1 /* 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP 27 28 #include "gc_implementation/g1/concurrentMark.hpp" 29 #include "gc_implementation/g1/g1AllocRegion.hpp" 30 #include "gc_implementation/g1/g1HRPrinter.hpp" 31 #include "gc_implementation/g1/g1MonitoringSupport.hpp" 32 #include "gc_implementation/g1/g1PreserveMarkQueue.hpp" 33 #include "gc_implementation/g1/g1RemSet.hpp" 34 #include "gc_implementation/g1/heapRegionSeq.hpp" 35 #include "gc_implementation/g1/heapRegionSets.hpp" 36 #include "gc_implementation/shared/hSpaceCounters.hpp" 37 #include "gc_implementation/shared/parGCAllocBuffer.hpp" 38 #include "memory/barrierSet.hpp" 39 #include "memory/memRegion.hpp" 40 #include "memory/sharedHeap.hpp" 41 42 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot. 43 // It uses the "Garbage First" heap organization and algorithm, which 44 // may combine concurrent marking with parallel, incremental compaction of 45 // heap subsets that will yield large amounts of garbage. 46 47 class HeapRegion; 48 class HRRSCleanupTask; 49 class GenerationSpec; 50 class OopsInHeapRegionClosure; 51 class G1KlassScanClosure; 52 class G1ScanHeapEvacClosure; 53 class ObjectClosure; 54 class SpaceClosure; 55 class CompactibleSpaceClosure; 56 class Space; 57 class G1CollectorPolicy; 58 class GenRemSet; 59 class G1RemSet; 60 class HeapRegionRemSetIterator; 61 class ConcurrentMark; 62 class ConcurrentMarkThread; 63 class ConcurrentG1Refine; 64 class GenerationCounters; 65 66 typedef OverflowTaskQueue<StarTask, mtGC> RefToScanQueue; 67 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet; 68 69 typedef int RegionIdx_t; // needs to hold [ 0..max_regions() ) 70 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion ) 71 72 enum GCAllocPurpose { 73 GCAllocForTenured, 74 GCAllocForSurvived, 75 GCAllocPurposeCount 76 }; 77 78 class YoungList : public CHeapObj<mtGC> { 79 private: 80 G1CollectedHeap* _g1h; 81 82 HeapRegion* _head; 83 84 HeapRegion* _survivor_head; 85 HeapRegion* _survivor_tail; 86 87 HeapRegion* _curr; 88 89 uint _length; 90 uint _survivor_length; 91 92 size_t _last_sampled_rs_lengths; 93 size_t _sampled_rs_lengths; 94 95 void empty_list(HeapRegion* list); 96 97 public: 98 YoungList(G1CollectedHeap* g1h); 99 100 void push_region(HeapRegion* hr); 101 void add_survivor_region(HeapRegion* hr); 102 103 void empty_list(); 104 bool is_empty() { return _length == 0; } 105 uint length() { return _length; } 106 uint survivor_length() { return _survivor_length; } 107 108 // Currently we do not keep track of the used byte sum for the 109 // young list and the survivors and it'd be quite a lot of work to 110 // do so. When we'll eventually replace the young list with 111 // instances of HeapRegionLinkedList we'll get that for free. So, 112 // we'll report the more accurate information then. 113 size_t eden_used_bytes() { 114 assert(length() >= survivor_length(), "invariant"); 115 return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes; 116 } 117 size_t survivor_used_bytes() { 118 return (size_t) survivor_length() * HeapRegion::GrainBytes; 119 } 120 121 void rs_length_sampling_init(); 122 bool rs_length_sampling_more(); 123 void rs_length_sampling_next(); 124 125 void reset_sampled_info() { 126 _last_sampled_rs_lengths = 0; 127 } 128 size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; } 129 130 // for development purposes 131 void reset_auxilary_lists(); 132 void clear() { _head = NULL; _length = 0; } 133 134 void clear_survivors() { 135 _survivor_head = NULL; 136 _survivor_tail = NULL; 137 _survivor_length = 0; 138 } 139 140 HeapRegion* first_region() { return _head; } 141 HeapRegion* first_survivor_region() { return _survivor_head; } 142 HeapRegion* last_survivor_region() { return _survivor_tail; } 143 144 // debugging 145 bool check_list_well_formed(); 146 bool check_list_empty(bool check_sample = true); 147 void print(); 148 }; 149 150 class MutatorAllocRegion : public G1AllocRegion { 151 protected: 152 virtual HeapRegion* allocate_new_region(size_t word_size, bool force); 153 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes); 154 public: 155 MutatorAllocRegion() 156 : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { } 157 }; 158 159 // The G1 STW is alive closure. 160 // An instance is embedded into the G1CH and used as the 161 // (optional) _is_alive_non_header closure in the STW 162 // reference processor. It is also extensively used during 163 // refence processing during STW evacuation pauses. 164 class G1STWIsAliveClosure: public BoolObjectClosure { 165 G1CollectedHeap* _g1; 166 public: 167 G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 168 void do_object(oop p) { assert(false, "Do not call."); } 169 bool do_object_b(oop p); 170 }; 171 172 class SurvivorGCAllocRegion : public G1AllocRegion { 173 protected: 174 virtual HeapRegion* allocate_new_region(size_t word_size, bool force); 175 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes); 176 public: 177 SurvivorGCAllocRegion() 178 : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { } 179 }; 180 181 class OldGCAllocRegion : public G1AllocRegion { 182 protected: 183 virtual HeapRegion* allocate_new_region(size_t word_size, bool force); 184 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes); 185 public: 186 OldGCAllocRegion() 187 : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { } 188 }; 189 190 class RefineCardTableEntryClosure; 191 192 class G1CollectedHeap : public SharedHeap { 193 friend class VM_G1CollectForAllocation; 194 friend class VM_G1CollectFull; 195 friend class VM_G1IncCollectionPause; 196 friend class VMStructs; 197 friend class MutatorAllocRegion; 198 friend class SurvivorGCAllocRegion; 199 friend class OldGCAllocRegion; 200 201 // Closures used in implementation. 202 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object> 203 friend class G1ParCopyClosure; 204 friend class G1IsAliveClosure; 205 friend class G1EvacuateFollowersClosure; 206 friend class G1ParScanThreadState; 207 friend class G1ParScanClosureSuper; 208 friend class G1ParEvacuateFollowersClosure; 209 friend class G1ParTask; 210 friend class G1FreeGarbageRegionClosure; 211 friend class RefineCardTableEntryClosure; 212 friend class G1PrepareCompactClosure; 213 friend class RegionSorter; 214 friend class RegionResetter; 215 friend class CountRCClosure; 216 friend class EvacPopObjClosure; 217 friend class G1ParCleanupCTTask; 218 219 // Other related classes. 220 friend class G1MarkSweep; 221 222 private: 223 // The one and only G1CollectedHeap, so static functions can find it. 224 static G1CollectedHeap* _g1h; 225 226 static size_t _humongous_object_threshold_in_words; 227 228 // Storage for the G1 heap. 229 VirtualSpace _g1_storage; 230 MemRegion _g1_reserved; 231 232 // The part of _g1_storage that is currently committed. 233 MemRegion _g1_committed; 234 235 // The master free list. It will satisfy all new region allocations. 236 MasterFreeRegionList _free_list; 237 238 // The secondary free list which contains regions that have been 239 // freed up during the cleanup process. This will be appended to the 240 // master free list when appropriate. 241 SecondaryFreeRegionList _secondary_free_list; 242 243 // It keeps track of the old regions. 244 MasterOldRegionSet _old_set; 245 246 // It keeps track of the humongous regions. 247 MasterHumongousRegionSet _humongous_set; 248 249 // The number of regions we could create by expansion. 250 uint _expansion_regions; 251 252 // The block offset table for the G1 heap. 253 G1BlockOffsetSharedArray* _bot_shared; 254 255 // Tears down the region sets / lists so that they are empty and the 256 // regions on the heap do not belong to a region set / list. The 257 // only exception is the humongous set which we leave unaltered. If 258 // free_list_only is true, it will only tear down the master free 259 // list. It is called before a Full GC (free_list_only == false) or 260 // before heap shrinking (free_list_only == true). 261 void tear_down_region_sets(bool free_list_only); 262 263 // Rebuilds the region sets / lists so that they are repopulated to 264 // reflect the contents of the heap. The only exception is the 265 // humongous set which was not torn down in the first place. If 266 // free_list_only is true, it will only rebuild the master free 267 // list. It is called after a Full GC (free_list_only == false) or 268 // after heap shrinking (free_list_only == true). 269 void rebuild_region_sets(bool free_list_only); 270 271 // The sequence of all heap regions in the heap. 272 HeapRegionSeq _hrs; 273 274 // Alloc region used to satisfy mutator allocation requests. 275 MutatorAllocRegion _mutator_alloc_region; 276 277 // Alloc region used to satisfy allocation requests by the GC for 278 // survivor objects. 279 SurvivorGCAllocRegion _survivor_gc_alloc_region; 280 281 // PLAB sizing policy for survivors. 282 PLABStats _survivor_plab_stats; 283 284 // Alloc region used to satisfy allocation requests by the GC for 285 // old objects. 286 OldGCAllocRegion _old_gc_alloc_region; 287 288 // PLAB sizing policy for tenured objects. 