failed(), "Else verification above should not have succeeded"); 3019 } 3020 3021 void ConcurrentMarkSweepGeneration::save_marks() { 3022 // delegate to CMS space 3023 cmsSpace()->save_marks(); 3024 for (uint i = 0; i < ParallelGCThreads; i++) { 3025 _par_gc_thread_states[i]->promo.startTrackingPromotions(); 3026 } 3027 } 3028 3029 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() { 3030 return cmsSpace()->no_allocs_since_save_marks(); 3031 } 3032 3033 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \ 3034 \ 3035 void ConcurrentMarkSweepGeneration:: \ 3036 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \ 3037 cl->set_generation(this); \ 3038 cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl); \ 3039 cl->reset_generation(); \ 3040 save_marks(); \ 3041 } 3042 3043 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN) 3044 3045 void 3046 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk) 3047 { 3048 // Not currently implemented; need to do the following. -- ysr. 3049 // dld -- I think that is used for some sort of allocation profiler. So it 3050 // really means the objects allocated by the mutator since the last 3051 // GC. We could potentially implement this cheaply by recording only 3052 // the direct allocations in a side data structure. 3053 // 3054 // I think we probably ought not to be required to support these 3055 // iterations at any arbitrary point; I think there ought to be some 3056 // call to enable/disable allocation profiling in a generation/space, 3057 // and the iterator ought to return the objects allocated in the 3058 // gen/space since the enable call, or the last iterator call (which 3059 // will probably be at a GC.) That way, for gens like CM&S that would 3060 // require some extra data structure to support this, we only pay the 3061 // cost when it's in use... 3062 cmsSpace()->object_iterate_since_last_GC(blk); 3063 } 3064 3065 void 3066 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) { 3067 cl->set_generation(this); 3068 younger_refs_in_space_iterate(_cmsSpace, cl); 3069 cl->reset_generation(); 3070 } 3071 3072 void 3073 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, OopClosure* cl) { 3074 if (freelistLock()->owned_by_self()) { 3075 Generation::oop_iterate(mr, cl); 3076 } else { 3077 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3078 Generation::oop_iterate(mr, cl); 3079 } 3080 } 3081 3082 void 3083 ConcurrentMarkSweepGeneration::oop_iterate(OopClosure* cl) { 3084 if (freelistLock()->owned_by_self()) { 3085 Generation::oop_iterate(cl); 3086 } else { 3087 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3088 Generation::oop_iterate(cl); 3089 } 3090 } 3091 3092 void 3093 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) { 3094 if (freelistLock()->owned_by_self()) { 3095 Generation::object_iterate(cl); 3096 } else { 3097 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3098 Generation::object_iterate(cl); 3099 } 3100 } 3101 3102 void 3103 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) { 3104 if (freelistLock()->owned_by_self()) { 3105 Generation::safe_object_iterate(cl); 3106 } else { 3107 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3108 Generation::safe_object_iterate(cl); 3109 } 3110 } 3111 3112 void 3113 ConcurrentMarkSweepGeneration::pre_adjust_pointers() { 3114 } 3115 3116 void 3117 ConcurrentMarkSweepGeneration::post_compact() { 3118 } 3119 3120 void 3121 ConcurrentMarkSweepGeneration::prepare_for_verify() { 3122 // Fix the linear allocation blocks to look like free blocks. 3123 3124 // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those 3125 // are not called when the heap is verified during universe initialization and 3126 // at vm shutdown. 3127 if (freelistLock()->owned_by_self()) { 3128 cmsSpace()->prepare_for_verify(); 3129 } else { 3130 MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag); 3131 cmsSpace()->prepare_for_verify(); 3132 } 3133 } 3134 3135 void 3136 ConcurrentMarkSweepGeneration::verify() { 3137 // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those 3138 // are not called when the heap is verified during universe initialization and 3139 // at vm shutdown. 3140 if (freelistLock()->owned_by_self()) { 3141 cmsSpace()->verify(); 3142 } else { 3143 MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag); 3144 cmsSpace()->verify(); 3145 } 3146 } 3147 3148 void CMSCollector::verify() { 3149 _cmsGen->verify(); 3150 _permGen->verify(); 3151 } 3152 3153 #ifndef PRODUCT 3154 bool CMSCollector::overflow_list_is_empty() const { 3155 assert(_num_par_pushes >= 0, "Inconsistency"); 3156 if (_overflow_list == NULL) { 3157 assert(_num_par_pushes == 0, "Inconsistency"); 3158 } 3159 return _overflow_list == NULL; 3160 } 3161 3162 // The methods verify_work_stacks_empty() and verify_overflow_empty() 3163 // merely consolidate assertion checks that appear to occur together frequently. 3164 void CMSCollector::verify_work_stacks_empty() const { 3165 assert(_markStack.isEmpty(), "Marking stack should be empty"); 3166 assert(overflow_list_is_empty(), "Overflow list should be empty"); 3167 } 3168 3169 void CMSCollector::verify_overflow_empty() const { 3170 assert(overflow_list_is_empty(), "Overflow list should be empty"); 3171 assert(no_preserved_marks(), "No preserved marks"); 3172 } 3173 #endif // PRODUCT 3174 3175 // Decide if we want to enable class unloading as part of the 3176 // ensuing concurrent GC cycle. We will collect the perm gen and 3177 // unload classes if it's the case that: 3178 // (1) an explicit gc request has been made and the flag 3179 // ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR 3180 // (2) (a) class unloading is enabled at the command line, and 3181 // (b) (i) perm gen threshold has been crossed, or 3182 // (ii) old gen is getting really full, or 3183 // (iii) the previous N CMS collections did not collect the 3184 // perm gen 3185 // NOTE: Provided there is no change in the state of the heap between 3186 // calls to this method, it should have idempotent results. Moreover, 3187 // its results should be monotonically increasing (i.e. going from 0 to 1, 3188 // but not 1 to 0) between successive calls between which the heap was 3189 // not collected. For the implementation below, it must thus rely on 3190 // the property that concurrent_cycles_since_last_unload() 3191 // will not decrease unless a collection cycle happened and that 3192 // _permGen->should_concurrent_collect() and _cmsGen->is_too_full() are 3193 // themselves also monotonic in that sense. See check_monotonicity() 3194 // below. 3195 bool CMSCollector::update_should_unload_classes() { 3196 _should_unload_classes = false; 3197 // Condition 1 above 3198 if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) { 3199 _should_unload_classes = true; 3200 } else if (CMSClassUnloadingEnabled) { // Condition 2.a above 3201 // Disjuncts 2.b.(i,ii,iii) above 3202 _should_unload_classes = (concurrent_cycles_since_last_unload() >= 3203 CMSClassUnloadingMaxInterval) 3204 || _permGen->should_concurrent_collect() 3205 || _cmsGen->is_too_full(); 3206 } 3207 return _should_unload_classes; 3208 } 3209 3210 bool ConcurrentMarkSweepGeneration::is_too_full() const { 3211 bool res = should_concurrent_collect(); 3212 res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0); 3213 return res; 3214 } 3215 3216 void CMSCollector::setup_cms_unloading_and_verification_state() { 3217 const bool should_verify = VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC 3218 || VerifyBeforeExit; 3219 const int rso = SharedHeap::SO_Strings | SharedHeap::SO_CodeCache; 3220 3221 if (should_unload_classes()) { // Should unload classes this cycle 3222 remove_root_scanning_option(rso); // Shrink the root set appropriately 3223 set_verifying(should_verify); // Set verification state for this cycle 3224 return; // Nothing else needs to be done at this time 3225 } 3226 3227 // Not unloading classes this cycle 3228 assert(!should_unload_classes(), "Inconsitency!"); 3229 if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) { 3230 // We were not verifying, or we _were_ unloading classes in the last cycle, 3231 // AND some verification options are enabled this cycle; in this case, 3232 // we must make sure that the deadness map is allocated if not already so, 3233 // and cleared (if already allocated previously -- 3234 // CMSBitMap::sizeInBits() is used to determine if it's allocated). 3235 if (perm_gen_verify_bit_map()->sizeInBits() == 0) { 3236 if (!perm_gen_verify_bit_map()->allocate(_permGen->reserved())) { 3237 warning("Failed to allocate permanent generation verification CMS Bit Map;\n" 3238 "permanent generation verification disabled"); 3239 return; // Note that we leave verification disabled, so we'll retry this 3240 // allocation next cycle. We _could_ remember this failure 3241 // and skip further attempts and permanently disable verification 3242 // attempts if that is considered more desirable. 3243 } 3244 assert(perm_gen_verify_bit_map()->covers(_permGen->reserved()), 3245 "_perm_gen_ver_bit_map inconsistency?"); 3246 } else { 3247 perm_gen_verify_bit_map()->clear_all(); 3248 } 3249 // Include symbols, strings and code cache elements to prevent their resurrection. 3250 add_root_scanning_option(rso); 3251 set_verifying(true); 3252 } else if (verifying() && !should_verify) { 3253 // We were verifying, but some verification flags got disabled. 3254 set_verifying(false); 3255 // Exclude symbols, strings and code cache elements from root scanning to 3256 // reduce IM and RM pauses. 3257 remove_root_scanning_option(rso); 3258 } 3259 } 3260 3261 3262 #ifndef PRODUCT 3263 HeapWord* CMSCollector::block_start(const void* p) const { 3264 const HeapWord* addr = (HeapWord*)p; 3265 if (_span.contains(p)) { 3266 if (_cmsGen->cmsSpace()->is_in_reserved(addr)) { 3267 return _cmsGen->cmsSpace()->block_start(p); 3268 } else { 3269 assert(_permGen->cmsSpace()->is_in_reserved(addr), 3270 "Inconsistent _span?"); 3271 return _permGen->cmsSpace()->block_start(p); 3272 } 3273 } 3274 return NULL; 3275 } 3276 #endif 3277 3278 HeapWord* 3279 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size, 3280 bool tlab, 3281 bool parallel) { 3282 CMSSynchronousYieldRequest yr; 3283 assert(!tlab, "Can't deal with TLAB allocation"); 3284 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3285 expand(word_size*HeapWordSize, MinHeapDeltaBytes, 3286 CMSExpansionCause::_satisfy_allocation); 3287 if (GCExpandToAllocateDelayMillis > 0) { 3288 os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); 3289 } 3290 return have_lock_and_allocate(word_size, tlab); 3291 } 3292 3293 // YSR: All of this generation expansion/shrinking stuff is an exact copy of 3294 // OneContigSpaceCardGeneration, which makes me wonder if we should move this 3295 // to CardGeneration and share it... 3296 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) { 3297 return CardGeneration::expand(bytes, expand_bytes); 3298 } 3299 3300 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes, 3301 CMSExpansionCause::Cause cause) 3302 { 3303 3304 bool success = expand(bytes, expand_bytes); 3305 3306 // remember why we expanded; this information is used 3307 // by shouldConcurrentCollect() when making decisions on whether to start 3308 // a new CMS cycle. 3309 if (success) { 3310 set_expansion_cause(cause); 3311 if (PrintGCDetails && Verbose) { 3312 gclog_or_tty->print_cr("Expanded CMS gen for %s", 3313 CMSExpansionCause::to_string(cause)); 3314 } 3315 } 3316 } 3317 3318 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) { 3319 HeapWord* res = NULL; 3320 MutexLocker x(ParGCRareEvent_lock); 3321 while (true) { 3322 // Expansion by some other thread might make alloc OK now: 3323 res = ps->lab.alloc(word_sz); 3324 if (res != NULL) return res; 3325 // If there's not enough expansion space available, give up. 3326 if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) { 3327 return NULL; 3328 } 3329 // Otherwise, we try expansion. 3330 expand(word_sz*HeapWordSize, MinHeapDeltaBytes, 3331 CMSExpansionCause::_allocate_par_lab); 3332 // Now go around the loop and try alloc again; 3333 // A competing par_promote might beat us to the expansion space, 3334 // so we may go around the loop again if promotion fails agaion. 3335 if (GCExpandToAllocateDelayMillis > 0) { 3336 os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); 3337 } 3338 } 3339 } 3340 3341 3342 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space( 3343 PromotionInfo* promo) { 3344 MutexLocker x(ParGCRareEvent_lock); 3345 size_t refill_size_bytes = promo->refillSize() * HeapWordSize; 3346 while (true) { 3347 // Expansion by some other thread might make alloc OK now: 3348 if (promo->ensure_spooling_space()) { 3349 assert(promo->has_spooling_space(), 3350 "Post-condition of successful ensure_spooling_space()"); 3351 return true; 3352 } 3353 // If there's not enough expansion space available, give up. 3354 if (_virtual_space.uncommitted_size() < refill_size_bytes) { 3355 return false; 3356 } 3357 // Otherwise, we try expansion. 3358 expand(refill_size_bytes, MinHeapDeltaBytes, 3359 CMSExpansionCause::_allocate_par_spooling_space); 3360 // Now go around the loop and try alloc again; 3361 // A competing allocation might beat us to the expansion space, 3362 // so we may go around the loop again if allocation fails again. 3363 if (GCExpandToAllocateDelayMillis > 0) { 3364 os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); 3365 } 3366 } 3367 } 3368 3369 3370 3371 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) { 3372 assert_locked_or_safepoint(Heap_lock); 3373 size_t size = ReservedSpace::page_align_size_down(bytes); 3374 if (size > 0) { 3375 shrink_by(size); 3376 } 3377 } 3378 3379 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) { 3380 assert_locked_or_safepoint(Heap_lock); 3381 bool result = _virtual_space.expand_by(bytes); 3382 if (result) { 3383 HeapWord* old_end = _cmsSpace->end(); 3384 size_t new_word_size = 3385 heap_word_size(_virtual_space.committed_size()); 3386 MemRegion mr(_cmsSpace->bottom(), new_word_size); 3387 _bts->resize(new_word_size); // resize the block offset shared array 3388 Universe::heap()->barrier_set()->resize_covered_region(mr); 3389 // Hmmmm... why doesn't CFLS::set_end verify locking? 3390 // This is quite ugly; FIX ME XXX 3391 _cmsSpace->assert_locked(freelistLock()); 3392 _cmsSpace->set_end((HeapWord*)_virtual_space.high()); 3393 3394 // update the space and generation capacity counters 3395 if (UsePerfData) { 3396 _space_counters->update_capacity(); 3397 _gen_counters->update_all(); 3398 } 3399 3400 if (Verbose && PrintGC) { 3401 size_t new_mem_size = _virtual_space.committed_size(); 3402 size_t old_mem_size = new_mem_size - bytes; 3403 gclog_or_tty->print_cr("Expanding %s from %ldK by %ldK to %ldK", 3404 name(), old_mem_size/K, bytes/K, new_mem_size/K); 3405 } 3406 } 3407 return result; 3408 } 3409 3410 bool ConcurrentMarkSweepGeneration::grow_to_reserved() { 3411 assert_locked_or_safepoint(Heap_lock); 3412 bool success = true; 3413 const size_t remaining_bytes = _virtual_space.uncommitted_size(); 3414 if (remaining_bytes > 0) { 3415 success = grow_by(remaining_bytes); 3416 DEBUG_ONLY(if (!success) warning("grow to reserved failed");) 3417 } 3418 return success; 3419 } 3420 3421 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) { 3422 assert_locked_or_safepoint(Heap_lock); 3423 assert_lock_strong(freelistLock()); 3424 // XXX Fix when compaction is implemented. 3425 warning("Shrinking of CMS not yet implemented"); 3426 return; 3427 } 3428 3429 3430 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent 3431 // phases. 3432 class CMSPhaseAccounting: public StackObj { 3433 public: 3434 CMSPhaseAccounting(CMSCollector *collector, 3435 const char *phase, 3436 bool print_cr = true); 3437 ~CMSPhaseAccounting(); 3438 3439 private: 3440 CMSCollector *_collector; 3441 const char *_phase; 3442 elapsedTimer _wallclock; 3443 bool _print_cr; 3444 3445 public: 3446 // Not MT-safe; so do not pass around these StackObj's 3447 // where they may be accessed by other threads. 3448 jlong wallclock_millis() { 3449 assert(_wallclock.is_active(), "Wall clock should not stop"); 3450 _wallclock.stop(); // to record time 3451 jlong ret = _wallclock.milliseconds(); 3452 _wallclock.start(); // restart 3453 return ret; 3454 } 3455 }; 3456 3457 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector, 3458 const char *phase, 3459 bool print_cr) : 3460 _collector(collector), _phase(phase), _print_cr(print_cr) { 3461 3462 if (PrintCMSStatistics != 0) { 3463 _collector->resetYields(); 3464 } 3465 if (PrintGCDetails && PrintGCTimeStamps) { 3466 gclog_or_tty->date_stamp(PrintGCDateStamps); 3467 gclog_or_tty->stamp(); 3468 gclog_or_tty->print_cr(": [%s-concurrent-%s-start]", 3469 _collector->cmsGen()->short_name(), _phase); 3470 } 3471 _collector->resetTimer(); 3472 _wallclock.start(); 3473 _collector->startTimer(); 3474 } 3475 3476 CMSPhaseAccounting::~CMSPhaseAccounting() { 3477 assert(_wallclock.is_active(), "Wall clock should not have stopped"); 3478 _collector->stopTimer(); 3479 _wallclock.stop(); 3480 if (PrintGCDetails) { 3481 gclog_or_tty->date_stamp(PrintGCDateStamps); 3482 gclog_or_tty->stamp(PrintGCTimeStamps); 3483 gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]", 3484 _collector->cmsGen()->short_name(), 3485 _phase, _collector->timerValue(), _wallclock.seconds()); 3486 if (_print_cr) { 3487 gclog_or_tty->print_cr(""); 3488 } 3489 if (PrintCMSStatistics != 0) { 3490 gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase, 3491 _collector->yields()); 3492 } 3493 } 3494 } 3495 3496 // CMS work 3497 3498 // Checkpoint the roots into this generation from outside 3499 // this generation. [Note this initial checkpoint need only 3500 // be approximate -- we'll do a catch up phase subsequently.] 3501 void CMSCollector::checkpointRootsInitial(bool asynch) { 3502 assert(_collectorState == InitialMarking, "Wrong collector state"); 3503 check_correct_thread_executing(); 3504 TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause()); 3505 3506 ReferenceProcessor* rp = ref_processor(); 3507 SpecializationStats::clear(); 3508 assert(_restart_addr == NULL, "Control point invariant"); 3509 if (asynch) { 3510 // acquire locks for subsequent manipulations 3511 MutexLockerEx x(bitMapLock(), 3512 Mutex::_no_safepoint_check_flag); 3513 checkpointRootsInitialWork(asynch); 3514 // enable ("weak") refs discovery 3515 rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/); 3516 _collectorState = Marking; 3517 } else { 3518 // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection 3519 // which recognizes if we are a CMS generation, and doesn't try to turn on 3520 // discovery; verify that they aren't meddling. 3521 assert(!rp->discovery_is_atomic(), 3522 "incorrect setting of discovery predicate"); 3523 assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control " 3524 "ref discovery for this generation kind"); 3525 // already have locks 3526 checkpointRootsInitialWork(asynch); 3527 // now enable ("weak") refs discovery 3528 rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/); 3529 _collectorState = Marking; 3530 } 3531 SpecializationStats::print(); 3532 } 3533 3534 void CMSCollector::checkpointRootsInitialWork(bool asynch) { 3535 assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped"); 3536 assert(_collectorState == InitialMarking, "just checking"); 3537 3538 // If there has not been a GC[n-1] since last GC[n] cycle completed, 3539 // precede our marking with a collection of all 3540 // younger generations to keep floating garbage to a minimum. 3541 // XXX: we won't do this for now -- it's an optimization to be done later. 3542 3543 // already have locks 3544 assert_lock_strong(bitMapLock()); 3545 assert(_markBitMap.isAllClear(), "was reset at end of previous cycle"); 3546 3547 // Setup the verification and class unloading state for this 3548 // CMS collection cycle. 3549 setup_cms_unloading_and_verification_state(); 3550 3551 NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork", 3552 PrintGCDetails && Verbose, true, _gc_timer_cm);) 3553 if (UseAdaptiveSizePolicy) { 3554 size_policy()->checkpoint_roots_initial_begin(); 3555 } 3556 3557 // Reset all the PLAB chunk arrays if necessary. 3558 if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) { 3559 reset_survivor_plab_arrays(); 3560 } 3561 3562 ResourceMark rm; 3563 HandleMark hm; 3564 3565 FalseClosure falseClosure; 3566 // In the case of a synchronous collection, we will elide the 3567 // remark step, so it's important to catch all the nmethod oops 3568 // in this step. 3569 // The final 'true' flag to gen_process_strong_roots will ensure this. 3570 // If 'async' is true, we can relax the nmethod tracing. 3571 MarkRefsIntoClosure notOlder(_span, &_markBitMap); 3572 GenCollectedHeap* gch = GenCollectedHeap::heap(); 3573 3574 verify_work_stacks_empty(); 3575 verify_overflow_empty(); 3576 3577 gch->ensure_parsability(false); // fill TLABs, but no need to retire them 3578 // Update the saved marks which may affect the root scans. 3579 gch->save_marks(); 3580 3581 // weak reference processing has not started yet. 3582 ref_processor()->set_enqueuing_is_done(false); 3583 3584 { 3585 // This is not needed. DEBUG_ONLY(RememberKlassesChecker imx(true);) 3586 COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;) 3587 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 3588 gch->gen_process_strong_roots(_cmsGen->level(), 3589 true, // younger gens are roots 3590 true, // activate StrongRootsScope 3591 true, // collecting perm gen 3592 SharedHeap::ScanningOption(roots_scanning_options()), 3593 ¬Older, 3594 true, // walk all of code cache if (so & SO_CodeCache) 3595 NULL); 3596 } 3597 3598 // Clear mod-union table; it will be dirtied in the prologue of 3599 // CMS generation per each younger generation collection. 3600 3601 assert(_modUnionTable.isAllClear(), 3602 "Was cleared in most recent final checkpoint phase" 3603 " or no bits are set in the gc_prologue before the start of the next " 3604 "subsequent marking phase."); 3605 3606 // Save the end of the used_region of the constituent generations 3607 // to be used to limit the extent of sweep in each generation. 3608 save_sweep_limits(); 3609 if (UseAdaptiveSizePolicy) { 3610 size_policy()->checkpoint_roots_initial_end(gch->gc_cause()); 3611 } 3612 verify_overflow_empty(); 3613 } 3614 3615 bool CMSCollector::markFromRoots(bool asynch) { 3616 // we might be tempted to assert that: 3617 // assert(asynch == !SafepointSynchronize::is_at_safepoint(), 3618 // "inconsistent argument?"); 3619 // However that wouldn't be right, because it's possible that 3620 // a safepoint is indeed in progress as a younger generation 3621 // stop-the-world GC happens even as we mark in this generation. 3622 assert(_collectorState == Marking, "inconsistent state?"); 3623 check_correct_thread_executing(); 3624 verify_overflow_empty(); 3625 3626 bool res; 3627 if (asynch) { 3628 3629 // Start the timers for adaptive size policy for the concurrent phases 3630 // Do it here so that the foreground MS can use the concurrent 3631 // timer since a foreground MS might has the sweep done concurrently 3632 // or STW. 3633 if (UseAdaptiveSizePolicy) { 3634 size_policy()->concurrent_marking_begin(); 3635 } 3636 3637 // Weak ref discovery note: We may be discovering weak 3638 // refs in this generation concurrent (but interleaved) with 3639 // weak ref discovery by a younger generation collector. 3640 3641 CMSTokenSyncWithLocks ts(true, bitMapLock()); 3642 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 3643 CMSPhaseAccounting pa(this, "mark", !PrintGCDetails); 3644 res = markFromRootsWork(asynch); 3645 if (res) { 3646 _collectorState = Precleaning; 3647 } else { // We failed and a foreground collection wants to take over 3648 assert(_foregroundGCIsActive, "internal state inconsistency"); 3649 assert(_restart_addr == NULL, "foreground will restart from scratch"); 3650 if (PrintGCDetails) { 3651 gclog_or_tty->print_cr("bailing out to foreground collection"); 3652 } 3653 } 3654 if (UseAdaptiveSizePolicy) { 3655 size_policy()->concurrent_marking_end(); 3656 } 3657 } else { 3658 assert(SafepointSynchronize::is_at_safepoint(), 3659 "inconsistent with asynch == false"); 3660 if (UseAdaptiveSizePolicy) { 3661 size_policy()->ms_collection_marking_begin(); 3662 } 3663 // already have locks 3664 res = markFromRootsWork(asynch); 3665 _collectorState = FinalMarking; 3666 if (UseAdaptiveSizePolicy) { 3667 GenCollectedHeap* gch = GenCollectedHeap::heap(); 3668 size_policy()->ms_collection_marking_end(gch->gc_cause()); 3669 } 3670 } 3671 verify_overflow_empty(); 3672 return res; 3673 } 3674 3675 bool CMSCollector::markFromRootsWork(bool asynch) { 3676 // iterate over marked bits in bit map, doing a full scan and mark 3677 // from these roots using the following algorithm: 3678 // . if oop is to the right of the current scan pointer, 3679 // mark corresponding bit (we'll process it later) 3680 // . else (oop is to left of current scan pointer) 3681 // push oop on marking stack 3682 // . drain the marking stack 3683 3684 // Note that when we do a marking step we need to hold the 3685 // bit map lock -- recall that direct allocation (by mutators) 3686 // and promotion (by younger generation collectors) is also 3687 // marking the bit map. [the so-called allocate live policy.] 3688 // Because the implementation of bit map marking is not 3689 // robust wrt simultaneous marking of bits in the same word, 3690 // we need to make sure that there is no such interference 3691 // between concurrent such updates. 3692 3693 // already have locks 3694 assert_lock_strong(bitMapLock()); 3695 3696 // Clear the revisit stack, just in case there are any 3697 // obsolete contents from a short-circuited previous CMS cycle. 3698 _revisitStack.reset(); 3699 verify_work_stacks_empty(); 3700 verify_overflow_empty(); 3701 assert(_revisitStack.isEmpty(), "tabula rasa"); 3702 DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());) 3703 bool result = false; 3704 if (CMSConcurrentMTEnabled && ConcGCThreads > 0) { 3705 result = do_marking_mt(asynch); 3706 } else { 3707 result = do_marking_st(asynch); 3708 } 3709 return result; 3710 } 3711 3712 // Forward decl 3713 class CMSConcMarkingTask; 3714 3715 class CMSConcMarkingTerminator: public ParallelTaskTerminator { 3716 CMSCollector* _collector; 3717 CMSConcMarkingTask* _task; 3718 public: 3719 virtual void yield(); 3720 3721 // "n_threads" is the number of threads to be terminated. 3722 // "queue_set" is a set of work queues of other threads. 3723 // "collector" is the CMS collector associated with this task terminator. 3724 // "yield" indicates whether we need the gang as a whole to yield. 3725 CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) : 3726 ParallelTaskTerminator(n_threads, queue_set), 3727 _collector(collector) { } 3728 3729 void set_task(CMSConcMarkingTask* task) { 3730 _task = task; 3731 } 3732 }; 3733 3734 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator { 3735 CMSConcMarkingTask* _task; 3736 public: 3737 bool should_exit_termination(); 3738 void set_task(CMSConcMarkingTask* task) { 3739 _task = task; 3740 } 3741 }; 3742 3743 // MT Concurrent Marking Task 3744 class CMSConcMarkingTask: public YieldingFlexibleGangTask { 3745 CMSCollector* _collector; 3746 int _n_workers; // requested/desired # workers 3747 bool _asynch; 3748 bool _result; 3749 CompactibleFreeListSpace* _cms_space; 3750 CompactibleFreeListSpace* _perm_space; 3751 char _pad_front[64]; // padding to ... 3752 HeapWord* _global_finger; // ... avoid sharing cache line 3753 char _pad_back[64]; 3754 HeapWord* _restart_addr; 3755 3756 // Exposed here for yielding support 3757 Mutex* const _bit_map_lock; 3758 3759 // The per thread work queues, available here for stealing 3760 OopTaskQueueSet* _task_queues; 3761 3762 // Termination (and yielding) support 3763 CMSConcMarkingTerminator _term; 3764 CMSConcMarkingTerminatorTerminator _term_term; 3765 3766 public: 3767 CMSConcMarkingTask(CMSCollector* collector, 3768 CompactibleFreeListSpace* cms_space, 3769 CompactibleFreeListSpace* perm_space, 3770 bool asynch, 3771 YieldingFlexibleWorkGang* workers, 3772 OopTaskQueueSet* task_queues): 3773 YieldingFlexibleGangTask("Concurrent marking done multi-threaded"), 3774 _collector(collector), 3775 _cms_space(cms_space), 3776 _perm_space(perm_space), 3777 _asynch(asynch), _n_workers(0), _result(true), 3778 _task_queues(task_queues), 3779 _term(_n_workers, task_queues, _collector), 3780 _bit_map_lock(collector->bitMapLock()) 3781 { 3782 _requested_size = _n_workers; 3783 _term.set_task(this); 3784 _term_term.set_task(this); 3785 assert(_cms_space->bottom() < _perm_space->bottom(), 3786 "Finger incorrectly initialized below"); 3787 _restart_addr = _global_finger = _cms_space->bottom(); 3788 } 3789 3790 3791 OopTaskQueueSet* task_queues() { return _task_queues; } 3792 3793 OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); } 3794 3795 HeapWord** global_finger_addr() { return &_global_finger; } 3796 3797 CMSConcMarkingTerminator* terminator() { return &_term; } 3798 3799 virtual void set_for_termination(int active_workers) { 3800 terminator()->reset_for_reuse(active_workers); 3801 } 3802 3803 void work(uint worker_id); 3804 bool should_yield() { 3805 return ConcurrentMarkSweepThread::should_yield() 3806 && !_collector->foregroundGCIsActive() 3807 && _asynch; 3808 } 3809 3810 virtual void coordinator_yield(); // stuff done by coordinator 3811 bool result() { return _result; } 3812 3813 void reset(HeapWord* ra) { 3814 assert(_global_finger >= _cms_space->end(), "Postcondition of ::work(i)"); 3815 assert(_global_finger >= _perm_space->end(), "Postcondition of ::work(i)"); 3816 assert(ra < _perm_space->end(), "ra too large"); 3817 _restart_addr = _global_finger = ra; 3818 _term.reset_for_reuse(); 3819 } 3820 3821 static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk, 3822 OopTaskQueue* work_q); 3823 3824 private: 3825 void do_scan_and_mark(int i, CompactibleFreeListSpace* sp); 3826 void do_work_steal(int i); 3827 void bump_global_finger(HeapWord* f); 3828 }; 3829 3830 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() { 3831 assert(_task != NULL, "Error"); 3832 return _task->yielding(); 3833 // Note that we do not need the disjunct || _task->should_yield() above 3834 // because we want terminating threads to yield only if the task 3835 // is already in the midst of yielding, which happens only after at least one 3836 // thread has yielded. 3837 } 3838 3839 void CMSConcMarkingTerminator::yield() { 3840 if (_task->should_yield()) { 3841 _task->yield(); 3842 } else { 3843 ParallelTaskTerminator::yield(); 3844 } 3845 } 3846 3847 //////////////////////////////////////////////////////////////// 3848 // Concurrent Marking Algorithm Sketch 3849 //////////////////////////////////////////////////////////////// 3850 // Until all tasks exhausted (both spaces): 3851 // -- claim next available chunk 3852 // -- bump global finger via CAS 3853 // -- find first object that starts in this chunk 3854 // and start scanning bitmap from that position 3855 // -- scan marked objects for oops 3856 // -- CAS-mark target, and if successful: 3857 // . if target oop is above global finger (volatile read) 3858 // nothing to do 3859 // . if target oop is in chunk and above local finger 3860 // then nothing to do 3861 // . else push on work-queue 3862 // -- Deal with possible overflow issues: 3863 // . local work-queue overflow causes stuff to be pushed on 3864 // global (common) overflow queue 3865 // . always first empty local work queue 3866 // . then get a batch of oops from global work queue if any 3867 // . then do work stealing 3868 // -- When all tasks claimed (both spaces) 3869 // and local work queue empty, 3870 // then in a loop do: 3871 // . check global overflow stack; steal a batch of oops and trace 3872 // . try to steal from other threads oif GOS is empty 3873 // . if neither is available, offer termination 3874 // -- Terminate and return result 3875 // 3876 void CMSConcMarkingTask::work(uint worker_id) { 3877 elapsedTimer _timer; 3878 ResourceMark rm; 3879 HandleMark hm; 3880 3881 DEBUG_ONLY(_collector->verify_overflow_empty();) 3882 3883 // Before we begin work, our work queue should be empty 3884 assert(work_queue(worker_id)->size() == 0, "Expected to be empty"); 3885 // Scan the bitmap covering _cms_space, tracing through grey objects. 