1 /* 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/symbolTable.hpp" 27 #include "classfile/systemDictionary.hpp" 28 #include "code/codeCache.hpp" 29 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp" 30 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp" 31 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp" 32 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp" 33 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp" 34 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp" 35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp" 36 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp" 37 #include "gc_implementation/parNew/parNewGeneration.hpp" 38 #include "gc_implementation/shared/collectorCounters.hpp" 39 #include "gc_implementation/shared/gcTimer.hpp" 40 #include "gc_implementation/shared/gcTrace.hpp" 41 #include "gc_implementation/shared/gcTraceTime.hpp" 42 #include "gc_implementation/shared/isGCActiveMark.hpp" 43 #include "gc_interface/collectedHeap.inline.hpp" 44 #include "memory/allocation.hpp" 45 #include "memory/cardTableRS.hpp" 46 #include "memory/collectorPolicy.hpp" 47 #include "memory/gcLocker.inline.hpp" 48 #include "memory/genCollectedHeap.hpp" 49 #include "memory/genMarkSweep.hpp" 50 #include "memory/genOopClosures.inline.hpp" 51 #include "memory/iterator.hpp" 52 #include "memory/referencePolicy.hpp" 53 #include "memory/resourceArea.hpp" 54 #include "oops/oop.inline.hpp" 55 #include "prims/jvmtiExport.hpp" 56 #include "runtime/globals_extension.hpp" 57 #include "runtime/handles.inline.hpp" 58 #include "runtime/java.hpp" 59 #include "runtime/vmThread.hpp" 60 #include "services/memoryService.hpp" 61 #include "services/runtimeService.hpp" 62 63 // statics 64 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL; 65 bool CMSCollector::_full_gc_requested = false; 66 67 ////////////////////////////////////////////////////////////////// 68 // In support of CMS/VM thread synchronization 69 ////////////////////////////////////////////////////////////////// 70 // We split use of the CGC_lock into 2 "levels". 71 // The low-level locking is of the usual CGC_lock monitor. We introduce 72 // a higher level "token" (hereafter "CMS token") built on top of the 73 // low level monitor (hereafter "CGC lock"). 74 // The token-passing protocol gives priority to the VM thread. The 75 // CMS-lock doesn't provide any fairness guarantees, but clients 76 // should ensure that it is only held for very short, bounded 77 // durations. 78 // 79 // When either of the CMS thread or the VM thread is involved in 80 // collection operations during which it does not want the other 81 // thread to interfere, it obtains the CMS token. 82 // 83 // If either thread tries to get the token while the other has 84 // it, that thread waits. However, if the VM thread and CMS thread 85 // both want the token, then the VM thread gets priority while the 86 // CMS thread waits. This ensures, for instance, that the "concurrent" 87 // phases of the CMS thread's work do not block out the VM thread 88 // for long periods of time as the CMS thread continues to hog 89 // the token. (See bug 4616232). 90 // 91 // The baton-passing functions are, however, controlled by the 92 // flags _foregroundGCShouldWait and _foregroundGCIsActive, 93 // and here the low-level CMS lock, not the high level token, 94 // ensures mutual exclusion. 95 // 96 // Two important conditions that we have to satisfy: 97 // 1. if a thread does a low-level wait on the CMS lock, then it 98 // relinquishes the CMS token if it were holding that token 99 // when it acquired the low-level CMS lock. 100 // 2. any low-level notifications on the low-level lock 101 // should only be sent when a thread has relinquished the token. 102 // 103 // In the absence of either property, we'd have potential deadlock. 104 // 105 // We protect each of the CMS (concurrent and sequential) phases 106 // with the CMS _token_, not the CMS _lock_. 107 // 108 // The only code protected by CMS lock is the token acquisition code 109 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the 110 // baton-passing code. 111 // 112 // Unfortunately, i couldn't come up with a good abstraction to factor and 113 // hide the naked CGC_lock manipulation in the baton-passing code 114 // further below. That's something we should try to do. Also, the proof 115 // of correctness of this 2-level locking scheme is far from obvious, 116 // and potentially quite slippery. We have an uneasy supsicion, for instance, 117 // that there may be a theoretical possibility of delay/starvation in the 118 // low-level lock/wait/notify scheme used for the baton-passing because of 119 // potential intereference with the priority scheme embodied in the 120 // CMS-token-passing protocol. See related comments at a CGC_lock->wait() 121 // invocation further below and marked with "XXX 20011219YSR". 122 // Indeed, as we note elsewhere, this may become yet more slippery 123 // in the presence of multiple CMS and/or multiple VM threads. XXX 124 125 class CMSTokenSync: public StackObj { 126 private: 127 bool _is_cms_thread; 128 public: 129 CMSTokenSync(bool is_cms_thread): 130 _is_cms_thread(is_cms_thread) { 131 assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(), 132 "Incorrect argument to constructor"); 133 ConcurrentMarkSweepThread::synchronize(_is_cms_thread); 134 } 135 136 ~CMSTokenSync() { 137 assert(_is_cms_thread ? 138 ConcurrentMarkSweepThread::cms_thread_has_cms_token() : 139 ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 140 "Incorrect state"); 141 ConcurrentMarkSweepThread::desynchronize(_is_cms_thread); 142 } 143 }; 144 145 // Convenience class that does a CMSTokenSync, and then acquires 146 // upto three locks. 147 class CMSTokenSyncWithLocks: public CMSTokenSync { 148 private: 149 // Note: locks are acquired in textual declaration order 150 // and released in the opposite order 151 MutexLockerEx _locker1, _locker2, _locker3; 152 public: 153 CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1, 154 Mutex* mutex2 = NULL, Mutex* mutex3 = NULL): 155 CMSTokenSync(is_cms_thread), 156 _locker1(mutex1, Mutex::_no_safepoint_check_flag), 157 _locker2(mutex2, Mutex::_no_safepoint_check_flag), 158 _locker3(mutex3, Mutex::_no_safepoint_check_flag) 159 { } 160 }; 161 162 163 // Wrapper class to temporarily disable icms during a foreground cms collection. 164 class ICMSDisabler: public StackObj { 165 public: 166 // The ctor disables icms and wakes up the thread so it notices the change; 167 // the dtor re-enables icms. Note that the CMSCollector methods will check 168 // CMSIncrementalMode. 169 ICMSDisabler() { CMSCollector::disable_icms(); CMSCollector::start_icms(); } 170 ~ICMSDisabler() { CMSCollector::enable_icms(); } 171 }; 172 173 ////////////////////////////////////////////////////////////////// 174 // Concurrent Mark-Sweep Generation ///////////////////////////// 175 ////////////////////////////////////////////////////////////////// 176 177 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;) 178 179 // This struct contains per-thread things necessary to support parallel 180 // young-gen collection. 181 class CMSParGCThreadState: public CHeapObj<mtGC> { 182 public: 183 CFLS_LAB lab; 184 PromotionInfo promo; 185 186 // Constructor. 187 CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) { 188 promo.setSpace(cfls); 189 } 190 }; 191 192 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration( 193 ReservedSpace rs, size_t initial_byte_size, int level, 194 CardTableRS* ct, bool use_adaptive_freelists, 195 FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) : 196 CardGeneration(rs, initial_byte_size, level, ct), 197 _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))), 198 _debug_collection_type(Concurrent_collection_type) 199 { 200 HeapWord* bottom = (HeapWord*) _virtual_space.low(); 201 HeapWord* end = (HeapWord*) _virtual_space.high(); 202 203 _direct_allocated_words = 0; 204 NOT_PRODUCT( 205 _numObjectsPromoted = 0; 206 _numWordsPromoted = 0; 207 _numObjectsAllocated = 0; 208 _numWordsAllocated = 0; 209 ) 210 211 _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end), 212 use_adaptive_freelists, 213 dictionaryChoice); 214 NOT_PRODUCT(debug_cms_space = _cmsSpace;) 215 if (_cmsSpace == NULL) { 216 vm_exit_during_initialization( 217 "CompactibleFreeListSpace allocation failure"); 218 } 219 _cmsSpace->_gen = this; 220 221 _gc_stats = new CMSGCStats(); 222 223 // Verify the assumption that FreeChunk::_prev and OopDesc::_klass 224 // offsets match. The ability to tell free chunks from objects 225 // depends on this property. 226 debug_only( 227 FreeChunk* junk = NULL; 228 assert(UseCompressedOops || 229 junk->prev_addr() == (void*)(oop(junk)->klass_addr()), 230 "Offset of FreeChunk::_prev within FreeChunk must match" 231 " that of OopDesc::_klass within OopDesc"); 232 ) 233 if (CollectedHeap::use_parallel_gc_threads()) { 234 typedef CMSParGCThreadState* CMSParGCThreadStatePtr; 235 _par_gc_thread_states = 236 NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC); 237 if (_par_gc_thread_states == NULL) { 238 vm_exit_during_initialization("Could not allocate par gc structs"); 239 } 240 for (uint i = 0; i < ParallelGCThreads; i++) { 241 _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace()); 242 if (_par_gc_thread_states[i] == NULL) { 243 vm_exit_during_initialization("Could not allocate par gc structs"); 244 } 245 } 246 } else { 247 _par_gc_thread_states = NULL; 248 } 249 _incremental_collection_failed = false; 250 // The "dilatation_factor" is the expansion that can occur on 251 // account of the fact that the minimum object size in the CMS 252 // generation may be larger than that in, say, a contiguous young 253 // generation. 254 // Ideally, in the calculation below, we'd compute the dilatation 255 // factor as: MinChunkSize/(promoting_gen's min object size) 256 // Since we do not have such a general query interface for the 257 // promoting generation, we'll instead just use the mimimum 258 // object size (which today is a header's worth of space); 259 // note that all arithmetic is in units of HeapWords. 260 assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking"); 261 assert(_dilatation_factor >= 1.0, "from previous assert"); 262 } 263 264 265 // The field "_initiating_occupancy" represents the occupancy percentage 266 // at which we trigger a new collection cycle. Unless explicitly specified 267 // via CMSInitiating[Perm]OccupancyFraction (argument "io" below), it 268 // is calculated by: 269 // 270 // Let "f" be MinHeapFreeRatio in 271 // 272 // _intiating_occupancy = 100-f + 273 // f * (CMSTrigger[Perm]Ratio/100) 274 // where CMSTrigger[Perm]Ratio is the argument "tr" below. 275 // 276 // That is, if we assume the heap is at its desired maximum occupancy at the 277 // end of a collection, we let CMSTrigger[Perm]Ratio of the (purported) free 278 // space be allocated before initiating a new collection cycle. 279 // 280 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, intx tr) { 281 assert(io <= 100 && tr >= 0 && tr <= 100, "Check the arguments"); 282 if (io >= 0) { 283 _initiating_occupancy = (double)io / 100.0; 284 } else { 285 _initiating_occupancy = ((100 - MinHeapFreeRatio) + 286 (double)(tr * MinHeapFreeRatio) / 100.0) 287 / 100.0; 288 } 289 } 290 291 void ConcurrentMarkSweepGeneration::ref_processor_init() { 292 assert(collector() != NULL, "no collector"); 293 collector()->ref_processor_init(); 294 } 295 296 void CMSCollector::ref_processor_init() { 297 if (_ref_processor == NULL) { 298 // Allocate and initialize a reference processor 299 _ref_processor = 300 new ReferenceProcessor(_span, // span 301 (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing 302 (int) ParallelGCThreads, // mt processing degree 303 _cmsGen->refs_discovery_is_mt(), // mt discovery 304 (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree 305 _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic 306 &_is_alive_closure, // closure for liveness info 307 false); // next field updates do not need write barrier 308 // Initialize the _ref_processor field of CMSGen 309 _cmsGen->set_ref_processor(_ref_processor); 310 311 // Allocate a dummy ref processor for perm gen. 312 ReferenceProcessor* rp2 = new ReferenceProcessor(); 313 if (rp2 == NULL) { 314 vm_exit_during_initialization("Could not allocate ReferenceProcessor object"); 315 } 316 _permGen->set_ref_processor(rp2); 317 } 318 } 319 320 CMSAdaptiveSizePolicy* CMSCollector::size_policy() { 321 GenCollectedHeap* gch = GenCollectedHeap::heap(); 322 assert(gch->kind() == CollectedHeap::GenCollectedHeap, 323 "Wrong type of heap"); 324 CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*) 325 gch->gen_policy()->size_policy(); 326 assert(sp->is_gc_cms_adaptive_size_policy(), 327 "Wrong type of size policy"); 328 return sp; 329 } 330 331 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() { 332 CMSGCAdaptivePolicyCounters* results = 333 (CMSGCAdaptivePolicyCounters*) collector_policy()->counters(); 334 assert( 335 results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind, 336 "Wrong gc policy counter kind"); 337 return results; 338 } 339 340 341 void ConcurrentMarkSweepGeneration::initialize_performance_counters() { 342 343 const char* gen_name = "old"; 344 345 // Generation Counters - generation 1, 1 subspace 346 _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space); 347 348 _space_counters = new GSpaceCounters(gen_name, 0, 349 _virtual_space.reserved_size(), 350 this, _gen_counters); 351 } 352 353 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha): 354 _cms_gen(cms_gen) 355 { 356 assert(alpha <= 100, "bad value"); 357 _saved_alpha = alpha; 358 359 // Initialize the alphas to the bootstrap value of 100. 360 _gc0_alpha = _cms_alpha = 100; 361 362 _cms_begin_time.update(); 363 _cms_end_time.update(); 364 365 _gc0_duration = 0.0; 366 _gc0_period = 0.0; 367 _gc0_promoted = 0; 368 369 _cms_duration = 0.0; 370 _cms_period = 0.0; 371 _cms_allocated = 0; 372 373 _cms_used_at_gc0_begin = 0; 374 _cms_used_at_gc0_end = 0; 375 _allow_duty_cycle_reduction = false; 376 _valid_bits = 0; 377 _icms_duty_cycle = CMSIncrementalDutyCycle; 378 } 379 380 double CMSStats::cms_free_adjustment_factor(size_t free) const { 381 // TBD: CR 6909490 382 return 1.0; 383 } 384 385 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) { 386 } 387 388 // If promotion failure handling is on use 389 // the padded average size of the promotion for each 390 // young generation collection. 391 double CMSStats::time_until_cms_gen_full() const { 392 size_t cms_free = _cms_gen->cmsSpace()->free(); 393 GenCollectedHeap* gch = GenCollectedHeap::heap(); 394 size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(), 395 (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average()); 396 if (cms_free > expected_promotion) { 397 // Start a cms collection if there isn't enough space to promote 398 // for the next minor collection. Use the padded average as 399 // a safety factor. 400 cms_free -= expected_promotion; 401 402 // Adjust by the safety factor. 403 double cms_free_dbl = (double)cms_free; 404 double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0; 405 // Apply a further correction factor which tries to adjust 406 // for recent occurance of concurrent mode failures. 407 cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free); 408 cms_free_dbl = cms_free_dbl * cms_adjustment; 409 410 if (PrintGCDetails && Verbose) { 411 gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free " 412 SIZE_FORMAT " expected_promotion " SIZE_FORMAT, 413 cms_free, expected_promotion); 414 gclog_or_tty->print_cr(" cms_free_dbl %f cms_consumption_rate %f", 415 cms_free_dbl, cms_consumption_rate() + 1.0); 416 } 417 // Add 1 in case the consumption rate goes to zero. 418 return cms_free_dbl / (cms_consumption_rate() + 1.0); 419 } 420 return 0.0; 421 } 422 423 // Compare the duration of the cms collection to the 424 // time remaining before the cms generation is empty. 425 // Note that the time from the start of the cms collection 426 // to the start of the cms sweep (less than the total 427 // duration of the cms collection) can be used. This 428 // has been tried and some applications experienced 429 // promotion failures early in execution. This was 430 // possibly because the averages were not accurate 431 // enough at the beginning. 432 double CMSStats::time_until_cms_start() const { 433 // We add "gc0_period" to the "work" calculation 434 // below because this query is done (mostly) at the 435 // end of a scavenge, so we need to conservatively 436 // account for that much possible delay 437 // in the query so as to avoid concurrent mode failures 438 // due to starting the collection just a wee bit too 439 // late. 440 double work = cms_duration() + gc0_period(); 441 double deadline = time_until_cms_gen_full(); 442 // If a concurrent mode failure occurred recently, we want to be 443 // more conservative and halve our expected time_until_cms_gen_full() 444 if (work > deadline) { 445 if (Verbose && PrintGCDetails) { 446 gclog_or_tty->print( 447 " CMSCollector: collect because of anticipated promotion " 448 "before full %3.7f + %3.7f > %3.7f ", cms_duration(), 449 gc0_period(), time_until_cms_gen_full()); 450 } 451 return 0.0; 452 } 453 return work - deadline; 454 } 455 456 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the 457 // amount of change to prevent wild oscillation. 458 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle, 459 unsigned int new_duty_cycle) { 460 assert(old_duty_cycle <= 100, "bad input value"); 461 assert(new_duty_cycle <= 100, "bad input value"); 462 463 // Note: use subtraction with caution since it may underflow (values are 464 // unsigned). Addition is safe since we're in the range 0-100. 465 unsigned int damped_duty_cycle = new_duty_cycle; 466 if (new_duty_cycle < old_duty_cycle) { 467 const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U); 468 if (new_duty_cycle + largest_delta < old_duty_cycle) { 469 damped_duty_cycle = old_duty_cycle - largest_delta; 470 } 471 } else if (new_duty_cycle > old_duty_cycle) { 472 const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U); 473 if (new_duty_cycle > old_duty_cycle + largest_delta) { 474 damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U); 475 } 476 } 477 assert(damped_duty_cycle <= 100, "invalid duty cycle computed"); 478 479 if (CMSTraceIncrementalPacing) { 480 gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ", 481 old_duty_cycle, new_duty_cycle, damped_duty_cycle); 482 } 483 return damped_duty_cycle; 484 } 485 486 unsigned int CMSStats::icms_update_duty_cycle_impl() { 487 assert(CMSIncrementalPacing && valid(), 488 "should be handled in icms_update_duty_cycle()"); 489 490 double cms_time_so_far = cms_timer().seconds(); 491 double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M; 492 double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far); 493 494 // Avoid division by 0. 495 double time_until_full = MAX2(time_until_cms_gen_full(), 0.01); 496 double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full; 497 498 unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U); 499 if (new_duty_cycle > _icms_duty_cycle) { 500 // Avoid very small duty cycles (1 or 2); 0 is allowed. 501 if (new_duty_cycle > 2) { 502 _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, 503 new_duty_cycle); 504 } 505 } else if (_allow_duty_cycle_reduction) { 506 // The duty cycle is reduced only once per cms cycle (see record_cms_end()). 507 new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle); 508 // Respect the minimum duty cycle. 509 unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin; 510 _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle); 511 } 512 513 if (PrintGCDetails || CMSTraceIncrementalPacing) { 514 gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle); 515 } 516 517 _allow_duty_cycle_reduction = false; 518 return _icms_duty_cycle; 519 } 520 521 #ifndef PRODUCT 522 void CMSStats::print_on(outputStream *st) const { 523 st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha); 524 st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT, 525 gc0_duration(), gc0_period(), gc0_promoted()); 526 st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT, 527 cms_duration(), cms_duration_per_mb(), 528 cms_period(), cms_allocated()); 529 st->print(",cms_since_beg=%g,cms_since_end=%g", 530 cms_time_since_begin(), cms_time_since_end()); 531 st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT, 532 _cms_used_at_gc0_begin, _cms_used_at_gc0_end); 533 if (CMSIncrementalMode) { 534 st->print(",dc=%d", icms_duty_cycle()); 535 } 536 537 if (valid()) { 538 st->print(",promo_rate=%g,cms_alloc_rate=%g", 539 promotion_rate(), cms_allocation_rate()); 540 st->print(",cms_consumption_rate=%g,time_until_full=%g", 541 cms_consumption_rate(), time_until_cms_gen_full()); 542 } 543 st->print(" "); 544 } 545 #endif // #ifndef PRODUCT 546 547 CMSCollector::CollectorState CMSCollector::_collectorState = 548 CMSCollector::Idling; 549 bool CMSCollector::_foregroundGCIsActive = false; 550 bool CMSCollector::_foregroundGCShouldWait = false; 551 552 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen, 553 ConcurrentMarkSweepGeneration* permGen, 554 CardTableRS* ct, 555 ConcurrentMarkSweepPolicy* cp): 556 _cmsGen(cmsGen), 557 _permGen(permGen), 558 _ct(ct), 559 _ref_processor(NULL), // will be set later 560 _conc_workers(NULL), // may be set later 561 _abort_preclean(false), 562 _start_sampling(false), 563 _between_prologue_and_epilogue(false), 564 _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"), 565 _perm_gen_verify_bit_map(0, -1 /* no mutex */, "No_lock"), 566 _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize), 567 -1 /* lock-free */, "No_lock" /* dummy */), 568 _modUnionClosure(&_modUnionTable), 569 _modUnionClosurePar(&_modUnionTable), 570 // Adjust my span to cover old (cms) gen and perm gen 571 _span(cmsGen->reserved()._union(permGen->reserved())), 572 // Construct the is_alive_closure with _span & markBitMap 573 _is_alive_closure(_span, &_markBitMap), 574 _restart_addr(NULL), 575 _overflow_list(NULL), 576 _stats(cmsGen), 577 _eden_chunk_array(NULL), // may be set in ctor body 578 _eden_chunk_capacity(0), // -- ditto -- 579 _eden_chunk_index(0), // -- ditto -- 580 _survivor_plab_array(NULL), // -- ditto -- 581 _survivor_chunk_array(NULL), // -- ditto -- 582 _survivor_chunk_capacity(0), // -- ditto -- 583 _survivor_chunk_index(0), // -- ditto -- 584 _ser_pmc_preclean_ovflw(0), 585 _ser_kac_preclean_ovflw(0), 586 _ser_pmc_remark_ovflw(0), 587 _par_pmc_remark_ovflw(0), 588 _ser_kac_ovflw(0), 589 _par_kac_ovflw(0), 590 #ifndef PRODUCT 591 _num_par_pushes(0), 592 #endif 593 _collection_count_start(0), 594 _verifying(false), 595 _icms_start_limit(NULL), 596 _icms_stop_limit(NULL), 597 _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"), 598 _completed_initialization(false), 599 _collector_policy(cp), 600 _should_unload_classes(false), 601 _concurrent_cycles_since_last_unload(0), 602 _roots_scanning_options(0), 603 _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding), 604 _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding), 605 _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()), 606 _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()), 607 _cms_start_registered(false) 608 { 609 if (ExplicitGCInvokesConcurrentAndUnloadsClasses) { 610 ExplicitGCInvokesConcurrent = true; 611 } 612 // Now expand the span and allocate the collection support structures 613 // (MUT, marking bit map etc.) to cover both generations subject to 614 // collection. 615 616 // First check that _permGen is adjacent to _cmsGen and above it. 617 assert( _cmsGen->reserved().word_size() > 0 618 && _permGen->reserved().word_size() > 0, 619 "generations should not be of zero size"); 620 assert(_cmsGen->reserved().intersection(_permGen->reserved()).is_empty(), 621 "_cmsGen and _permGen should not overlap"); 622 assert(_cmsGen->reserved().end() == _permGen->reserved().start(), 623 "_cmsGen->end() different from _permGen->start()"); 624 625 // For use by dirty card to oop closures. 626 _cmsGen->cmsSpace()->set_collector(this); 627 _permGen->cmsSpace()->set_collector(this); 628 629 // Allocate MUT and marking bit map 630 { 631 MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag); 632 if (!_markBitMap.allocate(_span)) { 633 warning("Failed to allocate CMS Bit Map"); 634 return; 635 } 636 assert(_markBitMap.covers(_span), "_markBitMap inconsistency?"); 637 } 638 { 639 _modUnionTable.allocate(_span); 640 assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?"); 641 } 642 643 if (!_markStack.allocate(MarkStackSize)) { 644 warning("Failed to allocate CMS Marking Stack"); 645 return; 646 } 647 if (!_revisitStack.allocate(CMSRevisitStackSize)) { 648 warning("Failed to allocate CMS Revisit Stack"); 649 return; 650 } 651 652 // Support for multi-threaded concurrent phases 653 if (CMSConcurrentMTEnabled) { 654 if (FLAG_IS_DEFAULT(ConcGCThreads)) { 655 // just for now 656 FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4); 657 } 658 if (ConcGCThreads > 1) { 659 _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads", 660 ConcGCThreads, true); 661 if (_conc_workers == NULL) { 662 warning("GC/CMS: _conc_workers allocation failure: " 663 "forcing -CMSConcurrentMTEnabled"); 664 CMSConcurrentMTEnabled = false; 665 } else { 666 _conc_workers->initialize_workers(); 667 } 668 } else { 669 CMSConcurrentMTEnabled = false; 670 } 671 } 672 if (!CMSConcurrentMTEnabled) { 673 ConcGCThreads = 0; 674 } else { 675 // Turn off CMSCleanOnEnter optimization temporarily for 676 // the MT case where it's not fixed yet; see 6178663. 677 CMSCleanOnEnter = false; 678 } 679 assert((_conc_workers != NULL) == (ConcGCThreads > 1), 680 "Inconsistency"); 681 682 // Parallel task queues; these are shared for the 683 // concurrent and stop-world phases of CMS, but 684 // are not shared with parallel scavenge (ParNew). 685 { 686 uint i; 687 uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads); 688 689 if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled 690 || ParallelRefProcEnabled) 691 && num_queues > 0) { 692 _task_queues = new OopTaskQueueSet(num_queues); 693 if (_task_queues == NULL) { 694 warning("task_queues allocation failure."); 695 return; 696 } 697 _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC); 698 if (_hash_seed == NULL) { 699 warning("_hash_seed array allocation failure"); 700 return; 701 } 702 703 typedef Padded<OopTaskQueue> PaddedOopTaskQueue; 704 for (i = 0; i < num_queues; i++) { 705 PaddedOopTaskQueue *q = new PaddedOopTaskQueue(); 706 if (q == NULL) { 707 warning("work_queue allocation failure."); 708 return; 709 } 710 _task_queues->register_queue(i, q); 711 } 712 for (i = 0; i < num_queues; i++) { 713 _task_queues->queue(i)->initialize(); 714 _hash_seed[i] = 17; // copied from ParNew 715 } 716 } 717 } 718 719 _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio); 720 _permGen->init_initiating_occupancy(CMSInitiatingPermOccupancyFraction, CMSTriggerPermRatio); 721 722 // Clip CMSBootstrapOccupancy between 0 and 100. 723 _bootstrap_occupancy = ((double)MIN2((uintx)100, MAX2((uintx)0, CMSBootstrapOccupancy))) 724 /(double)100; 725 726 _full_gcs_since_conc_gc = 0; 727 728 // Now tell CMS generations the identity of their collector 729 ConcurrentMarkSweepGeneration::set_collector(this); 730 731 // Create & start a CMS thread for this CMS collector 732 _cmsThread = ConcurrentMarkSweepThread::start(this); 733 assert(cmsThread() != NULL, "CMS Thread should have been created"); 734 assert(cmsThread()->collector() == this, 735 "CMS Thread should refer to this gen"); 736 assert(CGC_lock != NULL, "Where's the CGC_lock?"); 737 738 // Support for parallelizing young gen rescan 739 GenCollectedHeap* gch = GenCollectedHeap::heap(); 740 _young_gen = gch->prev_gen(_cmsGen); 741 if (gch->supports_inline_contig_alloc()) { 742 _top_addr = gch->top_addr(); 743 _end_addr = gch->end_addr(); 744 assert(_young_gen != NULL, "no _young_gen"); 745 _eden_chunk_index = 0; 746 _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain; 747 _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC); 748 if (_eden_chunk_array == NULL) { 749 _eden_chunk_capacity = 0; 750 warning("GC/CMS: _eden_chunk_array allocation failure"); 751 } 752 } 753 assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error"); 754 755 // Support for parallelizing survivor space rescan 756 if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) { 757 const size_t max_plab_samples = 758 ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize; 759 760 _survivor_plab_array = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC); 761 _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC); 762 _cursor = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC); 763 if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL 764 || _cursor == NULL) { 765 warning("Failed to allocate survivor plab/chunk array"); 766 if (_survivor_plab_array != NULL) { 767 FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC); 768 _survivor_plab_array = NULL; 769 } 770 if (_survivor_chunk_array != NULL) { 771 FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC); 772 _survivor_chunk_array = NULL; 773 } 774 if (_cursor != NULL) { 775 FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC); 776 _cursor = NULL; 777 } 778 } else { 779 _survivor_chunk_capacity = 2*max_plab_samples; 780 for (uint i = 0; i < ParallelGCThreads; i++) { 781 HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC); 782 if (vec == NULL) { 783 warning("Failed to allocate survivor plab array"); 784 for (int j = i; j > 0; j--) { 785 FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC); 786 } 787 FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC); 788 FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC); 789 _survivor_plab_array = NULL; 790 _survivor_chunk_array = NULL; 791 _survivor_chunk_capacity = 0; 792 break; 793 } else { 794 ChunkArray* cur = 795 ::new (&_survivor_plab_array[i]) ChunkArray(vec, 796 max_plab_samples); 797 assert(cur->end() == 0, "Should be 0"); 798 assert(cur->array() == vec, "Should be vec"); 799 assert(cur->capacity() == max_plab_samples, "Error"); 800 } 801 } 802 } 803 } 804 assert( ( _survivor_plab_array != NULL 805 && _survivor_chunk_array != NULL) 806 || ( _survivor_chunk_capacity == 0 807 && _survivor_chunk_index == 0), 808 "Error"); 809 810 // Choose what strong roots should be scanned depending on verification options 811 // and perm gen collection mode. 812 if (!CMSClassUnloadingEnabled) { 813 // If class unloading is disabled we want to include all classes into the root set. 814 add_root_scanning_option(SharedHeap::SO_AllClasses); 815 } else { 816 add_root_scanning_option(SharedHeap::SO_SystemClasses); 817 } 818 819 NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;) 820 _gc_counters = new CollectorCounters("CMS", 1); 821 _completed_initialization = true; 822 _inter_sweep_timer.start(); // start of time 823 } 824 825 const char* ConcurrentMarkSweepGeneration::name() const { 826 return "concurrent mark-sweep generation"; 827 } 828 void ConcurrentMarkSweepGeneration::update_counters() { 829 if (UsePerfData) { 830 _space_counters->update_all(); 831 _gen_counters->update_all(); 832 } 833 } 834 835 // this is an optimized version of update_counters(). it takes the 836 // used value as a parameter rather than computing it. 837 // 838 void ConcurrentMarkSweepGeneration::update_counters(size_t used) { 839 if (UsePerfData) { 840 _space_counters->update_used(used); 841 _space_counters->update_capacity(); 842 _gen_counters->update_all(); 843 } 844 } 845 846 void ConcurrentMarkSweepGeneration::print() const { 847 Generation::print(); 848 cmsSpace()->print(); 849 } 850 851 #ifndef PRODUCT 852 void ConcurrentMarkSweepGeneration::print_statistics() { 853 cmsSpace()->printFLCensus(0); 854 } 855 #endif 856 857 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) { 858 GenCollectedHeap* gch = GenCollectedHeap::heap(); 859 if (PrintGCDetails) { 860 if (Verbose) { 861 gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]", 862 level(), short_name(), s, used(), capacity()); 863 } else { 864 gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]", 865 level(), short_name(), s, used() / K, capacity() / K); 866 } 867 } 868 if (Verbose) { 869 gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")", 870 gch->used(), gch->capacity()); 871 } else { 872 gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)", 873 gch->used() / K, gch->capacity() / K); 874 } 875 } 876 877 size_t 878 ConcurrentMarkSweepGeneration::contiguous_available() const { 879 // dld proposes an improvement in precision here. If the committed 880 // part of the space ends in a free block we should add that to 881 // uncommitted size in the calculation below. Will make this 882 // change later, staying with the approximation below for the 883 // time being. -- ysr. 884 return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc()); 885 } 886 887 size_t 888 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const { 889 return _cmsSpace->max_alloc_in_words() * HeapWordSize; 890 } 891 892 size_t ConcurrentMarkSweepGeneration::max_available() const { 893 return free() + _virtual_space.uncommitted_size(); 894 } 895 896 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const { 897 size_t available = max_available(); 898 size_t av_promo = (size_t)gc_stats()->avg_promoted()->padded_average(); 899 bool res = (available >= av_promo) || (available >= max_promotion_in_bytes); 900 if (Verbose && PrintGCDetails) { 901 gclog_or_tty->print_cr( 902 "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT")," 903 "max_promo("SIZE_FORMAT")", 904 res? "":" not", available, res? ">=":"<", 905 av_promo, max_promotion_in_bytes); 906 } 907 return res; 908 } 909 910 // At a promotion failure dump information on block layout in heap 911 // (cms old generation). 912 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() { 913 if (CMSDumpAtPromotionFailure) { 914 cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty); 915 } 916 } 917 918 CompactibleSpace* 919 ConcurrentMarkSweepGeneration::first_compaction_space() const { 920 return _cmsSpace; 921 } 922 923 void ConcurrentMarkSweepGeneration::reset_after_compaction() { 924 // Clear the promotion information. These pointers can be adjusted 925 // along with all the other pointers into the heap but 926 // compaction is expected to be a rare event with 927 // a heap using cms so don't do it without seeing the need. 928 if (CollectedHeap::use_parallel_gc_threads()) { 929 for (uint i = 0; i < ParallelGCThreads; i++) { 930 _par_gc_thread_states[i]->promo.reset(); 931 } 932 } 933 } 934 935 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) { 936 blk->do_space(_cmsSpace); 937 } 938 939 void ConcurrentMarkSweepGeneration::compute_new_size() { 940 assert_locked_or_safepoint(Heap_lock); 941 942 // If incremental collection failed, we just want to expand 943 // to the limit. 944 if (incremental_collection_failed()) { 945 clear_incremental_collection_failed(); 946 grow_to_reserved(); 947 return; 948 } 949 950 size_t expand_bytes = 0; 951 double free_percentage = ((double) free()) / capacity(); 952 double desired_free_percentage = (double) MinHeapFreeRatio / 100; 953 double maximum_free_percentage = (double) MaxHeapFreeRatio / 100; 954 955 // compute expansion delta needed for reaching desired free percentage 956 if (free_percentage < desired_free_percentage) { 957 size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage)); 958 assert(desired_capacity >= capacity(), "invalid expansion size"); 959 expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes); 960 } 961 if (expand_bytes > 0) { 962 if (PrintGCDetails && Verbose) { 963 size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage)); 964 gclog_or_tty->print_cr("\nFrom compute_new_size: "); 965 gclog_or_tty->print_cr(" Free fraction %f", free_percentage); 966 gclog_or_tty->print_cr(" Desired free fraction %f", 967 desired_free_percentage); 968 gclog_or_tty->print_cr(" Maximum free fraction %f", 969 maximum_free_percentage); 970 gclog_or_tty->print_cr(" Capactiy "SIZE_FORMAT, capacity()/1000); 971 gclog_or_tty->print_cr(" Desired capacity "SIZE_FORMAT, 972 desired_capacity/1000); 973 int prev_level = level() - 1; 974 if (prev_level >= 0) { 975 size_t prev_size = 0; 976 GenCollectedHeap* gch = GenCollectedHeap::heap(); 977 Generation* prev_gen = gch->_gens[prev_level]; 978 prev_size = prev_gen->capacity(); 979 gclog_or_tty->print_cr(" Younger gen size "SIZE_FORMAT, 980 prev_size/1000); 981 } 982 gclog_or_tty->print_cr(" unsafe_max_alloc_nogc "SIZE_FORMAT, 983 unsafe_max_alloc_nogc()/1000); 984 gclog_or_tty->print_cr(" contiguous available "SIZE_FORMAT, 985 contiguous_available()/1000); 986 gclog_or_tty->print_cr(" Expand by "SIZE_FORMAT" (bytes)", 987 expand_bytes); 988 } 989 // safe if expansion fails 990 expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio); 991 if (PrintGCDetails && Verbose) { 992 gclog_or_tty->print_cr(" Expanded free fraction %f", 993 ((double) free()) / capacity()); 994 } 995 } 996 } 997 998 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const { 999 return cmsSpace()->freelistLock(); 1000 } 1001 1002 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, 1003 bool tlab) { 1004 CMSSynchronousYieldRequest yr; 1005 MutexLockerEx x(freelistLock(), 1006 Mutex::_no_safepoint_check_flag); 1007 return have_lock_and_allocate(size, tlab); 1008 } 1009 1010 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size, 1011 bool tlab /* ignored */) { 1012 assert_lock_strong(freelistLock()); 1013 size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size); 1014 HeapWord* res = cmsSpace()->allocate(adjustedSize); 1015 // Allocate the object live (grey) if the background collector has 1016 // started marking. This is necessary because the marker may 1017 // have passed this address and consequently this object will 1018 // not otherwise be greyed and would be incorrectly swept up. 1019 // Note that if this object contains references, the writing 1020 // of those references will dirty the card containing this object 1021 // allowing the object to be blackened (and its references scanned) 1022 // either during a preclean phase or at the final checkpoint. 1023 if (res != NULL) { 1024 // We may block here with an uninitialized object with 1025 // its mark-bit or P-bits not yet set. Such objects need 1026 // to be safely navigable by block_start(). 1027 assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here."); 1028 assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size"); 1029 collector()->direct_allocated(res, adjustedSize); 1030 _direct_allocated_words += adjustedSize; 1031 // allocation counters 1032 NOT_PRODUCT( 1033 _numObjectsAllocated++; 1034 _numWordsAllocated += (int)adjustedSize; 1035 ) 1036 } 1037 return res; 1038 } 1039 1040 // In the case of direct allocation by mutators in a generation that 1041 // is being concurrently collected, the object must be allocated 1042 // live (grey) if the background collector has started marking. 1043 // This is necessary because the marker may 1044 // have passed this address and consequently this object will 1045 // not otherwise be greyed and would be incorrectly swept up. 1046 // Note that if this object contains references, the writing 1047 // of those references will dirty the card containing this object 1048 // allowing the object to be blackened (and its references scanned) 1049 // either during a preclean phase or at the final checkpoint. 1050 void CMSCollector::direct_allocated(HeapWord* start, size_t size) { 1051 assert(_markBitMap.covers(start, size), "Out of bounds"); 1052 if (_collectorState >= Marking) { 1053 MutexLockerEx y(_markBitMap.lock(), 1054 Mutex::_no_safepoint_check_flag); 1055 // [see comments preceding SweepClosure::do_blk() below for details] 1056 // 1. need to mark the object as live so it isn't collected 1057 // 2. need to mark the 2nd bit to indicate the object may be uninitialized 1058 // 3. need to mark the end of the object so marking, precleaning or sweeping 1059 // can skip over uninitialized or unparsable objects. An allocated 1060 // object is considered uninitialized for our purposes as long as 1061 // its klass word is NULL. (Unparsable objects are those which are 1062 // initialized in the sense just described, but whose sizes can still 1063 // not be correctly determined. Note that the class of unparsable objects 1064 // can only occur in the perm gen. All old gen objects are parsable 1065 // as soon as they are initialized.) 1066 _markBitMap.mark(start); // object is live 1067 _markBitMap.mark(start + 1); // object is potentially uninitialized? 1068 _markBitMap.mark(start + size - 1); 1069 // mark end of object 1070 } 1071 // check that oop looks uninitialized 1072 assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL"); 1073 } 1074 1075 void CMSCollector::promoted(bool par, HeapWord* start, 1076 bool is_obj_array, size_t obj_size) { 1077 assert(_markBitMap.covers(start), "Out of bounds"); 1078 // See comment in direct_allocated() about when objects should 1079 // be allocated live. 1080 if (_collectorState >= Marking) { 1081 // we already hold the marking bit map lock, taken in 1082 // the prologue 1083 if (par) { 1084 _markBitMap.par_mark(start); 1085 } else { 1086 _markBitMap.mark(start); 1087 } 1088 // We don't need to mark the object as uninitialized (as 1089 // in direct_allocated above) because this is being done with the 1090 // world stopped and the object will be initialized by the 1091 // time the marking, precleaning or sweeping get to look at it. 1092 // But see the code for copying objects into the CMS generation, 1093 // where we need to ensure that concurrent readers of the 1094 // block offset table are able to safely navigate a block that 1095 // is in flux from being free to being allocated (and in 1096 // transition while being copied into) and subsequently 1097 // becoming a bona-fide object when the copy/promotion is complete. 1098 assert(SafepointSynchronize::is_at_safepoint(), 1099 "expect promotion only at safepoints"); 1100 1101 if (_collectorState < Sweeping) { 1102 // Mark the appropriate cards in the modUnionTable, so that 1103 // this object gets scanned before the sweep. If this is 1104 // not done, CMS generation references in the object might 1105 // not get marked. 1106 // For the case of arrays, which are otherwise precisely 1107 // marked, we need to dirty the entire array, not just its head. 1108 if (is_obj_array) { 1109 // The [par_]mark_range() method expects mr.end() below to 1110 // be aligned to the granularity of a bit's representation 1111 // in the heap. In the case of the MUT below, that's a 1112 // card size. 1113 MemRegion mr(start, 1114 (HeapWord*)round_to((intptr_t)(start + obj_size), 1115 CardTableModRefBS::card_size /* bytes */)); 1116 if (par) { 1117 _modUnionTable.par_mark_range(mr); 1118 } else { 1119 _modUnionTable.mark_range(mr); 1120 } 1121 } else { // not an obj array; we can just mark the head 1122 if (par) { 1123 _modUnionTable.par_mark(start); 1124 } else { 1125 _modUnionTable.mark(start); 1126 } 1127 } 1128 } 1129 } 1130 } 1131 1132 static inline size_t percent_of_space(Space* space, HeapWord* addr) 1133 { 1134 size_t delta = pointer_delta(addr, space->bottom()); 1135 return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize)); 1136 } 1137 1138 void CMSCollector::icms_update_allocation_limits() 1139 { 1140 Generation* gen0 = GenCollectedHeap::heap()->get_gen(0); 1141 EdenSpace* eden = gen0->as_DefNewGeneration()->eden(); 1142 1143 const unsigned int duty_cycle = stats().icms_update_duty_cycle(); 1144 if (CMSTraceIncrementalPacing) { 1145 stats().print(); 1146 } 1147 1148 assert(duty_cycle <= 100, "invalid duty cycle"); 1149 if (duty_cycle != 0) { 1150 // The duty_cycle is a percentage between 0 and 100; convert to words and 1151 // then compute the offset from the endpoints of the space. 1152 size_t free_words = eden->free() / HeapWordSize; 1153 double free_words_dbl = (double)free_words; 1154 size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0); 1155 size_t offset_words = (free_words - duty_cycle_words) / 2; 1156 1157 _icms_start_limit = eden->top() + offset_words; 1158 _icms_stop_limit = eden->end() - offset_words; 1159 1160 // The limits may be adjusted (shifted to the right) by 1161 // CMSIncrementalOffset, to allow the application more mutator time after a 1162 // young gen gc (when all mutators were stopped) and before CMS starts and 1163 // takes away one or more cpus. 1164 if (CMSIncrementalOffset != 0) { 1165 double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0; 1166 size_t adjustment = (size_t)adjustment_dbl; 1167 HeapWord* tmp_stop = _icms_stop_limit + adjustment; 1168 if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) { 1169 _icms_start_limit += adjustment; 1170 _icms_stop_limit = tmp_stop; 1171 } 1172 } 1173 } 1174 if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) { 1175 _icms_start_limit = _icms_stop_limit = eden->end(); 1176 } 1177 1178 // Install the new start limit. 1179 eden->set_soft_end(_icms_start_limit); 1180 1181 if (CMSTraceIncrementalMode) { 1182 gclog_or_tty->print(" icms alloc limits: " 1183 PTR_FORMAT "," PTR_FORMAT 1184 " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ", 1185 _icms_start_limit, _icms_stop_limit, 1186 percent_of_space(eden, _icms_start_limit), 1187 percent_of_space(eden, _icms_stop_limit)); 1188 if (Verbose) { 1189 gclog_or_tty->print("eden: "); 1190 eden->print_on(gclog_or_tty); 1191 } 1192 } 1193 } 1194 1195 // Any changes here should try to maintain the invariant 1196 // that if this method is called with _icms_start_limit 1197 // and _icms_stop_limit both NULL, then it should return NULL 1198 // and not notify the icms thread. 1199 HeapWord* 1200 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top, 1201 size_t word_size) 1202 { 1203 // A start_limit equal to end() means the duty cycle is 0, so treat that as a 1204 // nop. 1205 if (CMSIncrementalMode && _icms_start_limit != space->end()) { 1206 if (top <= _icms_start_limit) { 1207 if (CMSTraceIncrementalMode) { 1208 space->print_on(gclog_or_tty); 1209 gclog_or_tty->stamp(); 1210 gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT 1211 ", new limit=" PTR_FORMAT 1212 " (" SIZE_FORMAT "%%)", 1213 top, _icms_stop_limit, 1214 percent_of_space(space, _icms_stop_limit)); 1215 } 1216 ConcurrentMarkSweepThread::start_icms(); 1217 assert(top < _icms_stop_limit, "Tautology"); 1218 if (word_size < pointer_delta(_icms_stop_limit, top)) { 1219 return _icms_stop_limit; 1220 } 1221 1222 // The allocation will cross both the _start and _stop limits, so do the 1223 // stop notification also and return end(). 