289 PLABStats _old_plab_stats; 290 291 PLABStats* stats_for_purpose(GCAllocPurpose purpose) { 292 PLABStats* stats = NULL; 293 294 switch (purpose) { 295 case GCAllocForSurvived: 296 stats = &_survivor_plab_stats; 297 break; 298 case GCAllocForTenured: 299 stats = &_old_plab_stats; 300 break; 301 default: 302 assert(false, "unrecognized GCAllocPurpose"); 303 } 304 305 return stats; 306 } 307 308 // The last old region we allocated to during the last GC. 309 // Typically, it is not full so we should re-use it during the next GC. 310 HeapRegion* _retained_old_gc_alloc_region; 311 312 // It specifies whether we should attempt to expand the heap after a 313 // region allocation failure. If heap expansion fails we set this to 314 // false so that we don't re-attempt the heap expansion (it's likely 315 // that subsequent expansion attempts will also fail if one fails). 316 // Currently, it is only consulted during GC and it's reset at the 317 // start of each GC. 318 bool _expand_heap_after_alloc_failure; 319 320 // It resets the mutator alloc region before new allocations can take place. 321 void init_mutator_alloc_region(); 322 323 // It releases the mutator alloc region. 324 void release_mutator_alloc_region(); 325 326 // It initializes the GC alloc regions at the start of a GC. 327 void init_gc_alloc_regions(); 328 329 // It releases the GC alloc regions at the end of a GC. 330 void release_gc_alloc_regions(uint no_of_gc_workers); 331 332 // It does any cleanup that needs to be done on the GC alloc regions 333 // before a Full GC. 334 void abandon_gc_alloc_regions(); 335 336 // Helper for monitoring and management support. 337 G1MonitoringSupport* _g1mm; 338 339 // Determines PLAB size for a particular allocation purpose. 340 size_t desired_plab_sz(GCAllocPurpose purpose); 341 342 // Outside of GC pauses, the number of bytes used in all regions other 343 // than the current allocation region. 344 size_t _summary_bytes_used; 345 346 // This is used for a quick test on whether a reference points into 347 // the collection set or not. Basically, we have an array, with one 348 // byte per region, and that byte denotes whether the corresponding 349 // region is in the collection set or not. The entry corresponding 350 // the bottom of the heap, i.e., region 0, is pointed to by 351 // _in_cset_fast_test_base. The _in_cset_fast_test field has been 352 // biased so that it actually points to address 0 of the address 353 // space, to make the test as fast as possible (we can simply shift 354 // the address to address into it, instead of having to subtract the 355 // bottom of the heap from the address before shifting it; basically 356 // it works in the same way the card table works). 357 bool* _in_cset_fast_test; 358 359 // The allocated array used for the fast test on whether a reference 360 // points into the collection set or not. This field is also used to 361 // free the array. 362 bool* _in_cset_fast_test_base; 363 364 // The length of the _in_cset_fast_test_base array. 365 uint _in_cset_fast_test_length; 366 367 volatile unsigned _gc_time_stamp; 368 369 size_t* _surviving_young_words; 370 371 G1HRPrinter _hr_printer; 372 373 void setup_surviving_young_words(); 374 void update_surviving_young_words(size_t* surv_young_words); 375 void cleanup_surviving_young_words(); 376 377 // It decides whether an explicit GC should start a concurrent cycle 378 // instead of doing a STW GC. Currently, a concurrent cycle is 379 // explicitly started if: 380 // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or 381 // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent. 382 // (c) cause == _g1_humongous_allocation 383 bool should_do_concurrent_full_gc(GCCause::Cause cause); 384 385 // Keeps track of how many "old marking cycles" (i.e., Full GCs or 386 // concurrent cycles) we have started. 387 volatile unsigned int _old_marking_cycles_started; 388 389 // Keeps track of how many "old marking cycles" (i.e., Full GCs or 390 // concurrent cycles) we have completed. 391 volatile unsigned int _old_marking_cycles_completed; 392 393 // This is a non-product method that is helpful for testing. It is 394 // called at the end of a GC and artificially expands the heap by 395 // allocating a number of dead regions. This way we can induce very 396 // frequent marking cycles and stress the cleanup / concurrent 397 // cleanup code more (as all the regions that will be allocated by 398 // this method will be found dead by the marking cycle). 399 void allocate_dummy_regions() PRODUCT_RETURN; 400 401 // Clear RSets after a compaction. It also resets the GC time stamps. 402 void clear_rsets_post_compaction(); 403 404 // If the HR printer is active, dump the state of the regions in the 405 // heap after a compaction. 406 void print_hrs_post_compaction(); 407 408 double verify(bool guard, const char* msg); 409 void verify_before_gc(); 410 void verify_after_gc(); 411 412 void log_gc_header(); 413 void log_gc_footer(double pause_time_sec); 414 415 // These are macros so that, if the assert fires, we get the correct 416 // line number, file, etc. 417 418 #define heap_locking_asserts_err_msg(_extra_message_) \ 419 err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \ 420 (_extra_message_), \ 421 BOOL_TO_STR(Heap_lock->owned_by_self()), \ 422 BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \ 423 BOOL_TO_STR(Thread::current()->is_VM_thread())) 424 425 #define assert_heap_locked() \ 426 do { \ 427 assert(Heap_lock->owned_by_self(), \ 428 heap_locking_asserts_err_msg("should be holding the Heap_lock")); \ 429 } while (0) 430 431 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \ 432 do { \ 433 assert(Heap_lock->owned_by_self() || \ 434 (SafepointSynchronize::is_at_safepoint() && \ 435 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \ 436 heap_locking_asserts_err_msg("should be holding the Heap_lock or " \ 437 "should be at a safepoint")); \ 438 } while (0) 439 440 #define assert_heap_locked_and_not_at_safepoint() \ 441 do { \ 442 assert(Heap_lock->owned_by_self() && \ 443 !SafepointSynchronize::is_at_safepoint(), \ 444 heap_locking_asserts_err_msg("should be holding the Heap_lock and " \ 445 "should not be at a safepoint")); \ 446 } while (0) 447 448 #define assert_heap_not_locked() \ 449 do { \ 450 assert(!Heap_lock->owned_by_self(), \ 451 heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \ 452 } while (0) 453 454 #define assert_heap_not_locked_and_not_at_safepoint() \ 455 do { \ 456 assert(!Heap_lock->owned_by_self() && \ 457 !SafepointSynchronize::is_at_safepoint(), \ 458 heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \ 459 "should not be at a safepoint")); \ 460 } while (0) 461 462 #define assert_at_safepoint(_should_be_vm_thread_) \ 463 do { \ 464 assert(SafepointSynchronize::is_at_safepoint() && \ 465 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \ 466 heap_locking_asserts_err_msg("should be at a safepoint")); \ 467 } while (0) 468 469 #define assert_not_at_safepoint() \ 470 do { \ 471 assert(!SafepointSynchronize::is_at_safepoint(), \ 472 heap_locking_asserts_err_msg("should not be at a safepoint")); \ 473 } while (0) 474 475 protected: 476 477 // The young region list. 478 YoungList* _young_list; 479 480 // The current policy object for the collector. 481 G1CollectorPolicy* _g1_policy; 482 483 // This is the second level of trying to allocate a new region. If 484 // new_region() didn't find a region on the free_list, this call will 485 // check whether there's anything available on the 486 // secondary_free_list and/or wait for more regions to appear on 487 // that list, if _free_regions_coming is set. 488 HeapRegion* new_region_try_secondary_free_list(); 489 490 // Try to allocate a single non-humongous HeapRegion sufficient for 491 // an allocation of the given word_size. If do_expand is true, 492 // attempt to expand the heap if necessary to satisfy the allocation 493 // request. 494 HeapRegion* new_region(size_t word_size, bool do_expand); 495 496 // Attempt to satisfy a humongous allocation request of the given 497 // size by finding a contiguous set of free regions of num_regions 498 // length and remove them from the master free list. Return the 499 // index of the first region or G1_NULL_HRS_INDEX if the search 500 // was unsuccessful. 501 uint humongous_obj_allocate_find_first(uint num_regions, 502 size_t word_size); 503 504 // Initialize a contiguous set of free regions of length num_regions 505 // and starting at index first so that they appear as a single 506 // humongous region. 507 HeapWord* humongous_obj_allocate_initialize_regions(uint first, 508 uint num_regions, 509 size_t word_size); 510 511 // Attempt to allocate a humongous object of the given size. Return 512 // NULL if unsuccessful. 513 HeapWord* humongous_obj_allocate(size_t word_size); 514 515 // The following two methods, allocate_new_tlab() and 516 // mem_allocate(), are the two main entry points from the runtime 517 // into the G1's allocation routines. They have the following 518 // assumptions: 519 // 520 // * They should both be called outside safepoints. 521 // 522 // * They should both be called without holding the Heap_lock. 523 // 524 // * All allocation requests for new TLABs should go to 525 // allocate_new_tlab(). 526 // 527 // * All non-TLAB allocation requests should go to mem_allocate(). 528 // 529 // * If either call cannot satisfy the allocation request using the 530 // current allocating region, they will try to get a new one. If 531 // this fails, they will attempt to do an evacuation pause and 532 // retry the allocation. 