3886 _timer.start(); 3887 do_scan_and_mark(worker_id, _cms_space); 3888 _timer.stop(); 3889 if (PrintCMSStatistics != 0) { 3890 gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec", 3891 worker_id, _timer.seconds()); 3892 // XXX: need xxx/xxx type of notation, two timers 3893 } 3894 3895 // ... do the same for the _perm_space 3896 _timer.reset(); 3897 _timer.start(); 3898 do_scan_and_mark(worker_id, _perm_space); 3899 _timer.stop(); 3900 if (PrintCMSStatistics != 0) { 3901 gclog_or_tty->print_cr("Finished perm space scanning in %dth thread: %3.3f sec", 3902 worker_id, _timer.seconds()); 3903 // XXX: need xxx/xxx type of notation, two timers 3904 } 3905 3906 // ... do work stealing 3907 _timer.reset(); 3908 _timer.start(); 3909 do_work_steal(worker_id); 3910 _timer.stop(); 3911 if (PrintCMSStatistics != 0) { 3912 gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec", 3913 worker_id, _timer.seconds()); 3914 // XXX: need xxx/xxx type of notation, two timers 3915 } 3916 assert(_collector->_markStack.isEmpty(), "Should have been emptied"); 3917 assert(work_queue(worker_id)->size() == 0, "Should have been emptied"); 3918 // Note that under the current task protocol, the 3919 // following assertion is true even of the spaces 3920 // expanded since the completion of the concurrent 3921 // marking. XXX This will likely change under a strict 3922 // ABORT semantics. 3923 assert(_global_finger > _cms_space->end() && 3924 _global_finger >= _perm_space->end(), 3925 "All tasks have been completed"); 3926 DEBUG_ONLY(_collector->verify_overflow_empty();) 3927 } 3928 3929 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) { 3930 HeapWord* read = _global_finger; 3931 HeapWord* cur = read; 3932 while (f > read) { 3933 cur = read; 3934 read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur); 3935 if (cur == read) { 3936 // our cas succeeded 3937 assert(_global_finger >= f, "protocol consistency"); 3938 break; 3939 } 3940 } 3941 } 3942 3943 // This is really inefficient, and should be redone by 3944 // using (not yet available) block-read and -write interfaces to the 3945 // stack and the work_queue. XXX FIX ME !!! 3946 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk, 3947 OopTaskQueue* work_q) { 3948 // Fast lock-free check 3949 if (ovflw_stk->length() == 0) { 3950 return false; 3951 } 3952 assert(work_q->size() == 0, "Shouldn't steal"); 3953 MutexLockerEx ml(ovflw_stk->par_lock(), 3954 Mutex::_no_safepoint_check_flag); 3955 // Grab up to 1/4 the size of the work queue 3956 size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, 3957 (size_t)ParGCDesiredObjsFromOverflowList); 3958 num = MIN2(num, ovflw_stk->length()); 3959 for (int i = (int) num; i > 0; i--) { 3960 oop cur = ovflw_stk->pop(); 3961 assert(cur != NULL, "Counted wrong?"); 3962 work_q->push(cur); 3963 } 3964 return num > 0; 3965 } 3966 3967 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) { 3968 SequentialSubTasksDone* pst = sp->conc_par_seq_tasks(); 3969 int n_tasks = pst->n_tasks(); 3970 // We allow that there may be no tasks to do here because 3971 // we are restarting after a stack overflow. 3972 assert(pst->valid() || n_tasks == 0, "Uninitialized use?"); 3973 uint nth_task = 0; 3974 3975 HeapWord* aligned_start = sp->bottom(); 3976 if (sp->used_region().contains(_restart_addr)) { 3977 // Align down to a card boundary for the start of 0th task 3978 // for this space. 3979 aligned_start = 3980 (HeapWord*)align_size_down((uintptr_t)_restart_addr, 3981 CardTableModRefBS::card_size); 3982 } 3983 3984 size_t chunk_size = sp->marking_task_size(); 3985 while (!pst->is_task_claimed(/* reference */ nth_task)) { 3986 // Having claimed the nth task in this space, 3987 // compute the chunk that it corresponds to: 3988 MemRegion span = MemRegion(aligned_start + nth_task*chunk_size, 3989 aligned_start + (nth_task+1)*chunk_size); 3990 // Try and bump the global finger via a CAS; 3991 // note that we need to do the global finger bump 3992 // _before_ taking the intersection below, because 3993 // the task corresponding to that region will be 3994 // deemed done even if the used_region() expands 3995 // because of allocation -- as it almost certainly will 3996 // during start-up while the threads yield in the 3997 // closure below. 3998 HeapWord* finger = span.end(); 3999 bump_global_finger(finger); // atomically 4000 // There are null tasks here corresponding to chunks 4001 // beyond the "top" address of the space. 4002 span = span.intersection(sp->used_region()); 4003 if (!span.is_empty()) { // Non-null task 4004 HeapWord* prev_obj; 4005 assert(!span.contains(_restart_addr) || nth_task == 0, 4006 "Inconsistency"); 4007 if (nth_task == 0) { 4008 // For the 0th task, we'll not need to compute a block_start. 4009 if (span.contains(_restart_addr)) { 4010 // In the case of a restart because of stack overflow, 4011 // we might additionally skip a chunk prefix. 4012 prev_obj = _restart_addr; 4013 } else { 4014 prev_obj = span.start(); 4015 } 4016 } else { 4017 // We want to skip the first object because 4018 // the protocol is to scan any object in its entirety 4019 // that _starts_ in this span; a fortiori, any 4020 // object starting in an earlier span is scanned 4021 // as part of an earlier claimed task. 4022 // Below we use the "careful" version of block_start 4023 // so we do not try to navigate uninitialized objects. 4024 prev_obj = sp->block_start_careful(span.start()); 4025 // Below we use a variant of block_size that uses the 4026 // Printezis bits to avoid waiting for allocated 4027 // objects to become initialized/parsable. 4028 while (prev_obj < span.start()) { 4029 size_t sz = sp->block_size_no_stall(prev_obj, _collector); 4030 if (sz > 0) { 4031 prev_obj += sz; 4032 } else { 4033 // In this case we may end up doing a bit of redundant 4034 // scanning, but that appears unavoidable, short of 4035 // locking the free list locks; see bug 6324141. 4036 break; 4037 } 4038 } 4039 } 4040 if (prev_obj < span.end()) { 4041 MemRegion my_span = MemRegion(prev_obj, span.end()); 4042 // Do the marking work within a non-empty span -- 4043 // the last argument to the constructor indicates whether the 4044 // iteration should be incremental with periodic yields. 4045 Par_MarkFromRootsClosure cl(this, _collector, my_span, 4046 &_collector->_markBitMap, 4047 work_queue(i), 4048 &_collector->_markStack, 4049 &_collector->_revisitStack, 4050 _asynch); 4051 _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end()); 4052 } // else nothing to do for this task 4053 } // else nothing to do for this task 4054 } 4055 // We'd be tempted to assert here that since there are no 4056 // more tasks left to claim in this space, the global_finger 4057 // must exceed space->top() and a fortiori space->end(). However, 4058 // that would not quite be correct because the bumping of 4059 // global_finger occurs strictly after the claiming of a task, 4060 // so by the time we reach here the global finger may not yet 4061 // have been bumped up by the thread that claimed the last 4062 // task. 4063 pst->all_tasks_completed(); 4064 } 4065 4066 class Par_ConcMarkingClosure: public Par_KlassRememberingOopClosure { 4067 private: 4068 CMSConcMarkingTask* _task; 4069 MemRegion _span; 4070 CMSBitMap* _bit_map; 4071 CMSMarkStack* _overflow_stack; 4072 OopTaskQueue* _work_queue; 4073 protected: 4074 DO_OOP_WORK_DEFN 4075 public: 4076 Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue, 4077 CMSBitMap* bit_map, CMSMarkStack* overflow_stack, 4078 CMSMarkStack* revisit_stack): 4079 Par_KlassRememberingOopClosure(collector, collector->ref_processor(), revisit_stack), 4080 _task(task), 4081 _span(collector->_span), 4082 _work_queue(work_queue), 4083 _bit_map(bit_map), 4084 _overflow_stack(overflow_stack) 4085 { } 4086 virtual void do_oop(oop* p); 4087 virtual void do_oop(narrowOop* p); 4088 void trim_queue(size_t max); 4089 void handle_stack_overflow(HeapWord* lost); 4090 void do_yield_check() { 4091 if (_task->should_yield()) { 4092 _task->yield(); 4093 } 4094 } 4095 }; 4096 4097 // Grey object scanning during work stealing phase -- 4098 // the salient assumption here is that any references 4099 // that are in these stolen objects being scanned must 4100 // already have been initialized (else they would not have 4101 // been published), so we do not need to check for 4102 // uninitialized objects before pushing here. 4103 void Par_ConcMarkingClosure::do_oop(oop obj) { 4104 assert(obj->is_oop_or_null(true), "expected an oop or NULL"); 4105 HeapWord* addr = (HeapWord*)obj; 4106 // Check if oop points into the CMS generation 4107 // and is not marked 4108 if (_span.contains(addr) && !_bit_map->isMarked(addr)) { 4109 // a white object ... 4110 // If we manage to "claim" the object, by being the 4111 // first thread to mark it, then we push it on our 4112 // marking stack 4113 if (_bit_map->par_mark(addr)) { // ... now grey 4114 // push on work queue (grey set) 4115 bool simulate_overflow = false; 4116 NOT_PRODUCT( 4117 if (CMSMarkStackOverflowALot && 4118 _collector->simulate_overflow()) { 4119 // simulate a stack overflow 4120 simulate_overflow = true; 4121 } 4122 ) 4123 if (simulate_overflow || 4124 !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) { 4125 // stack overflow 4126 if (PrintCMSStatistics != 0) { 4127 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 4128 SIZE_FORMAT, _overflow_stack->capacity()); 4129 } 4130 // We cannot assert that the overflow stack is full because 4131 // it may have been emptied since. 4132 assert(simulate_overflow || 4133 _work_queue->size() == _work_queue->max_elems(), 4134 "Else push should have succeeded"); 4135 handle_stack_overflow(addr); 4136 } 4137 } // Else, some other thread got there first 4138 do_yield_check(); 4139 } 4140 } 4141 4142 void Par_ConcMarkingClosure::do_oop(oop* p) { Par_ConcMarkingClosure::do_oop_work(p); } 4143 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); } 4144 4145 void Par_ConcMarkingClosure::trim_queue(size_t max) { 4146 while (_work_queue->size() > max) { 4147 oop new_oop; 4148 if (_work_queue->pop_local(new_oop)) { 4149 assert(new_oop->is_oop(), "Should be an oop"); 4150 assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object"); 4151 assert(_span.contains((HeapWord*)new_oop), "Not in span"); 4152 assert(new_oop->is_parsable(), "Should be parsable"); 4153 new_oop->oop_iterate(this); // do_oop() above 4154 do_yield_check(); 4155 } 4156 } 4157 } 4158 4159 // Upon stack overflow, we discard (part of) the stack, 4160 // remembering the least address amongst those discarded 4161 // in CMSCollector's _restart_address. 4162 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) { 4163 // We need to do this under a mutex to prevent other 4164 // workers from interfering with the work done below. 4165 MutexLockerEx ml(_overflow_stack->par_lock(), 4166 Mutex::_no_safepoint_check_flag); 4167 // Remember the least grey address discarded 4168 HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost); 4169 _collector->lower_restart_addr(ra); 4170 _overflow_stack->reset(); // discard stack contents 4171 _overflow_stack->expand(); // expand the stack if possible 4172 } 4173 4174 4175 void CMSConcMarkingTask::do_work_steal(int i) { 4176 OopTaskQueue* work_q = work_queue(i); 4177 oop obj_to_scan; 4178 CMSBitMap* bm = &(_collector->_markBitMap); 4179 CMSMarkStack* ovflw = &(_collector->_markStack); 4180 CMSMarkStack* revisit = &(_collector->_revisitStack); 4181 int* seed = _collector->hash_seed(i); 4182 Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw, revisit); 4183 while (true) { 4184 cl.trim_queue(0); 4185 assert(work_q->size() == 0, "Should have been emptied above"); 4186 if (get_work_from_overflow_stack(ovflw, work_q)) { 4187 // Can't assert below because the work obtained from the 4188 // overflow stack may already have been stolen from us. 4189 // assert(work_q->size() > 0, "Work from overflow stack"); 4190 continue; 4191 } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) { 4192 assert(obj_to_scan->is_oop(), "Should be an oop"); 4193 assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object"); 4194 obj_to_scan->oop_iterate(&cl); 4195 } else if (terminator()->offer_termination(&_term_term)) { 4196 assert(work_q->size() == 0, "Impossible!"); 4197 break; 4198 } else if (yielding() || should_yield()) { 4199 yield(); 4200 } 4201 } 4202 } 4203 4204 // This is run by the CMS (coordinator) thread. 4205 void CMSConcMarkingTask::coordinator_yield() { 4206 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 4207 "CMS thread should hold CMS token"); 4208 DEBUG_ONLY(RememberKlassesChecker mux(false);) 4209 // First give up the locks, then yield, then re-lock 4210 // We should probably use a constructor/destructor idiom to 4211 // do this unlock/lock or modify the MutexUnlocker class to 4212 // serve our purpose. XXX 4213 assert_lock_strong(_bit_map_lock); 4214 _bit_map_lock->unlock(); 4215 ConcurrentMarkSweepThread::desynchronize(true); 4216 ConcurrentMarkSweepThread::acknowledge_yield_request(); 4217 _collector->stopTimer(); 4218 if (PrintCMSStatistics != 0) { 4219 _collector->incrementYields(); 4220 } 4221 _collector->icms_wait(); 4222 4223 // It is possible for whichever thread initiated the yield request 4224 // not to get a chance to wake up and take the bitmap lock between 4225 // this thread releasing it and reacquiring it. So, while the 4226 // should_yield() flag is on, let's sleep for a bit to give the 4227 // other thread a chance to wake up. The limit imposed on the number 4228 // of iterations is defensive, to avoid any unforseen circumstances 4229 // putting us into an infinite loop. Since it's always been this 4230 // (coordinator_yield()) method that was observed to cause the 4231 // problem, we are using a parameter (CMSCoordinatorYieldSleepCount) 4232 // which is by default non-zero. For the other seven methods that 4233 // also perform the yield operation, as are using a different 4234 // parameter (CMSYieldSleepCount) which is by default zero. This way we 4235 // can enable the sleeping for those methods too, if necessary. 4236 // See 6442774. 4237 // 4238 // We really need to reconsider the synchronization between the GC 4239 // thread and the yield-requesting threads in the future and we 4240 // should really use wait/notify, which is the recommended 4241 // way of doing this type of interaction. Additionally, we should 4242 // consolidate the eight methods that do the yield operation and they 4243 // are almost identical into one for better maintenability and 4244 // readability. See 6445193. 4245 // 4246 // Tony 2006.06.29 4247 for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount && 4248 ConcurrentMarkSweepThread::should_yield() && 4249 !CMSCollector::foregroundGCIsActive(); ++i) { 4250 os::sleep(Thread::current(), 1, false); 4251 ConcurrentMarkSweepThread::acknowledge_yield_request(); 4252 } 4253 4254 ConcurrentMarkSweepThread::synchronize(true); 4255 _bit_map_lock->lock_without_safepoint_check(); 4256 _collector->startTimer(); 4257 } 4258 4259 bool CMSCollector::do_marking_mt(bool asynch) { 4260 assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition"); 4261 int num_workers = AdaptiveSizePolicy::calc_active_conc_workers( 4262 conc_workers()->total_workers(), 4263 conc_workers()->active_workers(), 4264 Threads::number_of_non_daemon_threads()); 4265 conc_workers()->set_active_workers(num_workers); 4266 4267 CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); 4268 CompactibleFreeListSpace* perm_space = _permGen->cmsSpace(); 4269 4270 CMSConcMarkingTask tsk(this, 4271 cms_space, 4272 perm_space, 4273 asynch, 4274 conc_workers(), 4275 task_queues()); 4276 4277 // Since the actual number of workers we get may be different 4278 // from the number we requested above, do we need to do anything different 4279 // below? In particular, may be we need to subclass the SequantialSubTasksDone 4280 // class?? XXX 4281 cms_space ->initialize_sequential_subtasks_for_marking(num_workers); 4282 perm_space->initialize_sequential_subtasks_for_marking(num_workers); 4283 4284 // Refs discovery is already non-atomic. 4285 assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic"); 4286 assert(ref_processor()->discovery_is_mt(), "Discovery should be MT"); 4287 DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());) 4288 conc_workers()->start_task(&tsk); 4289 while (tsk.yielded()) { 4290 tsk.coordinator_yield(); 4291 conc_workers()->continue_task(&tsk); 4292 } 4293 // If the task was aborted, _restart_addr will be non-NULL 4294 assert(tsk.completed() || _restart_addr != NULL, "Inconsistency"); 4295 while (_restart_addr != NULL) { 4296 // XXX For now we do not make use of ABORTED state and have not 4297 // yet implemented the right abort semantics (even in the original 4298 // single-threaded CMS case). That needs some more investigation 4299 // and is deferred for now; see CR# TBF. 07252005YSR. XXX 4300 assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency"); 4301 // If _restart_addr is non-NULL, a marking stack overflow 4302 // occurred; we need to do a fresh marking iteration from the 4303 // indicated restart address. 4304 if (_foregroundGCIsActive && asynch) { 4305 // We may be running into repeated stack overflows, having 4306 // reached the limit of the stack size, while making very 4307 // slow forward progress. It may be best to bail out and 4308 // let the foreground collector do its job. 4309 // Clear _restart_addr, so that foreground GC 4310 // works from scratch. This avoids the headache of 4311 // a "rescan" which would otherwise be needed because 4312 // of the dirty mod union table & card table. 4313 _restart_addr = NULL; 4314 return false; 4315 } 4316 // Adjust the task to restart from _restart_addr 4317 tsk.reset(_restart_addr); 4318 cms_space ->initialize_sequential_subtasks_for_marking(num_workers, 4319 _restart_addr); 4320 perm_space->initialize_sequential_subtasks_for_marking(num_workers, 4321 _restart_addr); 4322 _restart_addr = NULL; 4323 // Get the workers going again 4324 conc_workers()->start_task(&tsk); 4325 while (tsk.yielded()) { 4326 tsk.coordinator_yield(); 4327 conc_workers()->continue_task(&tsk); 4328 } 4329 } 4330 assert(tsk.completed(), "Inconsistency"); 4331 assert(tsk.result() == true, "Inconsistency"); 4332 return true; 4333 } 4334 4335 bool CMSCollector::do_marking_st(bool asynch) { 4336 ResourceMark rm; 4337 HandleMark hm; 4338 4339 // Temporarily make refs discovery single threaded (non-MT) 4340 ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false); 4341 MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap, 4342 &_markStack, &_revisitStack, CMSYield && asynch); 4343 // the last argument to iterate indicates whether the iteration 4344 // should be incremental with periodic yields. 4345 _markBitMap.iterate(&markFromRootsClosure); 4346 // If _restart_addr is non-NULL, a marking stack overflow 4347 // occurred; we need to do a fresh iteration from the 4348 // indicated restart address. 4349 while (_restart_addr != NULL) { 4350 if (_foregroundGCIsActive && asynch) { 4351 // We may be running into repeated stack overflows, having 4352 // reached the limit of the stack size, while making very 4353 // slow forward progress. It may be best to bail out and 4354 // let the foreground collector do its job. 4355 // Clear _restart_addr, so that foreground GC 4356 // works from scratch. This avoids the headache of 4357 // a "rescan" which would otherwise be needed because 4358 // of the dirty mod union table & card table. 4359 _restart_addr = NULL; 4360 return false; // indicating failure to complete marking 4361 } 4362 // Deal with stack overflow: 4363 // we restart marking from _restart_addr 4364 HeapWord* ra = _restart_addr; 4365 markFromRootsClosure.reset(ra); 4366 _restart_addr = NULL; 4367 _markBitMap.iterate(&markFromRootsClosure, ra, _span.end()); 4368 } 4369 return true; 4370 } 4371 4372 void CMSCollector::preclean() { 4373 check_correct_thread_executing(); 4374 assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread"); 4375 verify_work_stacks_empty(); 4376 verify_overflow_empty(); 4377 _abort_preclean = false; 4378 if (CMSPrecleaningEnabled) { 4379 _eden_chunk_index = 0; 4380 size_t used = get_eden_used(); 4381 size_t capacity = get_eden_capacity(); 4382 // Don't start sampling unless we will get sufficiently 4383 // many samples. 4384 if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100) 4385 * CMSScheduleRemarkEdenPenetration)) { 4386 _start_sampling = true; 4387 } else { 4388 _start_sampling = false; 4389 } 4390 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 4391 CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails); 4392 preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1); 4393 } 4394 CMSTokenSync x(true); // is cms thread 4395 if (CMSPrecleaningEnabled) { 4396 sample_eden(); 4397 _collectorState = AbortablePreclean; 4398 } else { 4399 _collectorState = FinalMarking; 4400 } 4401 verify_work_stacks_empty(); 4402 verify_overflow_empty(); 4403 } 4404 4405 // Try and schedule the remark such that young gen 4406 // occupancy is CMSScheduleRemarkEdenPenetration %. 4407 void CMSCollector::abortable_preclean() { 4408 check_correct_thread_executing(); 4409 assert(CMSPrecleaningEnabled, "Inconsistent control state"); 4410 assert(_collectorState == AbortablePreclean, "Inconsistent control state"); 4411 4412 // If Eden's current occupancy is below this threshold, 4413 // immediately schedule the remark; else preclean 4414 // past the next scavenge in an effort to 4415 // schedule the pause as described avove. By choosing 4416 // CMSScheduleRemarkEdenSizeThreshold >= max eden size 4417 // we will never do an actual abortable preclean cycle. 4418 if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) { 4419 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 4420 CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails); 4421 // We need more smarts in the abortable preclean 4422 // loop below to deal with cases where allocation 4423 // in young gen is very very slow, and our precleaning 4424 // is running a losing race against a horde of 4425 // mutators intent on flooding us with CMS updates 4426 // (dirty cards). 4427 // One, admittedly dumb, strategy is to give up 4428 // after a certain number of abortable precleaning loops 4429 // or after a certain maximum time. We want to make 4430 // this smarter in the next iteration. 4431 // XXX FIX ME!!! YSR 4432 size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0; 4433 while (!(should_abort_preclean() || 4434 ConcurrentMarkSweepThread::should_terminate())) { 4435 workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2); 4436 cumworkdone += workdone; 4437 loops++; 4438 // Voluntarily terminate abortable preclean phase if we have 4439 // been at it for too long. 4440 if ((CMSMaxAbortablePrecleanLoops != 0) && 4441 loops >= CMSMaxAbortablePrecleanLoops) { 4442 if (PrintGCDetails) { 4443 gclog_or_tty->print(" CMS: abort preclean due to loops "); 4444 } 4445 break; 4446 } 4447 if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) { 4448 if (PrintGCDetails) { 4449 gclog_or_tty->print(" CMS: abort preclean due to time "); 4450 } 4451 break; 4452 } 4453 // If we are doing little work each iteration, we should 4454 // take a short break. 4455 if (workdone < CMSAbortablePrecleanMinWorkPerIteration) { 4456 // Sleep for some time, waiting for work to accumulate 4457 stopTimer(); 4458 cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis); 4459 startTimer(); 4460 waited++; 4461 } 4462 } 4463 if (PrintCMSStatistics > 0) { 4464 gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ", 4465 loops, waited, cumworkdone); 4466 } 4467 } 4468 CMSTokenSync x(true); // is cms thread 4469 if (_collectorState != Idling) { 4470 assert(_collectorState == AbortablePreclean, 4471 "Spontaneous state transition?"); 4472 _collectorState = FinalMarking; 4473 } // Else, a foreground collection completed this CMS cycle. 4474 return; 4475 } 4476 4477 // Respond to an Eden sampling opportunity 4478 void CMSCollector::sample_eden() { 4479 // Make sure a young gc cannot sneak in between our 4480 // reading and recording of a sample. 4481 assert(Thread::current()->is_ConcurrentGC_thread(), 4482 "Only the cms thread may collect Eden samples"); 4483 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 4484 "Should collect samples while holding CMS token"); 4485 if (!_start_sampling) { 4486 return; 4487 } 4488 if (_eden_chunk_array) { 4489 if (_eden_chunk_index < _eden_chunk_capacity) { 4490 _eden_chunk_array[_eden_chunk_index] = *_top_addr; // take sample 4491 assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr, 4492 "Unexpected state of Eden"); 4493 // We'd like to check that what we just sampled is an oop-start address; 4494 // however, we cannot do that here since the object may not yet have been 4495 // initialized. So we'll instead do the check when we _use_ this sample 4496 // later. 4497 if (_eden_chunk_index == 0 || 4498 (pointer_delta(_eden_chunk_array[_eden_chunk_index], 4499 _eden_chunk_array[_eden_chunk_index-1]) 4500 >= CMSSamplingGrain)) { 4501 _eden_chunk_index++; // commit sample 4502 } 4503 } 4504 } 4505 if ((_collectorState == AbortablePreclean) && !_abort_preclean) { 4506 size_t used = get_eden_used(); 4507 size_t capacity = get_eden_capacity(); 4508 assert(used <= capacity, "Unexpected state of Eden"); 4509 if (used > (capacity/100 * CMSScheduleRemarkEdenPenetration)) { 4510 _abort_preclean = true; 4511 } 4512 } 4513 } 4514 4515 4516 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) { 4517 assert(_collectorState == Precleaning || 4518 _collectorState == AbortablePreclean, "incorrect state"); 4519 ResourceMark rm; 4520 HandleMark hm; 4521 4522 // Precleaning is currently not MT but the reference processor 4523 // may be set for MT. Disable it temporarily here. 4524 ReferenceProcessor* rp = ref_processor(); 4525 ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false); 4526 4527 // Do one pass of scrubbing the discovered reference lists 4528 // to remove any reference objects with strongly-reachable 4529 // referents. 4530 if (clean_refs) { 4531 CMSPrecleanRefsYieldClosure yield_cl(this); 4532 assert(rp->span().equals(_span), "Spans should be equal"); 4533 CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap, 4534 &_markStack, &_revisitStack, 4535 true /* preclean */); 4536 CMSDrainMarkingStackClosure complete_trace(this, 4537 _span, &_markBitMap, &_markStack, 4538 &keep_alive, true /* preclean */); 4539 4540 // We don't want this step to interfere with a young 4541 // collection because we don't want to take CPU 4542 // or memory bandwidth away from the young GC threads 4543 // (which may be as many as there are CPUs). 4544 // Note that we don't need to protect ourselves from 4545 // interference with mutators because they can't 4546 // manipulate the discovered reference lists nor affect 4547 // the computed reachability of the referents, the 4548 // only properties manipulated by the precleaning 4549 // of these reference lists. 4550 stopTimer(); 4551 CMSTokenSyncWithLocks x(true /* is cms thread */, 4552 bitMapLock()); 4553 startTimer(); 4554 sample_eden(); 4555 4556 // The following will yield to allow foreground 4557 // collection to proceed promptly. XXX YSR: 4558 // The code in this method may need further 4559 // tweaking for better performance and some restructuring 4560 // for cleaner interfaces. 4561 GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases 4562 rp->preclean_discovered_references( 4563 rp->is_alive_non_header(), &keep_alive, &complete_trace, 4564 &yield_cl, should_unload_classes(), gc_timer); 4565 } 4566 4567 if (clean_survivor) { // preclean the active survivor space(s) 4568 assert(_young_gen->kind() == Generation::DefNew || 4569 _young_gen->kind() == Generation::ParNew || 4570 _young_gen->kind() == Generation::ASParNew, 4571 "incorrect type for cast"); 4572 DefNewGeneration* dng = (DefNewGeneration*)_young_gen; 4573 PushAndMarkClosure pam_cl(this, _span, ref_processor(), 4574 &_markBitMap, &_modUnionTable, 4575 &_markStack, &_revisitStack, 4576 true /* precleaning phase */); 4577 stopTimer(); 4578 CMSTokenSyncWithLocks ts(true /* is cms thread */, 4579 bitMapLock()); 4580 startTimer(); 4581 unsigned int before_count = 4582 GenCollectedHeap::heap()->total_collections(); 4583 SurvivorSpacePrecleanClosure 4584 sss_cl(this, _span, &_markBitMap, &_markStack, 4585 &pam_cl, before_count, CMSYield); 4586 DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());) 4587 dng->from()->object_iterate_careful(&sss_cl); 4588 dng->to()->object_iterate_careful(&sss_cl); 4589 } 4590 MarkRefsIntoAndScanClosure 4591 mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable, 4592 &_markStack, &_revisitStack, this, CMSYield, 4593 true /* precleaning phase */); 4594 // CAUTION: The following closure has persistent state that may need to 4595 // be reset upon a decrease in the sequence of addresses it 4596 // processes. 4597 ScanMarkedObjectsAgainCarefullyClosure 4598 smoac_cl(this, _span, 4599 &_markBitMap, &_markStack, &_revisitStack, &mrias_cl, CMSYield); 4600 4601 // Preclean dirty cards in ModUnionTable and CardTable using 4602 // appropriate convergence criterion; 4603 // repeat CMSPrecleanIter times unless we find that 4604 // we are losing. 4605 assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large"); 4606 assert(CMSPrecleanNumerator < CMSPrecleanDenominator, 4607 "Bad convergence multiplier"); 4608 assert(CMSPrecleanThreshold >= 100, 4609 "Unreasonably low CMSPrecleanThreshold"); 4610 4611 size_t numIter, cumNumCards, lastNumCards, curNumCards; 4612 for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0; 4613 numIter < CMSPrecleanIter; 4614 numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) { 4615 curNumCards = preclean_mod_union_table(_cmsGen, &smoac_cl); 4616 if (CMSPermGenPrecleaningEnabled) { 4617 curNumCards += preclean_mod_union_table(_permGen, &smoac_cl); 4618 } 4619 if (Verbose && PrintGCDetails) { 4620 gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards); 4621 } 4622 // Either there are very few dirty cards, so re-mark 4623 // pause will be small anyway, or our pre-cleaning isn't 4624 // that much faster than the rate at which cards are being 4625 // dirtied, so we might as well stop and re-mark since 4626 // precleaning won't improve our re-mark time by much. 4627 if (curNumCards <= CMSPrecleanThreshold || 4628 (numIter > 0 && 4629 (curNumCards * CMSPrecleanDenominator > 4630 lastNumCards * CMSPrecleanNumerator))) { 4631 numIter++; 4632 cumNumCards += curNumCards; 4633 break; 4634 } 4635 } 4636 curNumCards = preclean_card_table(_cmsGen, &smoac_cl); 4637 if (CMSPermGenPrecleaningEnabled) { 4638 curNumCards += preclean_card_table(_permGen, &smoac_cl); 4639 } 4640 cumNumCards += curNumCards; 4641 if (PrintGCDetails && PrintCMSStatistics != 0) { 4642 gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)", 4643 curNumCards, cumNumCards, numIter); 4644 } 4645 return cumNumCards; // as a measure of useful work done 4646 } 4647 4648 // PRECLEANING NOTES: 4649 // Precleaning involves: 4650 // . reading the bits of the modUnionTable and clearing the set bits. 4651 // . For the cards corresponding to the set bits, we scan the 4652 // objects on those cards. This means we need the free_list_lock 4653 // so that we can safely iterate over the CMS space when scanning 4654 // for oops. 4655 // . When we scan the objects, we'll be both reading and setting 4656 // marks in the marking bit map, so we'll need the marking bit map. 4657 // . For protecting _collector_state transitions, we take the CGC_lock. 4658 // Note that any races in the reading of of card table entries by the 4659 // CMS thread on the one hand and the clearing of those entries by the 4660 // VM thread or the setting of those entries by the mutator threads on the 4661 // other are quite benign. However, for efficiency it makes sense to keep 4662 // the VM thread from racing with the CMS thread while the latter is 4663 // dirty card info to the modUnionTable. We therefore also use the 4664 // CGC_lock to protect the reading of the card table and the mod union 4665 // table by the CM thread. 