1224 if (CMSTraceIncrementalMode) { 1225 space->print_on(gclog_or_tty); 1226 gclog_or_tty->stamp(); 1227 gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT 1228 ", new limit=" PTR_FORMAT 1229 " (" SIZE_FORMAT "%%)", 1230 top, space->end(), 1231 percent_of_space(space, space->end())); 1232 } 1233 ConcurrentMarkSweepThread::stop_icms(); 1234 return space->end(); 1235 } 1236 1237 if (top <= _icms_stop_limit) { 1238 if (CMSTraceIncrementalMode) { 1239 space->print_on(gclog_or_tty); 1240 gclog_or_tty->stamp(); 1241 gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT 1242 ", new limit=" PTR_FORMAT 1243 " (" SIZE_FORMAT "%%)", 1244 top, space->end(), 1245 percent_of_space(space, space->end())); 1246 } 1247 ConcurrentMarkSweepThread::stop_icms(); 1248 return space->end(); 1249 } 1250 1251 if (CMSTraceIncrementalMode) { 1252 space->print_on(gclog_or_tty); 1253 gclog_or_tty->stamp(); 1254 gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT 1255 ", new limit=" PTR_FORMAT, 1256 top, NULL); 1257 } 1258 } 1259 1260 return NULL; 1261 } 1262 1263 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) { 1264 assert(obj_size == (size_t)obj->size(), "bad obj_size passed in"); 1265 // allocate, copy and if necessary update promoinfo -- 1266 // delegate to underlying space. 1267 assert_lock_strong(freelistLock()); 1268 1269 #ifndef PRODUCT 1270 if (Universe::heap()->promotion_should_fail()) { 1271 return NULL; 1272 } 1273 #endif // #ifndef PRODUCT 1274 1275 oop res = _cmsSpace->promote(obj, obj_size); 1276 if (res == NULL) { 1277 // expand and retry 1278 size_t s = _cmsSpace->expansionSpaceRequired(obj_size); // HeapWords 1279 expand(s*HeapWordSize, MinHeapDeltaBytes, 1280 CMSExpansionCause::_satisfy_promotion); 1281 // Since there's currently no next generation, we don't try to promote 1282 // into a more senior generation. 1283 assert(next_gen() == NULL, "assumption, based upon which no attempt " 1284 "is made to pass on a possibly failing " 1285 "promotion to next generation"); 1286 res = _cmsSpace->promote(obj, obj_size); 1287 } 1288 if (res != NULL) { 1289 // See comment in allocate() about when objects should 1290 // be allocated live. 1291 assert(obj->is_oop(), "Will dereference klass pointer below"); 1292 collector()->promoted(false, // Not parallel 1293 (HeapWord*)res, obj->is_objArray(), obj_size); 1294 // promotion counters 1295 NOT_PRODUCT( 1296 _numObjectsPromoted++; 1297 _numWordsPromoted += 1298 (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size())); 1299 ) 1300 } 1301 return res; 1302 } 1303 1304 1305 HeapWord* 1306 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space, 1307 HeapWord* top, 1308 size_t word_sz) 1309 { 1310 return collector()->allocation_limit_reached(space, top, word_sz); 1311 } 1312 1313 // IMPORTANT: Notes on object size recognition in CMS. 1314 // --------------------------------------------------- 1315 // A block of storage in the CMS generation is always in 1316 // one of three states. A free block (FREE), an allocated 1317 // object (OBJECT) whose size() method reports the correct size, 1318 // and an intermediate state (TRANSIENT) in which its size cannot 1319 // be accurately determined. 1320 // STATE IDENTIFICATION: (32 bit and 64 bit w/o COOPS) 1321 // ----------------------------------------------------- 1322 // FREE: klass_word & 1 == 1; mark_word holds block size 1323 // 1324 // OBJECT: klass_word installed; klass_word != 0 && klass_word & 1 == 0; 1325 // obj->size() computes correct size 1326 // [Perm Gen objects needs to be "parsable" before they can be navigated] 1327 // 1328 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT 1329 // 1330 // STATE IDENTIFICATION: (64 bit+COOPS) 1331 // ------------------------------------ 1332 // FREE: mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size 1333 // 1334 // OBJECT: klass_word installed; klass_word != 0; 1335 // obj->size() computes correct size 1336 // [Perm Gen comment above continues to hold] 1337 // 1338 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT 1339 // 1340 // 1341 // STATE TRANSITION DIAGRAM 1342 // 1343 // mut / parnew mut / parnew 1344 // FREE --------------------> TRANSIENT ---------------------> OBJECT --| 1345 // ^ | 1346 // |------------------------ DEAD <------------------------------------| 1347 // sweep mut 1348 // 1349 // While a block is in TRANSIENT state its size cannot be determined 1350 // so readers will either need to come back later or stall until 1351 // the size can be determined. Note that for the case of direct 1352 // allocation, P-bits, when available, may be used to determine the 1353 // size of an object that may not yet have been initialized. 1354 1355 // Things to support parallel young-gen collection. 1356 oop 1357 ConcurrentMarkSweepGeneration::par_promote(int thread_num, 1358 oop old, markOop m, 1359 size_t word_sz) { 1360 #ifndef PRODUCT 1361 if (Universe::heap()->promotion_should_fail()) { 1362 return NULL; 1363 } 1364 #endif // #ifndef PRODUCT 1365 1366 CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; 1367 PromotionInfo* promoInfo = &ps->promo; 1368 // if we are tracking promotions, then first ensure space for 1369 // promotion (including spooling space for saving header if necessary). 1370 // then allocate and copy, then track promoted info if needed. 1371 // When tracking (see PromotionInfo::track()), the mark word may 1372 // be displaced and in this case restoration of the mark word 1373 // occurs in the (oop_since_save_marks_)iterate phase. 1374 if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) { 1375 // Out of space for allocating spooling buffers; 1376 // try expanding and allocating spooling buffers. 1377 if (!expand_and_ensure_spooling_space(promoInfo)) { 1378 return NULL; 1379 } 1380 } 1381 assert(promoInfo->has_spooling_space(), "Control point invariant"); 1382 const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz); 1383 HeapWord* obj_ptr = ps->lab.alloc(alloc_sz); 1384 if (obj_ptr == NULL) { 1385 obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz); 1386 if (obj_ptr == NULL) { 1387 return NULL; 1388 } 1389 } 1390 oop obj = oop(obj_ptr); 1391 OrderAccess::storestore(); 1392 assert(obj->klass_or_null() == NULL, "Object should be uninitialized here."); 1393 assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size"); 1394 // IMPORTANT: See note on object initialization for CMS above. 1395 // Otherwise, copy the object. Here we must be careful to insert the 1396 // klass pointer last, since this marks the block as an allocated object. 1397 // Except with compressed oops it's the mark word. 1398 HeapWord* old_ptr = (HeapWord*)old; 1399 // Restore the mark word copied above. 1400 obj->set_mark(m); 1401 assert(obj->klass_or_null() == NULL, "Object should be uninitialized here."); 1402 assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size"); 1403 OrderAccess::storestore(); 1404 1405 if (UseCompressedOops) { 1406 // Copy gap missed by (aligned) header size calculation below 1407 obj->set_klass_gap(old->klass_gap()); 1408 } 1409 if (word_sz > (size_t)oopDesc::header_size()) { 1410 Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(), 1411 obj_ptr + oopDesc::header_size(), 1412 word_sz - oopDesc::header_size()); 1413 } 1414 1415 // Now we can track the promoted object, if necessary. We take care 1416 // to delay the transition from uninitialized to full object 1417 // (i.e., insertion of klass pointer) until after, so that it 1418 // atomically becomes a promoted object. 1419 if (promoInfo->tracking()) { 1420 promoInfo->track((PromotedObject*)obj, old->klass()); 1421 } 1422 assert(obj->klass_or_null() == NULL, "Object should be uninitialized here."); 1423 assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size"); 1424 assert(old->is_oop(), "Will use and dereference old klass ptr below"); 1425 1426 // Finally, install the klass pointer (this should be volatile). 1427 OrderAccess::storestore(); 1428 obj->set_klass(old->klass()); 1429 // We should now be able to calculate the right size for this object 1430 assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object"); 1431 1432 collector()->promoted(true, // parallel 1433 obj_ptr, old->is_objArray(), word_sz); 1434 1435 NOT_PRODUCT( 1436 Atomic::inc_ptr(&_numObjectsPromoted); 1437 Atomic::add_ptr(alloc_sz, &_numWordsPromoted); 1438 ) 1439 1440 return obj; 1441 } 1442 1443 void 1444 ConcurrentMarkSweepGeneration:: 1445 par_promote_alloc_undo(int thread_num, 1446 HeapWord* obj, size_t word_sz) { 1447 // CMS does not support promotion undo. 1448 ShouldNotReachHere(); 1449 } 1450 1451 void 1452 ConcurrentMarkSweepGeneration:: 1453 par_promote_alloc_done(int thread_num) { 1454 CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; 1455 ps->lab.retire(thread_num); 1456 } 1457 1458 void 1459 ConcurrentMarkSweepGeneration:: 1460 par_oop_since_save_marks_iterate_done(int thread_num) { 1461 CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; 1462 ParScanWithoutBarrierClosure* dummy_cl = NULL; 1463 ps->promo.promoted_oops_iterate_nv(dummy_cl); 1464 } 1465 1466 // XXXPERM 1467 bool ConcurrentMarkSweepGeneration::should_collect(bool full, 1468 size_t size, 1469 bool tlab) 1470 { 1471 // We allow a STW collection only if a full 1472 // collection was requested. 1473 return full || should_allocate(size, tlab); // FIX ME !!! 1474 // This and promotion failure handling are connected at the 1475 // hip and should be fixed by untying them. 1476 } 1477 1478 bool CMSCollector::shouldConcurrentCollect() { 1479 if (_full_gc_requested) { 1480 if (Verbose && PrintGCDetails) { 1481 gclog_or_tty->print_cr("CMSCollector: collect because of explicit " 1482 " gc request (or gc_locker)"); 1483 } 1484 return true; 1485 } 1486 1487 // For debugging purposes, change the type of collection. 1488 // If the rotation is not on the concurrent collection 1489 // type, don't start a concurrent collection. 1490 NOT_PRODUCT( 1491 if (RotateCMSCollectionTypes && 1492 (_cmsGen->debug_collection_type() != 1493 ConcurrentMarkSweepGeneration::Concurrent_collection_type)) { 1494 assert(_cmsGen->debug_collection_type() != 1495 ConcurrentMarkSweepGeneration::Unknown_collection_type, 1496 "Bad cms collection type"); 1497 return false; 1498 } 1499 ) 1500 1501 FreelistLocker x(this); 1502 // ------------------------------------------------------------------ 1503 // Print out lots of information which affects the initiation of 1504 // a collection. 1505 if (PrintCMSInitiationStatistics && stats().valid()) { 1506 gclog_or_tty->print("CMSCollector shouldConcurrentCollect: "); 1507 gclog_or_tty->stamp(); 1508 gclog_or_tty->print_cr(""); 1509 stats().print_on(gclog_or_tty); 1510 gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f", 1511 stats().time_until_cms_gen_full()); 1512 gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free()); 1513 gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT, 1514 _cmsGen->contiguous_available()); 1515 gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate()); 1516 gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate()); 1517 gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy()); 1518 gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy()); 1519 gclog_or_tty->print_cr("initiatingPermOccupancy=%3.7f", _permGen->initiating_occupancy()); 1520 } 1521 // ------------------------------------------------------------------ 1522 1523 // If the estimated time to complete a cms collection (cms_duration()) 1524 // is less than the estimated time remaining until the cms generation 1525 // is full, start a collection. 1526 if (!UseCMSInitiatingOccupancyOnly) { 1527 if (stats().valid()) { 1528 if (stats().time_until_cms_start() == 0.0) { 1529 return true; 1530 } 1531 } else { 1532 // We want to conservatively collect somewhat early in order 1533 // to try and "bootstrap" our CMS/promotion statistics; 1534 // this branch will not fire after the first successful CMS 1535 // collection because the stats should then be valid. 1536 if (_cmsGen->occupancy() >= _bootstrap_occupancy) { 1537 if (Verbose && PrintGCDetails) { 1538 gclog_or_tty->print_cr( 1539 " CMSCollector: collect for bootstrapping statistics:" 1540 " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(), 1541 _bootstrap_occupancy); 1542 } 1543 return true; 1544 } 1545 } 1546 } 1547 1548 // Otherwise, we start a collection cycle if either the perm gen or 1549 // old gen want a collection cycle started. Each may use 1550 // an appropriate criterion for making this decision. 1551 // XXX We need to make sure that the gen expansion 1552 // criterion dovetails well with this. XXX NEED TO FIX THIS 1553 if (_cmsGen->should_concurrent_collect()) { 1554 if (Verbose && PrintGCDetails) { 1555 gclog_or_tty->print_cr("CMS old gen initiated"); 1556 } 1557 return true; 1558 } 1559 1560 // We start a collection if we believe an incremental collection may fail; 1561 // this is not likely to be productive in practice because it's probably too 1562 // late anyway. 1563 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1564 assert(gch->collector_policy()->is_two_generation_policy(), 1565 "You may want to check the correctness of the following"); 1566 if (gch->incremental_collection_will_fail(true /* consult_young */)) { 1567 if (Verbose && PrintGCDetails) { 1568 gclog_or_tty->print("CMSCollector: collect because incremental collection will fail "); 1569 } 1570 return true; 1571 } 1572 1573 if (CMSClassUnloadingEnabled && _permGen->should_concurrent_collect()) { 1574 bool res = update_should_unload_classes(); 1575 if (res) { 1576 if (Verbose && PrintGCDetails) { 1577 gclog_or_tty->print_cr("CMS perm gen initiated"); 1578 } 1579 return true; 1580 } 1581 } 1582 return false; 1583 } 1584 1585 // Clear _expansion_cause fields of constituent generations 1586 void CMSCollector::clear_expansion_cause() { 1587 _cmsGen->clear_expansion_cause(); 1588 _permGen->clear_expansion_cause(); 1589 } 1590 1591 // We should be conservative in starting a collection cycle. To 1592 // start too eagerly runs the risk of collecting too often in the 1593 // extreme. To collect too rarely falls back on full collections, 1594 // which works, even if not optimum in terms of concurrent work. 1595 // As a work around for too eagerly collecting, use the flag 1596 // UseCMSInitiatingOccupancyOnly. This also has the advantage of 1597 // giving the user an easily understandable way of controlling the 1598 // collections. 1599 // We want to start a new collection cycle if any of the following 1600 // conditions hold: 1601 // . our current occupancy exceeds the configured initiating occupancy 1602 // for this generation, or 1603 // . we recently needed to expand this space and have not, since that 1604 // expansion, done a collection of this generation, or 1605 // . the underlying space believes that it may be a good idea to initiate 1606 // a concurrent collection (this may be based on criteria such as the 1607 // following: the space uses linear allocation and linear allocation is 1608 // going to fail, or there is believed to be excessive fragmentation in 1609 // the generation, etc... or ... 1610 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for 1611 // the case of the old generation, not the perm generation; see CR 6543076): 1612 // we may be approaching a point at which allocation requests may fail because 1613 // we will be out of sufficient free space given allocation rate estimates.] 1614 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const { 1615 1616 assert_lock_strong(freelistLock()); 1617 if (occupancy() > initiating_occupancy()) { 1618 if (PrintGCDetails && Verbose) { 1619 gclog_or_tty->print(" %s: collect because of occupancy %f / %f ", 1620 short_name(), occupancy(), initiating_occupancy()); 1621 } 1622 return true; 1623 } 1624 if (UseCMSInitiatingOccupancyOnly) { 1625 return false; 1626 } 1627 if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) { 1628 if (PrintGCDetails && Verbose) { 1629 gclog_or_tty->print(" %s: collect because expanded for allocation ", 1630 short_name()); 1631 } 1632 return true; 1633 } 1634 if (_cmsSpace->should_concurrent_collect()) { 1635 if (PrintGCDetails && Verbose) { 1636 gclog_or_tty->print(" %s: collect because cmsSpace says so ", 1637 short_name()); 1638 } 1639 return true; 1640 } 1641 return false; 1642 } 1643 1644 void ConcurrentMarkSweepGeneration::collect(bool full, 1645 bool clear_all_soft_refs, 1646 size_t size, 1647 bool tlab) 1648 { 1649 collector()->collect(full, clear_all_soft_refs, size, tlab); 1650 } 1651 1652 void CMSCollector::collect(bool full, 1653 bool clear_all_soft_refs, 1654 size_t size, 1655 bool tlab) 1656 { 1657 if (!UseCMSCollectionPassing && _collectorState > Idling) { 1658 // For debugging purposes skip the collection if the state 1659 // is not currently idle 1660 if (TraceCMSState) { 1661 gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d", 1662 Thread::current(), full, _collectorState); 1663 } 1664 return; 1665 } 1666 1667 // The following "if" branch is present for defensive reasons. 1668 // In the current uses of this interface, it can be replaced with: 1669 // assert(!GC_locker.is_active(), "Can't be called otherwise"); 1670 // But I am not placing that assert here to allow future 1671 // generality in invoking this interface. 1672 if (GC_locker::is_active()) { 1673 // A consistency test for GC_locker 1674 assert(GC_locker::needs_gc(), "Should have been set already"); 1675 // Skip this foreground collection, instead 1676 // expanding the heap if necessary. 1677 // Need the free list locks for the call to free() in compute_new_size() 1678 compute_new_size(); 1679 return; 1680 } 1681 acquire_control_and_collect(full, clear_all_soft_refs); 1682 _full_gcs_since_conc_gc++; 1683 1684 } 1685 1686 void CMSCollector::request_full_gc(unsigned int full_gc_count) { 1687 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1688 unsigned int gc_count = gch->total_full_collections(); 1689 if (gc_count == full_gc_count) { 1690 MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag); 1691 _full_gc_requested = true; 1692 CGC_lock->notify(); // nudge CMS thread 1693 } else { 1694 assert(gc_count > full_gc_count, "Error: causal loop"); 1695 } 1696 } 1697 1698 1699 // The foreground and background collectors need to coordinate in order 1700 // to make sure that they do not mutually interfere with CMS collections. 1701 // When a background collection is active, 1702 // the foreground collector may need to take over (preempt) and 1703 // synchronously complete an ongoing collection. Depending on the 1704 // frequency of the background collections and the heap usage 1705 // of the application, this preemption can be seldom or frequent. 1706 // There are only certain 1707 // points in the background collection that the "collection-baton" 1708 // can be passed to the foreground collector. 1709 // 1710 // The foreground collector will wait for the baton before 1711 // starting any part of the collection. The foreground collector 1712 // will only wait at one location. 1713 // 1714 // The background collector will yield the baton before starting a new 1715 // phase of the collection (e.g., before initial marking, marking from roots, 1716 // precleaning, final re-mark, sweep etc.) This is normally done at the head 1717 // of the loop which switches the phases. The background collector does some 1718 // of the phases (initial mark, final re-mark) with the world stopped. 1719 // Because of locking involved in stopping the world, 1720 // the foreground collector should not block waiting for the background 1721 // collector when it is doing a stop-the-world phase. The background 1722 // collector will yield the baton at an additional point just before 1723 // it enters a stop-the-world phase. Once the world is stopped, the 1724 // background collector checks the phase of the collection. If the 1725 // phase has not changed, it proceeds with the collection. If the 1726 // phase has changed, it skips that phase of the collection. See 1727 // the comments on the use of the Heap_lock in collect_in_background(). 1728 // 1729 // Variable used in baton passing. 1730 // _foregroundGCIsActive - Set to true by the foreground collector when 1731 // it wants the baton. The foreground clears it when it has finished 1732 // the collection. 1733 // _foregroundGCShouldWait - Set to true by the background collector 1734 // when it is running. The foreground collector waits while 1735 // _foregroundGCShouldWait is true. 1736 // CGC_lock - monitor used to protect access to the above variables 1737 // and to notify the foreground and background collectors. 1738 // _collectorState - current state of the CMS collection. 1739 // 1740 // The foreground collector 1741 // acquires the CGC_lock 1742 // sets _foregroundGCIsActive 1743 // waits on the CGC_lock for _foregroundGCShouldWait to be false 1744 // various locks acquired in preparation for the collection 1745 // are released so as not to block the background collector 1746 // that is in the midst of a collection 1747 // proceeds with the collection 1748 // clears _foregroundGCIsActive 1749 // returns 1750 // 1751 // The background collector in a loop iterating on the phases of the 1752 // collection 1753 // acquires the CGC_lock 1754 // sets _foregroundGCShouldWait 1755 // if _foregroundGCIsActive is set 1756 // clears _foregroundGCShouldWait, notifies _CGC_lock 1757 // waits on _CGC_lock for _foregroundGCIsActive to become false 1758 // and exits the loop. 1759 // otherwise 1760 // proceed with that phase of the collection 1761 // if the phase is a stop-the-world phase, 1762 // yield the baton once more just before enqueueing 1763 // the stop-world CMS operation (executed by the VM thread). 1764 // returns after all phases of the collection are done 1765 // 1766 1767 void CMSCollector::acquire_control_and_collect(bool full, 1768 bool clear_all_soft_refs) { 1769 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); 1770 assert(!Thread::current()->is_ConcurrentGC_thread(), 1771 "shouldn't try to acquire control from self!"); 1772 1773 // Start the protocol for acquiring control of the 1774 // collection from the background collector (aka CMS thread). 1775 assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 1776 "VM thread should have CMS token"); 1777 // Remember the possibly interrupted state of an ongoing 1778 // concurrent collection 1779 CollectorState first_state = _collectorState; 1780 1781 // Signal to a possibly ongoing concurrent collection that 1782 // we want to do a foreground collection. 1783 _foregroundGCIsActive = true; 1784 1785 // Disable incremental mode during a foreground collection. 1786 ICMSDisabler icms_disabler; 1787 1788 // release locks and wait for a notify from the background collector 1789 // releasing the locks in only necessary for phases which 1790 // do yields to improve the granularity of the collection. 1791 assert_lock_strong(bitMapLock()); 1792 // We need to lock the Free list lock for the space that we are 1793 // currently collecting. 1794 assert(haveFreelistLocks(), "Must be holding free list locks"); 1795 bitMapLock()->unlock(); 1796 releaseFreelistLocks(); 1797 { 1798 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 1799 if (_foregroundGCShouldWait) { 1800 // We are going to be waiting for action for the CMS thread; 1801 // it had better not be gone (for instance at shutdown)! 1802 assert(ConcurrentMarkSweepThread::cmst() != NULL, 1803 "CMS thread must be running"); 1804 // Wait here until the background collector gives us the go-ahead 1805 ConcurrentMarkSweepThread::clear_CMS_flag( 1806 ConcurrentMarkSweepThread::CMS_vm_has_token); // release token 1807 // Get a possibly blocked CMS thread going: 1808 // Note that we set _foregroundGCIsActive true above, 1809 // without protection of the CGC_lock. 1810 CGC_lock->notify(); 1811 assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(), 1812 "Possible deadlock"); 1813 while (_foregroundGCShouldWait) { 1814 // wait for notification 1815 CGC_lock->wait(Mutex::_no_safepoint_check_flag); 1816 // Possibility of delay/starvation here, since CMS token does 1817 // not know to give priority to VM thread? Actually, i think 1818 // there wouldn't be any delay/starvation, but the proof of 1819 // that "fact" (?) appears non-trivial. XXX 20011219YSR 1820 } 1821 ConcurrentMarkSweepThread::set_CMS_flag( 1822 ConcurrentMarkSweepThread::CMS_vm_has_token); 1823 } 1824 } 1825 // The CMS_token is already held. Get back the other locks. 1826 assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 1827 "VM thread should have CMS token"); 1828 getFreelistLocks(); 1829 bitMapLock()->lock_without_safepoint_check(); 1830 if (TraceCMSState) { 1831 gclog_or_tty->print_cr("CMS foreground collector has asked for control " 1832 INTPTR_FORMAT " with first state %d", Thread::current(), first_state); 1833 gclog_or_tty->print_cr(" gets control with state %d", _collectorState); 1834 } 1835 1836 // Check if we need to do a compaction, or if not, whether 1837 // we need to start the mark-sweep from scratch. 1838 bool should_compact = false; 1839 bool should_start_over = false; 1840 decide_foreground_collection_type(clear_all_soft_refs, 1841 &should_compact, &should_start_over); 1842 1843 NOT_PRODUCT( 1844 if (RotateCMSCollectionTypes) { 1845 if (_cmsGen->debug_collection_type() == 1846 ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) { 1847 should_compact = true; 1848 } else if (_cmsGen->debug_collection_type() == 1849 ConcurrentMarkSweepGeneration::MS_foreground_collection_type) { 1850 should_compact = false; 1851 } 1852 } 1853 ) 1854 1855 if (PrintGCDetails && first_state > Idling) { 1856 GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause(); 1857 if (GCCause::is_user_requested_gc(cause) || 1858 GCCause::is_serviceability_requested_gc(cause)) { 1859 gclog_or_tty->print(" (concurrent mode interrupted)"); 1860 } else { 1861 gclog_or_tty->print(" (concurrent mode failure)"); 1862 } 1863 } 1864 1865 if (should_compact) { 1866 // If the collection is being acquired from the background 1867 // collector, there may be references on the discovered 1868 // references lists that have NULL referents (being those 1869 // that were concurrently cleared by a mutator) or 1870 // that are no longer active (having been enqueued concurrently 1871 // by the mutator). 1872 // Scrub the list of those references because Mark-Sweep-Compact 1873 // code assumes referents are not NULL and that all discovered 1874 // Reference objects are active. 1875 ref_processor()->clean_up_discovered_references(); 1876 1877 do_compaction_work(clear_all_soft_refs); 1878 1879 // Has the GC time limit been exceeded? 1880 DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration(); 1881 size_t max_eden_size = young_gen->max_capacity() - 1882 young_gen->to()->capacity() - 1883 young_gen->from()->capacity(); 1884 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1885 GCCause::Cause gc_cause = gch->gc_cause(); 1886 size_policy()->check_gc_overhead_limit(_young_gen->used(), 1887 young_gen->eden()->used(), 1888 _cmsGen->max_capacity(), 1889 max_eden_size, 1890 full, 1891 gc_cause, 1892 gch->collector_policy()); 1893 } else { 1894 do_mark_sweep_work(clear_all_soft_refs, first_state, 1895 should_start_over); 1896 } 1897 // Reset the expansion cause, now that we just completed 1898 // a collection cycle. 1899 clear_expansion_cause(); 1900 _foregroundGCIsActive = false; 1901 return; 1902 } 1903 1904 // Resize the perm generation and the tenured generation 1905 // after obtaining the free list locks for the 1906 // two generations. 1907 void CMSCollector::compute_new_size() { 1908 assert_locked_or_safepoint(Heap_lock); 1909 FreelistLocker z(this); 1910 _permGen->compute_new_size(); 1911 _cmsGen->compute_new_size(); 1912 } 1913 1914 // A work method used by foreground collection to determine 1915 // what type of collection (compacting or not, continuing or fresh) 1916 // it should do. 1917 // NOTE: the intent is to make UseCMSCompactAtFullCollection 1918 // and CMSCompactWhenClearAllSoftRefs the default in the future 1919 // and do away with the flags after a suitable period. 1920 void CMSCollector::decide_foreground_collection_type( 1921 bool clear_all_soft_refs, bool* should_compact, 1922 bool* should_start_over) { 1923 // Normally, we'll compact only if the UseCMSCompactAtFullCollection 1924 // flag is set, and we have either requested a System.gc() or 1925 // the number of full gc's since the last concurrent cycle 1926 // has exceeded the threshold set by CMSFullGCsBeforeCompaction, 1927 // or if an incremental collection has failed 1928 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1929 assert(gch->collector_policy()->is_two_generation_policy(), 1930 "You may want to check the correctness of the following"); 1931 // Inform cms gen if this was due to partial collection failing. 1932 // The CMS gen may use this fact to determine its expansion policy. 1933 if (gch->incremental_collection_will_fail(false /* don't consult_young */)) { 1934 assert(!_cmsGen->incremental_collection_failed(), 1935 "Should have been noticed, reacted to and cleared"); 1936 _cmsGen->set_incremental_collection_failed(); 1937 } 1938 *should_compact = 1939 UseCMSCompactAtFullCollection && 1940 ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) || 1941 GCCause::is_user_requested_gc(gch->gc_cause()) || 1942 gch->incremental_collection_will_fail(true /* consult_young */)); 1943 *should_start_over = false; 1944 if (clear_all_soft_refs && !*should_compact) { 1945 // We are about to do a last ditch collection attempt 1946 // so it would normally make sense to do a compaction 1947 // to reclaim as much space as possible. 1948 if (CMSCompactWhenClearAllSoftRefs) { 1949 // Default: The rationale is that in this case either 1950 // we are past the final marking phase, in which case 1951 // we'd have to start over, or so little has been done 1952 // that there's little point in saving that work. Compaction 1953 // appears to be the sensible choice in either case. 1954 *should_compact = true; 1955 } else { 1956 // We have been asked to clear all soft refs, but not to 1957 // compact. Make sure that we aren't past the final checkpoint 1958 // phase, for that is where we process soft refs. If we are already 1959 // past that phase, we'll need to redo the refs discovery phase and 1960 // if necessary clear soft refs that weren't previously 1961 // cleared. We do so by remembering the phase in which 1962 // we came in, and if we are past the refs processing 1963 // phase, we'll choose to just redo the mark-sweep 1964 // collection from scratch. 1965 if (_collectorState > FinalMarking) { 1966 // We are past the refs processing phase; 1967 // start over and do a fresh synchronous CMS cycle 1968 _collectorState = Resetting; // skip to reset to start new cycle 1969 reset(false /* == !asynch */); 1970 *should_start_over = true; 1971 } // else we can continue a possibly ongoing current cycle 1972 } 1973 } 1974 } 1975 1976 // A work method used by the foreground collector to do 1977 // a mark-sweep-compact. 1978 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) { 1979 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1980 1981 STWGCTimer* gc_timer = GenMarkSweep::gc_timer(); 1982 gc_timer->register_gc_start(os::elapsed_counter()); 1983 1984 SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer(); 1985 gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start()); 1986 1987 GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL); 1988 if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) { 1989 gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d " 1990 "collections passed to foreground collector", _full_gcs_since_conc_gc); 1991 } 1992 1993 // Sample collection interval time and reset for collection pause. 1994 if (UseAdaptiveSizePolicy) { 1995 size_policy()->msc_collection_begin(); 1996 } 1997 1998 // Temporarily widen the span of the weak reference processing to 1999 // the entire heap. 2000 MemRegion new_span(GenCollectedHeap::heap()->reserved_region()); 2001 ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span); 2002 // Temporarily, clear the "is_alive_non_header" field of the 2003 // reference processor. 2004 ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL); 2005 // Temporarily make reference _processing_ single threaded (non-MT). 2006 ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false); 2007 // Temporarily make refs discovery atomic 2008 ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true); 2009 // Temporarily make reference _discovery_ single threaded (non-MT) 2010 ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false); 2011 2012 ref_processor()->set_enqueuing_is_done(false); 2013 ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/); 2014 ref_processor()->setup_policy(clear_all_soft_refs); 2015 // If an asynchronous collection finishes, the _modUnionTable is 2016 // all clear. If we are assuming the collection from an asynchronous 2017 // collection, clear the _modUnionTable. 2018 assert(_collectorState != Idling || _modUnionTable.isAllClear(), 2019 "_modUnionTable should be clear if the baton was not passed"); 2020 _modUnionTable.clear_all(); 2021 2022 // We must adjust the allocation statistics being maintained 2023 // in the free list space. We do so by reading and clearing 2024 // the sweep timer and updating the block flux rate estimates below. 2025 assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive"); 2026 if (_inter_sweep_timer.is_active()) { 2027 _inter_sweep_timer.stop(); 2028 // Note that we do not use this sample to update the _inter_sweep_estimate. 2029 _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()), 2030 _inter_sweep_estimate.padded_average(), 2031 _intra_sweep_estimate.padded_average()); 2032 } 2033 2034 GenMarkSweep::invoke_at_safepoint(_cmsGen->level(), 2035 ref_processor(), clear_all_soft_refs); 2036 #ifdef ASSERT 2037 CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); 2038 size_t free_size = cms_space->free(); 2039 assert(free_size == 2040 pointer_delta(cms_space->end(), cms_space->compaction_top()) 2041 * HeapWordSize, 2042 "All the free space should be compacted into one chunk at top"); 2043 assert(cms_space->dictionary()->total_chunk_size( 2044 debug_only(cms_space->freelistLock())) == 0 || 2045 cms_space->totalSizeInIndexedFreeLists() == 0, 2046 "All the free space should be in a single chunk"); 2047 size_t num = cms_space->totalCount(); 2048 assert((free_size == 0 && num == 0) || 2049 (free_size > 0 && (num == 1 || num == 2)), 2050 "There should be at most 2 free chunks after compaction"); 2051 #endif // ASSERT 2052 _collectorState = Resetting; 2053 assert(_restart_addr == NULL, 2054 "Should have been NULL'd before baton was passed"); 2055 reset(false /* == !asynch */); 2056 _cmsGen->reset_after_compaction(); 2057 _concurrent_cycles_since_last_unload = 0; 2058 2059 if (verifying() && !should_unload_classes()) { 2060 perm_gen_verify_bit_map()->clear_all(); 2061 } 2062 2063 // Clear any data recorded in the PLAB chunk arrays. 2064 if (_survivor_plab_array != NULL) { 2065 reset_survivor_plab_arrays(); 2066 } 2067 2068 // Adjust the per-size allocation stats for the next epoch. 2069 _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */); 2070 // Restart the "inter sweep timer" for the next epoch. 2071 _inter_sweep_timer.reset(); 2072 _inter_sweep_timer.start(); 2073 2074 // Sample collection pause time and reset for collection interval. 2075 if (UseAdaptiveSizePolicy) { 2076 size_policy()->msc_collection_end(gch->gc_cause()); 2077 } 2078 2079 gc_timer->register_gc_end(os::elapsed_counter()); 2080 2081 gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions()); 2082 2083 // For a mark-sweep-compact, compute_new_size() will be called 2084 // in the heap's do_collection() method. 2085 } 2086 2087 // A work method used by the foreground collector to do 2088 // a mark-sweep, after taking over from a possibly on-going 2089 // concurrent mark-sweep collection. 2090 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs, 2091 CollectorState first_state, bool should_start_over) { 2092 if (PrintGC && Verbose) { 2093 gclog_or_tty->print_cr("Pass concurrent collection to foreground " 2094 "collector with count %d", 2095 _full_gcs_since_conc_gc); 2096 } 2097 switch (_collectorState) { 2098 case Idling: 2099 if (first_state == Idling || should_start_over) { 2100 // The background GC was not active, or should 2101 // restarted from scratch; start the cycle. 2102 _collectorState = InitialMarking; 2103 } 2104 // If first_state was not Idling, then a background GC 2105 // was in progress and has now finished. No need to do it 2106 // again. Leave the state as Idling. 2107 break; 2108 case Precleaning: 2109 // In the foreground case don't do the precleaning since 2110 // it is not done concurrently and there is extra work 2111 // required. 2112 _collectorState = FinalMarking; 2113 } 2114 if (PrintGCDetails && 2115 (_collectorState > Idling || 2116 !GCCause::is_user_requested_gc(GenCollectedHeap::heap()->gc_cause()))) { 2117 gclog_or_tty->print(" (concurrent mode failure)"); 2118 } 2119 collect_in_foreground(clear_all_soft_refs); 2120 2121 // For a mark-sweep, compute_new_size() will be called 2122 // in the heap's do_collection() method. 2123 } 2124 2125 2126 void CMSCollector::getFreelistLocks() const { 2127 // Get locks for all free lists in all generations that this 2128 // collector is responsible for 2129 _cmsGen->freelistLock()->lock_without_safepoint_check(); 2130 _permGen->freelistLock()->lock_without_safepoint_check(); 2131 } 2132 2133 void CMSCollector::releaseFreelistLocks() const { 2134 // Release locks for all free lists in all generations that this 2135 // collector is responsible for 2136 _cmsGen->freelistLock()->unlock(); 2137 _permGen->freelistLock()->unlock(); 2138 } 2139 2140 bool CMSCollector::haveFreelistLocks() const { 2141 // Check locks for all free lists in all generations that this 2142 // collector is responsible for 2143 assert_lock_strong(_cmsGen->freelistLock()); 2144 assert_lock_strong(_permGen->freelistLock()); 2145 PRODUCT_ONLY(ShouldNotReachHere()); 2146 return true; 2147 } 2148 2149 // A utility class that is used by the CMS collector to 2150 // temporarily "release" the foreground collector from its 2151 // usual obligation to wait for the background collector to 2152 // complete an ongoing phase before proceeding. 2153 class ReleaseForegroundGC: public StackObj { 2154 private: 2155 CMSCollector* _c; 2156 public: 2157 ReleaseForegroundGC(CMSCollector* c) : _c(c) { 2158 assert(_c->_foregroundGCShouldWait, "Else should not need to call"); 2159 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2160 // allow a potentially blocked foreground collector to proceed 2161 _c->_foregroundGCShouldWait = false; 2162 if (_c->_foregroundGCIsActive) { 2163 CGC_lock->notify(); 2164 } 2165 assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 2166 "Possible deadlock"); 2167 } 2168 2169 ~ReleaseForegroundGC() { 2170 assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?"); 2171 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2172 _c->_foregroundGCShouldWait = true; 2173 } 2174 }; 2175 2176 // There are separate collect_in_background and collect_in_foreground because of 2177 // the different locking requirements of the background collector and the 2178 // foreground collector. There was originally an attempt to share 2179 // one "collect" method between the background collector and the foreground 2180 // collector but the if-then-else required made it cleaner to have 2181 // separate methods. 2182 void CMSCollector::collect_in_background(bool clear_all_soft_refs) { 2183 assert(Thread::current()->is_ConcurrentGC_thread(), 2184 "A CMS asynchronous collection is only allowed on a CMS thread."); 2185 2186 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2187 { 2188 bool safepoint_check = Mutex::_no_safepoint_check_flag; 2189 MutexLockerEx hl(Heap_lock, safepoint_check); 2190 FreelistLocker fll(this); 2191 MutexLockerEx x(CGC_lock, safepoint_check); 2192 if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) { 2193 // The foreground collector is active or we're 2194 // not using asynchronous collections. Skip this 2195 // background collection. 2196 assert(!_foregroundGCShouldWait, "Should be clear"); 2197 return; 2198 } else { 2199 assert(_collectorState == Idling, "Should be idling before start."); 2200 _collectorState = InitialMarking; 2201 // Reset the expansion cause, now that we are about to begin 2202 // a new cycle. 2203 clear_expansion_cause(); 2204 } 2205 // Decide if we want to enable class unloading as part of the 2206 // ensuing concurrent GC cycle. 2207 update_should_unload_classes(); 2208 _full_gc_requested = false; // acks all outstanding full gc requests 2209 // Signal that we are about to start a collection 2210 gch->increment_total_full_collections(); // ... starting a collection cycle 2211 _collection_count_start = gch->total_full_collections(); 2212 } 2213 2214 // Used for PrintGC 2215 size_t prev_used; 2216 if (PrintGC && Verbose) { 2217 prev_used = _cmsGen->used(); // XXXPERM 2218 } 2219 2220 // The change of the collection state is normally done at this level; 2221 // the exceptions are phases that are executed while the world is 2222 // stopped. For those phases the change of state is done while the 2223 // world is stopped. For baton passing purposes this allows the 2224 // background collector to finish the phase and change state atomically. 2225 // The foreground collector cannot wait on a phase that is done 2226 // while the world is stopped because the foreground collector already 2227 // has the world stopped and would deadlock. 2228 while (_collectorState != Idling) { 2229 if (TraceCMSState) { 2230 gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d", 2231 Thread::current(), _collectorState); 2232 } 2233 // The foreground collector 2234 // holds the Heap_lock throughout its collection. 2235 // holds the CMS token (but not the lock) 2236 // except while it is waiting for the background collector to yield. 2237 // 2238 // The foreground collector should be blocked (not for long) 2239 // if the background collector is about to start a phase 2240 // executed with world stopped. If the background 2241 // collector has already started such a phase, the 2242 // foreground collector is blocked waiting for the 2243 // Heap_lock. The stop-world phases (InitialMarking and FinalMarking) 2244 // are executed in the VM thread. 2245 // 2246 // The locking order is 2247 // PendingListLock (PLL) -- if applicable (FinalMarking) 2248 // Heap_lock (both this & PLL locked in VM_CMS_Operation::prologue()) 2249 // CMS token (claimed in 2250 // stop_world_and_do() --> 2251 // safepoint_synchronize() --> 2252 // CMSThread::synchronize()) 2253 2254 { 2255 // Check if the FG collector wants us to yield. 2256 CMSTokenSync x(true); // is cms thread 2257 if (waitForForegroundGC()) { 2258 // We yielded to a foreground GC, nothing more to be 2259 // done this round. 2260 assert(_foregroundGCShouldWait == false, "We set it to false in " 2261 "waitForForegroundGC()"); 2262 if (TraceCMSState) { 2263 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT 2264 " exiting collection CMS state %d", 2265 Thread::current(), _collectorState); 2266 } 2267 return; 2268 } else { 2269 // The background collector can run but check to see if the 2270 // foreground collector has done a collection while the 2271 // background collector was waiting to get the CGC_lock 2272 // above. If yes, break so that _foregroundGCShouldWait 2273 // is cleared before returning. 2274 if (_collectorState == Idling) { 2275 break; 2276 } 2277 } 2278 } 2279 2280 assert(_foregroundGCShouldWait, "Foreground collector, if active, " 2281 "should be waiting"); 2282 2283 switch (_collectorState) { 2284 case InitialMarking: 2285 { 2286 ReleaseForegroundGC x(this); 2287 stats().record_cms_begin(); 2288 register_gc_start(GCCause::_cms_concurrent_mark); 2289 2290 VM_CMS_Initial_Mark initial_mark_op(this); 2291 VMThread::execute(&initial_mark_op); 2292 } 2293 // The collector state may be any legal state at this point 2294 // since the background collector may have yielded to the 2295 // foreground collector. 2296 break; 2297 case Marking: 2298 // initial marking in checkpointRootsInitialWork has been completed 2299 if (markFromRoots(true)) { // we were successful 2300 assert(_collectorState == Precleaning, "Collector state should " 2301 "have changed"); 2302 } else { 2303 assert(_foregroundGCIsActive, "Internal state inconsistency"); 2304 } 2305 break; 2306 case Precleaning: 2307 if (UseAdaptiveSizePolicy) { 2308 size_policy()->concurrent_precleaning_begin(); 2309 } 2310 // marking from roots in markFromRoots has been completed 2311 preclean(); 2312 if (UseAdaptiveSizePolicy) { 2313 size_policy()->concurrent_precleaning_end(); 2314 } 2315 assert(_collectorState == AbortablePreclean || 2316 _collectorState == FinalMarking, 2317 "Collector state should have changed"); 2318 break; 2319 case AbortablePreclean: 2320 if (UseAdaptiveSizePolicy) { 2321 size_policy()->concurrent_phases_resume(); 2322 } 2323 abortable_preclean(); 2324 if (UseAdaptiveSizePolicy) { 2325 size_policy()->concurrent_precleaning_end(); 2326 } 2327 assert(_collectorState == FinalMarking, "Collector state should " 2328 "have changed"); 2329 break; 2330 case FinalMarking: 2331 { 2332 ReleaseForegroundGC x(this); 2333 2334 VM_CMS_Final_Remark final_remark_op(this); 2335 VMThread::execute(&final_remark_op); 2336 } 2337 assert(_foregroundGCShouldWait, "block post-condition"); 2338 break; 2339 case Sweeping: 2340 if (UseAdaptiveSizePolicy) { 2341 size_policy()->concurrent_sweeping_begin(); 2342 } 2343 // final marking in checkpointRootsFinal has been completed 2344 sweep(true); 2345 assert(_collectorState == Resizing, "Collector state change " 2346 "to Resizing must be done under the free_list_lock"); 2347 _full_gcs_since_conc_gc = 0; 2348 2349 // Stop the timers for adaptive size policy for the concurrent phases 2350 if (UseAdaptiveSizePolicy) { 2351 size_policy()->concurrent_sweeping_end(); 2352 size_policy()->concurrent_phases_end(gch->gc_cause(), 2353 gch->prev_gen(_cmsGen)->capacity(), 2354 _cmsGen->free()); 2355 } 2356 2357 case Resizing: { 2358 // Sweeping has been completed... 