533 // 534 // * If all allocation attempts fail, even after trying to schedule 535 // an evacuation pause, allocate_new_tlab() will return NULL, 536 // whereas mem_allocate() will attempt a heap expansion and/or 537 // schedule a Full GC. 538 // 539 // * We do not allow humongous-sized TLABs. So, allocate_new_tlab 540 // should never be called with word_size being humongous. All 541 // humongous allocation requests should go to mem_allocate() which 542 // will satisfy them with a special path. 543 544 virtual HeapWord* allocate_new_tlab(size_t word_size); 545 546 virtual HeapWord* mem_allocate(size_t word_size, 547 bool* gc_overhead_limit_was_exceeded); 548 549 // The following three methods take a gc_count_before_ret 550 // parameter which is used to return the GC count if the method 551 // returns NULL. Given that we are required to read the GC count 552 // while holding the Heap_lock, and these paths will take the 553 // Heap_lock at some point, it's easier to get them to read the GC 554 // count while holding the Heap_lock before they return NULL instead 555 // of the caller (namely: mem_allocate()) having to also take the 556 // Heap_lock just to read the GC count. 557 558 // First-level mutator allocation attempt: try to allocate out of 559 // the mutator alloc region without taking the Heap_lock. This 560 // should only be used for non-humongous allocations. 561 inline HeapWord* attempt_allocation(size_t word_size, 562 unsigned int* gc_count_before_ret); 563 564 // Second-level mutator allocation attempt: take the Heap_lock and 565 // retry the allocation attempt, potentially scheduling a GC 566 // pause. This should only be used for non-humongous allocations. 567 HeapWord* attempt_allocation_slow(size_t word_size, 568 unsigned int* gc_count_before_ret); 569 570 // Takes the Heap_lock and attempts a humongous allocation. It can 571 // potentially schedule a GC pause. 572 HeapWord* attempt_allocation_humongous(size_t word_size, 573 unsigned int* gc_count_before_ret); 574 575 // Allocation attempt that should be called during safepoints (e.g., 576 // at the end of a successful GC). expect_null_mutator_alloc_region 577 // specifies whether the mutator alloc region is expected to be NULL 578 // or not. 579 HeapWord* attempt_allocation_at_safepoint(size_t word_size, 580 bool expect_null_mutator_alloc_region); 581 582 // It dirties the cards that cover the block so that so that the post 583 // write barrier never queues anything when updating objects on this 584 // block. It is assumed (and in fact we assert) that the block 585 // belongs to a young region. 586 inline void dirty_young_block(HeapWord* start, size_t word_size); 587 588 // Allocate blocks during garbage collection. Will ensure an 589 // allocation region, either by picking one or expanding the 590 // heap, and then allocate a block of the given size. The block 591 // may not be a humongous - it must fit into a single heap region. 592 HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size); 593 594 HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose, 595 HeapRegion* alloc_region, 596 bool par, 597 size_t word_size); 598 599 // Ensure that no further allocations can happen in "r", bearing in mind 600 // that parallel threads might be attempting allocations. 601 void par_allocate_remaining_space(HeapRegion* r); 602 603 // Allocation attempt during GC for a survivor object / PLAB. 604 inline HeapWord* survivor_attempt_allocation(size_t word_size); 605 606 // Allocation attempt during GC for an old object / PLAB. 607 inline HeapWord* old_attempt_allocation(size_t word_size); 608 609 // These methods are the "callbacks" from the G1AllocRegion class. 610 611 // For mutator alloc regions. 612 HeapRegion* new_mutator_alloc_region(size_t word_size, bool force); 613 void retire_mutator_alloc_region(HeapRegion* alloc_region, 614 size_t allocated_bytes); 615 616 // For GC alloc regions. 617 HeapRegion* new_gc_alloc_region(size_t word_size, uint count, 618 GCAllocPurpose ap); 619 void retire_gc_alloc_region(HeapRegion* alloc_region, 620 size_t allocated_bytes, GCAllocPurpose ap); 621 622 // - if explicit_gc is true, the GC is for a System.gc() or a heap 623 // inspection request and should collect the entire heap 624 // - if clear_all_soft_refs is true, all soft references should be 625 // cleared during the GC 626 // - if explicit_gc is false, word_size describes the allocation that 627 // the GC should attempt (at least) to satisfy 628 // - it returns false if it is unable to do the collection due to the 629 // GC locker being active, true otherwise 630 bool do_collection(bool explicit_gc, 631 bool clear_all_soft_refs, 632 size_t word_size); 633 634 // Callback from VM_G1CollectFull operation. 635 // Perform a full collection. 636 virtual void do_full_collection(bool clear_all_soft_refs); 637 638 // Resize the heap if necessary after a full collection. If this is 639 // after a collect-for allocation, "word_size" is the allocation size, 640 // and will be considered part of the used portion of the heap. 641 void resize_if_necessary_after_full_collection(size_t word_size); 642 643 // Callback from VM_G1CollectForAllocation operation. 644 // This function does everything necessary/possible to satisfy a 645 // failed allocation request (including collection, expansion, etc.) 646 HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded); 647 648 // Attempting to expand the heap sufficiently 649 // to support an allocation of the given "word_size". If 650 // successful, perform the allocation and return the address of the 651 // allocated block, or else "NULL". 652 HeapWord* expand_and_allocate(size_t word_size); 653 654 // Process any reference objects discovered during 655 // an incremental evacuation pause. 656 void process_discovered_references(uint no_of_gc_workers); 657 658 // Enqueue any remaining discovered references 659 // after processing. 660 void enqueue_discovered_references(uint no_of_gc_workers); 661 662 public: 663 664 G1MonitoringSupport* g1mm() { 665 assert(_g1mm != NULL, "should have been initialized"); 666 return _g1mm; 667 } 668 669 // Expand the garbage-first heap by at least the given size (in bytes!). 670 // Returns true if the heap was expanded by the requested amount; 671 // false otherwise. 672 // (Rounds up to a HeapRegion boundary.) 673 bool expand(size_t expand_bytes); 674 675 // Do anything common to GC's. 676 virtual void gc_prologue(bool full); 677 virtual void gc_epilogue(bool full); 678 679 // We register a region with the fast "in collection set" test. We 680 // simply set to true the array slot corresponding to this region. 681 void register_region_with_in_cset_fast_test(HeapRegion* r) { 682 assert(_in_cset_fast_test_base != NULL, "sanity"); 683 assert(r->in_collection_set(), "invariant"); 684 uint index = r->hrs_index(); 685 assert(index < _in_cset_fast_test_length, "invariant"); 686 assert(!_in_cset_fast_test_base[index], "invariant"); 687 _in_cset_fast_test_base[index] = true; 688 } 689 690 // This is a fast test on whether a reference points into the 691 // collection set or not. It does not assume that the reference 692 // points into the heap; if it doesn't, it will return false. 693 bool in_cset_fast_test(oop obj) { 694 assert(_in_cset_fast_test != NULL, "sanity"); 695 if (_g1_committed.contains((HeapWord*) obj)) { 696 // no need to subtract the bottom of the heap from obj, 697 // _in_cset_fast_test is biased 698 uintx index = (uintx) obj >> HeapRegion::LogOfHRGrainBytes; 699 bool ret = _in_cset_fast_test[index]; 700 // let's make sure the result is consistent with what the slower 701 // test returns 702 assert( ret || !obj_in_cs(obj), "sanity"); 703 assert(!ret || obj_in_cs(obj), "sanity"); 704 return ret; 705 } else { 706 return false; 707 } 708 } 709 710 void clear_cset_fast_test() { 711 assert(_in_cset_fast_test_base != NULL, "sanity"); 712 memset(_in_cset_fast_test_base, false, 713 (size_t) _in_cset_fast_test_length * sizeof(bool)); 714 } 715 716 // This is called at the start of either a concurrent cycle or a Full 717 // GC to update the number of old marking cycles started. 718 void increment_old_marking_cycles_started(); 719 720 // This is called at the end of either a concurrent cycle or a Full 721 // GC to update the number of old marking cycles completed. Those two 722 // can happen in a nested fashion, i.e., we start a concurrent 723 // cycle, a Full GC happens half-way through it which ends first, 724 // and then the cycle notices that a Full GC happened and ends 725 // too. The concurrent parameter is a boolean to help us do a bit 726 // tighter consistency checking in the method. If concurrent is 727 // false, the caller is the inner caller in the nesting (i.e., the 728 // Full GC). If concurrent is true, the caller is the outer caller 729 // in this nesting (i.e., the concurrent cycle). Further nesting is 730 // not currently supported. The end of this call also notifies 731 // the FullGCCount_lock in case a Java thread is waiting for a full 732 // GC to happen (e.g., it called System.gc() with 733 // +ExplicitGCInvokesConcurrent). 734 void increment_old_marking_cycles_completed(bool concurrent); 735 736 unsigned int old_marking_cycles_completed() { 737 return _old_marking_cycles_completed; 738 } 739 740 G1HRPrinter* hr_printer() { return &_hr_printer; } 741 742 protected: 743 744 // Shrink the garbage-first heap by at most the given size (in bytes!). 745 // (Rounds down to a HeapRegion boundary.) 