4666 // . We run concurrently with mutator updates, so scanning 4667 // needs to be done carefully -- we should not try to scan 4668 // potentially uninitialized objects. 4669 // 4670 // Locking strategy: While holding the CGC_lock, we scan over and 4671 // reset a maximal dirty range of the mod union / card tables, then lock 4672 // the free_list_lock and bitmap lock to do a full marking, then 4673 // release these locks; and repeat the cycle. This allows for a 4674 // certain amount of fairness in the sharing of these locks between 4675 // the CMS collector on the one hand, and the VM thread and the 4676 // mutators on the other. 4677 4678 // NOTE: preclean_mod_union_table() and preclean_card_table() 4679 // further below are largely identical; if you need to modify 4680 // one of these methods, please check the other method too. 4681 4682 size_t CMSCollector::preclean_mod_union_table( 4683 ConcurrentMarkSweepGeneration* gen, 4684 ScanMarkedObjectsAgainCarefullyClosure* cl) { 4685 verify_work_stacks_empty(); 4686 verify_overflow_empty(); 4687 4688 // Turn off checking for this method but turn it back on 4689 // selectively. There are yield points in this method 4690 // but it is difficult to turn the checking off just around 4691 // the yield points. It is simpler to selectively turn 4692 // it on. 4693 DEBUG_ONLY(RememberKlassesChecker mux(false);) 4694 4695 // strategy: starting with the first card, accumulate contiguous 4696 // ranges of dirty cards; clear these cards, then scan the region 4697 // covered by these cards. 4698 4699 // Since all of the MUT is committed ahead, we can just use 4700 // that, in case the generations expand while we are precleaning. 4701 // It might also be fine to just use the committed part of the 4702 // generation, but we might potentially miss cards when the 4703 // generation is rapidly expanding while we are in the midst 4704 // of precleaning. 4705 HeapWord* startAddr = gen->reserved().start(); 4706 HeapWord* endAddr = gen->reserved().end(); 4707 4708 cl->setFreelistLock(gen->freelistLock()); // needed for yielding 4709 4710 size_t numDirtyCards, cumNumDirtyCards; 4711 HeapWord *nextAddr, *lastAddr; 4712 for (cumNumDirtyCards = numDirtyCards = 0, 4713 nextAddr = lastAddr = startAddr; 4714 nextAddr < endAddr; 4715 nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) { 4716 4717 ResourceMark rm; 4718 HandleMark hm; 4719 4720 MemRegion dirtyRegion; 4721 { 4722 stopTimer(); 4723 // Potential yield point 4724 CMSTokenSync ts(true); 4725 startTimer(); 4726 sample_eden(); 4727 // Get dirty region starting at nextOffset (inclusive), 4728 // simultaneously clearing it. 4729 dirtyRegion = 4730 _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr); 4731 assert(dirtyRegion.start() >= nextAddr, 4732 "returned region inconsistent?"); 4733 } 4734 // Remember where the next search should begin. 4735 // The returned region (if non-empty) is a right open interval, 4736 // so lastOffset is obtained from the right end of that 4737 // interval. 4738 lastAddr = dirtyRegion.end(); 4739 // Should do something more transparent and less hacky XXX 4740 numDirtyCards = 4741 _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size()); 4742 4743 // We'll scan the cards in the dirty region (with periodic 4744 // yields for foreground GC as needed). 4745 if (!dirtyRegion.is_empty()) { 4746 assert(numDirtyCards > 0, "consistency check"); 4747 HeapWord* stop_point = NULL; 4748 stopTimer(); 4749 // Potential yield point 4750 CMSTokenSyncWithLocks ts(true, gen->freelistLock(), 4751 bitMapLock()); 4752 startTimer(); 4753 { 4754 verify_work_stacks_empty(); 4755 verify_overflow_empty(); 4756 sample_eden(); 4757 DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());) 4758 stop_point = 4759 gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl); 4760 } 4761 if (stop_point != NULL) { 4762 // The careful iteration stopped early either because it found an 4763 // uninitialized object, or because we were in the midst of an 4764 // "abortable preclean", which should now be aborted. Redirty 4765 // the bits corresponding to the partially-scanned or unscanned 4766 // cards. We'll either restart at the next block boundary or 4767 // abort the preclean. 4768 assert((CMSPermGenPrecleaningEnabled && (gen == _permGen)) || 4769 (_collectorState == AbortablePreclean && should_abort_preclean()), 4770 "Unparsable objects should only be in perm gen."); 4771 _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end())); 4772 if (should_abort_preclean()) { 4773 break; // out of preclean loop 4774 } else { 4775 // Compute the next address at which preclean should pick up; 4776 // might need bitMapLock in order to read P-bits. 4777 lastAddr = next_card_start_after_block(stop_point); 4778 } 4779 } 4780 } else { 4781 assert(lastAddr == endAddr, "consistency check"); 4782 assert(numDirtyCards == 0, "consistency check"); 4783 break; 4784 } 4785 } 4786 verify_work_stacks_empty(); 4787 verify_overflow_empty(); 4788 return cumNumDirtyCards; 4789 } 4790 4791 // NOTE: preclean_mod_union_table() above and preclean_card_table() 4792 // below are largely identical; if you need to modify 4793 // one of these methods, please check the other method too. 4794 4795 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen, 4796 ScanMarkedObjectsAgainCarefullyClosure* cl) { 4797 // strategy: it's similar to precleamModUnionTable above, in that 4798 // we accumulate contiguous ranges of dirty cards, mark these cards 4799 // precleaned, then scan the region covered by these cards. 4800 HeapWord* endAddr = (HeapWord*)(gen->_virtual_space.high()); 4801 HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low()); 4802 4803 cl->setFreelistLock(gen->freelistLock()); // needed for yielding 4804 4805 size_t numDirtyCards, cumNumDirtyCards; 4806 HeapWord *lastAddr, *nextAddr; 4807 4808 for (cumNumDirtyCards = numDirtyCards = 0, 4809 nextAddr = lastAddr = startAddr; 4810 nextAddr < endAddr; 4811 nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) { 4812 4813 ResourceMark rm; 4814 HandleMark hm; 4815 4816 MemRegion dirtyRegion; 4817 { 4818 // See comments in "Precleaning notes" above on why we 4819 // do this locking. XXX Could the locking overheads be 4820 // too high when dirty cards are sparse? [I don't think so.] 4821 stopTimer(); 4822 CMSTokenSync x(true); // is cms thread 4823 startTimer(); 4824 sample_eden(); 4825 // Get and clear dirty region from card table 4826 dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset( 4827 MemRegion(nextAddr, endAddr), 4828 true, 4829 CardTableModRefBS::precleaned_card_val()); 4830 4831 assert(dirtyRegion.start() >= nextAddr, 4832 "returned region inconsistent?"); 4833 } 4834 lastAddr = dirtyRegion.end(); 4835 numDirtyCards = 4836 dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words; 4837 4838 if (!dirtyRegion.is_empty()) { 4839 stopTimer(); 4840 CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock()); 4841 startTimer(); 4842 sample_eden(); 4843 verify_work_stacks_empty(); 4844 verify_overflow_empty(); 4845 DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());) 4846 HeapWord* stop_point = 4847 gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl); 4848 if (stop_point != NULL) { 4849 // The careful iteration stopped early because it found an 4850 // uninitialized object. Redirty the bits corresponding to the 4851 // partially-scanned or unscanned cards, and start again at the 4852 // next block boundary. 4853 assert(CMSPermGenPrecleaningEnabled || 4854 (_collectorState == AbortablePreclean && should_abort_preclean()), 4855 "Unparsable objects should only be in perm gen."); 4856 _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end())); 4857 if (should_abort_preclean()) { 4858 break; // out of preclean loop 4859 } else { 4860 // Compute the next address at which preclean should pick up. 4861 lastAddr = next_card_start_after_block(stop_point); 4862 } 4863 } 4864 } else { 4865 break; 4866 } 4867 } 4868 verify_work_stacks_empty(); 4869 verify_overflow_empty(); 4870 return cumNumDirtyCards; 4871 } 4872 4873 void CMSCollector::checkpointRootsFinal(bool asynch, 4874 bool clear_all_soft_refs, bool init_mark_was_synchronous) { 4875 assert(_collectorState == FinalMarking, "incorrect state transition?"); 4876 check_correct_thread_executing(); 4877 // world is stopped at this checkpoint 4878 assert(SafepointSynchronize::is_at_safepoint(), 4879 "world should be stopped"); 4880 TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause()); 4881 4882 verify_work_stacks_empty(); 4883 verify_overflow_empty(); 4884 4885 SpecializationStats::clear(); 4886 if (PrintGCDetails) { 4887 gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]", 4888 _young_gen->used() / K, 4889 _young_gen->capacity() / K); 4890 } 4891 if (asynch) { 4892 if (CMSScavengeBeforeRemark) { 4893 GenCollectedHeap* gch = GenCollectedHeap::heap(); 4894 // Temporarily set flag to false, GCH->do_collection will 4895 // expect it to be false and set to true 4896 FlagSetting fl(gch->_is_gc_active, false); 4897 NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark", 4898 PrintGCDetails && Verbose, true, _gc_timer_cm);) 4899 int level = _cmsGen->level() - 1; 4900 if (level >= 0) { 4901 gch->do_collection(true, // full (i.e. force, see below) 4902 false, // !clear_all_soft_refs 4903 0, // size 4904 false, // is_tlab 4905 level // max_level 4906 ); 4907 } 4908 } 4909 FreelistLocker x(this); 4910 MutexLockerEx y(bitMapLock(), 4911 Mutex::_no_safepoint_check_flag); 4912 assert(!init_mark_was_synchronous, "but that's impossible!"); 4913 checkpointRootsFinalWork(asynch, clear_all_soft_refs, false); 4914 } else { 4915 // already have all the locks 4916 checkpointRootsFinalWork(asynch, clear_all_soft_refs, 4917 init_mark_was_synchronous); 4918 } 4919 verify_work_stacks_empty(); 4920 verify_overflow_empty(); 4921 SpecializationStats::print(); 4922 } 4923 4924 void CMSCollector::checkpointRootsFinalWork(bool asynch, 4925 bool clear_all_soft_refs, bool init_mark_was_synchronous) { 4926 4927 NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm);) 4928 4929 assert(haveFreelistLocks(), "must have free list locks"); 4930 assert_lock_strong(bitMapLock()); 4931 4932 if (UseAdaptiveSizePolicy) { 4933 size_policy()->checkpoint_roots_final_begin(); 4934 } 4935 4936 ResourceMark rm; 4937 HandleMark hm; 4938 4939 GenCollectedHeap* gch = GenCollectedHeap::heap(); 4940 4941 if (should_unload_classes()) { 4942 CodeCache::gc_prologue(); 4943 } 4944 assert(haveFreelistLocks(), "must have free list locks"); 4945 assert_lock_strong(bitMapLock()); 4946 4947 DEBUG_ONLY(RememberKlassesChecker fmx(should_unload_classes());) 4948 if (!init_mark_was_synchronous) { 4949 // We might assume that we need not fill TLAB's when 4950 // CMSScavengeBeforeRemark is set, because we may have just done 4951 // a scavenge which would have filled all TLAB's -- and besides 4952 // Eden would be empty. This however may not always be the case -- 4953 // for instance although we asked for a scavenge, it may not have 4954 // happened because of a JNI critical section. We probably need 4955 // a policy for deciding whether we can in that case wait until 4956 // the critical section releases and then do the remark following 4957 // the scavenge, and skip it here. In the absence of that policy, 4958 // or of an indication of whether the scavenge did indeed occur, 4959 // we cannot rely on TLAB's having been filled and must do 4960 // so here just in case a scavenge did not happen. 4961 gch->ensure_parsability(false); // fill TLAB's, but no need to retire them 4962 // Update the saved marks which may affect the root scans. 4963 gch->save_marks(); 4964 4965 { 4966 COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;) 4967 4968 // Note on the role of the mod union table: 4969 // Since the marker in "markFromRoots" marks concurrently with 4970 // mutators, it is possible for some reachable objects not to have been 4971 // scanned. For instance, an only reference to an object A was 4972 // placed in object B after the marker scanned B. Unless B is rescanned, 4973 // A would be collected. Such updates to references in marked objects 4974 // are detected via the mod union table which is the set of all cards 4975 // dirtied since the first checkpoint in this GC cycle and prior to 4976 // the most recent young generation GC, minus those cleaned up by the 4977 // concurrent precleaning. 4978 if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) { 4979 GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm); 4980 do_remark_parallel(); 4981 } else { 4982 GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false, 4983 _gc_timer_cm); 4984 do_remark_non_parallel(); 4985 } 4986 } 4987 } else { 4988 assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode"); 4989 // The initial mark was stop-world, so there's no rescanning to 4990 // do; go straight on to the next step below. 4991 } 4992 verify_work_stacks_empty(); 4993 verify_overflow_empty(); 4994 4995 { 4996 NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm);) 4997 refProcessingWork(asynch, clear_all_soft_refs); 4998 } 4999 verify_work_stacks_empty(); 5000 verify_overflow_empty(); 5001 5002 if (should_unload_classes()) { 5003 CodeCache::gc_epilogue(); 5004 } 5005 JvmtiExport::gc_epilogue(); 5006 5007 // If we encountered any (marking stack / work queue) overflow 5008 // events during the current CMS cycle, take appropriate 5009 // remedial measures, where possible, so as to try and avoid 5010 // recurrence of that condition. 5011 assert(_markStack.isEmpty(), "No grey objects"); 5012 size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw + 5013 _ser_kac_ovflw + _ser_kac_preclean_ovflw; 5014 if (ser_ovflw > 0) { 5015 if (PrintCMSStatistics != 0) { 5016 gclog_or_tty->print_cr("Marking stack overflow (benign) " 5017 "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT 5018 ", kac_preclean="SIZE_FORMAT")", 5019 _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, 5020 _ser_kac_ovflw, _ser_kac_preclean_ovflw); 5021 } 5022 _markStack.expand(); 5023 _ser_pmc_remark_ovflw = 0; 5024 _ser_pmc_preclean_ovflw = 0; 5025 _ser_kac_preclean_ovflw = 0; 5026 _ser_kac_ovflw = 0; 5027 } 5028 if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) { 5029 if (PrintCMSStatistics != 0) { 5030 gclog_or_tty->print_cr("Work queue overflow (benign) " 5031 "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")", 5032 _par_pmc_remark_ovflw, _par_kac_ovflw); 5033 } 5034 _par_pmc_remark_ovflw = 0; 5035 _par_kac_ovflw = 0; 5036 } 5037 if (PrintCMSStatistics != 0) { 5038 if (_markStack._hit_limit > 0) { 5039 gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")", 5040 _markStack._hit_limit); 5041 } 5042 if (_markStack._failed_double > 0) { 5043 gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT")," 5044 " current capacity "SIZE_FORMAT, 5045 _markStack._failed_double, 5046 _markStack.capacity()); 5047 } 5048 } 5049 _markStack._hit_limit = 0; 5050 _markStack._failed_double = 0; 5051 5052 // Check that all the klasses have been checked 5053 assert(_revisitStack.isEmpty(), "Not all klasses revisited"); 5054 5055 if ((VerifyAfterGC || VerifyDuringGC) && 5056 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 5057 verify_after_remark(); 5058 } 5059 5060 // Change under the freelistLocks. 5061 _collectorState = Sweeping; 5062 // Call isAllClear() under bitMapLock 5063 assert(_modUnionTable.isAllClear(), "Should be clear by end of the" 5064 " final marking"); 5065 if (UseAdaptiveSizePolicy) { 5066 size_policy()->checkpoint_roots_final_end(gch->gc_cause()); 5067 } 5068 } 5069 5070 // Parallel remark task 5071 class CMSParRemarkTask: public AbstractGangTask { 5072 CMSCollector* _collector; 5073 int _n_workers; 5074 CompactibleFreeListSpace* _cms_space; 5075 CompactibleFreeListSpace* _perm_space; 5076 5077 // The per-thread work queues, available here for stealing. 5078 OopTaskQueueSet* _task_queues; 5079 ParallelTaskTerminator _term; 5080 5081 public: 5082 // A value of 0 passed to n_workers will cause the number of 5083 // workers to be taken from the active workers in the work gang. 5084 CMSParRemarkTask(CMSCollector* collector, 5085 CompactibleFreeListSpace* cms_space, 5086 CompactibleFreeListSpace* perm_space, 5087 int n_workers, FlexibleWorkGang* workers, 5088 OopTaskQueueSet* task_queues): 5089 AbstractGangTask("Rescan roots and grey objects in parallel"), 5090 _collector(collector), 5091 _cms_space(cms_space), _perm_space(perm_space), 5092 _n_workers(n_workers), 5093 _task_queues(task_queues), 5094 _term(n_workers, task_queues) { } 5095 5096 OopTaskQueueSet* task_queues() { return _task_queues; } 5097 5098 OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); } 5099 5100 ParallelTaskTerminator* terminator() { return &_term; } 5101 int n_workers() { return _n_workers; } 5102 5103 void work(uint worker_id); 5104 5105 private: 5106 // Work method in support of parallel rescan ... of young gen spaces 5107 void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl, 5108 ContiguousSpace* space, 5109 HeapWord** chunk_array, size_t chunk_top); 5110 5111 // ... of dirty cards in old space 5112 void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i, 5113 Par_MarkRefsIntoAndScanClosure* cl); 5114 5115 // ... work stealing for the above 5116 void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed); 5117 }; 5118 5119 // work_queue(i) is passed to the closure 5120 // Par_MarkRefsIntoAndScanClosure. The "i" parameter 5121 // also is passed to do_dirty_card_rescan_tasks() and to 5122 // do_work_steal() to select the i-th task_queue. 5123 5124 void CMSParRemarkTask::work(uint worker_id) { 5125 elapsedTimer _timer; 5126 ResourceMark rm; 5127 HandleMark hm; 5128 5129 // ---------- rescan from roots -------------- 5130 _timer.start(); 5131 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5132 Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector, 5133 _collector->_span, _collector->ref_processor(), 5134 &(_collector->_markBitMap), 5135 work_queue(worker_id), &(_collector->_revisitStack)); 5136 5137 // Rescan young gen roots first since these are likely 5138 // coarsely partitioned and may, on that account, constitute 5139 // the critical path; thus, it's best to start off that 5140 // work first. 5141 // ---------- young gen roots -------------- 5142 { 5143 DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration(); 5144 EdenSpace* eden_space = dng->eden(); 5145 ContiguousSpace* from_space = dng->from(); 5146 ContiguousSpace* to_space = dng->to(); 5147 5148 HeapWord** eca = _collector->_eden_chunk_array; 5149 size_t ect = _collector->_eden_chunk_index; 5150 HeapWord** sca = _collector->_survivor_chunk_array; 5151 size_t sct = _collector->_survivor_chunk_index; 5152 5153 assert(ect <= _collector->_eden_chunk_capacity, "out of bounds"); 5154 assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds"); 5155 5156 do_young_space_rescan(worker_id, &par_mrias_cl, to_space, NULL, 0); 5157 do_young_space_rescan(worker_id, &par_mrias_cl, from_space, sca, sct); 5158 do_young_space_rescan(worker_id, &par_mrias_cl, eden_space, eca, ect); 5159 5160 _timer.stop(); 5161 if (PrintCMSStatistics != 0) { 5162 gclog_or_tty->print_cr( 5163 "Finished young gen rescan work in %dth thread: %3.3f sec", 5164 worker_id, _timer.seconds()); 5165 } 5166 } 5167 5168 // ---------- remaining roots -------------- 5169 _timer.reset(); 5170 _timer.start(); 5171 gch->gen_process_strong_roots(_collector->_cmsGen->level(), 5172 false, // yg was scanned above 5173 false, // this is parallel code 5174 true, // collecting perm gen 5175 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()), 5176 &par_mrias_cl, 5177 true, // walk all of code cache if (so & SO_CodeCache) 5178 NULL); 5179 assert(_collector->should_unload_classes() 5180 || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache), 5181 "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops"); 5182 _timer.stop(); 5183 if (PrintCMSStatistics != 0) { 5184 gclog_or_tty->print_cr( 5185 "Finished remaining root rescan work in %dth thread: %3.3f sec", 5186 worker_id, _timer.seconds()); 5187 } 5188 5189 // ---------- rescan dirty cards ------------ 5190 _timer.reset(); 5191 _timer.start(); 5192 5193 // Do the rescan tasks for each of the two spaces 5194 // (cms_space and perm_space) in turn. 5195 // "worker_id" is passed to select the task_queue for "worker_id" 5196 do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl); 5197 do_dirty_card_rescan_tasks(_perm_space, worker_id, &par_mrias_cl); 5198 _timer.stop(); 5199 if (PrintCMSStatistics != 0) { 5200 gclog_or_tty->print_cr( 5201 "Finished dirty card rescan work in %dth thread: %3.3f sec", 5202 worker_id, _timer.seconds()); 5203 } 5204 5205 // ---------- steal work from other threads ... 5206 // ---------- ... and drain overflow list. 5207 _timer.reset(); 5208 _timer.start(); 5209 do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id)); 5210 _timer.stop(); 5211 if (PrintCMSStatistics != 0) { 5212 gclog_or_tty->print_cr( 5213 "Finished work stealing in %dth thread: %3.3f sec", 5214 worker_id, _timer.seconds()); 5215 } 5216 } 5217 5218 // Note that parameter "i" is not used. 5219 void 5220 CMSParRemarkTask::do_young_space_rescan(int i, 5221 Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space, 5222 HeapWord** chunk_array, size_t chunk_top) { 5223 // Until all tasks completed: 5224 // . claim an unclaimed task 5225 // . compute region boundaries corresponding to task claimed 5226 // using chunk_array 5227 // . par_oop_iterate(cl) over that region 5228 5229 ResourceMark rm; 5230 HandleMark hm; 5231 5232 SequentialSubTasksDone* pst = space->par_seq_tasks(); 5233 assert(pst->valid(), "Uninitialized use?"); 5234 5235 uint nth_task = 0; 5236 uint n_tasks = pst->n_tasks(); 5237 5238 HeapWord *start, *end; 5239 while (!pst->is_task_claimed(/* reference */ nth_task)) { 5240 // We claimed task # nth_task; compute its boundaries. 5241 if (chunk_top == 0) { // no samples were taken 5242 assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task"); 5243 start = space->bottom(); 5244 end = space->top(); 5245 } else if (nth_task == 0) { 5246 start = space->bottom(); 5247 end = chunk_array[nth_task]; 5248 } else if (nth_task < (uint)chunk_top) { 5249 assert(nth_task >= 1, "Control point invariant"); 5250 start = chunk_array[nth_task - 1]; 5251 end = chunk_array[nth_task]; 5252 } else { 5253 assert(nth_task == (uint)chunk_top, "Control point invariant"); 5254 start = chunk_array[chunk_top - 1]; 5255 end = space->top(); 5256 } 5257 MemRegion mr(start, end); 5258 // Verify that mr is in space 5259 assert(mr.is_empty() || space->used_region().contains(mr), 5260 "Should be in space"); 5261 // Verify that "start" is an object boundary 5262 assert(mr.is_empty() || oop(mr.start())->is_oop(), 5263 "Should be an oop"); 5264 space->par_oop_iterate(mr, cl); 5265 } 5266 pst->all_tasks_completed(); 5267 } 5268 5269 void 5270 CMSParRemarkTask::do_dirty_card_rescan_tasks( 5271 CompactibleFreeListSpace* sp, int i, 5272 Par_MarkRefsIntoAndScanClosure* cl) { 5273 // Until all tasks completed: 5274 // . claim an unclaimed task 5275 // . compute region boundaries corresponding to task claimed 5276 // . transfer dirty bits ct->mut for that region 5277 // . apply rescanclosure to dirty mut bits for that region 5278 5279 ResourceMark rm; 5280 HandleMark hm; 5281 5282 OopTaskQueue* work_q = work_queue(i); 5283 ModUnionClosure modUnionClosure(&(_collector->_modUnionTable)); 5284 // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! 5285 // CAUTION: This closure has state that persists across calls to 5286 // the work method dirty_range_iterate_clear() in that it has 5287 // imbedded in it a (subtype of) UpwardsObjectClosure. The 5288 // use of that state in the imbedded UpwardsObjectClosure instance 5289 // assumes that the cards are always iterated (even if in parallel 5290 // by several threads) in monotonically increasing order per each 5291 // thread. This is true of the implementation below which picks 5292 // card ranges (chunks) in monotonically increasing order globally 5293 // and, a-fortiori, in monotonically increasing order per thread 5294 // (the latter order being a subsequence of the former). 5295 // If the work code below is ever reorganized into a more chaotic 5296 // work-partitioning form than the current "sequential tasks" 5297 // paradigm, the use of that persistent state will have to be 5298 // revisited and modified appropriately. See also related 5299 // bug 4756801 work on which should examine this code to make 5300 // sure that the changes there do not run counter to the 5301 // assumptions made here and necessary for correctness and 5302 // efficiency. Note also that this code might yield inefficient 5303 // behaviour in the case of very large objects that span one or 5304 // more work chunks. Such objects would potentially be scanned 5305 // several times redundantly. Work on 4756801 should try and 5306 // address that performance anomaly if at all possible. XXX 5307 MemRegion full_span = _collector->_span; 5308 CMSBitMap* bm = &(_collector->_markBitMap); // shared 5309 CMSMarkStack* rs = &(_collector->_revisitStack); // shared 5310 MarkFromDirtyCardsClosure 5311 greyRescanClosure(_collector, full_span, // entire span of interest 5312 sp, bm, work_q, rs, cl); 5313 5314 SequentialSubTasksDone* pst = sp->conc_par_seq_tasks(); 5315 assert(pst->valid(), "Uninitialized use?"); 5316 uint nth_task = 0; 5317 const int alignment = CardTableModRefBS::card_size * BitsPerWord; 5318 MemRegion span = sp->used_region(); 5319 HeapWord* start_addr = span.start(); 5320 HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(), 5321 alignment); 5322 const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units 5323 assert((HeapWord*)round_to((intptr_t)start_addr, alignment) == 5324 start_addr, "Check alignment"); 5325 assert((size_t)round_to((intptr_t)chunk_size, alignment) == 5326 chunk_size, "Check alignment"); 5327 5328 while (!pst->is_task_claimed(/* reference */ nth_task)) { 5329 // Having claimed the nth_task, compute corresponding mem-region, 5330 // which is a-fortiori aligned correctly (i.e. at a MUT bopundary). 5331 // The alignment restriction ensures that we do not need any 5332 // synchronization with other gang-workers while setting or 5333 // clearing bits in thus chunk of the MUT. 5334 MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size, 5335 start_addr + (nth_task+1)*chunk_size); 5336 // The last chunk's end might be way beyond end of the 5337 // used region. In that case pull back appropriately. 5338 if (this_span.end() > end_addr) { 5339 this_span.set_end(end_addr); 5340 assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)"); 5341 } 5342 // Iterate over the dirty cards covering this chunk, marking them 5343 // precleaned, and setting the corresponding bits in the mod union 5344 // table. Since we have been careful to partition at Card and MUT-word 5345 // boundaries no synchronization is needed between parallel threads. 5346 _collector->_ct->ct_bs()->dirty_card_iterate(this_span, 5347 &modUnionClosure); 5348 5349 // Having transferred these marks into the modUnionTable, 5350 // rescan the marked objects on the dirty cards in the modUnionTable. 5351 // Even if this is at a synchronous collection, the initial marking 5352 // may have been done during an asynchronous collection so there 5353 // may be dirty bits in the mod-union table. 5354 _collector->_modUnionTable.dirty_range_iterate_clear( 5355 this_span, &greyRescanClosure); 5356 _collector->_modUnionTable.verifyNoOneBitsInRange( 5357 this_span.start(), 5358 this_span.end()); 5359 } 5360 pst->all_tasks_completed(); // declare that i am done 5361 } 5362 5363 // . see if we can share work_queues with ParNew? XXX 5364 void 5365 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, 5366 int* seed) { 5367 OopTaskQueue* work_q = work_queue(i); 5368 NOT_PRODUCT(int num_steals = 0;) 5369 oop obj_to_scan; 5370 CMSBitMap* bm = &(_collector->_markBitMap); 5371 5372 while (true) { 5373 // Completely finish any left over work from (an) earlier round(s) 5374 cl->trim_queue(0); 5375 size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, 5376 (size_t)ParGCDesiredObjsFromOverflowList); 5377 // Now check if there's any work in the overflow list 5378 // Passing ParallelGCThreads as the third parameter, no_of_gc_threads, 5379 // only affects the number of attempts made to get work from the 5380 // overflow list and does not affect the number of workers. Just 5381 // pass ParallelGCThreads so this behavior is unchanged. 5382 if (_collector->par_take_from_overflow_list(num_from_overflow_list, 5383 work_q, 5384 ParallelGCThreads)) { 5385 // found something in global overflow list; 5386 // not yet ready to go stealing work from others. 5387 // We'd like to assert(work_q->size() != 0, ...) 5388 // because we just took work from the overflow list, 5389 // but of course we can't since all of that could have 5390 // been already stolen from us. 5391 // "He giveth and He taketh away." 5392 continue; 5393 } 5394 // Verify that we have no work before we resort to stealing 5395 assert(work_q->size() == 0, "Have work, shouldn't steal"); 5396 // Try to steal from other queues that have work 5397 if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) { 5398 NOT_PRODUCT(num_steals++;) 5399 assert(obj_to_scan->is_oop(), "Oops, not an oop!"); 5400 assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?"); 5401 // Do scanning work 5402 obj_to_scan->oop_iterate(cl); 5403 // Loop around, finish this work, and try to steal some more 5404 } else if (terminator()->offer_termination()) { 5405 break; // nirvana from the infinite cycle 5406 } 5407 } 5408 NOT_PRODUCT( 5409 if (PrintCMSStatistics != 0) { 5410 gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals); 5411 } 5412 ) 5413 assert(work_q->size() == 0 && _collector->overflow_list_is_empty(), 5414 "Else our work is not yet done"); 5415 } 5416 5417 // Return a thread-local PLAB recording array, as appropriate. 5418 void* CMSCollector::get_data_recorder(int thr_num) { 5419 if (_survivor_plab_array != NULL && 5420 (CMSPLABRecordAlways || 5421 (_collectorState > Marking && _collectorState < FinalMarking))) { 5422 assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds"); 5423 ChunkArray* ca = &_survivor_plab_array[thr_num]; 5424 ca->reset(); // clear it so that fresh data is recorded 5425 return (void*) ca; 5426 } else { 5427 return NULL; 5428 } 5429 } 5430 5431 // Reset all the thread-local PLAB recording arrays 5432 void CMSCollector::reset_survivor_plab_arrays() { 5433 for (uint i = 0; i < ParallelGCThreads; i++) { 5434 _survivor_plab_array[i].reset(); 5435 } 5436 } 5437 5438 // Merge the per-thread plab arrays into the global survivor chunk 5439 // array which will provide the partitioning of the survivor space 5440 // for CMS rescan. 