2359 // At this point the background collection has completed. 2360 // Don't move the call to compute_new_size() down 2361 // into code that might be executed if the background 2362 // collection was preempted. 2363 { 2364 ReleaseForegroundGC x(this); // unblock FG collection 2365 MutexLockerEx y(Heap_lock, Mutex::_no_safepoint_check_flag); 2366 CMSTokenSync z(true); // not strictly needed. 2367 if (_collectorState == Resizing) { 2368 compute_new_size(); 2369 _collectorState = Resetting; 2370 } else { 2371 assert(_collectorState == Idling, "The state should only change" 2372 " because the foreground collector has finished the collection"); 2373 } 2374 } 2375 break; 2376 } 2377 case Resetting: 2378 // CMS heap resizing has been completed 2379 reset(true); 2380 assert(_collectorState == Idling, "Collector state should " 2381 "have changed"); 2382 stats().record_cms_end(); 2383 // Don't move the concurrent_phases_end() and compute_new_size() 2384 // calls to here because a preempted background collection 2385 // has it's state set to "Resetting". 2386 break; 2387 case Idling: 2388 default: 2389 ShouldNotReachHere(); 2390 break; 2391 } 2392 if (TraceCMSState) { 2393 gclog_or_tty->print_cr(" Thread " INTPTR_FORMAT " done - next CMS state %d", 2394 Thread::current(), _collectorState); 2395 } 2396 assert(_foregroundGCShouldWait, "block post-condition"); 2397 } 2398 2399 // Should this be in gc_epilogue? 2400 collector_policy()->counters()->update_counters(); 2401 2402 { 2403 // Clear _foregroundGCShouldWait and, in the event that the 2404 // foreground collector is waiting, notify it, before 2405 // returning. 2406 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2407 _foregroundGCShouldWait = false; 2408 if (_foregroundGCIsActive) { 2409 CGC_lock->notify(); 2410 } 2411 assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 2412 "Possible deadlock"); 2413 } 2414 if (TraceCMSState) { 2415 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT 2416 " exiting collection CMS state %d", 2417 Thread::current(), _collectorState); 2418 } 2419 if (PrintGC && Verbose) { 2420 _cmsGen->print_heap_change(prev_used); 2421 } 2422 } 2423 2424 void CMSCollector::register_gc_start(GCCause::Cause cause) { 2425 _cms_start_registered = true; 2426 CollectedHeap* heap = GenCollectedHeap::heap(); 2427 _gc_timer_cm->register_gc_start(os::elapsed_counter()); 2428 _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start()); 2429 } 2430 2431 void CMSCollector::register_gc_end() { 2432 if (_cms_start_registered) { 2433 _gc_timer_cm->register_gc_end(os::elapsed_counter()); 2434 _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions()); 2435 _cms_start_registered = false; 2436 } 2437 } 2438 2439 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs) { 2440 assert(_foregroundGCIsActive && !_foregroundGCShouldWait, 2441 "Foreground collector should be waiting, not executing"); 2442 assert(Thread::current()->is_VM_thread(), "A foreground collection" 2443 "may only be done by the VM Thread with the world stopped"); 2444 assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 2445 "VM thread should have CMS token"); 2446 2447 NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose, 2448 true, NULL);) 2449 if (UseAdaptiveSizePolicy) { 2450 size_policy()->ms_collection_begin(); 2451 } 2452 COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact); 2453 2454 HandleMark hm; // Discard invalid handles created during verification 2455 2456 if (VerifyBeforeGC && 2457 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2458 Universe::verify(); 2459 } 2460 2461 // Snapshot the soft reference policy to be used in this collection cycle. 2462 ref_processor()->setup_policy(clear_all_soft_refs); 2463 2464 bool init_mark_was_synchronous = false; // until proven otherwise 2465 while (_collectorState != Idling) { 2466 if (TraceCMSState) { 2467 gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d", 2468 Thread::current(), _collectorState); 2469 } 2470 switch (_collectorState) { 2471 case InitialMarking: 2472 register_gc_start(GenCollectedHeap::heap()->gc_cause()); 2473 init_mark_was_synchronous = true; // fact to be exploited in re-mark 2474 checkpointRootsInitial(false); 2475 assert(_collectorState == Marking, "Collector state should have changed" 2476 " within checkpointRootsInitial()"); 2477 break; 2478 case Marking: 2479 // initial marking in checkpointRootsInitialWork has been completed 2480 if (VerifyDuringGC && 2481 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2482 gclog_or_tty->print("Verify before initial mark: "); 2483 Universe::verify(); 2484 } 2485 { 2486 bool res = markFromRoots(false); 2487 assert(res && _collectorState == FinalMarking, "Collector state should " 2488 "have changed"); 2489 break; 2490 } 2491 case FinalMarking: 2492 if (VerifyDuringGC && 2493 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2494 gclog_or_tty->print("Verify before re-mark: "); 2495 Universe::verify(); 2496 } 2497 checkpointRootsFinal(false, clear_all_soft_refs, 2498 init_mark_was_synchronous); 2499 assert(_collectorState == Sweeping, "Collector state should not " 2500 "have changed within checkpointRootsFinal()"); 2501 break; 2502 case Sweeping: 2503 // final marking in checkpointRootsFinal has been completed 2504 if (VerifyDuringGC && 2505 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2506 gclog_or_tty->print("Verify before sweep: "); 2507 Universe::verify(); 2508 } 2509 sweep(false); 2510 assert(_collectorState == Resizing, "Incorrect state"); 2511 break; 2512 case Resizing: { 2513 // Sweeping has been completed; the actual resize in this case 2514 // is done separately; nothing to be done in this state. 2515 _collectorState = Resetting; 2516 break; 2517 } 2518 case Resetting: 2519 // The heap has been resized. 2520 if (VerifyDuringGC && 2521 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2522 gclog_or_tty->print("Verify before reset: "); 2523 Universe::verify(); 2524 } 2525 reset(false); 2526 assert(_collectorState == Idling, "Collector state should " 2527 "have changed"); 2528 break; 2529 case Precleaning: 2530 case AbortablePreclean: 2531 // Elide the preclean phase 2532 _collectorState = FinalMarking; 2533 break; 2534 default: 2535 ShouldNotReachHere(); 2536 } 2537 if (TraceCMSState) { 2538 gclog_or_tty->print_cr(" Thread " INTPTR_FORMAT " done - next CMS state %d", 2539 Thread::current(), _collectorState); 2540 } 2541 } 2542 2543 if (UseAdaptiveSizePolicy) { 2544 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2545 size_policy()->ms_collection_end(gch->gc_cause()); 2546 } 2547 2548 if (VerifyAfterGC && 2549 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2550 Universe::verify(); 2551 } 2552 if (TraceCMSState) { 2553 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT 2554 " exiting collection CMS state %d", 2555 Thread::current(), _collectorState); 2556 } 2557 } 2558 2559 bool CMSCollector::waitForForegroundGC() { 2560 bool res = false; 2561 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 2562 "CMS thread should have CMS token"); 2563 // Block the foreground collector until the 2564 // background collectors decides whether to 2565 // yield. 2566 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2567 _foregroundGCShouldWait = true; 2568 if (_foregroundGCIsActive) { 2569 // The background collector yields to the 2570 // foreground collector and returns a value 2571 // indicating that it has yielded. The foreground 2572 // collector can proceed. 2573 res = true; 2574 _foregroundGCShouldWait = false; 2575 ConcurrentMarkSweepThread::clear_CMS_flag( 2576 ConcurrentMarkSweepThread::CMS_cms_has_token); 2577 ConcurrentMarkSweepThread::set_CMS_flag( 2578 ConcurrentMarkSweepThread::CMS_cms_wants_token); 2579 // Get a possibly blocked foreground thread going 2580 CGC_lock->notify(); 2581 if (TraceCMSState) { 2582 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d", 2583 Thread::current(), _collectorState); 2584 } 2585 while (_foregroundGCIsActive) { 2586 CGC_lock->wait(Mutex::_no_safepoint_check_flag); 2587 } 2588 ConcurrentMarkSweepThread::set_CMS_flag( 2589 ConcurrentMarkSweepThread::CMS_cms_has_token); 2590 ConcurrentMarkSweepThread::clear_CMS_flag( 2591 ConcurrentMarkSweepThread::CMS_cms_wants_token); 2592 } 2593 if (TraceCMSState) { 2594 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d", 2595 Thread::current(), _collectorState); 2596 } 2597 return res; 2598 } 2599 2600 // Because of the need to lock the free lists and other structures in 2601 // the collector, common to all the generations that the collector is 2602 // collecting, we need the gc_prologues of individual CMS generations 2603 // delegate to their collector. It may have been simpler had the 2604 // current infrastructure allowed one to call a prologue on a 2605 // collector. In the absence of that we have the generation's 2606 // prologue delegate to the collector, which delegates back 2607 // some "local" work to a worker method in the individual generations 2608 // that it's responsible for collecting, while itself doing any 2609 // work common to all generations it's responsible for. A similar 2610 // comment applies to the gc_epilogue()'s. 2611 // The role of the varaible _between_prologue_and_epilogue is to 2612 // enforce the invocation protocol. 2613 void CMSCollector::gc_prologue(bool full) { 2614 // Call gc_prologue_work() for each CMSGen and PermGen that 2615 // we are responsible for. 2616 2617 // The following locking discipline assumes that we are only called 2618 // when the world is stopped. 2619 assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption"); 2620 2621 // The CMSCollector prologue must call the gc_prologues for the 2622 // "generations" (including PermGen if any) that it's responsible 2623 // for. 2624 2625 assert( Thread::current()->is_VM_thread() 2626 || ( CMSScavengeBeforeRemark 2627 && Thread::current()->is_ConcurrentGC_thread()), 2628 "Incorrect thread type for prologue execution"); 2629 2630 if (_between_prologue_and_epilogue) { 2631 // We have already been invoked; this is a gc_prologue delegation 2632 // from yet another CMS generation that we are responsible for, just 2633 // ignore it since all relevant work has already been done. 2634 return; 2635 } 2636 2637 // set a bit saying prologue has been called; cleared in epilogue 2638 _between_prologue_and_epilogue = true; 2639 // Claim locks for common data structures, then call gc_prologue_work() 2640 // for each CMSGen and PermGen that we are responsible for. 2641 2642 getFreelistLocks(); // gets free list locks on constituent spaces 2643 bitMapLock()->lock_without_safepoint_check(); 2644 2645 // Should call gc_prologue_work() for all cms gens we are responsible for 2646 bool registerClosure = _collectorState >= Marking 2647 && _collectorState < Sweeping; 2648 ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ? 2649 &_modUnionClosurePar 2650 : &_modUnionClosure; 2651 _cmsGen->gc_prologue_work(full, registerClosure, muc); 2652 _permGen->gc_prologue_work(full, registerClosure, muc); 2653 2654 if (!full) { 2655 stats().record_gc0_begin(); 2656 } 2657 } 2658 2659 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) { 2660 // Delegate to CMScollector which knows how to coordinate between 2661 // this and any other CMS generations that it is responsible for 2662 // collecting. 2663 collector()->gc_prologue(full); 2664 } 2665 2666 // This is a "private" interface for use by this generation's CMSCollector. 2667 // Not to be called directly by any other entity (for instance, 2668 // GenCollectedHeap, which calls the "public" gc_prologue method above). 2669 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full, 2670 bool registerClosure, ModUnionClosure* modUnionClosure) { 2671 assert(!incremental_collection_failed(), "Shouldn't be set yet"); 2672 assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL, 2673 "Should be NULL"); 2674 if (registerClosure) { 2675 cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure); 2676 } 2677 cmsSpace()->gc_prologue(); 2678 // Clear stat counters 2679 NOT_PRODUCT( 2680 assert(_numObjectsPromoted == 0, "check"); 2681 assert(_numWordsPromoted == 0, "check"); 2682 if (Verbose && PrintGC) { 2683 gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, " 2684 SIZE_FORMAT" bytes concurrently", 2685 _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord)); 2686 } 2687 _numObjectsAllocated = 0; 2688 _numWordsAllocated = 0; 2689 ) 2690 } 2691 2692 void CMSCollector::gc_epilogue(bool full) { 2693 // The following locking discipline assumes that we are only called 2694 // when the world is stopped. 2695 assert(SafepointSynchronize::is_at_safepoint(), 2696 "world is stopped assumption"); 2697 2698 // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks 2699 // if linear allocation blocks need to be appropriately marked to allow the 2700 // the blocks to be parsable. We also check here whether we need to nudge the 2701 // CMS collector thread to start a new cycle (if it's not already active). 2702 assert( Thread::current()->is_VM_thread() 2703 || ( CMSScavengeBeforeRemark 2704 && Thread::current()->is_ConcurrentGC_thread()), 2705 "Incorrect thread type for epilogue execution"); 2706 2707 if (!_between_prologue_and_epilogue) { 2708 // We have already been invoked; this is a gc_epilogue delegation 2709 // from yet another CMS generation that we are responsible for, just 2710 // ignore it since all relevant work has already been done. 2711 return; 2712 } 2713 assert(haveFreelistLocks(), "must have freelist locks"); 2714 assert_lock_strong(bitMapLock()); 2715 2716 _cmsGen->gc_epilogue_work(full); 2717 _permGen->gc_epilogue_work(full); 2718 2719 if (_collectorState == AbortablePreclean || _collectorState == Precleaning) { 2720 // in case sampling was not already enabled, enable it 2721 _start_sampling = true; 2722 } 2723 // reset _eden_chunk_array so sampling starts afresh 2724 _eden_chunk_index = 0; 2725 2726 size_t cms_used = _cmsGen->cmsSpace()->used(); 2727 size_t perm_used = _permGen->cmsSpace()->used(); 2728 2729 // update performance counters - this uses a special version of 2730 // update_counters() that allows the utilization to be passed as a 2731 // parameter, avoiding multiple calls to used(). 2732 // 2733 _cmsGen->update_counters(cms_used); 2734 _permGen->update_counters(perm_used); 2735 2736 if (CMSIncrementalMode) { 2737 icms_update_allocation_limits(); 2738 } 2739 2740 bitMapLock()->unlock(); 2741 releaseFreelistLocks(); 2742 2743 if (!CleanChunkPoolAsync) { 2744 Chunk::clean_chunk_pool(); 2745 } 2746 2747 _between_prologue_and_epilogue = false; // ready for next cycle 2748 } 2749 2750 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) { 2751 collector()->gc_epilogue(full); 2752 2753 // Also reset promotion tracking in par gc thread states. 2754 if (CollectedHeap::use_parallel_gc_threads()) { 2755 for (uint i = 0; i < ParallelGCThreads; i++) { 2756 _par_gc_thread_states[i]->promo.stopTrackingPromotions(i); 2757 } 2758 } 2759 } 2760 2761 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) { 2762 assert(!incremental_collection_failed(), "Should have been cleared"); 2763 cmsSpace()->setPreconsumptionDirtyCardClosure(NULL); 2764 cmsSpace()->gc_epilogue(); 2765 // Print stat counters 2766 NOT_PRODUCT( 2767 assert(_numObjectsAllocated == 0, "check"); 2768 assert(_numWordsAllocated == 0, "check"); 2769 if (Verbose && PrintGC) { 2770 gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, " 2771 SIZE_FORMAT" bytes", 2772 _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord)); 2773 } 2774 _numObjectsPromoted = 0; 2775 _numWordsPromoted = 0; 2776 ) 2777 2778 if (PrintGC && Verbose) { 2779 // Call down the chain in contiguous_available needs the freelistLock 2780 // so print this out before releasing the freeListLock. 2781 gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ", 2782 contiguous_available()); 2783 } 2784 } 2785 2786 #ifndef PRODUCT 2787 bool CMSCollector::have_cms_token() { 2788 Thread* thr = Thread::current(); 2789 if (thr->is_VM_thread()) { 2790 return ConcurrentMarkSweepThread::vm_thread_has_cms_token(); 2791 } else if (thr->is_ConcurrentGC_thread()) { 2792 return ConcurrentMarkSweepThread::cms_thread_has_cms_token(); 2793 } else if (thr->is_GC_task_thread()) { 2794 return ConcurrentMarkSweepThread::vm_thread_has_cms_token() && 2795 ParGCRareEvent_lock->owned_by_self(); 2796 } 2797 return false; 2798 } 2799 #endif 2800 2801 // Check reachability of the given heap address in CMS generation, 2802 // treating all other generations as roots. 2803 bool CMSCollector::is_cms_reachable(HeapWord* addr) { 2804 // We could "guarantee" below, rather than assert, but i'll 2805 // leave these as "asserts" so that an adventurous debugger 2806 // could try this in the product build provided some subset of 2807 // the conditions were met, provided they were intersted in the 2808 // results and knew that the computation below wouldn't interfere 2809 // with other concurrent computations mutating the structures 2810 // being read or written. 2811 assert(SafepointSynchronize::is_at_safepoint(), 2812 "Else mutations in object graph will make answer suspect"); 2813 assert(have_cms_token(), "Should hold cms token"); 2814 assert(haveFreelistLocks(), "must hold free list locks"); 2815 assert_lock_strong(bitMapLock()); 2816 2817 // Clear the marking bit map array before starting, but, just 2818 // for kicks, first report if the given address is already marked 2819 gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr, 2820 _markBitMap.isMarked(addr) ? "" : " not"); 2821 2822 if (verify_after_remark()) { 2823 MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag); 2824 bool result = verification_mark_bm()->isMarked(addr); 2825 gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr, 2826 result ? "IS" : "is NOT"); 2827 return result; 2828 } else { 2829 gclog_or_tty->print_cr("Could not compute result"); 2830 return false; 2831 } 2832 } 2833 2834 //////////////////////////////////////////////////////// 2835 // CMS Verification Support 2836 //////////////////////////////////////////////////////// 2837 // Following the remark phase, the following invariant 2838 // should hold -- each object in the CMS heap which is 2839 // marked in markBitMap() should be marked in the verification_mark_bm(). 2840 2841 class VerifyMarkedClosure: public BitMapClosure { 2842 CMSBitMap* _marks; 2843 bool _failed; 2844 2845 public: 2846 VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {} 2847 2848 bool do_bit(size_t offset) { 2849 HeapWord* addr = _marks->offsetToHeapWord(offset); 2850 if (!_marks->isMarked(addr)) { 2851 oop(addr)->print_on(gclog_or_tty); 2852 gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr); 2853 _failed = true; 2854 } 2855 return true; 2856 } 2857 2858 bool failed() { return _failed; } 2859 }; 2860 2861 bool CMSCollector::verify_after_remark() { 2862 gclog_or_tty->print(" [Verifying CMS Marking... "); 2863 MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag); 2864 static bool init = false; 2865 2866 assert(SafepointSynchronize::is_at_safepoint(), 2867 "Else mutations in object graph will make answer suspect"); 2868 assert(have_cms_token(), 2869 "Else there may be mutual interference in use of " 2870 " verification data structures"); 2871 assert(_collectorState > Marking && _collectorState <= Sweeping, 2872 "Else marking info checked here may be obsolete"); 2873 assert(haveFreelistLocks(), "must hold free list locks"); 2874 assert_lock_strong(bitMapLock()); 2875 2876 2877 // Allocate marking bit map if not already allocated 2878 if (!init) { // first time 2879 if (!verification_mark_bm()->allocate(_span)) { 2880 return false; 2881 } 2882 init = true; 2883 } 2884 2885 assert(verification_mark_stack()->isEmpty(), "Should be empty"); 2886 2887 // Turn off refs discovery -- so we will be tracing through refs. 2888 // This is as intended, because by this time 2889 // GC must already have cleared any refs that need to be cleared, 2890 // and traced those that need to be marked; moreover, 2891 // the marking done here is not going to intefere in any 2892 // way with the marking information used by GC. 2893 NoRefDiscovery no_discovery(ref_processor()); 2894 2895 COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;) 2896 2897 // Clear any marks from a previous round 2898 verification_mark_bm()->clear_all(); 2899 assert(verification_mark_stack()->isEmpty(), "markStack should be empty"); 2900 verify_work_stacks_empty(); 2901 2902 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2903 gch->ensure_parsability(false); // fill TLABs, but no need to retire them 2904 // Update the saved marks which may affect the root scans. 2905 gch->save_marks(); 2906 2907 if (CMSRemarkVerifyVariant == 1) { 2908 // In this first variant of verification, we complete 2909 // all marking, then check if the new marks-verctor is 2910 // a subset of the CMS marks-vector. 2911 verify_after_remark_work_1(); 2912 } else if (CMSRemarkVerifyVariant == 2) { 2913 // In this second variant of verification, we flag an error 2914 // (i.e. an object reachable in the new marks-vector not reachable 2915 // in the CMS marks-vector) immediately, also indicating the 2916 // identify of an object (A) that references the unmarked object (B) -- 2917 // presumably, a mutation to A failed to be picked up by preclean/remark? 2918 verify_after_remark_work_2(); 2919 } else { 2920 warning("Unrecognized value %d for CMSRemarkVerifyVariant", 2921 CMSRemarkVerifyVariant); 2922 } 2923 gclog_or_tty->print(" done] "); 2924 return true; 2925 } 2926 2927 void CMSCollector::verify_after_remark_work_1() { 2928 ResourceMark rm; 2929 HandleMark hm; 2930 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2931 2932 // Mark from roots one level into CMS 2933 MarkRefsIntoClosure notOlder(_span, verification_mark_bm()); 2934 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 2935 2936 gch->gen_process_strong_roots(_cmsGen->level(), 2937 true, // younger gens are roots 2938 true, // activate StrongRootsScope 2939 true, // collecting perm gen 2940 SharedHeap::ScanningOption(roots_scanning_options()), 2941 ¬Older, 2942 true, // walk code active on stacks 2943 NULL); 2944 2945 // Now mark from the roots 2946 assert(_revisitStack.isEmpty(), "Should be empty"); 2947 MarkFromRootsClosure markFromRootsClosure(this, _span, 2948 verification_mark_bm(), verification_mark_stack(), &_revisitStack, 2949 false /* don't yield */, true /* verifying */); 2950 assert(_restart_addr == NULL, "Expected pre-condition"); 2951 verification_mark_bm()->iterate(&markFromRootsClosure); 2952 while (_restart_addr != NULL) { 2953 // Deal with stack overflow: by restarting at the indicated 2954 // address. 2955 HeapWord* ra = _restart_addr; 2956 markFromRootsClosure.reset(ra); 2957 _restart_addr = NULL; 2958 verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end()); 2959 } 2960 assert(verification_mark_stack()->isEmpty(), "Should have been drained"); 2961 verify_work_stacks_empty(); 2962 // Should reset the revisit stack above, since no class tree 2963 // surgery is forthcoming. 2964 _revisitStack.reset(); // throwing away all contents 2965 2966 // Marking completed -- now verify that each bit marked in 2967 // verification_mark_bm() is also marked in markBitMap(); flag all 2968 // errors by printing corresponding objects. 2969 VerifyMarkedClosure vcl(markBitMap()); 2970 verification_mark_bm()->iterate(&vcl); 2971 if (vcl.failed()) { 2972 gclog_or_tty->print("Verification failed"); 2973 Universe::heap()->print_on(gclog_or_tty); 2974 fatal("CMS: failed marking verification after remark"); 2975 } 2976 } 2977 2978 void CMSCollector::verify_after_remark_work_2() { 2979 ResourceMark rm; 2980 HandleMark hm; 2981 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2982 2983 // Mark from roots one level into CMS 2984 MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(), 2985 markBitMap()); 2986 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 2987 gch->gen_process_strong_roots(_cmsGen->level(), 2988 true, // younger gens are roots 2989 true, // activate StrongRootsScope 2990 true, // collecting perm gen 2991 SharedHeap::ScanningOption(roots_scanning_options()), 2992 ¬Older, 2993 true, // walk code active on stacks 2994 NULL); 2995 2996 // Now mark from the roots 2997 assert(_revisitStack.isEmpty(), "Should be empty"); 2998 MarkFromRootsVerifyClosure markFromRootsClosure(this, _span, 2999 verification_mark_bm(), markBitMap(), verification_mark_stack()); 3000 assert(_restart_addr == NULL, "Expected pre-condition"); 3001 verification_mark_bm()->iterate(&markFromRootsClosure); 3002 while (_restart_addr != NULL) { 3003 // Deal with stack overflow: by restarting at the indicated 3004 // address. 3005 HeapWord* ra = _restart_addr; 3006 markFromRootsClosure.reset(ra); 3007 _restart_addr = NULL; 3008 verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end()); 3009 } 3010 assert(verification_mark_stack()->isEmpty(), "Should have been drained"); 3011 verify_work_stacks_empty(); 3012 // Should reset the revisit stack above, since no class tree 3013 // surgery is forthcoming. 3014 _revisitStack.reset(); // throwing away all contents 3015 3016 // Marking completed -- now verify that each bit marked in 3017 // verification_mark_bm() is also marked in markBitMap(); flag all 3018 // errors by printing corresponding objects. 3019 VerifyMarkedClosure vcl(markBitMap()); 3020 verification_mark_bm()->iterate(&vcl); 3021 assert(!vcl.failed(), "Else verification above should not have succeeded"); 3022 } 3023 3024 void ConcurrentMarkSweepGeneration::save_marks() { 3025 // delegate to CMS space 3026 cmsSpace()->save_marks(); 3027 for (uint i = 0; i < ParallelGCThreads; i++) { 3028 _par_gc_thread_states[i]->promo.startTrackingPromotions(); 3029 } 3030 } 3031 3032 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() { 3033 return cmsSpace()->no_allocs_since_save_marks(); 3034 } 3035 3036 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \ 3037 \ 3038 void ConcurrentMarkSweepGeneration:: \ 3039 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \ 3040 cl->set_generation(this); \ 3041 cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl); \ 3042 cl->reset_generation(); \ 3043 save_marks(); \ 3044 } 3045 3046 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN) 3047 3048 void 3049 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk) 3050 { 3051 // Not currently implemented; need to do the following. -- ysr. 3052 // dld -- I think that is used for some sort of allocation profiler. So it 3053 // really means the objects allocated by the mutator since the last 3054 // GC. We could potentially implement this cheaply by recording only 3055 // the direct allocations in a side data structure. 3056 // 3057 // I think we probably ought not to be required to support these 3058 // iterations at any arbitrary point; I think there ought to be some 3059 // call to enable/disable allocation profiling in a generation/space, 3060 // and the iterator ought to return the objects allocated in the 3061 // gen/space since the enable call, or the last iterator call (which 3062 // will probably be at a GC.) That way, for gens like CM&S that would 3063 // require some extra data structure to support this, we only pay the 3064 // cost when it's in use... 3065 cmsSpace()->object_iterate_since_last_GC(blk); 3066 } 3067 3068 void 3069 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) { 3070 cl->set_generation(this); 3071 younger_refs_in_space_iterate(_cmsSpace, cl); 3072 cl->reset_generation(); 3073 } 3074 3075 void 3076 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, OopClosure* cl) { 3077 if (freelistLock()->owned_by_self()) { 3078 Generation::oop_iterate(mr, cl); 3079 } else { 3080 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3081 Generation::oop_iterate(mr, cl); 3082 } 3083 } 3084 3085 void 3086 ConcurrentMarkSweepGeneration::oop_iterate(OopClosure* cl) { 3087 if (freelistLock()->owned_by_self()) { 3088 Generation::oop_iterate(cl); 3089 } else { 3090 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3091 Generation::oop_iterate(cl); 3092 } 3093 } 3094 3095 void 3096 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) { 3097 if (freelistLock()->owned_by_self()) { 3098 Generation::object_iterate(cl); 3099 } else { 3100 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3101 Generation::object_iterate(cl); 3102 } 3103 } 3104 3105 void 3106 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) { 3107 if (freelistLock()->owned_by_self()) { 3108 Generation::safe_object_iterate(cl); 3109 } else { 3110 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3111 Generation::safe_object_iterate(cl); 3112 } 3113 } 3114 3115 void 3116 ConcurrentMarkSweepGeneration::pre_adjust_pointers() { 3117 } 3118 3119 void 3120 ConcurrentMarkSweepGeneration::post_compact() { 3121 } 3122 3123 void 3124 ConcurrentMarkSweepGeneration::prepare_for_verify() { 3125 // Fix the linear allocation blocks to look like free blocks. 3126 3127 // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those 3128 // are not called when the heap is verified during universe initialization and 3129 // at vm shutdown. 3130 if (freelistLock()->owned_by_self()) { 3131 cmsSpace()->prepare_for_verify(); 3132 } else { 3133 MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag); 3134 cmsSpace()->prepare_for_verify(); 3135 } 3136 } 3137 3138 void 3139 ConcurrentMarkSweepGeneration::verify() { 3140 // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those 3141 // are not called when the heap is verified during universe initialization and 3142 // at vm shutdown. 3143 if (freelistLock()->owned_by_self()) { 3144 cmsSpace()->verify(); 3145 } else { 3146 MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag); 3147 cmsSpace()->verify(); 3148 } 3149 } 3150 3151 void CMSCollector::verify() { 3152 _cmsGen->verify(); 3153 _permGen->verify(); 3154 } 3155 3156 #ifndef PRODUCT 3157 bool CMSCollector::overflow_list_is_empty() const { 3158 assert(_num_par_pushes >= 0, "Inconsistency"); 3159 if (_overflow_list == NULL) { 3160 assert(_num_par_pushes == 0, "Inconsistency"); 3161 } 3162 return _overflow_list == NULL; 3163 } 3164 3165 // The methods verify_work_stacks_empty() and verify_overflow_empty() 3166 // merely consolidate assertion checks that appear to occur together frequently. 3167 void CMSCollector::verify_work_stacks_empty() const { 3168 assert(_markStack.isEmpty(), "Marking stack should be empty"); 3169 assert(overflow_list_is_empty(), "Overflow list should be empty"); 3170 } 3171 3172 void CMSCollector::verify_overflow_empty() const { 3173 assert(overflow_list_is_empty(), "Overflow list should be empty"); 3174 assert(no_preserved_marks(), "No preserved marks"); 3175 } 3176 #endif // PRODUCT 3177 3178 // Decide if we want to enable class unloading as part of the 3179 // ensuing concurrent GC cycle. We will collect the perm gen and 3180 // unload classes if it's the case that: 3181 // (1) an explicit gc request has been made and the flag 3182 // ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR 3183 // (2) (a) class unloading is enabled at the command line, and 3184 // (b) (i) perm gen threshold has been crossed, or 3185 // (ii) old gen is getting really full, or 3186 // (iii) the previous N CMS collections did not collect the 3187 // perm gen 3188 // NOTE: Provided there is no change in the state of the heap between 3189 // calls to this method, it should have idempotent results. Moreover, 3190 // its results should be monotonically increasing (i.e. going from 0 to 1, 3191 // but not 1 to 0) between successive calls between which the heap was 3192 // not collected. For the implementation below, it must thus rely on 3193 // the property that concurrent_cycles_since_last_unload() 3194 // will not decrease unless a collection cycle happened and that 3195 // _permGen->should_concurrent_collect() and _cmsGen->is_too_full() are 3196 // themselves also monotonic in that sense. See check_monotonicity() 3197 // below. 3198 bool CMSCollector::update_should_unload_classes() { 3199 _should_unload_classes = false; 3200 // Condition 1 above 3201 if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) { 3202 _should_unload_classes = true; 3203 } else if (CMSClassUnloadingEnabled) { // Condition 2.a above 3204 // Disjuncts 2.b.(i,ii,iii) above 3205 _should_unload_classes = (concurrent_cycles_since_last_unload() >= 3206 CMSClassUnloadingMaxInterval) 3207 || _permGen->should_concurrent_collect() 3208 || _cmsGen->is_too_full(); 3209 } 3210 return _should_unload_classes; 3211 } 3212 3213 bool ConcurrentMarkSweepGeneration::is_too_full() const { 3214 bool res = should_concurrent_collect(); 3215 res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0); 3216 return res; 3217 } 3218 3219 void CMSCollector::setup_cms_unloading_and_verification_state() { 3220 const bool should_verify = VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC 3221 || VerifyBeforeExit; 3222 const int rso = SharedHeap::SO_Strings | SharedHeap::SO_CodeCache; 3223 3224 if (should_unload_classes()) { // Should unload classes this cycle 3225 remove_root_scanning_option(rso); // Shrink the root set appropriately 3226 set_verifying(should_verify); // Set verification state for this cycle 3227 return; // Nothing else needs to be done at this time 3228 } 3229 3230 // Not unloading classes this cycle 3231 assert(!should_unload_classes(), "Inconsitency!"); 3232 if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) { 3233 // We were not verifying, or we _were_ unloading classes in the last cycle, 3234 // AND some verification options are enabled this cycle; in this case, 3235 // we must make sure that the deadness map is allocated if not already so, 3236 // and cleared (if already allocated previously -- 3237 // CMSBitMap::sizeInBits() is used to determine if it's allocated). 3238 if (perm_gen_verify_bit_map()->sizeInBits() == 0) { 3239 if (!perm_gen_verify_bit_map()->allocate(_permGen->reserved())) { 3240 warning("Failed to allocate permanent generation verification CMS Bit Map;\n" 3241 "permanent generation verification disabled"); 3242 return; // Note that we leave verification disabled, so we'll retry this 3243 // allocation next cycle. We _could_ remember this failure 3244 // and skip further attempts and permanently disable verification 3245 // attempts if that is considered more desirable. 3246 } 3247 assert(perm_gen_verify_bit_map()->covers(_permGen->reserved()), 3248 "_perm_gen_ver_bit_map inconsistency?"); 3249 } else { 3250 perm_gen_verify_bit_map()->clear_all(); 3251 } 3252 // Include symbols, strings and code cache elements to prevent their resurrection. 3253 add_root_scanning_option(rso); 3254 set_verifying(true); 3255 } else if (verifying() && !should_verify) { 3256 // We were verifying, but some verification flags got disabled. 3257 set_verifying(false); 3258 // Exclude symbols, strings and code cache elements from root scanning to 3259 // reduce IM and RM pauses. 3260 remove_root_scanning_option(rso); 3261 } 3262 } 3263 3264 3265 #ifndef PRODUCT 3266 HeapWord* CMSCollector::block_start(const void* p) const { 3267 const HeapWord* addr = (HeapWord*)p; 3268 if (_span.contains(p)) { 3269 if (_cmsGen->cmsSpace()->is_in_reserved(addr)) { 3270 return _cmsGen->cmsSpace()->block_start(p); 3271 } else { 3272 assert(_permGen->cmsSpace()->is_in_reserved(addr), 3273 "Inconsistent _span?"); 3274 return _permGen->cmsSpace()->block_start(p); 3275 } 3276 } 3277 return NULL; 3278 } 3279 #endif 3280 3281 HeapWord* 3282 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size, 3283 bool tlab, 3284 bool parallel) { 3285 CMSSynchronousYieldRequest yr; 3286 assert(!tlab, "Can't deal with TLAB allocation"); 3287 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3288 expand(word_size*HeapWordSize, MinHeapDeltaBytes, 3289 CMSExpansionCause::_satisfy_allocation); 3290 if (GCExpandToAllocateDelayMillis > 0) { 3291 os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); 3292 } 3293 return have_lock_and_allocate(word_size, tlab); 3294 } 3295 3296 // YSR: All of this generation expansion/shrinking stuff is an exact copy of 3297 // OneContigSpaceCardGeneration, which makes me wonder if we should move this 3298 // to CardGeneration and share it... 3299 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) { 3300 return CardGeneration::expand(bytes, expand_bytes); 3301 } 3302 3303 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes, 3304 CMSExpansionCause::Cause cause) 3305 { 3306 3307 bool success = expand(bytes, expand_bytes); 3308 3309 // remember why we expanded; this information is used 3310 // by shouldConcurrentCollect() when making decisions on whether to start 3311 // a new CMS cycle. 3312 if (success) { 3313 set_expansion_cause(cause); 3314 if (PrintGCDetails && Verbose) { 3315 gclog_or_tty->print_cr("Expanded CMS gen for %s", 3316 CMSExpansionCause::to_string(cause)); 3317 } 3318 } 3319 } 3320 3321 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) { 3322 HeapWord* res = NULL; 3323 MutexLocker x(ParGCRareEvent_lock); 3324 while (true) { 3325 // Expansion by some other thread might make alloc OK now: 3326 res = ps->lab.alloc(word_sz); 3327 if (res != NULL) return res; 3328 // If there's not enough expansion space available, give up. 3329 if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) { 3330 return NULL; 3331 } 3332 // Otherwise, we try expansion. 3333 expand(word_sz*HeapWordSize, MinHeapDeltaBytes, 3334 CMSExpansionCause::_allocate_par_lab); 3335 // Now go around the loop and try alloc again; 3336 // A competing par_promote might beat us to the expansion space, 3337 // so we may go around the loop again if promotion fails agaion. 3338 if (GCExpandToAllocateDelayMillis > 0) { 3339 os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); 3340 } 3341 } 3342 } 3343 3344 3345 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space( 3346 PromotionInfo* promo) { 3347 MutexLocker x(ParGCRareEvent_lock); 3348 size_t refill_size_bytes = promo->refillSize() * HeapWordSize; 3349 while (true) { 3350 // Expansion by some other thread might make alloc OK now: 3351 if (promo->ensure_spooling_space()) { 3352 assert(promo->has_spooling_space(), 3353 "Post-condition of successful ensure_spooling_space()"); 3354 return true; 3355 } 3356 // If there's not enough expansion space available, give up. 3357 if (_virtual_space.uncommitted_size() < refill_size_bytes) { 3358 return false; 3359 } 3360 // Otherwise, we try expansion. 3361 expand(refill_size_bytes, MinHeapDeltaBytes, 3362 CMSExpansionCause::_allocate_par_spooling_space); 3363 // Now go around the loop and try alloc again; 3364 // A competing allocation might beat us to the expansion space, 3365 // so we may go around the loop again if allocation fails again. 3366 if (GCExpandToAllocateDelayMillis > 0) { 3367 os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); 3368 } 3369 } 3370 } 3371 3372 3373 3374 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) { 3375 assert_locked_or_safepoint(Heap_lock); 3376 size_t size = ReservedSpace::page_align_size_down(bytes); 3377 if (size > 0) { 3378 shrink_by(size); 3379 } 3380 } 3381 3382 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) { 3383 assert_locked_or_safepoint(Heap_lock); 3384 bool result = _virtual_space.expand_by(bytes); 3385 if (result) { 3386 HeapWord* old_end = _cmsSpace->end(); 3387 size_t new_word_size = 3388 heap_word_size(_virtual_space.committed_size()); 3389 MemRegion mr(_cmsSpace->bottom(), new_word_size); 3390 _bts->resize(new_word_size); // resize the block offset shared array 3391 Universe::heap()->barrier_set()->resize_covered_region(mr); 3392 // Hmmmm... why doesn't CFLS::set_end verify locking? 3393 // This is quite ugly; FIX ME XXX 3394 _cmsSpace->assert_locked(freelistLock()); 3395 _cmsSpace->set_end((HeapWord*)_virtual_space.high()); 3396 3397 // update the space and generation capacity counters 3398 if (UsePerfData) { 3399 _space_counters->update_capacity(); 3400 _gen_counters->update_all(); 3401 } 3402 3403 if (Verbose && PrintGC) { 3404 size_t new_mem_size = _virtual_space.committed_size(); 3405 size_t old_mem_size = new_mem_size - bytes; 3406 gclog_or_tty->print_cr("Expanding %s from %ldK by %ldK to %ldK", 3407 name(), old_mem_size/K, bytes/K, new_mem_size/K); 3408 } 3409 } 3410 return result; 3411 } 3412 3413 bool ConcurrentMarkSweepGeneration::grow_to_reserved() { 3414 assert_locked_or_safepoint(Heap_lock); 3415 bool success = true; 3416 const size_t remaining_bytes = _virtual_space.uncommitted_size(); 3417 if (remaining_bytes > 0) { 3418 success = grow_by(remaining_bytes); 3419 DEBUG_ONLY(if (!success) warning("grow to reserved failed");) 3420 } 3421 return success; 3422 } 3423 3424 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) { 3425 assert_locked_or_safepoint(Heap_lock); 3426 assert_lock_strong(freelistLock()); 3427 // XXX Fix when compaction is implemented. 3428 warning("Shrinking of CMS not yet implemented"); 3429 return; 3430 } 3431 3432 3433 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent 3434 // phases. 3435 class CMSPhaseAccounting: public StackObj { 3436 public: 3437 CMSPhaseAccounting(CMSCollector *collector, 3438 const char *phase, 3439 bool print_cr = true); 3440 ~CMSPhaseAccounting(); 3441 3442 private: 3443 CMSCollector *_collector; 3444 const char *_phase; 3445 elapsedTimer _wallclock; 3446 bool _print_cr; 3447 3448 public: 3449 // Not MT-safe; so do not pass around these StackObj's 3450 // where they may be accessed by other threads. 3451 jlong wallclock_millis() { 3452 assert(_wallclock.is_active(), "Wall clock should not stop"); 3453 _wallclock.stop(); // to record time 3454 jlong ret = _wallclock.milliseconds(); 3455 _wallclock.start(); // restart 3456 return ret; 3457 } 3458 }; 3459 3460 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector, 3461 const char *phase, 3462 bool print_cr) : 3463 _collector(collector), _phase(phase), _print_cr(print_cr) { 3464 3465 if (PrintCMSStatistics != 0) { 3466 _collector->resetYields(); 3467 } 3468 if (PrintGCDetails && PrintGCTimeStamps) { 3469 gclog_or_tty->date_stamp(PrintGCDateStamps); 3470 gclog_or_tty->stamp(); 3471 gclog_or_tty->print_cr(": [%s-concurrent-%s-start]", 3472 _collector->cmsGen()->short_name(), _phase); 3473 } 3474 _collector->resetTimer(); 3475 _wallclock.start(); 3476 _collector->startTimer(); 3477 } 3478 3479 CMSPhaseAccounting::~CMSPhaseAccounting() { 3480 assert(_wallclock.is_active(), "Wall clock should not have stopped"); 3481 _collector->stopTimer(); 3482 _wallclock.stop(); 3483 if (PrintGCDetails) { 3484 gclog_or_tty->date_stamp(PrintGCDateStamps); 3485 gclog_or_tty->stamp(PrintGCTimeStamps); 3486 gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]", 3487 _collector->cmsGen()->short_name(), 3488 _phase, _collector->timerValue(), _wallclock.seconds()); 3489 if (_print_cr) { 3490 gclog_or_tty->print_cr(""); 3491 } 3492 if (PrintCMSStatistics != 0) { 3493 gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase, 3494 _collector->yields()); 3495 } 3496 } 3497 } 3498 3499 // CMS work 3500 3501 // Checkpoint the roots into this generation from outside 3502 // this generation. [Note this initial checkpoint need only 3503 // be approximate -- we'll do a catch up phase subsequently.] 3504 void CMSCollector::checkpointRootsInitial(bool asynch) { 3505 assert(_collectorState == InitialMarking, "Wrong collector state"); 3506 check_correct_thread_executing(); 3507 TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause()); 3508 3509 ReferenceProcessor* rp = ref_processor(); 3510 SpecializationStats::clear(); 3511 assert(_restart_addr == NULL, "Control point invariant"); 3512 if (asynch) { 3513 // acquire locks for subsequent manipulations 3514 MutexLockerEx x(bitMapLock(), 3515 Mutex::_no_safepoint_check_flag); 3516 checkpointRootsInitialWork(asynch); 3517 // enable ("weak") refs discovery 3518 rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/); 3519 _collectorState = Marking; 3520 } else { 3521 // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection 3522 // which recognizes if we are a CMS generation, and doesn't try to turn on 3523 // discovery; verify that they aren't meddling. 3524 assert(!rp->discovery_is_atomic(), 3525 "incorrect setting of discovery predicate"); 3526 assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control " 3527 "ref discovery for this generation kind"); 3528 // already have locks 3529 checkpointRootsInitialWork(asynch); 3530 // now enable ("weak") refs discovery 3531 rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/); 3532 _collectorState = Marking; 3533 } 3534 SpecializationStats::print(); 3535 } 3536 3537 void CMSCollector::checkpointRootsInitialWork(bool asynch) { 3538 assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped"); 3539 assert(_collectorState == InitialMarking, "just checking"); 3540 3541 // If there has not been a GC[n-1] since last GC[n] cycle completed, 3542 // precede our marking with a collection of all 3543 // younger generations to keep floating garbage to a minimum. 3544 // XXX: we won't do this for now -- it's an optimization to be done later. 3545 3546 // already have locks 3547 assert_lock_strong(bitMapLock()); 3548 assert(_markBitMap.isAllClear(), "was reset at end of previous cycle"); 3549 3550 // Setup the verification and class unloading state for this 3551 // CMS collection cycle. 3552 setup_cms_unloading_and_verification_state(); 3553 3554 NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork", 3555 PrintGCDetails && Verbose, true, _gc_timer_cm);) 3556 if (UseAdaptiveSizePolicy) { 3557 size_policy()->checkpoint_roots_initial_begin(); 3558 } 3559 3560 // Reset all the PLAB chunk arrays if necessary. 3561 if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) { 3562 reset_survivor_plab_arrays(); 3563 } 3564 3565 ResourceMark rm; 3566 HandleMark hm; 3567 3568 FalseClosure falseClosure; 3569 // In the case of a synchronous collection, we will elide the 3570 // remark step, so it's important to catch all the nmethod oops 3571 // in this step. 3572 // The final 'true' flag to gen_process_strong_roots will ensure this. 3573 // If 'async' is true, we can relax the nmethod tracing. 3574 MarkRefsIntoClosure notOlder(_span, &_markBitMap); 3575 GenCollectedHeap* gch = GenCollectedHeap::heap(); 3576 3577 verify_work_stacks_empty(); 3578 verify_overflow_empty(); 3579 3580 gch->ensure_parsability(false); // fill TLABs, but no need to retire them 3581 // Update the saved marks which may affect the root scans. 3582 gch->save_marks(); 3583 3584 // weak reference processing has not started yet. 3585 ref_processor()->set_enqueuing_is_done(false); 3586 3587 { 3588 // This is not needed. DEBUG_ONLY(RememberKlassesChecker imx(true);) 3589 COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;) 3590 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 3591 gch->gen_process_strong_roots(_cmsGen->level(), 3592 true, // younger gens are roots 3593 true, // activate StrongRootsScope 3594 true, // collecting perm gen 3595 SharedHeap::ScanningOption(roots_scanning_options()), 3596 ¬Older, 3597 true, // walk all of code cache if (so & SO_CodeCache) 3598 NULL); 3599 } 3600 3601 // Clear mod-union table; it will be dirtied in the prologue of 3602 // CMS generation per each younger generation collection. 3603 3604 assert(_modUnionTable.isAllClear(), 3605 "Was cleared in most recent final checkpoint phase" 3606 " or no bits are set in the gc_prologue before the start of the next " 3607 "subsequent marking phase."); 3608 3609 // Save the end of the used_region of the constituent generations 3610 // to be used to limit the extent of sweep in each generation. 3611 save_sweep_limits(); 3612 if (UseAdaptiveSizePolicy) { 3613 size_policy()->checkpoint_roots_initial_end(gch->gc_cause()); 3614 } 3615 verify_overflow_empty(); 3616 } 3617 3618 bool CMSCollector::markFromRoots(bool asynch) { 3619 // we might be tempted to assert that: 3620 // assert(asynch == !SafepointSynchronize::is_at_safepoint(), 3621 // "inconsistent argument?"); 3622 // However that wouldn't be right, because it's possible that 3623 // a safepoint is indeed in progress as a younger generation 3624 // stop-the-world GC happens even as we mark in this generation. 3625 assert(_collectorState == Marking, "inconsistent state?"); 3626 check_correct_thread_executing(); 3627 verify_overflow_empty(); 3628 3629 bool res; 3630 if (asynch) { 3631 3632 // Start the timers for adaptive size policy for the concurrent phases 3633 // Do it here so that the foreground MS can use the concurrent 3634 // timer since a foreground MS might has the sweep done concurrently 3635 // or STW. 3636 if (UseAdaptiveSizePolicy) { 3637 size_policy()->concurrent_marking_begin(); 3638 } 3639 3640 // Weak ref discovery note: We may be discovering weak 3641 // refs in this generation concurrent (but interleaved) with 3642 // weak ref discovery by a younger generation collector. 3643 3644 CMSTokenSyncWithLocks ts(true, bitMapLock()); 3645 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 3646 CMSPhaseAccounting pa(this, "mark", !PrintGCDetails); 3647 res = markFromRootsWork(asynch); 3648 if (res) { 3649 _collectorState = Precleaning; 3650 } else { // We failed and a foreground collection wants to take over 3651 assert(_foregroundGCIsActive, "internal state inconsistency"); 3652 assert(_restart_addr == NULL, "foreground will restart from scratch"); 3653 if (PrintGCDetails) { 3654 gclog_or_tty->print_cr("bailing out to foreground collection"); 3655 } 3656 } 3657 if (UseAdaptiveSizePolicy) { 3658 size_policy()->concurrent_marking_end(); 3659 } 3660 } else { 3661 assert(SafepointSynchronize::is_at_safepoint(), 3662 "inconsistent with asynch == false"); 3663 if (UseAdaptiveSizePolicy) { 3664 size_policy()->ms_collection_marking_begin(); 3665 } 3666 // already have locks 3667 res = markFromRootsWork(asynch); 3668 _collectorState = FinalMarking; 3669 if (UseAdaptiveSizePolicy) { 3670 GenCollectedHeap* gch = GenCollectedHeap::heap(); 3671 size_policy()->ms_collection_marking_end(gch->gc_cause()); 3672 } 3673 } 3674 verify_overflow_empty(); 3675 return res; 3676 } 3677 3678 bool CMSCollector::markFromRootsWork(bool asynch) { 3679 // iterate over marked bits in bit map, doing a full scan and mark 3680 // from these roots using the following algorithm: 3681 // . if oop is to the right of the current scan pointer, 3682 // mark corresponding bit (we'll process it later) 3683 // . else (oop is to left of current scan pointer) 3684 // push oop on marking stack 3685 // . drain the marking stack 3686 3687 // Note that when we do a marking step we need to hold the 3688 // bit map lock -- recall that direct allocation (by mutators) 3689 // and promotion (by younger generation collectors) is also 3690 // marking the bit map. [the so-called allocate live policy.] 3691 // Because the implementation of bit map marking is not 3692 // robust wrt simultaneous marking of bits in the same word, 3693 // we need to make sure that there is no such interference 3694 // between concurrent such updates. 3695 3696 // already have locks 3697 assert_lock_strong(bitMapLock()); 3698 3699 // Clear the revisit stack, just in case there are any 3700 // obsolete contents from a short-circuited previous CMS cycle. 3701 _revisitStack.reset(); 3702 verify_work_stacks_empty(); 3703 verify_overflow_empty(); 3704 assert(_revisitStack.isEmpty(), "tabula rasa"); 3705 DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());) 3706 bool result = false; 3707 if (CMSConcurrentMTEnabled && ConcGCThreads > 0) { 3708 result = do_marking_mt(asynch); 3709 } else { 3710 result = do_marking_st(asynch); 3711 } 3712 return result; 3713 } 3714 3715 // Forward decl 3716 class CMSConcMarkingTask; 3717 3718 class CMSConcMarkingTerminator: public ParallelTaskTerminator { 3719 CMSCollector* _collector; 3720 CMSConcMarkingTask* _task; 3721 public: 3722 virtual void yield(); 3723 3724 // "n_threads" is the number of threads to be terminated. 3725 // "queue_set" is a set of work queues of other threads. 3726 // "collector" is the CMS collector associated with this task terminator. 3727 // "yield" indicates whether we need the gang as a whole to yield. 3728 CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) : 3729 ParallelTaskTerminator(n_threads, queue_set), 3730 _collector(collector) { } 3731 3732 void set_task(CMSConcMarkingTask* task) { 3733 _task = task; 3734 } 3735 }; 3736 3737 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator { 3738 CMSConcMarkingTask* _task; 3739 public: 3740 bool should_exit_termination(); 3741 void set_task(CMSConcMarkingTask* task) { 3742 _task = task; 3743 } 3744 }; 3745 3746 // MT Concurrent Marking Task 3747 class CMSConcMarkingTask: public YieldingFlexibleGangTask { 3748 CMSCollector* _collector; 3749 int _n_workers; // requested/desired # workers 3750 bool _asynch; 3751 bool _result; 3752 CompactibleFreeListSpace* _cms_space; 3753 CompactibleFreeListSpace* _perm_space; 3754 char _pad_front[64]; // padding to ... 3755 HeapWord* _global_finger; // ... avoid sharing cache line 3756 char _pad_back[64]; 3757 HeapWord* _restart_addr; 3758 3759 // Exposed here for yielding support 3760 Mutex* const _bit_map_lock; 3761 3762 // The per thread work queues, available here for stealing 3763 OopTaskQueueSet* _task_queues; 3764 3765 // Termination (and yielding) support 3766 CMSConcMarkingTerminator _term; 3767 CMSConcMarkingTerminatorTerminator _term_term; 3768 3769 public: 3770 CMSConcMarkingTask(CMSCollector* collector, 3771 CompactibleFreeListSpace* cms_space, 3772 CompactibleFreeListSpace* perm_space, 3773 bool asynch, 3774 YieldingFlexibleWorkGang* workers, 3775 OopTaskQueueSet* task_queues): 3776 YieldingFlexibleGangTask("Concurrent marking done multi-threaded"), 3777 _collector(collector), 3778 _cms_space(cms_space), 3779 _perm_space(perm_space), 3780 _asynch(asynch), _n_workers(0), _result(true), 3781 _task_queues(task_queues), 3782 _term(_n_workers, task_queues, _collector), 3783 _bit_map_lock(collector->bitMapLock()) 3784 { 3785 _requested_size = _n_workers; 3786 _term.set_task(this); 3787 _term_term.set_task(this); 3788 assert(_cms_space->bottom() < _perm_space->bottom(), 3789 "Finger incorrectly initialized below"); 3790 _restart_addr = _global_finger = _cms_space->bottom(); 3791 } 3792 3793 3794 OopTaskQueueSet* task_queues() { return _task_queues; } 3795 3796 OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); } 3797 3798 HeapWord** global_finger_addr() { return &_global_finger; } 3799 3800 CMSConcMarkingTerminator* terminator() { return &_term; } 3801 3802 virtual void set_for_termination(int active_workers) { 3803 terminator()->reset_for_reuse(active_workers); 3804 } 3805 3806 void work(uint worker_id); 3807 bool should_yield() { 3808 return ConcurrentMarkSweepThread::should_yield() 3809 && !_collector->foregroundGCIsActive() 3810 && _asynch; 3811 } 3812 3813 virtual void coordinator_yield(); // stuff done by coordinator 3814 bool result() { return _result; } 3815 3816 void reset(HeapWord* ra) { 3817 assert(_global_finger >= _cms_space->end(), "Postcondition of ::work(i)"); 3818 assert(_global_finger >= _perm_space->end(), "Postcondition of ::work(i)"); 3819 assert(ra < _perm_space->end(), "ra too large"); 3820 _restart_addr = _global_finger = ra; 3821 _term.reset_for_reuse(); 3822 } 3823 3824 static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk, 3825 OopTaskQueue* work_q); 3826 3827 private: 3828 void do_scan_and_mark(int i, CompactibleFreeListSpace* sp); 3829 void do_work_steal(int i); 3830 void bump_global_finger(HeapWord* f); 3831 }; 3832 3833 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() { 3834 assert(_task != NULL, "Error"); 3835 return _task->yielding(); 3836 // Note that we do not need the disjunct || _task->should_yield() above 3837 // because we want terminating threads to yield only if the task 3838 // is already in the midst of yielding, which happens only after at least one 3839 // thread has yielded. 3840 } 3841 3842 void CMSConcMarkingTerminator::yield() { 3843 if (_task->should_yield()) { 3844 _task->yield(); 3845 } else { 3846 ParallelTaskTerminator::yield(); 3847 } 3848 } 3849 3850 //////////////////////////////////////////////////////////////// 3851 // Concurrent Marking Algorithm Sketch 3852 //////////////////////////////////////////////////////////////// 3853 // Until all tasks exhausted (both spaces): 3854 // -- claim next available chunk 3855 // -- bump global finger via CAS 3856 // -- find first object that starts in this chunk 3857 // and start scanning bitmap from that position 3858 // -- scan marked objects for oops 3859 // -- CAS-mark target, and if successful: 3860 // . if target oop is above global finger (volatile read) 3861 // nothing to do 3862 // . if target oop is in chunk and above local finger 3863 // then nothing to do 3864 // . else push on work-queue 3865 // -- Deal with possible overflow issues: 3866 // . local work-queue overflow causes stuff to be pushed on 3867 // global (common) overflow queue 3868 // . always first empty local work queue 3869 // . then get a batch of oops from global work queue if any 3870 // . then do work stealing 3871 // -- When all tasks claimed (both spaces) 3872 // and local work queue empty, 3873 // then in a loop do: 3874 // . check global overflow stack; steal a batch of oops and trace 3875 // . try to steal from other threads oif GOS is empty 3876 // . if neither is available, offer termination 3877 // -- Terminate and return result 3878 // 3879 void CMSConcMarkingTask::work(uint worker_id) { 3880 elapsedTimer _timer; 3881 ResourceMark rm; 3882 HandleMark hm; 3883 3884 DEBUG_ONLY(_collector->verify_overflow_empty();) 3885 3886 // Before we begin work, our work queue should be empty 3887 assert(work_queue(worker_id)->size() == 0, "Expected to be empty"); 3888 // Scan the bitmap covering _cms_space, tracing through grey objects. 3889 _timer.start(); 3890 do_scan_and_mark(worker_id, _cms_space); 3891 _timer.stop(); 3892 if (PrintCMSStatistics != 0) { 3893 gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec", 3894 worker_id, _timer.seconds()); 3895 // XXX: need xxx/xxx type of notation, two timers 3896 } 3897 3898 // ... do the same for the _perm_space 3899 _timer.reset(); 3900 _timer.start(); 3901 do_scan_and_mark(worker_id, _perm_space); 3902 _timer.stop(); 3903 if (PrintCMSStatistics != 0) { 3904 gclog_or_tty->print_cr("Finished perm space scanning in %dth thread: %3.3f sec", 3905 worker_id, _timer.seconds()); 3906 // XXX: need xxx/xxx type of notation, two timers 3907 } 3908 3909 // ... do work stealing 3910 _timer.reset(); 3911 _timer.start(); 3912 do_work_steal(worker_id); 3913 _timer.stop(); 3914 if (PrintCMSStatistics != 0) { 3915 gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec", 3916 worker_id, _timer.seconds()); 3917 // XXX: need xxx/xxx type of notation, two timers 3918 } 3919 assert(_collector->_markStack.isEmpty(), "Should have been emptied"); 3920 assert(work_queue(worker_id)->size() == 0, "Should have been emptied"); 3921 // Note that under the current task protocol, the 3922 // following assertion is true even of the spaces 3923 // expanded since the completion of the concurrent 3924 // marking. XXX This will likely change under a strict 3925 // ABORT semantics. 3926 assert(_global_finger > _cms_space->end() && 3927 _global_finger >= _perm_space->end(), 3928 "All tasks have been completed"); 3929 DEBUG_ONLY(_collector->verify_overflow_empty();) 3930 } 3931 3932 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) { 3933 HeapWord* read = _global_finger; 3934 HeapWord* cur = read; 3935 while (f > read) { 3936 cur = read; 3937 read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur); 3938 if (cur == read) { 3939 // our cas succeeded 3940 assert(_global_finger >= f, "protocol consistency"); 3941 break; 3942 } 3943 } 3944 } 3945 3946 // This is really inefficient, and should be redone by 3947 // using (not yet available) block-read and -write interfaces to the 3948 // stack and the work_queue. XXX FIX ME !!! 3949 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk, 3950 OopTaskQueue* work_q) { 3951 // Fast lock-free check 3952 if (ovflw_stk->length() == 0) { 3953 return false; 3954 } 3955 assert(work_q->size() == 0, "Shouldn't steal"); 3956 MutexLockerEx ml(ovflw_stk->par_lock(), 3957 Mutex::_no_safepoint_check_flag); 3958 // Grab up to 1/4 the size of the work queue 3959 size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, 3960 (size_t)ParGCDesiredObjsFromOverflowList); 3961 num = MIN2(num, ovflw_stk->length()); 3962 for (int i = (int) num; i > 0; i--) { 3963 oop cur = ovflw_stk->pop(); 3964 assert(cur != NULL, "Counted wrong?"); 3965 work_q->push(cur); 3966 } 3967 return num > 0; 3968 } 3969 3970 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) { 3971 SequentialSubTasksDone* pst = sp->conc_par_seq_tasks(); 3972 int n_tasks = pst->n_tasks(); 3973 // We allow that there may be no tasks to do here because 3974 // we are restarting after a stack overflow. 3975 assert(pst->valid() || n_tasks == 0, "Uninitialized use?"); 3976 uint nth_task = 0; 3977 3978 HeapWord* aligned_start = sp->bottom(); 3979 if (sp->used_region().contains(_restart_addr)) { 3980 // Align down to a card boundary for the start of 0th task 3981 // for this space. 3982 aligned_start = 3983 (HeapWord*)align_size_down((uintptr_t)_restart_addr, 3984 CardTableModRefBS::card_size); 3985 } 3986 3987 size_t chunk_size = sp->marking_task_size(); 3988 while (!pst->is_task_claimed(/* reference */ nth_task)) { 3989 // Having claimed the nth task in this space, 3990 // compute the chunk that it corresponds to: 3991 MemRegion span = MemRegion(aligned_start + nth_task*chunk_size, 3992 aligned_start + (nth_task+1)*chunk_size); 3993 // Try and bump the global finger via a CAS; 3994 // note that we need to do the global finger bump 3995 // _before_ taking the intersection below, because 3996 // the task corresponding to that region will be 3997 // deemed done even if the used_region() expands 3998 // because of allocation -- as it almost certainly will 3999 // during start-up while the threads yield in the 4000 // closure below. 4001 HeapWord* finger = span.end(); 4002 bump_global_finger(finger); // atomically 4003 // There are null tasks here corresponding to chunks 4004 // beyond the "top" address of the space. 4005 span = span.intersection(sp->used_region()); 4006 if (!span.is_empty()) { // Non-null task 4007 HeapWord* prev_obj; 4008 assert(!span.contains(_restart_addr) || nth_task == 0, 4009 "Inconsistency"); 4010 if (nth_task == 0) { 4011 // For the 0th task, we'll not need to compute a block_start. 4012 if (span.contains(_restart_addr)) { 4013 // In the case of a restart because of stack overflow, 4014 // we might additionally skip a chunk prefix. 4015 prev_obj = _restart_addr; 4016 } else { 4017 prev_obj = span.start(); 4018 } 4019 } else { 4020 // We want to skip the first object because 4021 // the protocol is to scan any object in its entirety 4022 // that _starts_ in this span; a fortiori, any 4023 // object starting in an earlier span is scanned 4024 // as part of an earlier claimed task. 4025 // Below we use the "careful" version of block_start 4026 // so we do not try to navigate uninitialized objects. 4027 prev_obj = sp->block_start_careful(span.start()); 4028 // Below we use a variant of block_size that uses the 4029 // Printezis bits to avoid waiting for allocated 4030 // objects to become initialized/parsable. 4031 while (prev_obj < span.start()) { 4032 size_t sz = sp->block_size_no_stall(prev_obj, _collector); 4033 if (sz > 0) { 4034 prev_obj += sz; 4035 } else { 4036 // In this case we may end up doing a bit of redundant 4037 // scanning, but that appears unavoidable, short of 4038 // locking the free list locks; see bug 6324141. 4039 break; 4040 } 4041 } 4042 } 4043 if (prev_obj < span.end()) { 4044 MemRegion my_span = MemRegion(prev_obj, span.end()); 4045 // Do the marking work within a non-empty span -- 4046 // the last argument to the constructor indicates whether the 4047 // iteration should be incremental with periodic yields. 4048 Par_MarkFromRootsClosure cl(this, _collector, my_span, 4049 &_collector->_markBitMap, 4050 work_queue(i), 4051 &_collector->_markStack, 4052 &_collector->_revisitStack, 4053 _asynch); 4054 _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end()); 4055 } // else nothing to do for this task 4056 } // else nothing to do for this task 4057 } 4058 // We'd be tempted to assert here that since there are no 4059 // more tasks left to claim in this space, the global_finger 4060 // must exceed space->top() and a fortiori space->end(). However, 4061 // that would not quite be correct because the bumping of 4062 // global_finger occurs strictly after the claiming of a task, 4063 // so by the time we reach here the global finger may not yet 4064 // have been bumped up by the thread that claimed the last 4065 // task. 4066 pst->all_tasks_completed(); 4067 } 4068 4069 class Par_ConcMarkingClosure: public Par_KlassRememberingOopClosure { 4070 private: 4071 CMSConcMarkingTask* _task; 4072 MemRegion _span; 4073 CMSBitMap* _bit_map; 4074 CMSMarkStack* _overflow_stack; 4075 OopTaskQueue* _work_queue; 4076 protected: 4077 DO_OOP_WORK_DEFN 4078 public: 4079 Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue, 4080 CMSBitMap* bit_map, CMSMarkStack* overflow_stack, 4081 CMSMarkStack* revisit_stack): 4082 Par_KlassRememberingOopClosure(collector, collector->ref_processor(), revisit_stack), 4083 _task(task), 4084 _span(collector->_span), 4085 _work_queue(work_queue), 4086 _bit_map(bit_map), 4087 _overflow_stack(overflow_stack) 4088 { } 4089 virtual void do_oop(oop* p); 4090 virtual void do_oop(narrowOop* p); 4091 void trim_queue(size_t max); 4092 void handle_stack_overflow(HeapWord* lost); 4093 void do_yield_check() { 4094 if (_task->should_yield()) { 4095 _task->yield(); 4096 } 4097 } 4098 }; 4099 4100 // Grey object scanning during work stealing phase -- 4101 // the salient assumption here is that any references 4102 // that are in these stolen objects being scanned must 4103 // already have been initialized (else they would not have 4104 // been published), so we do not need to check for 4105 // uninitialized objects before pushing here. 4106 void Par_ConcMarkingClosure::do_oop(oop obj) { 4107 assert(obj->is_oop_or_null(true), "expected an oop or NULL"); 4108 HeapWord* addr = (HeapWord*)obj; 4109 // Check if oop points into the CMS generation 4110 // and is not marked 4111 if (_span.contains(addr) && !_bit_map->isMarked(addr)) { 4112 // a white object ... 4113 // If we manage to "claim" the object, by being the 4114 // first thread to mark it, then we push it on our 4115 // marking stack 4116 if (_bit_map->par_mark(addr)) { // ... now grey 4117 // push on work queue (grey set) 4118 bool simulate_overflow = false; 4119 NOT_PRODUCT( 4120 if (CMSMarkStackOverflowALot && 4121 _collector->simulate_overflow()) { 4122 // simulate a stack overflow 4123 simulate_overflow = true; 4124 } 4125 ) 4126 if (simulate_overflow || 4127 !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) { 4128 // stack overflow 4129 if (PrintCMSStatistics != 0) { 4130 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 4131 SIZE_FORMAT, _overflow_stack->capacity()); 4132 } 4133 // We cannot assert that the overflow stack is full because 4134 // it may have been emptied since. 4135 assert(simulate_overflow || 4136 _work_queue->size() == _work_queue->max_elems(), 4137 "Else push should have succeeded"); 4138 handle_stack_overflow(addr); 4139 } 4140 } // Else, some other thread got there first 4141 do_yield_check(); 4142 } 4143 } 4144 4145 void Par_ConcMarkingClosure::do_oop(oop* p) { Par_ConcMarkingClosure::do_oop_work(p); } 4146 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); } 4147 4148 void Par_ConcMarkingClosure::trim_queue(size_t max) { 4149 while (_work_queue->size() > max) { 4150 oop new_oop; 4151 if (_work_queue->pop_local(new_oop)) { 4152 assert(new_oop->is_oop(), "Should be an oop"); 4153 assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object"); 4154 assert(_span.contains((HeapWord*)new_oop), "Not in span"); 4155 assert(new_oop->is_parsable(), "Should be parsable"); 4156 new_oop->oop_iterate(this); // do_oop() above 4157 do_yield_check(); 4158 } 4159 } 4160 } 4161 4162 // Upon stack overflow, we discard (part of) the stack, 4163 // remembering the least address amongst those discarded 4164 // in CMSCollector's _restart_address. 4165 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) { 4166 // We need to do this under a mutex to prevent other 4167 // workers from interfering with the work done below. 4168 MutexLockerEx ml(_overflow_stack->par_lock(), 4169 Mutex::_no_safepoint_check_flag); 4170 // Remember the least grey address discarded 4171 HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost); 4172 _collector->lower_restart_addr(ra); 4173 _overflow_stack->reset(); // discard stack contents 4174 _overflow_stack->expand(); // expand the stack if possible 4175 } 4176 4177 4178 void CMSConcMarkingTask::do_work_steal(int i) { 4179 OopTaskQueue* work_q = work_queue(i); 4180 oop obj_to_scan; 4181 CMSBitMap* bm = &(_collector->_markBitMap); 4182 CMSMarkStack* ovflw = &(_collector->_markStack); 4183 CMSMarkStack* revisit = &(_collector->_revisitStack); 4184 int* seed = _collector->hash_seed(i); 4185 Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw, revisit); 4186 while (true) { 4187 cl.trim_queue(0); 4188 assert(work_q->size() == 0, "Should have been emptied above"); 4189 if (get_work_from_overflow_stack(ovflw, work_q)) { 4190 // Can't assert below because the work obtained from the 4191 // overflow stack may already have been stolen from us. 4192 // assert(work_q->size() > 0, "Work from overflow stack"); 4193 continue; 4194 } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) { 4195 assert(obj_to_scan->is_oop(), "Should be an oop"); 4196 assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object"); 4197 obj_to_scan->oop_iterate(&cl); 4198 } else if (terminator()->offer_termination(&_term_term)) { 4199 assert(work_q->size() == 0, "Impossible!"); 4200 break; 4201 } else if (yielding() || should_yield()) { 4202 yield(); 4203 } 4204 } 4205 } 4206 4207 // This is run by the CMS (coordinator) thread. 4208 void CMSConcMarkingTask::coordinator_yield() { 4209 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 4210 "CMS thread should hold CMS token"); 4211 DEBUG_ONLY(RememberKlassesChecker mux(false);) 4212 // First give up the locks, then yield, then re-lock 4213 // We should probably use a constructor/destructor idiom to 4214 // do this unlock/lock or modify the MutexUnlocker class to 4215 // serve our purpose. XXX 4216 assert_lock_strong(_bit_map_lock); 4217 _bit_map_lock->unlock(); 4218 ConcurrentMarkSweepThread::desynchronize(true); 4219 ConcurrentMarkSweepThread::acknowledge_yield_request(); 4220 _collector->stopTimer(); 4221 if (PrintCMSStatistics != 0) { 4222 _collector->incrementYields(); 4223 } 4224 _collector->icms_wait(); 4225 4226 // It is possible for whichever thread initiated the yield request 4227 // not to get a chance to wake up and take the bitmap lock between 4228 // this thread releasing it and reacquiring it. So, while the 4229 // should_yield() flag is on, let's sleep for a bit to give the 4230 // other thread a chance to wake up. The limit imposed on the number 4231 // of iterations is defensive, to avoid any unforseen circumstances 4232 // putting us into an infinite loop. Since it's always been this 4233 // (coordinator_yield()) method that was observed to cause the 4234 // problem, we are using a parameter (CMSCoordinatorYieldSleepCount) 4235 // which is by default non-zero. For the other seven methods that 4236 // also perform the yield operation, as are using a different 4237 // parameter (CMSYieldSleepCount) which is by default zero. This way we 4238 // can enable the sleeping for those methods too, if necessary. 4239 // See 6442774. 4240 // 4241 // We really need to reconsider the synchronization between the GC 4242 // thread and the yield-requesting threads in the future and we 4243 // should really use wait/notify, which is the recommended 4244 // way of doing this type of interaction. Additionally, we should 4245 // consolidate the eight methods that do the yield operation and they 4246 // are almost identical into one for better maintenability and 4247 // readability. See 6445193. 4248 // 4249 // Tony 2006.06.29 4250 for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount && 4251 ConcurrentMarkSweepThread::should_yield() && 4252 !CMSCollector::foregroundGCIsActive(); ++i) { 4253 os::sleep(Thread::current(), 1, false); 4254 ConcurrentMarkSweepThread::acknowledge_yield_request(); 4255 } 4256 4257 ConcurrentMarkSweepThread::synchronize(true); 4258 _bit_map_lock->lock_without_safepoint_check(); 4259 _collector->startTimer(); 4260 } 4261 4262 bool CMSCollector::do_marking_mt(bool asynch) { 4263 assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition"); 4264 int num_workers = AdaptiveSizePolicy::calc_active_conc_workers( 4265 conc_workers()->total_workers(), 4266 conc_workers()->active_workers(), 4267 Threads::number_of_non_daemon_threads()); 4268 conc_workers()->set_active_workers(num_workers); 4269 4270 CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); 4271 CompactibleFreeListSpace* perm_space = _permGen->cmsSpace(); 4272 4273 CMSConcMarkingTask tsk(this, 4274 cms_space, 4275 perm_space, 4276 asynch, 4277 conc_workers(), 4278 task_queues()); 4279 4280 // Since the actual number of workers we get may be different 4281 // from the number we requested above, do we need to do anything different 4282 // below? In particular, may be we need to subclass the SequantialSubTasksDone 4283 // class?? XXX 4284 cms_space ->initialize_sequential_subtasks_for_marking(num_workers); 4285 perm_space->initialize_sequential_subtasks_for_marking(num_workers); 4286 4287 // Refs discovery is already non-atomic. 4288 assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic"); 4289 assert(ref_processor()->discovery_is_mt(), "Discovery should be MT"); 4290 DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());) 4291 conc_workers()->start_task(&tsk); 4292 while (tsk.yielded()) { 4293 tsk.coordinator_yield(); 4294 conc_workers()->continue_task(&tsk); 4295 } 4296 // If the task was aborted, _restart_addr will be non-NULL 4297 assert(tsk.completed() || _restart_addr != NULL, "Inconsistency"); 4298 while (_restart_addr != NULL) { 4299 // XXX For now we do not make use of ABORTED state and have not 4300 // yet implemented the right abort semantics (even in the original 4301 // single-threaded CMS case). That needs some more investigation 4302 // and is deferred for now; see CR# TBF. 07252005YSR. XXX 4303 assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency"); 4304 // If _restart_addr is non-NULL, a marking stack overflow 4305 // occurred; we need to do a fresh marking iteration from the 4306 // indicated restart address. 4307 if (_foregroundGCIsActive && asynch) { 4308 // We may be running into repeated stack overflows, having 4309 // reached the limit of the stack size, while making very 4310 // slow forward progress. It may be best to bail out and 4311 // let the foreground collector do its job. 4312 // Clear _restart_addr, so that foreground GC 4313 // works from scratch. This avoids the headache of 4314 // a "rescan" which would otherwise be needed because 4315 // of the dirty mod union table & card table. 4316 _restart_addr = NULL; 4317 return false; 4318 } 4319 // Adjust the task to restart from _restart_addr 4320 tsk.reset(_restart_addr); 4321 cms_space ->initialize_sequential_subtasks_for_marking(num_workers, 4322 _restart_addr); 4323 perm_space->initialize_sequential_subtasks_for_marking(num_workers, 4324 _restart_addr); 4325 _restart_addr = NULL; 4326 // Get the workers going again 4327 conc_workers()->start_task(&tsk); 4328 while (tsk.yielded()) { 4329 tsk.coordinator_yield(); 4330 conc_workers()->continue_task(&tsk); 4331 } 4332 } 4333 assert(tsk.completed(), "Inconsistency"); 4334 assert(tsk.result() == true, "Inconsistency"); 4335 return true; 4336 } 4337 4338 bool CMSCollector::do_marking_st(bool asynch) { 4339 ResourceMark rm; 4340 HandleMark hm; 4341 4342 // Temporarily make refs discovery single threaded (non-MT) 4343 ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false); 4344 MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap, 4345 &_markStack, &_revisitStack, CMSYield && asynch); 4346 // the last argument to iterate indicates whether the iteration 4347 // should be incremental with periodic yields. 4348 _markBitMap.iterate(&markFromRootsClosure); 4349 // If _restart_addr is non-NULL, a marking stack overflow 4350 // occurred; we need to do a fresh iteration from the 4351 // indicated restart address. 4352 while (_restart_addr != NULL) { 4353 if (_foregroundGCIsActive && asynch) { 4354 // We may be running into repeated stack overflows, having 4355 // reached the limit of the stack size, while making very 4356 // slow forward progress. It may be best to bail out and 4357 // let the foreground collector do its job. 4358 // Clear _restart_addr, so that foreground GC 4359 // works from scratch. This avoids the headache of 4360 // a "rescan" which would otherwise be needed because 4361 // of the dirty mod union table & card table. 4362 _restart_addr = NULL; 4363 return false; // indicating failure to complete marking 4364 } 4365 // Deal with stack overflow: 4366 // we restart marking from _restart_addr 4367 HeapWord* ra = _restart_addr; 4368 markFromRootsClosure.reset(ra); 4369 _restart_addr = NULL; 4370 _markBitMap.iterate(&markFromRootsClosure, ra, _span.end()); 4371 } 4372 return true; 4373 } 4374 4375 void CMSCollector::preclean() { 4376 check_correct_thread_executing(); 4377 assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread"); 4378 verify_work_stacks_empty(); 4379 verify_overflow_empty(); 4380 _abort_preclean = false; 4381 if (CMSPrecleaningEnabled) { 4382 _eden_chunk_index = 0; 4383 size_t used = get_eden_used(); 4384 size_t capacity = get_eden_capacity(); 4385 // Don't start sampling unless we will get sufficiently 4386 // many samples. 4387 if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100) 4388 * CMSScheduleRemarkEdenPenetration)) { 4389 _start_sampling = true; 4390 } else { 4391 _start_sampling = false; 4392 } 4393 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 4394 CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails); 4395 preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1); 4396 } 4397 CMSTokenSync x(true); // is cms thread 4398 if (CMSPrecleaningEnabled) { 4399 sample_eden(); 4400 _collectorState = AbortablePreclean; 4401 } else { 4402 _collectorState = FinalMarking; 4403 } 4404 verify_work_stacks_empty(); 4405 verify_overflow_empty(); 4406 } 4407 4408 // Try and schedule the remark such that young gen 4409 // occupancy is CMSScheduleRemarkEdenPenetration %. 4410 void CMSCollector::abortable_preclean() { 4411 check_correct_thread_executing(); 4412 assert(CMSPrecleaningEnabled, "Inconsistent control state"); 4413 assert(_collectorState == AbortablePreclean, "Inconsistent control state"); 4414 4415 // If Eden's current occupancy is below this threshold, 4416 // immediately schedule the remark; else preclean 4417 // past the next scavenge in an effort to 4418 // schedule the pause as described avove. By choosing 4419 // CMSScheduleRemarkEdenSizeThreshold >= max eden size 4420 // we will never do an actual abortable preclean cycle. 4421 if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) { 4422 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 4423 CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails); 4424 // We need more smarts in the abortable preclean 4425 // loop below to deal with cases where allocation 4426 // in young gen is very very slow, and our precleaning 4427 // is running a losing race against a horde of 4428 // mutators intent on flooding us with CMS updates 4429 // (dirty cards). 4430 // One, admittedly dumb, strategy is to give up 4431 // after a certain number of abortable precleaning loops 4432 // or after a certain maximum time. We want to make 4433 // this smarter in the next iteration. 4434 // XXX FIX ME!!! YSR 4435 size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0; 4436 while (!(should_abort_preclean() || 4437 ConcurrentMarkSweepThread::should_terminate())) { 4438 workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2); 4439 cumworkdone += workdone; 4440 loops++; 4441 // Voluntarily terminate abortable preclean phase if we have 4442 // been at it for too long. 4443 if ((CMSMaxAbortablePrecleanLoops != 0) && 4444 loops >= CMSMaxAbortablePrecleanLoops) { 4445 if (PrintGCDetails) { 4446 gclog_or_tty->print(" CMS: abort preclean due to loops "); 4447 } 4448 break; 4449 } 4450 if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) { 4451 if (PrintGCDetails) { 4452 gclog_or_tty->print(" CMS: abort preclean due to time "); 4453 } 4454 break; 4455 } 4456 // If we are doing little work each iteration, we should 4457 // take a short break. 4458 if (workdone < CMSAbortablePrecleanMinWorkPerIteration) { 4459 // Sleep for some time, waiting for work to accumulate 4460 stopTimer(); 4461 cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis); 4462 startTimer(); 4463 waited++; 4464 } 4465 } 4466 if (PrintCMSStatistics > 0) { 4467 gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ", 4468 loops, waited, cumworkdone); 4469 } 4470 } 4471 CMSTokenSync x(true); // is cms thread 4472 if (_collectorState != Idling) { 4473 assert(_collectorState == AbortablePreclean, 4474 "Spontaneous state transition?"); 4475 _collectorState = FinalMarking; 4476 } // Else, a foreground collection completed this CMS cycle. 4477 return; 4478 } 4479 4480 // Respond to an Eden sampling opportunity 4481 void CMSCollector::sample_eden() { 4482 // Make sure a young gc cannot sneak in between our 4483 // reading and recording of a sample. 4484 assert(Thread::current()->is_ConcurrentGC_thread(), 4485 "Only the cms thread may collect Eden samples"); 4486 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 4487 "Should collect samples while holding CMS token"); 4488 if (!_start_sampling) { 4489 return; 4490 } 4491 if (_eden_chunk_array) { 4492 if (_eden_chunk_index < _eden_chunk_capacity) { 4493 _eden_chunk_array[_eden_chunk_index] = *_top_addr; // take sample 4494 assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr, 4495 "Unexpected state of Eden"); 4496 // We'd like to check that what we just sampled is an oop-start address; 4497 // however, we cannot do that here since the object may not yet have been 4498 // initialized. So we'll instead do the check when we _use_ this sample 4499 // later. 4500 if (_eden_chunk_index == 0 || 4501 (pointer_delta(_eden_chunk_array[_eden_chunk_index], 4502 _eden_chunk_array[_eden_chunk_index-1]) 4503 >= CMSSamplingGrain)) { 4504 _eden_chunk_index++; // commit sample 4505 } 4506 } 4507 } 4508 if ((_collectorState == AbortablePreclean) && !_abort_preclean) { 4509 size_t used = get_eden_used(); 4510 size_t capacity = get_eden_capacity(); 4511 assert(used <= capacity, "Unexpected state of Eden"); 4512 if (used > (capacity/100 * CMSScheduleRemarkEdenPenetration)) { 4513 _abort_preclean = true; 4514 } 4515 } 4516 } 4517 4518 4519 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) { 4520 assert(_collectorState == Precleaning || 4521 _collectorState == AbortablePreclean, "incorrect state"); 4522 ResourceMark rm; 4523 HandleMark hm; 4524 4525 // Precleaning is currently not MT but the reference processor 4526 // may be set for MT. Disable it temporarily here. 4527 ReferenceProcessor* rp = ref_processor(); 4528 ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false); 4529 4530 // Do one pass of scrubbing the discovered reference lists 4531 // to remove any reference objects with strongly-reachable 4532 // referents. 4533 if (clean_refs) { 4534 CMSPrecleanRefsYieldClosure yield_cl(this); 4535 assert(rp->span().equals(_span), "Spans should be equal"); 4536 CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap, 4537 &_markStack, &_revisitStack, 4538 true /* preclean */); 4539 CMSDrainMarkingStackClosure complete_trace(this, 4540 _span, &_markBitMap, &_markStack, 4541 &keep_alive, true /* preclean */); 4542 4543 // We don't want this step to interfere with a young 4544 // collection because we don't want to take CPU 4545 // or memory bandwidth away from the young GC threads 4546 // (which may be as many as there are CPUs). 4547 // Note that we don't need to protect ourselves from 4548 // interference with mutators because they can't 4549 // manipulate the discovered reference lists nor affect 4550 // the computed reachability of the referents, the 4551 // only properties manipulated by the precleaning 4552 // of these reference lists. 4553 stopTimer(); 4554 CMSTokenSyncWithLocks x(true /* is cms thread */, 4555 bitMapLock()); 4556 startTimer(); 4557 sample_eden(); 4558 4559 // The following will yield to allow foreground 4560 // collection to proceed promptly. XXX YSR: 4561 // The code in this method may need further 4562 // tweaking for better performance and some restructuring 4563 // for cleaner interfaces. 4564 GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases 4565 rp->preclean_discovered_references( 4566 rp->is_alive_non_header(), &keep_alive, &complete_trace, 4567 &yield_cl, should_unload_classes(), gc_timer); 4568 } 4569 4570 if (clean_survivor) { // preclean the active survivor space(s) 4571 assert(_young_gen->kind() == Generation::DefNew || 4572 _young_gen->kind() == Generation::ParNew || 4573 _young_gen->kind() == Generation::ASParNew, 4574 "incorrect type for cast"); 4575 DefNewGeneration* dng = (DefNewGeneration*)_young_gen; 4576 PushAndMarkClosure pam_cl(this, _span, ref_processor(), 4577 &_markBitMap, &_modUnionTable, 4578 &_markStack, &_revisitStack, 4579 true /* precleaning phase */); 4580 stopTimer(); 4581 CMSTokenSyncWithLocks ts(true /* is cms thread */, 4582 bitMapLock()); 4583 startTimer(); 4584 unsigned int before_count = 4585 GenCollectedHeap::heap()->total_collections(); 4586 SurvivorSpacePrecleanClosure 4587 sss_cl(this, _span, &_markBitMap, &_markStack, 4588 &pam_cl, before_count, CMSYield); 4589 DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());) 4590 dng->from()->object_iterate_careful(&sss_cl); 4591 dng->to()->object_iterate_careful(&sss_cl); 4592 } 4593 MarkRefsIntoAndScanClosure 4594 mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable, 4595 &_markStack, &_revisitStack, this, CMSYield, 4596 true /* precleaning phase */); 4597 // CAUTION: The following closure has persistent state that may need to 4598 // be reset upon a decrease in the sequence of addresses it 4599 // processes. 4600 ScanMarkedObjectsAgainCarefullyClosure 4601 smoac_cl(this, _span, 4602 &_markBitMap, &_markStack, &_revisitStack, &mrias_cl, CMSYield); 4603 4604 // Preclean dirty cards in ModUnionTable and CardTable using 4605 // appropriate convergence criterion; 4606 // repeat CMSPrecleanIter times unless we find that 4607 // we are losing. 4608 assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large"); 4609 assert(CMSPrecleanNumerator < CMSPrecleanDenominator, 4610 "Bad convergence multiplier"); 4611 assert(CMSPrecleanThreshold >= 100, 4612 "Unreasonably low CMSPrecleanThreshold"); 4613 4614 size_t numIter, cumNumCards, lastNumCards, curNumCards; 4615 for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0; 4616 numIter < CMSPrecleanIter; 4617 numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) { 4618 curNumCards = preclean_mod_union_table(_cmsGen, &smoac_cl); 4619 if (CMSPermGenPrecleaningEnabled) { 4620 curNumCards += preclean_mod_union_table(_permGen, &smoac_cl); 4621 } 4622 if (Verbose && PrintGCDetails) { 4623 gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards); 4624 } 4625 // Either there are very few dirty cards, so re-mark 4626 // pause will be small anyway, or our pre-cleaning isn't 4627 // that much faster than the rate at which cards are being 4628 // dirtied, so we might as well stop and re-mark since 4629 // precleaning won't improve our re-mark time by much. 4630 if (curNumCards <= CMSPrecleanThreshold || 4631 (numIter > 0 && 4632 (curNumCards * CMSPrecleanDenominator > 4633 lastNumCards * CMSPrecleanNumerator))) { 4634 numIter++; 4635 cumNumCards += curNumCards; 4636 break; 4637 } 4638 } 4639 curNumCards = preclean_card_table(_cmsGen, &smoac_cl); 4640 if (CMSPermGenPrecleaningEnabled) { 4641 curNumCards += preclean_card_table(_permGen, &smoac_cl); 4642 } 4643 cumNumCards += curNumCards; 4644 if (PrintGCDetails && PrintCMSStatistics != 0) { 4645 gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)", 4646 curNumCards, cumNumCards, numIter); 4647 } 4648 return cumNumCards; // as a measure of useful work done 4649 } 4650 4651 // PRECLEANING NOTES: 4652 // Precleaning involves: 4653 // . reading the bits of the modUnionTable and clearing the set bits. 4654 // . For the cards corresponding to the set bits, we scan the 4655 // objects on those cards. This means we need the free_list_lock 4656 // so that we can safely iterate over the CMS space when scanning 4657 // for oops. 4658 // . When we scan the objects, we'll be both reading and setting 4659 // marks in the marking bit map, so we'll need the marking bit map. 4660 // . For protecting _collector_state transitions, we take the CGC_lock. 4661 // Note that any races in the reading of of card table entries by the 4662 // CMS thread on the one hand and the clearing of those entries by the 4663 // VM thread or the setting of those entries by the mutator threads on the 4664 // other are quite benign. However, for efficiency it makes sense to keep 4665 // the VM thread from racing with the CMS thread while the latter is 4666 // dirty card info to the modUnionTable. We therefore also use the 4667 // CGC_lock to protect the reading of the card table and the mod union 4668 // table by the CM thread. 4669 // . We run concurrently with mutator updates, so scanning 4670 // needs to be done carefully -- we should not try to scan 4671 // potentially uninitialized objects. 4672 // 4673 // Locking strategy: While holding the CGC_lock, we scan over and 4674 // reset a maximal dirty range of the mod union / card tables, then lock 4675 // the free_list_lock and bitmap lock to do a full marking, then 4676 // release these locks; and repeat the cycle. This allows for a 4677 // certain amount of fairness in the sharing of these locks between 4678 // the CMS collector on the one hand, and the VM thread and the 4679 // mutators on the other. 4680 4681 // NOTE: preclean_mod_union_table() and preclean_card_table() 4682 // further below are largely identical; if you need to modify 4683 // one of these methods, please check the other method too. 4684 4685 size_t CMSCollector::preclean_mod_union_table( 4686 ConcurrentMarkSweepGeneration* gen, 4687 ScanMarkedObjectsAgainCarefullyClosure* cl) { 4688 verify_work_stacks_empty(); 4689 verify_overflow_empty(); 4690 4691 // Turn off checking for this method but turn it back on 4692 // selectively. There are yield points in this method 4693 // but it is difficult to turn the checking off just around 4694 // the yield points. It is simpler to selectively turn 4695 // it on. 4696 DEBUG_ONLY(RememberKlassesChecker mux(false);) 4697 4698 // strategy: starting with the first card, accumulate contiguous 4699 // ranges of dirty cards; clear these cards, then scan the region 4700 // covered by these cards. 4701 4702 // Since all of the MUT is committed ahead, we can just use 4703 // that, in case the generations expand while we are precleaning. 4704 // It might also be fine to just use the committed part of the 4705 // generation, but we might potentially miss cards when the 4706 // generation is rapidly expanding while we are in the midst 4707 // of precleaning. 4708 HeapWord* startAddr = gen->reserved().start(); 4709 HeapWord* endAddr = gen->reserved().end(); 4710 4711 cl->setFreelistLock(gen->freelistLock()); // needed for yielding 4712 4713 size_t numDirtyCards, cumNumDirtyCards; 4714 HeapWord *nextAddr, *lastAddr; 4715 for (cumNumDirtyCards = numDirtyCards = 0, 4716 nextAddr = lastAddr = startAddr; 4717 nextAddr < endAddr; 4718 nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) { 4719 4720 ResourceMark rm; 4721 HandleMark hm; 4722 4723 MemRegion dirtyRegion; 4724 { 4725 stopTimer(); 4726 // Potential yield point 4727 CMSTokenSync ts(true); 4728 startTimer(); 4729 sample_eden(); 4730 // Get dirty region starting at nextOffset (inclusive), 4731 // simultaneously clearing it. 4732 dirtyRegion = 4733 _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr); 4734 assert(dirtyRegion.start() >= nextAddr, 4735 "returned region inconsistent?"); 4736 } 4737 // Remember where the next search should begin. 4738 // The returned region (if non-empty) is a right open interval, 4739 // so lastOffset is obtained from the right end of that 4740 // interval. 4741 lastAddr = dirtyRegion.end(); 4742 // Should do something more transparent and less hacky XXX 4743 numDirtyCards = 4744 _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size()); 4745 4746 // We'll scan the cards in the dirty region (with periodic 4747 // yields for foreground GC as needed). 4748 if (!dirtyRegion.is_empty()) { 4749 assert(numDirtyCards > 0, "consistency check"); 4750 HeapWord* stop_point = NULL; 4751 stopTimer(); 4752 // Potential yield point 4753 CMSTokenSyncWithLocks ts(true, gen->freelistLock(), 4754 bitMapLock()); 4755 startTimer(); 4756 { 4757 verify_work_stacks_empty(); 4758 verify_overflow_empty(); 4759 sample_eden(); 4760 DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());) 4761 stop_point = 4762 gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl); 4763 } 4764 if (stop_point != NULL) { 4765 // The careful iteration stopped early either because it found an 4766 // uninitialized object, or because we were in the midst of an 4767 // "abortable preclean", which should now be aborted. Redirty 4768 // the bits corresponding to the partially-scanned or unscanned 4769 // cards. We'll either restart at the next block boundary or 4770 // abort the preclean. 4771 assert((CMSPermGenPrecleaningEnabled && (gen == _permGen)) || 4772 (_collectorState == AbortablePreclean && should_abort_preclean()), 4773 "Unparsable objects should only be in perm gen."); 4774 _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end())); 4775 if (should_abort_preclean()) { 4776 break; // out of preclean loop 4777 } else { 4778 // Compute the next address at which preclean should pick up; 4779 // might need bitMapLock in order to read P-bits. 4780 lastAddr = next_card_start_after_block(stop_point); 4781 } 4782 } 4783 } else { 4784 assert(lastAddr == endAddr, "consistency check"); 4785 assert(numDirtyCards == 0, "consistency check"); 4786 break; 4787 } 4788 } 4789 verify_work_stacks_empty(); 4790 verify_overflow_empty(); 4791 return cumNumDirtyCards; 4792 } 4793 4794 // NOTE: preclean_mod_union_table() above and preclean_card_table() 4795 // below are largely identical; if you need to modify 4796 // one of these methods, please check the other method too. 4797 4798 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen, 4799 ScanMarkedObjectsAgainCarefullyClosure* cl) { 4800 // strategy: it's similar to precleamModUnionTable above, in that 4801 // we accumulate contiguous ranges of dirty cards, mark these cards 4802 // precleaned, then scan the region covered by these cards. 4803 HeapWord* endAddr = (HeapWord*)(gen->_virtual_space.high()); 4804 HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low()); 4805 4806 cl->setFreelistLock(gen->freelistLock()); // needed for yielding 4807 4808 size_t numDirtyCards, cumNumDirtyCards; 4809 HeapWord *lastAddr, *nextAddr; 4810 4811 for (cumNumDirtyCards = numDirtyCards = 0, 4812 nextAddr = lastAddr = startAddr; 4813 nextAddr < endAddr; 4814 nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) { 4815 4816 ResourceMark rm; 4817 HandleMark hm; 4818 4819 MemRegion dirtyRegion; 4820 { 4821 // See comments in "Precleaning notes" above on why we 4822 // do this locking. XXX Could the locking overheads be 4823 // too high when dirty cards are sparse? [I don't think so.] 4824 stopTimer(); 4825 CMSTokenSync x(true); // is cms thread 4826 startTimer(); 4827 sample_eden(); 4828 // Get and clear dirty region from card table 4829 dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset( 4830 MemRegion(nextAddr, endAddr), 4831 true, 4832 CardTableModRefBS::precleaned_card_val()); 4833 4834 assert(dirtyRegion.start() >= nextAddr, 4835 "returned region inconsistent?"); 4836 } 4837 lastAddr = dirtyRegion.end(); 4838 numDirtyCards = 4839 dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words; 4840 4841 if (!dirtyRegion.is_empty()) { 4842 stopTimer(); 4843 CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock()); 4844 startTimer(); 4845 sample_eden(); 4846 verify_work_stacks_empty(); 4847 verify_overflow_empty(); 4848 DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());) 4849 HeapWord* stop_point = 4850 gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl); 4851 if (stop_point != NULL) { 4852 // The careful iteration stopped early because it found an 4853 // uninitialized object. Redirty the bits corresponding to the 4854 // partially-scanned or unscanned cards, and start again at the 4855 // next block boundary. 4856 assert(CMSPermGenPrecleaningEnabled || 4857 (_collectorState == AbortablePreclean && should_abort_preclean()), 4858 "Unparsable objects should only be in perm gen."); 4859 _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end())); 4860 if (should_abort_preclean()) { 4861 break; // out of preclean loop 4862 } else { 4863 // Compute the next address at which preclean should pick up. 4864 lastAddr = next_card_start_after_block(stop_point); 4865 } 4866 } 4867 } else { 4868 break; 4869 } 4870 } 4871 verify_work_stacks_empty(); 4872 verify_overflow_empty(); 4873 return cumNumDirtyCards; 4874 } 4875 4876 void CMSCollector::checkpointRootsFinal(bool asynch, 4877 bool clear_all_soft_refs, bool init_mark_was_synchronous) { 4878 assert(_collectorState == FinalMarking, "incorrect state transition?"); 4879 check_correct_thread_executing(); 4880 // world is stopped at this checkpoint 4881 assert(SafepointSynchronize::is_at_safepoint(), 4882 "world should be stopped"); 4883 TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause()); 4884 4885 verify_work_stacks_empty(); 4886 verify_overflow_empty(); 4887 4888 SpecializationStats::clear(); 4889 if (PrintGCDetails) { 4890 gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]", 4891 _young_gen->used() / K, 4892 _young_gen->capacity() / K); 4893 } 4894 if (asynch) { 4895 if (CMSScavengeBeforeRemark) { 4896 GenCollectedHeap* gch = GenCollectedHeap::heap(); 4897 // Temporarily set flag to false, GCH->do_collection will 4898 // expect it to be false and set to true 4899 FlagSetting fl(gch->_is_gc_active, false); 4900 NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark", 4901 PrintGCDetails && Verbose, true, _gc_timer_cm);) 4902 int level = _cmsGen->level() - 1; 4903 if (level >= 0) { 4904 gch->do_collection(true, // full (i.e. force, see below) 4905 false, // !clear_all_soft_refs 4906 0, // size 4907 false, // is_tlab 4908 level // max_level 4909 ); 4910 } 4911 } 4912 FreelistLocker x(this); 4913 MutexLockerEx y(bitMapLock(), 4914 Mutex::_no_safepoint_check_flag); 4915 assert(!init_mark_was_synchronous, "but that's impossible!"); 4916 checkpointRootsFinalWork(asynch, clear_all_soft_refs, false); 4917 } else { 4918 // already have all the locks 4919 checkpointRootsFinalWork(asynch, clear_all_soft_refs, 4920 init_mark_was_synchronous); 4921 } 4922 verify_work_stacks_empty(); 4923 verify_overflow_empty(); 4924 SpecializationStats::print(); 4925 } 4926 4927 void CMSCollector::checkpointRootsFinalWork(bool asynch, 4928 bool clear_all_soft_refs, bool init_mark_was_synchronous) { 4929 4930 NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm);) 4931 4932 assert(haveFreelistLocks(), "must have free list locks"); 4933 assert_lock_strong(bitMapLock()); 4934 4935 if (UseAdaptiveSizePolicy) { 4936 size_policy()->checkpoint_roots_final_begin(); 4937 } 4938 4939 ResourceMark rm; 4940 HandleMark hm; 4941 4942 GenCollectedHeap* gch = GenCollectedHeap::heap(); 4943 4944 if (should_unload_classes()) { 4945 CodeCache::gc_prologue(); 4946 } 4947 assert(haveFreelistLocks(), "must have free list locks"); 4948 assert_lock_strong(bitMapLock()); 4949 4950 DEBUG_ONLY(RememberKlassesChecker fmx(should_unload_classes());) 4951 if (!init_mark_was_synchronous) { 4952 // We might assume that we need not fill TLAB's when 4953 // CMSScavengeBeforeRemark is set, because we may have just done 4954 // a scavenge which would have filled all TLAB's -- and besides 4955 // Eden would be empty. This however may not always be the case -- 4956 // for instance although we asked for a scavenge, it may not have 4957 // happened because of a JNI critical section. We probably need 4958 // a policy for deciding whether we can in that case wait until 4959 // the critical section releases and then do the remark following 4960 // the scavenge, and skip it here. In the absence of that policy, 4961 // or of an indication of whether the scavenge did indeed occur, 4962 // we cannot rely on TLAB's having been filled and must do 4963 // so here just in case a scavenge did not happen. 4964 gch->ensure_parsability(false); // fill TLAB's, but no need to retire them 4965 // Update the saved marks which may affect the root scans. 4966 gch->save_marks(); 4967 4968 { 4969 COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;) 4970 4971 // Note on the role of the mod union table: 4972 // Since the marker in "markFromRoots" marks concurrently with 4973 // mutators, it is possible for some reachable objects not to have been 4974 // scanned. For instance, an only reference to an object A was 4975 // placed in object B after the marker scanned B. Unless B is rescanned, 4976 // A would be collected. Such updates to references in marked objects 4977 // are detected via the mod union table which is the set of all cards 4978 // dirtied since the first checkpoint in this GC cycle and prior to 4979 // the most recent young generation GC, minus those cleaned up by the 4980 // concurrent precleaning. 4981 if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) { 4982 GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm); 4983 do_remark_parallel(); 4984 } else { 4985 GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false, 4986 _gc_timer_cm); 4987 do_remark_non_parallel(); 4988 } 4989 } 4990 } else { 4991 assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode"); 4992 // The initial mark was stop-world, so there's no rescanning to 4993 // do; go straight on to the next step below. 4994 } 4995 verify_work_stacks_empty(); 4996 verify_overflow_empty(); 4997 4998 { 4999 NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm);) 5000 refProcessingWork(asynch, clear_all_soft_refs); 5001 } 5002 verify_work_stacks_empty(); 5003 verify_overflow_empty(); 5004 5005 if (should_unload_classes()) { 5006 CodeCache::gc_epilogue(); 5007 } 5008 JvmtiExport::gc_epilogue(); 5009 5010 // If we encountered any (marking stack / work queue) overflow 5011 // events during the current CMS cycle, take appropriate 5012 // remedial measures, where possible, so as to try and avoid 5013 // recurrence of that condition. 5014 assert(_markStack.isEmpty(), "No grey objects"); 5015 size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw + 5016 _ser_kac_ovflw + _ser_kac_preclean_ovflw; 5017 if (ser_ovflw > 0) { 5018 if (PrintCMSStatistics != 0) { 5019 gclog_or_tty->print_cr("Marking stack overflow (benign) " 5020 "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT 5021 ", kac_preclean="SIZE_FORMAT")", 5022 _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, 5023 _ser_kac_ovflw, _ser_kac_preclean_ovflw); 5024 } 5025 _markStack.expand(); 5026 _ser_pmc_remark_ovflw = 0; 5027 _ser_pmc_preclean_ovflw = 0; 5028 _ser_kac_preclean_ovflw = 0; 5029 _ser_kac_ovflw = 0; 5030 } 5031 if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) { 5032 if (PrintCMSStatistics != 0) { 5033 gclog_or_tty->print_cr("Work queue overflow (benign) " 5034 "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")", 5035 _par_pmc_remark_ovflw, _par_kac_ovflw); 5036 } 5037 _par_pmc_remark_ovflw = 0; 5038 _par_kac_ovflw = 0; 5039 } 5040 if (PrintCMSStatistics != 0) { 5041 if (_markStack._hit_limit > 0) { 5042 gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")", 5043 _markStack._hit_limit); 5044 } 5045 if (_markStack._failed_double > 0) { 5046 gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT")," 5047 " current capacity "SIZE_FORMAT, 5048 _markStack._failed_double, 5049 _markStack.capacity()); 5050 } 5051 } 5052 _markStack._hit_limit = 0; 5053 _markStack._failed_double = 0; 5054 5055 // Check that all the klasses have been checked 5056 assert(_revisitStack.isEmpty(), "Not all klasses revisited"); 5057 5058 if ((VerifyAfterGC || VerifyDuringGC) && 5059 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 5060 verify_after_remark(); 5061 } 5062 5063 // Change under the freelistLocks. 5064 _collectorState = Sweeping; 5065 // Call isAllClear() under bitMapLock 5066 assert(_modUnionTable.isAllClear(), "Should be clear by end of the" 5067 " final marking"); 5068 if (UseAdaptiveSizePolicy) { 5069 size_policy()->checkpoint_roots_final_end(gch->gc_cause()); 5070 } 5071 } 5072 5073 // Parallel remark task 5074 class CMSParRemarkTask: public AbstractGangTask { 5075 CMSCollector* _collector; 5076 int _n_workers; 5077 CompactibleFreeListSpace* _cms_space; 5078 CompactibleFreeListSpace* _perm_space; 5079 5080 // The per-thread work queues, available here for stealing. 5081 OopTaskQueueSet* _task_queues; 5082 ParallelTaskTerminator _term; 5083 5084 public: 5085 // A value of 0 passed to n_workers will cause the number of 5086 // workers to be taken from the active workers in the work gang. 5087 CMSParRemarkTask(CMSCollector* collector, 5088 CompactibleFreeListSpace* cms_space, 5089 CompactibleFreeListSpace* perm_space, 5090 int n_workers, FlexibleWorkGang* workers, 5091 OopTaskQueueSet* task_queues): 5092 AbstractGangTask("Rescan roots and grey objects in parallel"), 5093 _collector(collector), 5094 _cms_space(cms_space), _perm_space(perm_space), 5095 _n_workers(n_workers), 5096 _task_queues(task_queues), 5097 _term(n_workers, task_queues) { } 5098 5099 OopTaskQueueSet* task_queues() { return _task_queues; } 5100 5101 OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); } 5102 5103 ParallelTaskTerminator* terminator() { return &_term; } 5104 int n_workers() { return _n_workers; } 5105 5106 void work(uint worker_id); 5107 5108 private: 5109 // Work method in support of parallel rescan ... of young gen spaces 5110 void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl, 5111 ContiguousSpace* space, 5112 HeapWord** chunk_array, size_t chunk_top); 5113 5114 // ... of dirty cards in old space 5115 void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i, 5116 Par_MarkRefsIntoAndScanClosure* cl); 5117 5118 // ... work stealing for the above 5119 void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed); 5120 }; 5121 5122 // work_queue(i) is passed to the closure 5123 // Par_MarkRefsIntoAndScanClosure. The "i" parameter 5124 // also is passed to do_dirty_card_rescan_tasks() and to 5125 // do_work_steal() to select the i-th task_queue. 5126 5127 void CMSParRemarkTask::work(uint worker_id) { 5128 elapsedTimer _timer; 5129 ResourceMark rm; 5130 HandleMark hm; 5131 5132 // ---------- rescan from roots -------------- 5133 _timer.start(); 5134 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5135 Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector, 5136 _collector->_span, _collector->ref_processor(), 5137 &(_collector->_markBitMap), 5138 work_queue(worker_id), &(_collector->_revisitStack)); 5139 5140 // Rescan young gen roots first since these are likely 5141 // coarsely partitioned and may, on that account, constitute 5142 // the critical path; thus, it's best to start off that 5143 // work first. 5144 // ---------- young gen roots -------------- 5145 { 5146 DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration(); 5147 EdenSpace* eden_space = dng->eden(); 5148 ContiguousSpace* from_space = dng->from(); 5149 ContiguousSpace* to_space = dng->to(); 5150 5151 HeapWord** eca = _collector->_eden_chunk_array; 5152 size_t ect = _collector->_eden_chunk_index; 5153 HeapWord** sca = _collector->_survivor_chunk_array; 5154 size_t sct = _collector->_survivor_chunk_index; 5155 5156 assert(ect <= _collector->_eden_chunk_capacity, "out of bounds"); 5157 assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds"); 5158 5159 do_young_space_rescan(worker_id, &par_mrias_cl, to_space, NULL, 0); 5160 do_young_space_rescan(worker_id, &par_mrias_cl, from_space, sca, sct); 5161 do_young_space_rescan(worker_id, &par_mrias_cl, eden_space, eca, ect); 5162 5163 _timer.stop(); 5164 if (PrintCMSStatistics != 0) { 5165 gclog_or_tty->print_cr( 5166 "Finished young gen rescan work in %dth thread: %3.3f sec", 5167 worker_id, _timer.seconds()); 5168 } 5169 } 5170 5171 // ---------- remaining roots -------------- 5172 _timer.reset(); 5173 _timer.start(); 5174 gch->gen_process_strong_roots(_collector->_cmsGen->level(), 5175 false, // yg was scanned above 5176 false, // this is parallel code 5177 true, // collecting perm gen 5178 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()), 5179 &par_mrias_cl, 5180 true, // walk all of code cache if (so & SO_CodeCache) 5181 NULL); 5182 assert(_collector->should_unload_classes() 5183 || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache), 5184 "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops"); 5185 _timer.stop(); 5186 if (PrintCMSStatistics != 0) { 5187 gclog_or_tty->print_cr( 5188 "Finished remaining root rescan work in %dth thread: %3.3f sec", 5189 worker_id, _timer.seconds()); 5190 } 5191 5192 // ---------- rescan dirty cards ------------ 5193 _timer.reset(); 5194 _timer.start(); 5195 5196 // Do the rescan tasks for each of the two spaces 5197 // (cms_space and perm_space) in turn. 5198 // "worker_id" is passed to select the task_queue for "worker_id" 5199 do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl); 5200 do_dirty_card_rescan_tasks(_perm_space, worker_id, &par_mrias_cl); 5201 _timer.stop(); 5202 if (PrintCMSStatistics != 0) { 5203 gclog_or_tty->print_cr( 5204 "Finished dirty card rescan work in %dth thread: %3.3f sec", 5205 worker_id, _timer.seconds()); 5206 } 5207 5208 // ---------- steal work from other threads ... 5209 // ---------- ... and drain overflow list. 5210 _timer.reset(); 5211 _timer.start(); 5212 do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id)); 5213 _timer.stop(); 5214 if (PrintCMSStatistics != 0) { 5215 gclog_or_tty->print_cr( 5216 "Finished work stealing in %dth thread: %3.3f sec", 5217 worker_id, _timer.seconds()); 5218 } 5219 } 5220 5221 // Note that parameter "i" is not used. 5222 void 5223 CMSParRemarkTask::do_young_space_rescan(int i, 5224 Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space, 5225 HeapWord** chunk_array, size_t chunk_top) { 5226 // Until all tasks completed: 5227 // . claim an unclaimed task 5228 // . compute region boundaries corresponding to task claimed 5229 // using chunk_array 5230 // . par_oop_iterate(cl) over that region 5231 5232 ResourceMark rm; 5233 HandleMark hm; 5234 5235 SequentialSubTasksDone* pst = space->par_seq_tasks(); 5236 assert(pst->valid(), "Uninitialized use?"); 5237 5238 uint nth_task = 0; 5239 uint n_tasks = pst->n_tasks(); 5240 5241 HeapWord *start, *end; 5242 while (!pst->is_task_claimed(/* reference */ nth_task)) { 5243 // We claimed task # nth_task; compute its boundaries. 5244 if (chunk_top == 0) { // no samples were taken 5245 assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task"); 5246 start = space->bottom(); 5247 end = space->top(); 5248 } else if (nth_task == 0) { 5249 start = space->bottom(); 5250 end = chunk_array[nth_task]; 5251 } else if (nth_task < (uint)chunk_top) { 5252 assert(nth_task >= 1, "Control point invariant"); 5253 start = chunk_array[nth_task - 1]; 5254 end = chunk_array[nth_task]; 5255 } else { 5256 assert(nth_task == (uint)chunk_top, "Control point invariant"); 5257 start = chunk_array[chunk_top - 1]; 5258 end = space->top(); 5259 } 5260 MemRegion mr(start, end); 5261 // Verify that mr is in space 5262 assert(mr.is_empty() || space->used_region().contains(mr), 5263 "Should be in space"); 5264 // Verify that "start" is an object boundary 5265 assert(mr.is_empty() || oop(mr.start())->is_oop(), 5266 "Should be an oop"); 5267 space->par_oop_iterate(mr, cl); 5268 } 5269 pst->all_tasks_completed(); 5270 } 5271 5272 void 5273 CMSParRemarkTask::do_dirty_card_rescan_tasks( 5274 CompactibleFreeListSpace* sp, int i, 5275 Par_MarkRefsIntoAndScanClosure* cl) { 5276 // Until all tasks completed: 5277 // . claim an unclaimed task 5278 // . compute region boundaries corresponding to task claimed 5279 // . transfer dirty bits ct->mut for that region 5280 // . apply rescanclosure to dirty mut bits for that region 5281 5282 ResourceMark rm; 5283 HandleMark hm; 5284 5285 OopTaskQueue* work_q = work_queue(i); 5286 ModUnionClosure modUnionClosure(&(_collector->_modUnionTable)); 5287 // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! 5288 // CAUTION: This closure has state that persists across calls to 5289 // the work method dirty_range_iterate_clear() in that it has 5290 // imbedded in it a (subtype of) UpwardsObjectClosure. The 5291 // use of that state in the imbedded UpwardsObjectClosure instance 5292 // assumes that the cards are always iterated (even if in parallel 5293 // by several threads) in monotonically increasing order per each 5294 // thread. This is true of the implementation below which picks 5295 // card ranges (chunks) in monotonically increasing order globally 5296 // and, a-fortiori, in monotonically increasing order per thread 5297 // (the latter order being a subsequence of the former). 5298 // If the work code below is ever reorganized into a more chaotic 5299 // work-partitioning form than the current "sequential tasks" 5300 // paradigm, the use of that persistent state will have to be 5301 // revisited and modified appropriately. See also related 5302 // bug 4756801 work on which should examine this code to make 5303 // sure that the changes there do not run counter to the 5304 // assumptions made here and necessary for correctness and 5305 // efficiency. Note also that this code might yield inefficient 5306 // behaviour in the case of very large objects that span one or 5307 // more work chunks. Such objects would potentially be scanned 5308 // several times redundantly. Work on 4756801 should try and 5309 // address that performance anomaly if at all possible. XXX 5310 MemRegion full_span = _collector->_span; 5311 CMSBitMap* bm = &(_collector->_markBitMap); // shared 5312 CMSMarkStack* rs = &(_collector->_revisitStack); // shared 5313 MarkFromDirtyCardsClosure 5314 greyRescanClosure(_collector, full_span, // entire span of interest 5315 sp, bm, work_q, rs, cl); 5316 5317 SequentialSubTasksDone* pst = sp->conc_par_seq_tasks(); 5318 assert(pst->valid(), "Uninitialized use?"); 5319 uint nth_task = 0; 5320 const int alignment = CardTableModRefBS::card_size * BitsPerWord; 5321 MemRegion span = sp->used_region(); 5322 HeapWord* start_addr = span.start(); 5323 HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(), 5324 alignment); 5325 const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units 5326 assert((HeapWord*)round_to((intptr_t)start_addr, alignment) == 5327 start_addr, "Check alignment"); 5328 assert((size_t)round_to((intptr_t)chunk_size, alignment) == 5329 chunk_size, "Check alignment"); 5330 5331 while (!pst->is_task_claimed(/* reference */ nth_task)) { 5332 // Having claimed the nth_task, compute corresponding mem-region, 5333 // which is a-fortiori aligned correctly (i.e. at a MUT bopundary). 5334 // The alignment restriction ensures that we do not need any 5335 // synchronization with other gang-workers while setting or 5336 // clearing bits in thus chunk of the MUT. 5337 MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size, 5338 start_addr + (nth_task+1)*chunk_size); 5339 // The last chunk's end might be way beyond end of the 5340 // used region. In that case pull back appropriately. 5341 if (this_span.end() > end_addr) { 5342 this_span.set_end(end_addr); 5343 assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)"); 5344 } 5345 // Iterate over the dirty cards covering this chunk, marking them 5346 // precleaned, and setting the corresponding bits in the mod union 5347 // table. Since we have been careful to partition at Card and MUT-word 5348 // boundaries no synchronization is needed between parallel threads. 5349 _collector->_ct->ct_bs()->dirty_card_iterate(this_span, 5350 &modUnionClosure); 5351 5352 // Having transferred these marks into the modUnionTable, 5353 // rescan the marked objects on the dirty cards in the modUnionTable. 5354 // Even if this is at a synchronous collection, the initial marking 5355 // may have been done during an asynchronous collection so there 5356 // may be dirty bits in the mod-union table. 5357 _collector->_modUnionTable.dirty_range_iterate_clear( 5358 this_span, &greyRescanClosure); 5359 _collector->_modUnionTable.verifyNoOneBitsInRange( 5360 this_span.start(), 5361 this_span.end()); 5362 } 5363 pst->all_tasks_completed(); // declare that i am done 5364 } 5365 5366 // . see if we can share work_queues with ParNew? XXX 5367 void 5368 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, 5369 int* seed) { 5370 OopTaskQueue* work_q = work_queue(i); 5371 NOT_PRODUCT(int num_steals = 0;) 5372 oop obj_to_scan; 5373 CMSBitMap* bm = &(_collector->_markBitMap); 5374 5375 while (true) { 5376 // Completely finish any left over work from (an) earlier round(s) 5377 cl->trim_queue(0); 5378 size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, 5379 (size_t)ParGCDesiredObjsFromOverflowList); 5380 // Now check if there's any work in the overflow list 5381 // Passing ParallelGCThreads as the third parameter, no_of_gc_threads, 5382 // only affects the number of attempts made to get work from the 5383 // overflow list and does not affect the number of workers. Just 5384 // pass ParallelGCThreads so this behavior is unchanged. 5385 if (_collector->par_take_from_overflow_list(num_from_overflow_list, 5386 work_q, 5387 ParallelGCThreads)) { 5388 // found something in global overflow list; 5389 // not yet ready to go stealing work from others. 5390 // We'd like to assert(work_q->size() != 0, ...) 5391 // because we just took work from the overflow list, 5392 // but of course we can't since all of that could have 5393 // been already stolen from us. 5394 // "He giveth and He taketh away." 5395 continue; 5396 } 5397 // Verify that we have no work before we resort to stealing 5398 assert(work_q->size() == 0, "Have work, shouldn't steal"); 5399 // Try to steal from other queues that have work 5400 if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) { 5401 NOT_PRODUCT(num_steals++;) 5402 assert(obj_to_scan->is_oop(), "Oops, not an oop!"); 5403 assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?"); 5404 // Do scanning work 5405 obj_to_scan->oop_iterate(cl); 5406 // Loop around, finish this work, and try to steal some more 5407 } else if (terminator()->offer_termination()) { 5408 break; // nirvana from the infinite cycle 5409 } 5410 } 5411 NOT_PRODUCT( 5412 if (PrintCMSStatistics != 0) { 5413 gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals); 5414 } 5415 ) 5416 assert(work_q->size() == 0 && _collector->overflow_list_is_empty(), 5417 "Else our work is not yet done"); 5418 } 5419 5420 // Return a thread-local PLAB recording array, as appropriate. 5421 void* CMSCollector::get_data_recorder(int thr_num) { 5422 if (_survivor_plab_array != NULL && 5423 (CMSPLABRecordAlways || 5424 (_collectorState > Marking && _collectorState < FinalMarking))) { 5425 assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds"); 5426 ChunkArray* ca = &_survivor_plab_array[thr_num]; 5427 ca->reset(); // clear it so that fresh data is recorded 5428 return (void*) ca; 5429 } else { 5430 return NULL; 5431 } 5432 } 5433 5434 // Reset all the thread-local PLAB recording arrays 5435 void CMSCollector::reset_survivor_plab_arrays() { 5436 for (uint i = 0; i < ParallelGCThreads; i++) { 5437 _survivor_plab_array[i].reset(); 5438 } 5439 } 5440 5441 // Merge the per-thread plab arrays into the global survivor chunk 5442 // array which will provide the partitioning of the survivor space 5443 // for CMS rescan. 5444 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv, 5445 int no_of_gc_threads) { 5446 assert(_survivor_plab_array != NULL, "Error"); 5447 assert(_survivor_chunk_array != NULL, "Error"); 5448 assert(_collectorState == FinalMarking, "Error"); 5449 for (int j = 0; j < no_of_gc_threads; j++) { 5450 _cursor[j] = 0; 5451 } 5452 HeapWord* top = surv->top(); 5453 size_t i; 5454 for (i = 0; i < _survivor_chunk_capacity; i++) { // all sca entries 5455 HeapWord* min_val = top; // Higher than any PLAB address 5456 uint min_tid = 0; // position of min_val this round 5457 for (int j = 0; j < no_of_gc_threads; j++) { 5458 ChunkArray* cur_sca = &_survivor_plab_array[j]; 5459 if (_cursor[j] == cur_sca->end()) { 5460 continue; 5461 } 5462 assert(_cursor[j] < cur_sca->end(), "ctl pt invariant"); 5463 HeapWord* cur_val = cur_sca->nth(_cursor[j]); 5464 assert(surv->used_region().contains(cur_val), "Out of bounds value"); 5465 if (cur_val < min_val) { 5466 min_tid = j; 5467 min_val = cur_val; 5468 } else { 5469 assert(cur_val < top, "All recorded addresses should be less"); 5470 } 5471 } 5472 // At this point min_val and min_tid are respectively 5473 // the least address in _survivor_plab_array[j]->nth(_cursor[j]) 5474 // and the thread (j) that witnesses that address. 5475 // We record this address in the _survivor_chunk_array[i] 5476 // and increment _cursor[min_tid] prior to the next round i. 5477 if (min_val == top) { 5478 break; 5479 } 5480 _survivor_chunk_array[i] = min_val; 5481 _cursor[min_tid]++; 5482 } 5483 // We are all done; record the size of the _survivor_chunk_array 5484 _survivor_chunk_index = i; // exclusive: [0, i) 5485 if (PrintCMSStatistics > 0) { 5486 gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i); 5487 } 5488 // Verify that we used up all the recorded entries 5489 #ifdef ASSERT 5490 size_t total = 0; 5491 for (int j = 0; j < no_of_gc_threads; j++) { 5492 assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant"); 5493 total += _cursor[j]; 5494 } 5495 assert(total == _survivor_chunk_index, "Ctl Pt Invariant"); 5496 // Check that the merged array is in sorted order 5497 if (total > 0) { 5498 for (size_t i = 0; i < total - 1; i++) { 5499 if (PrintCMSStatistics > 0) { 5500 gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ", 5501 i, _survivor_chunk_array[i]); 5502 } 5503 assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1], 5504 "Not sorted"); 5505 } 5506 } 5507 #endif // ASSERT 5508 } 5509 5510 // Set up the space's par_seq_tasks structure for work claiming 5511 // for parallel rescan of young gen. 5512 // See ParRescanTask where this is currently used. 5513 void 5514 CMSCollector:: 5515 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) { 5516 assert(n_threads > 0, "Unexpected n_threads argument"); 5517 DefNewGeneration* dng = (DefNewGeneration*)_young_gen; 5518 5519 // Eden space 5520 { 5521 SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks(); 5522 assert(!pst->valid(), "Clobbering existing data?"); 5523 // Each valid entry in [0, _eden_chunk_index) represents a task. 5524 size_t n_tasks = _eden_chunk_index + 1; 5525 assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error"); 5526 // Sets the condition for completion of the subtask (how many threads 5527 // need to finish in order to be done). 5528 pst->set_n_threads(n_threads); 5529 pst->set_n_tasks((int)n_tasks); 5530 } 5531 5532 // Merge the survivor plab arrays into _survivor_chunk_array 5533 if (_survivor_plab_array != NULL) { 5534 merge_survivor_plab_arrays(dng->from(), n_threads); 5535 } else { 5536 assert(_survivor_chunk_index == 0, "Error"); 5537 } 5538 5539 // To space 5540 { 5541 SequentialSubTasksDone* pst = dng->to()->par_seq_tasks(); 5542 assert(!pst->valid(), "Clobbering existing data?"); 5543 // Sets the condition for completion of the subtask (how many threads 5544 // need to finish in order to be done). 5545 pst->set_n_threads(n_threads); 5546 pst->set_n_tasks(1); 5547 assert(pst->valid(), "Error"); 5548 } 5549 5550 // From space 5551 { 5552 SequentialSubTasksDone* pst = dng->from()->par_seq_tasks(); 5553 assert(!pst->valid(), "Clobbering existing data?"); 5554 size_t n_tasks = _survivor_chunk_index + 1; 5555 assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error"); 5556 // Sets the condition for completion of the subtask (how many threads 5557 // need to finish in order to be done). 5558 pst->set_n_threads(n_threads); 5559 pst->set_n_tasks((int)n_tasks); 5560 assert(pst->valid(), "Error"); 5561 } 5562 } 5563 5564 // Parallel version of remark 5565 void CMSCollector::do_remark_parallel() { 5566 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5567 FlexibleWorkGang* workers = gch->workers(); 5568 assert(workers != NULL, "Need parallel worker threads."); 5569 // Choose to use the number of GC workers most recently set 5570 // into "active_workers". If active_workers is not set, set it 5571 // to ParallelGCThreads. 5572 int n_workers = workers->active_workers(); 5573 if (n_workers == 0) { 5574 assert(n_workers > 0, "Should have been set during scavenge"); 5575 n_workers = ParallelGCThreads; 5576 workers->set_active_workers(n_workers); 5577 } 5578 CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); 5579 CompactibleFreeListSpace* perm_space = _permGen->cmsSpace(); 5580 5581 CMSParRemarkTask tsk(this, 5582 cms_space, perm_space, 5583 n_workers, workers, task_queues()); 5584 5585 // Set up for parallel process_strong_roots work. 5586 gch->set_par_threads(n_workers); 5587 // We won't be iterating over the cards in the card table updating 5588 // the younger_gen cards, so we shouldn't call the following else 5589 // the verification code as well as subsequent younger_refs_iterate 5590 // code would get confused. XXX 5591 // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel 5592 5593 // The young gen rescan work will not be done as part of 5594 // process_strong_roots (which currently doesn't knw how to 5595 // parallelize such a scan), but rather will be broken up into 5596 // a set of parallel tasks (via the sampling that the [abortable] 5597 // preclean phase did of EdenSpace, plus the [two] tasks of 5598 // scanning the [two] survivor spaces. Further fine-grain 5599 // parallelization of the scanning of the survivor spaces 5600 // themselves, and of precleaning of the younger gen itself 5601 // is deferred to the future. 5602 initialize_sequential_subtasks_for_young_gen_rescan(n_workers); 5603 5604 // The dirty card rescan work is broken up into a "sequence" 5605 // of parallel tasks (per constituent space) that are dynamically 5606 // claimed by the parallel threads. 5607 cms_space->initialize_sequential_subtasks_for_rescan(n_workers); 5608 perm_space->initialize_sequential_subtasks_for_rescan(n_workers); 5609 5610 // It turns out that even when we're using 1 thread, doing the work in a 5611 // separate thread causes wide variance in run times. We can't help this 5612 // in the multi-threaded case, but we special-case n=1 here to get 5613 // repeatable measurements of the 1-thread overhead of the parallel code. 5614 if (n_workers > 1) { 5615 // Make refs discovery MT-safe, if it isn't already: it may not 5616 // necessarily be so, since it's possible that we are doing 5617 // ST marking. 5618 ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true); 5619 GenCollectedHeap::StrongRootsScope srs(gch); 5620 workers->run_task(&tsk); 5621 } else { 5622 ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false); 5623 GenCollectedHeap::StrongRootsScope srs(gch); 5624 tsk.work(0); 5625 } 5626 gch->set_par_threads(0); // 0 ==> non-parallel. 5627 // restore, single-threaded for now, any preserved marks 5628 // as a result of work_q overflow 5629 restore_preserved_marks_if_any(); 5630 } 5631 5632 // Non-parallel version of remark 5633 void CMSCollector::do_remark_non_parallel() { 5634 ResourceMark rm; 5635 HandleMark hm; 5636 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5637 ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false); 5638 5639 MarkRefsIntoAndScanClosure 5640 mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable, 5641 &_markStack, &_revisitStack, this, 5642 false /* should_yield */, false /* not precleaning */); 5643 MarkFromDirtyCardsClosure 5644 markFromDirtyCardsClosure(this, _span, 5645 NULL, // space is set further below 5646 &_markBitMap, &_markStack, &_revisitStack, 5647 &mrias_cl); 5648 { 5649 GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm); 5650 // Iterate over the dirty cards, setting the corresponding bits in the 5651 // mod union table. 5652 { 5653 ModUnionClosure modUnionClosure(&_modUnionTable); 5654 _ct->ct_bs()->dirty_card_iterate( 5655 _cmsGen->used_region(), 5656 &modUnionClosure); 5657 _ct->ct_bs()->dirty_card_iterate( 5658 _permGen->used_region(), 5659 &modUnionClosure); 5660 } 5661 // Having transferred these marks into the modUnionTable, we just need 5662 // to rescan the marked objects on the dirty cards in the modUnionTable. 5663 // The initial marking may have been done during an asynchronous 5664 // collection so there may be dirty bits in the mod-union table. 5665 const int alignment = 5666 CardTableModRefBS::card_size * BitsPerWord; 5667 { 5668 // ... First handle dirty cards in CMS gen 5669 markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace()); 5670 MemRegion ur = _cmsGen->used_region(); 5671 HeapWord* lb = ur.start(); 5672 HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment); 5673 MemRegion cms_span(lb, ub); 5674 _modUnionTable.dirty_range_iterate_clear(cms_span, 5675 &markFromDirtyCardsClosure); 5676 verify_work_stacks_empty(); 5677 if (PrintCMSStatistics != 0) { 5678 gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ", 5679 markFromDirtyCardsClosure.num_dirty_cards()); 5680 } 5681 } 5682 { 5683 // .. and then repeat for dirty cards in perm gen 5684 markFromDirtyCardsClosure.set_space(_permGen->cmsSpace()); 5685 MemRegion ur = _permGen->used_region(); 5686 HeapWord* lb = ur.start(); 5687 HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment); 5688 MemRegion perm_span(lb, ub); 5689 _modUnionTable.dirty_range_iterate_clear(perm_span, 5690 &markFromDirtyCardsClosure); 5691 verify_work_stacks_empty(); 5692 if (PrintCMSStatistics != 0) { 5693 gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in perm gen) ", 5694 markFromDirtyCardsClosure.num_dirty_cards()); 5695 } 5696 } 5697 } 5698 if (VerifyDuringGC && 5699 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 5700 HandleMark hm; // Discard invalid handles created during verification 5701 Universe::verify(); 5702 } 5703 { 5704 GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm); 5705 5706 verify_work_stacks_empty(); 5707 5708 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 5709 GenCollectedHeap::StrongRootsScope srs(gch); 5710 gch->gen_process_strong_roots(_cmsGen->level(), 5711 true, // younger gens as roots 5712 false, // use the local StrongRootsScope 5713 true, // collecting perm gen 5714 SharedHeap::ScanningOption(roots_scanning_options()), 5715 &mrias_cl, 5716 true, // walk code active on stacks 5717 NULL); 5718 assert(should_unload_classes() 5719 || (roots_scanning_options() & SharedHeap::SO_CodeCache), 5720 "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops"); 5721 } 5722 verify_work_stacks_empty(); 5723 // Restore evacuated mark words, if any, used for overflow list links 5724 if (!CMSOverflowEarlyRestoration) { 5725 restore_preserved_marks_if_any(); 5726 } 5727 verify_overflow_empty(); 5728 } 5729 5730 //////////////////////////////////////////////////////// 5731 // Parallel Reference Processing Task Proxy Class 5732 //////////////////////////////////////////////////////// 5733 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues { 5734 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; 5735 CMSCollector* _collector; 5736 CMSBitMap* _mark_bit_map; 5737 const MemRegion _span; 5738 ProcessTask& _task; 5739 5740 public: 5741 CMSRefProcTaskProxy(ProcessTask& task, 5742 CMSCollector* collector, 5743 const MemRegion& span, 5744 CMSBitMap* mark_bit_map, 5745 AbstractWorkGang* workers, 5746 OopTaskQueueSet* task_queues): 5747 // XXX Should superclass AGTWOQ also know about AWG since it knows 5748 // about the task_queues used by the AWG? Then it could initialize 5749 // the terminator() object. See 6984287. The set_for_termination() 5750 // below is a temporary band-aid for the regression in 6984287. 5751 AbstractGangTaskWOopQueues("Process referents by policy in parallel", 5752 task_queues), 5753 _task(task), 5754 _collector(collector), _span(span), _mark_bit_map(mark_bit_map) 5755 { 5756 assert(_collector->_span.equals(_span) && !_span.is_empty(), 5757 "Inconsistency in _span"); 5758 set_for_termination(workers->active_workers()); 5759 } 5760 5761 OopTaskQueueSet* task_queues() { return queues(); } 5762 5763 OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); } 5764 5765 void do_work_steal(int i, 5766 CMSParDrainMarkingStackClosure* drain, 5767 CMSParKeepAliveClosure* keep_alive, 5768 int* seed); 5769 5770 virtual void work(uint worker_id); 5771 }; 5772 5773 void CMSRefProcTaskProxy::work(uint worker_id) { 5774 assert(_collector->_span.equals(_span), "Inconsistency in _span"); 5775 CMSParKeepAliveClosure par_keep_alive(_collector, _span, 5776 _mark_bit_map, 5777 &_collector->_revisitStack, 5778 work_queue(worker_id)); 5779 CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span, 5780 _mark_bit_map, 5781 &_collector->_revisitStack, 5782 work_queue(worker_id)); 5783 CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map); 5784 _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack); 5785 if (_task.marks_oops_alive()) { 5786 do_work_steal(worker_id, &par_drain_stack, &par_keep_alive, 5787 _collector->hash_seed(worker_id)); 5788 } 5789 assert(work_queue(worker_id)->size() == 0, "work_queue should be empty"); 5790 assert(_collector->_overflow_list == NULL, "non-empty _overflow_list"); 5791 } 5792 5793 class CMSRefEnqueueTaskProxy: public AbstractGangTask { 5794 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask; 5795 EnqueueTask& _task; 5796 5797 public: 5798 CMSRefEnqueueTaskProxy(EnqueueTask& task) 5799 : AbstractGangTask("Enqueue reference objects in parallel"), 5800 _task(task) 5801 { } 5802 5803 virtual void work(uint worker_id) 5804 { 5805 _task.work(worker_id); 5806 } 5807 }; 5808 5809 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector, 5810 MemRegion span, CMSBitMap* bit_map, CMSMarkStack* revisit_stack, 5811 OopTaskQueue* work_queue): 5812 Par_KlassRememberingOopClosure(collector, NULL, revisit_stack), 5813 _span(span), 5814 _bit_map(bit_map), 5815 _work_queue(work_queue), 5816 _mark_and_push(collector, span, bit_map, revisit_stack, work_queue), 5817 _low_water_mark(MIN2((uint)(work_queue->max_elems()/4), 5818 (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))) 5819 { } 5820 5821 // . see if we can share work_queues with ParNew? XXX 5822 void CMSRefProcTaskProxy::do_work_steal(int i, 5823 CMSParDrainMarkingStackClosure* drain, 5824 CMSParKeepAliveClosure* keep_alive, 5825 int* seed) { 5826 OopTaskQueue* work_q = work_queue(i); 5827 NOT_PRODUCT(int num_steals = 0;) 5828 oop obj_to_scan; 5829 5830 while (true) { 5831 // Completely finish any left over work from (an) earlier round(s) 5832 drain->trim_queue(0); 5833 size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, 5834 (size_t)ParGCDesiredObjsFromOverflowList); 5835 // Now check if there's any work in the overflow list 5836 // Passing ParallelGCThreads as the third parameter, no_of_gc_threads, 5837 // only affects the number of attempts made to get work from the 5838 // overflow list and does not affect the number of workers. Just 5839 // pass ParallelGCThreads so this behavior is unchanged. 5840 if (_collector->par_take_from_overflow_list(num_from_overflow_list, 5841 work_q, 5842 ParallelGCThreads)) { 5843 // Found something in global overflow list; 5844 // not yet ready to go stealing work from others. 5845 // We'd like to assert(work_q->size() != 0, ...) 5846 // because we just took work from the overflow list, 5847 // but of course we can't, since all of that might have 5848 // been already stolen from us. 5849 continue; 5850 } 5851 // Verify that we have no work before we resort to stealing 5852 assert(work_q->size() == 0, "Have work, shouldn't steal"); 5853 // Try to steal from other queues that have work 5854 if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) { 5855 NOT_PRODUCT(num_steals++;) 5856 assert(obj_to_scan->is_oop(), "Oops, not an oop!"); 5857 assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?"); 5858 // Do scanning work 5859 obj_to_scan->oop_iterate(keep_alive); 5860 // Loop around, finish this work, and try to steal some more 5861 } else if (terminator()->offer_termination()) { 5862 break; // nirvana from the infinite cycle 5863 } 5864 } 5865 NOT_PRODUCT( 5866 if (PrintCMSStatistics != 0) { 5867 gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals); 5868 } 5869 ) 5870 } 5871 5872 void CMSRefProcTaskExecutor::execute(ProcessTask& task) 5873 { 5874 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5875 FlexibleWorkGang* workers = gch->workers(); 5876 assert(workers != NULL, "Need parallel worker threads."); 5877 CMSRefProcTaskProxy rp_task(task, &_collector, 5878 _collector.ref_processor()->span(), 5879 _collector.markBitMap(), 5880 workers, _collector.task_queues()); 5881 workers->run_task(&rp_task); 5882 } 5883 5884 void CMSRefProcTaskExecutor::execute(EnqueueTask& task) 5885 { 5886 5887 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5888 FlexibleWorkGang* workers = gch->workers(); 5889 assert(workers != NULL, "Need parallel worker threads."); 5890 CMSRefEnqueueTaskProxy enq_task(task); 5891 workers->run_task(&enq_task); 5892 } 5893 5894 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) { 5895 5896 ResourceMark rm; 5897 HandleMark hm; 5898 5899 ReferenceProcessor* rp = ref_processor(); 5900 assert(rp->span().equals(_span), "Spans should be equal"); 5901 assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete"); 5902 // Process weak references. 5903 rp->setup_policy(clear_all_soft_refs); 5904 verify_work_stacks_empty(); 5905 5906 CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap, 5907 &_markStack, &_revisitStack, 5908 false /* !preclean */); 5909 CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this, 5910 _span, &_markBitMap, &_markStack, 5911 &cmsKeepAliveClosure, false /* !preclean */); 5912 { 5913 GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm); 5914 if (rp->processing_is_mt()) { 5915 // Set the degree of MT here. If the discovery is done MT, there 5916 // may have been a different number of threads doing the discovery 5917 // and a different number of discovered lists may have Ref objects. 5918 // That is OK as long as the Reference lists are balanced (see 5919 // balance_all_queues() and balance_queues()). 5920 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5921 int active_workers = ParallelGCThreads; 5922 FlexibleWorkGang* workers = gch->workers(); 5923 if (workers != NULL) { 5924 active_workers = workers->active_workers(); 5925 // The expectation is that active_workers will have already 5926 // been set to a reasonable value. If it has not been set, 5927 // investigate. 5928 assert(active_workers > 0, "Should have been set during scavenge"); 5929 } 5930 rp->set_active_mt_degree(active_workers); 5931 CMSRefProcTaskExecutor task_executor(*this); 5932 rp->process_discovered_references(&_is_alive_closure, 5933 &cmsKeepAliveClosure, 5934 &cmsDrainMarkingStackClosure, 5935 &task_executor, 5936 _gc_timer_cm); 5937 } else { 5938 rp->process_discovered_references(&_is_alive_closure, 5939 &cmsKeepAliveClosure, 5940 &cmsDrainMarkingStackClosure, 5941 NULL, 5942 _gc_timer_cm); 5943 } 5944 verify_work_stacks_empty(); 5945 } 5946 5947 if (should_unload_classes()) { 5948 { 5949 GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm); 5950 5951 // Follow SystemDictionary roots and unload classes 5952 bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure); 5953 5954 // Follow CodeCache roots and unload any methods marked for unloading 5955 CodeCache::do_unloading(&_is_alive_closure, 5956 &cmsKeepAliveClosure, 5957 purged_class); 5958 5959 cmsDrainMarkingStackClosure.do_void(); 5960 verify_work_stacks_empty(); 5961 5962 // Update subklass/sibling/implementor links in KlassKlass descendants 5963 assert(!_revisitStack.isEmpty(), "revisit stack should not be empty"); 5964 oop k; 5965 while ((k = _revisitStack.pop()) != NULL) { 5966 ((Klass*)(oopDesc*)k)->follow_weak_klass_links( 5967 &_is_alive_closure, 5968 &cmsKeepAliveClosure); 5969 } 5970 assert(!ClassUnloading || 5971 (_markStack.isEmpty() && overflow_list_is_empty()), 5972 "Should not have found new reachable objects"); 5973 assert(_revisitStack.isEmpty(), "revisit stack should have been drained"); 5974 cmsDrainMarkingStackClosure.do_void(); 5975 verify_work_stacks_empty(); 5976 } 5977 5978 { 5979 GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm); 5980 // Clean up unreferenced symbols in symbol table. 5981 SymbolTable::unlink(); 5982 } 5983 } 5984 5985 if (should_unload_classes() || !JavaObjectsInPerm) { 5986 GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm); 5987 // Now clean up stale oops in StringTable 5988 StringTable::unlink(&_is_alive_closure); 5989 } 5990 5991 verify_work_stacks_empty(); 5992 // Restore any preserved marks as a result of mark stack or 5993 // work queue overflow 5994 restore_preserved_marks_if_any(); // done single-threaded for now 5995 5996 rp->set_enqueuing_is_done(true); 5997 if (rp->processing_is_mt()) { 5998 rp->balance_all_queues(); 5999 CMSRefProcTaskExecutor task_executor(*this); 6000 rp->enqueue_discovered_references(&task_executor); 6001 } else { 6002 rp->enqueue_discovered_references(NULL); 6003 } 6004 rp->verify_no_references_recorded(); 6005 assert(!rp->discovery_enabled(), "should have been disabled"); 6006 } 6007 6008 #ifndef PRODUCT 6009 void CMSCollector::check_correct_thread_executing() { 6010 Thread* t = Thread::current(); 6011 // Only the VM thread or the CMS thread should be here. 6012 assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(), 6013 "Unexpected thread type"); 6014 // If this is the vm thread, the foreground process 6015 // should not be waiting. Note that _foregroundGCIsActive is 6016 // true while the foreground collector is waiting. 6017 if (_foregroundGCShouldWait) { 6018 // We cannot be the VM thread 6019 assert(t->is_ConcurrentGC_thread(), 6020 "Should be CMS thread"); 6021 } else { 6022 // We can be the CMS thread only if we are in a stop-world 6023 // phase of CMS collection. 6024 if (t->is_ConcurrentGC_thread()) { 6025 assert(_collectorState == InitialMarking || 6026 _collectorState == FinalMarking, 6027 "Should be a stop-world phase"); 6028 // The CMS thread should be holding the CMS_token. 6029 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6030 "Potential interference with concurrently " 6031 "executing VM thread"); 6032 } 6033 } 6034 } 6035 #endif 6036 6037 void CMSCollector::sweep(bool asynch) { 6038 assert(_collectorState == Sweeping, "just checking"); 6039 check_correct_thread_executing(); 6040 verify_work_stacks_empty(); 6041 verify_overflow_empty(); 6042 increment_sweep_count(); 6043 TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause()); 6044 6045 _inter_sweep_timer.stop(); 6046 _inter_sweep_estimate.sample(_inter_sweep_timer.seconds()); 6047 size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free()); 6048 6049 // PermGen verification support: If perm gen sweeping is disabled in 6050 // this cycle, we preserve the perm gen object "deadness" information 6051 // in the perm_gen_verify_bit_map. In order to do that we traverse 6052 // all blocks in perm gen and mark all dead objects. 6053 if (verifying() && !should_unload_classes()) { 6054 assert(perm_gen_verify_bit_map()->sizeInBits() != 0, 6055 "Should have already been allocated"); 6056 MarkDeadObjectsClosure mdo(this, _permGen->cmsSpace(), 6057 markBitMap(), perm_gen_verify_bit_map()); 6058 if (asynch) { 6059 CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(), 6060 bitMapLock()); 6061 _permGen->cmsSpace()->blk_iterate(&mdo); 6062 } else { 6063 // In the case of synchronous sweep, we already have 6064 // the requisite locks/tokens. 6065 _permGen->cmsSpace()->blk_iterate(&mdo); 6066 } 6067 } 6068 6069 assert(!_intra_sweep_timer.is_active(), "Should not be active"); 6070 _intra_sweep_timer.reset(); 6071 _intra_sweep_timer.start(); 6072 if (asynch) { 6073 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 6074 CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails); 6075 // First sweep the old gen then the perm gen 6076 { 6077 CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(), 6078 bitMapLock()); 6079 sweepWork(_cmsGen, asynch); 6080 } 6081 6082 // Now repeat for perm gen 6083 if (should_unload_classes()) { 6084 CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(), 6085 bitMapLock()); 6086 sweepWork(_permGen, asynch); 6087 } 6088 6089 // Update Universe::_heap_*_at_gc figures. 6090 // We need all the free list locks to make the abstract state 6091 // transition from Sweeping to Resetting. See detailed note 6092 // further below. 6093 { 6094 CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(), 6095 _permGen->freelistLock()); 6096 // Update heap occupancy information which is used as 6097 // input to soft ref clearing policy at the next gc. 6098 Universe::update_heap_info_at_gc(); 6099 _collectorState = Resizing; 6100 } 6101 } else { 6102 // already have needed locks 6103 sweepWork(_cmsGen, asynch); 6104 6105 if (should_unload_classes()) { 6106 sweepWork(_permGen, asynch); 6107 } 6108 // Update heap occupancy information which is used as 6109 // input to soft ref clearing policy at the next gc. 6110 Universe::update_heap_info_at_gc(); 6111 _collectorState = Resizing; 6112 } 6113 verify_work_stacks_empty(); 6114 verify_overflow_empty(); 6115 6116 _intra_sweep_timer.stop(); 6117 _intra_sweep_estimate.sample(_intra_sweep_timer.seconds()); 6118 6119 _inter_sweep_timer.reset(); 6120 _inter_sweep_timer.start(); 6121 6122 // We need to use a monotonically non-deccreasing time in ms 6123 // or we will see time-warp warnings and os::javaTimeMillis() 6124 // does not guarantee monotonicity. 6125 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; 6126 update_time_of_last_gc(now); 6127 6128 // NOTE on abstract state transitions: 6129 // Mutators allocate-live and/or mark the mod-union table dirty 6130 // based on the state of the collection. The former is done in 6131 // the interval [Marking, Sweeping] and the latter in the interval 6132 // [Marking, Sweeping). Thus the transitions into the Marking state 6133 // and out of the Sweeping state must be synchronously visible 6134 // globally to the mutators. 6135 // The transition into the Marking state happens with the world 6136 // stopped so the mutators will globally see it. Sweeping is 6137 // done asynchronously by the background collector so the transition 6138 // from the Sweeping state to the Resizing state must be done 6139 // under the freelistLock (as is the check for whether to 6140 // allocate-live and whether to dirty the mod-union table). 6141 assert(_collectorState == Resizing, "Change of collector state to" 6142 " Resizing must be done under the freelistLocks (plural)"); 6143 6144 // Now that sweeping has been completed, we clear 6145 // the incremental_collection_failed flag, 6146 // thus inviting a younger gen collection to promote into 6147 // this generation. If such a promotion may still fail, 6148 // the flag will be set again when a young collection is 6149 // attempted. 6150 GenCollectedHeap* gch = GenCollectedHeap::heap(); 6151 gch->clear_incremental_collection_failed(); // Worth retrying as fresh space may have been freed up 6152 gch->update_full_collections_completed(_collection_count_start); 6153 } 6154 6155 // FIX ME!!! Looks like this belongs in CFLSpace, with 6156 // CMSGen merely delegating to it. 6157 void ConcurrentMarkSweepGeneration::setNearLargestChunk() { 6158 double nearLargestPercent = FLSLargestBlockCoalesceProximity; 6159 HeapWord* minAddr = _cmsSpace->bottom(); 6160 HeapWord* largestAddr = 6161 (HeapWord*) _cmsSpace->dictionary()->find_largest_dict(); 6162 if (largestAddr == NULL) { 6163 // The dictionary appears to be empty. In this case 6164 // try to coalesce at the end of the heap. 6165 largestAddr = _cmsSpace->end(); 6166 } 6167 size_t largestOffset = pointer_delta(largestAddr, minAddr); 6168 size_t nearLargestOffset = 6169 (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize; 6170 if (PrintFLSStatistics != 0) { 6171 gclog_or_tty->print_cr( 6172 "CMS: Large Block: " PTR_FORMAT ";" 6173 " Proximity: " PTR_FORMAT " -> " PTR_FORMAT, 6174 largestAddr, 6175 _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset); 6176 } 6177 _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset); 6178 } 6179 6180 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) { 6181 return addr >= _cmsSpace->nearLargestChunk(); 6182 } 6183 6184 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() { 6185 return _cmsSpace->find_chunk_at_end(); 6186 } 6187 6188 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level, 6189 bool full) { 6190 // The next lower level has been collected. Gather any statistics 6191 // that are of interest at this point. 6192 if (!full && (current_level + 1) == level()) { 6193 // Gather statistics on the young generation collection. 6194 collector()->stats().record_gc0_end(used()); 6195 } 6196 } 6197 6198 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() { 6199 GenCollectedHeap* gch = GenCollectedHeap::heap(); 6200 assert(gch->kind() == CollectedHeap::GenCollectedHeap, 6201 "Wrong type of heap"); 6202 CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*) 6203 gch->gen_policy()->size_policy(); 6204 assert(sp->is_gc_cms_adaptive_size_policy(), 6205 "Wrong type of size policy"); 6206 return sp; 6207 } 6208 6209 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() { 6210 if (PrintGCDetails && Verbose) { 6211 gclog_or_tty->print("Rotate from %d ", _debug_collection_type); 6212 } 6213 _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1); 6214 _debug_collection_type = 6215 (CollectionTypes) (_debug_collection_type % Unknown_collection_type); 6216 if (PrintGCDetails && Verbose) { 6217 gclog_or_tty->print_cr("to %d ", _debug_collection_type); 6218 } 6219 } 6220 6221 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen, 6222 bool asynch) { 6223 // We iterate over the space(s) underlying this generation, 6224 // checking the mark bit map to see if the bits corresponding 6225 // to specific blocks are marked or not. Blocks that are 6226 // marked are live and are not swept up. All remaining blocks 6227 // are swept up, with coalescing on-the-fly as we sweep up 6228 // contiguous free and/or garbage blocks: 6229 // We need to ensure that the sweeper synchronizes with allocators 6230 // and stop-the-world collectors. In particular, the following 6231 // locks are used: 6232 // . CMS token: if this is held, a stop the world collection cannot occur 6233 // . freelistLock: if this is held no allocation can occur from this 6234 // generation by another thread 6235 // . bitMapLock: if this is held, no other thread can access or update 6236 // 6237 6238 // Note that we need to hold the freelistLock if we use 6239 // block iterate below; else the iterator might go awry if 6240 // a mutator (or promotion) causes block contents to change 6241 // (for instance if the allocator divvies up a block). 6242 // If we hold the free list lock, for all practical purposes 6243 // young generation GC's can't occur (they'll usually need to 6244 // promote), so we might as well prevent all young generation 6245 // GC's while we do a sweeping step. For the same reason, we might 6246 // as well take the bit map lock for the entire duration 6247 6248 // check that we hold the requisite locks 6249 assert(have_cms_token(), "Should hold cms token"); 6250 assert( (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token()) 6251 || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()), 6252 "Should possess CMS token to sweep"); 6253 assert_lock_strong(gen->freelistLock()); 6254 assert_lock_strong(bitMapLock()); 6255 6256 assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context"); 6257 assert(_intra_sweep_timer.is_active(), "Was switched on in an outer context"); 6258 gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()), 6259 _inter_sweep_estimate.padded_average(), 6260 _intra_sweep_estimate.padded_average()); 6261 gen->setNearLargestChunk(); 6262 6263 { 6264 SweepClosure sweepClosure(this, gen, &_markBitMap, 6265 CMSYield && asynch); 6266 gen->cmsSpace()->blk_iterate_careful(&sweepClosure); 6267 // We need to free-up/coalesce garbage/blocks from a 6268 // co-terminal free run. This is done in the SweepClosure 6269 // destructor; so, do not remove this scope, else the 6270 // end-of-sweep-census below will be off by a little bit. 6271 } 6272 gen->cmsSpace()->sweep_completed(); 6273 gen->cmsSpace()->endSweepFLCensus(sweep_count()); 6274 if (should_unload_classes()) { // unloaded classes this cycle, 6275 _concurrent_cycles_since_last_unload = 0; // ... reset count 6276 } else { // did not unload classes, 6277 _concurrent_cycles_since_last_unload++; // ... increment count 6278 } 6279 } 6280 6281 // Reset CMS data structures (for now just the marking bit map) 6282 // preparatory for the next cycle. 6283 void CMSCollector::reset(bool asynch) { 6284 GenCollectedHeap* gch = GenCollectedHeap::heap(); 6285 CMSAdaptiveSizePolicy* sp = size_policy(); 6286 AdaptiveSizePolicyOutput(sp, gch->total_collections()); 6287 if (asynch) { 6288 CMSTokenSyncWithLocks ts(true, bitMapLock()); 6289 6290 // If the state is not "Resetting", the foreground thread 6291 // has done a collection and the resetting. 6292 if (_collectorState != Resetting) { 6293 assert(_collectorState == Idling, "The state should only change" 6294 " because the foreground collector has finished the collection"); 6295 return; 6296 } 6297 6298 // Clear the mark bitmap (no grey objects to start with) 6299 // for the next cycle. 6300 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 6301 CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails); 6302 6303 HeapWord* curAddr = _markBitMap.startWord(); 6304 while (curAddr < _markBitMap.endWord()) { 6305 size_t remaining = pointer_delta(_markBitMap.endWord(), curAddr); 6306 MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining)); 6307 _markBitMap.clear_large_range(chunk); 6308 if (ConcurrentMarkSweepThread::should_yield() && 6309 !foregroundGCIsActive() && 6310 CMSYield) { 6311 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6312 "CMS thread should hold CMS token"); 6313 assert_lock_strong(bitMapLock()); 6314 bitMapLock()->unlock(); 6315 ConcurrentMarkSweepThread::desynchronize(true); 6316 ConcurrentMarkSweepThread::acknowledge_yield_request(); 6317 stopTimer(); 6318 if (PrintCMSStatistics != 0) { 6319 incrementYields(); 6320 } 6321 icms_wait(); 6322 6323 // See the comment in coordinator_yield() 6324 for (unsigned i = 0; i < CMSYieldSleepCount && 6325 ConcurrentMarkSweepThread::should_yield() && 6326 !CMSCollector::foregroundGCIsActive(); ++i) { 6327 os::sleep(Thread::current(), 1, false); 6328 ConcurrentMarkSweepThread::acknowledge_yield_request(); 6329 } 6330 6331 ConcurrentMarkSweepThread::synchronize(true); 6332 bitMapLock()->lock_without_safepoint_check(); 6333 startTimer(); 6334 } 6335 curAddr = chunk.end(); 6336 } 6337 // A successful mostly concurrent collection has been done. 6338 // Because only the full (i.e., concurrent mode failure) collections 6339 // are being measured for gc overhead limits, clean the "near" flag 6340 // and count. 6341 sp->reset_gc_overhead_limit_count(); 6342 _collectorState = Idling; 6343 } else { 6344 // already have the lock 6345 assert(_collectorState == Resetting, "just checking"); 6346 assert_lock_strong(bitMapLock()); 6347 _markBitMap.clear_all(); 6348 _collectorState = Idling; 6349 } 6350 6351 // Stop incremental mode after a cycle completes, so that any future cycles 6352 // are triggered by allocation. 6353 stop_icms(); 6354 6355 NOT_PRODUCT( 6356 if (RotateCMSCollectionTypes) { 6357 _cmsGen->rotate_debug_collection_type(); 6358 } 6359 ) 6360 6361 register_gc_end(); 6362 } 6363 6364 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) { 6365 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps); 6366 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 6367 GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL); 6368 TraceCollectorStats tcs(counters()); 6369 6370 switch (op) { 6371 case CMS_op_checkpointRootsInitial: { 6372 SvcGCMarker sgcm(SvcGCMarker::OTHER); 6373 checkpointRootsInitial(true); // asynch 6374 if (PrintGC) { 6375 _cmsGen->printOccupancy("initial-mark"); 6376 } 6377 break; 6378 } 6379 case CMS_op_checkpointRootsFinal: { 6380 SvcGCMarker sgcm(SvcGCMarker::OTHER); 6381 checkpointRootsFinal(true, // asynch 6382 false, // !clear_all_soft_refs 6383 false); // !init_mark_was_synchronous 6384 if (PrintGC) { 6385 _cmsGen->printOccupancy("remark"); 6386 } 6387 break; 6388 } 6389 default: 6390 fatal("No such CMS_op"); 6391 } 6392 } 6393 6394 #ifndef PRODUCT 6395 size_t const CMSCollector::skip_header_HeapWords() { 6396 return FreeChunk::header_size(); 6397 } 6398 6399 // Try and collect here conditions that should hold when 6400 // CMS thread is exiting. The idea is that the foreground GC 6401 // thread should not be blocked if it wants to terminate 6402 // the CMS thread and yet continue to run the VM for a while 6403 // after that. 6404 void CMSCollector::verify_ok_to_terminate() const { 6405 assert(Thread::current()->is_ConcurrentGC_thread(), 6406 "should be called by CMS thread"); 6407 assert(!_foregroundGCShouldWait, "should be false"); 6408 // We could check here that all the various low-level locks 6409 // are not held by the CMS thread, but that is overkill; see 6410 // also CMSThread::verify_ok_to_terminate() where the CGC_lock 6411 // is checked. 6412 } 6413 #endif 6414 6415 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const { 6416 assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1), 6417 "missing Printezis mark?"); 6418 HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2); 6419 size_t size = pointer_delta(nextOneAddr + 1, addr); 6420 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 6421 "alignment problem"); 6422 assert(size >= 3, "Necessary for Printezis marks to work"); 6423 return size; 6424 } 6425 6426 // A variant of the above (block_size_using_printezis_bits()) except 6427 // that we return 0 if the P-bits are not yet set. 6428 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const { 6429 if (_markBitMap.isMarked(addr + 1)) { 6430 assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects"); 6431 HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2); 6432 size_t size = pointer_delta(nextOneAddr + 1, addr); 6433 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 6434 "alignment problem"); 6435 assert(size >= 3, "Necessary for Printezis marks to work"); 6436 return size; 6437 } 6438 return 0; 6439 } 6440 6441 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const { 6442 size_t sz = 0; 6443 oop p = (oop)addr; 6444 if (p->klass_or_null() != NULL && p->is_parsable()) { 6445 sz = CompactibleFreeListSpace::adjustObjectSize(p->size()); 6446 } else { 6447 sz = block_size_using_printezis_bits(addr); 6448 } 6449 assert(sz > 0, "size must be nonzero"); 6450 HeapWord* next_block = addr + sz; 6451 HeapWord* next_card = (HeapWord*)round_to((uintptr_t)next_block, 6452 CardTableModRefBS::card_size); 6453 assert(round_down((uintptr_t)addr, CardTableModRefBS::card_size) < 6454 round_down((uintptr_t)next_card, CardTableModRefBS::card_size), 6455 "must be different cards"); 6456 return next_card; 6457 } 6458 6459 6460 // CMS Bit Map Wrapper ///////////////////////////////////////// 6461 6462 // Construct a CMS bit map infrastructure, but don't create the 6463 // bit vector itself. That is done by a separate call CMSBitMap::allocate() 6464 // further below. 6465 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name): 6466 _bm(), 6467 _shifter(shifter), 6468 _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL) 6469 { 6470 _bmStartWord = 0; 6471 _bmWordSize = 0; 6472 } 6473 6474 bool CMSBitMap::allocate(MemRegion mr) { 6475 _bmStartWord = mr.start(); 6476 _bmWordSize = mr.word_size(); 6477 ReservedSpace brs(ReservedSpace::allocation_align_size_up( 6478 (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1)); 6479 if (!brs.is_reserved()) { 6480 warning("CMS bit map allocation failure"); 6481 return false; 6482 } 6483 // For now we'll just commit all of the bit map up fromt. 6484 // Later on we'll try to be more parsimonious with swap. 6485 if (!_virtual_space.initialize(brs, brs.size())) { 6486 warning("CMS bit map backing store failure"); 6487 return false; 6488 } 6489 assert(_virtual_space.committed_size() == brs.size(), 6490 "didn't reserve backing store for all of CMS bit map?"); 6491 _bm.set_map((BitMap::bm_word_t*)_virtual_space.low()); 6492 assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >= 6493 _bmWordSize, "inconsistency in bit map sizing"); 6494 _bm.set_size(_bmWordSize >> _shifter); 6495 6496 // bm.clear(); // can we rely on getting zero'd memory? verify below 6497 assert(isAllClear(), 6498 "Expected zero'd memory from ReservedSpace constructor"); 6499 assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()), 6500 "consistency check"); 6501 return true; 6502 } 6503 6504 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) { 6505 HeapWord *next_addr, *end_addr, *last_addr; 6506 assert_locked(); 6507 assert(covers(mr), "out-of-range error"); 6508 // XXX assert that start and end are appropriately aligned 6509 for (next_addr = mr.start(), end_addr = mr.end(); 6510 next_addr < end_addr; next_addr = last_addr) { 6511 MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr); 6512 last_addr = dirty_region.end(); 6513 if (!dirty_region.is_empty()) { 6514 cl->do_MemRegion(dirty_region); 6515 } else { 6516 assert(last_addr == end_addr, "program logic"); 6517 return; 6518 } 6519 } 6520 } 6521 6522 #ifndef PRODUCT 6523 void CMSBitMap::assert_locked() const { 6524 CMSLockVerifier::assert_locked(lock()); 6525 } 6526 6527 bool CMSBitMap::covers(MemRegion mr) const { 6528 // assert(_bm.map() == _virtual_space.low(), "map inconsistency"); 6529 assert((size_t)_bm.size() == (_bmWordSize >> _shifter), 6530 "size inconsistency"); 6531 return (mr.start() >= _bmStartWord) && 6532 (mr.end() <= endWord()); 6533 } 6534 6535 bool CMSBitMap::covers(HeapWord* start, size_t size) const { 6536 return (start >= _bmStartWord && (start + size) <= endWord()); 6537 } 6538 6539 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) { 6540 // verify that there are no 1 bits in the interval [left, right) 6541 FalseBitMapClosure falseBitMapClosure; 6542 iterate(&falseBitMapClosure, left, right); 6543 } 6544 6545 void CMSBitMap::region_invariant(MemRegion mr) 6546 { 6547 assert_locked(); 6548 // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize)); 6549 assert(!mr.is_empty(), "unexpected empty region"); 6550 assert(covers(mr), "mr should be covered by bit map"); 6551 // convert address range into offset range 6552 size_t start_ofs = heapWordToOffset(mr.start()); 6553 // Make sure that end() is appropriately aligned 6554 assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(), 6555 (1 << (_shifter+LogHeapWordSize))), 6556 "Misaligned mr.end()"); 6557 size_t end_ofs = heapWordToOffset(mr.end()); 6558 assert(end_ofs > start_ofs, "Should mark at least one bit"); 6559 } 6560 6561 #endif 6562 6563 bool CMSMarkStack::allocate(size_t size) { 6564 // allocate a stack of the requisite depth 6565 ReservedSpace rs(ReservedSpace::allocation_align_size_up( 6566 size * sizeof(oop))); 6567 if (!rs.is_reserved()) { 6568 warning("CMSMarkStack allocation failure"); 6569 return false; 6570 } 6571 if (!_virtual_space.initialize(rs, rs.size())) { 6572 warning("CMSMarkStack backing store failure"); 6573 return false; 6574 } 6575 assert(_virtual_space.committed_size() == rs.size(), 6576 "didn't reserve backing store for all of CMS stack?"); 6577 _base = (oop*)(_virtual_space.low()); 6578 _index = 0; 6579 _capacity = size; 6580 NOT_PRODUCT(_max_depth = 0); 6581 return true; 6582 } 6583 6584 // XXX FIX ME !!! In the MT case we come in here holding a 6585 // leaf lock. For printing we need to take a further lock 6586 // which has lower rank. We need to recallibrate the two 6587 // lock-ranks involved in order to be able to rpint the 6588 // messages below. (Or defer the printing to the caller. 6589 // For now we take the expedient path of just disabling the 6590 // messages for the problematic case.) 6591 void CMSMarkStack::expand() { 6592 assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted"); 6593 if (_capacity == MarkStackSizeMax) { 6594 if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) { 6595 // We print a warning message only once per CMS cycle. 6596 gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit"); 6597 } 6598 return; 6599 } 6600 // Double capacity if possible 6601 size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax); 6602 // Do not give up existing stack until we have managed to 6603 // get the double capacity that we desired. 6604 ReservedSpace rs(ReservedSpace::allocation_align_size_up( 6605 new_capacity * sizeof(oop))); 6606 if (rs.is_reserved()) { 6607 // Release the backing store associated with old stack 6608 _virtual_space.release(); 6609 // Reinitialize virtual space for new stack 6610 if (!_virtual_space.initialize(rs, rs.size())) { 6611 fatal("Not enough swap for expanded marking stack"); 6612 } 6613 _base = (oop*)(_virtual_space.low()); 6614 _index = 0; 6615 _capacity = new_capacity; 6616 } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) { 6617 // Failed to double capacity, continue; 6618 // we print a detail message only once per CMS cycle. 6619 gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to " 6620 SIZE_FORMAT"K", 6621 _capacity / K, new_capacity / K); 6622 } 6623 } 6624 6625 6626 // Closures 6627 // XXX: there seems to be a lot of code duplication here; 6628 // should refactor and consolidate common code. 6629 6630 // This closure is used to mark refs into the CMS generation in 6631 // the CMS bit map. Called at the first checkpoint. This closure 6632 // assumes that we do not need to re-mark dirty cards; if the CMS 6633 // generation on which this is used is not an oldest (modulo perm gen) 6634 // generation then this will lose younger_gen cards! 6635 6636 MarkRefsIntoClosure::MarkRefsIntoClosure( 6637 MemRegion span, CMSBitMap* bitMap): 6638 _span(span), 6639 _bitMap(bitMap) 6640 { 6641 assert(_ref_processor == NULL, "deliberately left NULL"); 6642 assert(_bitMap->covers(_span), "_bitMap/_span mismatch"); 6643 } 6644 6645 void MarkRefsIntoClosure::do_oop(oop obj) { 6646 // if p points into _span, then mark corresponding bit in _markBitMap 6647 assert(obj->is_oop(), "expected an oop"); 6648 HeapWord* addr = (HeapWord*)obj; 6649 if (_span.contains(addr)) { 6650 // this should be made more efficient 6651 _bitMap->mark(addr); 6652 } 6653 } 6654 6655 void MarkRefsIntoClosure::do_oop(oop* p) { MarkRefsIntoClosure::do_oop_work(p); } 6656 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); } 6657 6658 // A variant of the above, used for CMS marking verification. 6659 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure( 6660 MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm): 6661 _span(span), 6662 _verification_bm(verification_bm), 6663 _cms_bm(cms_bm) 6664 { 6665 assert(_ref_processor == NULL, "deliberately left NULL"); 6666 assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch"); 6667 } 6668 6669 void MarkRefsIntoVerifyClosure::do_oop(oop obj) { 6670 // if p points into _span, then mark corresponding bit in _markBitMap 6671 assert(obj->is_oop(), "expected an oop"); 6672 HeapWord* addr = (HeapWord*)obj; 6673 if (_span.contains(addr)) { 6674 _verification_bm->mark(addr); 6675 if (!_cms_bm->isMarked(addr)) { 6676 oop(addr)->print(); 6677 gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr); 6678 fatal("... aborting"); 6679 } 6680 } 6681 } 6682 6683 void MarkRefsIntoVerifyClosure::do_oop(oop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); } 6684 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); } 6685 6686 ////////////////////////////////////////////////// 6687 // MarkRefsIntoAndScanClosure 6688 ////////////////////////////////////////////////// 6689 6690 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span, 6691 ReferenceProcessor* rp, 6692 CMSBitMap* bit_map, 6693 CMSBitMap* mod_union_table, 6694 CMSMarkStack* mark_stack, 6695 CMSMarkStack* revisit_stack, 6696 CMSCollector* collector, 6697 bool should_yield, 6698 bool concurrent_precleaning): 6699 _collector(collector), 6700 _span(span), 6701 _bit_map(bit_map), 6702 _mark_stack(mark_stack), 6703 _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table, 6704 mark_stack, revisit_stack, concurrent_precleaning), 6705 _yield(should_yield), 6706 _concurrent_precleaning(concurrent_precleaning), 6707 _freelistLock(NULL) 6708 { 6709 _ref_processor = rp; 6710 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 6711 } 6712 6713 // This closure is used to mark refs into the CMS generation at the 6714 // second (final) checkpoint, and to scan and transitively follow 6715 // the unmarked oops. It is also used during the concurrent precleaning 6716 // phase while scanning objects on dirty cards in the CMS generation. 6717 // The marks are made in the marking bit map and the marking stack is 6718 // used for keeping the (newly) grey objects during the scan. 6719 // The parallel version (Par_...) appears further below. 6720 void MarkRefsIntoAndScanClosure::do_oop(oop obj) { 6721 if (obj != NULL) { 6722 assert(obj->is_oop(), "expected an oop"); 6723 HeapWord* addr = (HeapWord*)obj; 6724 assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)"); 6725 assert(_collector->overflow_list_is_empty(), 6726 "overflow list should be empty"); 6727 if (_span.contains(addr) && 6728 !_bit_map->isMarked(addr)) { 6729 // mark bit map (object is now grey) 6730 _bit_map->mark(addr); 6731 // push on marking stack (stack should be empty), and drain the 6732 // stack by applying this closure to the oops in the oops popped 6733 // from the stack (i.e. blacken the grey objects) 6734 bool res = _mark_stack->push(obj); 6735 assert(res, "Should have space to push on empty stack"); 6736 do { 6737 oop new_oop = _mark_stack->pop(); 6738 assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop"); 6739 assert(new_oop->is_parsable(), "Found unparsable oop"); 6740 assert(_bit_map->isMarked((HeapWord*)new_oop), 6741 "only grey objects on this stack"); 6742 // iterate over the oops in this oop, marking and pushing 6743 // the ones in CMS heap (i.e. in _span). 6744 new_oop->oop_iterate(&_pushAndMarkClosure); 6745 // check if it's time to yield 6746 do_yield_check(); 6747 } while (!_mark_stack->isEmpty() || 6748 (!_concurrent_precleaning && take_from_overflow_list())); 6749 // if marking stack is empty, and we are not doing this 6750 // during precleaning, then check the overflow list 6751 } 6752 assert(_mark_stack->isEmpty(), "post-condition (eager drainage)"); 6753 assert(_collector->overflow_list_is_empty(), 6754 "overflow list was drained above"); 6755 // We could restore evacuated mark words, if any, used for 6756 // overflow list links here because the overflow list is 6757 // provably empty here. That would reduce the maximum 6758 // size requirements for preserved_{oop,mark}_stack. 6759 // But we'll just postpone it until we are all done 6760 // so we can just stream through. 6761 if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) { 6762 _collector->restore_preserved_marks_if_any(); 6763 assert(_collector->no_preserved_marks(), "No preserved marks"); 6764 } 6765 assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(), 6766 "All preserved marks should have been restored above"); 6767 } 6768 } 6769 6770 void MarkRefsIntoAndScanClosure::do_oop(oop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); } 6771 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); } 6772 6773 void MarkRefsIntoAndScanClosure::do_yield_work() { 6774 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6775 "CMS thread should hold CMS token"); 6776 assert_lock_strong(_freelistLock); 6777 assert_lock_strong(_bit_map->lock()); 6778 // relinquish the free_list_lock and bitMaplock() 6779 DEBUG_ONLY(RememberKlassesChecker mux(false);) 6780 _bit_map->lock()->unlock(); 6781 _freelistLock->unlock(); 6782 ConcurrentMarkSweepThread::desynchronize(true); 6783 ConcurrentMarkSweepThread::acknowledge_yield_request(); 6784 _collector->stopTimer(); 6785 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 6786 if (PrintCMSStatistics != 0) { 6787 _collector->incrementYields(); 6788 } 6789 _collector->icms_wait(); 6790 6791 // See the comment in coordinator_yield() 6792 for (unsigned i = 0; 6793 i < CMSYieldSleepCount && 6794 ConcurrentMarkSweepThread::should_yield() && 6795 !CMSCollector::foregroundGCIsActive(); 6796 ++i) { 6797 os::sleep(Thread::current(), 1, false); 6798 ConcurrentMarkSweepThread::acknowledge_yield_request(); 6799 } 6800 6801 ConcurrentMarkSweepThread::synchronize(true); 6802 _freelistLock->lock_without_safepoint_check(); 6803 _bit_map->lock()->lock_without_safepoint_check(); 6804 _collector->startTimer(); 6805 } 6806 6807 /////////////////////////////////////////////////////////// 6808 // Par_MarkRefsIntoAndScanClosure: a parallel version of 6809 // MarkRefsIntoAndScanClosure 6810 /////////////////////////////////////////////////////////// 6811 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure( 6812 CMSCollector* collector, MemRegion span, ReferenceProcessor* rp, 6813 CMSBitMap* bit_map, OopTaskQueue* work_queue, CMSMarkStack* revisit_stack): 6814 _span(span), 6815 _bit_map(bit_map), 6816 _work_queue(work_queue), 6817 _low_water_mark(MIN2((uint)(work_queue->max_elems()/4), 6818 (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))), 6819 _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue, 6820 revisit_stack) 6821 { 6822 _ref_processor = rp; 6823 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 6824 } 6825 6826 // This closure is used to mark refs into the CMS generation at the 6827 // second (final) checkpoint, and to scan and transitively follow 6828 // the unmarked oops. The marks are made in the marking bit map and 6829 // the work_queue is used for keeping the (newly) grey objects during 6830 // the scan phase whence they are also available for stealing by parallel 6831 // threads. Since the marking bit map is shared, updates are 6832 // synchronized (via CAS). 6833 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) { 6834 if (obj != NULL) { 6835 // Ignore mark word because this could be an already marked oop 6836 // that may be chained at the end of the overflow list. 6837 assert(obj->is_oop(true), "expected an oop"); 6838 HeapWord* addr = (HeapWord*)obj; 6839 if (_span.contains(addr) && 6840 !_bit_map->isMarked(addr)) { 6841 // mark bit map (object will become grey): 6842 // It is possible for several threads to be 6843 // trying to "claim" this object concurrently; 6844 // the unique thread that succeeds in marking the 6845 // object first will do the subsequent push on 6846 // to the work queue (or overflow list). 6847 if (_bit_map->par_mark(addr)) { 6848 // push on work_queue (which may not be empty), and trim the 6849 // queue to an appropriate length by applying this closure to 6850 // the oops in the oops popped from the stack (i.e. blacken the 6851 // grey objects) 6852 bool res = _work_queue->push(obj); 6853 assert(res, "Low water mark should be less than capacity?"); 6854 trim_queue(_low_water_mark); 6855 } // Else, another thread claimed the object 6856 } 6857 } 6858 } 6859 6860 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); } 6861 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); } 6862 6863 // This closure is used to rescan the marked objects on the dirty cards 6864 // in the mod union table and the card table proper. 6865 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m( 6866 oop p, MemRegion mr) { 6867 6868 size_t size = 0; 6869 HeapWord* addr = (HeapWord*)p; 6870 DEBUG_ONLY(_collector->verify_work_stacks_empty();) 6871 assert(_span.contains(addr), "we are scanning the CMS generation"); 6872 // check if it's time to yield 6873 if (do_yield_check()) { 6874 // We yielded for some foreground stop-world work, 6875 // and we have been asked to abort this ongoing preclean cycle. 6876 return 0; 6877 } 6878 if (_bitMap->isMarked(addr)) { 6879 // it's marked; is it potentially uninitialized? 6880 if (p->klass_or_null() != NULL) { 6881 // If is_conc_safe is false, the object may be undergoing 6882 // change by the VM outside a safepoint. Don't try to 6883 // scan it, but rather leave it for the remark phase. 6884 if (CMSPermGenPrecleaningEnabled && 6885 (!p->is_conc_safe() || !p->is_parsable())) { 6886 // Signal precleaning to redirty the card since 6887 // the klass pointer is already installed. 6888 assert(size == 0, "Initial value"); 6889 } else { 6890 assert(p->is_parsable(), "must be parsable."); 6891 // an initialized object; ignore mark word in verification below 6892 // since we are running concurrent with mutators 6893 assert(p->is_oop(true), "should be an oop"); 6894 if (p->is_objArray()) { 6895 // objArrays are precisely marked; restrict scanning 6896 // to dirty cards only. 6897 size = CompactibleFreeListSpace::adjustObjectSize( 6898 p->oop_iterate(_scanningClosure, mr)); 6899 } else { 6900 // A non-array may have been imprecisely marked; we need 6901 // to scan object in its entirety. 6902 size = CompactibleFreeListSpace::adjustObjectSize( 6903 p->oop_iterate(_scanningClosure)); 6904 } 6905 #ifdef DEBUG 6906 size_t direct_size = 6907 CompactibleFreeListSpace::adjustObjectSize(p->size()); 6908 assert(size == direct_size, "Inconsistency in size"); 6909 assert(size >= 3, "Necessary for Printezis marks to work"); 6910 if (!_bitMap->isMarked(addr+1)) { 6911 _bitMap->verifyNoOneBitsInRange(addr+2, addr+size); 6912 } else { 6913 _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1); 6914 assert(_bitMap->isMarked(addr+size-1), 6915 "inconsistent Printezis mark"); 6916 } 6917 #endif // DEBUG 6918 } 6919 } else { 6920 // an unitialized object 6921 assert(_bitMap->isMarked(addr+1), "missing Printezis mark?"); 6922 HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2); 6923 size = pointer_delta(nextOneAddr + 1, addr); 6924 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 6925 "alignment problem"); 6926 // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass() 6927 // will dirty the card when the klass pointer is installed in the 6928 // object (signalling the completion of initialization). 6929 } 6930 } else { 6931 // Either a not yet marked object or an uninitialized object 6932 if (p->klass_or_null() == NULL || !p->is_parsable()) { 6933 // An uninitialized object, skip to the next card, since 6934 // we may not be able to read its P-bits yet. 6935 assert(size == 0, "Initial value"); 6936 } else { 6937 // An object not (yet) reached by marking: we merely need to 6938 // compute its size so as to go look at the next block. 6939 assert(p->is_oop(true), "should be an oop"); 6940 size = CompactibleFreeListSpace::adjustObjectSize(p->size()); 6941 } 6942 } 6943 DEBUG_ONLY(_collector->verify_work_stacks_empty();) 6944 return size; 6945 } 6946 6947 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() { 6948 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6949 "CMS thread should hold CMS token"); 6950 assert_lock_strong(_freelistLock); 6951 assert_lock_strong(_bitMap->lock()); 6952 DEBUG_ONLY(RememberKlassesChecker mux(false);) 6953 // relinquish the free_list_lock and bitMaplock() 6954 _bitMap->lock()->unlock(); 6955 _freelistLock->unlock(); 6956 ConcurrentMarkSweepThread::desynchronize(true); 6957 ConcurrentMarkSweepThread::acknowledge_yield_request(); 6958 _collector->stopTimer(); 6959 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 6960 if (PrintCMSStatistics != 0) { 6961 _collector->incrementYields(); 6962 } 6963 _collector->icms_wait(); 6964 6965 // See the comment in coordinator_yield() 6966 for (unsigned i = 0; i < CMSYieldSleepCount && 6967 ConcurrentMarkSweepThread::should_yield() && 6968 !CMSCollector::foregroundGCIsActive(); ++i) { 6969 os::sleep(Thread::current(), 1, false); 6970 ConcurrentMarkSweepThread::acknowledge_yield_request(); 6971 } 6972 6973 ConcurrentMarkSweepThread::synchronize(true); 6974 _freelistLock->lock_without_safepoint_check(); 6975 _bitMap->lock()->lock_without_safepoint_check(); 6976 _collector->startTimer(); 6977 } 6978 6979 6980 ////////////////////////////////////////////////////////////////// 6981 // SurvivorSpacePrecleanClosure 6982 ////////////////////////////////////////////////////////////////// 6983 // This (single-threaded) closure is used to preclean the oops in 6984 // the survivor spaces. 6985 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) { 6986 6987 HeapWord* addr = (HeapWord*)p; 6988 DEBUG_ONLY(_collector->verify_work_stacks_empty();) 6989 assert(!_span.contains(addr), "we are scanning the survivor spaces"); 6990 assert(p->klass_or_null() != NULL, "object should be initializd"); 6991 assert(p->is_parsable(), "must be parsable."); 6992 // an initialized object; ignore mark word in verification below 6993 // since we are running concurrent with mutators 6994 assert(p->is_oop(true), "should be an oop"); 6995 // Note that we do not yield while we iterate over 6996 // the interior oops of p, pushing the relevant ones 6997 // on our marking stack. 6998 size_t size = p->oop_iterate(_scanning_closure); 6999 do_yield_check(); 7000 // Observe that below, we do not abandon the preclean 7001 // phase as soon as we should; rather we empty the 7002 // marking stack before returning. This is to satisfy 7003 // some existing assertions. In general, it may be a 7004 // good idea to abort immediately and complete the marking 7005 // from the grey objects at a later time. 7006 while (!_mark_stack->isEmpty()) { 7007 oop new_oop = _mark_stack->pop(); 7008 assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop"); 7009 assert(new_oop->is_parsable(), "Found unparsable oop"); 7010 assert(_bit_map->isMarked((HeapWord*)new_oop), 7011 "only grey objects on this stack"); 7012 // iterate over the oops in this oop, marking and pushing 7013 // the ones in CMS heap (i.e. in _span). 7014 new_oop->oop_iterate(_scanning_closure); 7015 // check if it's time to yield 7016 do_yield_check(); 7017 } 7018 unsigned int after_count = 7019 GenCollectedHeap::heap()->total_collections(); 7020 bool abort = (_before_count != after_count) || 7021 _collector->should_abort_preclean(); 7022 return abort ? 0 : size; 7023 } 7024 7025 void SurvivorSpacePrecleanClosure::do_yield_work() { 7026 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 7027 "CMS thread should hold CMS token"); 7028 assert_lock_strong(_bit_map->lock()); 7029 DEBUG_ONLY(RememberKlassesChecker smx(false);) 7030 // Relinquish the bit map lock 7031 _bit_map->lock()->unlock(); 7032 ConcurrentMarkSweepThread::desynchronize(true); 7033 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7034 _collector->stopTimer(); 7035 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 7036 if (PrintCMSStatistics != 0) { 7037 _collector->incrementYields(); 7038 } 7039 _collector->icms_wait(); 7040 7041 // See the comment in coordinator_yield() 7042 for (unsigned i = 0; i < CMSYieldSleepCount && 7043 ConcurrentMarkSweepThread::should_yield() && 7044 !CMSCollector::foregroundGCIsActive(); ++i) { 7045 os::sleep(Thread::current(), 1, false); 7046 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7047 } 7048 7049 ConcurrentMarkSweepThread::synchronize(true); 7050 _bit_map->lock()->lock_without_safepoint_check(); 7051 _collector->startTimer(); 7052 } 7053 7054 // This closure is used to rescan the marked objects on the dirty cards 7055 // in the mod union table and the card table proper. In the parallel 7056 // case, although the bitMap is shared, we do a single read so the 7057 // isMarked() query is "safe". 7058 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) { 7059 // Ignore mark word because we are running concurrent with mutators 7060 assert(p->is_oop_or_null(true), "expected an oop or null"); 7061 HeapWord* addr = (HeapWord*)p; 7062 assert(_span.contains(addr), "we are scanning the CMS generation"); 7063 bool is_obj_array = false; 7064 #ifdef DEBUG 7065 if (!_parallel) { 7066 assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)"); 7067 assert(_collector->overflow_list_is_empty(), 7068 "overflow list should be empty"); 7069 7070 } 7071 #endif // DEBUG 7072 if (_bit_map->isMarked(addr)) { 7073 // Obj arrays are precisely marked, non-arrays are not; 7074 // so we scan objArrays precisely and non-arrays in their 7075 // entirety. 7076 if (p->is_objArray()) { 7077 is_obj_array = true; 7078 if (_parallel) { 7079 p->oop_iterate(_par_scan_closure, mr); 7080 } else { 7081 p->oop_iterate(_scan_closure, mr); 7082 } 7083 } else { 7084 if (_parallel) { 7085 p->oop_iterate(_par_scan_closure); 7086 } else { 7087 p->oop_iterate(_scan_closure); 7088 } 7089 } 7090 } 7091 #ifdef DEBUG 7092 if (!_parallel) { 7093 assert(_mark_stack->isEmpty(), "post-condition (eager drainage)"); 7094 assert(_collector->overflow_list_is_empty(), 7095 "overflow list should be empty"); 7096 7097 } 7098 #endif // DEBUG 7099 return is_obj_array; 7100 } 7101 7102 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector, 7103 MemRegion span, 7104 CMSBitMap* bitMap, CMSMarkStack* markStack, 7105 CMSMarkStack* revisitStack, 7106 bool should_yield, bool verifying): 7107 _collector(collector), 7108 _span(span), 7109 _bitMap(bitMap), 7110 _mut(&collector->_modUnionTable), 7111 _markStack(markStack), 7112 _revisitStack(revisitStack), 7113 _yield(should_yield), 7114 _skipBits(0) 7115 { 7116 assert(_markStack->isEmpty(), "stack should be empty"); 7117 _finger = _bitMap->startWord(); 7118 _threshold = _finger; 7119 assert(_collector->_restart_addr == NULL, "Sanity check"); 7120 assert(_span.contains(_finger), "Out of bounds _finger?"); 7121 DEBUG_ONLY(_verifying = verifying;) 7122 } 7123 7124 void MarkFromRootsClosure::reset(HeapWord* addr) { 7125 assert(_markStack->isEmpty(), "would cause duplicates on stack"); 7126 assert(_span.contains(addr), "Out of bounds _finger?"); 7127 _finger = addr; 7128 _threshold = (HeapWord*)round_to( 7129 (intptr_t)_finger, CardTableModRefBS::card_size); 7130 } 7131 7132 // Should revisit to see if this should be restructured for 7133 // greater efficiency. 7134 bool MarkFromRootsClosure::do_bit(size_t offset) { 7135 if (_skipBits > 0) { 7136 _skipBits--; 7137 return true; 7138 } 7139 // convert offset into a HeapWord* 7140 HeapWord* addr = _bitMap->startWord() + offset; 7141 assert(_bitMap->endWord() && addr < _bitMap->endWord(), 7142 "address out of range"); 7143 assert(_bitMap->isMarked(addr), "tautology"); 7144 if (_bitMap->isMarked(addr+1)) { 7145 // this is an allocated but not yet initialized object 7146 assert(_skipBits == 0, "tautology"); 7147 _skipBits = 2; // skip next two marked bits ("Printezis-marks") 7148 oop p = oop(addr); 7149 if (p->klass_or_null() == NULL || !p->is_parsable()) { 7150 DEBUG_ONLY(if (!_verifying) {) 7151 // We re-dirty the cards on which this object lies and increase 7152 // the _threshold so that we'll come back to scan this object 7153 // during the preclean or remark phase. (CMSCleanOnEnter) 7154 if (CMSCleanOnEnter) { 7155 size_t sz = _collector->block_size_using_printezis_bits(addr); 7156 HeapWord* end_card_addr = (HeapWord*)round_to( 7157 (intptr_t)(addr+sz), CardTableModRefBS::card_size); 7158 MemRegion redirty_range = MemRegion(addr, end_card_addr); 7159 assert(!redirty_range.is_empty(), "Arithmetical tautology"); 7160 // Bump _threshold to end_card_addr; note that 7161 // _threshold cannot possibly exceed end_card_addr, anyhow. 7162 // This prevents future clearing of the card as the scan proceeds 7163 // to the right. 7164 assert(_threshold <= end_card_addr, 7165 "Because we are just scanning into this object"); 7166 if (_threshold < end_card_addr) { 7167 _threshold = end_card_addr; 7168 } 7169 if (p->klass_or_null() != NULL) { 7170 // Redirty the range of cards... 7171 _mut->mark_range(redirty_range); 7172 } // ...else the setting of klass will dirty the card anyway. 7173 } 7174 DEBUG_ONLY(}) 7175 return true; 7176 } 7177 } 7178 scanOopsInOop(addr); 7179 return true; 7180 } 7181 7182 // We take a break if we've been at this for a while, 7183 // so as to avoid monopolizing the locks involved. 7184 void MarkFromRootsClosure::do_yield_work() { 7185 // First give up the locks, then yield, then re-lock 7186 // We should probably use a constructor/destructor idiom to 7187 // do this unlock/lock or modify the MutexUnlocker class to 7188 // serve our purpose. XXX 7189 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 7190 "CMS thread should hold CMS token"); 7191 assert_lock_strong(_bitMap->lock()); 7192 DEBUG_ONLY(RememberKlassesChecker mux(false);) 7193 _bitMap->lock()->unlock(); 7194 ConcurrentMarkSweepThread::desynchronize(true); 7195 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7196 _collector->stopTimer(); 7197 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 7198 if (PrintCMSStatistics != 0) { 7199 _collector->incrementYields(); 7200 } 7201 _collector->icms_wait(); 7202 7203 // See the comment in coordinator_yield() 7204 for (unsigned i = 0; i < CMSYieldSleepCount && 7205 ConcurrentMarkSweepThread::should_yield() && 7206 !CMSCollector::foregroundGCIsActive(); ++i) { 7207 os::sleep(Thread::current(), 1, false); 7208 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7209 } 7210 7211 ConcurrentMarkSweepThread::synchronize(true); 7212 _bitMap->lock()->lock_without_safepoint_check(); 7213 _collector->startTimer(); 7214 } 7215 7216 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) { 7217 assert(_bitMap->isMarked(ptr), "expected bit to be set"); 7218 assert(_markStack->isEmpty(), 7219 "should drain stack to limit stack usage"); 7220 // convert ptr to an oop preparatory to scanning 7221 oop obj = oop(ptr); 7222 // Ignore mark word in verification below, since we 7223 // may be running concurrent with mutators. 7224 assert(obj->is_oop(true), "should be an oop"); 7225 assert(_finger <= ptr, "_finger runneth ahead"); 7226 // advance the finger to right end of this object 7227 _finger = ptr + obj->size(); 7228 assert(_finger > ptr, "we just incremented it above"); 7229 // On large heaps, it may take us some time to get through 7230 // the marking phase (especially if running iCMS). During 7231 // this time it's possible that a lot of mutations have 7232 // accumulated in the card table and the mod union table -- 7233 // these mutation records are redundant until we have 7234 // actually traced into the corresponding card. 7235 // Here, we check whether advancing the finger would make 7236 // us cross into a new card, and if so clear corresponding 7237 // cards in the MUT (preclean them in the card-table in the 7238 // future). 7239 7240 DEBUG_ONLY(if (!_verifying) {) 7241 // The clean-on-enter optimization is disabled by default, 7242 // until we fix 6178663. 7243 if (CMSCleanOnEnter && (_finger > _threshold)) { 7244 // [_threshold, _finger) represents the interval 7245 // of cards to be cleared in MUT (or precleaned in card table). 7246 // The set of cards to be cleared is all those that overlap 7247 // with the interval [_threshold, _finger); note that 7248 // _threshold is always kept card-aligned but _finger isn't 7249 // always card-aligned. 7250 HeapWord* old_threshold = _threshold; 7251 assert(old_threshold == (HeapWord*)round_to( 7252 (intptr_t)old_threshold, CardTableModRefBS::card_size), 7253 "_threshold should always be card-aligned"); 7254 _threshold = (HeapWord*)round_to( 7255 (intptr_t)_finger, CardTableModRefBS::card_size); 7256 MemRegion mr(old_threshold, _threshold); 7257 assert(!mr.is_empty(), "Control point invariant"); 7258 assert(_span.contains(mr), "Should clear within span"); 7259 // XXX When _finger crosses from old gen into perm gen 7260 // we may be doing unnecessary cleaning; do better in the 7261 // future by detecting that condition and clearing fewer 7262 // MUT/CT entries. 7263 _mut->clear_range(mr); 7264 } 7265 DEBUG_ONLY(}) 7266 // Note: the finger doesn't advance while we drain 7267 // the stack below. 7268 PushOrMarkClosure pushOrMarkClosure(_collector, 7269 _span, _bitMap, _markStack, 7270 _revisitStack, 7271 _finger, this); 7272 bool res = _markStack->push(obj); 7273 assert(res, "Empty non-zero size stack should have space for single push"); 7274 while (!_markStack->isEmpty()) { 7275 oop new_oop = _markStack->pop(); 7276 // Skip verifying header mark word below because we are 7277 // running concurrent with mutators. 7278 assert(new_oop->is_oop(true), "Oops! expected to pop an oop"); 7279 // now scan this oop's oops 7280 new_oop->oop_iterate(&pushOrMarkClosure); 7281 do_yield_check(); 7282 } 7283 assert(_markStack->isEmpty(), "tautology, emphasizing post-condition"); 7284 } 7285 7286 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task, 7287 CMSCollector* collector, MemRegion span, 7288 CMSBitMap* bit_map, 7289 OopTaskQueue* work_queue, 7290 CMSMarkStack* overflow_stack, 7291 CMSMarkStack* revisit_stack, 7292 bool should_yield): 7293 _collector(collector), 7294 _whole_span(collector->_span), 7295 _span(span), 7296 _bit_map(bit_map), 7297 _mut(&collector->_modUnionTable), 7298 _work_queue(work_queue), 7299 _overflow_stack(overflow_stack), 7300 _revisit_stack(revisit_stack), 7301 _yield(should_yield), 7302 _skip_bits(0), 7303 _task(task) 7304 { 7305 assert(_work_queue->size() == 0, "work_queue should be empty"); 7306 _finger = span.start(); 7307 _threshold = _finger; // XXX Defer clear-on-enter optimization for now 7308 assert(_span.contains(_finger), "Out of bounds _finger?"); 7309 } 7310 7311 // Should revisit to see if this should be restructured for 7312 // greater efficiency. 7313 bool Par_MarkFromRootsClosure::do_bit(size_t offset) { 7314 if (_skip_bits > 0) { 7315 _skip_bits--; 7316 return true; 7317 } 7318 // convert offset into a HeapWord* 7319 HeapWord* addr = _bit_map->startWord() + offset; 7320 assert(_bit_map->endWord() && addr < _bit_map->endWord(), 7321 "address out of range"); 7322 assert(_bit_map->isMarked(addr), "tautology"); 7323 if (_bit_map->isMarked(addr+1)) { 7324 // this is an allocated object that might not yet be initialized 7325 assert(_skip_bits == 0, "tautology"); 7326 _skip_bits = 2; // skip next two marked bits ("Printezis-marks") 7327 oop p = oop(addr); 7328 if (p->klass_or_null() == NULL || !p->is_parsable()) { 7329 // in the case of Clean-on-Enter optimization, redirty card 7330 // and avoid clearing card by increasing the threshold. 7331 return true; 7332 } 7333 } 7334 scan_oops_in_oop(addr); 7335 return true; 7336 } 7337 7338 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) { 7339 assert(_bit_map->isMarked(ptr), "expected bit to be set"); 7340 // Should we assert that our work queue is empty or 7341 // below some drain limit? 7342 assert(_work_queue->size() == 0, 7343 "should drain stack to limit stack usage"); 7344 // convert ptr to an oop preparatory to scanning 7345 oop obj = oop(ptr); 7346 // Ignore mark word in verification below, since we 7347 // may be running concurrent with mutators. 7348 assert(obj->is_oop(true), "should be an oop"); 7349 assert(_finger <= ptr, "_finger runneth ahead"); 7350 // advance the finger to right end of this object 7351 _finger = ptr + obj->size(); 7352 assert(_finger > ptr, "we just incremented it above"); 7353 // On large heaps, it may take us some time to get through 7354 // the marking phase (especially if running iCMS). During 7355 // this time it's possible that a lot of mutations have 7356 // accumulated in the card table and the mod union table -- 7357 // these mutation records are redundant until we have 7358 // actually traced into the corresponding card. 7359 // Here, we check whether advancing the finger would make 7360 // us cross into a new card, and if so clear corresponding 7361 // cards in the MUT (preclean them in the card-table in the 7362 // future). 7363 7364 // The clean-on-enter optimization is disabled by default, 7365 // until we fix 6178663. 7366 if (CMSCleanOnEnter && (_finger > _threshold)) { 7367 // [_threshold, _finger) represents the interval 7368 // of cards to be cleared in MUT (or precleaned in card table). 7369 // The set of cards to be cleared is all those that overlap 7370 // with the interval [_threshold, _finger); note that 7371 // _threshold is always kept card-aligned but _finger isn't 7372 // always card-aligned. 7373 HeapWord* old_threshold = _threshold; 7374 assert(old_threshold == (HeapWord*)round_to( 7375 (intptr_t)old_threshold, CardTableModRefBS::card_size), 7376 "_threshold should always be card-aligned"); 7377 _threshold = (HeapWord*)round_to( 7378 (intptr_t)_finger, CardTableModRefBS::card_size); 7379 MemRegion mr(old_threshold, _threshold); 7380 assert(!mr.is_empty(), "Control point invariant"); 7381 assert(_span.contains(mr), "Should clear within span"); // _whole_span ?? 7382 // XXX When _finger crosses from old gen into perm gen 7383 // we may be doing unnecessary cleaning; do better in the 7384 // future by detecting that condition and clearing fewer 7385 // MUT/CT entries. 7386 _mut->clear_range(mr); 7387 } 7388 7389 // Note: the local finger doesn't advance while we drain 7390 // the stack below, but the global finger sure can and will. 7391 HeapWord** gfa = _task->global_finger_addr(); 7392 Par_PushOrMarkClosure pushOrMarkClosure(_collector, 7393 _span, _bit_map, 7394 _work_queue, 7395 _overflow_stack, 7396 _revisit_stack, 7397 _finger, 7398 gfa, this); 7399 bool res = _work_queue->push(obj); // overflow could occur here 7400 assert(res, "Will hold once we use workqueues"); 7401 while (true) { 7402 oop new_oop; 7403 if (!_work_queue->pop_local(new_oop)) { 7404 // We emptied our work_queue; check if there's stuff that can 7405 // be gotten from the overflow stack. 7406 if (CMSConcMarkingTask::get_work_from_overflow_stack( 7407 _overflow_stack, _work_queue)) { 7408 do_yield_check(); 7409 continue; 7410 } else { // done 7411 break; 7412 } 7413 } 7414 // Skip verifying header mark word below because we are 7415 // running concurrent with mutators. 7416 assert(new_oop->is_oop(true), "Oops! expected to pop an oop"); 7417 // now scan this oop's oops 7418 new_oop->oop_iterate(&pushOrMarkClosure); 7419 do_yield_check(); 7420 } 7421 assert(_work_queue->size() == 0, "tautology, emphasizing post-condition"); 7422 } 7423 7424 // Yield in response to a request from VM Thread or 7425 // from mutators. 7426 void Par_MarkFromRootsClosure::do_yield_work() { 7427 assert(_task != NULL, "sanity"); 7428 _task->yield(); 7429 } 7430 7431 // A variant of the above used for verifying CMS marking work. 7432 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector, 7433 MemRegion span, 7434 CMSBitMap* verification_bm, CMSBitMap* cms_bm, 7435 CMSMarkStack* mark_stack): 7436 _collector(collector), 7437 _span(span), 7438 _verification_bm(verification_bm), 7439 _cms_bm(cms_bm), 7440 _mark_stack(mark_stack), 7441 _pam_verify_closure(collector, span, verification_bm, cms_bm, 7442 mark_stack) 7443 { 7444 assert(_mark_stack->isEmpty(), "stack should be empty"); 7445 _finger = _verification_bm->startWord(); 7446 assert(_collector->_restart_addr == NULL, "Sanity check"); 7447 assert(_span.contains(_finger), "Out of bounds _finger?"); 7448 } 7449 7450 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) { 7451 assert(_mark_stack->isEmpty(), "would cause duplicates on stack"); 7452 assert(_span.contains(addr), "Out of bounds _finger?"); 7453 _finger = addr; 7454 } 7455 7456 // Should revisit to see if this should be restructured for 7457 // greater efficiency. 7458 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) { 7459 // convert offset into a HeapWord* 7460 HeapWord* addr = _verification_bm->startWord() + offset; 7461 assert(_verification_bm->endWord() && addr < _verification_bm->endWord(), 7462 "address out of range"); 7463 assert(_verification_bm->isMarked(addr), "tautology"); 7464 assert(_cms_bm->isMarked(addr), "tautology"); 7465 7466 assert(_mark_stack->isEmpty(), 7467 "should drain stack to limit stack usage"); 7468 // convert addr to an oop preparatory to scanning 7469 oop obj = oop(addr); 7470 assert(obj->is_oop(), "should be an oop"); 7471 assert(_finger <= addr, "_finger runneth ahead"); 7472 // advance the finger to right end of this object 7473 _finger = addr + obj->size(); 7474 assert(_finger > addr, "we just incremented it above"); 7475 // Note: the finger doesn't advance while we drain 7476 // the stack below. 7477 bool res = _mark_stack->push(obj); 7478 assert(res, "Empty non-zero size stack should have space for single push"); 7479 while (!_mark_stack->isEmpty()) { 7480 oop new_oop = _mark_stack->pop(); 7481 assert(new_oop->is_oop(), "Oops! expected to pop an oop"); 7482 // now scan this oop's oops 7483 new_oop->oop_iterate(&_pam_verify_closure); 7484 } 7485 assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition"); 7486 return true; 7487 } 7488 7489 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure( 7490 CMSCollector* collector, MemRegion span, 7491 CMSBitMap* verification_bm, CMSBitMap* cms_bm, 7492 CMSMarkStack* mark_stack): 7493 OopClosure(collector->ref_processor()), 7494 _collector(collector), 7495 _span(span), 7496 _verification_bm(verification_bm), 7497 _cms_bm(cms_bm), 7498 _mark_stack(mark_stack) 7499 { } 7500 7501 void PushAndMarkVerifyClosure::do_oop(oop* p) { PushAndMarkVerifyClosure::do_oop_work(p); } 7502 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); } 7503 7504 // Upon stack overflow, we discard (part of) the stack, 7505 // remembering the least address amongst those discarded 7506 // in CMSCollector's _restart_address. 7507 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) { 7508 // Remember the least grey address discarded 7509 HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost); 7510 _collector->lower_restart_addr(ra); 7511 _mark_stack->reset(); // discard stack contents 7512 _mark_stack->expand(); // expand the stack if possible 7513 } 7514 7515 void PushAndMarkVerifyClosure::do_oop(oop obj) { 7516 assert(obj->is_oop_or_null(), "expected an oop or NULL"); 7517 HeapWord* addr = (HeapWord*)obj; 7518 if (_span.contains(addr) && !_verification_bm->isMarked(addr)) { 7519 // Oop lies in _span and isn't yet grey or black 7520 _verification_bm->mark(addr); // now grey 7521 if (!_cms_bm->isMarked(addr)) { 7522 oop(addr)->print(); 7523 gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", 7524 addr); 7525 fatal("... aborting"); 7526 } 7527 7528 if (!_mark_stack->push(obj)) { // stack overflow 7529 if (PrintCMSStatistics != 0) { 7530 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 7531 SIZE_FORMAT, _mark_stack->capacity()); 7532 } 7533 assert(_mark_stack->isFull(), "Else push should have succeeded"); 7534 handle_stack_overflow(addr); 7535 } 7536 // anything including and to the right of _finger 7537 // will be scanned as we iterate over the remainder of the 7538 // bit map 7539 } 7540 } 7541 7542 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector, 7543 MemRegion span, 7544 CMSBitMap* bitMap, CMSMarkStack* markStack, 7545 CMSMarkStack* revisitStack, 7546 HeapWord* finger, MarkFromRootsClosure* parent) : 7547 KlassRememberingOopClosure(collector, collector->ref_processor(), revisitStack), 7548 _span(span), 7549 _bitMap(bitMap), 7550 _markStack(markStack), 7551 _finger(finger), 7552 _parent(parent) 7553 { } 7554 7555 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector, 7556 MemRegion span, 7557 CMSBitMap* bit_map, 7558 OopTaskQueue* work_queue, 7559 CMSMarkStack* overflow_stack, 7560 CMSMarkStack* revisit_stack, 7561 HeapWord* finger, 7562 HeapWord** global_finger_addr, 7563 Par_MarkFromRootsClosure* parent) : 7564 Par_KlassRememberingOopClosure(collector, 7565 collector->ref_processor(), 7566 revisit_stack), 7567 _whole_span(collector->_span), 7568 _span(span), 7569 _bit_map(bit_map), 7570 _work_queue(work_queue), 7571 _overflow_stack(overflow_stack), 7572 _finger(finger), 7573 _global_finger_addr(global_finger_addr), 7574 _parent(parent) 7575 { } 7576 7577 // Assumes thread-safe access by callers, who are 7578 // responsible for mutual exclusion. 7579 void CMSCollector::lower_restart_addr(HeapWord* low) { 7580 assert(_span.contains(low), "Out of bounds addr"); 7581 if (_restart_addr == NULL) { 7582 _restart_addr = low; 7583 } else { 7584 _restart_addr = MIN2(_restart_addr, low); 7585 } 7586 } 7587 7588 // Upon stack overflow, we discard (part of) the stack, 7589 // remembering the least address amongst those discarded 7590 // in CMSCollector's _restart_address. 7591 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) { 7592 // Remember the least grey address discarded 7593 HeapWord* ra = (HeapWord*)_markStack->least_value(lost); 7594 _collector->lower_restart_addr(ra); 7595 _markStack->reset(); // discard stack contents 7596 _markStack->expand(); // expand the stack if possible 7597 } 7598 7599 // Upon stack overflow, we discard (part of) the stack, 7600 // remembering the least address amongst those discarded 7601 // in CMSCollector's _restart_address. 7602 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) { 7603 // We need to do this under a mutex to prevent other 7604 // workers from interfering with the work done below. 7605 MutexLockerEx ml(_overflow_stack->par_lock(), 7606 Mutex::_no_safepoint_check_flag); 7607 // Remember the least grey address discarded 7608 HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost); 7609 _collector->lower_restart_addr(ra); 7610 _overflow_stack->reset(); // discard stack contents 7611 _overflow_stack->expand(); // expand the stack if possible 7612 } 7613 7614 void PushOrMarkClosure::do_oop(oop obj) { 7615 // Ignore mark word because we are running concurrent with mutators. 7616 assert(obj->is_oop_or_null(true), "expected an oop or NULL"); 7617 HeapWord* addr = (HeapWord*)obj; 7618 if (_span.contains(addr) && !_bitMap->isMarked(addr)) { 7619 // Oop lies in _span and isn't yet grey or black 7620 _bitMap->mark(addr); // now grey 7621 if (addr < _finger) { 7622 // the bit map iteration has already either passed, or 7623 // sampled, this bit in the bit map; we'll need to 7624 // use the marking stack to scan this oop's oops. 7625 bool simulate_overflow = false; 7626 NOT_PRODUCT( 7627 if (CMSMarkStackOverflowALot && 7628 _collector->simulate_overflow()) { 7629 // simulate a stack overflow 7630 simulate_overflow = true; 7631 } 7632 ) 7633 if (simulate_overflow || !_markStack->push(obj)) { // stack overflow 7634 if (PrintCMSStatistics != 0) { 7635 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 7636 SIZE_FORMAT, _markStack->capacity()); 7637 } 7638 assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded"); 7639 handle_stack_overflow(addr); 7640 } 7641 } 7642 // anything including and to the right of _finger 7643 // will be scanned as we iterate over the remainder of the 7644 // bit map 7645 do_yield_check(); 7646 } 7647 } 7648 7649 void PushOrMarkClosure::do_oop(oop* p) { PushOrMarkClosure::do_oop_work(p); } 7650 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); } 7651 7652 void Par_PushOrMarkClosure::do_oop(oop obj) { 7653 // Ignore mark word because we are running concurrent with mutators. 7654 assert(obj->is_oop_or_null(true), "expected an oop or NULL"); 7655 HeapWord* addr = (HeapWord*)obj; 7656 if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) { 7657 // Oop lies in _span and isn't yet grey or black 7658 // We read the global_finger (volatile read) strictly after marking oop 7659 bool res = _bit_map->par_mark(addr); // now grey 7660 volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr; 7661 // Should we push this marked oop on our stack? 7662 // -- if someone else marked it, nothing to do 7663 // -- if target oop is above global finger nothing to do 7664 // -- if target oop is in chunk and above local finger 7665 // then nothing to do 7666 // -- else push on work queue 7667 if ( !res // someone else marked it, they will deal with it 7668 || (addr >= *gfa) // will be scanned in a later task 7669 || (_span.contains(addr) && addr >= _finger)) { // later in this chunk 7670 return; 7671 } 7672 // the bit map iteration has already either passed, or 7673 // sampled, this bit in the bit map; we'll need to 7674 // use the marking stack to scan this oop's oops. 7675 bool simulate_overflow = false; 7676 NOT_PRODUCT( 7677 if (CMSMarkStackOverflowALot && 7678 _collector->simulate_overflow()) { 7679 // simulate a stack overflow 7680 simulate_overflow = true; 7681 } 7682 ) 7683 if (simulate_overflow || 7684 !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) { 7685 // stack overflow 7686 if (PrintCMSStatistics != 0) { 7687 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 7688 SIZE_FORMAT, _overflow_stack->capacity()); 7689 } 7690 // We cannot assert that the overflow stack is full because 7691 // it may have been emptied since. 7692 assert(simulate_overflow || 7693 _work_queue->size() == _work_queue->max_elems(), 7694 "Else push should have succeeded"); 7695 handle_stack_overflow(addr); 7696 } 7697 do_yield_check(); 7698 } 7699 } 7700 7701 void Par_PushOrMarkClosure::do_oop(oop* p) { Par_PushOrMarkClosure::do_oop_work(p); } 7702 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); } 7703 7704 KlassRememberingOopClosure::KlassRememberingOopClosure(CMSCollector* collector, 7705 ReferenceProcessor* rp, 7706 CMSMarkStack* revisit_stack) : 7707 OopClosure(rp), 7708 _collector(collector), 7709 _revisit_stack(revisit_stack), 7710 _should_remember_klasses(collector->should_unload_classes()) {} 7711 7712 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector, 7713 MemRegion span, 7714 ReferenceProcessor* rp, 7715 CMSBitMap* bit_map, 7716 CMSBitMap* mod_union_table, 7717 CMSMarkStack* mark_stack, 7718 CMSMarkStack* revisit_stack, 7719 bool concurrent_precleaning): 7720 KlassRememberingOopClosure(collector, rp, revisit_stack), 7721 _span(span), 7722 _bit_map(bit_map), 7723 _mod_union_table(mod_union_table), 7724 _mark_stack(mark_stack), 7725 _concurrent_precleaning(concurrent_precleaning) 7726 { 7727 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 7728 } 7729 7730 // Grey object rescan during pre-cleaning and second checkpoint phases -- 7731 // the non-parallel version (the parallel version appears further below.) 7732 void PushAndMarkClosure::do_oop(oop obj) { 7733 // Ignore mark word verification. If during concurrent precleaning, 7734 // the object monitor may be locked. If during the checkpoint 7735 // phases, the object may already have been reached by a different 7736 // path and may be at the end of the global overflow list (so 7737 // the mark word may be NULL). 7738 assert(obj->is_oop_or_null(true /* ignore mark word */), 7739 "expected an oop or NULL"); 7740 HeapWord* addr = (HeapWord*)obj; 7741 // Check if oop points into the CMS generation 7742 // and is not marked 7743 if (_span.contains(addr) && !_bit_map->isMarked(addr)) { 7744 // a white object ... 7745 _bit_map->mark(addr); // ... now grey 7746 // push on the marking stack (grey set) 7747 bool simulate_overflow = false; 7748 NOT_PRODUCT( 7749 if (CMSMarkStackOverflowALot && 7750 _collector->simulate_overflow()) { 7751 // simulate a stack overflow 7752 simulate_overflow = true; 7753 } 7754 ) 7755 if (simulate_overflow || !_mark_stack->push(obj)) { 7756 if (_concurrent_precleaning) { 7757 // During precleaning we can just dirty the appropriate card(s) 7758 // in the mod union table, thus ensuring that the object remains 7759 // in the grey set and continue. In the case of object arrays 7760 // we need to dirty all of the cards that the object spans, 7761 // since the rescan of object arrays will be limited to the 7762 // dirty cards. 7763 // Note that no one can be intefering with us in this action 7764 // of dirtying the mod union table, so no locking or atomics 7765 // are required. 7766 if (obj->is_objArray()) { 7767 size_t sz = obj->size(); 7768 HeapWord* end_card_addr = (HeapWord*)round_to( 7769 (intptr_t)(addr+sz), CardTableModRefBS::card_size); 7770 MemRegion redirty_range = MemRegion(addr, end_card_addr); 7771 assert(!redirty_range.is_empty(), "Arithmetical tautology"); 7772 _mod_union_table->mark_range(redirty_range); 7773 } else { 7774 _mod_union_table->mark(addr); 7775 } 7776 _collector->_ser_pmc_preclean_ovflw++; 7777 } else { 7778 // During the remark phase, we need to remember this oop 7779 // in the overflow list. 7780 _collector->push_on_overflow_list(obj); 7781 _collector->_ser_pmc_remark_ovflw++; 7782 } 7783 } 7784 } 7785 } 7786 7787 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector, 7788 MemRegion span, 7789 ReferenceProcessor* rp, 7790 CMSBitMap* bit_map, 7791 OopTaskQueue* work_queue, 7792 CMSMarkStack* revisit_stack): 7793 Par_KlassRememberingOopClosure(collector, rp, revisit_stack), 7794 _span(span), 7795 _bit_map(bit_map), 7796 _work_queue(work_queue) 7797 { 7798 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 7799 } 7800 7801 void PushAndMarkClosure::do_oop(oop* p) { PushAndMarkClosure::do_oop_work(p); } 7802 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); } 7803 7804 // Grey object rescan during second checkpoint phase -- 7805 // the parallel version. 7806 void Par_PushAndMarkClosure::do_oop(oop obj) { 7807 // In the assert below, we ignore the mark word because 7808 // this oop may point to an already visited object that is 7809 // on the overflow stack (in which case the mark word has 7810 // been hijacked for chaining into the overflow stack -- 7811 // if this is the last object in the overflow stack then 7812 // its mark word will be NULL). Because this object may 7813 // have been subsequently popped off the global overflow 7814 // stack, and the mark word possibly restored to the prototypical 7815 // value, by the time we get to examined this failing assert in 7816 // the debugger, is_oop_or_null(false) may subsequently start 7817 // to hold. 7818 assert(obj->is_oop_or_null(true), 7819 "expected an oop or NULL"); 7820 HeapWord* addr = (HeapWord*)obj; 7821 // Check if oop points into the CMS generation 7822 // and is not marked 7823 if (_span.contains(addr) && !_bit_map->isMarked(addr)) { 7824 // a white object ... 7825 // If we manage to "claim" the object, by being the 7826 // first thread to mark it, then we push it on our 7827 // marking stack 7828 if (_bit_map->par_mark(addr)) { // ... now grey 7829 // push on work queue (grey set) 7830 bool simulate_overflow = false; 7831 NOT_PRODUCT( 7832 if (CMSMarkStackOverflowALot && 7833 _collector->par_simulate_overflow()) { 7834 // simulate a stack overflow 7835 simulate_overflow = true; 7836 } 7837 ) 7838 if (simulate_overflow || !_work_queue->push(obj)) { 7839 _collector->par_push_on_overflow_list(obj); 7840 _collector->_par_pmc_remark_ovflw++; // imprecise OK: no need to CAS 7841 } 7842 } // Else, some other thread got there first 7843 } 7844 } 7845 7846 void Par_PushAndMarkClosure::do_oop(oop* p) { Par_PushAndMarkClosure::do_oop_work(p); } 7847 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); } 7848 7849 void PushAndMarkClosure::remember_mdo(DataLayout* v) { 7850 // TBD 7851 } 7852 7853 void Par_PushAndMarkClosure::remember_mdo(DataLayout* v) { 7854 // TBD 7855 } 7856 7857 void CMSPrecleanRefsYieldClosure::do_yield_work() { 7858 DEBUG_ONLY(RememberKlassesChecker mux(false);) 7859 Mutex* bml = _collector->bitMapLock(); 7860 assert_lock_strong(bml); 7861 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 7862 "CMS thread should hold CMS token"); 7863 7864 bml->unlock(); 7865 ConcurrentMarkSweepThread::desynchronize(true); 7866 7867 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7868 7869 _collector->stopTimer(); 7870 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 7871 if (PrintCMSStatistics != 0) { 7872 _collector->incrementYields(); 7873 } 7874 _collector->icms_wait(); 7875 7876 // See the comment in coordinator_yield() 7877 for (unsigned i = 0; i < CMSYieldSleepCount && 7878 ConcurrentMarkSweepThread::should_yield() && 7879 !CMSCollector::foregroundGCIsActive(); ++i) { 7880 os::sleep(Thread::current(), 1, false); 7881 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7882 } 7883 7884 ConcurrentMarkSweepThread::synchronize(true); 7885 bml->lock(); 7886 7887 _collector->startTimer(); 7888 } 7889 7890 bool CMSPrecleanRefsYieldClosure::should_return() { 7891 if (ConcurrentMarkSweepThread::should_yield()) { 7892 do_yield_work(); 7893 } 7894 return _collector->foregroundGCIsActive(); 7895 } 7896 7897 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) { 7898 assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0, 7899 "mr should be aligned to start at a card boundary"); 7900 // We'd like to assert: 7901 // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0, 7902 // "mr should be a range of cards"); 7903 // However, that would be too strong in one case -- the last 7904 // partition ends at _unallocated_block which, in general, can be 7905 // an arbitrary boundary, not necessarily card aligned. 7906 if (PrintCMSStatistics != 0) { 7907 _num_dirty_cards += 7908 mr.word_size()/CardTableModRefBS::card_size_in_words; 7909 } 7910 _space->object_iterate_mem(mr, &_scan_cl); 7911 } 7912 7913 SweepClosure::SweepClosure(CMSCollector* collector, 7914 ConcurrentMarkSweepGeneration* g, 7915 CMSBitMap* bitMap, bool should_yield) : 7916 _collector(collector), 7917 _g(g), 7918 _sp(g->cmsSpace()), 7919 _limit(_sp->sweep_limit()), 7920 _freelistLock(_sp->freelistLock()), 7921 _bitMap(bitMap), 7922 _yield(should_yield), 7923 _inFreeRange(false), // No free range at beginning of sweep 7924 _freeRangeInFreeLists(false), // No free range at beginning of sweep 7925 _lastFreeRangeCoalesced(false), 7926 _freeFinger(g->used_region().start()) 7927 { 7928 NOT_PRODUCT( 7929 _numObjectsFreed = 0; 7930 _numWordsFreed = 0; 7931 _numObjectsLive = 0; 7932 _numWordsLive = 0; 7933 _numObjectsAlreadyFree = 0; 7934 _numWordsAlreadyFree = 0; 7935 _last_fc = NULL; 7936 7937 _sp->initializeIndexedFreeListArrayReturnedBytes(); 7938 _sp->dictionary()->initialize_dict_returned_bytes(); 7939 ) 7940 assert(_limit >= _sp->bottom() && _limit <= _sp->end(), 7941 "sweep _limit out of bounds"); 7942 if (CMSTraceSweeper) { 7943 gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT, 7944 _limit); 7945 } 7946 } 7947 7948 void SweepClosure::print_on(outputStream* st) const { 7949 tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")", 7950 _sp->bottom(), _sp->end()); 7951 tty->print_cr("_limit = " PTR_FORMAT, _limit); 7952 tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger); 7953 NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);) 7954 tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d", 7955 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced); 7956 } 7957 7958 #ifndef PRODUCT 7959 // Assertion checking only: no useful work in product mode -- 7960 // however, if any of the flags below become product flags, 7961 // you may need to review this code to see if it needs to be 7962 // enabled in product mode. 7963 SweepClosure::~SweepClosure() { 7964 assert_lock_strong(_freelistLock); 7965 assert(_limit >= _sp->bottom() && _limit <= _sp->end(), 7966 "sweep _limit out of bounds"); 7967 if (inFreeRange()) { 7968 warning("inFreeRange() should have been reset; dumping state of SweepClosure"); 7969 print(); 7970 ShouldNotReachHere(); 7971 } 7972 if (Verbose && PrintGC) { 7973 gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes", 7974 _numObjectsFreed, _numWordsFreed*sizeof(HeapWord)); 7975 gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects, " 7976 SIZE_FORMAT" bytes " 7977 "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes", 7978 _numObjectsLive, _numWordsLive*sizeof(HeapWord), 7979 _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord)); 7980 size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) 7981 * sizeof(HeapWord); 7982 gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes); 7983 7984 if (PrintCMSStatistics && CMSVerifyReturnedBytes) { 7985 size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes(); 7986 size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes(); 7987 size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes; 7988 gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes); 7989 gclog_or_tty->print(" Indexed List Returned "SIZE_FORMAT" bytes", 7990 indexListReturnedBytes); 7991 gclog_or_tty->print_cr(" Dictionary Returned "SIZE_FORMAT" bytes", 7992 dict_returned_bytes); 7993 } 7994 } 7995 if (CMSTraceSweeper) { 7996 gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================", 7997 _limit); 7998 } 7999 } 8000 #endif // PRODUCT 8001 8002 void SweepClosure::initialize_free_range(HeapWord* freeFinger, 8003 bool freeRangeInFreeLists) { 8004 if (CMSTraceSweeper) { 8005 gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n", 8006 freeFinger, freeRangeInFreeLists); 8007 } 8008 assert(!inFreeRange(), "Trampling existing free range"); 8009 set_inFreeRange(true); 8010 set_lastFreeRangeCoalesced(false); 8011 8012 set_freeFinger(freeFinger); 8013 set_freeRangeInFreeLists(freeRangeInFreeLists); 8014 if (CMSTestInFreeList) { 8015 if (freeRangeInFreeLists) { 8016 FreeChunk* fc = (FreeChunk*) freeFinger; 8017 assert(fc->is_free(), "A chunk on the free list should be free."); 8018 assert(fc->size() > 0, "Free range should have a size"); 8019 assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists"); 8020 } 8021 } 8022 } 8023 8024 // Note that the sweeper runs concurrently with mutators. Thus, 8025 // it is possible for direct allocation in this generation to happen 8026 // in the middle of the sweep. Note that the sweeper also coalesces 8027 // contiguous free blocks. Thus, unless the sweeper and the allocator 8028 // synchronize appropriately freshly allocated blocks may get swept up. 8029 // This is accomplished by the sweeper locking the free lists while 8030 // it is sweeping. Thus blocks that are determined to be free are 8031 // indeed free. There is however one additional complication: 8032 // blocks that have been allocated since the final checkpoint and 8033 // mark, will not have been marked and so would be treated as 8034 // unreachable and swept up. To prevent this, the allocator marks 8035 // the bit map when allocating during the sweep phase. This leads, 8036 // however, to a further complication -- objects may have been allocated 8037 // but not yet initialized -- in the sense that the header isn't yet 8038 // installed. The sweeper can not then determine the size of the block 8039 // in order to skip over it. To deal with this case, we use a technique 8040 // (due to Printezis) to encode such uninitialized block sizes in the 8041 // bit map. Since the bit map uses a bit per every HeapWord, but the 8042 // CMS generation has a minimum object size of 3 HeapWords, it follows 8043 // that "normal marks" won't be adjacent in the bit map (there will 8044 // always be at least two 0 bits between successive 1 bits). We make use 8045 // of these "unused" bits to represent uninitialized blocks -- the bit 8046 // corresponding to the start of the uninitialized object and the next 8047 // bit are both set. Finally, a 1 bit marks the end of the object that 8048 // started with the two consecutive 1 bits to indicate its potentially 8049 // uninitialized state. 8050 8051 size_t SweepClosure::do_blk_careful(HeapWord* addr) { 8052 FreeChunk* fc = (FreeChunk*)addr; 8053 size_t res; 8054 8055 // Check if we are done sweeping. Below we check "addr >= _limit" rather 8056 // than "addr == _limit" because although _limit was a block boundary when 8057 // we started the sweep, it may no longer be one because heap expansion 8058 // may have caused us to coalesce the block ending at the address _limit 8059 // with a newly expanded chunk (this happens when _limit was set to the 8060 // previous _end of the space), so we may have stepped past _limit: 8061 // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740. 8062 if (addr >= _limit) { // we have swept up to or past the limit: finish up 8063 assert(_limit >= _sp->bottom() && _limit <= _sp->end(), 8064 "sweep _limit out of bounds"); 8065 assert(addr < _sp->end(), "addr out of bounds"); 8066 // Flush any free range we might be holding as a single 8067 // coalesced chunk to the appropriate free list. 8068 if (inFreeRange()) { 8069 assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit, 8070 err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger())); 8071 flush_cur_free_chunk(freeFinger(), 8072 pointer_delta(addr, freeFinger())); 8073 if (CMSTraceSweeper) { 8074 gclog_or_tty->print("Sweep: last chunk: "); 8075 gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") " 8076 "[coalesced:"SIZE_FORMAT"]\n", 8077 freeFinger(), pointer_delta(addr, freeFinger()), 8078 lastFreeRangeCoalesced()); 8079 } 8080 } 8081 8082 // help the iterator loop finish 8083 return pointer_delta(_sp->end(), addr); 8084 } 8085 8086 assert(addr < _limit, "sweep invariant"); 8087 // check if we should yield 8088 do_yield_check(addr); 8089 if (fc->is_free()) { 8090 // Chunk that is already free 8091 res = fc->size(); 8092 do_already_free_chunk(fc); 8093 debug_only(_sp->verifyFreeLists()); 8094 // If we flush the chunk at hand in lookahead_and_flush() 8095 // and it's coalesced with a preceding chunk, then the 8096 // process of "mangling" the payload of the coalesced block 8097 // will cause erasure of the size information from the 8098 // (erstwhile) header of all the coalesced blocks but the 8099 // first, so the first disjunct in the assert will not hold 8100 // in that specific case (in which case the second disjunct 8101 // will hold). 8102 assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit, 8103 "Otherwise the size info doesn't change at this step"); 8104 NOT_PRODUCT( 8105 _numObjectsAlreadyFree++; 8106 _numWordsAlreadyFree += res; 8107 ) 8108 NOT_PRODUCT(_last_fc = fc;) 8109 } else if (!_bitMap->isMarked(addr)) { 8110 // Chunk is fresh garbage 8111 res = do_garbage_chunk(fc); 8112 debug_only(_sp->verifyFreeLists()); 8113 NOT_PRODUCT( 8114 _numObjectsFreed++; 8115 _numWordsFreed += res; 8116 ) 8117 } else { 8118 // Chunk that is alive. 8119 res = do_live_chunk(fc); 8120 debug_only(_sp->verifyFreeLists()); 8121 NOT_PRODUCT( 8122 _numObjectsLive++; 8123 _numWordsLive += res; 8124 ) 8125 } 8126 return res; 8127 } 8128 8129 // For the smart allocation, record following 8130 // split deaths - a free chunk is removed from its free list because 8131 // it is being split into two or more chunks. 8132 // split birth - a free chunk is being added to its free list because 8133 // a larger free chunk has been split and resulted in this free chunk. 8134 // coal death - a free chunk is being removed from its free list because 8135 // it is being coalesced into a large free chunk. 8136 // coal birth - a free chunk is being added to its free list because 8137 // it was created when two or more free chunks where coalesced into 8138 // this free chunk. 8139 // 8140 // These statistics are used to determine the desired number of free 8141 // chunks of a given size. The desired number is chosen to be relative 8142 // to the end of a CMS sweep. The desired number at the end of a sweep 8143 // is the 8144 // count-at-end-of-previous-sweep (an amount that was enough) 8145 // - count-at-beginning-of-current-sweep (the excess) 8146 // + split-births (gains in this size during interval) 8147 // - split-deaths (demands on this size during interval) 8148 // where the interval is from the end of one sweep to the end of the 8149 // next. 8150 // 8151 // When sweeping the sweeper maintains an accumulated chunk which is 8152 // the chunk that is made up of chunks that have been coalesced. That 8153 // will be termed the left-hand chunk. A new chunk of garbage that 8154 // is being considered for coalescing will be referred to as the 8155 // right-hand chunk. 8156 // 8157 // When making a decision on whether to coalesce a right-hand chunk with 8158 // the current left-hand chunk, the current count vs. the desired count 8159 // of the left-hand chunk is considered. Also if the right-hand chunk 8160 // is near the large chunk at the end of the heap (see 8161 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the 8162 // left-hand chunk is coalesced. 8163 // 8164 // When making a decision about whether to split a chunk, the desired count 8165 // vs. the current count of the candidate to be split is also considered. 8166 // If the candidate is underpopulated (currently fewer chunks than desired) 8167 // a chunk of an overpopulated (currently more chunks than desired) size may 8168 // be chosen. The "hint" associated with a free list, if non-null, points 8169 // to a free list which may be overpopulated. 8170 // 8171 8172 void SweepClosure::do_already_free_chunk(FreeChunk* fc) { 8173 const size_t size = fc->size(); 8174 // Chunks that cannot be coalesced are not in the 8175 // free lists. 8176 if (CMSTestInFreeList && !fc->cantCoalesce()) { 8177 assert(_sp->verify_chunk_in_free_list(fc), 8178 "free chunk should be in free lists"); 8179 } 8180 // a chunk that is already free, should not have been 8181 // marked in the bit map 8182 HeapWord* const addr = (HeapWord*) fc; 8183 assert(!_bitMap->isMarked(addr), "free chunk should be unmarked"); 8184 // Verify that the bit map has no bits marked between 8185 // addr and purported end of this block. 8186 _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size); 8187 8188 // Some chunks cannot be coalesced under any circumstances. 8189 // See the definition of cantCoalesce(). 8190 if (!fc->cantCoalesce()) { 8191 // This chunk can potentially be coalesced. 8192 if (_sp->adaptive_freelists()) { 8193 // All the work is done in 8194 do_post_free_or_garbage_chunk(fc, size); 8195 } else { // Not adaptive free lists 8196 // this is a free chunk that can potentially be coalesced by the sweeper; 8197 if (!inFreeRange()) { 8198 // if the next chunk is a free block that can't be coalesced 8199 // it doesn't make sense to remove this chunk from the free lists 8200 FreeChunk* nextChunk = (FreeChunk*)(addr + size); 8201 assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?"); 8202 if ((HeapWord*)nextChunk < _sp->end() && // There is another free chunk to the right ... 8203 nextChunk->is_free() && // ... which is free... 8204 nextChunk->cantCoalesce()) { // ... but can't be coalesced 8205 // nothing to do 8206 } else { 8207 // Potentially the start of a new free range: 8208 // Don't eagerly remove it from the free lists. 8209 // No need to remove it if it will just be put 8210 // back again. (Also from a pragmatic point of view 8211 // if it is a free block in a region that is beyond 8212 // any allocated blocks, an assertion will fail) 8213 // Remember the start of a free run. 8214 initialize_free_range(addr, true); 8215 // end - can coalesce with next chunk 8216 } 8217 } else { 8218 // the midst of a free range, we are coalescing 8219 print_free_block_coalesced(fc); 8220 if (CMSTraceSweeper) { 8221 gclog_or_tty->print(" -- pick up free block 0x%x (%d)\n", fc, size); 8222 } 8223 // remove it from the free lists 8224 _sp->removeFreeChunkFromFreeLists(fc); 8225 set_lastFreeRangeCoalesced(true); 8226 // If the chunk is being coalesced and the current free range is 8227 // in the free lists, remove the current free range so that it 8228 // will be returned to the free lists in its entirety - all 8229 // the coalesced pieces included. 8230 if (freeRangeInFreeLists()) { 8231 FreeChunk* ffc = (FreeChunk*) freeFinger(); 8232 assert(ffc->size() == pointer_delta(addr, freeFinger()), 8233 "Size of free range is inconsistent with chunk size."); 8234 if (CMSTestInFreeList) { 8235 assert(_sp->verify_chunk_in_free_list(ffc), 8236 "free range is not in free lists"); 8237 } 8238 _sp->removeFreeChunkFromFreeLists(ffc); 8239 set_freeRangeInFreeLists(false); 8240 } 8241 } 8242 } 8243 // Note that if the chunk is not coalescable (the else arm 8244 // below), we unconditionally flush, without needing to do 8245 // a "lookahead," as we do below. 8246 if (inFreeRange()) lookahead_and_flush(fc, size); 8247 } else { 8248 // Code path common to both original and adaptive free lists. 8249 8250 // cant coalesce with previous block; this should be treated 8251 // as the end of a free run if any 8252 if (inFreeRange()) { 8253 // we kicked some butt; time to pick up the garbage 8254 assert(freeFinger() < addr, "freeFinger points too high"); 8255 flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); 8256 } 8257 // else, nothing to do, just continue 8258 } 8259 } 8260 8261 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) { 8262 // This is a chunk of garbage. It is not in any free list. 8263 // Add it to a free list or let it possibly be coalesced into 8264 // a larger chunk. 8265 HeapWord* const addr = (HeapWord*) fc; 8266 const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()); 8267 8268 if (_sp->adaptive_freelists()) { 8269 // Verify that the bit map has no bits marked between 8270 // addr and purported end of just dead object. 8271 _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size); 8272 8273 do_post_free_or_garbage_chunk(fc, size); 8274 } else { 8275 if (!inFreeRange()) { 8276 // start of a new free range 8277 assert(size > 0, "A free range should have a size"); 8278 initialize_free_range(addr, false); 8279 } else { 8280 // this will be swept up when we hit the end of the 8281 // free range 8282 if (CMSTraceSweeper) { 8283 gclog_or_tty->print(" -- pick up garbage 0x%x (%d) \n", fc, size); 8284 } 8285 // If the chunk is being coalesced and the current free range is 8286 // in the free lists, remove the current free range so that it 8287 // will be returned to the free lists in its entirety - all 8288 // the coalesced pieces included. 8289 if (freeRangeInFreeLists()) { 8290 FreeChunk* ffc = (FreeChunk*)freeFinger(); 8291 assert(ffc->size() == pointer_delta(addr, freeFinger()), 8292 "Size of free range is inconsistent with chunk size."); 8293 if (CMSTestInFreeList) { 8294 assert(_sp->verify_chunk_in_free_list(ffc), 8295 "free range is not in free lists"); 8296 } 8297 _sp->removeFreeChunkFromFreeLists(ffc); 8298 set_freeRangeInFreeLists(false); 8299 } 8300 set_lastFreeRangeCoalesced(true); 8301 } 8302 // this will be swept up when we hit the end of the free range 8303 8304 // Verify that the bit map has no bits marked between 8305 // addr and purported end of just dead object. 8306 _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size); 8307 } 8308 assert(_limit >= addr + size, 8309 "A freshly garbage chunk can't possibly straddle over _limit"); 8310 if (inFreeRange()) lookahead_and_flush(fc, size); 8311 return size; 8312 } 8313 8314 size_t SweepClosure::do_live_chunk(FreeChunk* fc) { 8315 HeapWord* addr = (HeapWord*) fc; 8316 // The sweeper has just found a live object. Return any accumulated 8317 // left hand chunk to the free lists. 8318 if (inFreeRange()) { 8319 assert(freeFinger() < addr, "freeFinger points too high"); 8320 flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); 8321 } 8322 8323 // This object is live: we'd normally expect this to be 8324 // an oop, and like to assert the following: 8325 // assert(oop(addr)->is_oop(), "live block should be an oop"); 8326 // However, as we commented above, this may be an object whose 8327 // header hasn't yet been initialized. 8328 size_t size; 8329 assert(_bitMap->isMarked(addr), "Tautology for this control point"); 8330 if (_bitMap->isMarked(addr + 1)) { 8331 // Determine the size from the bit map, rather than trying to 8332 // compute it from the object header. 8333 HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2); 8334 size = pointer_delta(nextOneAddr + 1, addr); 8335 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 8336 "alignment problem"); 8337 8338 #ifdef DEBUG 8339 if (oop(addr)->klass_or_null() != NULL && 8340 ( !_collector->should_unload_classes() 8341 || (oop(addr)->is_parsable()) && 8342 oop(addr)->is_conc_safe())) { 8343 // Ignore mark word because we are running concurrent with mutators 8344 assert(oop(addr)->is_oop(true), "live block should be an oop"); 8345 // is_conc_safe is checked before performing this assertion 8346 // because an object that is not is_conc_safe may yet have 8347 // the return from size() correct. 8348 assert(size == 8349 CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()), 8350 "P-mark and computed size do not agree"); 8351 } 8352 #endif 8353 8354 } else { 8355 // This should be an initialized object that's alive. 8356 assert(oop(addr)->klass_or_null() != NULL && 8357 (!_collector->should_unload_classes() 8358 || oop(addr)->is_parsable()), 8359 "Should be an initialized object"); 8360 // Note that there are objects used during class redefinition, 8361 // e.g. merge_cp in VM_RedefineClasses::merge_cp_and_rewrite(), 8362 // which are discarded with their is_conc_safe state still 8363 // false. These object may be floating garbage so may be 8364 // seen here. If they are floating garbage their size 8365 // should be attainable from their klass. Do not that 8366 // is_conc_safe() is true for oop(addr). 8367 // Ignore mark word because we are running concurrent with mutators 8368 assert(oop(addr)->is_oop(true), "live block should be an oop"); 8369 // Verify that the bit map has no bits marked between 8370 // addr and purported end of this block. 8371 size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()); 8372 assert(size >= 3, "Necessary for Printezis marks to work"); 8373 assert(!_bitMap->isMarked(addr+1), "Tautology for this control point"); 8374 DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);) 8375 } 8376 return size; 8377 } 8378 8379 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc, 8380 size_t chunkSize) { 8381 // do_post_free_or_garbage_chunk() should only be called in the case 8382 // of the adaptive free list allocator. 8383 const bool fcInFreeLists = fc->is_free(); 8384 assert(_sp->adaptive_freelists(), "Should only be used in this case."); 8385 assert((HeapWord*)fc <= _limit, "sweep invariant"); 8386 if (CMSTestInFreeList && fcInFreeLists) { 8387 assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists"); 8388 } 8389 8390 if (CMSTraceSweeper) { 8391 gclog_or_tty->print_cr(" -- pick up another chunk at 0x%x (%d)", fc, chunkSize); 8392 } 8393 8394 HeapWord* const fc_addr = (HeapWord*) fc; 8395 8396 bool coalesce; 8397 const size_t left = pointer_delta(fc_addr, freeFinger()); 8398 const size_t right = chunkSize; 8399 switch (FLSCoalescePolicy) { 8400 // numeric value forms a coalition aggressiveness metric 8401 case 0: { // never coalesce 8402 coalesce = false; 8403 break; 8404 } 8405 case 1: { // coalesce if left & right chunks on overpopulated lists 8406 coalesce = _sp->coalOverPopulated(left) && 8407 _sp->coalOverPopulated(right); 8408 break; 8409 } 8410 case 2: { // coalesce if left chunk on overpopulated list (default) 8411 coalesce = _sp->coalOverPopulated(left); 8412 break; 8413 } 8414 case 3: { // coalesce if left OR right chunk on overpopulated list 8415 coalesce = _sp->coalOverPopulated(left) || 8416 _sp->coalOverPopulated(right); 8417 break; 8418 } 8419 case 4: { // always coalesce 8420 coalesce = true; 8421 break; 8422 } 8423 default: 8424 ShouldNotReachHere(); 8425 } 8426 8427 // Should the current free range be coalesced? 8428 // If the chunk is in a free range and either we decided to coalesce above 8429 // or the chunk is near the large block at the end of the heap 8430 // (isNearLargestChunk() returns true), then coalesce this chunk. 8431 const bool doCoalesce = inFreeRange() 8432 && (coalesce || _g->isNearLargestChunk(fc_addr)); 8433 if (doCoalesce) { 8434 // Coalesce the current free range on the left with the new 8435 // chunk on the right. If either is on a free list, 8436 // it must be removed from the list and stashed in the closure. 8437 if (freeRangeInFreeLists()) { 8438 FreeChunk* const ffc = (FreeChunk*)freeFinger(); 8439 assert(ffc->size() == pointer_delta(fc_addr, freeFinger()), 8440 "Size of free range is inconsistent with chunk size."); 8441 if (CMSTestInFreeList) { 8442 assert(_sp->verify_chunk_in_free_list(ffc), 8443 "Chunk is not in free lists"); 8444 } 8445 _sp->coalDeath(ffc->size()); 8446 _sp->removeFreeChunkFromFreeLists(ffc); 8447 set_freeRangeInFreeLists(false); 8448 } 8449 if (fcInFreeLists) { 8450 _sp->coalDeath(chunkSize); 8451 assert(fc->size() == chunkSize, 8452 "The chunk has the wrong size or is not in the free lists"); 8453 _sp->removeFreeChunkFromFreeLists(fc); 8454 } 8455 set_lastFreeRangeCoalesced(true); 8456 print_free_block_coalesced(fc); 8457 } else { // not in a free range and/or should not coalesce 8458 // Return the current free range and start a new one. 8459 if (inFreeRange()) { 8460 // In a free range but cannot coalesce with the right hand chunk. 8461 // Put the current free range into the free lists. 8462 flush_cur_free_chunk(freeFinger(), 8463 pointer_delta(fc_addr, freeFinger())); 8464 } 8465 // Set up for new free range. Pass along whether the right hand 8466 // chunk is in the free lists. 8467 initialize_free_range((HeapWord*)fc, fcInFreeLists); 8468 } 8469 } 8470 8471 // Lookahead flush: 8472 // If we are tracking a free range, and this is the last chunk that 8473 // we'll look at because its end crosses past _limit, we'll preemptively 8474 // flush it along with any free range we may be holding on to. Note that 8475 // this can be the case only for an already free or freshly garbage 8476 // chunk. If this block is an object, it can never straddle 8477 // over _limit. The "straddling" occurs when _limit is set at 8478 // the previous end of the space when this cycle started, and 8479 // a subsequent heap expansion caused the previously co-terminal 8480 // free block to be coalesced with the newly expanded portion, 8481 // thus rendering _limit a non-block-boundary making it dangerous 8482 // for the sweeper to step over and examine. 8483 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) { 8484 assert(inFreeRange(), "Should only be called if currently in a free range."); 8485 HeapWord* const eob = ((HeapWord*)fc) + chunk_size; 8486 assert(_sp->used_region().contains(eob - 1), 8487 err_msg("eob = " PTR_FORMAT " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")" 8488 " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")", 8489 _limit, _sp->bottom(), _sp->end(), fc, chunk_size)); 8490 if (eob >= _limit) { 8491 assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit"); 8492 if (CMSTraceSweeper) { 8493 gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block " 8494 "[" PTR_FORMAT "," PTR_FORMAT ") in space " 8495 "[" PTR_FORMAT "," PTR_FORMAT ")", 8496 _limit, fc, eob, _sp->bottom(), _sp->end()); 8497 } 8498 // Return the storage we are tracking back into the free lists. 8499 if (CMSTraceSweeper) { 8500 gclog_or_tty->print_cr("Flushing ... "); 8501 } 8502 assert(freeFinger() < eob, "Error"); 8503 flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger())); 8504 } 8505 } 8506 8507 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) { 8508 assert(inFreeRange(), "Should only be called if currently in a free range."); 8509 assert(size > 0, 8510 "A zero sized chunk cannot be added to the free lists."); 8511 if (!freeRangeInFreeLists()) { 8512 if (CMSTestInFreeList) { 8513 FreeChunk* fc = (FreeChunk*) chunk; 8514 fc->set_size(size); 8515 assert(!_sp->verify_chunk_in_free_list(fc), 8516 "chunk should not be in free lists yet"); 8517 } 8518 if (CMSTraceSweeper) { 8519 gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists", 8520 chunk, size); 8521 } 8522 // A new free range is going to be starting. The current 8523 // free range has not been added to the free lists yet or 8524 // was removed so add it back. 8525 // If the current free range was coalesced, then the death 8526 // of the free range was recorded. Record a birth now. 8527 if (lastFreeRangeCoalesced()) { 8528 _sp->coalBirth(size); 8529 } 8530 _sp->addChunkAndRepairOffsetTable(chunk, size, 8531 lastFreeRangeCoalesced()); 8532 } else if (CMSTraceSweeper) { 8533 gclog_or_tty->print_cr("Already in free list: nothing to flush"); 8534 } 8535 set_inFreeRange(false); 8536 set_freeRangeInFreeLists(false); 8537 } 8538 8539 // We take a break if we've been at this for a while, 8540 // so as to avoid monopolizing the locks involved. 8541 void SweepClosure::do_yield_work(HeapWord* addr) { 8542 // Return current free chunk being used for coalescing (if any) 8543 // to the appropriate freelist. After yielding, the next 8544 // free block encountered will start a coalescing range of 8545 // free blocks. If the next free block is adjacent to the 8546 // chunk just flushed, they will need to wait for the next 8547 // sweep to be coalesced. 8548 if (inFreeRange()) { 8549 flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); 8550 } 8551 8552 // First give up the locks, then yield, then re-lock. 8553 // We should probably use a constructor/destructor idiom to 8554 // do this unlock/lock or modify the MutexUnlocker class to 8555 // serve our purpose. XXX 8556 assert_lock_strong(_bitMap->lock()); 8557 assert_lock_strong(_freelistLock); 8558 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 8559 "CMS thread should hold CMS token"); 8560 _bitMap->lock()->unlock(); 8561 _freelistLock->unlock(); 8562 ConcurrentMarkSweepThread::desynchronize(true); 8563 ConcurrentMarkSweepThread::acknowledge_yield_request(); 8564 _collector->stopTimer(); 8565 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 8566 if (PrintCMSStatistics != 0) { 8567 _collector->incrementYields(); 8568 } 8569 _collector->icms_wait(); 8570 8571 // See the comment in coordinator_yield() 8572 for (unsigned i = 0; i < CMSYieldSleepCount && 8573 ConcurrentMarkSweepThread::should_yield() && 8574 !CMSCollector::foregroundGCIsActive(); ++i) { 8575 os::sleep(Thread::current(), 1, false); 8576 ConcurrentMarkSweepThread::acknowledge_yield_request(); 8577 } 8578 8579 ConcurrentMarkSweepThread::synchronize(true); 8580 _freelistLock->lock(); 8581 _bitMap->lock()->lock_without_safepoint_check(); 8582 _collector->startTimer(); 8583 } 8584 8585 #ifndef PRODUCT 8586 // This is actually very useful in a product build if it can 8587 // be called from the debugger. Compile it into the product 8588 // as needed. 8589 bool debug_verify_chunk_in_free_list(FreeChunk* fc) { 8590 return debug_cms_space->verify_chunk_in_free_list(fc); 8591 } 8592 #endif 8593 8594 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const { 8595 if (CMSTraceSweeper) { 8596 gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")", 8597 fc, fc->size()); 8598 } 8599 } 8600 8601 // CMSIsAliveClosure 8602 bool CMSIsAliveClosure::do_object_b(oop obj) { 8603 HeapWord* addr = (HeapWord*)obj; 8604 return addr != NULL && 8605 (!_span.contains(addr) || _bit_map->isMarked(addr)); 8606 } 8607 8608 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector, 8609 MemRegion span, 8610 CMSBitMap* bit_map, CMSMarkStack* mark_stack, 8611 CMSMarkStack* revisit_stack, bool cpc): 8612 KlassRememberingOopClosure(collector, NULL, revisit_stack), 8613 _span(span), 8614 _bit_map(bit_map), 8615 _mark_stack(mark_stack), 8616 _concurrent_precleaning(cpc) { 8617 assert(!_span.is_empty(), "Empty span could spell trouble"); 8618 } 8619 8620 8621 // CMSKeepAliveClosure: the serial version 8622 void CMSKeepAliveClosure::do_oop(oop obj) { 8623 HeapWord* addr = (HeapWord*)obj; 8624 if (_span.contains(addr) && 8625 !_bit_map->isMarked(addr)) { 8626 _bit_map->mark(addr); 8627 bool simulate_overflow = false; 8628 NOT_PRODUCT( 8629 if (CMSMarkStackOverflowALot && 8630 _collector->simulate_overflow()) { 8631 // simulate a stack overflow 8632 simulate_overflow = true; 8633 } 8634 ) 8635 if (simulate_overflow || !_mark_stack->push(obj)) { 8636 if (_concurrent_precleaning) { 8637 // We dirty the overflown object and let the remark 8638 // phase deal with it. 8639 assert(_collector->overflow_list_is_empty(), "Error"); 8640 // In the case of object arrays, we need to dirty all of 8641 // the cards that the object spans. No locking or atomics 8642 // are needed since no one else can be mutating the mod union 8643 // table. 8644 if (obj->is_objArray()) { 8645 size_t sz = obj->size(); 8646 HeapWord* end_card_addr = 8647 (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size); 8648 MemRegion redirty_range = MemRegion(addr, end_card_addr); 8649 assert(!redirty_range.is_empty(), "Arithmetical tautology"); 8650 _collector->_modUnionTable.mark_range(redirty_range); 8651 } else { 8652 _collector->_modUnionTable.mark(addr); 8653 } 8654 _collector->_ser_kac_preclean_ovflw++; 8655 } else { 8656 _collector->push_on_overflow_list(obj); 8657 _collector->_ser_kac_ovflw++; 8658 } 8659 } 8660 } 8661 } 8662 8663 void CMSKeepAliveClosure::do_oop(oop* p) { CMSKeepAliveClosure::do_oop_work(p); } 8664 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); } 8665 8666 // CMSParKeepAliveClosure: a parallel version of the above. 8667 // The work queues are private to each closure (thread), 8668 // but (may be) available for stealing by other threads. 8669 void CMSParKeepAliveClosure::do_oop(oop obj) { 8670 HeapWord* addr = (HeapWord*)obj; 8671 if (_span.contains(addr) && 8672 !_bit_map->isMarked(addr)) { 8673 // In general, during recursive tracing, several threads 8674 // may be concurrently getting here; the first one to 8675 // "tag" it, claims it. 8676 if (_bit_map->par_mark(addr)) { 8677 bool res = _work_queue->push(obj); 8678 assert(res, "Low water mark should be much less than capacity"); 8679 // Do a recursive trim in the hope that this will keep 8680 // stack usage lower, but leave some oops for potential stealers 8681 trim_queue(_low_water_mark); 8682 } // Else, another thread got there first 8683 } 8684 } 8685 8686 void CMSParKeepAliveClosure::do_oop(oop* p) { CMSParKeepAliveClosure::do_oop_work(p); } 8687 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); } 8688 8689 void CMSParKeepAliveClosure::trim_queue(uint max) { 8690 while (_work_queue->size() > max) { 8691 oop new_oop; 8692 if (_work_queue->pop_local(new_oop)) { 8693 assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop"); 8694 assert(_bit_map->isMarked((HeapWord*)new_oop), 8695 "no white objects on this stack!"); 8696 assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop"); 8697 // iterate over the oops in this oop, marking and pushing 8698 // the ones in CMS heap (i.e. in _span). 8699 new_oop->oop_iterate(&_mark_and_push); 8700 } 8701 } 8702 } 8703 8704 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure( 8705 CMSCollector* collector, 8706 MemRegion span, CMSBitMap* bit_map, 8707 CMSMarkStack* revisit_stack, 8708 OopTaskQueue* work_queue): 8709 Par_KlassRememberingOopClosure(collector, NULL, revisit_stack), 8710 _span(span), 8711 _bit_map(bit_map), 8712 _work_queue(work_queue) { } 8713 8714 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) { 8715 HeapWord* addr = (HeapWord*)obj; 8716 if (_span.contains(addr) && 8717 !_bit_map->isMarked(addr)) { 8718 if (_bit_map->par_mark(addr)) { 8719 bool simulate_overflow = false; 8720 NOT_PRODUCT( 8721 if (CMSMarkStackOverflowALot && 8722 _collector->par_simulate_overflow()) { 8723 // simulate a stack overflow 8724 simulate_overflow = true; 8725 } 8726 ) 8727 if (simulate_overflow || !_work_queue->push(obj)) { 8728 _collector->par_push_on_overflow_list(obj); 8729 _collector->_par_kac_ovflw++; 8730 } 8731 } // Else another thread got there already 8732 } 8733 } 8734 8735 void CMSInnerParMarkAndPushClosure::do_oop(oop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); } 8736 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); } 8737 8738 ////////////////////////////////////////////////////////////////// 8739 // CMSExpansionCause ///////////////////////////// 8740 ////////////////////////////////////////////////////////////////// 8741 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) { 8742 switch (cause) { 8743 case _no_expansion: 8744 return "No expansion"; 8745 case _satisfy_free_ratio: 8746 return "Free ratio"; 8747 case _satisfy_promotion: 8748 return "Satisfy promotion"; 8749 case _satisfy_allocation: 8750 return "allocation"; 8751 case _allocate_par_lab: 8752 return "Par LAB"; 8753 case _allocate_par_spooling_space: 8754 return "Par Spooling Space"; 8755 case _adaptive_size_policy: 8756 return "Ergonomics"; 8757 default: 8758 return "unknown"; 8759 } 8760 } 8761 8762 void CMSDrainMarkingStackClosure::do_void() { 8763 // the max number to take from overflow list at a time 8764 const size_t num = _mark_stack->capacity()/4; 8765 assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(), 8766 "Overflow list should be NULL during concurrent phases"); 8767 while (!_mark_stack->isEmpty() || 8768 // if stack is empty, check the overflow list 8769 _collector->take_from_overflow_list(num, _mark_stack)) { 8770 oop obj = _mark_stack->pop(); 8771 HeapWord* addr = (HeapWord*)obj; 8772 assert(_span.contains(addr), "Should be within span"); 8773 assert(_bit_map->isMarked(addr), "Should be marked"); 8774 assert(obj->is_oop(), "Should be an oop"); 8775 obj->oop_iterate(_keep_alive); 8776 } 8777 } 8778 8779 void CMSParDrainMarkingStackClosure::do_void() { 8780 // drain queue 8781 trim_queue(0); 8782 } 8783 8784 // Trim our work_queue so its length is below max at return 8785 void CMSParDrainMarkingStackClosure::trim_queue(uint max) { 8786 while (_work_queue->size() > max) { 8787 oop new_oop; 8788 if (_work_queue->pop_local(new_oop)) { 8789 assert(new_oop->is_oop(), "Expected an oop"); 8790 assert(_bit_map->isMarked((HeapWord*)new_oop), 8791 "no white objects on this stack!"); 8792 assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop"); 8793 // iterate over the oops in this oop, marking and pushing 8794 // the ones in CMS heap (i.e. in _span). 8795 new_oop->oop_iterate(&_mark_and_push); 8796 } 8797 } 8798 } 8799 8800 //////////////////////////////////////////////////////////////////// 8801 // Support for Marking Stack Overflow list handling and related code 8802 //////////////////////////////////////////////////////////////////// 8803 // Much of the following code is similar in shape and spirit to the 8804 // code used in ParNewGC. We should try and share that code 8805 // as much as possible in the future. 8806 8807 #ifndef PRODUCT 8808 // Debugging support for CMSStackOverflowALot 8809 8810 // It's OK to call this multi-threaded; the worst thing 8811 // that can happen is that we'll get a bunch of closely 8812 // spaced simulated oveflows, but that's OK, in fact 8813 // probably good as it would exercise the overflow code 8814 // under contention. 8815 bool CMSCollector::simulate_overflow() { 8816 if (_overflow_counter-- <= 0) { // just being defensive 8817 _overflow_counter = CMSMarkStackOverflowInterval; 8818 return true; 8819 } else { 8820 return false; 8821 } 8822 } 8823 8824 bool CMSCollector::par_simulate_overflow() { 8825 return simulate_overflow(); 8826 } 8827 #endif 8828 8829 // Single-threaded 8830 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) { 8831 assert(stack->isEmpty(), "Expected precondition"); 8832 assert(stack->capacity() > num, "Shouldn't bite more than can chew"); 8833 size_t i = num; 8834 oop cur = _overflow_list; 8835 const markOop proto = markOopDesc::prototype(); 8836 NOT_PRODUCT(ssize_t n = 0;) 8837 for (oop next; i > 0 && cur != NULL; cur = next, i--) { 8838 next = oop(cur->mark()); 8839 cur->set_mark(proto); // until proven otherwise 8840 assert(cur->is_oop(), "Should be an oop"); 8841 bool res = stack->push(cur); 8842 assert(res, "Bit off more than can chew?"); 8843 NOT_PRODUCT(n++;) 8844 } 8845 _overflow_list = cur; 8846 #ifndef PRODUCT 8847 assert(_num_par_pushes >= n, "Too many pops?"); 8848 _num_par_pushes -=n; 8849 #endif 8850 return !stack->isEmpty(); 8851 } 8852 8853 #define BUSY (oop(0x1aff1aff)) 8854 // (MT-safe) Get a prefix of at most "num" from the list. 8855 // The overflow list is chained through the mark word of 8856 // each object in the list. We fetch the entire list, 8857 // break off a prefix of the right size and return the 8858 // remainder. If other threads try to take objects from 8859 // the overflow list at that time, they will wait for 8860 // some time to see if data becomes available. If (and 8861 // only if) another thread places one or more object(s) 8862 // on the global list before we have returned the suffix 8863 // to the global list, we will walk down our local list 8864 // to find its end and append the global list to 8865 // our suffix before returning it. This suffix walk can 8866 // prove to be expensive (quadratic in the amount of traffic) 8867 // when there are many objects in the overflow list and 8868 // there is much producer-consumer contention on the list. 8869 // *NOTE*: The overflow list manipulation code here and 8870 // in ParNewGeneration:: are very similar in shape, 8871 // except that in the ParNew case we use the old (from/eden) 8872 // copy of the object to thread the list via its klass word. 8873 // Because of the common code, if you make any changes in 8874 // the code below, please check the ParNew version to see if 8875 // similar changes might be needed. 8876 // CR 6797058 has been filed to consolidate the common code. 8877 bool CMSCollector::par_take_from_overflow_list(size_t num, 8878 OopTaskQueue* work_q, 8879 int no_of_gc_threads) { 8880 assert(work_q->size() == 0, "First empty local work queue"); 8881 assert(num < work_q->max_elems(), "Can't bite more than we can chew"); 8882 if (_overflow_list == NULL) { 8883 return false; 8884 } 8885 // Grab the entire list; we'll put back a suffix 8886 oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list); 8887 Thread* tid = Thread::current(); 8888 // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was 8889 // set to ParallelGCThreads. 8890 size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads; 8891 size_t sleep_time_millis = MAX2((size_t)1, num/100); 8892 // If the list is busy, we spin for a short while, 8893 // sleeping between attempts to get the list. 8894 for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) { 8895 os::sleep(tid, sleep_time_millis, false); 8896 if (_overflow_list == NULL) { 8897 // Nothing left to take 8898 return false; 8899 } else if (_overflow_list != BUSY) { 8900 // Try and grab the prefix 8901 prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list); 8902 } 8903 } 8904 // If the list was found to be empty, or we spun long 8905 // enough, we give up and return empty-handed. If we leave 8906 // the list in the BUSY state below, it must be the case that 8907 // some other thread holds the overflow list and will set it 8908 // to a non-BUSY state in the future. 8909 if (prefix == NULL || prefix == BUSY) { 8910 // Nothing to take or waited long enough 8911 if (prefix == NULL) { 8912 // Write back the NULL in case we overwrote it with BUSY above 8913 // and it is still the same value. 8914 (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY); 8915 } 8916 return false; 8917 } 8918 assert(prefix != NULL && prefix != BUSY, "Error"); 8919 size_t i = num; 8920 oop cur = prefix; 8921 // Walk down the first "num" objects, unless we reach the end. 8922 for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--); 8923 if (cur->mark() == NULL) { 8924 // We have "num" or fewer elements in the list, so there 8925 // is nothing to return to the global list. 8926 // Write back the NULL in lieu of the BUSY we wrote 8927 // above, if it is still the same value. 8928 if (_overflow_list == BUSY) { 8929 (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY); 8930 } 8931 } else { 8932 // Chop off the suffix and rerturn it to the global list. 8933 assert(cur->mark() != BUSY, "Error"); 8934 oop suffix_head = cur->mark(); // suffix will be put back on global list 8935 cur->set_mark(NULL); // break off suffix 8936 // It's possible that the list is still in the empty(busy) state 8937 // we left it in a short while ago; in that case we may be 8938 // able to place back the suffix without incurring the cost 8939 // of a walk down the list. 8940 oop observed_overflow_list = _overflow_list; 8941 oop cur_overflow_list = observed_overflow_list; 8942 bool attached = false; 8943 while (observed_overflow_list == BUSY || observed_overflow_list == NULL) { 8944 observed_overflow_list = 8945 (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list); 8946 if (cur_overflow_list == observed_overflow_list) { 8947 attached = true; 8948 break; 8949 } else cur_overflow_list = observed_overflow_list; 8950 } 8951 if (!attached) { 8952 // Too bad, someone else sneaked in (at least) an element; we'll need 8953 // to do a splice. Find tail of suffix so we can prepend suffix to global 8954 // list. 8955 for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark())); 8956 oop suffix_tail = cur; 8957 assert(suffix_tail != NULL && suffix_tail->mark() == NULL, 8958 "Tautology"); 8959 observed_overflow_list = _overflow_list; 8960 do { 8961 cur_overflow_list = observed_overflow_list; 8962 if (cur_overflow_list != BUSY) { 8963 // Do the splice ... 8964 suffix_tail->set_mark(markOop(cur_overflow_list)); 8965 } else { // cur_overflow_list == BUSY 8966 suffix_tail->set_mark(NULL); 8967 } 8968 // ... and try to place spliced list back on overflow_list ... 8969 observed_overflow_list = 8970 (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list); 8971 } while (cur_overflow_list != observed_overflow_list); 8972 // ... until we have succeeded in doing so. 8973 } 8974 } 8975 8976 // Push the prefix elements on work_q 8977 assert(prefix != NULL, "control point invariant"); 8978 const markOop proto = markOopDesc::prototype(); 8979 oop next; 8980 NOT_PRODUCT(ssize_t n = 0;) 8981 for (cur = prefix; cur != NULL; cur = next) { 8982 next = oop(cur->mark()); 8983 cur->set_mark(proto); // until proven otherwise 8984 assert(cur->is_oop(), "Should be an oop"); 8985 bool res = work_q->push(cur); 8986 assert(res, "Bit off more than we can chew?"); 8987 NOT_PRODUCT(n++;) 8988 } 8989 #ifndef PRODUCT 8990 assert(_num_par_pushes >= n, "Too many pops?"); 8991 Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes); 8992 #endif 8993 return true; 8994 } 8995 8996 // Single-threaded 8997 void CMSCollector::push_on_overflow_list(oop p) { 8998 NOT_PRODUCT(_num_par_pushes++;) 8999 assert(p->is_oop(), "Not an oop"); 9000 preserve_mark_if_necessary(p); 9001 p->set_mark((markOop)_overflow_list); 9002 _overflow_list = p; 9003 } 9004 9005 // Multi-threaded; use CAS to prepend to overflow list 9006 void CMSCollector::par_push_on_overflow_list(oop p) { 9007 NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);) 9008 assert(p->is_oop(), "Not an oop"); 9009 par_preserve_mark_if_necessary(p); 9010 oop observed_overflow_list = _overflow_list; 9011 oop cur_overflow_list; 9012 do { 9013 cur_overflow_list = observed_overflow_list; 9014 if (cur_overflow_list != BUSY) { 9015 p->set_mark(markOop(cur_overflow_list)); 9016 } else { 9017 p->set_mark(NULL); 9018 } 9019 observed_overflow_list = 9020 (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list); 9021 } while (cur_overflow_list != observed_overflow_list); 9022 } 9023 #undef BUSY 9024 9025 // Single threaded 9026 // General Note on GrowableArray: pushes may silently fail 9027 // because we are (temporarily) out of C-heap for expanding 9028 // the stack. The problem is quite ubiquitous and affects 9029 // a lot of code in the JVM. The prudent thing for GrowableArray 9030 // to do (for now) is to exit with an error. However, that may 9031 // be too draconian in some cases because the caller may be 9032 // able to recover without much harm. For such cases, we 9033 // should probably introduce a "soft_push" method which returns 9034 // an indication of success or failure with the assumption that 9035 // the caller may be able to recover from a failure; code in 9036 // the VM can then be changed, incrementally, to deal with such 9037 // failures where possible, thus, incrementally hardening the VM 9038 // in such low resource situations. 9039 void CMSCollector::preserve_mark_work(oop p, markOop m) { 9040 _preserved_oop_stack.push(p); 9041 _preserved_mark_stack.push(m); 9042 assert(m == p->mark(), "Mark word changed"); 9043 assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(), 9044 "bijection"); 9045 } 9046 9047 // Single threaded 9048 void CMSCollector::preserve_mark_if_necessary(oop p) { 9049 markOop m = p->mark(); 9050 if (m->must_be_preserved(p)) { 9051 preserve_mark_work(p, m); 9052 } 9053 } 9054 9055 void CMSCollector::par_preserve_mark_if_necessary(oop p) { 9056 markOop m = p->mark(); 9057 if (m->must_be_preserved(p)) { 9058 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); 9059 // Even though we read the mark word without holding 9060 // the lock, we are assured that it will not change 9061 // because we "own" this oop, so no other thread can 9062 // be trying to push it on the overflow list; see 9063 // the assertion in preserve_mark_work() that checks 9064 // that m == p->mark(). 9065 preserve_mark_work(p, m); 9066 } 9067 } 9068 9069 // We should be able to do this multi-threaded, 9070 // a chunk of stack being a task (this is 9071 // correct because each oop only ever appears 9072 // once in the overflow list. However, it's 9073 // not very easy to completely overlap this with 9074 // other operations, so will generally not be done 9075 // until all work's been completed. Because we 9076 // expect the preserved oop stack (set) to be small, 9077 // it's probably fine to do this single-threaded. 9078 // We can explore cleverer concurrent/overlapped/parallel 9079 // processing of preserved marks if we feel the 9080 // need for this in the future. Stack overflow should 9081 // be so rare in practice and, when it happens, its 9082 // effect on performance so great that this will 9083 // likely just be in the noise anyway. 9084 void CMSCollector::restore_preserved_marks_if_any() { 9085 assert(SafepointSynchronize::is_at_safepoint(), 9086 "world should be stopped"); 9087 assert(Thread::current()->is_ConcurrentGC_thread() || 9088 Thread::current()->is_VM_thread(), 9089 "should be single-threaded"); 9090 assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(), 9091 "bijection"); 9092 9093 while (!_preserved_oop_stack.is_empty()) { 9094 oop p = _preserved_oop_stack.pop(); 9095 assert(p->is_oop(), "Should be an oop"); 9096 assert(_span.contains(p), "oop should be in _span"); 9097 assert(p->mark() == markOopDesc::prototype(), 9098 "Set when taken from overflow list"); 9099 markOop m = _preserved_mark_stack.pop(); 9100 p->set_mark(m); 9101 } 9102 assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(), 9103 "stacks were cleared above"); 9104 } 9105 9106 #ifndef PRODUCT 9107 bool CMSCollector::no_preserved_marks() const { 9108 return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(); 9109 } 9110 #endif 9111 9112 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const 9113 { 9114 GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap(); 9115 CMSAdaptiveSizePolicy* size_policy = 9116 (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy(); 9117 assert(size_policy->is_gc_cms_adaptive_size_policy(), 9118 "Wrong type for size policy"); 9119 return size_policy; 9120 } 9121 9122 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size, 9123 size_t desired_promo_size) { 9124 if (cur_promo_size < desired_promo_size) { 9125 size_t expand_bytes = desired_promo_size - cur_promo_size; 9126 if (PrintAdaptiveSizePolicy && Verbose) { 9127 gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize " 9128 "Expanding tenured generation by " SIZE_FORMAT " (bytes)", 9129 expand_bytes); 9130 } 9131 expand(expand_bytes, 9132 MinHeapDeltaBytes, 9133 CMSExpansionCause::_adaptive_size_policy); 9134 } else if (desired_promo_size < cur_promo_size) { 9135 size_t shrink_bytes = cur_promo_size - desired_promo_size; 9136 if (PrintAdaptiveSizePolicy && Verbose) { 9137 gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize " 9138 "Shrinking tenured generation by " SIZE_FORMAT " (bytes)", 9139 shrink_bytes); 9140 } 9141 shrink(shrink_bytes); 9142 } 9143 } 9144 9145 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() { 9146 GenCollectedHeap* gch = GenCollectedHeap::heap(); 9147 CMSGCAdaptivePolicyCounters* counters = 9148 (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters(); 9149 assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind, 9150 "Wrong kind of counters"); 9151 return counters; 9152 } 9153 9154 9155 void ASConcurrentMarkSweepGeneration::update_counters() { 9156 if (UsePerfData) { 9157 _space_counters->update_all(); 9158 _gen_counters->update_all(); 9159 CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters(); 9160 GenCollectedHeap* gch = GenCollectedHeap::heap(); 9161 CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats(); 9162 assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind, 9163 "Wrong gc statistics type"); 9164 counters->update_counters(gc_stats_l); 9165 } 9166 } 9167 9168 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) { 9169 if (UsePerfData) { 9170 _space_counters->update_used(used); 9171 _space_counters->update_capacity(); 9172 _gen_counters->update_all(); 9173 9174 CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters(); 9175 GenCollectedHeap* gch = GenCollectedHeap::heap(); 9176 CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats(); 9177 assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind, 9178 "Wrong gc statistics type"); 9179 counters->update_counters(gc_stats_l); 9180 } 9181 } 9182 9183 // The desired expansion delta is computed so that: 9184 // . desired free percentage or greater is used 9185 void ASConcurrentMarkSweepGeneration::compute_new_size() { 9186 assert_locked_or_safepoint(Heap_lock); 9187 9188 GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap(); 9189 9190 // If incremental collection failed, we just want to expand 9191 // to the limit. 9192 if (incremental_collection_failed()) { 9193 clear_incremental_collection_failed(); 9194 grow_to_reserved(); 9195 return; 9196 } 9197 9198 assert(UseAdaptiveSizePolicy, "Should be using adaptive sizing"); 9199 9200 assert(gch->kind() == CollectedHeap::GenCollectedHeap, 9201 "Wrong type of heap"); 9202 int prev_level = level() - 1; 9203 assert(prev_level >= 0, "The cms generation is the lowest generation"); 9204 Generation* prev_gen = gch->get_gen(prev_level); 9205 assert(prev_gen->kind() == Generation::ASParNew, 9206 "Wrong type of young generation"); 9207 ParNewGeneration* younger_gen = (ParNewGeneration*) prev_gen; 9208 size_t cur_eden = younger_gen->eden()->capacity(); 9209 CMSAdaptiveSizePolicy* size_policy = cms_size_policy(); 9210 size_t cur_promo = free(); 9211 size_policy->compute_tenured_generation_free_space(cur_promo, 9212 max_available(), 9213 cur_eden); 9214 resize(cur_promo, size_policy->promo_size()); 9215 9216 // Record the new size of the space in the cms generation 9217 // that is available for promotions. This is temporary. 9218 // It should be the desired promo size. 9219 size_policy->avg_cms_promo()->sample(free()); 9220 size_policy->avg_old_live()->sample(used()); 9221 9222 if (UsePerfData) { 9223 CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters(); 9224 counters->update_cms_capacity_counter(capacity()); 9225 } 9226 } 9227 9228 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) { 9229 assert_locked_or_safepoint(Heap_lock); 9230 assert_lock_strong(freelistLock()); 9231 HeapWord* old_end = _cmsSpace->end(); 9232 HeapWord* unallocated_start = _cmsSpace->unallocated_block(); 9233 assert(old_end >= unallocated_start, "Miscalculation of unallocated_start"); 9234 FreeChunk* chunk_at_end = find_chunk_at_end(); 9235 if (chunk_at_end == NULL) { 9236 // No room to shrink 9237 if (PrintGCDetails && Verbose) { 9238 gclog_or_tty->print_cr("No room to shrink: old_end " 9239 PTR_FORMAT " unallocated_start " PTR_FORMAT 9240 " chunk_at_end " PTR_FORMAT, 9241 old_end, unallocated_start, chunk_at_end); 9242 } 9243 return; 9244 } else { 9245 9246 // Find the chunk at the end of the space and determine 9247 // how much it can be shrunk. 9248 size_t shrinkable_size_in_bytes = chunk_at_end->size(); 9249 size_t aligned_shrinkable_size_in_bytes = 9250 align_size_down(shrinkable_size_in_bytes, os::vm_page_size()); 9251 assert(unallocated_start <= chunk_at_end->end(), 9252 "Inconsistent chunk at end of space"); 9253 size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes); 9254 size_t word_size_before = heap_word_size(_virtual_space.committed_size()); 9255 9256 // Shrink the underlying space 9257 _virtual_space.shrink_by(bytes); 9258 if (PrintGCDetails && Verbose) { 9259 gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:" 9260 " desired_bytes " SIZE_FORMAT 9261 " shrinkable_size_in_bytes " SIZE_FORMAT 9262 " aligned_shrinkable_size_in_bytes " SIZE_FORMAT 9263 " bytes " SIZE_FORMAT, 9264 desired_bytes, shrinkable_size_in_bytes, 9265 aligned_shrinkable_size_in_bytes, bytes); 9266 gclog_or_tty->print_cr(" old_end " SIZE_FORMAT 9267 " unallocated_start " SIZE_FORMAT, 9268 old_end, unallocated_start); 9269 } 9270 9271 // If the space did shrink (shrinking is not guaranteed), 9272 // shrink the chunk at the end by the appropriate amount. 9273 if (((HeapWord*)_virtual_space.high()) < old_end) { 9274 size_t new_word_size = 9275 heap_word_size(_virtual_space.committed_size()); 9276 9277 // Have to remove the chunk from the dictionary because it is changing 9278 // size and might be someplace elsewhere in the dictionary. 9279 9280 // Get the chunk at end, shrink it, and put it 9281 // back. 9282 _cmsSpace->removeChunkFromDictionary(chunk_at_end); 9283 size_t word_size_change = word_size_before - new_word_size; 9284 size_t chunk_at_end_old_size = chunk_at_end->size(); 9285 assert(chunk_at_end_old_size >= word_size_change, 9286 "Shrink is too large"); 9287 chunk_at_end->set_size(chunk_at_end_old_size - 9288 word_size_change); 9289 _cmsSpace->freed((HeapWord*) chunk_at_end->end(), 9290 word_size_change); 9291 9292 _cmsSpace->returnChunkToDictionary(chunk_at_end); 9293 9294 MemRegion mr(_cmsSpace->bottom(), new_word_size); 9295 _bts->resize(new_word_size); // resize the block offset shared array 9296 Universe::heap()->barrier_set()->resize_covered_region(mr); 9297 _cmsSpace->assert_locked(); 9298 _cmsSpace->set_end((HeapWord*)_virtual_space.high()); 9299 9300 NOT_PRODUCT(_cmsSpace->dictionary()->verify()); 9301 9302 // update the space and generation capacity counters 9303 if (UsePerfData) { 9304 _space_counters->update_capacity(); 9305 _gen_counters->update_all(); 9306 } 9307 9308 if (Verbose && PrintGCDetails) { 9309 size_t new_mem_size = _virtual_space.committed_size(); 9310 size_t old_mem_size = new_mem_size + bytes; 9311 gclog_or_tty->print_cr("Shrinking %s from %ldK by %ldK to %ldK", 9312 name(), old_mem_size/K, bytes/K, new_mem_size/K); 9313 } 9314 } 9315 9316 assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(), 9317 "Inconsistency at end of space"); 9318 assert(chunk_at_end->end() == _cmsSpace->end(), 9319 "Shrinking is inconsistent"); 9320 return; 9321 } 9322 } 9323 9324 // Transfer some number of overflown objects to usual marking 9325 // stack. Return true if some objects were transferred. 9326 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() { 9327 size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4, 9328 (size_t)ParGCDesiredObjsFromOverflowList); 9329 9330 bool res = _collector->take_from_overflow_list(num, _mark_stack); 9331 assert(_collector->overflow_list_is_empty() || res, 9332 "If list is not empty, we should have taken something"); 9333 assert(!res || !_mark_stack->isEmpty(), 9334 "If we took something, it should now be on our stack"); 9335 return res; 9336 } 9337 9338 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) { 9339 size_t res = _sp->block_size_no_stall(addr, _collector); 9340 if (_sp->block_is_obj(addr)) { 9341 if (_live_bit_map->isMarked(addr)) { 9342 // It can't have been dead in a previous cycle 9343 guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!"); 9344 } else { 9345 _dead_bit_map->mark(addr); // mark the dead object 9346 } 9347 } 9348 // Could be 0, if the block size could not be computed without stalling. 9349 return res; 9350 } 9351 9352 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() { 9353 9354 switch (phase) { 9355 case CMSCollector::InitialMarking: 9356 initialize(true /* fullGC */ , 9357 cause /* cause of the GC */, 9358 true /* recordGCBeginTime */, 9359 true /* recordPreGCUsage */, 9360 false /* recordPeakUsage */, 9361 false /* recordPostGCusage */, 9362 true /* recordAccumulatedGCTime */, 9363 false /* recordGCEndTime */, 9364 false /* countCollection */ ); 9365 break; 9366 9367 case CMSCollector::FinalMarking: 9368 initialize(true /* fullGC */ , 9369 cause /* cause of the GC */, 9370 false /* recordGCBeginTime */, 9371 false /* recordPreGCUsage */, 9372 false /* recordPeakUsage */, 9373 false /* recordPostGCusage */, 9374 true /* recordAccumulatedGCTime */, 9375 false /* recordGCEndTime */, 9376 false /* countCollection */ ); 9377 break; 9378 9379 case CMSCollector::Sweeping: 9380 initialize(true /* fullGC */ , 9381 cause /* cause of the GC */, 9382 false /* recordGCBeginTime */, 9383 false /* recordPreGCUsage */, 9384 true /* recordPeakUsage */, 9385 true /* recordPostGCusage */, 9386 false /* recordAccumulatedGCTime */, 9387 true /* recordGCEndTime */, 9388 true /* countCollection */ ); 9389 break; 9390 9391 default: 9392 ShouldNotReachHere(); 9393 } 9394 } 9395