746 virtual void shrink(size_t expand_bytes); 747 void shrink_helper(size_t expand_bytes); 748 749 #if TASKQUEUE_STATS 750 static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty); 751 void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const; 752 void reset_taskqueue_stats(); 753 #endif // TASKQUEUE_STATS 754 755 // Schedule the VM operation that will do an evacuation pause to 756 // satisfy an allocation request of word_size. *succeeded will 757 // return whether the VM operation was successful (it did do an 758 // evacuation pause) or not (another thread beat us to it or the GC 759 // locker was active). Given that we should not be holding the 760 // Heap_lock when we enter this method, we will pass the 761 // gc_count_before (i.e., total_collections()) as a parameter since 762 // it has to be read while holding the Heap_lock. Currently, both 763 // methods that call do_collection_pause() release the Heap_lock 764 // before the call, so it's easy to read gc_count_before just before. 765 HeapWord* do_collection_pause(size_t word_size, 766 unsigned int gc_count_before, 767 bool* succeeded); 768 769 // The guts of the incremental collection pause, executed by the vm 770 // thread. It returns false if it is unable to do the collection due 771 // to the GC locker being active, true otherwise 772 bool do_collection_pause_at_safepoint(double target_pause_time_ms); 773 774 // Actually do the work of evacuating the collection set. 775 void evacuate_collection_set(); 776 777 // The g1 remembered set of the heap. 778 G1RemSet* _g1_rem_set; 779 // And it's mod ref barrier set, used to track updates for the above. 780 ModRefBarrierSet* _mr_bs; 781 782 // A set of cards that cover the objects for which the Rsets should be updated 783 // concurrently after the collection. 784 DirtyCardQueueSet _dirty_card_queue_set; 785 786 // The Heap Region Rem Set Iterator. 787 HeapRegionRemSetIterator** _rem_set_iterator; 788 789 // The closure used to refine a single card. 790 RefineCardTableEntryClosure* _refine_cte_cl; 791 792 // A function to check the consistency of dirty card logs. 793 void check_ct_logs_at_safepoint(); 794 795 // A DirtyCardQueueSet that is used to hold cards that contain 796 // references into the current collection set. This is used to 797 // update the remembered sets of the regions in the collection 798 // set in the event of an evacuation failure. 799 DirtyCardQueueSet _into_cset_dirty_card_queue_set; 800 801 // After a collection pause, make the regions in the CS into free 802 // regions. 803 void free_collection_set(HeapRegion* cs_head); 804 805 // Abandon the current collection set without recording policy 806 // statistics or updating free lists. 807 void abandon_collection_set(HeapRegion* cs_head); 808 809 // Applies "scan_non_heap_roots" to roots outside the heap, 810 // "scan_rs" to roots inside the heap (having done "set_region" to 811 // indicate the region in which the root resides), 812 // and does "scan_metadata" If "scan_rs" is 813 // NULL, then this step is skipped. The "worker_i" 814 // param is for use with parallel roots processing, and should be 815 // the "i" of the calling parallel worker thread's work(i) function. 816 // In the sequential case this param will be ignored. 817 void g1_process_strong_roots(bool is_scavenging, 818 ScanningOption so, 819 OopClosure* scan_non_heap_roots, 820 OopsInHeapRegionClosure* scan_rs, 821 G1KlassScanClosure* scan_klasses, 822 int worker_i); 823 824 // Apply "blk" to all the weak roots of the system. These include 825 // JNI weak roots, the code cache, system dictionary, symbol table, 826 // string table, and referents of reachable weak refs. 827 void g1_process_weak_roots(OopClosure* root_closure, 828 OopClosure* non_root_closure); 829 830 // Frees a non-humongous region by initializing its contents and 831 // adding it to the free list that's passed as a parameter (this is 832 // usually a local list which will be appended to the master free 833 // list later). The used bytes of freed regions are accumulated in 834 // pre_used. If par is true, the region's RSet will not be freed 835 // up. The assumption is that this will be done later. 836 void free_region(HeapRegion* hr, 837 size_t* pre_used, 838 FreeRegionList* free_list, 839 bool par); 840 841 // Frees a humongous region by collapsing it into individual regions 842 // and calling free_region() for each of them. The freed regions 843 // will be added to the free list that's passed as a parameter (this 844 // is usually a local list which will be appended to the master free 845 // list later). The used bytes of freed regions are accumulated in 846 // pre_used. If par is true, the region's RSet will not be freed 847 // up. The assumption is that this will be done later. 848 void free_humongous_region(HeapRegion* hr, 849 size_t* pre_used, 850 FreeRegionList* free_list, 851 HumongousRegionSet* humongous_proxy_set, 852 bool par); 853 854 // Notifies all the necessary spaces that the committed space has 855 // been updated (either expanded or shrunk). It should be called 856 // after _g1_storage is updated. 857 void update_committed_space(HeapWord* old_end, HeapWord* new_end); 858 859 // The concurrent marker (and the thread it runs in.) 860 ConcurrentMark* _cm; 861 ConcurrentMarkThread* _cmThread; 862 bool _mark_in_progress; 863 864 // The concurrent refiner. 865 ConcurrentG1Refine* _cg1r; 866 867 // The parallel task queues 868 RefToScanQueueSet *_task_queues; 869 870 // True iff a evacuation has failed in the current collection. 871 bool _evacuation_failed; 872 873 // Set the attribute indicating whether evacuation has failed in the 874 // current collection. 875 void set_evacuation_failed(bool b) { _evacuation_failed = b; } 876 877 // Failed evacuations cause some logical from-space objects to have 878 // forwarding pointers to themselves. Reset them. 879 void remove_self_forwarding_pointers(); 880 881 // Objects with a preserved mark, and its mark value. 882 G1PreserveMarkQueue _preserved_marks; 883 884 // Preserve the mark of "obj", if necessary, in preparation for its mark 885 // word being overwritten with a self-forwarding-pointer. 886 void preserve_mark_if_necessary(oop obj, markOop m); 887 888 // The stack of evac-failure objects left to be scanned. 889 GrowableArray<oop>* _evac_failure_scan_stack; 890 // The closure to apply to evac-failure objects. 891 892 OopsInHeapRegionClosure* _evac_failure_closure; 893 // Set the field above. 894 void 895 set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) { 896 _evac_failure_closure = evac_failure_closure; 897 } 898 899 // Push "obj" on the scan stack. 900 void push_on_evac_failure_scan_stack(oop obj); 901 // Process scan stack entries until the stack is empty. 902 void drain_evac_failure_scan_stack(); 903 // True iff an invocation of "drain_scan_stack" is in progress; to 904 // prevent unnecessary recursion. 905 bool _drain_in_progress; 906 907 // Do any necessary initialization for evacuation-failure handling. 908 // "cl" is the closure that will be used to process evac-failure 909 // objects. 910 void init_for_evac_failure(OopsInHeapRegionClosure* cl); 911 // Do any necessary cleanup for evacuation-failure handling data 912 // structures. 913 void finalize_for_evac_failure(); 914 915 // An attempt to evacuate "obj" has failed; take necessary steps. 916 oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj); 917 void handle_evacuation_failure_common(oop obj, markOop m); 918 919 #ifndef PRODUCT 920 // Support for forcing evacuation failures. Analogous to 921 // PromotionFailureALot for the other collectors. 922 923 // Records whether G1EvacuationFailureALot should be in effect 924 // for the current GC 925 bool _evacuation_failure_alot_for_current_gc; 926 927 // Used to record the GC number for interval checking when 928 // determining whether G1EvaucationFailureALot is in effect 929 // for the current GC. 930 size_t _evacuation_failure_alot_gc_number; 931 932 // Count of the number of evacuations between failures. 933 volatile size_t _evacuation_failure_alot_count; 934 935 // Set whether G1EvacuationFailureALot should be in effect 936 // for the current GC (based upon the type of GC and which 937 // command line flags are set); 938 inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young, 939 bool during_initial_mark, 940 bool during_marking); 941 942 inline void set_evacuation_failure_alot_for_current_gc(); 943 944 // Return true if it's time to cause an evacuation failure. 945 inline bool evacuation_should_fail(); 946 947 // Reset the G1EvacuationFailureALot counters. Should be called at 948 // the end of an evacuation pause in which an evacuation failure ocurred. 949 inline void reset_evacuation_should_fail(); 950 #endif // !PRODUCT 951 952 // ("Weak") Reference processing support. 953 // 954 // G1 has 2 instances of the referece processor class. One 955 // (_ref_processor_cm) handles reference object discovery 956 // and subsequent processing during concurrent marking cycles. 957 // 958 // The other (_ref_processor_stw) handles reference object 959 // discovery and processing during full GCs and incremental 960 // evacuation pauses. 961 // 962 // During an incremental pause, reference discovery will be 963 // temporarily disabled for _ref_processor_cm and will be 964 // enabled for _ref_processor_stw. At the end of the evacuation 965 // pause references discovered by _ref_processor_stw will be 966 // processed and discovery will be disabled. The previous 967 // setting for reference object discovery for _ref_processor_cm 968 // will be re-instated. 969 // 970 // At the start of marking: 971 // * Discovery by the CM ref processor is verified to be inactive 972 // and it's discovered lists are empty. 