5441 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv, 5442 int no_of_gc_threads) { 5443 assert(_survivor_plab_array != NULL, "Error"); 5444 assert(_survivor_chunk_array != NULL, "Error"); 5445 assert(_collectorState == FinalMarking, "Error"); 5446 for (int j = 0; j < no_of_gc_threads; j++) { 5447 _cursor[j] = 0; 5448 } 5449 HeapWord* top = surv->top(); 5450 size_t i; 5451 for (i = 0; i < _survivor_chunk_capacity; i++) { // all sca entries 5452 HeapWord* min_val = top; // Higher than any PLAB address 5453 uint min_tid = 0; // position of min_val this round 5454 for (int j = 0; j < no_of_gc_threads; j++) { 5455 ChunkArray* cur_sca = &_survivor_plab_array[j]; 5456 if (_cursor[j] == cur_sca->end()) { 5457 continue; 5458 } 5459 assert(_cursor[j] < cur_sca->end(), "ctl pt invariant"); 5460 HeapWord* cur_val = cur_sca->nth(_cursor[j]); 5461 assert(surv->used_region().contains(cur_val), "Out of bounds value"); 5462 if (cur_val < min_val) { 5463 min_tid = j; 5464 min_val = cur_val; 5465 } else { 5466 assert(cur_val < top, "All recorded addresses should be less"); 5467 } 5468 } 5469 // At this point min_val and min_tid are respectively 5470 // the least address in _survivor_plab_array[j]->nth(_cursor[j]) 5471 // and the thread (j) that witnesses that address. 5472 // We record this address in the _survivor_chunk_array[i] 5473 // and increment _cursor[min_tid] prior to the next round i. 5474 if (min_val == top) { 5475 break; 5476 } 5477 _survivor_chunk_array[i] = min_val; 5478 _cursor[min_tid]++; 5479 } 5480 // We are all done; record the size of the _survivor_chunk_array 5481 _survivor_chunk_index = i; // exclusive: [0, i) 5482 if (PrintCMSStatistics > 0) { 5483 gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i); 5484 } 5485 // Verify that we used up all the recorded entries 5486 #ifdef ASSERT 5487 size_t total = 0; 5488 for (int j = 0; j < no_of_gc_threads; j++) { 5489 assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant"); 5490 total += _cursor[j]; 5491 } 5492 assert(total == _survivor_chunk_index, "Ctl Pt Invariant"); 5493 // Check that the merged array is in sorted order 5494 if (total > 0) { 5495 for (size_t i = 0; i < total - 1; i++) { 5496 if (PrintCMSStatistics > 0) { 5497 gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ", 5498 i, _survivor_chunk_array[i]); 5499 } 5500 assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1], 5501 "Not sorted"); 5502 } 5503 } 5504 #endif // ASSERT 5505 } 5506 5507 // Set up the space's par_seq_tasks structure for work claiming 5508 // for parallel rescan of young gen. 5509 // See ParRescanTask where this is currently used. 5510 void 5511 CMSCollector:: 5512 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) { 5513 assert(n_threads > 0, "Unexpected n_threads argument"); 5514 DefNewGeneration* dng = (DefNewGeneration*)_young_gen; 5515 5516 // Eden space 5517 { 5518 SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks(); 5519 assert(!pst->valid(), "Clobbering existing data?"); 5520 // Each valid entry in [0, _eden_chunk_index) represents a task. 5521 size_t n_tasks = _eden_chunk_index + 1; 5522 assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error"); 5523 // Sets the condition for completion of the subtask (how many threads 5524 // need to finish in order to be done). 5525 pst->set_n_threads(n_threads); 5526 pst->set_n_tasks((int)n_tasks); 5527 } 5528 5529 // Merge the survivor plab arrays into _survivor_chunk_array 5530 if (_survivor_plab_array != NULL) { 5531 merge_survivor_plab_arrays(dng->from(), n_threads); 5532 } else { 5533 assert(_survivor_chunk_index == 0, "Error"); 5534 } 5535 5536 // To space 5537 { 5538 SequentialSubTasksDone* pst = dng->to()->par_seq_tasks(); 5539 assert(!pst->valid(), "Clobbering existing data?"); 5540 // Sets the condition for completion of the subtask (how many threads 5541 // need to finish in order to be done). 5542 pst->set_n_threads(n_threads); 5543 pst->set_n_tasks(1); 5544 assert(pst->valid(), "Error"); 5545 } 5546 5547 // From space 5548 { 5549 SequentialSubTasksDone* pst = dng->from()->par_seq_tasks(); 5550 assert(!pst->valid(), "Clobbering existing data?"); 5551 size_t n_tasks = _survivor_chunk_index + 1; 5552 assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error"); 5553 // Sets the condition for completion of the subtask (how many threads 5554 // need to finish in order to be done). 5555 pst->set_n_threads(n_threads); 5556 pst->set_n_tasks((int)n_tasks); 5557 assert(pst->valid(), "Error"); 5558 } 5559 } 5560 5561 // Parallel version of remark 5562 void CMSCollector::do_remark_parallel() { 5563 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5564 FlexibleWorkGang* workers = gch->workers(); 5565 assert(workers != NULL, "Need parallel worker threads."); 5566 // Choose to use the number of GC workers most recently set 5567 // into "active_workers". If active_workers is not set, set it 5568 // to ParallelGCThreads. 5569 int n_workers = workers->active_workers(); 5570 if (n_workers == 0) { 5571 assert(n_workers > 0, "Should have been set during scavenge"); 5572 n_workers = ParallelGCThreads; 5573 workers->set_active_workers(n_workers); 5574 } 5575 CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); 5576 CompactibleFreeListSpace* perm_space = _permGen->cmsSpace(); 5577 5578 CMSParRemarkTask tsk(this, 5579 cms_space, perm_space, 5580 n_workers, workers, task_queues()); 5581 5582 // Set up for parallel process_strong_roots work. 5583 gch->set_par_threads(n_workers); 5584 // We won't be iterating over the cards in the card table updating 5585 // the younger_gen cards, so we shouldn't call the following else 5586 // the verification code as well as subsequent younger_refs_iterate 5587 // code would get confused. XXX 5588 // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel 5589 5590 // The young gen rescan work will not be done as part of 5591 // process_strong_roots (which currently doesn't knw how to 5592 // parallelize such a scan), but rather will be broken up into 5593 // a set of parallel tasks (via the sampling that the [abortable] 5594 // preclean phase did of EdenSpace, plus the [two] tasks of 5595 // scanning the [two] survivor spaces. Further fine-grain 5596 // parallelization of the scanning of the survivor spaces 5597 // themselves, and of precleaning of the younger gen itself 5598 // is deferred to the future. 5599 initialize_sequential_subtasks_for_young_gen_rescan(n_workers); 5600 5601 // The dirty card rescan work is broken up into a "sequence" 5602 // of parallel tasks (per constituent space) that are dynamically 5603 // claimed by the parallel threads. 5604 cms_space->initialize_sequential_subtasks_for_rescan(n_workers); 5605 perm_space->initialize_sequential_subtasks_for_rescan(n_workers); 5606 5607 // It turns out that even when we're using 1 thread, doing the work in a 5608 // separate thread causes wide variance in run times. We can't help this 5609 // in the multi-threaded case, but we special-case n=1 here to get 5610 // repeatable measurements of the 1-thread overhead of the parallel code. 5611 if (n_workers > 1) { 5612 // Make refs discovery MT-safe, if it isn't already: it may not 5613 // necessarily be so, since it's possible that we are doing 5614 // ST marking. 5615 ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true); 5616 GenCollectedHeap::StrongRootsScope srs(gch); 5617 workers->run_task(&tsk); 5618 } else { 5619 ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false); 5620 GenCollectedHeap::StrongRootsScope srs(gch); 5621 tsk.work(0); 5622 } 5623 gch->set_par_threads(0); // 0 ==> non-parallel. 5624 // restore, single-threaded for now, any preserved marks 5625 // as a result of work_q overflow 5626 restore_preserved_marks_if_any(); 5627 } 5628 5629 // Non-parallel version of remark 5630 void CMSCollector::do_remark_non_parallel() { 5631 ResourceMark rm; 5632 HandleMark hm; 5633 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5634 ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false); 5635 5636 MarkRefsIntoAndScanClosure 5637 mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable, 5638 &_markStack, &_revisitStack, this, 5639 false /* should_yield */, false /* not precleaning */); 5640 MarkFromDirtyCardsClosure 5641 markFromDirtyCardsClosure(this, _span, 5642 NULL, // space is set further below 5643 &_markBitMap, &_markStack, &_revisitStack, 5644 &mrias_cl); 5645 { 5646 GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm); 5647 // Iterate over the dirty cards, setting the corresponding bits in the 5648 // mod union table. 5649 { 5650 ModUnionClosure modUnionClosure(&_modUnionTable); 5651 _ct->ct_bs()->dirty_card_iterate( 5652 _cmsGen->used_region(), 5653 &modUnionClosure); 5654 _ct->ct_bs()->dirty_card_iterate( 5655 _permGen->used_region(), 5656 &modUnionClosure); 5657 } 5658 // Having transferred these marks into the modUnionTable, we just need 5659 // to rescan the marked objects on the dirty cards in the modUnionTable. 5660 // The initial marking may have been done during an asynchronous 5661 // collection so there may be dirty bits in the mod-union table. 5662 const int alignment = 5663 CardTableModRefBS::card_size * BitsPerWord; 5664 { 5665 // ... First handle dirty cards in CMS gen 5666 markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace()); 5667 MemRegion ur = _cmsGen->used_region(); 5668 HeapWord* lb = ur.start(); 5669 HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment); 5670 MemRegion cms_span(lb, ub); 5671 _modUnionTable.dirty_range_iterate_clear(cms_span, 5672 &markFromDirtyCardsClosure); 5673 verify_work_stacks_empty(); 5674 if (PrintCMSStatistics != 0) { 5675 gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ", 5676 markFromDirtyCardsClosure.num_dirty_cards()); 5677 } 5678 } 5679 { 5680 // .. and then repeat for dirty cards in perm gen 5681 markFromDirtyCardsClosure.set_space(_permGen->cmsSpace()); 5682 MemRegion ur = _permGen->used_region(); 5683 HeapWord* lb = ur.start(); 5684 HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment); 5685 MemRegion perm_span(lb, ub); 5686 _modUnionTable.dirty_range_iterate_clear(perm_span, 5687 &markFromDirtyCardsClosure); 5688 verify_work_stacks_empty(); 5689 if (PrintCMSStatistics != 0) { 5690 gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in perm gen) ", 5691 markFromDirtyCardsClosure.num_dirty_cards()); 5692 } 5693 } 5694 } 5695 if (VerifyDuringGC && 5696 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 5697 HandleMark hm; // Discard invalid handles created during verification 5698 Universe::verify(); 5699 } 5700 { 5701 GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm); 5702 5703 verify_work_stacks_empty(); 5704 5705 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 5706 GenCollectedHeap::StrongRootsScope srs(gch); 5707 gch->gen_process_strong_roots(_cmsGen->level(), 5708 true, // younger gens as roots 5709 false, // use the local StrongRootsScope 5710 true, // collecting perm gen 5711 SharedHeap::ScanningOption(roots_scanning_options()), 5712 &mrias_cl, 5713 true, // walk code active on stacks 5714 NULL); 5715 assert(should_unload_classes() 5716 || (roots_scanning_options() & SharedHeap::SO_CodeCache), 5717 "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops"); 5718 } 5719 verify_work_stacks_empty(); 5720 // Restore evacuated mark words, if any, used for overflow list links 5721 if (!CMSOverflowEarlyRestoration) { 5722 restore_preserved_marks_if_any(); 5723 } 5724 verify_overflow_empty(); 5725 } 5726 5727 //////////////////////////////////////////////////////// 5728 // Parallel Reference Processing Task Proxy Class 5729 //////////////////////////////////////////////////////// 5730 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues { 5731 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; 5732 CMSCollector* _collector; 5733 CMSBitMap* _mark_bit_map; 5734 const MemRegion _span; 5735 ProcessTask& _task; 5736 5737 public: 5738 CMSRefProcTaskProxy(ProcessTask& task, 5739 CMSCollector* collector, 5740 const MemRegion& span, 5741 CMSBitMap* mark_bit_map, 5742 AbstractWorkGang* workers, 5743 OopTaskQueueSet* task_queues): 5744 // XXX Should superclass AGTWOQ also know about AWG since it knows 5745 // about the task_queues used by the AWG? Then it could initialize 5746 // the terminator() object. See 6984287. The set_for_termination() 5747 // below is a temporary band-aid for the regression in 6984287. 5748 AbstractGangTaskWOopQueues("Process referents by policy in parallel", 5749 task_queues), 5750 _task(task), 5751 _collector(collector), _span(span), _mark_bit_map(mark_bit_map) 5752 { 5753 assert(_collector->_span.equals(_span) && !_span.is_empty(), 5754 "Inconsistency in _span"); 5755 set_for_termination(workers->active_workers()); 5756 } 5757 5758 OopTaskQueueSet* task_queues() { return queues(); } 5759 5760 OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); } 5761 5762 void do_work_steal(int i, 5763 CMSParDrainMarkingStackClosure* drain, 5764 CMSParKeepAliveClosure* keep_alive, 5765 int* seed); 5766 5767 virtual void work(uint worker_id); 5768 }; 5769 5770 void CMSRefProcTaskProxy::work(uint worker_id) { 5771 assert(_collector->_span.equals(_span), "Inconsistency in _span"); 5772 CMSParKeepAliveClosure par_keep_alive(_collector, _span, 5773 _mark_bit_map, 5774 &_collector->_revisitStack, 5775 work_queue(worker_id)); 5776 CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span, 5777 _mark_bit_map, 5778 &_collector->_revisitStack, 5779 work_queue(worker_id)); 5780 CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map); 5781 _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack); 5782 if (_task.marks_oops_alive()) { 5783 do_work_steal(worker_id, &par_drain_stack, &par_keep_alive, 5784 _collector->hash_seed(worker_id)); 5785 } 5786 assert(work_queue(worker_id)->size() == 0, "work_queue should be empty"); 5787 assert(_collector->_overflow_list == NULL, "non-empty _overflow_list"); 5788 } 5789 5790 class CMSRefEnqueueTaskProxy: public AbstractGangTask { 5791 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask; 5792 EnqueueTask& _task; 5793 5794 public: 5795 CMSRefEnqueueTaskProxy(EnqueueTask& task) 5796 : AbstractGangTask("Enqueue reference objects in parallel"), 5797 _task(task) 5798 { } 5799 5800 virtual void work(uint worker_id) 5801 { 5802 _task.work(worker_id); 5803 } 5804 }; 5805 5806 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector, 5807 MemRegion span, CMSBitMap* bit_map, CMSMarkStack* revisit_stack, 5808 OopTaskQueue* work_queue): 5809 Par_KlassRememberingOopClosure(collector, NULL, revisit_stack), 5810 _span(span), 5811 _bit_map(bit_map), 5812 _work_queue(work_queue), 5813 _mark_and_push(collector, span, bit_map, revisit_stack, work_queue), 5814 _low_water_mark(MIN2((uint)(work_queue->max_elems()/4), 5815 (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))) 5816 { } 5817 5818 // . see if we can share work_queues with ParNew? XXX 5819 void CMSRefProcTaskProxy::do_work_steal(int i, 5820 CMSParDrainMarkingStackClosure* drain, 5821 CMSParKeepAliveClosure* keep_alive, 5822 int* seed) { 5823 OopTaskQueue* work_q = work_queue(i); 5824 NOT_PRODUCT(int num_steals = 0;) 5825 oop obj_to_scan; 5826 5827 while (true) { 5828 // Completely finish any left over work from (an) earlier round(s) 5829 drain->trim_queue(0); 5830 size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, 5831 (size_t)ParGCDesiredObjsFromOverflowList); 5832 // Now check if there's any work in the overflow list 5833 // Passing ParallelGCThreads as the third parameter, no_of_gc_threads, 5834 // only affects the number of attempts made to get work from the 5835 // overflow list and does not affect the number of workers. Just 5836 // pass ParallelGCThreads so this behavior is unchanged. 5837 if (_collector->par_take_from_overflow_list(num_from_overflow_list, 5838 work_q, 5839 ParallelGCThreads)) { 5840 // Found something in global overflow list; 5841 // not yet ready to go stealing work from others. 5842 // We'd like to assert(work_q->size() != 0, ...) 5843 // because we just took work from the overflow list, 5844 // but of course we can't, since all of that might have 5845 // been already stolen from us. 5846 continue; 5847 } 5848 // Verify that we have no work before we resort to stealing 5849 assert(work_q->size() == 0, "Have work, shouldn't steal"); 5850 // Try to steal from other queues that have work 5851 if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) { 5852 NOT_PRODUCT(num_steals++;) 5853 assert(obj_to_scan->is_oop(), "Oops, not an oop!"); 5854 assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?"); 5855 // Do scanning work 5856 obj_to_scan->oop_iterate(keep_alive); 5857 // Loop around, finish this work, and try to steal some more 5858 } else if (terminator()->offer_termination()) { 5859 break; // nirvana from the infinite cycle 5860 } 5861 } 5862 NOT_PRODUCT( 5863 if (PrintCMSStatistics != 0) { 5864 gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals); 5865 } 5866 ) 5867 } 5868 5869 void CMSRefProcTaskExecutor::execute(ProcessTask& task) 5870 { 5871 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5872 FlexibleWorkGang* workers = gch->workers(); 5873 assert(workers != NULL, "Need parallel worker threads."); 5874 CMSRefProcTaskProxy rp_task(task, &_collector, 5875 _collector.ref_processor()->span(), 5876 _collector.markBitMap(), 5877 workers, _collector.task_queues()); 5878 workers->run_task(&rp_task); 5879 } 5880 5881 void CMSRefProcTaskExecutor::execute(EnqueueTask& task) 5882 { 5883 5884 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5885 FlexibleWorkGang* workers = gch->workers(); 5886 assert(workers != NULL, "Need parallel worker threads."); 5887 CMSRefEnqueueTaskProxy enq_task(task); 5888 workers->run_task(&enq_task); 5889 } 5890 5891 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) { 5892 5893 ResourceMark rm; 5894 HandleMark hm; 5895 5896 ReferenceProcessor* rp = ref_processor(); 5897 assert(rp->span().equals(_span), "Spans should be equal"); 5898 assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete"); 5899 // Process weak references. 5900 rp->setup_policy(clear_all_soft_refs); 5901 verify_work_stacks_empty(); 5902 5903 CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap, 5904 &_markStack, &_revisitStack, 5905 false /* !preclean */); 5906 CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this, 5907 _span, &_markBitMap, &_markStack, 5908 &cmsKeepAliveClosure, false /* !preclean */); 5909 { 5910 GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm); 5911 if (rp->processing_is_mt()) { 5912 // Set the degree of MT here. If the discovery is done MT, there 5913 // may have been a different number of threads doing the discovery 5914 // and a different number of discovered lists may have Ref objects. 5915 // That is OK as long as the Reference lists are balanced (see 5916 // balance_all_queues() and balance_queues()). 5917 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5918 int active_workers = ParallelGCThreads; 5919 FlexibleWorkGang* workers = gch->workers(); 5920 if (workers != NULL) { 5921 active_workers = workers->active_workers(); 5922 // The expectation is that active_workers will have already 5923 // been set to a reasonable value. If it has not been set, 5924 // investigate. 5925 assert(active_workers > 0, "Should have been set during scavenge"); 5926 } 5927 rp->set_active_mt_degree(active_workers); 5928 CMSRefProcTaskExecutor task_executor(*this); 5929 rp->process_discovered_references(&_is_alive_closure, 5930 &cmsKeepAliveClosure, 5931 &cmsDrainMarkingStackClosure, 5932 &task_executor, 5933 _gc_timer_cm); 5934 } else { 5935 rp->process_discovered_references(&_is_alive_closure, 5936 &cmsKeepAliveClosure, 5937 &cmsDrainMarkingStackClosure, 5938 NULL, 5939 _gc_timer_cm); 5940 } 5941 verify_work_stacks_empty(); 5942 } 5943 5944 if (should_unload_classes()) { 5945 { 5946 GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm); 5947 5948 // Follow SystemDictionary roots and unload classes 5949 bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure); 5950 5951 // Follow CodeCache roots and unload any methods marked for unloading 5952 CodeCache::do_unloading(&_is_alive_closure, 5953 &cmsKeepAliveClosure, 5954 purged_class); 5955 5956 cmsDrainMarkingStackClosure.do_void(); 5957 verify_work_stacks_empty(); 5958 5959 // Update subklass/sibling/implementor links in KlassKlass descendants 5960 assert(!_revisitStack.isEmpty(), "revisit stack should not be empty"); 5961 oop k; 5962 while ((k = _revisitStack.pop()) != NULL) { 5963 ((Klass*)(oopDesc*)k)->follow_weak_klass_links( 5964 &_is_alive_closure, 5965 &cmsKeepAliveClosure); 5966 } 5967 assert(!ClassUnloading || 5968 (_markStack.isEmpty() && overflow_list_is_empty()), 5969 "Should not have found new reachable objects"); 5970 assert(_revisitStack.isEmpty(), "revisit stack should have been drained"); 5971 cmsDrainMarkingStackClosure.do_void(); 5972 verify_work_stacks_empty(); 5973 } 5974 5975 { 5976 GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm); 5977 // Clean up unreferenced symbols in symbol table. 5978 SymbolTable::unlink(); 5979 } 5980 } 5981 5982 if (should_unload_classes() || !JavaObjectsInPerm) { 5983 GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm); 5984 // Now clean up stale oops in StringTable 5985 StringTable::unlink(&_is_alive_closure); 5986 } 5987 5988 verify_work_stacks_empty(); 5989 // Restore any preserved marks as a result of mark stack or 5990 // work queue overflow 5991 restore_preserved_marks_if_any(); // done single-threaded for now 5992 5993 rp->set_enqueuing_is_done(true); 5994 if (rp->processing_is_mt()) { 5995 rp->balance_all_queues(); 5996 CMSRefProcTaskExecutor task_executor(*this); 5997 rp->enqueue_discovered_references(&task_executor); 5998 } else { 5999 rp->enqueue_discovered_references(NULL); 6000 } 6001 rp->verify_no_references_recorded(); 6002 assert(!rp->discovery_enabled(), "should have been disabled"); 6003 } 6004 6005 #ifndef PRODUCT 6006 void CMSCollector::check_correct_thread_executing() { 6007 Thread* t = Thread::current(); 6008 // Only the VM thread or the CMS thread should be here. 6009 assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(), 6010 "Unexpected thread type"); 6011 // If this is the vm thread, the foreground process 6012 // should not be waiting. Note that _foregroundGCIsActive is 6013 // true while the foreground collector is waiting. 6014 if (_foregroundGCShouldWait) { 6015 // We cannot be the VM thread 6016 assert(t->is_ConcurrentGC_thread(), 6017 "Should be CMS thread"); 6018 } else { 6019 // We can be the CMS thread only if we are in a stop-world 6020 // phase of CMS collection. 6021 if (t->is_ConcurrentGC_thread()) { 6022 assert(_collectorState == InitialMarking || 6023 _collectorState == FinalMarking, 6024 "Should be a stop-world phase"); 6025 // The CMS thread should be holding the CMS_token. 6026 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6027 "Potential interference with concurrently " 6028 "executing VM thread"); 6029 } 6030 } 6031 } 6032 #endif 6033 6034 void CMSCollector::sweep(bool asynch) { 6035 assert(_collectorState == Sweeping, "just checking"); 6036 check_correct_thread_executing(); 6037 verify_work_stacks_empty(); 6038 verify_overflow_empty(); 6039 increment_sweep_count(); 6040 TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause()); 6041 6042 _inter_sweep_timer.stop(); 6043 _inter_sweep_estimate.sample(_inter_sweep_timer.seconds()); 6044 size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free()); 6045 6046 // PermGen verification support: If perm gen sweeping is disabled in 6047 // this cycle, we preserve the perm gen object "deadness" information 6048 // in the perm_gen_verify_bit_map. In order to do that we traverse 6049 // all blocks in perm gen and mark all dead objects. 6050 if (verifying() && !should_unload_classes()) { 6051 assert(perm_gen_verify_bit_map()->sizeInBits() != 0, 6052 "Should have already been allocated"); 6053 MarkDeadObjectsClosure mdo(this, _permGen->cmsSpace(), 6054 markBitMap(), perm_gen_verify_bit_map()); 6055 if (asynch) { 6056 CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(), 6057 bitMapLock()); 6058 _permGen->cmsSpace()->blk_iterate(&mdo); 6059 } else { 6060 // In the case of synchronous sweep, we already have 6061 // the requisite locks/tokens. 6062 _permGen->cmsSpace()->blk_iterate(&mdo); 6063 } 6064 } 6065 6066 assert(!_intra_sweep_timer.is_active(), "Should not be active"); 6067 _intra_sweep_timer.reset(); 6068 _intra_sweep_timer.start(); 6069 if (asynch) { 6070 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 6071 CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails); 6072 // First sweep the old gen then the perm gen 6073 { 6074 CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(), 6075 bitMapLock()); 6076 sweepWork(_cmsGen, asynch); 6077 } 6078 6079 // Now repeat for perm gen 6080 if (should_unload_classes()) { 6081 CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(), 6082 bitMapLock()); 6083 sweepWork(_permGen, asynch); 6084 } 6085 6086 // Update Universe::_heap_*_at_gc figures. 6087 // We need all the free list locks to make the abstract state 6088 // transition from Sweeping to Resetting. See detailed note 6089 // further below. 6090 { 6091 CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(), 6092 _permGen->freelistLock()); 6093 // Update heap occupancy information which is used as 6094 // input to soft ref clearing policy at the next gc. 6095 Universe::update_heap_info_at_gc(); 6096 _collectorState = Resizing; 6097 } 6098 } else { 6099 // already have needed locks 6100 sweepWork(_cmsGen, asynch); 6101 6102 if (should_unload_classes()) { 6103 sweepWork(_permGen, asynch); 6104 } 6105 // Update heap occupancy information which is used as 6106 // input to soft ref clearing policy at the next gc. 6107 Universe::update_heap_info_at_gc(); 6108 _collectorState = Resizing; 6109 } 6110 verify_work_stacks_empty(); 6111 verify_overflow_empty(); 6112 6113 _intra_sweep_timer.stop(); 6114 _intra_sweep_estimate.sample(_intra_sweep_timer.seconds()); 6115 6116 _inter_sweep_timer.reset(); 6117 _inter_sweep_timer.start(); 6118 6119 // We need to use a monotonically non-deccreasing time in ms 6120 // or we will see time-warp warnings and os::javaTimeMillis() 6121 // does not guarantee monotonicity. 6122 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; 6123 update_time_of_last_gc(now); 6124 6125 // NOTE on abstract state transitions: 6126 // Mutators allocate-live and/or mark the mod-union table dirty 6127 // based on the state of the collection. The former is done in 6128 // the interval [Marking, Sweeping] and the latter in the interval 6129 // [Marking, Sweeping). Thus the transitions into the Marking state 6130 // and out of the Sweeping state must be synchronously visible 6131 // globally to the mutators. 6132 // The transition into the Marking state happens with the world 6133 // stopped so the mutators will globally see it. Sweeping is 6134 // done asynchronously by the background collector so the transition 6135 // from the Sweeping state to the Resizing state must be done 6136 // under the freelistLock (as is the check for whether to 6137 // allocate-live and whether to dirty the mod-union table). 6138 assert(_collectorState == Resizing, "Change of collector state to" 6139 " Resizing must be done under the freelistLocks (plural)"); 6140 6141 // Now that sweeping has been completed, we clear 6142 // the incremental_collection_failed flag, 6143 // thus inviting a younger gen collection to promote into 6144 // this generation. If such a promotion may still fail, 6145 // the flag will be set again when a young collection is 6146 // attempted. 6147 GenCollectedHeap* gch = GenCollectedHeap::heap(); 6148 gch->clear_incremental_collection_failed(); // Worth retrying as fresh space may have been freed up 6149 gch->update_full_collections_completed(_collection_count_start); 6150 } 6151 6152 // FIX ME!!! Looks like this belongs in CFLSpace, with 6153 // CMSGen merely delegating to it. 6154 void ConcurrentMarkSweepGeneration::setNearLargestChunk() { 6155 double nearLargestPercent = FLSLargestBlockCoalesceProximity; 6156 HeapWord* minAddr = _cmsSpace->bottom(); 6157 HeapWord* largestAddr = 6158 (HeapWord*) _cmsSpace->dictionary()->find_largest_dict(); 6159 if (largestAddr == NULL) { 6160 // The dictionary appears to be empty. In this case 6161 // try to coalesce at the end of the heap. 6162 largestAddr = _cmsSpace->end(); 6163 } 6164 size_t largestOffset = pointer_delta(largestAddr, minAddr); 6165 size_t nearLargestOffset = 6166 (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize; 6167 if (PrintFLSStatistics != 0) { 6168 gclog_or_tty->print_cr( 6169 "CMS: Large Block: " PTR_FORMAT ";" 6170 " Proximity: " PTR_FORMAT " -> " PTR_FORMAT, 6171 largestAddr, 6172 _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset); 6173 } 6174 _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset); 6175 } 6176 6177 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) { 6178 return addr >= _cmsSpace->nearLargestChunk(); 6179 } 6180 6181 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() { 6182 return _cmsSpace->find_chunk_at_end(); 6183 } 6184 6185 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level, 6186 bool full) { 6187 // The next lower level has been collected. Gather any statistics 6188 // that are of interest at this point. 6189 if (!full && (current_level + 1) == level()) { 6190 // Gather statistics on the young generation collection. 6191 collector()->stats().record_gc0_end(used()); 6192 } 6193 } 6194 6195 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() { 6196 GenCollectedHeap* gch = GenCollectedHeap::heap(); 6197 assert(gch->kind() == CollectedHeap::GenCollectedHeap, 6198 "Wrong type of heap"); 6199 CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*) 6200 gch->gen_policy()->size_policy(); 6201 assert(sp->is_gc_cms_adaptive_size_policy(), 6202 "Wrong type of size policy"); 6203 return sp; 6204 } 6205 6206 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() { 6207 if (PrintGCDetails && Verbose) { 6208 gclog_or_tty->print("Rotate from %d ", _debug_collection_type); 6209 } 6210 _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1); 6211 _debug_collection_type = 6212 (CollectionTypes) (_debug_collection_type % Unknown_collection_type); 6213 if (PrintGCDetails && Verbose) { 6214 gclog_or_tty->print_cr("to %d ", _debug_collection_type); 6215 } 6216 } 6217 6218 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen, 6219 bool asynch) { 6220 // We iterate over the space(s) underlying this generation, 6221 // checking the mark bit map to see if the bits corresponding 6222 // to specific blocks are marked or not. Blocks that are 6223 // marked are live and are not swept up. All remaining blocks 6224 // are swept up, with coalescing on-the-fly as we sweep up 6225 // contiguous free and/or garbage blocks: 6226 // We need to ensure that the sweeper synchronizes with allocators 6227 // and stop-the-world collectors. In particular, the following 6228 // locks are used: 6229 // . CMS token: if this is held, a stop the world collection cannot occur 6230 // . freelistLock: if this is held no allocation can occur from this 6231 // generation by another thread 6232 // . bitMapLock: if this is held, no other thread can access or update 6233 // 6234 6235 // Note that we need to hold the freelistLock if we use 6236 // block iterate below; else the iterator might go awry if 6237 // a mutator (or promotion) causes block contents to change 6238 // (for instance if the allocator divvies up a block). 6239 // If we hold the free list lock, for all practical purposes 6240 // young generation GC's can't occur (they'll usually need to 6241 // promote), so we might as well prevent all young generation 6242 // GC's while we do a sweeping step. For the same reason, we might 6243 // as well take the bit map lock for the entire duration 6244 6245 // check that we hold the requisite locks 6246 assert(have_cms_token(), "Should hold cms token"); 6247 assert( (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token()) 6248 || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()), 6249 "Should possess CMS token to sweep"); 6250 assert_lock_strong(gen->freelistLock()); 6251 assert_lock_strong(bitMapLock()); 6252 6253 assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context"); 6254 assert(_intra_sweep_timer.is_active(), "Was switched on in an outer context"); 6255 gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()), 6256 _inter_sweep_estimate.padded_average(), 6257 _intra_sweep_estimate.padded_average()); 6258 gen->setNearLargestChunk(); 6259 6260 { 6261 SweepClosure sweepClosure(this, gen, &_markBitMap, 6262 CMSYield && asynch); 6263 gen->cmsSpace()->blk_iterate_careful(&sweepClosure); 6264 // We need to free-up/coalesce garbage/blocks from a 6265 // co-terminal free run. This is done in the SweepClosure 6266 // destructor; so, do not remove this scope, else the 6267 // end-of-sweep-census below will be off by a little bit. 6268 } 6269 gen->cmsSpace()->sweep_completed(); 6270 gen->cmsSpace()->endSweepFLCensus(sweep_count()); 6271 if (should_unload_classes()) { // unloaded classes this cycle, 6272 _concurrent_cycles_since_last_unload = 0; // ... reset count 6273 } else { // did not unload classes, 6274 _concurrent_cycles_since_last_unload++; // ... increment count 6275 } 6276 } 6277 6278 // Reset CMS data structures (for now just the marking bit map) 6279 // preparatory for the next cycle. 6280 void CMSCollector::reset(bool asynch) { 6281 GenCollectedHeap* gch = GenCollectedHeap::heap(); 6282 CMSAdaptiveSizePolicy* sp = size_policy(); 6283 AdaptiveSizePolicyOutput(sp, gch->total_collections()); 6284 if (asynch) { 6285 CMSTokenSyncWithLocks ts(true, bitMapLock()); 6286 6287 // If the state is not "Resetting", the foreground thread 6288 // has done a collection and the resetting. 6289 if (_collectorState != Resetting) { 6290 assert(_collectorState == Idling, "The state should only change" 6291 " because the foreground collector has finished the collection"); 6292 return; 6293 } 6294 6295 // Clear the mark bitmap (no grey objects to start with) 6296 // for the next cycle. 6297 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 6298 CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails); 6299 6300 HeapWord* curAddr = _markBitMap.startWord(); 6301 while (curAddr < _markBitMap.endWord()) { 6302 size_t remaining = pointer_delta(_markBitMap.endWord(), curAddr); 6303 MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining)); 6304 _markBitMap.clear_large_range(chunk); 6305 if (ConcurrentMarkSweepThread::should_yield() && 6306 !foregroundGCIsActive() && 6307 CMSYield) { 6308 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6309 "CMS thread should hold CMS token"); 6310 assert_lock_strong(bitMapLock()); 6311 bitMapLock()->unlock(); 6312 ConcurrentMarkSweepThread::desynchronize(true); 6313 ConcurrentMarkSweepThread::acknowledge_yield_request(); 6314 stopTimer(); 6315 if (PrintCMSStatistics != 0) { 6316 incrementYields(); 6317 } 6318 icms_wait(); 6319 6320 // See the comment in coordinator_yield() 6321 for (unsigned i = 0; i < CMSYieldSleepCount && 6322 ConcurrentMarkSweepThread::should_yield() && 6323 !CMSCollector::foregroundGCIsActive(); ++i) { 6324 os::sleep(Thread::current(), 1, false); 6325 ConcurrentMarkSweepThread::acknowledge_yield_request(); 6326 } 6327 6328 ConcurrentMarkSweepThread::synchronize(true); 6329 bitMapLock()->lock_without_safepoint_check(); 6330 startTimer(); 6331 } 6332 curAddr = chunk.end(); 6333 } 6334 // A successful mostly concurrent collection has been done. 6335 // Because only the full (i.e., concurrent mode failure) collections 6336 // are being measured for gc overhead limits, clean the "near" flag 6337 // and count. 6338 sp->reset_gc_overhead_limit_count(); 6339 _collectorState = Idling; 6340 } else { 6341 // already have the lock 6342 assert(_collectorState == Resetting, "just checking"); 6343 assert_lock_strong(bitMapLock()); 6344 _markBitMap.clear_all(); 6345 _collectorState = Idling; 6346 } 6347 6348 // Stop incremental mode after a cycle completes, so that any future cycles 6349 // are triggered by allocation. 6350 stop_icms(); 6351 6352 NOT_PRODUCT( 6353 if (RotateCMSCollectionTypes) { 6354 _cmsGen->rotate_debug_collection_type(); 6355 } 6356 ) 6357 6358 register_gc_end(); 6359 } 6360 6361 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) { 6362 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps); 6363 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 6364 GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL); 6365 TraceCollectorStats tcs(counters()); 6366 6367 switch (op) { 6368 case CMS_op_checkpointRootsInitial: { 6369 SvcGCMarker sgcm(SvcGCMarker::OTHER); 6370 checkpointRootsInitial(true); // asynch 6371 if (PrintGC) { 6372 _cmsGen->printOccupancy("initial-mark"); 6373 } 6374 break; 6375 } 6376 case CMS_op_checkpointRootsFinal: { 6377 SvcGCMarker sgcm(SvcGCMarker::OTHER); 6378 checkpointRootsFinal(true, // asynch 6379 false, // !clear_all_soft_refs 6380 false); // !init_mark_was_synchronous 6381 if (PrintGC) { 6382 _cmsGen->printOccupancy("remark"); 6383 } 6384 break; 6385 } 6386 default: 6387 fatal("No such CMS_op"); 6388 } 6389 } 6390 6391 #ifndef PRODUCT 6392 size_t const CMSCollector::skip_header_HeapWords() { 6393 return FreeChunk::header_size(); 6394 } 6395 6396 // Try and collect here conditions that should hold when 6397 // CMS thread is exiting. The idea is that the foreground GC 6398 // thread should not be blocked if it wants to terminate 6399 // the CMS thread and yet continue to run the VM for a while 6400 // after that. 6401 void CMSCollector::verify_ok_to_terminate() const { 6402 assert(Thread::current()->is_ConcurrentGC_thread(), 6403 "should be called by CMS thread"); 6404 assert(!_foregroundGCShouldWait, "should be false"); 6405 // We could check here that all the various low-level locks 6406 // are not held by the CMS thread, but that is overkill; see 6407 // also CMSThread::verify_ok_to_terminate() where the CGC_lock 6408 // is checked. 6409 } 6410 #endif 6411 6412 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const { 6413 assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1), 6414 "missing Printezis mark?"); 6415 HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2); 6416 size_t size = pointer_delta(nextOneAddr + 1, addr); 6417 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 6418 "alignment problem"); 6419 assert(size >= 3, "Necessary for Printezis marks to work"); 6420 return size; 6421 } 6422 6423 // A variant of the above (block_size_using_printezis_bits()) except 6424 // that we return 0 if the P-bits are not yet set. 6425 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const { 6426 if (_markBitMap.isMarked(addr + 1)) { 6427 assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects"); 6428 HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2); 6429 size_t size = pointer_delta(nextOneAddr + 1, addr); 6430 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 6431 "alignment problem"); 6432 assert(size >= 3, "Necessary for Printezis marks to work"); 6433 return size; 6434 } 6435 return 0; 6436 } 6437 6438 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const { 6439 size_t sz = 0; 6440 oop p = (oop)addr; 6441 if (p->klass_or_null() != NULL && p->is_parsable()) { 6442 sz = CompactibleFreeListSpace::adjustObjectSize(p->size()); 6443 } else { 6444 sz = block_size_using_printezis_bits(addr); 6445 } 6446 assert(sz > 0, "size must be nonzero"); 6447 HeapWord* next_block = addr + sz; 6448 HeapWord* next_card = (HeapWord*)round_to((uintptr_t)next_block, 6449 CardTableModRefBS::card_size); 6450 assert(round_down((uintptr_t)addr, CardTableModRefBS::card_size) < 6451 round_down((uintptr_t)next_card, CardTableModRefBS::card_size), 6452 "must be different cards"); 6453 return next_card; 6454 } 6455 6456 6457 // CMS Bit Map Wrapper ///////////////////////////////////////// 6458 6459 // Construct a CMS bit map infrastructure, but don't create the 6460 // bit vector itself. That is done by a separate call CMSBitMap::allocate() 6461 // further below. 6462 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name): 6463 _bm(), 6464 _shifter(shifter), 6465 _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL) 6466 { 6467 _bmStartWord = 0; 6468 _bmWordSize = 0; 6469 } 6470 6471 bool CMSBitMap::allocate(MemRegion mr) { 6472 _bmStartWord = mr.start(); 6473 _bmWordSize = mr.word_size(); 6474 ReservedSpace brs(ReservedSpace::allocation_align_size_up( 6475 (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1)); 6476 if (!brs.is_reserved()) { 6477 warning("CMS bit map allocation failure"); 6478 return false; 6479 } 6480 // For now we'll just commit all of the bit map up fromt. 6481 // Later on we'll try to be more parsimonious with swap. 6482 if (!_virtual_space.initialize(brs, brs.size())) { 6483 warning("CMS bit map backing store failure"); 6484 return false; 6485 } 6486 assert(_virtual_space.committed_size() == brs.size(), 6487 "didn't reserve backing store for all of CMS bit map?"); 6488 _bm.set_map((BitMap::bm_word_t*)_virtual_space.low()); 6489 assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >= 6490 _bmWordSize, "inconsistency in bit map sizing"); 6491 _bm.set_size(_bmWordSize >> _shifter); 6492 6493 // bm.clear(); // can we rely on getting zero'd memory? verify below 6494 assert(isAllClear(), 6495 "Expected zero'd memory from ReservedSpace constructor"); 6496 assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()), 6497 "consistency check"); 6498 return true; 6499 } 6500 6501 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) { 6502 HeapWord *next_addr, *end_addr, *last_addr; 6503 assert_locked(); 6504 assert(covers(mr), "out-of-range error"); 6505 // XXX assert that start and end are appropriately aligned 6506 for (next_addr = mr.start(), end_addr = mr.end(); 6507 next_addr < end_addr; next_addr = last_addr) { 6508 MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr); 6509 last_addr = dirty_region.end(); 6510 if (!dirty_region.is_empty()) { 6511 cl->do_MemRegion(dirty_region); 6512 } else { 6513 assert(last_addr == end_addr, "program logic"); 6514 return; 6515 } 6516 } 6517 } 6518 6519 #ifndef PRODUCT 6520 void CMSBitMap::assert_locked() const { 6521 CMSLockVerifier::assert_locked(lock()); 6522 } 6523 6524 bool CMSBitMap::covers(MemRegion mr) const { 6525 // assert(_bm.map() == _virtual_space.low(), "map inconsistency"); 6526 assert((size_t)_bm.size() == (_bmWordSize >> _shifter), 6527 "size inconsistency"); 6528 return (mr.start() >= _bmStartWord) && 6529 (mr.end() <= endWord()); 6530 } 6531 6532 bool CMSBitMap::covers(HeapWord* start, size_t size) const { 6533 return (start >= _bmStartWord && (start + size) <= endWord()); 6534 } 6535 6536 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) { 6537 // verify that there are no 1 bits in the interval [left, right) 6538 FalseBitMapClosure falseBitMapClosure; 6539 iterate(&falseBitMapClosure, left, right); 6540 } 6541 6542 void CMSBitMap::region_invariant(MemRegion mr) 6543 { 6544 assert_locked(); 6545 // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize)); 6546 assert(!mr.is_empty(), "unexpected empty region"); 6547 assert(covers(mr), "mr should be covered by bit map"); 6548 // convert address range into offset range 6549 size_t start_ofs = heapWordToOffset(mr.start()); 6550 // Make sure that end() is appropriately aligned 6551 assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(), 6552 (1 << (_shifter+LogHeapWordSize))), 6553 "Misaligned mr.end()"); 6554 size_t end_ofs = heapWordToOffset(mr.end()); 6555 assert(end_ofs > start_ofs, "Should mark at least one bit"); 6556 } 6557 6558 #endif 6559 6560 bool CMSMarkStack::allocate(size_t size) { 6561 // allocate a stack of the requisite depth 6562 ReservedSpace rs(ReservedSpace::allocation_align_size_up( 6563 size * sizeof(oop))); 6564 if (!rs.is_reserved()) { 6565 warning("CMSMarkStack allocation failure"); 6566 return false; 6567 } 6568 if (!_virtual_space.initialize(rs, rs.size())) { 6569 warning("CMSMarkStack backing store failure"); 6570 return false; 6571 } 6572 assert(_virtual_space.committed_size() == rs.size(), 6573 "didn't reserve backing store for all of CMS stack?"); 6574 _base = (oop*)(_virtual_space.low()); 6575 _index = 0; 6576 _capacity = size; 6577 NOT_PRODUCT(_max_depth = 0); 6578 return true; 6579 } 6580 6581 // XXX FIX ME !!! In the MT case we come in here holding a 6582 // leaf lock. For printing we need to take a further lock 6583 // which has lower rank. We need to recallibrate the two 6584 // lock-ranks involved in order to be able to rpint the 6585 // messages below. (Or defer the printing to the caller. 6586 // For now we take the expedient path of just disabling the 6587 // messages for the problematic case.) 6588 void CMSMarkStack::expand() { 6589 assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted"); 6590 if (_capacity == MarkStackSizeMax) { 6591 if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) { 6592 // We print a warning message only once per CMS cycle. 6593 gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit"); 6594 } 6595 return; 6596 } 6597 // Double capacity if possible 6598 size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax); 6599 // Do not give up existing stack until we have managed to 6600 // get the double capacity that we desired. 6601 ReservedSpace rs(ReservedSpace::allocation_align_size_up( 6602 new_capacity * sizeof(oop))); 6603 if (rs.is_reserved()) { 6604 // Release the backing store associated with old stack 6605 _virtual_space.release(); 6606 // Reinitialize virtual space for new stack 6607 if (!_virtual_space.initialize(rs, rs.size())) { 6608 fatal("Not enough swap for expanded marking stack"); 6609 } 6610 _base = (oop*)(_virtual_space.low()); 6611 _index = 0; 6612 _capacity = new_capacity; 6613 } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) { 6614 // Failed to double capacity, continue; 6615 // we print a detail message only once per CMS cycle. 6616 gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to " 6617 SIZE_FORMAT"K", 6618 _capacity / K, new_capacity / K); 6619 } 6620 } 6621 6622 6623 // Closures 6624 // XXX: there seems to be a lot of code duplication here; 6625 // should refactor and consolidate common code. 6626 6627 // This closure is used to mark refs into the CMS generation in 6628 // the CMS bit map. Called at the first checkpoint. This closure 6629 // assumes that we do not need to re-mark dirty cards; if the CMS 6630 // generation on which this is used is not an oldest (modulo perm gen) 6631 // generation then this will lose younger_gen cards! 6632 6633 MarkRefsIntoClosure::MarkRefsIntoClosure( 6634 MemRegion span, CMSBitMap* bitMap): 6635 _span(span), 6636 _bitMap(bitMap) 6637 { 6638 assert(_ref_processor == NULL, "deliberately left NULL"); 6639 assert(_bitMap->covers(_span), "_bitMap/_span mismatch"); 6640 } 6641 6642 void MarkRefsIntoClosure::do_oop(oop obj) { 6643 // if p points into _span, then mark corresponding bit in _markBitMap 6644 assert(obj->is_oop(), "expected an oop"); 6645 HeapWord* addr = (HeapWord*)obj; 6646 if (_span.contains(addr)) { 6647 // this should be made more efficient 6648 _bitMap->mark(addr); 6649 } 6650 } 6651 6652 void MarkRefsIntoClosure::do_oop(oop* p) { MarkRefsIntoClosure::do_oop_work(p); } 6653 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); } 6654 6655 // A variant of the above, used for CMS marking verification. 6656 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure( 6657 MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm): 6658 _span(span), 6659 _verification_bm(verification_bm), 6660 _cms_bm(cms_bm) 6661 { 6662 assert(_ref_processor == NULL, "deliberately left NULL"); 6663 assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch"); 6664 } 6665 6666 void MarkRefsIntoVerifyClosure::do_oop(oop obj) { 6667 // if p points into _span, then mark corresponding bit in _markBitMap 6668 assert(obj->is_oop(), "expected an oop"); 6669 HeapWord* addr = (HeapWord*)obj; 6670 if (_span.contains(addr)) { 6671 _verification_bm->mark(addr); 6672 if (!_cms_bm->isMarked(addr)) { 6673 oop(addr)->print(); 6674 gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr); 6675 fatal("... aborting"); 6676 } 6677 } 6678 } 6679 6680 void MarkRefsIntoVerifyClosure::do_oop(oop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); } 6681 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); } 6682 6683 ////////////////////////////////////////////////// 6684 // MarkRefsIntoAndScanClosure 6685 ////////////////////////////////////////////////// 6686 6687 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span, 6688 ReferenceProcessor* rp, 6689 CMSBitMap* bit_map, 6690 CMSBitMap* mod_union_table, 6691 CMSMarkStack* mark_stack, 6692 CMSMarkStack* revisit_stack, 6693 CMSCollector* collector, 6694 bool should_yield, 6695 bool concurrent_precleaning): 6696 _collector(collector), 6697 _span(span), 6698 _bit_map(bit_map), 6699 _mark_stack(mark_stack), 6700 _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table, 6701 mark_stack, revisit_stack, concurrent_precleaning), 6702 _yield(should_yield), 6703 _concurrent_precleaning(concurrent_precleaning), 6704 _freelistLock(NULL) 6705 { 6706 _ref_processor = rp; 6707 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 6708 } 6709 6710 // This closure is used to mark refs into the CMS generation at the 6711 // second (final) checkpoint, and to scan and transitively follow 6712 // the unmarked oops. It is also used during the concurrent precleaning 6713 // phase while scanning objects on dirty cards in the CMS generation. 6714 // The marks are made in the marking bit map and the marking stack is 6715 // used for keeping the (newly) grey objects during the scan. 6716 // The parallel version (Par_...) appears further below. 6717 void MarkRefsIntoAndScanClosure::do_oop(oop obj) { 6718 if (obj != NULL) { 6719 assert(obj->is_oop(), "expected an oop"); 6720 HeapWord* addr = (HeapWord*)obj; 6721 assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)"); 6722 assert(_collector->overflow_list_is_empty(), 6723 "overflow list should be empty"); 6724 if (_span.contains(addr) && 6725 !_bit_map->isMarked(addr)) { 6726 // mark bit map (object is now grey) 6727 _bit_map->mark(addr); 6728 // push on marking stack (stack should be empty), and drain the 6729 // stack by applying this closure to the oops in the oops popped 6730 // from the stack (i.e. blacken the grey objects) 6731 bool res = _mark_stack->push(obj); 6732 assert(res, "Should have space to push on empty stack"); 6733 do { 6734 oop new_oop = _mark_stack->pop(); 6735 assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop"); 6736 assert(new_oop->is_parsable(), "Found unparsable oop"); 6737 assert(_bit_map->isMarked((HeapWord*)new_oop), 6738 "only grey objects on this stack"); 6739 // iterate over the oops in this oop, marking and pushing 6740 // the ones in CMS heap (i.e. in _span). 6741 new_oop->oop_iterate(&_pushAndMarkClosure); 6742 // check if it's time to yield 6743 do_yield_check(); 6744 } while (!_mark_stack->isEmpty() || 6745 (!_concurrent_precleaning && take_from_overflow_list())); 6746 // if marking stack is empty, and we are not doing this 6747 // during precleaning, then check the overflow list 6748 } 6749 assert(_mark_stack->isEmpty(), "post-condition (eager drainage)"); 6750 assert(_collector->overflow_list_is_empty(), 6751 "overflow list was drained above"); 6752 // We could restore evacuated mark words, if any, used for 6753 // overflow list links here because the overflow list is 6754 // provably empty here. That would reduce the maximum 6755 // size requirements for preserved_{oop,mark}_stack. 6756 // But we'll just postpone it until we are all done 6757 // so we can just stream through. 6758 if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) { 6759 _collector->restore_preserved_marks_if_any(); 6760 assert(_collector->no_preserved_marks(), "No preserved marks"); 6761 } 6762 assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(), 6763 "All preserved marks should have been restored above"); 6764 } 6765 } 6766 6767 void MarkRefsIntoAndScanClosure::do_oop(oop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); } 6768 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); } 6769 6770 void MarkRefsIntoAndScanClosure::do_yield_work() { 6771 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6772 "CMS thread should hold CMS token"); 6773 assert_lock_strong(_freelistLock); 6774 assert_lock_strong(_bit_map->lock()); 6775 // relinquish the free_list_lock and bitMaplock() 6776 DEBUG_ONLY(RememberKlassesChecker mux(false);) 6777 _bit_map->lock()->unlock(); 6778 _freelistLock->unlock(); 6779 ConcurrentMarkSweepThread::desynchronize(true); 6780 ConcurrentMarkSweepThread::acknowledge_yield_request(); 6781 _collector->stopTimer(); 6782 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 6783 if (PrintCMSStatistics != 0) { 6784 _collector->incrementYields(); 6785 } 6786 _collector->icms_wait(); 6787 6788 // See the comment in coordinator_yield() 6789 for (unsigned i = 0; 6790 i < CMSYieldSleepCount && 6791 ConcurrentMarkSweepThread::should_yield() && 6792 !CMSCollector::foregroundGCIsActive(); 6793 ++i) { 6794 os::sleep(Thread::current(), 1, false); 6795 ConcurrentMarkSweepThread::acknowledge_yield_request(); 6796 } 6797 6798 ConcurrentMarkSweepThread::synchronize(true); 6799 _freelistLock->lock_without_safepoint_check(); 6800 _bit_map->lock()->lock_without_safepoint_check(); 6801 _collector->startTimer(); 6802 } 6803 6804 /////////////////////////////////////////////////////////// 6805 // Par_MarkRefsIntoAndScanClosure: a parallel version of 6806 // MarkRefsIntoAndScanClosure 6807 /////////////////////////////////////////////////////////// 6808 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure( 6809 CMSCollector* collector, MemRegion span, ReferenceProcessor* rp, 6810 CMSBitMap* bit_map, OopTaskQueue* work_queue, CMSMarkStack* revisit_stack): 6811 _span(span), 6812 _bit_map(bit_map), 6813 _work_queue(work_queue), 6814 _low_water_mark(MIN2((uint)(work_queue->max_elems()/4), 6815 (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))), 6816 _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue, 6817 revisit_stack) 6818 { 6819 _ref_processor = rp; 6820 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 6821 } 6822 6823 // This closure is used to mark refs into the CMS generation at the 6824 // second (final) checkpoint, and to scan and transitively follow 6825 // the unmarked oops. The marks are made in the marking bit map and 6826 // the work_queue is used for keeping the (newly) grey objects during 6827 // the scan phase whence they are also available for stealing by parallel 6828 // threads. Since the marking bit map is shared, updates are 6829 // synchronized (via CAS). 6830 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) { 6831 if (obj != NULL) { 6832 // Ignore mark word because this could be an already marked oop 6833 // that may be chained at the end of the overflow list. 6834 assert(obj->is_oop(true), "expected an oop"); 6835 HeapWord* addr = (HeapWord*)obj; 6836 if (_span.contains(addr) && 6837 !_bit_map->isMarked(addr)) { 6838 // mark bit map (object will become grey): 6839 // It is possible for several threads to be 6840 // trying to "claim" this object concurrently; 6841 // the unique thread that succeeds in marking the 6842 // object first will do the subsequent push on 6843 // to the work queue (or overflow list). 6844 if (_bit_map->par_mark(addr)) { 6845 // push on work_queue (which may not be empty), and trim the 6846 // queue to an appropriate length by applying this closure to 6847 // the oops in the oops popped from the stack (i.e. blacken the 6848 // grey objects) 6849 bool res = _work_queue->push(obj); 6850 assert(res, "Low water mark should be less than capacity?"); 6851 trim_queue(_low_water_mark); 6852 } // Else, another thread claimed the object 6853 } 6854 } 6855 } 6856 6857 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); } 6858 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); } 6859 6860 // This closure is used to rescan the marked objects on the dirty cards 6861 // in the mod union table and the card table proper. 6862 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m( 6863 oop p, MemRegion mr) { 6864 6865 size_t size = 0; 6866 HeapWord* addr = (HeapWord*)p; 6867 DEBUG_ONLY(_collector->verify_work_stacks_empty();) 6868 assert(_span.contains(addr), "we are scanning the CMS generation"); 6869 // check if it's time to yield 6870 if (do_yield_check()) { 6871 // We yielded for some foreground stop-world work, 6872 // and we have been asked to abort this ongoing preclean cycle. 6873 return 0; 6874 } 6875 if (_bitMap->isMarked(addr)) { 6876 // it's marked; is it potentially uninitialized? 6877 if (p->klass_or_null() != NULL) { 6878 // If is_conc_safe is false, the object may be undergoing 6879 // change by the VM outside a safepoint. Don't try to 6880 // scan it, but rather leave it for the remark phase. 6881 if (CMSPermGenPrecleaningEnabled && 6882 (!p->is_conc_safe() || !p->is_parsable())) { 6883 // Signal precleaning to redirty the card since 6884 // the klass pointer is already installed. 6885 assert(size == 0, "Initial value"); 6886 } else { 6887 assert(p->is_parsable(), "must be parsable."); 6888 // an initialized object; ignore mark word in verification below 6889 // since we are running concurrent with mutators 6890 assert(p->is_oop(true), "should be an oop"); 6891 if (p->is_objArray()) { 6892 // objArrays are precisely marked; restrict scanning 6893 // to dirty cards only. 6894 size = CompactibleFreeListSpace::adjustObjectSize( 6895 p->oop_iterate(_scanningClosure, mr)); 6896 } else { 6897 // A non-array may have been imprecisely marked; we need 6898 // to scan object in its entirety. 6899 size = CompactibleFreeListSpace::adjustObjectSize( 6900 p->oop_iterate(_scanningClosure)); 6901 } 6902 #ifdef DEBUG 6903 size_t direct_size = 6904 CompactibleFreeListSpace::adjustObjectSize(p->size()); 6905 assert(size == direct_size, "Inconsistency in size"); 6906 assert(size >= 3, "Necessary for Printezis marks to work"); 6907 if (!_bitMap->isMarked(addr+1)) { 6908 _bitMap->verifyNoOneBitsInRange(addr+2, addr+size); 6909 } else { 6910 _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1); 6911 assert(_bitMap->isMarked(addr+size-1), 6912 "inconsistent Printezis mark"); 6913 } 6914 #endif // DEBUG 6915 } 6916 } else { 6917 // an unitialized object 6918 assert(_bitMap->isMarked(addr+1), "missing Printezis mark?"); 6919 HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2); 6920 size = pointer_delta(nextOneAddr + 1, addr); 6921 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 6922 "alignment problem"); 6923 // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass() 6924 // will dirty the card when the klass pointer is installed in the 6925 // object (signalling the completion of initialization). 6926 } 6927 } else { 6928 // Either a not yet marked object or an uninitialized object 6929 if (p->klass_or_null() == NULL || !p->is_parsable()) { 6930 // An uninitialized object, skip to the next card, since 6931 // we may not be able to read its P-bits yet. 6932 assert(size == 0, "Initial value"); 6933 } else { 6934 // An object not (yet) reached by marking: we merely need to 6935 // compute its size so as to go look at the next block. 6936 assert(p->is_oop(true), "should be an oop"); 6937 size = CompactibleFreeListSpace::adjustObjectSize(p->size()); 6938 } 6939 } 6940 DEBUG_ONLY(_collector->verify_work_stacks_empty();) 6941 return size; 6942 } 6943 6944 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() { 6945 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6946 "CMS thread should hold CMS token"); 6947 assert_lock_strong(_freelistLock); 6948 assert_lock_strong(_bitMap->lock()); 6949 DEBUG_ONLY(RememberKlassesChecker mux(false);) 6950 // relinquish the free_list_lock and bitMaplock() 6951 _bitMap->lock()->unlock(); 6952 _freelistLock->unlock(); 6953 ConcurrentMarkSweepThread::desynchronize(true); 6954 ConcurrentMarkSweepThread::acknowledge_yield_request(); 6955 _collector->stopTimer(); 6956 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 6957 if (PrintCMSStatistics != 0) { 6958 _collector->incrementYields(); 6959 } 6960 _collector->icms_wait(); 6961 6962 // See the comment in coordinator_yield() 6963 for (unsigned i = 0; i < CMSYieldSleepCount && 6964 ConcurrentMarkSweepThread::should_yield() && 6965 !CMSCollector::foregroundGCIsActive(); ++i) { 6966 os::sleep(Thread::current(), 1, false); 6967 ConcurrentMarkSweepThread::acknowledge_yield_request(); 6968 } 6969 6970 ConcurrentMarkSweepThread::synchronize(true); 6971 _freelistLock->lock_without_safepoint_check(); 6972 _bitMap->lock()->lock_without_safepoint_check(); 6973 _collector->startTimer(); 6974 } 6975 6976 6977 ////////////////////////////////////////////////////////////////// 6978 // SurvivorSpacePrecleanClosure 6979 ////////////////////////////////////////////////////////////////// 6980 // This (single-threaded) closure is used to preclean the oops in 6981 // the survivor spaces. 6982 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) { 6983 6984 HeapWord* addr = (HeapWord*)p; 6985 DEBUG_ONLY(_collector->verify_work_stacks_empty();) 6986 assert(!_span.contains(addr), "we are scanning the survivor spaces"); 6987 assert(p->klass_or_null() != NULL, "object should be initializd"); 6988 assert(p->is_parsable(), "must be parsable."); 6989 // an initialized object; ignore mark word in verification below 6990 // since we are running concurrent with mutators 6991 assert(p->is_oop(true), "should be an oop"); 6992 // Note that we do not yield while we iterate over 6993 // the interior oops of p, pushing the relevant ones 6994 // on our marking stack. 6995 size_t size = p->oop_iterate(_scanning_closure); 6996 do_yield_check(); 6997 // Observe that below, we do not abandon the preclean 6998 // phase as soon as we should; rather we empty the 6999 // marking stack before returning. This is to satisfy 7000 // some existing assertions. In general, it may be a 7001 // good idea to abort immediately and complete the marking 7002 // from the grey objects at a later time. 7003 while (!_mark_stack->isEmpty()) { 7004 oop new_oop = _mark_stack->pop(); 7005 assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop"); 7006 assert(new_oop->is_parsable(), "Found unparsable oop"); 7007 assert(_bit_map->isMarked((HeapWord*)new_oop), 7008 "only grey objects on this stack"); 7009 // iterate over the oops in this oop, marking and pushing 7010 // the ones in CMS heap (i.e. in _span). 7011 new_oop->oop_iterate(_scanning_closure); 7012 // check if it's time to yield 7013 do_yield_check(); 7014 } 7015 unsigned int after_count = 7016 GenCollectedHeap::heap()->total_collections(); 7017 bool abort = (_before_count != after_count) || 7018 _collector->should_abort_preclean(); 7019 return abort ? 