973 // * Discovery by the CM ref processor is then enabled. 974 // 975 // At the end of marking: 976 // * Any references on the CM ref processor's discovered 977 // lists are processed (possibly MT). 978 // 979 // At the start of full GC we: 980 // * Disable discovery by the CM ref processor and 981 // empty CM ref processor's discovered lists 982 // (without processing any entries). 983 // * Verify that the STW ref processor is inactive and it's 984 // discovered lists are empty. 985 // * Temporarily set STW ref processor discovery as single threaded. 986 // * Temporarily clear the STW ref processor's _is_alive_non_header 987 // field. 988 // * Finally enable discovery by the STW ref processor. 989 // 990 // The STW ref processor is used to record any discovered 991 // references during the full GC. 992 // 993 // At the end of a full GC we: 994 // * Enqueue any reference objects discovered by the STW ref processor 995 // that have non-live referents. This has the side-effect of 996 // making the STW ref processor inactive by disabling discovery. 997 // * Verify that the CM ref processor is still inactive 998 // and no references have been placed on it's discovered 999 // lists (also checked as a precondition during initial marking). 1000 1001 // The (stw) reference processor... 1002 ReferenceProcessor* _ref_processor_stw; 1003 1004 // During reference object discovery, the _is_alive_non_header 1005 // closure (if non-null) is applied to the referent object to 1006 // determine whether the referent is live. If so then the 1007 // reference object does not need to be 'discovered' and can 1008 // be treated as a regular oop. This has the benefit of reducing 1009 // the number of 'discovered' reference objects that need to 1010 // be processed. 1011 // 1012 // Instance of the is_alive closure for embedding into the 1013 // STW reference processor as the _is_alive_non_header field. 1014 // Supplying a value for the _is_alive_non_header field is 1015 // optional but doing so prevents unnecessary additions to 1016 // the discovered lists during reference discovery. 1017 G1STWIsAliveClosure _is_alive_closure_stw; 1018 1019 // The (concurrent marking) reference processor... 1020 ReferenceProcessor* _ref_processor_cm; 1021 1022 // Instance of the concurrent mark is_alive closure for embedding 1023 // into the Concurrent Marking reference processor as the 1024 // _is_alive_non_header field. Supplying a value for the 1025 // _is_alive_non_header field is optional but doing so prevents 1026 // unnecessary additions to the discovered lists during reference 1027 // discovery. 1028 G1CMIsAliveClosure _is_alive_closure_cm; 1029 1030 // Cache used by G1CollectedHeap::start_cset_region_for_worker(). 1031 HeapRegion** _worker_cset_start_region; 1032 1033 // Time stamp to validate the regions recorded in the cache 1034 // used by G1CollectedHeap::start_cset_region_for_worker(). 1035 // The heap region entry for a given worker is valid iff 1036 // the associated time stamp value matches the current value 1037 // of G1CollectedHeap::_gc_time_stamp. 1038 unsigned int* _worker_cset_start_region_time_stamp; 1039 1040 enum G1H_process_strong_roots_tasks { 1041 G1H_PS_filter_satb_buffers, 1042 G1H_PS_refProcessor_oops_do, 1043 // Leave this one last. 1044 G1H_PS_NumElements 1045 }; 1046 1047 SubTasksDone* _process_strong_tasks; 1048 1049 volatile bool _free_regions_coming; 1050 1051 public: 1052 1053 SubTasksDone* process_strong_tasks() { return _process_strong_tasks; } 1054 1055 void set_refine_cte_cl_concurrency(bool concurrent); 1056 1057 RefToScanQueue *task_queue(int i) const; 1058 1059 // A set of cards where updates happened during the GC 1060 DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; } 1061 1062 // A DirtyCardQueueSet that is used to hold cards that contain 1063 // references into the current collection set. This is used to 1064 // update the remembered sets of the regions in the collection 1065 // set in the event of an evacuation failure. 1066 DirtyCardQueueSet& into_cset_dirty_card_queue_set() 1067 { return _into_cset_dirty_card_queue_set; } 1068 1069 // Create a G1CollectedHeap with the specified policy. 1070 // Must call the initialize method afterwards. 1071 // May not return if something goes wrong. 1072 G1CollectedHeap(G1CollectorPolicy* policy); 1073 1074 // Initialize the G1CollectedHeap to have the initial and 1075 // maximum sizes and remembered and barrier sets 1076 // specified by the policy object. 1077 jint initialize(); 1078 1079 // Initialize weak reference processing. 1080 virtual void ref_processing_init(); 1081 1082 void set_par_threads(uint t) { 1083 SharedHeap::set_par_threads(t); 1084 // Done in SharedHeap but oddly there are 1085 // two _process_strong_tasks's in a G1CollectedHeap 1086 // so do it here too. 1087 _process_strong_tasks->set_n_threads(t); 1088 } 1089 1090 // Set _n_par_threads according to a policy TBD. 1091 void set_par_threads(); 1092 1093 void set_n_termination(int t) { 1094 _process_strong_tasks->set_n_threads(t); 1095 } 1096 1097 virtual CollectedHeap::Name kind() const { 1098 return CollectedHeap::G1CollectedHeap; 1099 } 1100 1101 // The current policy object for the collector. 1102 G1CollectorPolicy* g1_policy() const { return _g1_policy; } 1103 1104 virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); } 1105 1106 // Adaptive size policy. No such thing for g1. 1107 virtual AdaptiveSizePolicy* size_policy() { return NULL; } 1108 1109 // The rem set and barrier set. 1110 G1RemSet* g1_rem_set() const { return _g1_rem_set; } 1111 ModRefBarrierSet* mr_bs() const { return _mr_bs; } 1112 1113 // The rem set iterator. 1114 HeapRegionRemSetIterator* rem_set_iterator(int i) { 1115 return _rem_set_iterator[i]; 1116 } 1117 1118 HeapRegionRemSetIterator* rem_set_iterator() { 1119 return _rem_set_iterator[0]; 1120 } 1121 1122 unsigned get_gc_time_stamp() { 1123 return _gc_time_stamp; 1124 } 1125 1126 void reset_gc_time_stamp() { 1127 _gc_time_stamp = 0; 1128 OrderAccess::fence(); 1129 // Clear the cached CSet starting regions and time stamps. 1130 // Their validity is dependent on the GC timestamp. 1131 clear_cset_start_regions(); 1132 } 1133 1134 void check_gc_time_stamps() PRODUCT_RETURN; 1135 1136 void increment_gc_time_stamp() { 1137 ++_gc_time_stamp; 1138 OrderAccess::fence(); 1139 } 1140 1141 // Reset the given region's GC timestamp. If it's starts humongous, 1142 // also reset the GC timestamp of its corresponding 1143 // continues humongous regions too. 1144 void reset_gc_time_stamps(HeapRegion* hr); 1145 1146 void iterate_dirty_card_closure(CardTableEntryClosure* cl, 1147 DirtyCardQueue* into_cset_dcq, 1148 bool concurrent, int worker_i); 1149 1150 // The shared block offset table array. 1151 G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; } 1152 1153 // Reference Processing accessors 1154 1155 // The STW reference processor.... 1156 ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; } 1157 1158 // The Concurent Marking reference processor... 1159 ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; } 1160 1161 virtual size_t capacity() const; 1162 virtual size_t used() const; 1163 // This should be called when we're not holding the heap lock. The 1164 // result might be a bit inaccurate. 1165 size_t used_unlocked() const; 1166 size_t recalculate_used() const; 1167 1168 // These virtual functions do the actual allocation. 1169 // Some heaps may offer a contiguous region for shared non-blocking 1170 // allocation, via inlined code (by exporting the address of the top and 1171 // end fields defining the extent of the contiguous allocation region.) 1172 // But G1CollectedHeap doesn't yet support this. 1173 1174 // Return an estimate of the maximum allocation that could be performed 1175 // without triggering any collection or expansion activity. In a 1176 // generational collector, for example, this is probably the largest 1177 // allocation that could be supported (without expansion) in the youngest 1178 // generation. It is "unsafe" because no locks are taken; the result 1179 // should be treated as an approximation, not a guarantee, for use in 1180 // heuristic resizing decisions. 1181 virtual size_t unsafe_max_alloc(); 1182 1183 virtual bool is_maximal_no_gc() const { 1184 return _g1_storage.uncommitted_size() == 0; 1185 } 1186 1187 // The total number of regions in the heap. 1188 uint n_regions() { return _hrs.length(); } 1189 1190 // The max number of regions in the heap. 1191 uint max_regions() { return _hrs.max_length(); } 1192 1193 // The number of regions that are completely free. 1194 uint free_regions() { return _free_list.length(); } 1195 1196 // The number of regions that are not completely free. 1197 uint used_regions() { return n_regions() - free_regions(); } 1198 1199 // The number of regions available for "regular" expansion. 1200 uint expansion_regions() { return _expansion_regions; } 1201 1202 // Factory method for HeapRegion instances. It will return NULL if 1203 // the allocation fails. 1204 HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom); 1205 1206 void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN; 1207 void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN; 1208 void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN; 1209 void verify_dirty_young_regions() PRODUCT_RETURN; 1210 1211 // verify_region_sets() performs verification over the region 1212 // lists. It will be compiled in the product code to be used when 1213 // necessary (i.e., during heap verification). 