0 : size; 7020 } 7021 7022 void SurvivorSpacePrecleanClosure::do_yield_work() { 7023 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 7024 "CMS thread should hold CMS token"); 7025 assert_lock_strong(_bit_map->lock()); 7026 DEBUG_ONLY(RememberKlassesChecker smx(false);) 7027 // Relinquish the bit map lock 7028 _bit_map->lock()->unlock(); 7029 ConcurrentMarkSweepThread::desynchronize(true); 7030 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7031 _collector->stopTimer(); 7032 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 7033 if (PrintCMSStatistics != 0) { 7034 _collector->incrementYields(); 7035 } 7036 _collector->icms_wait(); 7037 7038 // See the comment in coordinator_yield() 7039 for (unsigned i = 0; i < CMSYieldSleepCount && 7040 ConcurrentMarkSweepThread::should_yield() && 7041 !CMSCollector::foregroundGCIsActive(); ++i) { 7042 os::sleep(Thread::current(), 1, false); 7043 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7044 } 7045 7046 ConcurrentMarkSweepThread::synchronize(true); 7047 _bit_map->lock()->lock_without_safepoint_check(); 7048 _collector->startTimer(); 7049 } 7050 7051 // This closure is used to rescan the marked objects on the dirty cards 7052 // in the mod union table and the card table proper. In the parallel 7053 // case, although the bitMap is shared, we do a single read so the 7054 // isMarked() query is "safe". 7055 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) { 7056 // Ignore mark word because we are running concurrent with mutators 7057 assert(p->is_oop_or_null(true), "expected an oop or null"); 7058 HeapWord* addr = (HeapWord*)p; 7059 assert(_span.contains(addr), "we are scanning the CMS generation"); 7060 bool is_obj_array = false; 7061 #ifdef DEBUG 7062 if (!_parallel) { 7063 assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)"); 7064 assert(_collector->overflow_list_is_empty(), 7065 "overflow list should be empty"); 7066 7067 } 7068 #endif // DEBUG 7069 if (_bit_map->isMarked(addr)) { 7070 // Obj arrays are precisely marked, non-arrays are not; 7071 // so we scan objArrays precisely and non-arrays in their 7072 // entirety. 7073 if (p->is_objArray()) { 7074 is_obj_array = true; 7075 if (_parallel) { 7076 p->oop_iterate(_par_scan_closure, mr); 7077 } else { 7078 p->oop_iterate(_scan_closure, mr); 7079 } 7080 } else { 7081 if (_parallel) { 7082 p->oop_iterate(_par_scan_closure); 7083 } else { 7084 p->oop_iterate(_scan_closure); 7085 } 7086 } 7087 } 7088 #ifdef DEBUG 7089 if (!_parallel) { 7090 assert(_mark_stack->isEmpty(), "post-condition (eager drainage)"); 7091 assert(_collector->overflow_list_is_empty(), 7092 "overflow list should be empty"); 7093 7094 } 7095 #endif // DEBUG 7096 return is_obj_array; 7097 } 7098 7099 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector, 7100 MemRegion span, 7101 CMSBitMap* bitMap, CMSMarkStack* markStack, 7102 CMSMarkStack* revisitStack, 7103 bool should_yield, bool verifying): 7104 _collector(collector), 7105 _span(span), 7106 _bitMap(bitMap), 7107 _mut(&collector->_modUnionTable), 7108 _markStack(markStack), 7109 _revisitStack(revisitStack), 7110 _yield(should_yield), 7111 _skipBits(0) 7112 { 7113 assert(_markStack->isEmpty(), "stack should be empty"); 7114 _finger = _bitMap->startWord(); 7115 _threshold = _finger; 7116 assert(_collector->_restart_addr == NULL, "Sanity check"); 7117 assert(_span.contains(_finger), "Out of bounds _finger?"); 7118 DEBUG_ONLY(_verifying = verifying;) 7119 } 7120 7121 void MarkFromRootsClosure::reset(HeapWord* addr) { 7122 assert(_markStack->isEmpty(), "would cause duplicates on stack"); 7123 assert(_span.contains(addr), "Out of bounds _finger?"); 7124 _finger = addr; 7125 _threshold = (HeapWord*)round_to( 7126 (intptr_t)_finger, CardTableModRefBS::card_size); 7127 } 7128 7129 // Should revisit to see if this should be restructured for 7130 // greater efficiency. 7131 bool MarkFromRootsClosure::do_bit(size_t offset) { 7132 if (_skipBits > 0) { 7133 _skipBits--; 7134 return true; 7135 } 7136 // convert offset into a HeapWord* 7137 HeapWord* addr = _bitMap->startWord() + offset; 7138 assert(_bitMap->endWord() && addr < _bitMap->endWord(), 7139 "address out of range"); 7140 assert(_bitMap->isMarked(addr), "tautology"); 7141 if (_bitMap->isMarked(addr+1)) { 7142 // this is an allocated but not yet initialized object 7143 assert(_skipBits == 0, "tautology"); 7144 _skipBits = 2; // skip next two marked bits ("Printezis-marks") 7145 oop p = oop(addr); 7146 if (p->klass_or_null() == NULL || !p->is_parsable()) { 7147 DEBUG_ONLY(if (!_verifying) {) 7148 // We re-dirty the cards on which this object lies and increase 7149 // the _threshold so that we'll come back to scan this object 7150 // during the preclean or remark phase. (CMSCleanOnEnter) 7151 if (CMSCleanOnEnter) { 7152 size_t sz = _collector->block_size_using_printezis_bits(addr); 7153 HeapWord* end_card_addr = (HeapWord*)round_to( 7154 (intptr_t)(addr+sz), CardTableModRefBS::card_size); 7155 MemRegion redirty_range = MemRegion(addr, end_card_addr); 7156 assert(!redirty_range.is_empty(), "Arithmetical tautology"); 7157 // Bump _threshold to end_card_addr; note that 7158 // _threshold cannot possibly exceed end_card_addr, anyhow. 7159 // This prevents future clearing of the card as the scan proceeds 7160 // to the right. 7161 assert(_threshold <= end_card_addr, 7162 "Because we are just scanning into this object"); 7163 if (_threshold < end_card_addr) { 7164 _threshold = end_card_addr; 7165 } 7166 if (p->klass_or_null() != NULL) { 7167 // Redirty the range of cards... 7168 _mut->mark_range(redirty_range); 7169 } // ...else the setting of klass will dirty the card anyway. 7170 } 7171 DEBUG_ONLY(}) 7172 return true; 7173 } 7174 } 7175 scanOopsInOop(addr); 7176 return true; 7177 } 7178 7179 // We take a break if we've been at this for a while, 7180 // so as to avoid monopolizing the locks involved. 7181 void MarkFromRootsClosure::do_yield_work() { 7182 // First give up the locks, then yield, then re-lock 7183 // We should probably use a constructor/destructor idiom to 7184 // do this unlock/lock or modify the MutexUnlocker class to 7185 // serve our purpose. XXX 7186 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 7187 "CMS thread should hold CMS token"); 7188 assert_lock_strong(_bitMap->lock()); 7189 DEBUG_ONLY(RememberKlassesChecker mux(false);) 7190 _bitMap->lock()->unlock(); 7191 ConcurrentMarkSweepThread::desynchronize(true); 7192 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7193 _collector->stopTimer(); 7194 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 7195 if (PrintCMSStatistics != 0) { 7196 _collector->incrementYields(); 7197 } 7198 _collector->icms_wait(); 7199 7200 // See the comment in coordinator_yield() 7201 for (unsigned i = 0; i < CMSYieldSleepCount && 7202 ConcurrentMarkSweepThread::should_yield() && 7203 !CMSCollector::foregroundGCIsActive(); ++i) { 7204 os::sleep(Thread::current(), 1, false); 7205 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7206 } 7207 7208 ConcurrentMarkSweepThread::synchronize(true); 7209 _bitMap->lock()->lock_without_safepoint_check(); 7210 _collector->startTimer(); 7211 } 7212 7213 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) { 7214 assert(_bitMap->isMarked(ptr), "expected bit to be set"); 7215 assert(_markStack->isEmpty(), 7216 "should drain stack to limit stack usage"); 7217 // convert ptr to an oop preparatory to scanning 7218 oop obj = oop(ptr); 7219 // Ignore mark word in verification below, since we 7220 // may be running concurrent with mutators. 7221 assert(obj->is_oop(true), "should be an oop"); 7222 assert(_finger <= ptr, "_finger runneth ahead"); 7223 // advance the finger to right end of this object 7224 _finger = ptr + obj->size(); 7225 assert(_finger > ptr, "we just incremented it above"); 7226 // On large heaps, it may take us some time to get through 7227 // the marking phase (especially if running iCMS). During 7228 // this time it's possible that a lot of mutations have 7229 // accumulated in the card table and the mod union table -- 7230 // these mutation records are redundant until we have 7231 // actually traced into the corresponding card. 7232 // Here, we check whether advancing the finger would make 7233 // us cross into a new card, and if so clear corresponding 7234 // cards in the MUT (preclean them in the card-table in the 7235 // future). 7236 7237 DEBUG_ONLY(if (!_verifying) {) 7238 // The clean-on-enter optimization is disabled by default, 7239 // until we fix 6178663. 7240 if (CMSCleanOnEnter && (_finger > _threshold)) { 7241 // [_threshold, _finger) represents the interval 7242 // of cards to be cleared in MUT (or precleaned in card table). 7243 // The set of cards to be cleared is all those that overlap 7244 // with the interval [_threshold, _finger); note that 7245 // _threshold is always kept card-aligned but _finger isn't 7246 // always card-aligned. 7247 HeapWord* old_threshold = _threshold; 7248 assert(old_threshold == (HeapWord*)round_to( 7249 (intptr_t)old_threshold, CardTableModRefBS::card_size), 7250 "_threshold should always be card-aligned"); 7251 _threshold = (HeapWord*)round_to( 7252 (intptr_t)_finger, CardTableModRefBS::card_size); 7253 MemRegion mr(old_threshold, _threshold); 7254 assert(!mr.is_empty(), "Control point invariant"); 7255 assert(_span.contains(mr), "Should clear within span"); 7256 // XXX When _finger crosses from old gen into perm gen 7257 // we may be doing unnecessary cleaning; do better in the 7258 // future by detecting that condition and clearing fewer 7259 // MUT/CT entries. 7260 _mut->clear_range(mr); 7261 } 7262 DEBUG_ONLY(}) 7263 // Note: the finger doesn't advance while we drain 7264 // the stack below. 7265 PushOrMarkClosure pushOrMarkClosure(_collector, 7266 _span, _bitMap, _markStack, 7267 _revisitStack, 7268 _finger, this); 7269 bool res = _markStack->push(obj); 7270 assert(res, "Empty non-zero size stack should have space for single push"); 7271 while (!_markStack->isEmpty()) { 7272 oop new_oop = _markStack->pop(); 7273 // Skip verifying header mark word below because we are 7274 // running concurrent with mutators. 7275 assert(new_oop->is_oop(true), "Oops! expected to pop an oop"); 7276 // now scan this oop's oops 7277 new_oop->oop_iterate(&pushOrMarkClosure); 7278 do_yield_check(); 7279 } 7280 assert(_markStack->isEmpty(), "tautology, emphasizing post-condition"); 7281 } 7282 7283 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task, 7284 CMSCollector* collector, MemRegion span, 7285 CMSBitMap* bit_map, 7286 OopTaskQueue* work_queue, 7287 CMSMarkStack* overflow_stack, 7288 CMSMarkStack* revisit_stack, 7289 bool should_yield): 7290 _collector(collector), 7291 _whole_span(collector->_span), 7292 _span(span), 7293 _bit_map(bit_map), 7294 _mut(&collector->_modUnionTable), 7295 _work_queue(work_queue), 7296 _overflow_stack(overflow_stack), 7297 _revisit_stack(revisit_stack), 7298 _yield(should_yield), 7299 _skip_bits(0), 7300 _task(task) 7301 { 7302 assert(_work_queue->size() == 0, "work_queue should be empty"); 7303 _finger = span.start(); 7304 _threshold = _finger; // XXX Defer clear-on-enter optimization for now 7305 assert(_span.contains(_finger), "Out of bounds _finger?"); 7306 } 7307 7308 // Should revisit to see if this should be restructured for 7309 // greater efficiency. 7310 bool Par_MarkFromRootsClosure::do_bit(size_t offset) { 7311 if (_skip_bits > 0) { 7312 _skip_bits--; 7313 return true; 7314 } 7315 // convert offset into a HeapWord* 7316 HeapWord* addr = _bit_map->startWord() + offset; 7317 assert(_bit_map->endWord() && addr < _bit_map->endWord(), 7318 "address out of range"); 7319 assert(_bit_map->isMarked(addr), "tautology"); 7320 if (_bit_map->isMarked(addr+1)) { 7321 // this is an allocated object that might not yet be initialized 7322 assert(_skip_bits == 0, "tautology"); 7323 _skip_bits = 2; // skip next two marked bits ("Printezis-marks") 7324 oop p = oop(addr); 7325 if (p->klass_or_null() == NULL || !p->is_parsable()) { 7326 // in the case of Clean-on-Enter optimization, redirty card 7327 // and avoid clearing card by increasing the threshold. 7328 return true; 7329 } 7330 } 7331 scan_oops_in_oop(addr); 7332 return true; 7333 } 7334 7335 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) { 7336 assert(_bit_map->isMarked(ptr), "expected bit to be set"); 7337 // Should we assert that our work queue is empty or 7338 // below some drain limit? 7339 assert(_work_queue->size() == 0, 7340 "should drain stack to limit stack usage"); 7341 // convert ptr to an oop preparatory to scanning 7342 oop obj = oop(ptr); 7343 // Ignore mark word in verification below, since we 7344 // may be running concurrent with mutators. 7345 assert(obj->is_oop(true), "should be an oop"); 7346 assert(_finger <= ptr, "_finger runneth ahead"); 7347 // advance the finger to right end of this object 7348 _finger = ptr + obj->size(); 7349 assert(_finger > ptr, "we just incremented it above"); 7350 // On large heaps, it may take us some time to get through 7351 // the marking phase (especially if running iCMS). During 7352 // this time it's possible that a lot of mutations have 7353 // accumulated in the card table and the mod union table -- 7354 // these mutation records are redundant until we have 7355 // actually traced into the corresponding card. 7356 // Here, we check whether advancing the finger would make 7357 // us cross into a new card, and if so clear corresponding 7358 // cards in the MUT (preclean them in the card-table in the 7359 // future). 7360 7361 // The clean-on-enter optimization is disabled by default, 7362 // until we fix 6178663. 7363 if (CMSCleanOnEnter && (_finger > _threshold)) { 7364 // [_threshold, _finger) represents the interval 7365 // of cards to be cleared in MUT (or precleaned in card table). 7366 // The set of cards to be cleared is all those that overlap 7367 // with the interval [_threshold, _finger); note that 7368 // _threshold is always kept card-aligned but _finger isn't 7369 // always card-aligned. 7370 HeapWord* old_threshold = _threshold; 7371 assert(old_threshold == (HeapWord*)round_to( 7372 (intptr_t)old_threshold, CardTableModRefBS::card_size), 7373 "_threshold should always be card-aligned"); 7374 _threshold = (HeapWord*)round_to( 7375 (intptr_t)_finger, CardTableModRefBS::card_size); 7376 MemRegion mr(old_threshold, _threshold); 7377 assert(!mr.is_empty(), "Control point invariant"); 7378 assert(_span.contains(mr), "Should clear within span"); // _whole_span ?? 7379 // XXX When _finger crosses from old gen into perm gen 7380 // we may be doing unnecessary cleaning; do better in the 7381 // future by detecting that condition and clearing fewer 7382 // MUT/CT entries. 7383 _mut->clear_range(mr); 7384 } 7385 7386 // Note: the local finger doesn't advance while we drain 7387 // the stack below, but the global finger sure can and will. 7388 HeapWord** gfa = _task->global_finger_addr(); 7389 Par_PushOrMarkClosure pushOrMarkClosure(_collector, 7390 _span, _bit_map, 7391 _work_queue, 7392 _overflow_stack, 7393 _revisit_stack, 7394 _finger, 7395 gfa, this); 7396 bool res = _work_queue->push(obj); // overflow could occur here 7397 assert(res, "Will hold once we use workqueues"); 7398 while (true) { 7399 oop new_oop; 7400 if (!_work_queue->pop_local(new_oop)) { 7401 // We emptied our work_queue; check if there's stuff that can 7402 // be gotten from the overflow stack. 7403 if (CMSConcMarkingTask::get_work_from_overflow_stack( 7404 _overflow_stack, _work_queue)) { 7405 do_yield_check(); 7406 continue; 7407 } else { // done 7408 break; 7409 } 7410 } 7411 // Skip verifying header mark word below because we are 7412 // running concurrent with mutators. 7413 assert(new_oop->is_oop(true), "Oops! expected to pop an oop"); 7414 // now scan this oop's oops 7415 new_oop->oop_iterate(&pushOrMarkClosure); 7416 do_yield_check(); 7417 } 7418 assert(_work_queue->size() == 0, "tautology, emphasizing post-condition"); 7419 } 7420 7421 // Yield in response to a request from VM Thread or 7422 // from mutators. 7423 void Par_MarkFromRootsClosure::do_yield_work() { 7424 assert(_task != NULL, "sanity"); 7425 _task->yield(); 7426 } 7427 7428 // A variant of the above used for verifying CMS marking work. 7429 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector, 7430 MemRegion span, 7431 CMSBitMap* verification_bm, CMSBitMap* cms_bm, 7432 CMSMarkStack* mark_stack): 7433 _collector(collector), 7434 _span(span), 7435 _verification_bm(verification_bm), 7436 _cms_bm(cms_bm), 7437 _mark_stack(mark_stack), 7438 _pam_verify_closure(collector, span, verification_bm, cms_bm, 7439 mark_stack) 7440 { 7441 assert(_mark_stack->isEmpty(), "stack should be empty"); 7442 _finger = _verification_bm->startWord(); 7443 assert(_collector->_restart_addr == NULL, "Sanity check"); 7444 assert(_span.contains(_finger), "Out of bounds _finger?"); 7445 } 7446 7447 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) { 7448 assert(_mark_stack->isEmpty(), "would cause duplicates on stack"); 7449 assert(_span.contains(addr), "Out of bounds _finger?"); 7450 _finger = addr; 7451 } 7452 7453 // Should revisit to see if this should be restructured for 7454 // greater efficiency. 7455 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) { 7456 // convert offset into a HeapWord* 7457 HeapWord* addr = _verification_bm->startWord() + offset; 7458 assert(_verification_bm->endWord() && addr < _verification_bm->endWord(), 7459 "address out of range"); 7460 assert(_verification_bm->isMarked(addr), "tautology"); 7461 assert(_cms_bm->isMarked(addr), "tautology"); 7462 7463 assert(_mark_stack->isEmpty(), 7464 "should drain stack to limit stack usage"); 7465 // convert addr to an oop preparatory to scanning 7466 oop obj = oop(addr); 7467 assert(obj->is_oop(), "should be an oop"); 7468 assert(_finger <= addr, "_finger runneth ahead"); 7469 // advance the finger to right end of this object 7470 _finger = addr + obj->size(); 7471 assert(_finger > addr, "we just incremented it above"); 7472 // Note: the finger doesn't advance while we drain 7473 // the stack below. 7474 bool res = _mark_stack->push(obj); 7475 assert(res, "Empty non-zero size stack should have space for single push"); 7476 while (!_mark_stack->isEmpty()) { 7477 oop new_oop = _mark_stack->pop(); 7478 assert(new_oop->is_oop(), "Oops! expected to pop an oop"); 7479 // now scan this oop's oops 7480 new_oop->oop_iterate(&_pam_verify_closure); 7481 } 7482 assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition"); 7483 return true; 7484 } 7485 7486 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure( 7487 CMSCollector* collector, MemRegion span, 7488 CMSBitMap* verification_bm, CMSBitMap* cms_bm, 7489 CMSMarkStack* mark_stack): 7490 OopClosure(collector->ref_processor()), 7491 _collector(collector), 7492 _span(span), 7493 _verification_bm(verification_bm), 7494 _cms_bm(cms_bm), 7495 _mark_stack(mark_stack) 7496 { } 7497 7498 void PushAndMarkVerifyClosure::do_oop(oop* p) { PushAndMarkVerifyClosure::do_oop_work(p); } 7499 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); } 7500 7501 // Upon stack overflow, we discard (part of) the stack, 7502 // remembering the least address amongst those discarded 7503 // in CMSCollector's _restart_address. 7504 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) { 7505 // Remember the least grey address discarded 7506 HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost); 7507 _collector->lower_restart_addr(ra); 7508 _mark_stack->reset(); // discard stack contents 7509 _mark_stack->expand(); // expand the stack if possible 7510 } 7511 7512 void PushAndMarkVerifyClosure::do_oop(oop obj) { 7513 assert(obj->is_oop_or_null(), "expected an oop or NULL"); 7514 HeapWord* addr = (HeapWord*)obj; 7515 if (_span.contains(addr) && !_verification_bm->isMarked(addr)) { 7516 // Oop lies in _span and isn't yet grey or black 7517 _verification_bm->mark(addr); // now grey 7518 if (!_cms_bm->isMarked(addr)) { 7519 oop(addr)->print(); 7520 gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", 7521 addr); 7522 fatal("... aborting"); 7523 } 7524 7525 if (!_mark_stack->push(obj)) { // stack overflow 7526 if (PrintCMSStatistics != 0) { 7527 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 7528 SIZE_FORMAT, _mark_stack->capacity()); 7529 } 7530 assert(_mark_stack->isFull(), "Else push should have succeeded"); 7531 handle_stack_overflow(addr); 7532 } 7533 // anything including and to the right of _finger 7534 // will be scanned as we iterate over the remainder of the 7535 // bit map 7536 } 7537 } 7538 7539 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector, 7540 MemRegion span, 7541 CMSBitMap* bitMap, CMSMarkStack* markStack, 7542 CMSMarkStack* revisitStack, 7543 HeapWord* finger, MarkFromRootsClosure* parent) : 7544 KlassRememberingOopClosure(collector, collector->ref_processor(), revisitStack), 7545 _span(span), 7546 _bitMap(bitMap), 7547 _markStack(markStack), 7548 _finger(finger), 7549 _parent(parent) 7550 { } 7551 7552 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector, 7553 MemRegion span, 7554 CMSBitMap* bit_map, 7555 OopTaskQueue* work_queue, 7556 CMSMarkStack* overflow_stack, 7557 CMSMarkStack* revisit_stack, 7558 HeapWord* finger, 7559 HeapWord** global_finger_addr, 7560 Par_MarkFromRootsClosure* parent) : 7561 Par_KlassRememberingOopClosure(collector, 7562 collector->ref_processor(), 7563 revisit_stack), 7564 _whole_span(collector->_span), 7565 _span(span), 7566 _bit_map(bit_map), 7567 _work_queue(work_queue), 7568 _overflow_stack(overflow_stack), 7569 _finger(finger), 7570 _global_finger_addr(global_finger_addr), 7571 _parent(parent) 7572 { } 7573 7574 // Assumes thread-safe access by callers, who are 7575 // responsible for mutual exclusion. 7576 void CMSCollector::lower_restart_addr(HeapWord* low) { 7577 assert(_span.contains(low), "Out of bounds addr"); 7578 if (_restart_addr == NULL) { 7579 _restart_addr = low; 7580 } else { 7581 _restart_addr = MIN2(_restart_addr, low); 7582 } 7583 } 7584 7585 // Upon stack overflow, we discard (part of) the stack, 7586 // remembering the least address amongst those discarded 7587 // in CMSCollector's _restart_address. 7588 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) { 7589 // Remember the least grey address discarded 7590 HeapWord* ra = (HeapWord*)_markStack->least_value(lost); 7591 _collector->lower_restart_addr(ra); 7592 _markStack->reset(); // discard stack contents 7593 _markStack->expand(); // expand the stack if possible 7594 } 7595 7596 // Upon stack overflow, we discard (part of) the stack, 7597 // remembering the least address amongst those discarded 7598 // in CMSCollector's _restart_address. 7599 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) { 7600 // We need to do this under a mutex to prevent other 7601 // workers from interfering with the work done below. 7602 MutexLockerEx ml(_overflow_stack->par_lock(), 7603 Mutex::_no_safepoint_check_flag); 7604 // Remember the least grey address discarded 7605 HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost); 7606 _collector->lower_restart_addr(ra); 7607 _overflow_stack->reset(); // discard stack contents 7608 _overflow_stack->expand(); // expand the stack if possible 7609 } 7610 7611 void PushOrMarkClosure::do_oop(oop obj) { 7612 // Ignore mark word because we are running concurrent with mutators. 7613 assert(obj->is_oop_or_null(true), "expected an oop or NULL"); 7614 HeapWord* addr = (HeapWord*)obj; 7615 if (_span.contains(addr) && !_bitMap->isMarked(addr)) { 7616 // Oop lies in _span and isn't yet grey or black 7617 _bitMap->mark(addr); // now grey 7618 if (addr < _finger) { 7619 // the bit map iteration has already either passed, or 7620 // sampled, this bit in the bit map; we'll need to 7621 // use the marking stack to scan this oop's oops. 7622 bool simulate_overflow = false; 7623 NOT_PRODUCT( 7624 if (CMSMarkStackOverflowALot && 7625 _collector->simulate_overflow()) { 7626 // simulate a stack overflow 7627 simulate_overflow = true; 7628 } 7629 ) 7630 if (simulate_overflow || !_markStack->push(obj)) { // stack overflow 7631 if (PrintCMSStatistics != 0) { 7632 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 7633 SIZE_FORMAT, _markStack->capacity()); 7634 } 7635 assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded"); 7636 handle_stack_overflow(addr); 7637 } 7638 } 7639 // anything including and to the right of _finger 7640 // will be scanned as we iterate over the remainder of the 7641 // bit map 7642 do_yield_check(); 7643 } 7644 } 7645 7646 void PushOrMarkClosure::do_oop(oop* p) { PushOrMarkClosure::do_oop_work(p); } 7647 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); } 7648 7649 void Par_PushOrMarkClosure::do_oop(oop obj) { 7650 // Ignore mark word because we are running concurrent with mutators. 7651 assert(obj->is_oop_or_null(true), "expected an oop or NULL"); 7652 HeapWord* addr = (HeapWord*)obj; 7653 if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) { 7654 // Oop lies in _span and isn't yet grey or black 7655 // We read the global_finger (volatile read) strictly after marking oop 7656 bool res = _bit_map->par_mark(addr); // now grey 7657 volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr; 7658 // Should we push this marked oop on our stack? 7659 // -- if someone else marked it, nothing to do 7660 // -- if target oop is above global finger nothing to do 7661 // -- if target oop is in chunk and above local finger 7662 // then nothing to do 7663 // -- else push on work queue 7664 if ( !res // someone else marked it, they will deal with it 7665 || (addr >= *gfa) // will be scanned in a later task 7666 || (_span.contains(addr) && addr >= _finger)) { // later in this chunk 7667 return; 7668 } 7669 // the bit map iteration has already either passed, or 7670 // sampled, this bit in the bit map; we'll need to 7671 // use the marking stack to scan this oop's oops. 7672 bool simulate_overflow = false; 7673 NOT_PRODUCT( 7674 if (CMSMarkStackOverflowALot && 7675 _collector->simulate_overflow()) { 7676 // simulate a stack overflow 7677 simulate_overflow = true; 7678 } 7679 ) 7680 if (simulate_overflow || 7681 !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) { 7682 // stack overflow 7683 if (PrintCMSStatistics != 0) { 7684 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 7685 SIZE_FORMAT, _overflow_stack->capacity()); 7686 } 7687 // We cannot assert that the overflow stack is full because 7688 // it may have been emptied since. 7689 assert(simulate_overflow || 7690 _work_queue->size() == _work_queue->max_elems(), 7691 "Else push should have succeeded"); 7692 handle_stack_overflow(addr); 7693 } 7694 do_yield_check(); 7695 } 7696 } 7697 7698 void Par_PushOrMarkClosure::do_oop(oop* p) { Par_PushOrMarkClosure::do_oop_work(p); } 7699 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); } 7700 7701 KlassRememberingOopClosure::KlassRememberingOopClosure(CMSCollector* collector, 7702 ReferenceProcessor* rp, 7703 CMSMarkStack* revisit_stack) : 7704 OopClosure(rp), 7705 _collector(collector), 7706 _revisit_stack(revisit_stack), 7707 _should_remember_klasses(collector->should_unload_classes()) {} 7708 7709 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector, 7710 MemRegion span, 7711 ReferenceProcessor* rp, 7712 CMSBitMap* bit_map, 7713 CMSBitMap* mod_union_table, 7714 CMSMarkStack* mark_stack, 7715 CMSMarkStack* revisit_stack, 7716 bool concurrent_precleaning): 7717 KlassRememberingOopClosure(collector, rp, revisit_stack), 7718 _span(span), 7719 _bit_map(bit_map), 7720 _mod_union_table(mod_union_table), 7721 _mark_stack(mark_stack), 7722 _concurrent_precleaning(concurrent_precleaning) 7723 { 7724 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 7725 } 7726 7727 // Grey object rescan during pre-cleaning and second checkpoint phases -- 7728 // the non-parallel version (the parallel version appears further below.) 7729 void PushAndMarkClosure::do_oop(oop obj) { 7730 // Ignore mark word verification. If during concurrent precleaning, 7731 // the object monitor may be locked. If during the checkpoint 7732 // phases, the object may already have been reached by a different 7733 // path and may be at the end of the global overflow list (so 7734 // the mark word may be NULL). 7735 assert(obj->is_oop_or_null(true /* ignore mark word */), 7736 "expected an oop or NULL"); 7737 HeapWord* addr = (HeapWord*)obj; 7738 // Check if oop points into the CMS generation 7739 // and is not marked 7740 if (_span.contains(addr) && !_bit_map->isMarked(addr)) { 7741 // a white object ... 7742 _bit_map->mark(addr); // ... now grey 7743 // push on the marking stack (grey set) 7744 bool simulate_overflow = false; 7745 NOT_PRODUCT( 7746 if (CMSMarkStackOverflowALot && 7747 _collector->simulate_overflow()) { 7748 // simulate a stack overflow 7749 simulate_overflow = true; 7750 } 7751 ) 7752 if (simulate_overflow || !_mark_stack->push(obj)) { 7753 if (_concurrent_precleaning) { 7754 // During precleaning we can just dirty the appropriate card(s) 7755 // in the mod union table, thus ensuring that the object remains 7756 // in the grey set and continue. In the case of object arrays 7757 // we need to dirty all of the cards that the object spans, 7758 // since the rescan of object arrays will be limited to the 7759 // dirty cards. 7760 // Note that no one can be intefering with us in this action 7761 // of dirtying the mod union table, so no locking or atomics 7762 // are required. 7763 if (obj->is_objArray()) { 7764 size_t sz = obj->size(); 7765 HeapWord* end_card_addr = (HeapWord*)round_to( 7766 (intptr_t)(addr+sz), CardTableModRefBS::card_size); 7767 MemRegion redirty_range = MemRegion(addr, end_card_addr); 7768 assert(!redirty_range.is_empty(), "Arithmetical tautology"); 7769 _mod_union_table->mark_range(redirty_range); 7770 } else { 7771 _mod_union_table->mark(addr); 7772 } 7773 _collector->_ser_pmc_preclean_ovflw++; 7774 } else { 7775 // During the remark phase, we need to remember this oop 7776 // in the overflow list. 7777 _collector->push_on_overflow_list(obj); 7778 _collector->_ser_pmc_remark_ovflw++; 7779 } 7780 } 7781 } 7782 } 7783 7784 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector, 7785 MemRegion span, 7786 ReferenceProcessor* rp, 7787 CMSBitMap* bit_map, 7788 OopTaskQueue* work_queue, 7789 CMSMarkStack* revisit_stack): 7790 Par_KlassRememberingOopClosure(collector, rp, revisit_stack), 7791 _span(span), 7792 _bit_map(bit_map), 7793 _work_queue(work_queue) 7794 { 7795 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 7796 } 7797 7798 void PushAndMarkClosure::do_oop(oop* p) { PushAndMarkClosure::do_oop_work(p); } 7799 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); } 7800 7801 // Grey object rescan during second checkpoint phase -- 7802 // the parallel version. 7803 void Par_PushAndMarkClosure::do_oop(oop obj) { 7804 // In the assert below, we ignore the mark word because 7805 // this oop may point to an already visited object that is 7806 // on the overflow stack (in which case the mark word has 7807 // been hijacked for chaining into the overflow stack -- 7808 // if this is the last object in the overflow stack then 7809 // its mark word will be NULL). Because this object may 7810 // have been subsequently popped off the global overflow 7811 // stack, and the mark word possibly restored to the prototypical 7812 // value, by the time we get to examined this failing assert in 7813 // the debugger, is_oop_or_null(false) may subsequently start 7814 // to hold. 7815 assert(obj->is_oop_or_null(true), 7816 "expected an oop or NULL"); 7817 HeapWord* addr = (HeapWord*)obj; 7818 // Check if oop points into the CMS generation 7819 // and is not marked 7820 if (_span.contains(addr) && !_bit_map->isMarked(addr)) { 7821 // a white object ... 7822 // If we manage to "claim" the object, by being the 7823 // first thread to mark it, then we push it on our 7824 // marking stack 7825 if (_bit_map->par_mark(addr)) { // ... now grey 7826 // push on work queue (grey set) 7827 bool simulate_overflow = false; 7828 NOT_PRODUCT( 7829 if (CMSMarkStackOverflowALot && 7830 _collector->par_simulate_overflow()) { 7831 // simulate a stack overflow 7832 simulate_overflow = true; 7833 } 7834 ) 7835 if (simulate_overflow || !_work_queue->push(obj)) { 7836 _collector->par_push_on_overflow_list(obj); 7837 _collector->_par_pmc_remark_ovflw++; // imprecise OK: no need to CAS 7838 } 7839 } // Else, some other thread got there first 7840 } 7841 } 7842 7843 void Par_PushAndMarkClosure::do_oop(oop* p) { Par_PushAndMarkClosure::do_oop_work(p); } 7844 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); } 7845 7846 void PushAndMarkClosure::remember_mdo(DataLayout* v) { 7847 // TBD 7848 } 7849 7850 void Par_PushAndMarkClosure::remember_mdo(DataLayout* v) { 7851 // TBD 7852 } 7853 7854 void CMSPrecleanRefsYieldClosure::do_yield_work() { 7855 DEBUG_ONLY(RememberKlassesChecker mux(false);) 7856 Mutex* bml = _collector->bitMapLock(); 7857 assert_lock_strong(bml); 7858 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 7859 "CMS thread should hold CMS token"); 7860 7861 bml->unlock(); 7862 ConcurrentMarkSweepThread::desynchronize(true); 7863 7864 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7865 7866 _collector->stopTimer(); 7867 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 7868 if (PrintCMSStatistics != 0) { 7869 _collector->incrementYields(); 7870 } 7871 _collector->icms_wait(); 7872 7873 // See the comment in coordinator_yield() 7874 for (unsigned i = 0; i < CMSYieldSleepCount && 7875 ConcurrentMarkSweepThread::should_yield() && 7876 !CMSCollector::foregroundGCIsActive(); ++i) { 7877 os::sleep(Thread::current(), 1, false); 7878 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7879 } 7880 7881 ConcurrentMarkSweepThread::synchronize(true); 7882 bml->lock(); 7883 7884 _collector->startTimer(); 7885 } 7886 7887 bool CMSPrecleanRefsYieldClosure::should_return() { 7888 if (ConcurrentMarkSweepThread::should_yield()) { 7889 do_yield_work(); 7890 } 7891 return _collector->foregroundGCIsActive(); 7892 } 7893 7894 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) { 7895 assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0, 7896 "mr should be aligned to start at a card boundary"); 7897 // We'd like to assert: 7898 // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0, 7899 // "mr should be a range of cards"); 7900 // However, that would be too strong in one case -- the last 7901 // partition ends at _unallocated_block which, in general, can be 7902 // an arbitrary boundary, not necessarily card aligned. 7903 if (PrintCMSStatistics != 0) { 7904 _num_dirty_cards += 7905 mr.word_size()/CardTableModRefBS::card_size_in_words; 7906 } 7907 _space->object_iterate_mem(mr, &_scan_cl); 7908 } 7909 7910 SweepClosure::SweepClosure(CMSCollector* collector, 7911 ConcurrentMarkSweepGeneration* g, 7912 CMSBitMap* bitMap, bool should_yield) : 7913 _collector(collector), 7914 _g(g), 7915 _sp(g->cmsSpace()), 7916 _limit(_sp->sweep_limit()), 7917 _freelistLock(_sp->freelistLock()), 7918 _bitMap(bitMap), 7919 _yield(should_yield), 7920 _inFreeRange(false), // No free range at beginning of sweep 7921 _freeRangeInFreeLists(false), // No free range at beginning of sweep 7922 _lastFreeRangeCoalesced(false), 7923 _freeFinger(g->used_region().start()) 7924 { 7925 NOT_PRODUCT( 7926 _numObjectsFreed = 0; 7927 _numWordsFreed = 0; 7928 _numObjectsLive = 0; 7929 _numWordsLive = 0; 7930 _numObjectsAlreadyFree = 0; 7931 _numWordsAlreadyFree = 0; 7932 _last_fc = NULL; 7933 7934 _sp->initializeIndexedFreeListArrayReturnedBytes(); 7935 _sp->dictionary()->initialize_dict_returned_bytes(); 7936 ) 7937 assert(_limit >= _sp->bottom() && _limit <= _sp->end(), 7938 "sweep _limit out of bounds"); 7939 if (CMSTraceSweeper) { 7940 gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT, 7941 _limit); 7942 } 7943 } 7944 7945 void SweepClosure::print_on(outputStream* st) const { 7946 tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")", 7947 _sp->bottom(), _sp->end()); 7948 tty->print_cr("_limit = " PTR_FORMAT, _limit); 7949 tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger); 7950 NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);) 7951 tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d", 7952 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced); 7953 } 7954 7955 #ifndef PRODUCT 7956 // Assertion checking only: no useful work in product mode -- 7957 // however, if any of the flags below become product flags, 7958 // you may need to review this code to see if it needs to be 7959 // enabled in product mode. 7960 SweepClosure::~SweepClosure() { 7961 assert_lock_strong(_freelistLock); 7962 assert(_limit >= _sp->bottom() && _limit <= _sp->end(), 7963 "sweep _limit out of bounds"); 7964 if (inFreeRange()) { 7965 warning("inFreeRange() should have been reset; dumping state of SweepClosure"); 7966 print(); 7967 ShouldNotReachHere(); 7968 } 7969 if (Verbose && PrintGC) { 7970 gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes", 7971 _numObjectsFreed, _numWordsFreed*sizeof(HeapWord)); 7972 gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects, " 7973 SIZE_FORMAT" bytes " 7974 "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes", 7975 _numObjectsLive, _numWordsLive*sizeof(HeapWord), 7976 _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord)); 7977 size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) 7978 * sizeof(HeapWord); 7979 gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes); 7980 7981 if (PrintCMSStatistics && CMSVerifyReturnedBytes) { 7982 size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes(); 7983 size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes(); 7984 size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes; 7985 gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes); 7986 gclog_or_tty->print(" Indexed List Returned "SIZE_FORMAT" bytes", 7987 indexListReturnedBytes); 7988 gclog_or_tty->print_cr(" Dictionary Returned "SIZE_FORMAT" bytes", 7989 dict_returned_bytes); 7990 } 7991 } 7992 if (CMSTraceSweeper) { 7993 gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================", 7994 _limit); 7995 } 7996 } 7997 #endif // PRODUCT 7998 7999 void SweepClosure::initialize_free_range(HeapWord* freeFinger, 8000 bool freeRangeInFreeLists) { 8001 if (CMSTraceSweeper) { 8002 gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n", 8003 freeFinger, freeRangeInFreeLists); 8004 } 8005 assert(!inFreeRange(), "Trampling existing free range"); 8006 set_inFreeRange(true); 8007 set_lastFreeRangeCoalesced(false); 8008 8009 set_freeFinger(freeFinger); 8010 set_freeRangeInFreeLists(freeRangeInFreeLists); 8011 if (CMSTestInFreeList) { 8012 if (freeRangeInFreeLists) { 8013 FreeChunk* fc = (FreeChunk*) freeFinger; 8014 assert(fc->is_free(), "A chunk on the free list should be free."); 8015 assert(fc->size() > 0, "Free range should have a size"); 8016 assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists"); 8017 } 8018 } 8019 } 8020 8021 // Note that the sweeper runs concurrently with mutators. Thus, 8022 // it is possible for direct allocation in this generation to happen 8023 // in the middle of the sweep. Note that the sweeper also coalesces 8024 // contiguous free blocks. Thus, unless the sweeper and the allocator 8025 // synchronize appropriately freshly allocated blocks may get swept up. 8026 // This is accomplished by the sweeper locking the free lists while 8027 // it is sweeping. Thus blocks that are determined to be free are 8028 // indeed free. There is however one additional complication: 8029 // blocks that have been allocated since the final checkpoint and 8030 // mark, will not have been marked and so would be treated as 8031 // unreachable and swept up. To prevent this, the allocator marks 8032 // the bit map when allocating during the sweep phase. This leads, 8033 // however, to a further complication -- objects may have been allocated 8034 // but not yet initialized -- in the sense that the header isn't yet 8035 // installed. The sweeper can not then determine the size of the block 8036 // in order to skip over it. To deal with this case, we use a technique 8037 // (due to Printezis) to encode such uninitialized block sizes in the 8038 // bit map. Since the bit map uses a bit per every HeapWord, but the 8039 // CMS generation has a minimum object size of 3 HeapWords, it follows 8040 // that "normal marks" won't be adjacent in the bit map (there will 8041 // always be at least two 0 bits between successive 1 bits). We make use 8042 // of these "unused" bits to represent uninitialized blocks -- the bit 8043 // corresponding to the start of the uninitialized object and the next 8044 // bit are both set. Finally, a 1 bit marks the end of the object that 8045 // started with the two consecutive 1 bits to indicate its potentially 8046 // uninitialized state. 8047 8048 size_t SweepClosure::do_blk_careful(HeapWord* addr) { 8049 FreeChunk* fc = (FreeChunk*)addr; 8050 size_t res; 8051 8052 // Check if we are done sweeping. Below we check "addr >= _limit" rather 8053 // than "addr == _limit" because although _limit was a block boundary when 8054 // we started the sweep, it may no longer be one because heap expansion 8055 // may have caused us to coalesce the block ending at the address _limit 8056 // with a newly expanded chunk (this happens when _limit was set to the 8057 // previous _end of the space), so we may have stepped past _limit: 8058 // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740. 8059 if (addr >= _limit) { // we have swept up to or past the limit: finish up 8060 assert(_limit >= _sp->bottom() && _limit <= _sp->end(), 8061 "sweep _limit out of bounds"); 8062 assert(addr < _sp->end(), "addr out of bounds"); 8063 // Flush any free range we might be holding as a single 8064 // coalesced chunk to the appropriate free list. 8065 if (inFreeRange()) { 8066 assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit, 8067 err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger())); 8068 flush_cur_free_chunk(freeFinger(), 8069 pointer_delta(addr, freeFinger())); 8070 if (CMSTraceSweeper) { 8071 gclog_or_tty->print("Sweep: last chunk: "); 8072 gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") " 8073 "[coalesced:"SIZE_FORMAT"]\n", 8074 freeFinger(), pointer_delta(addr, freeFinger()), 8075 lastFreeRangeCoalesced()); 8076 } 8077 } 8078 8079 // help the iterator loop finish 8080 return pointer_delta(_sp->end(), addr); 8081 } 8082 8083 assert(addr < _limit, "sweep invariant"); 8084 // check if we should yield 8085 do_yield_check(addr); 8086 if (fc->is_free()) { 8087 // Chunk that is already free 8088 res = fc->size(); 8089 do_already_free_chunk(fc); 8090 debug_only(_sp->verifyFreeLists()); 8091 // If we flush the chunk at hand in lookahead_and_flush() 8092 // and it's coalesced with a preceding chunk, then the 8093 // process of "mangling" the payload of the coalesced block 8094 // will cause erasure of the size information from the 8095 // (erstwhile) header of all the coalesced blocks but the 8096 // first, so the first disjunct in the assert will not hold 8097 // in that specific case (in which case the second disjunct 8098 // will hold). 8099 assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit, 8100 "Otherwise the size info doesn't change at this step"); 8101 NOT_PRODUCT( 8102 _numObjectsAlreadyFree++; 8103 _numWordsAlreadyFree += res; 8104 ) 8105 NOT_PRODUCT(_last_fc = fc;) 8106 } else if (!_bitMap->isMarked(addr)) { 8107 // Chunk is fresh garbage 8108 res = do_garbage_chunk(fc); 8109 debug_only(_sp->verifyFreeLists()); 8110 NOT_PRODUCT( 8111 _numObjectsFreed++; 8112 _numWordsFreed += res; 8113 ) 8114 } else { 8115 // Chunk that is alive. 8116 res = do_live_chunk(fc); 8117 debug_only(_sp->verifyFreeLists()); 8118 NOT_PRODUCT( 8119 _numObjectsLive++; 8120 _numWordsLive += res; 8121 ) 8122 } 8123 return res; 8124 } 8125 8126 // For the smart allocation, record following 8127 // split deaths - a free chunk is removed from its free list because 8128 // it is being split into two or more chunks. 8129 // split birth - a free chunk is being added to its free list because 8130 // a larger free chunk has been split and resulted in this free chunk. 8131 // coal death - a free chunk is being removed from its free list because 8132 // it is being coalesced into a large free chunk. 8133 // coal birth - a free chunk is being added to its free list because 8134 // it was created when two or more free chunks where coalesced into 8135 // this free chunk. 8136 // 8137 // These statistics are used to determine the desired number of free 8138 // chunks of a given size. The desired number is chosen to be relative 8139 // to the end of a CMS sweep. The desired number at the end of a sweep 8140 // is the 8141 // count-at-end-of-previous-sweep (an amount that was enough) 8142 // - count-at-beginning-of-current-sweep (the excess) 8143 // + split-births (gains in this size during interval) 8144 // - split-deaths (demands on this size during interval) 8145 // where the interval is from the end of one sweep to the end of the 8146 // next. 8147 // 8148 // When sweeping the sweeper maintains an accumulated chunk which is 8149 // the chunk that is made up of chunks that have been coalesced. That 8150 // will be termed the left-hand chunk. A new chunk of garbage that 8151 // is being considered for coalescing will be referred to as the 8152 // right-hand chunk. 8153 // 8154 // When making a decision on whether to coalesce a right-hand chunk with 8155 // the current left-hand chunk, the current count vs. the desired count 8156 // of the left-hand chunk is considered. Also if the right-hand chunk 8157 // is near the large chunk at the end of the heap (see 8158 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the 8159 // left-hand chunk is coalesced. 8160 // 8161 // When making a decision about whether to split a chunk, the desired count 8162 // vs. the current count of the candidate to be split is also considered. 8163 // If the candidate is underpopulated (currently fewer chunks than desired) 8164 // a chunk of an overpopulated (currently more chunks than desired) size may 8165 // be chosen. The "hint" associated with a free list, if non-null, points 8166 // to a free list which may be overpopulated. 8167 // 8168 8169 void SweepClosure::do_already_free_chunk(FreeChunk* fc) { 8170 const size_t size = fc->size(); 8171 // Chunks that cannot be coalesced are not in the 8172 // free lists. 8173 if (CMSTestInFreeList && !fc->cantCoalesce()) { 8174 assert(_sp->verify_chunk_in_free_list(fc), 8175 "free chunk should be in free lists"); 8176 } 8177 // a chunk that is already free, should not have been 8178 // marked in the bit map 8179 HeapWord* const addr = (HeapWord*) fc; 8180 assert(!_bitMap->isMarked(addr), "free chunk should be unmarked"); 8181 // Verify that the bit map has no bits marked between 8182 // addr and purported end of this block. 8183 _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size); 8184 8185 // Some chunks cannot be coalesced under any circumstances. 8186 // See the definition of cantCoalesce(). 8187 if (!fc->cantCoalesce()) { 8188 // This chunk can potentially be coalesced. 8189 if (_sp->adaptive_freelists()) { 8190 // All the work is done in 8191 do_post_free_or_garbage_chunk(fc, size); 8192 } else { // Not adaptive free lists 8193 // this is a free chunk that can potentially be coalesced by the sweeper; 8194 if (!inFreeRange()) { 8195 // if the next chunk is a free block that can't be coalesced 8196 // it doesn't make sense to remove this chunk from the free lists 8197 FreeChunk* nextChunk = (FreeChunk*)(addr + size); 8198 assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?"); 8199 if ((HeapWord*)nextChunk < _sp->end() && // There is another free chunk to the right ... 8200 nextChunk->is_free() && // ... which is free... 8201 nextChunk->cantCoalesce()) { // ... but can't be coalesced 8202 // nothing to do 8203 } else { 8204 // Potentially the start of a new free range: 8205 // Don't eagerly remove it from the free lists. 8206 // No need to remove it if it will just be put 8207 // back again. (Also from a pragmatic point of view 8208 // if it is a free block in a region that is beyond 8209 // any allocated blocks, an assertion will fail) 8210 // Remember the start of a free run. 8211 initialize_free_range(addr, true); 8212 // end - can coalesce with next chunk 8213 } 8214 } else { 8215 // the midst of a free range, we are coalescing 8216 print_free_block_coalesced(fc); 8217 if (CMSTraceSweeper) { 8218 gclog_or_tty->print(" -- pick up free block 0x%x (%d)\n", fc, size); 8219 } 8220 // remove it from the free lists 8221 _sp->removeFreeChunkFromFreeLists(fc); 8222 set_lastFreeRangeCoalesced(true); 8223 // If the chunk is being coalesced and the current free range is 8224 // in the free lists, remove the current free range so that it 8225 // will be returned to the free lists in its entirety - all 8226 // the coalesced pieces included. 8227 if (freeRangeInFreeLists()) { 8228 FreeChunk* ffc = (FreeChunk*) freeFinger(); 8229 assert(ffc->size() == pointer_delta(addr, freeFinger()), 8230 "Size of free range is inconsistent with chunk size."); 8231 if (CMSTestInFreeList) { 8232 assert(_sp->verify_chunk_in_free_list(ffc), 8233 "free range is not in free lists"); 8234 } 8235 _sp->removeFreeChunkFromFreeLists(ffc); 8236 set_freeRangeInFreeLists(false); 8237 } 8238 } 8239 } 8240 // Note that if the chunk is not coalescable (the else arm 8241 // below), we unconditionally flush, without needing to do 8242 // a "lookahead," as we do below. 8243 if (inFreeRange()) lookahead_and_flush(fc, size); 8244 } else { 8245 // Code path common to both original and adaptive free lists. 8246 8247 // cant coalesce with previous block; this should be treated 8248 // as the end of a free run if any 8249 if (inFreeRange()) { 8250 // we kicked some butt; time to pick up the garbage 8251 assert(freeFinger() < addr, "freeFinger points too high"); 8252 flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); 8253 } 8254 // else, nothing to do, just continue 8255 } 8256 } 8257 8258 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) { 8259 // This is a chunk of garbage. It is not in any free list. 8260 // Add it to a free list or let it possibly be coalesced into 8261 // a larger chunk. 8262 HeapWord* const addr = (HeapWord*) fc; 8263 const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()); 8264 8265 if (_sp->adaptive_freelists()) { 8266 // Verify that the bit map has no bits marked between 8267 // addr and purported end of just dead object. 8268 _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size); 8269 8270 do_post_free_or_garbage_chunk(fc, size); 8271 } else { 8272 if (!inFreeRange()) { 8273 // start of a new free range 8274 assert(size > 0, "A free range should have a size"); 8275 initialize_free_range(addr, false); 8276 } else { 8277 // this will be swept up when we hit the end of the 8278 // free range 8279 if (CMSTraceSweeper) { 8280 gclog_or_tty->print(" -- pick up garbage 0x%x (%d) \n", fc, size); 8281 } 8282 // If the chunk is being coalesced and the current free range is 8283 // in the free lists, remove the current free range so that it 8284 // will be returned to the free lists in its entirety - all 8285 // the coalesced pieces included. 8286 if (freeRangeInFreeLists()) { 8287 FreeChunk* ffc = (FreeChunk*)freeFinger(); 8288 assert(ffc->size() == pointer_delta(addr, freeFinger()), 8289 "Size of free range is inconsistent with chunk size."); 8290 if (CMSTestInFreeList) { 8291 assert(_sp->verify_chunk_in_free_list(ffc), 8292 "free range is not in free lists"); 8293 } 8294 _sp->removeFreeChunkFromFreeLists(ffc); 8295 set_freeRangeInFreeLists(false); 8296 } 8297 set_lastFreeRangeCoalesced(true); 8298 } 8299 // this will be swept up when we hit the end of the free range 8300 8301 // Verify that the bit map has no bits marked between 8302 // addr and purported end of just dead object. 8303 _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size); 8304 } 8305 assert(_limit >= addr + size, 8306 "A freshly garbage chunk can't possibly straddle over _limit"); 8307 if (inFreeRange()) lookahead_and_flush(fc, size); 8308 return size; 8309 } 8310 8311 size_t SweepClosure::do_live_chunk(FreeChunk* fc) { 8312 HeapWord* addr = (HeapWord*) fc; 8313 // The sweeper has just found a live object. Return any accumulated 8314 // left hand chunk to the free lists. 8315 if (inFreeRange()) { 8316 assert(freeFinger() < addr, "freeFinger points too high"); 8317 flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); 8318 } 8319 8320 // This object is live: we'd normally expect this to be 8321 // an oop, and like to assert the following: 8322 // assert(oop(addr)->is_oop(), "live block should be an oop"); 8323 // However, as we commented above, this may be an object whose 8324 // header hasn't yet been initialized. 8325 size_t size; 8326 assert(_bitMap->isMarked(addr), "Tautology for this control point"); 8327 if (_bitMap->isMarked(addr + 1)) { 8328 // Determine the size from the bit map, rather than trying to 8329 // compute it from the object header. 8330 HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2); 8331 size = pointer_delta(nextOneAddr + 1, addr); 8332 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 8333 "alignment problem"); 8334 8335 #ifdef DEBUG 8336 if (oop(addr)->klass_or_null() != NULL && 8337 ( !_collector->should_unload_classes() 8338 || (oop(addr)->is_parsable()) && 8339 oop(addr)->is_conc_safe())) { 8340 // Ignore mark word because we are running concurrent with mutators 8341 assert(oop(addr)->is_oop(true), "live block should be an oop"); 8342 // is_conc_safe is checked before performing this assertion 8343 // because an object that is not is_conc_safe may yet have 8344 // the return from size() correct. 8345 assert(size == 8346 CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()), 8347 "P-mark and computed size do not agree"); 8348 } 8349 #endif 8350 8351 } else { 8352 // This should be an initialized object that's alive. 8353 assert(oop(addr)->klass_or_null() != NULL && 8354 (!_collector->should_unload_classes() 8355 || oop(addr)->is_parsable()), 8356 "Should be an initialized object"); 8357 // Note that there are objects used during class redefinition, 8358 // e.g. merge_cp in VM_RedefineClasses::merge_cp_and_rewrite(), 8359 // which are discarded with their is_conc_safe state still 8360 // false. These object may be floating garbage so may be 8361 // seen here. If they are floating garbage their size 8362 // should be attainable from their klass. Do not that 8363 // is_conc_safe() is true for oop(addr). 8364 // Ignore mark word because we are running concurrent with mutators 8365 assert(oop(addr)->is_oop(true), "live block should be an oop"); 8366 // Verify that the bit map has no bits marked between 8367 // addr and purported end of this block. 8368 size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()); 8369 assert(size >= 3, "Necessary for Printezis marks to work"); 8370 assert(!_bitMap->isMarked(addr+1), "Tautology for this control point"); 8371 DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);) 8372 } 8373 return size; 8374 } 8375 8376 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc, 8377 size_t chunkSize) { 8378 // do_post_free_or_garbage_chunk() should only be called in the case 8379 // of the adaptive free list allocator. 8380 const bool fcInFreeLists = fc->is_free(); 8381 assert(_sp->adaptive_freelists(), "Should only be used in this case."); 8382 assert((HeapWord*)fc <= _limit, "sweep invariant"); 8383 if (CMSTestInFreeList && fcInFreeLists) { 8384 assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists"); 8385 } 8386 8387 if (CMSTraceSweeper) { 8388 gclog_or_tty->print_cr(" -- pick up another chunk at 0x%x (%d)", fc, chunkSize); 8389 } 8390 8391 HeapWord* const fc_addr = (HeapWord*) fc; 8392 8393 bool coalesce; 8394 const size_t left = pointer_delta(fc_addr, freeFinger()); 8395 const size_t right = chunkSize; 8396 switch (FLSCoalescePolicy) { 8397 // numeric value forms a coalition aggressiveness metric 8398 case 0: { // never coalesce 8399 coalesce = false; 8400 break; 8401 } 8402 case 1: { // coalesce if left & right chunks on overpopulated lists 8403 coalesce = _sp->coalOverPopulated(left) && 8404 _sp->coalOverPopulated(right); 8405 break; 8406 } 8407 case 2: { // coalesce if left chunk on overpopulated list (default) 8408 coalesce = _sp->coalOverPopulated(left); 8409 break; 8410 } 8411 case 3: { // coalesce if left OR right chunk on overpopulated list 8412 coalesce = _sp->coalOverPopulated(left) || 8413 _sp->coalOverPopulated(right); 8414 break; 8415 } 8416 case 4: { // always coalesce 8417 coalesce = true; 8418 break; 8419 } 8420 default: 8421 ShouldNotReachHere(); 8422 } 8423 8424 // Should the current free range be coalesced? 8425 // If the chunk is in a free range and either we decided to coalesce above 8426 // or the chunk is near the large block at the end of the heap 8427 // (isNearLargestChunk() returns true), then coalesce this chunk. 8428 const bool doCoalesce = inFreeRange() 8429 && (coalesce || _g->isNearLargestChunk(fc_addr)); 8430 if (doCoalesce) { 8431 // Coalesce the current free range on the left with the new 8432 // chunk on the right. If either is on a free list, 8433 // it must be removed from the list and stashed in the closure. 8434 if (freeRangeInFreeLists()) { 8435 FreeChunk* const ffc = (FreeChunk*)freeFinger(); 8436 assert(ffc->size() == pointer_delta(fc_addr, freeFinger()), 8437 "Size of free range is inconsistent with chunk size."); 8438 if (CMSTestInFreeList) { 8439 assert(_sp->verify_chunk_in_free_list(ffc), 8440 "Chunk is not in free lists"); 8441 } 8442 _sp->coalDeath(ffc->size()); 8443 _sp->removeFreeChunkFromFreeLists(ffc); 8444 set_freeRangeInFreeLists(false); 8445 } 8446 if (fcInFreeLists) { 8447 _sp->coalDeath(chunkSize); 8448 assert(fc->size() == chunkSize, 8449 "The chunk has the wrong size or is not in the free lists"); 8450 _sp->removeFreeChunkFromFreeLists(fc); 8451 } 8452 set_lastFreeRangeCoalesced(true); 8453 print_free_block_coalesced(fc); 8454 } else { // not in a free range and/or should not coalesce 8455 // Return the current free range and start a new one. 8456 if (inFreeRange()) { 8457 // In a free range but cannot coalesce with the right hand chunk. 8458 // Put the current free range into the free lists. 8459 flush_cur_free_chunk(freeFinger(), 8460 pointer_delta(fc_addr, freeFinger())); 8461 } 8462 // Set up for new free range. Pass along whether the right hand 8463 // chunk is in the free lists. 8464 initialize_free_range((HeapWord*)fc, fcInFreeLists); 8465 } 8466 } 8467 8468 // Lookahead flush: 8469 // If we are tracking a free range, and this is the last chunk that 8470 // we'll look at because its end crosses past _limit, we'll preemptively 8471 // flush it along with any free range we may be holding on to. Note that 8472 // this can be the case only for an already free or freshly garbage 8473 // chunk. If this block is an object, it can never straddle 8474 // over _limit. The "straddling" occurs when _limit is set at 8475 // the previous end of the space when this cycle started, and 8476 // a subsequent heap expansion caused the previously co-terminal 8477 // free block to be coalesced with the newly expanded portion, 8478 // thus rendering _limit a non-block-boundary making it dangerous 8479 // for the sweeper to step over and examine. 8480 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) { 8481 assert(inFreeRange(), "Should only be called if currently in a free range."); 8482 HeapWord* const eob = ((HeapWord*)fc) + chunk_size; 8483 assert(_sp->used_region().contains(eob - 1), 8484 err_msg("eob = " PTR_FORMAT " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")" 8485 " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")", 8486 _limit, _sp->bottom(), _sp->end(), fc, chunk_size)); 8487 if (eob >= _limit) { 8488 assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit"); 8489 if (CMSTraceSweeper) { 8490 gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block " 8491 "[" PTR_FORMAT "," PTR_FORMAT ") in space " 8492 "[" PTR_FORMAT "," PTR_FORMAT ")", 8493 _limit, fc, eob, _sp->bottom(), _sp->end()); 8494 } 8495 // Return the storage we are tracking back into the free lists. 8496 if (CMSTraceSweeper) { 8497 gclog_or_tty->print_cr("Flushing ... "); 8498 } 8499 assert(freeFinger() < eob, "Error"); 8500 flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger())); 8501 } 8502 } 8503 8504 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) { 8505 assert(inFreeRange(), "Should only be called if currently in a free range."); 8506 assert(size > 0, 8507 "A zero sized chunk cannot be added to the free lists."); 8508 if (!freeRangeInFreeLists()) { 8509 if (CMSTestInFreeList) { 8510 FreeChunk* fc = (FreeChunk*) chunk; 8511 fc->set_size(size); 8512 assert(!_sp->verify_chunk_in_free_list(fc), 8513 "chunk should not be in free lists yet"); 8514 } 8515 if (CMSTraceSweeper) { 8516 gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists", 8517 chunk, size); 8518 } 8519 // A new free range is going to be starting. The current 8520 // free range has not been added to the free lists yet or 8521 // was removed so add it back. 8522 // If the current free range was coalesced, then the death 8523 // of the free range was recorded. Record a birth now. 8524 if (lastFreeRangeCoalesced()) { 8525 _sp->coalBirth(size); 8526 } 8527 _sp->addChunkAndRepairOffsetTable(chunk, size, 8528 lastFreeRangeCoalesced()); 8529 } else if (CMSTraceSweeper) { 8530 gclog_or_tty->print_cr("Already in free list: nothing to flush"); 8531 } 8532 set_inFreeRange(false); 8533 set_freeRangeInFreeLists(false); 8534 } 8535 8536 // We take a break if we've been at this for a while, 8537 // so as to avoid monopolizing the locks involved. 8538 void SweepClosure::do_yield_work(HeapWord* addr) { 8539 // Return current free chunk being used for coalescing (if any) 8540 // to the appropriate freelist. After yielding, the next 8541 // free block encountered will start a coalescing range of 8542 // free blocks. If the next free block is adjacent to the 8543 // chunk just flushed, they will need to wait for the next 8544 // sweep to be coalesced. 8545 if (inFreeRange()) { 8546 flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); 8547 } 8548 8549 // First give up the locks, then yield, then re-lock. 8550 // We should probably use a constructor/destructor idiom to 8551 // do this unlock/lock or modify the MutexUnlocker class to 8552 // serve our purpose. XXX 8553 assert_lock_strong(_bitMap->lock()); 8554 assert_lock_strong(_freelistLock); 8555 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 8556 "CMS thread should hold CMS token"); 8557 _bitMap->lock()->unlock(); 8558 _freelistLock->unlock(); 8559 ConcurrentMarkSweepThread::desynchronize(true); 8560 ConcurrentMarkSweepThread::acknowledge_yield_request(); 8561 _collector->stopTimer(); 8562 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 8563 if (PrintCMSStatistics != 0) { 8564 _collector->incrementYields(); 8565 } 8566 _collector->icms_wait(); 8567 8568 // See the comment in coordinator_yield() 8569 for (unsigned i = 0; i < CMSYieldSleepCount && 8570 ConcurrentMarkSweepThread::should_yield() && 8571 !CMSCollector::foregroundGCIsActive(); ++i) { 8572 os::sleep(Thread::current(), 1, false); 8573 ConcurrentMarkSweepThread::acknowledge_yield_request(); 8574 } 8575 8576 ConcurrentMarkSweepThread::synchronize(true); 8577 _freelistLock->lock(); 8578 _bitMap->lock()->lock_without_safepoint_check(); 8579 _collector->startTimer(); 8580 } 8581 8582 #ifndef PRODUCT 8583 // This is actually very useful in a product build if it can 8584 // be called from the debugger. Compile it into the product 8585 // as needed. 8586 bool debug_verify_chunk_in_free_list(FreeChunk* fc) { 8587 return debug_cms_space->verify_chunk_in_free_list(fc); 8588 } 8589 #endif 8590 8591 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const { 8592 if (CMSTraceSweeper) { 8593 gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")", 8594 fc, fc->size()); 8595 } 8596 } 8597 8598 // CMSIsAliveClosure 8599 bool CMSIsAliveClosure::do_object_b(oop obj) { 8600 HeapWord* addr = (HeapWord*)obj; 8601 return addr != NULL && 8602 (!_span.contains(addr) || _bit_map->isMarked(addr)); 8603 } 8604 8605 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector, 8606 MemRegion span, 8607 CMSBitMap* bit_map, CMSMarkStack* mark_stack, 8608 CMSMarkStack* revisit_stack, bool cpc): 8609 KlassRememberingOopClosure(collector, NULL, revisit_stack), 8610 _span(span), 8611 _bit_map(bit_map), 8612 _mark_stack(mark_stack), 8613 _concurrent_precleaning(cpc) { 8614 assert(!_span.is_empty(), "Empty span could spell trouble"); 8615 } 8616 8617 8618 // CMSKeepAliveClosure: the serial version 8619 void CMSKeepAliveClosure::do_oop(oop obj) { 8620 HeapWord* addr = (HeapWord*)obj; 8621 if (_span.contains(addr) && 8622 !_bit_map->isMarked(addr)) { 8623 _bit_map->mark(addr); 8624 bool simulate_overflow = false; 8625 NOT_PRODUCT( 8626 if (CMSMarkStackOverflowALot && 8627 _collector->simulate_overflow()) { 8628 // simulate a stack overflow 8629 simulate_overflow = true; 8630 } 8631 ) 8632 if (simulate_overflow || !_mark_stack->push(obj)) { 8633 if (_concurrent_precleaning) { 8634 // We dirty the overflown object and let the remark 8635 // phase deal with it. 8636 assert(_collector->overflow_list_is_empty(), "Error"); 8637 // In the case of object arrays, we need to dirty all of 8638 // the cards that the object spans. No locking or atomics 8639 // are needed since no one else can be mutating the mod union 8640 // table. 8641 if (obj->is_objArray()) { 8642 size_t sz = obj->size(); 8643 HeapWord* end_card_addr = 8644 (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size); 8645 MemRegion redirty_range = MemRegion(addr, end_card_addr); 8646 assert(!redirty_range.is_empty(), "Arithmetical tautology"); 8647 _collector->_modUnionTable.mark_range(redirty_range); 8648 } else { 8649 _collector->_modUnionTable.mark(addr); 8650 } 8651 _collector->_ser_kac_preclean_ovflw++; 8652 } else { 8653 _collector->push_on_overflow_list(obj); 8654 _collector->_ser_kac_ovflw++; 8655 } 8656 } 8657 } 8658 } 8659 8660 void CMSKeepAliveClosure::do_oop(oop* p) { CMSKeepAliveClosure::do_oop_work(p); } 8661 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); } 8662 8663 // CMSParKeepAliveClosure: a parallel version of the above. 8664 // The work queues are private to each closure (thread), 8665 // but (may be) available for stealing by other threads. 8666 void CMSParKeepAliveClosure::do_oop(oop obj) { 8667 HeapWord* addr = (HeapWord*)obj; 8668 if (_span.contains(addr) && 8669 !_bit_map->isMarked(addr)) { 8670 // In general, during recursive tracing, several threads 8671 // may be concurrently getting here; the first one to 8672 // "tag" it, claims it. 8673 if (_bit_map->par_mark(addr)) { 8674 bool res = _work_queue->push(obj); 8675 assert(res, "Low water mark should be much less than capacity"); 8676 // Do a recursive trim in the hope that this will keep 8677 // stack usage lower, but leave some oops for potential stealers 8678 trim_queue(_low_water_mark); 8679 } // Else, another thread got there first 8680 } 8681 } 8682 8683 void CMSParKeepAliveClosure::do_oop(oop* p) { CMSParKeepAliveClosure::do_oop_work(p); } 8684 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); } 8685 8686 void CMSParKeepAliveClosure::trim_queue(uint max) { 8687 while (_work_queue->size() > max) { 8688 oop new_oop; 8689 if (_work_queue->pop_local(new_oop)) { 8690 assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop"); 8691 assert(_bit_map->isMarked((HeapWord*)new_oop), 8692 "no white objects on this stack!"); 8693 assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop"); 8694 // iterate over the oops in this oop, marking and pushing 8695 // the ones in CMS heap (i.e. in _span). 8696 new_oop->oop_iterate(&_mark_and_push); 8697 } 8698 } 8699 } 8700 8701 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure( 8702 CMSCollector* collector, 8703 MemRegion span, CMSBitMap* bit_map, 8704 CMSMarkStack* revisit_stack, 8705 OopTaskQueue* work_queue): 8706 Par_KlassRememberingOopClosure(collector, NULL, revisit_stack), 8707 _span(span), 8708 _bit_map(bit_map), 8709 _work_queue(work_queue) { } 8710 8711 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) { 8712 HeapWord* addr = (HeapWord*)obj; 8713 if (_span.contains(addr) && 8714 !_bit_map->isMarked(addr)) { 8715 if (_bit_map->par_mark(addr)) { 8716 bool simulate_overflow = false; 8717 NOT_PRODUCT( 8718 if (CMSMarkStackOverflowALot && 8719 _collector->par_simulate_overflow()) { 8720 // simulate a stack overflow 8721 simulate_overflow = true; 8722 } 8723 ) 8724 if (simulate_overflow || !_work_queue->push(obj)) { 8725 _collector->par_push_on_overflow_list(obj); 8726 _collector->_par_kac_ovflw++; 8727 } 8728 } // Else another thread got there already 8729 } 8730 } 8731 8732 void CMSInnerParMarkAndPushClosure::do_oop(oop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); } 8733 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); } 8734 8735 ////////////////////////////////////////////////////////////////// 8736 // CMSExpansionCause ///////////////////////////// 8737 ////////////////////////////////////////////////////////////////// 8738 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) { 8739 switch (cause) { 8740 case _no_expansion: 8741 return "No expansion"; 8742 case _satisfy_free_ratio: 8743 return "Free ratio"; 8744 case _satisfy_promotion: 8745 return "Satisfy promotion"; 8746 case _satisfy_allocation: 8747 return "allocation"; 8748 case _allocate_par_lab: 8749 return "Par LAB"; 8750 case _allocate_par_spooling_space: 8751 return "Par Spooling Space"; 8752 case _adaptive_size_policy: 8753 return "Ergonomics"; 8754 default: 8755 return "unknown"; 8756 } 8757 } 8758 8759 void CMSDrainMarkingStackClosure::do_void() { 8760 // the max number to take from overflow list at a time 8761 const size_t num = _mark_stack->capacity()/4; 8762 assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(), 8763 "Overflow list should be NULL during concurrent phases"); 8764 while (!_mark_stack->isEmpty() || 8765 // if stack is empty, check the overflow list 8766 _collector->take_from_overflow_list(num, _mark_stack)) { 8767 oop obj = _mark_stack->pop(); 8768 HeapWord* addr = (HeapWord*)obj; 8769 assert(_span.contains(addr), "Should be within span"); 8770 assert(_bit_map->isMarked(addr), "Should be marked"); 8771 assert(obj->is_oop(), "Should be an oop"); 8772 obj->oop_iterate(_keep_alive); 8773 } 8774 } 8775 8776 void CMSParDrainMarkingStackClosure::do_void() { 8777 // drain queue 8778 trim_queue(0); 8779 } 8780 8781 // Trim our work_queue so its length is below max at return 8782 void CMSParDrainMarkingStackClosure::trim_queue(uint max) { 8783 while (_work_queue->size() > max) { 8784 oop new_oop; 8785 if (_work_queue->pop_local(new_oop)) { 8786 assert(new_oop->is_oop(), "Expected an oop"); 8787 assert(_bit_map->isMarked((HeapWord*)new_oop), 8788 "no white objects on this stack!"); 8789 assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop"); 8790 // iterate over the oops in this oop, marking and pushing 8791 // the ones in CMS heap (i.e. in _span). 8792 new_oop->oop_iterate(&_mark_and_push); 8793 } 8794 } 8795 } 8796 8797 //////////////////////////////////////////////////////////////////// 8798 // Support for Marking Stack Overflow list handling and related code 8799 //////////////////////////////////////////////////////////////////// 8800 // Much of the following code is similar in shape and spirit to the 8801 // code used in ParNewGC. We should try and share that code 8802 // as much as possible in the future. 8803 8804 #ifndef PRODUCT 8805 // Debugging support for CMSStackOverflowALot 8806 8807 // It's OK to call this multi-threaded; the worst thing 8808 // that can happen is that we'll get a bunch of closely 8809 // spaced simulated oveflows, but that's OK, in fact 8810 // probably good as it would exercise the overflow code 8811 // under contention. 8812 bool CMSCollector::simulate_overflow() { 8813 if (_overflow_counter-- <= 0) { // just being defensive 8814 _overflow_counter = CMSMarkStackOverflowInterval; 8815 return true; 8816 } else { 8817 return false; 8818 } 8819 } 8820 8821 bool CMSCollector::par_simulate_overflow() { 8822 return simulate_overflow(); 8823 } 8824 #endif 8825 8826 // Single-threaded 8827 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) { 8828 assert(stack->isEmpty(), "Expected precondition"); 8829 assert(stack->capacity() > num, "Shouldn't bite more than can chew"); 8830 size_t i = num; 8831 oop cur = _overflow_list; 8832 const markOop proto = markOopDesc::prototype(); 8833 NOT_PRODUCT(ssize_t n = 0;) 8834 for (oop next; i > 0 && cur != NULL; cur = next, i--) { 8835 next = oop(cur->mark()); 8836 cur->set_mark(proto); // until proven otherwise 8837 assert(cur->is_oop(), "Should be an oop"); 8838 bool res = stack->push(cur); 8839 assert(res, "Bit off more than can chew?"); 8840 NOT_PRODUCT(n++;) 8841 } 8842 _overflow_list = cur; 8843 #ifndef PRODUCT 8844 assert(_num_par_pushes >= n, "Too many pops?"); 8845 _num_par_pushes -=n; 8846 #endif 8847 return !stack->isEmpty(); 8848 } 8849 8850 #define BUSY (oop(0x1aff1aff)) 8851 // (MT-safe) Get a prefix of at most "num" from the list. 8852 // The overflow list is chained through the mark word of 8853 // each object in the list. We fetch the entire list, 8854 // break off a prefix of the right size and return the 8855 // remainder. If other threads try to take objects from 8856 // the overflow list at that time, they will wait for 8857 // some time to see if data becomes available. If (and 8858 // only if) another thread places one or more object(s) 8859 // on the global list before we have returned the suffix 8860 // to the global list, we will walk down our local list 8861 // to find its end and append the global list to 8862 // our suffix before returning it. This suffix walk can 8863 // prove to be expensive (quadratic in the amount of traffic) 8864 // when there are many objects in the overflow list and 8865 // there is much producer-consumer contention on the list. 8866 // *NOTE*: The overflow list manipulation code here and 8867 // in ParNewGeneration:: are very similar in shape, 8868 // except that in the ParNew case we use the old (from/eden) 8869 // copy of the object to thread the list via its klass word. 8870 // Because of the common code, if you make any changes in 8871 // the code below, please check the ParNew version to see if 8872 // similar changes might be needed. 8873 // CR 6797058 has been filed to consolidate the common code. 8874 bool CMSCollector::par_take_from_overflow_list(size_t num, 8875 OopTaskQueue* work_q, 8876 int no_of_gc_threads) { 8877 assert(work_q->size() == 0, "First empty local work queue"); 8878 assert(num < work_q->max_elems(), "Can't bite more than we can chew"); 8879 if (_overflow_list == NULL) { 8880 return false; 8881 } 8882 // Grab the entire list; we'll put back a suffix 8883 oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list); 8884 Thread* tid = Thread::current(); 8885 // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was 8886 // set to ParallelGCThreads. 8887 size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads; 8888 size_t sleep_time_millis = MAX2((size_t)1, num/100); 8889 // If the list is busy, we spin for a short while, 8890 // sleeping between attempts to get the list. 8891 for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) { 8892 os::sleep(tid, sleep_time_millis, false); 8893 if (_overflow_list == NULL) { 8894 // Nothing left to take 8895 return false; 8896 } else if (_overflow_list != BUSY) { 8897 // Try and grab the prefix 8898 prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list); 8899 } 8900 } 8901 // If the list was found to be empty, or we spun long 8902 // enough, we give up and return empty-handed. If we leave 8903 // the list in the BUSY state below, it must be the case that 8904 // some other thread holds the overflow list and will set it 8905 // to a non-BUSY state in the future. 8906 if (prefix == NULL || prefix == BUSY) { 8907 // Nothing to take or waited long enough 8908 if (prefix == NULL) { 8909 // Write back the NULL in case we overwrote it with BUSY above 8910 // and it is still the same value. 8911 (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY); 8912 } 8913 return false; 8914 } 8915 assert(prefix != NULL && prefix != BUSY, "Error"); 8916 size_t i = num; 8917 oop cur = prefix; 8918 // Walk down the first "num" objects, unless we reach the end. 8919 for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--); 8920 if (cur->mark() == NULL) { 8921 // We have "num" or fewer elements in the list, so there 8922 // is nothing to return to the global list. 8923 // Write back the NULL in lieu of the BUSY we wrote 8924 // above, if it is still the same value. 8925 if (_overflow_list == BUSY) { 8926 (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY); 8927 } 8928 } else { 8929 // Chop off the suffix and rerturn it to the global list. 8930 assert(cur->mark() != BUSY, "Error"); 8931 oop suffix_head = cur->mark(); // suffix will be put back on global list 8932 cur->set_mark(NULL); // break off suffix 8933 // It's possible that the list is still in the empty(busy) state 8934 // we left it in a short while ago; in that case we may be 8935 // able to place back the suffix without incurring the cost 8936 // of a walk down the list. 8937 oop observed_overflow_list = _overflow_list; 8938 oop cur_overflow_list = observed_overflow_list; 8939 bool attached = false; 8940 while (observed_overflow_list == BUSY || observed_overflow_list == NULL) { 8941 observed_overflow_list = 8942 (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list); 8943 if (cur_overflow_list == observed_overflow_list) { 8944 attached = true; 8945 break; 8946 } else cur_overflow_list = observed_overflow_list; 8947 } 8948 if (!attached) { 8949 // Too bad, someone else sneaked in (at least) an element; we'll need 8950 // to do a splice. Find tail of suffix so we can prepend suffix to global 8951 // list. 8952 for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark())); 8953 oop suffix_tail = cur; 8954 assert(suffix_tail != NULL && suffix_tail->mark() == NULL, 8955 "Tautology"); 8956 observed_overflow_list = _overflow_list; 8957 do { 8958 cur_overflow_list = observed_overflow_list; 8959 if (cur_overflow_list != BUSY) { 8960 // Do the splice ... 8961 suffix_tail->set_mark(markOop(cur_overflow_list)); 8962 } else { // cur_overflow_list == BUSY 8963 suffix_tail->set_mark(NULL); 8964 } 8965 // ... and try to place spliced list back on overflow_list ... 8966 observed_overflow_list = 8967 (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list); 8968 } while (cur_overflow_list != observed_overflow_list); 8969 // ... until we have succeeded in doing so. 8970 } 8971 } 8972 8973 // Push the prefix elements on work_q 8974 assert(prefix != NULL, "control point invariant"); 8975 const markOop proto = markOopDesc::prototype(); 8976 oop next; 8977 NOT_PRODUCT(ssize_t n = 0;) 8978 for (cur = prefix; cur != NULL; cur = next) { 8979 next = oop(cur->mark()); 8980 cur->set_mark(proto); // until proven otherwise 8981 assert(cur->is_oop(), "Should be an oop"); 8982 bool res = work_q->push(cur); 8983 assert(res, "Bit off more than we can chew?"); 8984 NOT_PRODUCT(n++;) 8985 } 8986 #ifndef PRODUCT 8987 assert(_num_par_pushes >= n, "Too many pops?"); 8988 Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes); 8989 #endif 8990 return true; 8991 } 8992 8993 // Single-threaded 8994 void CMSCollector::push_on_overflow_list(oop p) { 8995 NOT_PRODUCT(_num_par_pushes++;) 8996 assert(p->is_oop(), "Not an oop"); 8997 preserve_mark_if_necessary(p); 8998 p->set_mark((markOop)_overflow_list); 8999 _overflow_list = p; 9000 } 9001 9002 // Multi-threaded; use CAS to prepend to overflow list 9003 void CMSCollector::par_push_on_overflow_list(oop p) { 9004 NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);) 9005 assert(p->is_oop(), "Not an oop"); 9006 par_preserve_mark_if_necessary(p); 9007 oop observed_overflow_list = _overflow_list; 9008 oop cur_overflow_list; 9009 do { 9010 cur_overflow_list = observed_overflow_list; 9011 if (cur_overflow_list != BUSY) { 9012 p->set_mark(markOop(cur_overflow_list)); 9013 } else { 9014 p->set_mark(NULL); 9015 } 9016 observed_overflow_list = 9017 (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list); 9018 } while (cur_overflow_list != observed_overflow_list); 9019 } 9020 #undef BUSY 9021 9022 // Single threaded 9023 // General Note on GrowableArray: pushes may silently fail 9024 // because we are (temporarily) out of C-heap for expanding 9025 // the stack. The problem is quite ubiquitous and affects 9026 // a lot of code in the JVM. The prudent thing for GrowableArray 9027 // to do (for now) is to exit with an error. However, that may 9028 // be too draconian in some cases because the caller may be 9029 // able to recover without much harm. For such cases, we 9030 // should probably introduce a "soft_push" method which returns 9031 // an indication of success or failure with the assumption that 9032 // the caller may be able to recover from a failure; code in 9033 // the VM can then be changed, incrementally, to deal with such 9034 // failures where possible, thus, incrementally hardening the VM 9035 // in such low resource situations. 9036 void CMSCollector::preserve_mark_work(oop p, markOop m) { 9037 _preserved_oop_stack.push(p); 9038 _preserved_mark_stack.push(m); 9039 assert(m == p->mark(), "Mark word changed"); 9040 assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(), 9041 "bijection"); 9042 } 9043 9044 // Single threaded 9045 void CMSCollector::preserve_mark_if_necessary(oop p) { 9046 markOop m = p->mark(); 9047 if (m->must_be_preserved(p)) { 9048 preserve_mark_work(p, m); 9049 } 9050 } 9051 9052 void CMSCollector::par_preserve_mark_if_necessary(oop p) { 9053 markOop m = p->mark(); 9054 if (m->must_be_preserved(p)) { 9055 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); 9056 // Even though we read the mark word without holding 9057 // the lock, we are assured that it will not change 9058 // because we "own" this oop, so no other thread can 9059 // be trying to push it on the overflow list; see 9060 // the assertion in preserve_mark_work() that checks 9061 // that m == p->mark(). 9062 preserve_mark_work(p, m); 9063 } 9064 } 9065 9066 // We should be able to do this multi-threaded, 9067 // a chunk of stack being a task (this is 9068 // correct because each oop only ever appears 9069 // once in the overflow list. However, it's 9070 // not very easy to completely overlap this with 9071 // other operations, so will generally not be done 9072 // until all work's been completed. Because we 9073 // expect the preserved oop stack (set) to be small, 9074 // it's probably fine to do this single-threaded. 9075 // We can explore cleverer concurrent/overlapped/parallel 9076 // processing of preserved marks if we feel the 9077 // need for this in the future. Stack overflow should 9078 // be so rare in practice and, when it happens, its 9079 // effect on performance so great that this will 9080 // likely just be in the noise anyway. 9081 void CMSCollector::restore_preserved_marks_if_any() { 9082 assert(SafepointSynchronize::is_at_safepoint(), 9083 "world should be stopped"); 9084 assert(Thread::current()->is_ConcurrentGC_thread() || 9085 Thread::current()->is_VM_thread(), 9086 "should be single-threaded"); 9087 assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(), 9088 "bijection"); 9089 9090 while (!_preserved_oop_stack.is_empty()) { 9091 oop p = _preserved_oop_stack.pop(); 9092 assert(p->is_oop(), "Should be an oop"); 9093 assert(_span.contains(p), "oop should be in _span"); 9094 assert(p->mark() == markOopDesc::prototype(), 9095 "Set when taken from overflow list"); 9096 markOop m = _preserved_mark_stack.pop(); 9097 p->set_mark(m); 9098 } 9099 assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(), 9100 "stacks were cleared above"); 9101 } 9102 9103 #ifndef PRODUCT 9104 bool CMSCollector::no_preserved_marks() const { 9105 return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(); 9106 } 9107 #endif 9108 9109 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const 9110 { 9111 GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap(); 9112 CMSAdaptiveSizePolicy* size_policy = 9113 (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy(); 9114 assert(size_policy->is_gc_cms_adaptive_size_policy(), 9115 "Wrong type for size policy"); 9116 return size_policy; 9117 } 9118 9119 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size, 9120 size_t desired_promo_size) { 9121 if (cur_promo_size < desired_promo_size) { 9122 size_t expand_bytes = desired_promo_size - cur_promo_size; 9123 if (PrintAdaptiveSizePolicy && Verbose) { 9124 gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize " 9125 "Expanding tenured generation by " SIZE_FORMAT " (bytes)", 9126 expand_bytes); 9127 } 9128 expand(expand_bytes, 9129 MinHeapDeltaBytes, 9130 CMSExpansionCause::_adaptive_size_policy); 9131 } else if (desired_promo_size < cur_promo_size) { 9132 size_t shrink_bytes = cur_promo_size - desired_promo_size; 9133 if (PrintAdaptiveSizePolicy && Verbose) { 9134 gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize " 9135 "Shrinking tenured generation by " SIZE_FORMAT " (bytes)", 9136 shrink_bytes); 9137 } 9138 shrink(shrink_bytes); 9139 } 9140 } 9141 9142 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() { 9143 GenCollectedHeap* gch = GenCollectedHeap::heap(); 9144 CMSGCAdaptivePolicyCounters* counters = 9145 (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters(); 9146 assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind, 9147 "Wrong kind of counters"); 9148 return counters; 9149 } 9150 9151 9152 void ASConcurrentMarkSweepGeneration::update_counters() { 9153 if (UsePerfData) { 9154 _space_counters->update_all(); 9155 _gen_counters->update_all(); 9156 CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters(); 9157 GenCollectedHeap* gch = GenCollectedHeap::heap(); 9158 CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats(); 9159 assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind, 9160 "Wrong gc statistics type"); 9161 counters->update_counters(gc_stats_l); 9162 } 9163 } 9164 9165 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) { 9166 if (UsePerfData) { 9167 _space_counters->update_used(used); 9168 _space_counters->update_capacity(); 9169 _gen_counters->update_all(); 9170 9171 CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters(); 9172 GenCollectedHeap* gch = GenCollectedHeap::heap(); 9173 CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats(); 9174 assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind, 9175 "Wrong gc statistics type"); 9176 counters->update_counters(gc_stats_l); 9177 } 9178 } 9179 9180 // The desired expansion delta is computed so that: 9181 // . desired free percentage or greater is used 9182 void ASConcurrentMarkSweepGeneration::compute_new_size() { 9183 assert_locked_or_safepoint(Heap_lock); 9184 9185 GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap(); 9186 9187 // If incremental collection failed, we just want to expand 9188 // to the limit. 9189 if (incremental_collection_failed()) { 9190 clear_incremental_collection_failed(); 9191 grow_to_reserved(); 9192 return; 9193 } 9194 9195 assert(UseAdaptiveSizePolicy, "Should be using adaptive sizing"); 9196 9197 assert(gch->kind() == CollectedHeap::GenCollectedHeap, 9198 "Wrong type of heap"); 9199 int prev_level = level() - 1; 9200 assert(prev_level >= 0, "The cms generation is the lowest generation"); 9201 Generation* prev_gen = gch->get_gen(prev_level); 9202 assert(prev_gen->kind() == Generation::ASParNew, 9203 "Wrong type of young generation"); 9204 ParNewGeneration* younger_gen = (ParNewGeneration*) prev_gen; 9205 size_t cur_eden = younger_gen->eden()->capacity(); 9206 CMSAdaptiveSizePolicy* size_policy = cms_size_policy(); 9207 size_t cur_promo = free(); 9208 size_policy->compute_tenured_generation_free_space(cur_promo, 9209 max_available(), 9210 cur_eden); 9211 resize(cur_promo, size_policy->promo_size()); 9212 9213 // Record the new size of the space in the cms generation 9214 // that is available for promotions. This is temporary. 9215 // It should be the desired promo size. 9216 size_policy->avg_cms_promo()->sample(free()); 9217 size_policy->avg_old_live()->sample(used()); 9218 9219 if (UsePerfData) { 9220 CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters(); 9221 counters->update_cms_capacity_counter(capacity()); 9222 } 9223 } 9224 9225 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) { 9226 assert_locked_or_safepoint(Heap_lock); 9227 assert_lock_strong(freelistLock()); 9228 HeapWord* old_end = _cmsSpace->end(); 9229 HeapWord* unallocated_start = _cmsSpace->unallocated_block(); 9230 assert(old_end >= unallocated_start, "Miscalculation of unallocated_start"); 9231 FreeChunk* chunk_at_end = find_chunk_at_end(); 9232 if (chunk_at_end == NULL) { 9233 // No room to shrink 9234 if (PrintGCDetails && Verbose) { 9235 gclog_or_tty->print_cr("No room to shrink: old_end " 9236 PTR_FORMAT " unallocated_start " PTR_FORMAT 9237 " chunk_at_end " PTR_FORMAT, 9238 old_end, unallocated_start, chunk_at_end); 9239 } 9240 return; 9241 } else { 9242 9243 // Find the chunk at the end of the space and determine 9244 // how much it can be shrunk. 9245 size_t shrinkable_size_in_bytes = chunk_at_end->size(); 9246 size_t aligned_shrinkable_size_in_bytes = 9247 align_size_down(shrinkable_size_in_bytes, os::vm_page_size()); 9248 assert(unallocated_start <= chunk_at_end->end(), 9249 "Inconsistent chunk at end of space"); 9250 size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes); 9251 size_t word_size_before = heap_word_size(_virtual_space.committed_size()); 9252 9253 // Shrink the underlying space 9254 _virtual_space.shrink_by(bytes); 9255 if (PrintGCDetails && Verbose) { 9256 gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:" 9257 " desired_bytes " SIZE_FORMAT 9258 " shrinkable_size_in_bytes " SIZE_FORMAT 9259 " aligned_shrinkable_size_in_bytes " SIZE_FORMAT 9260 " bytes " SIZE_FORMAT, 9261 desired_bytes, shrinkable_size_in_bytes, 9262 aligned_shrinkable_size_in_bytes, bytes); 9263 gclog_or_tty->print_cr(" old_end " SIZE_FORMAT 9264 " unallocated_start " SIZE_FORMAT, 9265 old_end, unallocated_start); 9266 } 9267 9268 // If the space did shrink (shrinking is not guaranteed), 9269 // shrink the chunk at the end by the appropriate amount. 9270 if (((HeapWord*)_virtual_space.high()) < old_end) { 9271 size_t new_word_size = 9272 heap_word_size(_virtual_space.committed_size()); 9273 9274 // Have to remove the chunk from the dictionary because it is changing 9275 // size and might be someplace elsewhere in the dictionary. 9276 9277 // Get the chunk at end, shrink it, and put it 9278 // back. 9279 _cmsSpace->removeChunkFromDictionary(chunk_at_end); 9280 size_t word_size_change = word_size_before - new_word_size; 9281 size_t chunk_at_end_old_size = chunk_at_end->size(); 9282 assert(chunk_at_end_old_size >= word_size_change, 9283 "Shrink is too large"); 9284 chunk_at_end->set_size(chunk_at_end_old_size - 9285 word_size_change); 9286 _cmsSpace->freed((HeapWord*) chunk_at_end->end(), 9287 word_size_change); 9288 9289 _cmsSpace->returnChunkToDictionary(chunk_at_end); 9290 9291 MemRegion mr(_cmsSpace->bottom(), new_word_size); 9292 _bts->resize(new_word_size); // resize the block offset shared array 9293 Universe::heap()->barrier_set()->resize_covered_region(mr); 9294 _cmsSpace->assert_locked(); 9295 _cmsSpace->set_end((HeapWord*)_virtual_space.high()); 9296 9297 NOT_PRODUCT(_cmsSpace->dictionary()->verify()); 9298 9299 // update the space and generation capacity counters 9300 if (UsePerfData) { 9301 _space_counters->update_capacity(); 9302 _gen_counters->update_all(); 9303 } 9304 9305 if (Verbose && PrintGCDetails) { 9306 size_t new_mem_size = _virtual_space.committed_size(); 9307 size_t old_mem_size = new_mem_size + bytes; 9308 gclog_or_tty->print_cr("Shrinking %s from %ldK by %ldK to %ldK", 9309 name(), old_mem_size/K, bytes/K, new_mem_size/K); 9310 } 9311 } 9312 9313 assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(), 9314 "Inconsistency at end of space"); 9315 assert(chunk_at_end->end() == _cmsSpace->end(), 9316 "Shrinking is inconsistent"); 9317 return; 9318 } 9319 } 9320 9321 // Transfer some number of overflown objects to usual marking 9322 // stack. Return true if some objects were transferred. 9323 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() { 9324 size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4, 9325 (size_t)ParGCDesiredObjsFromOverflowList); 9326 9327 bool res = _collector->take_from_overflow_list(num, _mark_stack); 9328 assert(_collector->overflow_list_is_empty() || res, 9329 "If list is not empty, we should have taken something"); 9330 assert(!res || !_mark_stack->isEmpty(), 9331 "If we took something, it should now be on our stack"); 9332 return res; 9333 } 9334 9335 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) { 9336 size_t res = _sp->block_size_no_stall(addr, _collector); 9337 if (_sp->block_is_obj(addr)) { 9338 if (_live_bit_map->isMarked(addr)) { 9339 // It can't have been dead in a previous cycle 9340 guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!"); 9341 } else { 9342 _dead_bit_map->mark(addr); // mark the dead object 9343 } 9344 } 9345 // Could be 0, if the block size could not be computed without stalling. 9346 return res; 9347 } 9348 9349 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() { 9350 9351 switch (phase) { 9352 case CMSCollector::InitialMarking: 9353 initialize(true /* fullGC */ , 9354 cause /* cause of the GC */, 9355 true /* recordGCBeginTime */, 9356 true /* recordPreGCUsage */, 9357 false /* recordPeakUsage */, 9358 false /* recordPostGCusage */, 9359 true /* recordAccumulatedGCTime */, 9360 false /* recordGCEndTime */, 9361 false /* countCollection */ ); 9362 break; 9363 9364 case CMSCollector::FinalMarking: 9365 initialize(true /* fullGC */ , 9366 cause /* cause of the GC */, 9367 false /* recordGCBeginTime */, 9368 false /* recordPreGCUsage */, 9369 false /* recordPeakUsage */, 9370 false /* recordPostGCusage */, 9371 true /* recordAccumulatedGCTime */, 9372 false /* recordGCEndTime */, 9373 false /* countCollection */ ); 9374 break; 9375 9376 case CMSCollector::Sweeping: 9377 initialize(true /* fullGC */ , 9378 cause /* cause of the GC */, 9379 false /* recordGCBeginTime */, 9380 false /* recordPreGCUsage */, 9381 true /* recordPeakUsage */, 9382 true /* recordPostGCusage */, 9383 false /* recordAccumulatedGCTime */, 9384 true /* recordGCEndTime */, 9385 true /* countCollection */ ); 9386 break; 9387 9388 default: 9389 ShouldNotReachHere(); 9390 } 9391 } 9392