1214 void verify_region_sets(); 1215 1216 // verify_region_sets_optional() is planted in the code for 1217 // list verification in non-product builds (and it can be enabled in 1218 // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1). 1219 #if HEAP_REGION_SET_FORCE_VERIFY 1220 void verify_region_sets_optional() { 1221 verify_region_sets(); 1222 } 1223 #else // HEAP_REGION_SET_FORCE_VERIFY 1224 void verify_region_sets_optional() { } 1225 #endif // HEAP_REGION_SET_FORCE_VERIFY 1226 1227 #ifdef ASSERT 1228 bool is_on_master_free_list(HeapRegion* hr) { 1229 return hr->containing_set() == &_free_list; 1230 } 1231 1232 bool is_in_humongous_set(HeapRegion* hr) { 1233 return hr->containing_set() == &_humongous_set; 1234 } 1235 #endif // ASSERT 1236 1237 // Wrapper for the region list operations that can be called from 1238 // methods outside this class. 1239 1240 void secondary_free_list_add_as_tail(FreeRegionList* list) { 1241 _secondary_free_list.add_as_tail(list); 1242 } 1243 1244 void append_secondary_free_list() { 1245 _free_list.add_as_head(&_secondary_free_list); 1246 } 1247 1248 void append_secondary_free_list_if_not_empty_with_lock() { 1249 // If the secondary free list looks empty there's no reason to 1250 // take the lock and then try to append it. 1251 if (!_secondary_free_list.is_empty()) { 1252 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 1253 append_secondary_free_list(); 1254 } 1255 } 1256 1257 void old_set_remove(HeapRegion* hr) { 1258 _old_set.remove(hr); 1259 } 1260 1261 size_t non_young_capacity_bytes() { 1262 return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes(); 1263 } 1264 1265 void set_free_regions_coming(); 1266 void reset_free_regions_coming(); 1267 bool free_regions_coming() { return _free_regions_coming; } 1268 void wait_while_free_regions_coming(); 1269 1270 // Determine whether the given region is one that we are using as an 1271 // old GC alloc region. 1272 bool is_old_gc_alloc_region(HeapRegion* hr) { 1273 return hr == _retained_old_gc_alloc_region; 1274 } 1275 1276 // Perform a collection of the heap; intended for use in implementing 1277 // "System.gc". This probably implies as full a collection as the 1278 // "CollectedHeap" supports. 1279 virtual void collect(GCCause::Cause cause); 1280 1281 // The same as above but assume that the caller holds the Heap_lock. 1282 void collect_locked(GCCause::Cause cause); 1283 1284 // True iff a evacuation has failed in the most-recent collection. 1285 bool evacuation_failed() { return _evacuation_failed; } 1286 1287 // It will free a region if it has allocated objects in it that are 1288 // all dead. It calls either free_region() or 1289 // free_humongous_region() depending on the type of the region that 1290 // is passed to it. 1291 void free_region_if_empty(HeapRegion* hr, 1292 size_t* pre_used, 1293 FreeRegionList* free_list, 1294 OldRegionSet* old_proxy_set, 1295 HumongousRegionSet* humongous_proxy_set, 1296 HRRSCleanupTask* hrrs_cleanup_task, 1297 bool par); 1298 1299 // It appends the free list to the master free list and updates the 1300 // master humongous list according to the contents of the proxy 1301 // list. It also adjusts the total used bytes according to pre_used 1302 // (if par is true, it will do so by taking the ParGCRareEvent_lock). 1303 void update_sets_after_freeing_regions(size_t pre_used, 1304 FreeRegionList* free_list, 1305 OldRegionSet* old_proxy_set, 1306 HumongousRegionSet* humongous_proxy_set, 1307 bool par); 1308 1309 // Returns "TRUE" iff "p" points into the committed areas of the heap. 1310 virtual bool is_in(const void* p) const; 1311 1312 // Return "TRUE" iff the given object address is within the collection 1313 // set. 1314 inline bool obj_in_cs(oop obj); 1315 1316 // Return "TRUE" iff the given object address is in the reserved 1317 // region of g1. 1318 bool is_in_g1_reserved(const void* p) const { 1319 return _g1_reserved.contains(p); 1320 } 1321 1322 // Returns a MemRegion that corresponds to the space that has been 1323 // reserved for the heap 1324 MemRegion g1_reserved() { 1325 return _g1_reserved; 1326 } 1327 1328 // Returns a MemRegion that corresponds to the space that has been 1329 // committed in the heap 1330 MemRegion g1_committed() { 1331 return _g1_committed; 1332 } 1333 1334 virtual bool is_in_closed_subset(const void* p) const; 1335 1336 // This resets the card table to all zeros. It is used after 1337 // a collection pause which used the card table to claim cards. 1338 void cleanUpCardTable(); 1339 1340 // Iteration functions. 1341 1342 // Iterate over all the ref-containing fields of all objects, calling 1343 // "cl.do_oop" on each. 1344 virtual void oop_iterate(ExtendedOopClosure* cl); 1345 1346 // Same as above, restricted to a memory region. 1347 void oop_iterate(MemRegion mr, ExtendedOopClosure* cl); 1348 1349 // Iterate over all objects, calling "cl.do_object" on each. 1350 virtual void object_iterate(ObjectClosure* cl); 1351 1352 virtual void safe_object_iterate(ObjectClosure* cl) { 1353 object_iterate(cl); 1354 } 1355 1356 // Iterate over all objects allocated since the last collection, calling 1357 // "cl.do_object" on each. The heap must have been initialized properly 1358 // to support this function, or else this call will fail. 1359 virtual void object_iterate_since_last_GC(ObjectClosure* cl); 1360 1361 // Iterate over all spaces in use in the heap, in ascending address order. 1362 virtual void space_iterate(SpaceClosure* cl); 1363 1364 // Iterate over heap regions, in address order, terminating the 1365 // iteration early if the "doHeapRegion" method returns "true". 1366 void heap_region_iterate(HeapRegionClosure* blk) const; 1367 1368 // Return the region with the given index. It assumes the index is valid. 1369 HeapRegion* region_at(uint index) const { return _hrs.at(index); } 1370 1371 // Divide the heap region sequence into "chunks" of some size (the number 1372 // of regions divided by the number of parallel threads times some 1373 // overpartition factor, currently 4). Assumes that this will be called 1374 // in parallel by ParallelGCThreads worker threads with discinct worker 1375 // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel 1376 // calls will use the same "claim_value", and that that claim value is 1377 // different from the claim_value of any heap region before the start of 1378 // the iteration. Applies "blk->doHeapRegion" to each of the regions, by 1379 // attempting to claim the first region in each chunk, and, if 1380 // successful, applying the closure to each region in the chunk (and 1381 // setting the claim value of the second and subsequent regions of the 1382 // chunk.) For now requires that "doHeapRegion" always returns "false", 1383 // i.e., that a closure never attempt to abort a traversal. 1384 void heap_region_par_iterate_chunked(HeapRegionClosure* blk, 1385 uint worker, 1386 uint no_of_par_workers, 1387 jint claim_value); 1388 1389 // It resets all the region claim values to the default. 1390 void reset_heap_region_claim_values(); 1391 1392 // Resets the claim values of regions in the current 1393 // collection set to the default. 1394 void reset_cset_heap_region_claim_values(); 1395 1396 #ifdef ASSERT 1397 bool check_heap_region_claim_values(jint claim_value); 1398 1399 // Same as the routine above but only checks regions in the 1400 // current collection set. 1401 bool check_cset_heap_region_claim_values(jint claim_value); 1402 #endif // ASSERT 1403 1404 // Clear the cached cset start regions and (more importantly) 1405 // the time stamps. Called when we reset the GC time stamp. 1406 void clear_cset_start_regions(); 1407 1408 // Given the id of a worker, obtain or calculate a suitable 1409 // starting region for iterating over the current collection set. 1410 HeapRegion* start_cset_region_for_worker(int worker_i); 1411 1412 // This is a convenience method that is used by the 1413 // HeapRegionIterator classes to calculate the starting region for 1414 // each worker so that they do not all start from the same region. 1415 HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers); 1416 1417 // Iterate over the regions (if any) in the current collection set. 1418 void collection_set_iterate(HeapRegionClosure* blk); 1419 1420 // As above but starting from region r 1421 void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk); 1422 1423 // Returns the first (lowest address) compactible space in the heap. 1424 virtual CompactibleSpace* first_compactible_space(); 1425 1426 // A CollectedHeap will contain some number of spaces. This finds the 1427 // space containing a given address, or else returns NULL. 1428 virtual Space* space_containing(const void* addr) const; 1429 1430 // A G1CollectedHeap will contain some number of heap regions. This 1431 // finds the region containing a given address, or else returns NULL. 1432 template <class T> 1433 inline HeapRegion* heap_region_containing(const T addr) const; 1434 1435 // Like the above, but requires "addr" to be in the heap (to avoid a 1436 // null-check), and unlike the above, may return an continuing humongous 1437 // region. 1438 template <class T> 1439 inline HeapRegion* heap_region_containing_raw(const T addr) const; 1440 1441 // A CollectedHeap is divided into a dense sequence of "blocks"; that is, 1442 // each address in the (reserved) heap is a member of exactly 1443 // one block. The defining characteristic of a block is that it is 1444 // possible to find its size, and thus to progress forward to the next 1445 // block. (Blocks may be of different sizes.) Thus, blocks may 1446 // represent Java objects, or they might be free blocks in a 1447 // free-list-based heap (or subheap), as long as the two kinds are 1448 // distinguishable and the size of each is determinable. 1449 1450 // Returns the address of the start of the "block" that contains the 1451 // address "addr". We say "blocks" instead of "object" since some heaps 1452 // may not pack objects densely; a chunk may either be an object or a 1453 // non-object. 1454 virtual HeapWord* block_start(const void* addr) const; 1455 1456 // Requires "addr" to be the start of a chunk, and returns its size. 1457 // "addr + size" is required to be the start of a new chunk, or the end 1458 // of the active area of the heap. 1459 virtual size_t block_size(const HeapWord* addr) const; 1460 1461 // Requires "addr" to be the start of a block, and returns "TRUE" iff 1462 // the block is an object. 1463 virtual bool block_is_obj(const HeapWord* addr) const; 1464 1465 // Does this heap support heap inspection? (+PrintClassHistogram) 1466 virtual bool supports_heap_inspection() const { return true; } 1467 1468 // Section on thread-local allocation buffers (TLABs) 1469 // See CollectedHeap for semantics. 1470 1471 virtual bool supports_tlab_allocation() const; 1472 virtual size_t tlab_capacity(Thread* thr) const; 1473 virtual size_t unsafe_max_tlab_alloc(Thread* thr) const; 1474 1475 // Can a compiler initialize a new object without store barriers? 1476 // This permission only extends from the creation of a new object 1477 // via a TLAB up to the first subsequent safepoint. If such permission 1478 // is granted for this heap type, the compiler promises to call 1479 // defer_store_barrier() below on any slow path allocation of 1480 // a new object for which such initializing store barriers will 1481 // have been elided. G1, like CMS, allows this, but should be 1482 // ready to provide a compensating write barrier as necessary 1483 // if that storage came out of a non-young region. The efficiency 1484 // of this implementation depends crucially on being able to 1485 // answer very efficiently in constant time whether a piece of 1486 // storage in the heap comes from a young region or not. 1487 // See ReduceInitialCardMarks. 1488 virtual bool can_elide_tlab_store_barriers() const { 1489 return true; 1490 } 1491 1492 virtual bool card_mark_must_follow_store() const { 1493 return true; 1494 } 1495 1496 bool is_in_young(const oop obj) { 1497 HeapRegion* hr = heap_region_containing(obj); 1498 return hr != NULL && hr->is_young(); 1499 } 1500 1501 #ifdef ASSERT 1502 virtual bool is_in_partial_collection(const void* p); 1503 #endif 1504 1505 virtual bool is_scavengable(const void* addr); 1506 1507 // We don't need barriers for initializing stores to objects 1508 // in the young gen: for the SATB pre-barrier, there is no 1509 // pre-value that needs to be remembered; for the remembered-set 1510 // update logging post-barrier, we don't maintain remembered set 1511 // information for young gen objects. 1512 virtual bool can_elide_initializing_store_barrier(oop new_obj) { 1513 return is_in_young(new_obj); 1514 } 1515 1516 // Returns "true" iff the given word_size is "very large". 1517 static bool isHumongous(size_t word_size) { 1518 // Note this has to be strictly greater-than as the TLABs 1519 // are capped at the humongous thresold and we want to 1520 // ensure that we don't try to allocate a TLAB as 1521 // humongous and that we don't allocate a humongous 1522 // object in a TLAB. 1523 return word_size > _humongous_object_threshold_in_words; 1524 } 1525 1526 // Update mod union table with the set of dirty cards. 1527 void updateModUnion(); 1528 1529 // Set the mod union bits corresponding to the given memRegion. Note 1530 // that this is always a safe operation, since it doesn't clear any 1531 // bits. 1532 void markModUnionRange(MemRegion mr); 1533 1534 // Records the fact that a marking phase is no longer in progress. 1535 void set_marking_complete() { 1536 _mark_in_progress = false; 1537 } 1538 void set_marking_started() { 1539 _mark_in_progress = true; 1540 } 1541 bool mark_in_progress() { 1542 return _mark_in_progress; 1543 } 1544 1545 // Print the maximum heap capacity. 1546 virtual size_t max_capacity() const; 1547 1548 virtual jlong millis_since_last_gc(); 1549 1550 // Perform any cleanup actions necessary before allowing a verification. 1551 virtual void prepare_for_verify(); 1552 1553 // Perform verification. 1554 1555 // vo == UsePrevMarking -> use "prev" marking information, 1556 // vo == UseNextMarking -> use "next" marking information 1557 // vo == UseMarkWord -> use the mark word in the object header 1558 // 1559 // NOTE: Only the "prev" marking information is guaranteed to be 1560 // consistent most of the time, so most calls to this should use 1561 // vo == UsePrevMarking. 1562 // Currently, there is only one case where this is called with 1563 // vo == UseNextMarking, which is to verify the "next" marking 1564 // information at the end of remark. 1565 // Currently there is only one place where this is called with 1566 // vo == UseMarkWord, which is to verify the marking during a 1567 // full GC. 1568 void verify(bool silent, VerifyOption vo); 1569 1570 // Override; it uses the "prev" marking information 1571 virtual void verify(bool silent); 1572 virtual void print_on(outputStream* st) const; 1573 virtual void print_extended_on(outputStream* st) const; 1574 1575 virtual void print_gc_threads_on(outputStream* st) const; 1576 virtual void gc_threads_do(ThreadClosure* tc) const; 1577 1578 // Override 1579 void print_tracing_info() const; 1580 1581 // The following two methods are helpful for debugging RSet issues. 1582 void print_cset_rsets() PRODUCT_RETURN; 1583 void print_all_rsets() PRODUCT_RETURN; 1584 1585 // Convenience function to be used in situations where the heap type can be 1586 // asserted to be this type. 1587 static G1CollectedHeap* heap(); 1588 1589 void set_region_short_lived_locked(HeapRegion* hr); 1590 // add appropriate methods for any other surv rate groups 1591 1592 YoungList* young_list() { return _young_list; } 1593 1594 // debugging 1595 bool check_young_list_well_formed() { 1596 return _young_list->check_list_well_formed(); 1597 } 1598 1599 bool check_young_list_empty(bool check_heap, 1600 bool check_sample = true); 1601 1602 // *** Stuff related to concurrent marking. It's not clear to me that so 1603 // many of these need to be public. 1604 1605 // The functions below are helper functions that a subclass of 1606 // "CollectedHeap" can use in the implementation of its virtual 1607 // functions. 1608 // This performs a concurrent marking of the live objects in a 1609 // bitmap off to the side. 1610 void doConcurrentMark(); 1611 1612 bool isMarkedPrev(oop obj) const; 1613 bool isMarkedNext(oop obj) const; 1614 1615 // Determine if an object is dead, given the object and also 1616 // the region to which the object belongs. An object is dead 1617 // iff a) it was not allocated since the last mark and b) it 1618 // is not marked. 1619 1620 bool is_obj_dead(const oop obj, const HeapRegion* hr) const { 1621 return 1622 !hr->obj_allocated_since_prev_marking(obj) && 1623 !isMarkedPrev(obj); 1624 } 1625 1626 // This function returns true when an object has been 1627 // around since the previous marking and hasn't yet 1628 // been marked during this marking. 1629 1630 bool is_obj_ill(const oop obj, const HeapRegion* hr) const { 1631 return 1632 !hr->obj_allocated_since_next_marking(obj) && 1633 !isMarkedNext(obj); 1634 } 1635 1636 // Determine if an object is dead, given only the object itself. 1637 // This will find the region to which the object belongs and 1638 // then call the region version of the same function. 1639 1640 // Added if it is NULL it isn't dead. 1641 1642 bool is_obj_dead(const oop obj) const { 1643 const HeapRegion* hr = heap_region_containing(obj); 1644 if (hr == NULL) { 1645 if (obj == NULL) return false; 1646 else return true; 1647 } 1648 else return is_obj_dead(obj, hr); 1649 } 1650 1651 bool is_obj_ill(const oop obj) const { 1652 const HeapRegion* hr = heap_region_containing(obj); 1653 if (hr == NULL) { 1654 if (obj == NULL) return false; 1655 else return true; 1656 } 1657 else return is_obj_ill(obj, hr); 1658 } 1659 1660 // The methods below are here for convenience and dispatch the 1661 // appropriate method depending on value of the given VerifyOption 1662 // parameter. The options for that parameter are: 1663 // 1664 // vo == UsePrevMarking -> use "prev" marking information, 1665 // vo == UseNextMarking -> use "next" marking information, 1666 // vo == UseMarkWord -> use mark word from object header 1667 1668 bool is_obj_dead_cond(const oop obj, 1669 const HeapRegion* hr, 1670 const VerifyOption vo) const { 1671 switch (vo) { 1672 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr); 1673 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr); 1674 case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked(); 1675 default: ShouldNotReachHere(); 1676 } 1677 return false; // keep some compilers happy 1678 } 1679 1680 bool is_obj_dead_cond(const oop obj, 1681 const VerifyOption vo) const { 1682 switch (vo) { 1683 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj); 1684 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj); 1685 case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked(); 1686 default: ShouldNotReachHere(); 1687 } 1688 return false; // keep some compilers happy 1689 } 1690 1691 bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo); 1692 HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo); 1693 bool is_marked(oop obj, VerifyOption vo); 1694 const char* top_at_mark_start_str(VerifyOption vo); 1695 1696 // The following is just to alert the verification code 1697 // that a full collection has occurred and that the 1698 // remembered sets are no longer up to date. 1699 bool _full_collection; 1700 void set_full_collection() { _full_collection = true;} 1701 void clear_full_collection() {_full_collection = false;} 1702 bool full_collection() {return _full_collection;} 1703 1704 ConcurrentMark* concurrent_mark() const { return _cm; } 1705 ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; } 1706 1707 // The dirty cards region list is used to record a subset of regions 1708 // whose cards need clearing. The list if populated during the 1709 // remembered set scanning and drained during the card table 1710 // cleanup. Although the methods are reentrant, population/draining 1711 // phases must not overlap. For synchronization purposes the last 1712 // element on the list points to itself. 1713 HeapRegion* _dirty_cards_region_list; 1714 void push_dirty_cards_region(HeapRegion* hr); 1715 HeapRegion* pop_dirty_cards_region(); 1716 1717 public: 1718 void stop_conc_gc_threads(); 1719 1720 size_t pending_card_num(); 1721 size_t cards_scanned(); 1722 1723 protected: 1724 size_t _max_heap_capacity; 1725 }; 1726 1727 class G1ParGCAllocBuffer: public ParGCAllocBuffer { 1728 private: 1729 bool _retired; 1730 1731 public: 1732 G1ParGCAllocBuffer(size_t gclab_word_size); 1733 1734 void set_buf(HeapWord* buf) { 1735 ParGCAllocBuffer::set_buf(buf); 1736 _retired = false; 1737 } 1738 1739 void retire(bool end_of_gc, bool retain) { 1740 if (_retired) 1741 return; 1742 ParGCAllocBuffer::retire(end_of_gc, retain); 1743 _retired = true; 1744 } 1745 }; 1746 1747 class G1ParScanThreadState : public StackObj { 1748 protected: 1749 G1CollectedHeap* _g1h; 1750 RefToScanQueue* _refs; 1751 DirtyCardQueue _dcq; 1752 CardTableModRefBS* _ct_bs; 1753 G1RemSet* _g1_rem; 1754 1755 G1ParGCAllocBuffer _surviving_alloc_buffer; 1756 G1ParGCAllocBuffer _tenured_alloc_buffer; 1757 G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount]; 1758 ageTable _age_table; 1759 1760 size_t _alloc_buffer_waste; 1761 size_t _undo_waste; 1762 1763 OopsInHeapRegionClosure* _evac_failure_cl; 1764 G1ParScanHeapEvacClosure* _evac_cl; 1765 G1ParScanPartialArrayClosure* _partial_scan_cl; 1766 1767 int _hash_seed; 1768 uint _queue_num; 1769 1770 size_t _term_attempts; 1771 1772 double _start; 1773 double _start_strong_roots; 1774 double _strong_roots_time; 1775 double _start_term; 1776 double _term_time; 1777 1778 // Map from young-age-index (0 == not young, 1 is youngest) to 1779 // surviving words. base is what we get back from the malloc call 1780 size_t* _surviving_young_words_base; 1781 // this points into the array, as we use the first few entries for padding 1782 size_t* _surviving_young_words; 1783 1784 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t)) 1785 1786 void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; } 1787 1788 void add_to_undo_waste(size_t waste) { _undo_waste += waste; } 1789 1790 DirtyCardQueue& dirty_card_queue() { return _dcq; } 1791 CardTableModRefBS* ctbs() { return _ct_bs; } 1792 1793 template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) { 1794 if (!from->is_survivor()) { 1795 _g1_rem->par_write_ref(from, p, tid); 1796 } 1797 } 1798 1799 template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) { 1800 // If the new value of the field points to the same region or 1801 // is the to-space, we don't need to include it in the Rset updates. 1802 if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) { 1803 size_t card_index = ctbs()->index_for(p); 1804 // If the card hasn't been added to the buffer, do it. 1805 if (ctbs()->mark_card_deferred(card_index)) { 1806 dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index)); 1807 } 1808 } 1809 } 1810 1811 public: 1812 G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num); 1813 1814 ~G1ParScanThreadState() { 1815 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC); 1816 } 1817 1818 RefToScanQueue* refs() { return _refs; } 1819 ageTable* age_table() { return &_age_table; } 1820 1821 G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) { 1822 return _alloc_buffers[purpose]; 1823 } 1824 1825 size_t alloc_buffer_waste() const { return _alloc_buffer_waste; } 1826 size_t undo_waste() const { return _undo_waste; } 1827 1828 #ifdef ASSERT 1829 bool verify_ref(narrowOop* ref) const; 1830 bool verify_ref(oop* ref) const; 1831 bool verify_task(StarTask ref) const; 1832 #endif // ASSERT 1833 1834 template <class T> void push_on_queue(T* ref) { 1835 assert(verify_ref(ref), "sanity"); 1836 refs()->push(ref); 1837 } 1838 1839 template <class T> void update_rs(HeapRegion* from, T* p, int tid) { 1840 if (G1DeferredRSUpdate) { 1841 deferred_rs_update(from, p, tid); 1842 } else { 1843 immediate_rs_update(from, p, tid); 1844 } 1845 } 1846 1847 HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) { 1848 HeapWord* obj = NULL; 1849 size_t gclab_word_size = _g1h->desired_plab_sz(purpose); 1850 if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) { 1851 G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose); 1852 add_to_alloc_buffer_waste(alloc_buf->words_remaining()); 1853 alloc_buf->retire(false /* end_of_gc */, false /* retain */); 1854 1855 HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size); 1856 if (buf == NULL) return NULL; // Let caller handle allocation failure. 1857 // Otherwise. 1858 alloc_buf->set_word_size(gclab_word_size); 1859 alloc_buf->set_buf(buf); 1860 1861 obj = alloc_buf->allocate(word_sz); 1862 assert(obj != NULL, "buffer was definitely big enough..."); 1863 } else { 1864 obj = _g1h->par_allocate_during_gc(purpose, word_sz); 1865 } 1866 return obj; 1867 } 1868 1869 HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) { 1870 HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz); 1871 if (obj != NULL) return obj; 1872 return allocate_slow(purpose, word_sz); 1873 } 1874 1875 void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) { 1876 if (alloc_buffer(purpose)->contains(obj)) { 1877 assert(alloc_buffer(purpose)->contains(obj + word_sz - 1), 1878 "should contain whole object"); 1879 alloc_buffer(purpose)->undo_allocation(obj, word_sz); 1880 } else { 1881 CollectedHeap::fill_with_object(obj, word_sz); 1882 add_to_undo_waste(word_sz); 1883 } 1884 } 1885 1886 void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) { 1887 _evac_failure_cl = evac_failure_cl; 1888 } 1889 OopsInHeapRegionClosure* evac_failure_closure() { 1890 return _evac_failure_cl; 1891 } 1892 1893 void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) { 1894 _evac_cl = evac_cl; 1895 } 1896 1897 void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) { 1898 _partial_scan_cl = partial_scan_cl; 1899 } 1900 1901 int* hash_seed() { return &_hash_seed; } 1902 uint queue_num() { return _queue_num; } 1903 1904 size_t term_attempts() const { return _term_attempts; } 1905 void note_term_attempt() { _term_attempts++; } 1906 1907 void start_strong_roots() { 1908 _start_strong_roots = os::elapsedTime(); 1909 } 1910 void end_strong_roots() { 1911 _strong_roots_time += (os::elapsedTime() - _start_strong_roots); 1912 } 1913 double strong_roots_time() const { return _strong_roots_time; } 1914 1915 void start_term_time() { 1916 note_term_attempt(); 1917 _start_term = os::elapsedTime(); 1918 } 1919 void end_term_time() { 1920 _term_time += (os::elapsedTime() - _start_term); 1921 } 1922 double term_time() const { return _term_time; } 1923 1924 double elapsed_time() const { 1925 return os::elapsedTime() - _start; 1926 } 1927 1928 static void 1929 print_termination_stats_hdr(outputStream* const st = gclog_or_tty); 1930 void 1931 print_termination_stats(int i, outputStream* const st = gclog_or_tty) const; 1932 1933 size_t* surviving_young_words() { 1934 // We add on to hide entry 0 which accumulates surviving words for 1935 // age -1 regions (i.e. non-young ones) 1936 return _surviving_young_words; 1937 } 1938 1939 void retire_alloc_buffers() { 1940 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { 1941 size_t waste = _alloc_buffers[ap]->words_remaining(); 1942 add_to_alloc_buffer_waste(waste); 1943 _alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap), 1944 true /* end_of_gc */, 1945 false /* retain */); 1946 } 1947 } 1948 1949 template <class T> void deal_with_reference(T* ref_to_scan) { 1950 if (has_partial_array_mask(ref_to_scan)) { 1951 _partial_scan_cl->do_oop_nv(ref_to_scan); 1952 } else { 1953 // Note: we can use "raw" versions of "region_containing" because 1954 // "obj_to_scan" is definitely in the heap, and is not in a 1955 // humongous region. 1956 HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan); 1957 _evac_cl->set_region(r); 1958 _evac_cl->do_oop_nv(ref_to_scan); 1959 } 1960 } 1961 1962 void deal_with_reference(StarTask ref) { 1963 assert(verify_task(ref), "sanity"); 1964 if (ref.is_narrow()) { 1965 deal_with_reference((narrowOop*)ref); 1966 } else { 1967 deal_with_reference((oop*)ref); 1968 } 1969 } 1970 1971 public: 1972 void trim_queue(); 1973 }; 1974 1975 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP