1 /* 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "code/icBuffer.hpp" 27 #include "gc_implementation/g1/bufferingOopClosure.hpp" 28 #include "gc_implementation/g1/concurrentG1Refine.hpp" 29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp" 30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp" 31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp" 32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" 33 #include "gc_implementation/g1/g1CollectorPolicy.hpp" 34 #include "gc_implementation/g1/g1ErgoVerbose.hpp" 35 #include "gc_implementation/g1/g1EvacFailure.hpp" 36 #include "gc_implementation/g1/g1GCPhaseTimes.hpp" 37 #include "gc_implementation/g1/g1Log.hpp" 38 #include "gc_implementation/g1/g1MarkSweep.hpp" 39 #include "gc_implementation/g1/g1OopClosures.inline.hpp" 40 #include "gc_implementation/g1/g1PreserveMarkQueue.hpp" 41 #include "gc_implementation/g1/g1RemSet.inline.hpp" 42 #include "gc_implementation/g1/heapRegion.inline.hpp" 43 #include "gc_implementation/g1/heapRegionRemSet.hpp" 44 #include "gc_implementation/g1/heapRegionSeq.inline.hpp" 45 #include "gc_implementation/g1/vm_operations_g1.hpp" 46 #include "gc_implementation/shared/isGCActiveMark.hpp" 47 #include "memory/gcLocker.inline.hpp" 48 #include "memory/genOopClosures.inline.hpp" 49 #include "memory/generationSpec.hpp" 50 #include "memory/referenceProcessor.hpp" 51 #include "oops/oop.inline.hpp" 52 #include "oops/oop.pcgc.inline.hpp" 53 #include "runtime/aprofiler.hpp" 54 #include "runtime/vmThread.hpp" 55 56 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0; 57 58 // turn it on so that the contents of the young list (scan-only / 59 // to-be-collected) are printed at "strategic" points before / during 60 // / after the collection --- this is useful for debugging 61 #define YOUNG_LIST_VERBOSE 0 62 // CURRENT STATUS 63 // This file is under construction. Search for "FIXME". 64 65 // INVARIANTS/NOTES 66 // 67 // All allocation activity covered by the G1CollectedHeap interface is 68 // serialized by acquiring the HeapLock. This happens in mem_allocate 69 // and allocate_new_tlab, which are the "entry" points to the 70 // allocation code from the rest of the JVM. (Note that this does not 71 // apply to TLAB allocation, which is not part of this interface: it 72 // is done by clients of this interface.) 73 74 // Notes on implementation of parallelism in different tasks. 75 // 76 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism. 77 // The number of GC workers is passed to heap_region_par_iterate_chunked(). 78 // It does use run_task() which sets _n_workers in the task. 79 // G1ParTask executes g1_process_strong_roots() -> 80 // SharedHeap::process_strong_roots() which calls eventuall to 81 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses 82 // SequentialSubTasksDone. SharedHeap::process_strong_roots() also 83 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap). 84 // 85 86 // Local to this file. 87 88 class RefineCardTableEntryClosure: public CardTableEntryClosure { 89 SuspendibleThreadSet* _sts; 90 G1RemSet* _g1rs; 91 ConcurrentG1Refine* _cg1r; 92 bool _concurrent; 93 public: 94 RefineCardTableEntryClosure(SuspendibleThreadSet* sts, 95 G1RemSet* g1rs, 96 ConcurrentG1Refine* cg1r) : 97 _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true) 98 {} 99 bool do_card_ptr(jbyte* card_ptr, int worker_i) { 100 bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false); 101 // This path is executed by the concurrent refine or mutator threads, 102 // concurrently, and so we do not care if card_ptr contains references 103 // that point into the collection set. 104 assert(!oops_into_cset, "should be"); 105 106 if (_concurrent && _sts->should_yield()) { 107 // Caller will actually yield. 108 return false; 109 } 110 // Otherwise, we finished successfully; return true. 111 return true; 112 } 113 void set_concurrent(bool b) { _concurrent = b; } 114 }; 115 116 117 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure { 118 int _calls; 119 G1CollectedHeap* _g1h; 120 CardTableModRefBS* _ctbs; 121 int _histo[256]; 122 public: 123 ClearLoggedCardTableEntryClosure() : 124 _calls(0) 125 { 126 _g1h = G1CollectedHeap::heap(); 127 _ctbs = (CardTableModRefBS*)_g1h->barrier_set(); 128 for (int i = 0; i < 256; i++) _histo[i] = 0; 129 } 130 bool do_card_ptr(jbyte* card_ptr, int worker_i) { 131 if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) { 132 _calls++; 133 unsigned char* ujb = (unsigned char*)card_ptr; 134 int ind = (int)(*ujb); 135 _histo[ind]++; 136 *card_ptr = -1; 137 } 138 return true; 139 } 140 int calls() { return _calls; } 141 void print_histo() { 142 gclog_or_tty->print_cr("Card table value histogram:"); 143 for (int i = 0; i < 256; i++) { 144 if (_histo[i] != 0) { 145 gclog_or_tty->print_cr(" %d: %d", i, _histo[i]); 146 } 147 } 148 } 149 }; 150 151 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure { 152 int _calls; 153 G1CollectedHeap* _g1h; 154 CardTableModRefBS* _ctbs; 155 public: 156 RedirtyLoggedCardTableEntryClosure() : 157 _calls(0) 158 { 159 _g1h = G1CollectedHeap::heap(); 160 _ctbs = (CardTableModRefBS*)_g1h->barrier_set(); 161 } 162 bool do_card_ptr(jbyte* card_ptr, int worker_i) { 163 if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) { 164 _calls++; 165 *card_ptr = 0; 166 } 167 return true; 168 } 169 int calls() { return _calls; } 170 }; 171 172 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure { 173 public: 174 bool do_card_ptr(jbyte* card_ptr, int worker_i) { 175 *card_ptr = CardTableModRefBS::dirty_card_val(); 176 return true; 177 } 178 }; 179 180 YoungList::YoungList(G1CollectedHeap* g1h) : 181 _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0), 182 _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) { 183 guarantee(check_list_empty(false), "just making sure..."); 184 } 185 186 void YoungList::push_region(HeapRegion *hr) { 187 assert(!hr->is_young(), "should not already be young"); 188 assert(hr->get_next_young_region() == NULL, "cause it should!"); 189 190 hr->set_next_young_region(_head); 191 _head = hr; 192 193 _g1h->g1_policy()->set_region_eden(hr, (int) _length); 194 ++_length; 195 } 196 197 void YoungList::add_survivor_region(HeapRegion* hr) { 198 assert(hr->is_survivor(), "should be flagged as survivor region"); 199 assert(hr->get_next_young_region() == NULL, "cause it should!"); 200 201 hr->set_next_young_region(_survivor_head); 202 if (_survivor_head == NULL) { 203 _survivor_tail = hr; 204 } 205 _survivor_head = hr; 206 ++_survivor_length; 207 } 208 209 void YoungList::empty_list(HeapRegion* list) { 210 while (list != NULL) { 211 HeapRegion* next = list->get_next_young_region(); 212 list->set_next_young_region(NULL); 213 list->uninstall_surv_rate_group(); 214 list->set_not_young(); 215 list = next; 216 } 217 } 218 219 void YoungList::empty_list() { 220 assert(check_list_well_formed(), "young list should be well formed"); 221 222 empty_list(_head); 223 _head = NULL; 224 _length = 0; 225 226 empty_list(_survivor_head); 227 _survivor_head = NULL; 228 _survivor_tail = NULL; 229 _survivor_length = 0; 230 231 _last_sampled_rs_lengths = 0; 232 233 assert(check_list_empty(false), "just making sure..."); 234 } 235 236 bool YoungList::check_list_well_formed() { 237 bool ret = true; 238 239 uint length = 0; 240 HeapRegion* curr = _head; 241 HeapRegion* last = NULL; 242 while (curr != NULL) { 243 if (!curr->is_young()) { 244 gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" " 245 "incorrectly tagged (y: %d, surv: %d)", 246 curr->bottom(), curr->end(), 247 curr->is_young(), curr->is_survivor()); 248 ret = false; 249 } 250 ++length; 251 last = curr; 252 curr = curr->get_next_young_region(); 253 } 254 ret = ret && (length == _length); 255 256 if (!ret) { 257 gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!"); 258 gclog_or_tty->print_cr("### list has %u entries, _length is %u", 259 length, _length); 260 } 261 262 return ret; 263 } 264 265 bool YoungList::check_list_empty(bool check_sample) { 266 bool ret = true; 267 268 if (_length != 0) { 269 gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u", 270 _length); 271 ret = false; 272 } 273 if (check_sample && _last_sampled_rs_lengths != 0) { 274 gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths"); 275 ret = false; 276 } 277 if (_head != NULL) { 278 gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head"); 279 ret = false; 280 } 281 if (!ret) { 282 gclog_or_tty->print_cr("### YOUNG LIST does not seem empty"); 283 } 284 285 return ret; 286 } 287 288 void 289 YoungList::rs_length_sampling_init() { 290 _sampled_rs_lengths = 0; 291 _curr = _head; 292 } 293 294 bool 295 YoungList::rs_length_sampling_more() { 296 return _curr != NULL; 297 } 298 299 void 300 YoungList::rs_length_sampling_next() { 301 assert( _curr != NULL, "invariant" ); 302 size_t rs_length = _curr->rem_set()->occupied(); 303 304 _sampled_rs_lengths += rs_length; 305 306 // The current region may not yet have been added to the 307 // incremental collection set (it gets added when it is 308 // retired as the current allocation region). 309 if (_curr->in_collection_set()) { 310 // Update the collection set policy information for this region 311 _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length); 312 } 313 314 _curr = _curr->get_next_young_region(); 315 if (_curr == NULL) { 316 _last_sampled_rs_lengths = _sampled_rs_lengths; 317 // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths); 318 } 319 } 320 321 void 322 YoungList::reset_auxilary_lists() { 323 guarantee( is_empty(), "young list should be empty" ); 324 assert(check_list_well_formed(), "young list should be well formed"); 325 326 // Add survivor regions to SurvRateGroup. 327 _g1h->g1_policy()->note_start_adding_survivor_regions(); 328 _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */); 329 330 int young_index_in_cset = 0; 331 for (HeapRegion* curr = _survivor_head; 332 curr != NULL; 333 curr = curr->get_next_young_region()) { 334 _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset); 335 336 // The region is a non-empty survivor so let's add it to 337 // the incremental collection set for the next evacuation 338 // pause. 339 _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr); 340 young_index_in_cset += 1; 341 } 342 assert((uint) young_index_in_cset == _survivor_length, "post-condition"); 343 _g1h->g1_policy()->note_stop_adding_survivor_regions(); 344 345 _head = _survivor_head; 346 _length = _survivor_length; 347 if (_survivor_head != NULL) { 348 assert(_survivor_tail != NULL, "cause it shouldn't be"); 349 assert(_survivor_length > 0, "invariant"); 350 _survivor_tail->set_next_young_region(NULL); 351 } 352 353 // Don't clear the survivor list handles until the start of 354 // the next evacuation pause - we need it in order to re-tag 355 // the survivor regions from this evacuation pause as 'young' 356 // at the start of the next. 357 358 _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */); 359 360 assert(check_list_well_formed(), "young list should be well formed"); 361 } 362 363 void YoungList::print() { 364 HeapRegion* lists[] = {_head, _survivor_head}; 365 const char* names[] = {"YOUNG", "SURVIVOR"}; 366 367 for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) { 368 gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]); 369 HeapRegion *curr = lists[list]; 370 if (curr == NULL) 371 gclog_or_tty->print_cr(" empty"); 372 while (curr != NULL) { 373 gclog_or_tty->print_cr(" "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d", 374 HR_FORMAT_PARAMS(curr), 375 curr->prev_top_at_mark_start(), 376 curr->next_top_at_mark_start(), 377 curr->age_in_surv_rate_group_cond()); 378 curr = curr->get_next_young_region(); 379 } 380 } 381 382 gclog_or_tty->print_cr(""); 383 } 384 385 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr) 386 { 387 // Claim the right to put the region on the dirty cards region list 388 // by installing a self pointer. 389 HeapRegion* next = hr->get_next_dirty_cards_region(); 390 if (next == NULL) { 391 HeapRegion* res = (HeapRegion*) 392 Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(), 393 NULL); 394 if (res == NULL) { 395 HeapRegion* head; 396 do { 397 // Put the region to the dirty cards region list. 398 head = _dirty_cards_region_list; 399 next = (HeapRegion*) 400 Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head); 401 if (next == head) { 402 assert(hr->get_next_dirty_cards_region() == hr, 403 "hr->get_next_dirty_cards_region() != hr"); 404 if (next == NULL) { 405 // The last region in the list points to itself. 406 hr->set_next_dirty_cards_region(hr); 407 } else { 408 hr->set_next_dirty_cards_region(next); 409 } 410 } 411 } while (next != head); 412 } 413 } 414 } 415 416 HeapRegion* G1CollectedHeap::pop_dirty_cards_region() 417 { 418 HeapRegion* head; 419 HeapRegion* hr; 420 do { 421 head = _dirty_cards_region_list; 422 if (head == NULL) { 423 return NULL; 424 } 425 HeapRegion* new_head = head->get_next_dirty_cards_region(); 426 if (head == new_head) { 427 // The last region. 428 new_head = NULL; 429 } 430 hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list, 431 head); 432 } while (hr != head); 433 assert(hr != NULL, "invariant"); 434 hr->set_next_dirty_cards_region(NULL); 435 return hr; 436 } 437 438 void G1CollectedHeap::stop_conc_gc_threads() { 439 _cg1r->stop(); 440 _cmThread->stop(); 441 } 442 443 #ifdef ASSERT 444 // A region is added to the collection set as it is retired 445 // so an address p can point to a region which will be in the 446 // collection set but has not yet been retired. This method 447 // therefore is only accurate during a GC pause after all 448 // regions have been retired. It is used for debugging 449 // to check if an nmethod has references to objects that can 450 // be move during a partial collection. Though it can be 451 // inaccurate, it is sufficient for G1 because the conservative 452 // implementation of is_scavengable() for G1 will indicate that 453 // all nmethods must be scanned during a partial collection. 454 bool G1CollectedHeap::is_in_partial_collection(const void* p) { 455 HeapRegion* hr = heap_region_containing(p); 456 return hr != NULL && hr->in_collection_set(); 457 } 458 #endif 459 460 // Returns true if the reference points to an object that 461 // can move in an incremental collecction. 462 bool G1CollectedHeap::is_scavengable(const void* p) { 463 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 464 G1CollectorPolicy* g1p = g1h->g1_policy(); 465 HeapRegion* hr = heap_region_containing(p); 466 if (hr == NULL) { 467 // null 468 assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p)); 469 return false; 470 } else { 471 return !hr->isHumongous(); 472 } 473 } 474 475 void G1CollectedHeap::check_ct_logs_at_safepoint() { 476 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 477 CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set(); 478 479 // Count the dirty cards at the start. 480 CountNonCleanMemRegionClosure count1(this); 481 ct_bs->mod_card_iterate(&count1); 482 int orig_count = count1.n(); 483 484 // First clear the logged cards. 485 ClearLoggedCardTableEntryClosure clear; 486 dcqs.set_closure(&clear); 487 dcqs.apply_closure_to_all_completed_buffers(); 488 dcqs.iterate_closure_all_threads(false); 489 clear.print_histo(); 490 491 // Now ensure that there's no dirty cards. 492 CountNonCleanMemRegionClosure count2(this); 493 ct_bs->mod_card_iterate(&count2); 494 if (count2.n() != 0) { 495 gclog_or_tty->print_cr("Card table has %d entries; %d originally", 496 count2.n(), orig_count); 497 } 498 guarantee(count2.n() == 0, "Card table should be clean."); 499 500 RedirtyLoggedCardTableEntryClosure redirty; 501 JavaThread::dirty_card_queue_set().set_closure(&redirty); 502 dcqs.apply_closure_to_all_completed_buffers(); 503 dcqs.iterate_closure_all_threads(false); 504 gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.", 505 clear.calls(), orig_count); 506 guarantee(redirty.calls() == clear.calls(), 507 "Or else mechanism is broken."); 508 509 CountNonCleanMemRegionClosure count3(this); 510 ct_bs->mod_card_iterate(&count3); 511 if (count3.n() != orig_count) { 512 gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.", 513 orig_count, count3.n()); 514 guarantee(count3.n() >= orig_count, "Should have restored them all."); 515 } 516 517 JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl); 518 } 519 520 // Private class members. 521 522 G1CollectedHeap* G1CollectedHeap::_g1h; 523 524 // Private methods. 525 526 HeapRegion* 527 G1CollectedHeap::new_region_try_secondary_free_list() { 528 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 529 while (!_secondary_free_list.is_empty() || free_regions_coming()) { 530 if (!_secondary_free_list.is_empty()) { 531 if (G1ConcRegionFreeingVerbose) { 532 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 533 "secondary_free_list has %u entries", 534 _secondary_free_list.length()); 535 } 536 // It looks as if there are free regions available on the 537 // secondary_free_list. Let's move them to the free_list and try 538 // again to allocate from it. 539 append_secondary_free_list(); 540 541 assert(!_free_list.is_empty(), "if the secondary_free_list was not " 542 "empty we should have moved at least one entry to the free_list"); 543 HeapRegion* res = _free_list.remove_head(); 544 if (G1ConcRegionFreeingVerbose) { 545 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 546 "allocated "HR_FORMAT" from secondary_free_list", 547 HR_FORMAT_PARAMS(res)); 548 } 549 return res; 550 } 551 552 // Wait here until we get notifed either when (a) there are no 553 // more free regions coming or (b) some regions have been moved on 554 // the secondary_free_list. 555 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag); 556 } 557 558 if (G1ConcRegionFreeingVerbose) { 559 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 560 "could not allocate from secondary_free_list"); 561 } 562 return NULL; 563 } 564 565 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) { 566 assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords, 567 "the only time we use this to allocate a humongous region is " 568 "when we are allocating a single humongous region"); 569 570 HeapRegion* res; 571 if (G1StressConcRegionFreeing) { 572 if (!_secondary_free_list.is_empty()) { 573 if (G1ConcRegionFreeingVerbose) { 574 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 575 "forced to look at the secondary_free_list"); 576 } 577 res = new_region_try_secondary_free_list(); 578 if (res != NULL) { 579 return res; 580 } 581 } 582 } 583 res = _free_list.remove_head_or_null(); 584 if (res == NULL) { 585 if (G1ConcRegionFreeingVerbose) { 586 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 587 "res == NULL, trying the secondary_free_list"); 588 } 589 res = new_region_try_secondary_free_list(); 590 } 591 if (res == NULL && do_expand && _expand_heap_after_alloc_failure) { 592 // Currently, only attempts to allocate GC alloc regions set 593 // do_expand to true. So, we should only reach here during a 594 // safepoint. If this assumption changes we might have to 595 // reconsider the use of _expand_heap_after_alloc_failure. 596 assert(SafepointSynchronize::is_at_safepoint(), "invariant"); 597 598 ergo_verbose1(ErgoHeapSizing, 599 "attempt heap expansion", 600 ergo_format_reason("region allocation request failed") 601 ergo_format_byte("allocation request"), 602 word_size * HeapWordSize); 603 if (expand(word_size * HeapWordSize)) { 604 // Given that expand() succeeded in expanding the heap, and we 605 // always expand the heap by an amount aligned to the heap 606 // region size, the free list should in theory not be empty. So 607 // it would probably be OK to use remove_head(). But the extra 608 // check for NULL is unlikely to be a performance issue here (we 609 // just expanded the heap!) so let's just be conservative and 610 // use remove_head_or_null(). 611 res = _free_list.remove_head_or_null(); 612 } else { 613 _expand_heap_after_alloc_failure = false; 614 } 615 } 616 return res; 617 } 618 619 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions, 620 size_t word_size) { 621 assert(isHumongous(word_size), "word_size should be humongous"); 622 assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition"); 623 624 uint first = G1_NULL_HRS_INDEX; 625 if (num_regions == 1) { 626 // Only one region to allocate, no need to go through the slower 627 // path. The caller will attempt the expasion if this fails, so 628 // let's not try to expand here too. 629 HeapRegion* hr = new_region(word_size, false /* do_expand */); 630 if (hr != NULL) { 631 first = hr->hrs_index(); 632 } else { 633 first = G1_NULL_HRS_INDEX; 634 } 635 } else { 636 // We can't allocate humongous regions while cleanupComplete() is 637 // running, since some of the regions we find to be empty might not 638 // yet be added to the free list and it is not straightforward to 639 // know which list they are on so that we can remove them. Note 640 // that we only need to do this if we need to allocate more than 641 // one region to satisfy the current humongous allocation 642 // request. If we are only allocating one region we use the common 643 // region allocation code (see above). 644 wait_while_free_regions_coming(); 645 append_secondary_free_list_if_not_empty_with_lock(); 646 647 if (free_regions() >= num_regions) { 648 first = _hrs.find_contiguous(num_regions); 649 if (first != G1_NULL_HRS_INDEX) { 650 for (uint i = first; i < first + num_regions; ++i) { 651 HeapRegion* hr = region_at(i); 652 assert(hr->is_empty(), "sanity"); 653 assert(is_on_master_free_list(hr), "sanity"); 654 hr->set_pending_removal(true); 655 } 656 _free_list.remove_all_pending(num_regions); 657 } 658 } 659 } 660 return first; 661 } 662 663 HeapWord* 664 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first, 665 uint num_regions, 666 size_t word_size) { 667 assert(first != G1_NULL_HRS_INDEX, "pre-condition"); 668 assert(isHumongous(word_size), "word_size should be humongous"); 669 assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition"); 670 671 // Index of last region in the series + 1. 672 uint last = first + num_regions; 673 674 // We need to initialize the region(s) we just discovered. This is 675 // a bit tricky given that it can happen concurrently with 676 // refinement threads refining cards on these regions and 677 // potentially wanting to refine the BOT as they are scanning 678 // those cards (this can happen shortly after a cleanup; see CR 679 // 6991377). So we have to set up the region(s) carefully and in 680 // a specific order. 681 682 // The word size sum of all the regions we will allocate. 683 size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords; 684 assert(word_size <= word_size_sum, "sanity"); 685 686 // This will be the "starts humongous" region. 687 HeapRegion* first_hr = region_at(first); 688 // The header of the new object will be placed at the bottom of 689 // the first region. 690 HeapWord* new_obj = first_hr->bottom(); 691 // This will be the new end of the first region in the series that 692 // should also match the end of the last region in the seriers. 693 HeapWord* new_end = new_obj + word_size_sum; 694 // This will be the new top of the first region that will reflect 695 // this allocation. 696 HeapWord* new_top = new_obj + word_size; 697 698 // First, we need to zero the header of the space that we will be 699 // allocating. When we update top further down, some refinement 700 // threads might try to scan the region. By zeroing the header we 701 // ensure that any thread that will try to scan the region will 702 // come across the zero klass word and bail out. 703 // 704 // NOTE: It would not have been correct to have used 705 // CollectedHeap::fill_with_object() and make the space look like 706 // an int array. The thread that is doing the allocation will 707 // later update the object header to a potentially different array 708 // type and, for a very short period of time, the klass and length 709 // fields will be inconsistent. This could cause a refinement 710 // thread to calculate the object size incorrectly. 711 Copy::fill_to_words(new_obj, oopDesc::header_size(), 0); 712 713 // We will set up the first region as "starts humongous". This 714 // will also update the BOT covering all the regions to reflect 715 // that there is a single object that starts at the bottom of the 716 // first region. 717 first_hr->set_startsHumongous(new_top, new_end); 718 719 // Then, if there are any, we will set up the "continues 720 // humongous" regions. 721 HeapRegion* hr = NULL; 722 for (uint i = first + 1; i < last; ++i) { 723 hr = region_at(i); 724 hr->set_continuesHumongous(first_hr); 725 } 726 // If we have "continues humongous" regions (hr != NULL), then the 727 // end of the last one should match new_end. 728 assert(hr == NULL || hr->end() == new_end, "sanity"); 729 730 // Up to this point no concurrent thread would have been able to 731 // do any scanning on any region in this series. All the top 732 // fields still point to bottom, so the intersection between 733 // [bottom,top] and [card_start,card_end] will be empty. Before we 734 // update the top fields, we'll do a storestore to make sure that 735 // no thread sees the update to top before the zeroing of the 736 // object header and the BOT initialization. 737 OrderAccess::storestore(); 738 739 // Now that the BOT and the object header have been initialized, 740 // we can update top of the "starts humongous" region. 741 assert(first_hr->bottom() < new_top && new_top <= first_hr->end(), 742 "new_top should be in this region"); 743 first_hr->set_top(new_top); 744 if (_hr_printer.is_active()) { 745 HeapWord* bottom = first_hr->bottom(); 746 HeapWord* end = first_hr->orig_end(); 747 if ((first + 1) == last) { 748 // the series has a single humongous region 749 _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top); 750 } else { 751 // the series has more than one humongous regions 752 _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end); 753 } 754 } 755 756 // Now, we will update the top fields of the "continues humongous" 757 // regions. The reason we need to do this is that, otherwise, 758 // these regions would look empty and this will confuse parts of 759 // G1. For example, the code that looks for a consecutive number 760 // of empty regions will consider them empty and try to 761 // re-allocate them. We can extend is_empty() to also include 762 // !continuesHumongous(), but it is easier to just update the top 763 // fields here. The way we set top for all regions (i.e., top == 764 // end for all regions but the last one, top == new_top for the 765 // last one) is actually used when we will free up the humongous 766 // region in free_humongous_region(). 767 hr = NULL; 768 for (uint i = first + 1; i < last; ++i) { 769 hr = region_at(i); 770 if ((i + 1) == last) { 771 // last continues humongous region 772 assert(hr->bottom() < new_top && new_top <= hr->end(), 773 "new_top should fall on this region"); 774 hr->set_top(new_top); 775 _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top); 776 } else { 777 // not last one 778 assert(new_top > hr->end(), "new_top should be above this region"); 779 hr->set_top(hr->end()); 780 _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end()); 781 } 782 } 783 // If we have continues humongous regions (hr != NULL), then the 784 // end of the last one should match new_end and its top should 785 // match new_top. 786 assert(hr == NULL || 787 (hr->end() == new_end && hr->top() == new_top), "sanity"); 788 789 assert(first_hr->used() == word_size * HeapWordSize, "invariant"); 790 _summary_bytes_used += first_hr->used(); 791 _humongous_set.add(first_hr); 792 793 return new_obj; 794 } 795 796 // If could fit into free regions w/o expansion, try. 797 // Otherwise, if can expand, do so. 798 // Otherwise, if using ex regions might help, try with ex given back. 799 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) { 800 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 801 802 verify_region_sets_optional(); 803 804 size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords); 805 uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords); 806 uint x_num = expansion_regions(); 807 uint fs = _hrs.free_suffix(); 808 uint first = humongous_obj_allocate_find_first(num_regions, word_size); 809 if (first == G1_NULL_HRS_INDEX) { 810 // The only thing we can do now is attempt expansion. 811 if (fs + x_num >= num_regions) { 812 // If the number of regions we're trying to allocate for this 813 // object is at most the number of regions in the free suffix, 814 // then the call to humongous_obj_allocate_find_first() above 815 // should have succeeded and we wouldn't be here. 816 // 817 // We should only be trying to expand when the free suffix is 818 // not sufficient for the object _and_ we have some expansion 819 // room available. 820 assert(num_regions > fs, "earlier allocation should have succeeded"); 821 822 ergo_verbose1(ErgoHeapSizing, 823 "attempt heap expansion", 824 ergo_format_reason("humongous allocation request failed") 825 ergo_format_byte("allocation request"), 826 word_size * HeapWordSize); 827 if (expand((num_regions - fs) * HeapRegion::GrainBytes)) { 828 // Even though the heap was expanded, it might not have 829 // reached the desired size. So, we cannot assume that the 830 // allocation will succeed. 831 first = humongous_obj_allocate_find_first(num_regions, word_size); 832 } 833 } 834 } 835 836 HeapWord* result = NULL; 837 if (first != G1_NULL_HRS_INDEX) { 838 result = 839 humongous_obj_allocate_initialize_regions(first, num_regions, word_size); 840 assert(result != NULL, "it should always return a valid result"); 841 842 // A successful humongous object allocation changes the used space 843 // information of the old generation so we need to recalculate the 844 // sizes and update the jstat counters here. 845 g1mm()->update_sizes(); 846 } 847 848 verify_region_sets_optional(); 849 850 return result; 851 } 852 853 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) { 854 assert_heap_not_locked_and_not_at_safepoint(); 855 assert(!isHumongous(word_size), "we do not allow humongous TLABs"); 856 857 unsigned int dummy_gc_count_before; 858 return attempt_allocation(word_size, &dummy_gc_count_before); 859 } 860 861 HeapWord* 862 G1CollectedHeap::mem_allocate(size_t word_size, 863 bool* gc_overhead_limit_was_exceeded) { 864 assert_heap_not_locked_and_not_at_safepoint(); 865 866 // Loop until the allocation is satisified, or unsatisfied after GC. 867 for (int try_count = 1; /* we'll return */; try_count += 1) { 868 unsigned int gc_count_before; 869 870 HeapWord* result = NULL; 871 if (!isHumongous(word_size)) { 872 result = attempt_allocation(word_size, &gc_count_before); 873 } else { 874 result = attempt_allocation_humongous(word_size, &gc_count_before); 875 } 876 if (result != NULL) { 877 return result; 878 } 879 880 // Create the garbage collection operation... 881 VM_G1CollectForAllocation op(gc_count_before, word_size); 882 // ...and get the VM thread to execute it. 883 VMThread::execute(&op); 884 885 if (op.prologue_succeeded() && op.pause_succeeded()) { 886 // If the operation was successful we'll return the result even 887 // if it is NULL. If the allocation attempt failed immediately 888 // after a Full GC, it's unlikely we'll be able to allocate now. 889 HeapWord* result = op.result(); 890 if (result != NULL && !isHumongous(word_size)) { 891 // Allocations that take place on VM operations do not do any 892 // card dirtying and we have to do it here. We only have to do 893 // this for non-humongous allocations, though. 894 dirty_young_block(result, word_size); 895 } 896 return result; 897 } else { 898 assert(op.result() == NULL, 899 "the result should be NULL if the VM op did not succeed"); 900 } 901 902 // Give a warning if we seem to be looping forever. 903 if ((QueuedAllocationWarningCount > 0) && 904 (try_count % QueuedAllocationWarningCount == 0)) { 905 warning("G1CollectedHeap::mem_allocate retries %d times", try_count); 906 } 907 } 908 909 ShouldNotReachHere(); 910 return NULL; 911 } 912 913 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size, 914 unsigned int *gc_count_before_ret) { 915 // Make sure you read the note in attempt_allocation_humongous(). 916 917 assert_heap_not_locked_and_not_at_safepoint(); 918 assert(!isHumongous(word_size), "attempt_allocation_slow() should not " 919 "be called for humongous allocation requests"); 920 921 // We should only get here after the first-level allocation attempt 922 // (attempt_allocation()) failed to allocate. 923 924 // We will loop until a) we manage to successfully perform the 925 // allocation or b) we successfully schedule a collection which 926 // fails to perform the allocation. b) is the only case when we'll 927 // return NULL. 928 HeapWord* result = NULL; 929 for (int try_count = 1; /* we'll return */; try_count += 1) { 930 bool should_try_gc; 931 unsigned int gc_count_before; 932 933 { 934 MutexLockerEx x(Heap_lock); 935 936 result = _mutator_alloc_region.attempt_allocation_locked(word_size, 937 false /* bot_updates */); 938 if (result != NULL) { 939 return result; 940 } 941 942 // If we reach here, attempt_allocation_locked() above failed to 943 // allocate a new region. So the mutator alloc region should be NULL. 944 assert(_mutator_alloc_region.get() == NULL, "only way to get here"); 945 946 if (GC_locker::is_active_and_needs_gc()) { 947 if (g1_policy()->can_expand_young_list()) { 948 // No need for an ergo verbose message here, 949 // can_expand_young_list() does this when it returns true. 950 result = _mutator_alloc_region.attempt_allocation_force(word_size, 951 false /* bot_updates */); 952 if (result != NULL) { 953 return result; 954 } 955 } 956 should_try_gc = false; 957 } else { 958 // The GCLocker may not be active but the GCLocker initiated 959 // GC may not yet have been performed (GCLocker::needs_gc() 960 // returns true). In this case we do not try this GC and 961 // wait until the GCLocker initiated GC is performed, and 962 // then retry the allocation. 963 if (GC_locker::needs_gc()) { 964 should_try_gc = false; 965 } else { 966 // Read the GC count while still holding the Heap_lock. 967 gc_count_before = total_collections(); 968 should_try_gc = true; 969 } 970 } 971 } 972 973 if (should_try_gc) { 974 bool succeeded; 975 result = do_collection_pause(word_size, gc_count_before, &succeeded); 976 if (result != NULL) { 977 assert(succeeded, "only way to get back a non-NULL result"); 978 return result; 979 } 980 981 if (succeeded) { 982 // If we get here we successfully scheduled a collection which 983 // failed to allocate. No point in trying to allocate 984 // further. We'll just return NULL. 985 MutexLockerEx x(Heap_lock); 986 *gc_count_before_ret = total_collections(); 987 return NULL; 988 } 989 } else { 990 // The GCLocker is either active or the GCLocker initiated 991 // GC has not yet been performed. Stall until it is and 992 // then retry the allocation. 993 GC_locker::stall_until_clear(); 994 } 995 996 // We can reach here if we were unsuccessul in scheduling a 997 // collection (because another thread beat us to it) or if we were 998 // stalled due to the GC locker. In either can we should retry the 999 // allocation attempt in case another thread successfully 1000 // performed a collection and reclaimed enough space. We do the 1001 // first attempt (without holding the Heap_lock) here and the 1002 // follow-on attempt will be at the start of the next loop 1003 // iteration (after taking the Heap_lock). 1004 result = _mutator_alloc_region.attempt_allocation(word_size, 1005 false /* bot_updates */); 1006 if (result != NULL) { 1007 return result; 1008 } 1009 1010 // Give a warning if we seem to be looping forever. 1011 if ((QueuedAllocationWarningCount > 0) && 1012 (try_count % QueuedAllocationWarningCount == 0)) { 1013 warning("G1CollectedHeap::attempt_allocation_slow() " 1014 "retries %d times", try_count); 1015 } 1016 } 1017 1018 ShouldNotReachHere(); 1019 return NULL; 1020 } 1021 1022 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size, 1023 unsigned int * gc_count_before_ret) { 1024 // The structure of this method has a lot of similarities to 1025 // attempt_allocation_slow(). The reason these two were not merged 1026 // into a single one is that such a method would require several "if 1027 // allocation is not humongous do this, otherwise do that" 1028 // conditional paths which would obscure its flow. In fact, an early 1029 // version of this code did use a unified method which was harder to 1030 // follow and, as a result, it had subtle bugs that were hard to 1031 // track down. So keeping these two methods separate allows each to 1032 // be more readable. It will be good to keep these two in sync as 1033 // much as possible. 1034 1035 assert_heap_not_locked_and_not_at_safepoint(); 1036 assert(isHumongous(word_size), "attempt_allocation_humongous() " 1037 "should only be called for humongous allocations"); 1038 1039 // Humongous objects can exhaust the heap quickly, so we should check if we 1040 // need to start a marking cycle at each humongous object allocation. We do 1041 // the check before we do the actual allocation. The reason for doing it 1042 // before the allocation is that we avoid having to keep track of the newly 1043 // allocated memory while we do a GC. 1044 if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation", 1045 word_size)) { 1046 collect(GCCause::_g1_humongous_allocation); 1047 } 1048 1049 // We will loop until a) we manage to successfully perform the 1050 // allocation or b) we successfully schedule a collection which 1051 // fails to perform the allocation. b) is the only case when we'll 1052 // return NULL. 1053 HeapWord* result = NULL; 1054 for (int try_count = 1; /* we'll return */; try_count += 1) { 1055 bool should_try_gc; 1056 unsigned int gc_count_before; 1057 1058 { 1059 MutexLockerEx x(Heap_lock); 1060 1061 // Given that humongous objects are not allocated in young 1062 // regions, we'll first try to do the allocation without doing a 1063 // collection hoping that there's enough space in the heap. 1064 result = humongous_obj_allocate(word_size); 1065 if (result != NULL) { 1066 return result; 1067 } 1068 1069 if (GC_locker::is_active_and_needs_gc()) { 1070 should_try_gc = false; 1071 } else { 1072 // The GCLocker may not be active but the GCLocker initiated 1073 // GC may not yet have been performed (GCLocker::needs_gc() 1074 // returns true). In this case we do not try this GC and 1075 // wait until the GCLocker initiated GC is performed, and 1076 // then retry the allocation. 1077 if (GC_locker::needs_gc()) { 1078 should_try_gc = false; 1079 } else { 1080 // Read the GC count while still holding the Heap_lock. 1081 gc_count_before = total_collections(); 1082 should_try_gc = true; 1083 } 1084 } 1085 } 1086 1087 if (should_try_gc) { 1088 // If we failed to allocate the humongous object, we should try to 1089 // do a collection pause (if we're allowed) in case it reclaims 1090 // enough space for the allocation to succeed after the pause. 1091 1092 bool succeeded; 1093 result = do_collection_pause(word_size, gc_count_before, &succeeded); 1094 if (result != NULL) { 1095 assert(succeeded, "only way to get back a non-NULL result"); 1096 return result; 1097 } 1098 1099 if (succeeded) { 1100 // If we get here we successfully scheduled a collection which 1101 // failed to allocate. No point in trying to allocate 1102 // further. We'll just return NULL. 1103 MutexLockerEx x(Heap_lock); 1104 *gc_count_before_ret = total_collections(); 1105 return NULL; 1106 } 1107 } else { 1108 // The GCLocker is either active or the GCLocker initiated 1109 // GC has not yet been performed. Stall until it is and 1110 // then retry the allocation. 1111 GC_locker::stall_until_clear(); 1112 } 1113 1114 // We can reach here if we were unsuccessul in scheduling a 1115 // collection (because another thread beat us to it) or if we were 1116 // stalled due to the GC locker. In either can we should retry the 1117 // allocation attempt in case another thread successfully 1118 // performed a collection and reclaimed enough space. Give a 1119 // warning if we seem to be looping forever. 1120 1121 if ((QueuedAllocationWarningCount > 0) && 1122 (try_count % QueuedAllocationWarningCount == 0)) { 1123 warning("G1CollectedHeap::attempt_allocation_humongous() " 1124 "retries %d times", try_count); 1125 } 1126 } 1127 1128 ShouldNotReachHere(); 1129 return NULL; 1130 } 1131 1132 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size, 1133 bool expect_null_mutator_alloc_region) { 1134 assert_at_safepoint(true /* should_be_vm_thread */); 1135 assert(_mutator_alloc_region.get() == NULL || 1136 !expect_null_mutator_alloc_region, 1137 "the current alloc region was unexpectedly found to be non-NULL"); 1138 1139 if (!isHumongous(word_size)) { 1140 return _mutator_alloc_region.attempt_allocation_locked(word_size, 1141 false /* bot_updates */); 1142 } else { 1143 HeapWord* result = humongous_obj_allocate(word_size); 1144 if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) { 1145 g1_policy()->set_initiate_conc_mark_if_possible(); 1146 } 1147 return result; 1148 } 1149 1150 ShouldNotReachHere(); 1151 } 1152 1153 class PostMCRemSetClearClosure: public HeapRegionClosure { 1154 G1CollectedHeap* _g1h; 1155 ModRefBarrierSet* _mr_bs; 1156 public: 1157 PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) : 1158 _g1h(g1h), _mr_bs(mr_bs) { } 1159 bool doHeapRegion(HeapRegion* r) { 1160 if (r->continuesHumongous()) { 1161 return false; 1162 } 1163 _g1h->reset_gc_time_stamps(r); 1164 HeapRegionRemSet* hrrs = r->rem_set(); 1165 if (hrrs != NULL) hrrs->clear(); 1166 // You might think here that we could clear just the cards 1167 // corresponding to the used region. But no: if we leave a dirty card 1168 // in a region we might allocate into, then it would prevent that card 1169 // from being enqueued, and cause it to be missed. 1170 // Re: the performance cost: we shouldn't be doing full GC anyway! 1171 _mr_bs->clear(MemRegion(r->bottom(), r->end())); 1172 return false; 1173 } 1174 }; 1175 1176 void G1CollectedHeap::clear_rsets_post_compaction() { 1177 PostMCRemSetClearClosure rs_clear(this, mr_bs()); 1178 heap_region_iterate(&rs_clear); 1179 } 1180 1181 class RebuildRSOutOfRegionClosure: public HeapRegionClosure { 1182 G1CollectedHeap* _g1h; 1183 UpdateRSOopClosure _cl; 1184 int _worker_i; 1185 public: 1186 RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) : 1187 _cl(g1->g1_rem_set(), worker_i), 1188 _worker_i(worker_i), 1189 _g1h(g1) 1190 { } 1191 1192 bool doHeapRegion(HeapRegion* r) { 1193 if (!r->continuesHumongous()) { 1194 _cl.set_from(r); 1195 r->oop_iterate(&_cl); 1196 } 1197 return false; 1198 } 1199 }; 1200 1201 class ParRebuildRSTask: public AbstractGangTask { 1202 G1CollectedHeap* _g1; 1203 public: 1204 ParRebuildRSTask(G1CollectedHeap* g1) 1205 : AbstractGangTask("ParRebuildRSTask"), 1206 _g1(g1) 1207 { } 1208 1209 void work(uint worker_id) { 1210 RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id); 1211 _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id, 1212 _g1->workers()->active_workers(), 1213 HeapRegion::RebuildRSClaimValue); 1214 } 1215 }; 1216 1217 class PostCompactionPrinterClosure: public HeapRegionClosure { 1218 private: 1219 G1HRPrinter* _hr_printer; 1220 public: 1221 bool doHeapRegion(HeapRegion* hr) { 1222 assert(!hr->is_young(), "not expecting to find young regions"); 1223 // We only generate output for non-empty regions. 1224 if (!hr->is_empty()) { 1225 if (!hr->isHumongous()) { 1226 _hr_printer->post_compaction(hr, G1HRPrinter::Old); 1227 } else if (hr->startsHumongous()) { 1228 if (hr->region_num() == 1) { 1229 // single humongous region 1230 _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous); 1231 } else { 1232 _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous); 1233 } 1234 } else { 1235 assert(hr->continuesHumongous(), "only way to get here"); 1236 _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous); 1237 } 1238 } 1239 return false; 1240 } 1241 1242 PostCompactionPrinterClosure(G1HRPrinter* hr_printer) 1243 : _hr_printer(hr_printer) { } 1244 }; 1245 1246 void G1CollectedHeap::print_hrs_post_compaction() { 1247 PostCompactionPrinterClosure cl(hr_printer()); 1248 heap_region_iterate(&cl); 1249 } 1250 1251 double G1CollectedHeap::verify(bool guard, const char* msg) { 1252 double verify_time_ms = 0.0; 1253 1254 if (guard && total_collections() >= VerifyGCStartAt) { 1255 double verify_start = os::elapsedTime(); 1256 HandleMark hm; // Discard invalid handles created during verification 1257 gclog_or_tty->print(msg); 1258 prepare_for_verify(); 1259 Universe::verify(false /* silent */, VerifyOption_G1UsePrevMarking); 1260 verify_time_ms = (os::elapsedTime() - verify_start) * 1000; 1261 } 1262 1263 return verify_time_ms; 1264 } 1265 1266 void G1CollectedHeap::verify_before_gc() { 1267 double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:"); 1268 g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms); 1269 } 1270 1271 void G1CollectedHeap::verify_after_gc() { 1272 double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:"); 1273 g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms); 1274 } 1275 1276 bool G1CollectedHeap::do_collection(bool explicit_gc, 1277 bool clear_all_soft_refs, 1278 size_t word_size) { 1279 assert_at_safepoint(true /* should_be_vm_thread */); 1280 1281 if (GC_locker::check_active_before_gc()) { 1282 return false; 1283 } 1284 1285 SvcGCMarker sgcm(SvcGCMarker::FULL); 1286 ResourceMark rm; 1287 1288 print_heap_before_gc(); 1289 1290 size_t metadata_prev_used = MetaspaceAux::used_in_bytes(); 1291 1292 HRSPhaseSetter x(HRSPhaseFullGC); 1293 verify_region_sets_optional(); 1294 1295 const bool do_clear_all_soft_refs = clear_all_soft_refs || 1296 collector_policy()->should_clear_all_soft_refs(); 1297 1298 ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy()); 1299 1300 { 1301 IsGCActiveMark x; 1302 1303 // Timing 1304 assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant"); 1305 gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps); 1306 TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty); 1307 1308 TraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, gclog_or_tty); 1309 TraceCollectorStats tcs(g1mm()->full_collection_counters()); 1310 TraceMemoryManagerStats tms(true /* fullGC */, gc_cause()); 1311 1312 double start = os::elapsedTime(); 1313 g1_policy()->record_full_collection_start(); 1314 1315 // Note: When we have a more flexible GC logging framework that 1316 // allows us to add optional attributes to a GC log record we 1317 // could consider timing and reporting how long we wait in the 1318 // following two methods. 1319 wait_while_free_regions_coming(); 1320 // If we start the compaction before the CM threads finish 1321 // scanning the root regions we might trip them over as we'll 1322 // be moving objects / updating references. So let's wait until 1323 // they are done. By telling them to abort, they should complete 1324 // early. 1325 _cm->root_regions()->abort(); 1326 _cm->root_regions()->wait_until_scan_finished(); 1327 append_secondary_free_list_if_not_empty_with_lock(); 1328 1329 gc_prologue(true); 1330 increment_total_collections(true /* full gc */); 1331 increment_old_marking_cycles_started(); 1332 1333 size_t g1h_prev_used = used(); 1334 assert(used() == recalculate_used(), "Should be equal"); 1335 1336 verify_before_gc(); 1337 1338 pre_full_gc_dump(); 1339 1340 COMPILER2_PRESENT(DerivedPointerTable::clear()); 1341 1342 // Disable discovery and empty the discovered lists 1343 // for the CM ref processor. 1344 ref_processor_cm()->disable_discovery(); 1345 ref_processor_cm()->abandon_partial_discovery(); 1346 ref_processor_cm()->verify_no_references_recorded(); 1347 1348 // Abandon current iterations of concurrent marking and concurrent 1349 // refinement, if any are in progress. We have to do this before 1350 // wait_until_scan_finished() below. 1351 concurrent_mark()->abort(); 1352 1353 // Make sure we'll choose a new allocation region afterwards. 1354 release_mutator_alloc_region(); 1355 abandon_gc_alloc_regions(); 1356 g1_rem_set()->cleanupHRRS(); 1357 1358 // We should call this after we retire any currently active alloc 1359 // regions so that all the ALLOC / RETIRE events are generated 1360 // before the start GC event. 1361 _hr_printer.start_gc(true /* full */, (size_t) total_collections()); 1362 1363 // We may have added regions to the current incremental collection 1364 // set between the last GC or pause and now. We need to clear the 1365 // incremental collection set and then start rebuilding it afresh 1366 // after this full GC. 1367 abandon_collection_set(g1_policy()->inc_cset_head()); 1368 g1_policy()->clear_incremental_cset(); 1369 g1_policy()->stop_incremental_cset_building(); 1370 1371 tear_down_region_sets(false /* free_list_only */); 1372 g1_policy()->set_gcs_are_young(true); 1373 1374 // See the comments in g1CollectedHeap.hpp and 1375 // G1CollectedHeap::ref_processing_init() about 1376 // how reference processing currently works in G1. 1377 1378 // Temporarily make discovery by the STW ref processor single threaded (non-MT). 1379 ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false); 1380 1381 // Temporarily clear the STW ref processor's _is_alive_non_header field. 1382 ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL); 1383 1384 ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/); 1385 ref_processor_stw()->setup_policy(do_clear_all_soft_refs); 1386 1387 // Do collection work 1388 { 1389 HandleMark hm; // Discard invalid handles created during gc 1390 G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs); 1391 } 1392 1393 assert(free_regions() == 0, "we should not have added any free regions"); 1394 rebuild_region_sets(false /* free_list_only */); 1395 1396 // Enqueue any discovered reference objects that have 1397 // not been removed from the discovered lists. 1398 ref_processor_stw()->enqueue_discovered_references(); 1399 1400 COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); 1401 1402 MemoryService::track_memory_usage(); 1403 1404 verify_after_gc(); 1405 1406 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 1407 ref_processor_stw()->verify_no_references_recorded(); 1408 1409 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 1410 ClassLoaderDataGraph::purge(); 1411 1412 // Note: since we've just done a full GC, concurrent 1413 // marking is no longer active. Therefore we need not 1414 // re-enable reference discovery for the CM ref processor. 1415 // That will be done at the start of the next marking cycle. 1416 assert(!ref_processor_cm()->discovery_enabled(), "Postcondition"); 1417 ref_processor_cm()->verify_no_references_recorded(); 1418 1419 reset_gc_time_stamp(); 1420 // Since everything potentially moved, we will clear all remembered 1421 // sets, and clear all cards. Later we will rebuild remebered 1422 // sets. We will also reset the GC time stamps of the regions. 1423 clear_rsets_post_compaction(); 1424 check_gc_time_stamps(); 1425 1426 // Resize the heap if necessary. 1427 resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size); 1428 1429 if (_hr_printer.is_active()) { 1430 // We should do this after we potentially resize the heap so 1431 // that all the COMMIT / UNCOMMIT events are generated before 1432 // the end GC event. 1433 1434 print_hrs_post_compaction(); 1435 _hr_printer.end_gc(true /* full */, (size_t) total_collections()); 1436 } 1437 1438 if (_cg1r->use_cache()) { 1439 _cg1r->clear_and_record_card_counts(); 1440 _cg1r->clear_hot_cache(); 1441 } 1442 1443 // Rebuild remembered sets of all regions. 1444 if (G1CollectedHeap::use_parallel_gc_threads()) { 1445 uint n_workers = 1446 AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(), 1447 workers()->active_workers(), 1448 Threads::number_of_non_daemon_threads()); 1449 assert(UseDynamicNumberOfGCThreads || 1450 n_workers == workers()->total_workers(), 1451 "If not dynamic should be using all the workers"); 1452 workers()->set_active_workers(n_workers); 1453 // Set parallel threads in the heap (_n_par_threads) only 1454 // before a parallel phase and always reset it to 0 after 1455 // the phase so that the number of parallel threads does 1456 // no get carried forward to a serial phase where there 1457 // may be code that is "possibly_parallel". 1458 set_par_threads(n_workers); 1459 1460 ParRebuildRSTask rebuild_rs_task(this); 1461 assert(check_heap_region_claim_values( 1462 HeapRegion::InitialClaimValue), "sanity check"); 1463 assert(UseDynamicNumberOfGCThreads || 1464 workers()->active_workers() == workers()->total_workers(), 1465 "Unless dynamic should use total workers"); 1466 // Use the most recent number of active workers 1467 assert(workers()->active_workers() > 0, 1468 "Active workers not properly set"); 1469 set_par_threads(workers()->active_workers()); 1470 workers()->run_task(&rebuild_rs_task); 1471 set_par_threads(0); 1472 assert(check_heap_region_claim_values( 1473 HeapRegion::RebuildRSClaimValue), "sanity check"); 1474 reset_heap_region_claim_values(); 1475 } else { 1476 RebuildRSOutOfRegionClosure rebuild_rs(this); 1477 heap_region_iterate(&rebuild_rs); 1478 } 1479 1480 if (G1Log::fine()) { 1481 print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity()); 1482 } 1483 1484 if (true) { // FIXME 1485 MetaspaceGC::compute_new_size(); 1486 } 1487 1488 // Start a new incremental collection set for the next pause 1489 assert(g1_policy()->collection_set() == NULL, "must be"); 1490 g1_policy()->start_incremental_cset_building(); 1491 1492 // Clear the _cset_fast_test bitmap in anticipation of adding 1493 // regions to the incremental collection set for the next 1494 // evacuation pause. 1495 clear_cset_fast_test(); 1496 1497 init_mutator_alloc_region(); 1498 1499 double end = os::elapsedTime(); 1500 g1_policy()->record_full_collection_end(); 1501 1502 #ifdef TRACESPINNING 1503 ParallelTaskTerminator::print_termination_counts(); 1504 #endif 1505 1506 gc_epilogue(true); 1507 1508 // Discard all rset updates 1509 JavaThread::dirty_card_queue_set().abandon_logs(); 1510 assert(!G1DeferredRSUpdate 1511 || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any"); 1512 1513 _young_list->reset_sampled_info(); 1514 // At this point there should be no regions in the 1515 // entire heap tagged as young. 1516 assert( check_young_list_empty(true /* check_heap */), 1517 "young list should be empty at this point"); 1518 1519 // Update the number of full collections that have been completed. 1520 increment_old_marking_cycles_completed(false /* concurrent */); 1521 1522 _hrs.verify_optional(); 1523 verify_region_sets_optional(); 1524 1525 print_heap_after_gc(); 1526 1527 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 1528 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 1529 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 1530 // before any GC notifications are raised. 1531 g1mm()->update_sizes(); 1532 } 1533 1534 post_full_gc_dump(); 1535 1536 return true; 1537 } 1538 1539 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) { 1540 // do_collection() will return whether it succeeded in performing 1541 // the GC. Currently, there is no facility on the 1542 // do_full_collection() API to notify the caller than the collection 1543 // did not succeed (e.g., because it was locked out by the GC 1544 // locker). So, right now, we'll ignore the return value. 1545 bool dummy = do_collection(true, /* explicit_gc */ 1546 clear_all_soft_refs, 1547 0 /* word_size */); 1548 } 1549 1550 // This code is mostly copied from TenuredGeneration. 1551 void 1552 G1CollectedHeap:: 1553 resize_if_necessary_after_full_collection(size_t word_size) { 1554 assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check"); 1555 1556 // Include the current allocation, if any, and bytes that will be 1557 // pre-allocated to support collections, as "used". 1558 const size_t used_after_gc = used(); 1559 const size_t capacity_after_gc = capacity(); 1560 const size_t free_after_gc = capacity_after_gc - used_after_gc; 1561 1562 // This is enforced in arguments.cpp. 1563 assert(MinHeapFreeRatio <= MaxHeapFreeRatio, 1564 "otherwise the code below doesn't make sense"); 1565 1566 // We don't have floating point command-line arguments 1567 const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0; 1568 const double maximum_used_percentage = 1.0 - minimum_free_percentage; 1569 const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0; 1570 const double minimum_used_percentage = 1.0 - maximum_free_percentage; 1571 1572 const size_t min_heap_size = collector_policy()->min_heap_byte_size(); 1573 const size_t max_heap_size = collector_policy()->max_heap_byte_size(); 1574 1575 // We have to be careful here as these two calculations can overflow 1576 // 32-bit size_t's. 1577 double used_after_gc_d = (double) used_after_gc; 1578 double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage; 1579 double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage; 1580 1581 // Let's make sure that they are both under the max heap size, which 1582 // by default will make them fit into a size_t. 1583 double desired_capacity_upper_bound = (double) max_heap_size; 1584 minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d, 1585 desired_capacity_upper_bound); 1586 maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d, 1587 desired_capacity_upper_bound); 1588 1589 // We can now safely turn them into size_t's. 1590 size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d; 1591 size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d; 1592 1593 // This assert only makes sense here, before we adjust them 1594 // with respect to the min and max heap size. 1595 assert(minimum_desired_capacity <= maximum_desired_capacity, 1596 err_msg("minimum_desired_capacity = "SIZE_FORMAT", " 1597 "maximum_desired_capacity = "SIZE_FORMAT, 1598 minimum_desired_capacity, maximum_desired_capacity)); 1599 1600 // Should not be greater than the heap max size. No need to adjust 1601 // it with respect to the heap min size as it's a lower bound (i.e., 1602 // we'll try to make the capacity larger than it, not smaller). 1603 minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size); 1604 // Should not be less than the heap min size. No need to adjust it 1605 // with respect to the heap max size as it's an upper bound (i.e., 1606 // we'll try to make the capacity smaller than it, not greater). 1607 maximum_desired_capacity = MAX2(maximum_desired_capacity, min_heap_size); 1608 1609 if (capacity_after_gc < minimum_desired_capacity) { 1610 // Don't expand unless it's significant 1611 size_t expand_bytes = minimum_desired_capacity - capacity_after_gc; 1612 ergo_verbose4(ErgoHeapSizing, 1613 "attempt heap expansion", 1614 ergo_format_reason("capacity lower than " 1615 "min desired capacity after Full GC") 1616 ergo_format_byte("capacity") 1617 ergo_format_byte("occupancy") 1618 ergo_format_byte_perc("min desired capacity"), 1619 capacity_after_gc, used_after_gc, 1620 minimum_desired_capacity, (double) MinHeapFreeRatio); 1621 expand(expand_bytes); 1622 1623 // No expansion, now see if we want to shrink 1624 } else if (capacity_after_gc > maximum_desired_capacity) { 1625 // Capacity too large, compute shrinking size 1626 size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity; 1627 ergo_verbose4(ErgoHeapSizing, 1628 "attempt heap shrinking", 1629 ergo_format_reason("capacity higher than " 1630 "max desired capacity after Full GC") 1631 ergo_format_byte("capacity") 1632 ergo_format_byte("occupancy") 1633 ergo_format_byte_perc("max desired capacity"), 1634 capacity_after_gc, used_after_gc, 1635 maximum_desired_capacity, (double) MaxHeapFreeRatio); 1636 shrink(shrink_bytes); 1637 } 1638 } 1639 1640 1641 HeapWord* 1642 G1CollectedHeap::satisfy_failed_allocation(size_t word_size, 1643 bool* succeeded) { 1644 assert_at_safepoint(true /* should_be_vm_thread */); 1645 1646 *succeeded = true; 1647 // Let's attempt the allocation first. 1648 HeapWord* result = 1649 attempt_allocation_at_safepoint(word_size, 1650 false /* expect_null_mutator_alloc_region */); 1651 if (result != NULL) { 1652 assert(*succeeded, "sanity"); 1653 return result; 1654 } 1655 1656 // In a G1 heap, we're supposed to keep allocation from failing by 1657 // incremental pauses. Therefore, at least for now, we'll favor 1658 // expansion over collection. (This might change in the future if we can 1659 // do something smarter than full collection to satisfy a failed alloc.) 1660 result = expand_and_allocate(word_size); 1661 if (result != NULL) { 1662 assert(*succeeded, "sanity"); 1663 return result; 1664 } 1665 1666 // Expansion didn't work, we'll try to do a Full GC. 1667 bool gc_succeeded = do_collection(false, /* explicit_gc */ 1668 false, /* clear_all_soft_refs */ 1669 word_size); 1670 if (!gc_succeeded) { 1671 *succeeded = false; 1672 return NULL; 1673 } 1674 1675 // Retry the allocation 1676 result = attempt_allocation_at_safepoint(word_size, 1677 true /* expect_null_mutator_alloc_region */); 1678 if (result != NULL) { 1679 assert(*succeeded, "sanity"); 1680 return result; 1681 } 1682 1683 // Then, try a Full GC that will collect all soft references. 1684 gc_succeeded = do_collection(false, /* explicit_gc */ 1685 true, /* clear_all_soft_refs */ 1686 word_size); 1687 if (!gc_succeeded) { 1688 *succeeded = false; 1689 return NULL; 1690 } 1691 1692 // Retry the allocation once more 1693 result = attempt_allocation_at_safepoint(word_size, 1694 true /* expect_null_mutator_alloc_region */); 1695 if (result != NULL) { 1696 assert(*succeeded, "sanity"); 1697 return result; 1698 } 1699 1700 assert(!collector_policy()->should_clear_all_soft_refs(), 1701 "Flag should have been handled and cleared prior to this point"); 1702 1703 // What else? We might try synchronous finalization later. If the total 1704 // space available is large enough for the allocation, then a more 1705 // complete compaction phase than we've tried so far might be 1706 // appropriate. 1707 assert(*succeeded, "sanity"); 1708 return NULL; 1709 } 1710 1711 // Attempting to expand the heap sufficiently 1712 // to support an allocation of the given "word_size". If 1713 // successful, perform the allocation and return the address of the 1714 // allocated block, or else "NULL". 1715 1716 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) { 1717 assert_at_safepoint(true /* should_be_vm_thread */); 1718 1719 verify_region_sets_optional(); 1720 1721 size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes); 1722 ergo_verbose1(ErgoHeapSizing, 1723 "attempt heap expansion", 1724 ergo_format_reason("allocation request failed") 1725 ergo_format_byte("allocation request"), 1726 word_size * HeapWordSize); 1727 if (expand(expand_bytes)) { 1728 _hrs.verify_optional(); 1729 verify_region_sets_optional(); 1730 return attempt_allocation_at_safepoint(word_size, 1731 false /* expect_null_mutator_alloc_region */); 1732 } 1733 return NULL; 1734 } 1735 1736 void G1CollectedHeap::update_committed_space(HeapWord* old_end, 1737 HeapWord* new_end) { 1738 assert(old_end != new_end, "don't call this otherwise"); 1739 assert((HeapWord*) _g1_storage.high() == new_end, "invariant"); 1740 1741 // Update the committed mem region. 1742 _g1_committed.set_end(new_end); 1743 // Tell the card table about the update. 1744 Universe::heap()->barrier_set()->resize_covered_region(_g1_committed); 1745 // Tell the BOT about the update. 1746 _bot_shared->resize(_g1_committed.word_size()); 1747 } 1748 1749 bool G1CollectedHeap::expand(size_t expand_bytes) { 1750 size_t old_mem_size = _g1_storage.committed_size(); 1751 size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes); 1752 aligned_expand_bytes = align_size_up(aligned_expand_bytes, 1753 HeapRegion::GrainBytes); 1754 ergo_verbose2(ErgoHeapSizing, 1755 "expand the heap", 1756 ergo_format_byte("requested expansion amount") 1757 ergo_format_byte("attempted expansion amount"), 1758 expand_bytes, aligned_expand_bytes); 1759 1760 // First commit the memory. 1761 HeapWord* old_end = (HeapWord*) _g1_storage.high(); 1762 bool successful = _g1_storage.expand_by(aligned_expand_bytes); 1763 if (successful) { 1764 // Then propagate this update to the necessary data structures. 1765 HeapWord* new_end = (HeapWord*) _g1_storage.high(); 1766 update_committed_space(old_end, new_end); 1767 1768 FreeRegionList expansion_list("Local Expansion List"); 1769 MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list); 1770 assert(mr.start() == old_end, "post-condition"); 1771 // mr might be a smaller region than what was requested if 1772 // expand_by() was unable to allocate the HeapRegion instances 1773 assert(mr.end() <= new_end, "post-condition"); 1774 1775 size_t actual_expand_bytes = mr.byte_size(); 1776 assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition"); 1777 assert(actual_expand_bytes == expansion_list.total_capacity_bytes(), 1778 "post-condition"); 1779 if (actual_expand_bytes < aligned_expand_bytes) { 1780 // We could not expand _hrs to the desired size. In this case we 1781 // need to shrink the committed space accordingly. 1782 assert(mr.end() < new_end, "invariant"); 1783 1784 size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes; 1785 // First uncommit the memory. 1786 _g1_storage.shrink_by(diff_bytes); 1787 // Then propagate this update to the necessary data structures. 1788 update_committed_space(new_end, mr.end()); 1789 } 1790 _free_list.add_as_tail(&expansion_list); 1791 1792 if (_hr_printer.is_active()) { 1793 HeapWord* curr = mr.start(); 1794 while (curr < mr.end()) { 1795 HeapWord* curr_end = curr + HeapRegion::GrainWords; 1796 _hr_printer.commit(curr, curr_end); 1797 curr = curr_end; 1798 } 1799 assert(curr == mr.end(), "post-condition"); 1800 } 1801 g1_policy()->record_new_heap_size(n_regions()); 1802 } else { 1803 ergo_verbose0(ErgoHeapSizing, 1804 "did not expand the heap", 1805 ergo_format_reason("heap expansion operation failed")); 1806 // The expansion of the virtual storage space was unsuccessful. 1807 // Let's see if it was because we ran out of swap. 1808 if (G1ExitOnExpansionFailure && 1809 _g1_storage.uncommitted_size() >= aligned_expand_bytes) { 1810 // We had head room... 1811 vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion"); 1812 } 1813 } 1814 return successful; 1815 } 1816 1817 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) { 1818 size_t old_mem_size = _g1_storage.committed_size(); 1819 size_t aligned_shrink_bytes = 1820 ReservedSpace::page_align_size_down(shrink_bytes); 1821 aligned_shrink_bytes = align_size_down(aligned_shrink_bytes, 1822 HeapRegion::GrainBytes); 1823 uint num_regions_deleted = 0; 1824 MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted); 1825 HeapWord* old_end = (HeapWord*) _g1_storage.high(); 1826 assert(mr.end() == old_end, "post-condition"); 1827 1828 ergo_verbose3(ErgoHeapSizing, 1829 "shrink the heap", 1830 ergo_format_byte("requested shrinking amount") 1831 ergo_format_byte("aligned shrinking amount") 1832 ergo_format_byte("attempted shrinking amount"), 1833 shrink_bytes, aligned_shrink_bytes, mr.byte_size()); 1834 if (mr.byte_size() > 0) { 1835 if (_hr_printer.is_active()) { 1836 HeapWord* curr = mr.end(); 1837 while (curr > mr.start()) { 1838 HeapWord* curr_end = curr; 1839 curr -= HeapRegion::GrainWords; 1840 _hr_printer.uncommit(curr, curr_end); 1841 } 1842 assert(curr == mr.start(), "post-condition"); 1843 } 1844 1845 _g1_storage.shrink_by(mr.byte_size()); 1846 HeapWord* new_end = (HeapWord*) _g1_storage.high(); 1847 assert(mr.start() == new_end, "post-condition"); 1848 1849 _expansion_regions += num_regions_deleted; 1850 update_committed_space(old_end, new_end); 1851 HeapRegionRemSet::shrink_heap(n_regions()); 1852 g1_policy()->record_new_heap_size(n_regions()); 1853 } else { 1854 ergo_verbose0(ErgoHeapSizing, 1855 "did not shrink the heap", 1856 ergo_format_reason("heap shrinking operation failed")); 1857 } 1858 } 1859 1860 void G1CollectedHeap::shrink(size_t shrink_bytes) { 1861 verify_region_sets_optional(); 1862 1863 // We should only reach here at the end of a Full GC which means we 1864 // should not not be holding to any GC alloc regions. The method 1865 // below will make sure of that and do any remaining clean up. 1866 abandon_gc_alloc_regions(); 1867 1868 // Instead of tearing down / rebuilding the free lists here, we 1869 // could instead use the remove_all_pending() method on free_list to 1870 // remove only the ones that we need to remove. 1871 tear_down_region_sets(true /* free_list_only */); 1872 shrink_helper(shrink_bytes); 1873 rebuild_region_sets(true /* free_list_only */); 1874 1875 _hrs.verify_optional(); 1876 verify_region_sets_optional(); 1877 } 1878 1879 // Public methods. 1880 1881 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away 1882 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 1883 #endif // _MSC_VER 1884 1885 1886 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) : 1887 SharedHeap(policy_), 1888 _g1_policy(policy_), 1889 _dirty_card_queue_set(false), 1890 _into_cset_dirty_card_queue_set(false), 1891 _is_alive_closure_cm(this), 1892 _is_alive_closure_stw(this), 1893 _ref_processor_cm(NULL), 1894 _ref_processor_stw(NULL), 1895 _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)), 1896 _bot_shared(NULL), 1897 _preserved_marks(40, 10000), 1898 _evac_failure_scan_stack(NULL) , 1899 _mark_in_progress(false), 1900 _cg1r(NULL), _summary_bytes_used(0), 1901 _g1mm(NULL), 1902 _refine_cte_cl(NULL), 1903 _full_collection(false), 1904 _free_list("Master Free List"), 1905 _secondary_free_list("Secondary Free List"), 1906 _old_set("Old Set"), 1907 _humongous_set("Master Humongous Set"), 1908 _free_regions_coming(false), 1909 _young_list(new YoungList(this)), 1910 _gc_time_stamp(0), 1911 _retained_old_gc_alloc_region(NULL), 1912 _survivor_plab_stats(YoungPLABSize, PLABWeight), 1913 _old_plab_stats(OldPLABSize, PLABWeight), 1914 _expand_heap_after_alloc_failure(true), 1915 _surviving_young_words(NULL), 1916 _old_marking_cycles_started(0), 1917 _old_marking_cycles_completed(0), 1918 _in_cset_fast_test(NULL), 1919 _in_cset_fast_test_base(NULL), 1920 _dirty_cards_region_list(NULL), 1921 _worker_cset_start_region(NULL), 1922 _worker_cset_start_region_time_stamp(NULL) { 1923 _g1h = this; // To catch bugs. 1924 if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) { 1925 vm_exit_during_initialization("Failed necessary allocation."); 1926 } 1927 1928 _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2; 1929 1930 int n_queues = MAX2((int)ParallelGCThreads, 1); 1931 _task_queues = new RefToScanQueueSet(n_queues); 1932 1933 int n_rem_sets = HeapRegionRemSet::num_par_rem_sets(); 1934 assert(n_rem_sets > 0, "Invariant."); 1935 1936 HeapRegionRemSetIterator** iter_arr = 1937 NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues, mtGC); 1938 for (int i = 0; i < n_queues; i++) { 1939 iter_arr[i] = new HeapRegionRemSetIterator(); 1940 } 1941 _rem_set_iterator = iter_arr; 1942 1943 _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC); 1944 _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC); 1945 1946 for (int i = 0; i < n_queues; i++) { 1947 RefToScanQueue* q = new RefToScanQueue(); 1948 q->initialize(); 1949 _task_queues->register_queue(i, q); 1950 } 1951 1952 clear_cset_start_regions(); 1953 1954 // Initialize the G1EvacuationFailureALot counters and flags. 1955 NOT_PRODUCT(reset_evacuation_should_fail();) 1956 1957 guarantee(_task_queues != NULL, "task_queues allocation failure."); 1958 } 1959 1960 jint G1CollectedHeap::initialize() { 1961 CollectedHeap::pre_initialize(); 1962 os::enable_vtime(); 1963 1964 G1Log::init(); 1965 1966 // Necessary to satisfy locking discipline assertions. 1967 1968 MutexLocker x(Heap_lock); 1969 1970 // We have to initialize the printer before committing the heap, as 1971 // it will be used then. 1972 _hr_printer.set_active(G1PrintHeapRegions); 1973 1974 // While there are no constraints in the GC code that HeapWordSize 1975 // be any particular value, there are multiple other areas in the 1976 // system which believe this to be true (e.g. oop->object_size in some 1977 // cases incorrectly returns the size in wordSize units rather than 1978 // HeapWordSize). 1979 guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize"); 1980 1981 size_t init_byte_size = collector_policy()->initial_heap_byte_size(); 1982 size_t max_byte_size = collector_policy()->max_heap_byte_size(); 1983 1984 // Ensure that the sizes are properly aligned. 1985 Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap"); 1986 Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap"); 1987 1988 _cg1r = new ConcurrentG1Refine(); 1989 1990 // Reserve the maximum. 1991 1992 // When compressed oops are enabled, the preferred heap base 1993 // is calculated by subtracting the requested size from the 1994 // 32Gb boundary and using the result as the base address for 1995 // heap reservation. If the requested size is not aligned to 1996 // HeapRegion::GrainBytes (i.e. the alignment that is passed 1997 // into the ReservedHeapSpace constructor) then the actual 1998 // base of the reserved heap may end up differing from the 1999 // address that was requested (i.e. the preferred heap base). 2000 // If this happens then we could end up using a non-optimal 2001 // compressed oops mode. 2002 2003 // Since max_byte_size is aligned to the size of a heap region (checked 2004 // above). 2005 Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap"); 2006 2007 ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size, 2008 HeapRegion::GrainBytes); 2009 2010 // It is important to do this in a way such that concurrent readers can't 2011 // temporarily think somethings in the heap. (I've actually seen this 2012 // happen in asserts: DLD.) 2013 _reserved.set_word_size(0); 2014 _reserved.set_start((HeapWord*)heap_rs.base()); 2015 _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size())); 2016 2017 _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes); 2018 2019 // Create the gen rem set (and barrier set) for the entire reserved region. 2020 _rem_set = collector_policy()->create_rem_set(_reserved, 2); 2021 set_barrier_set(rem_set()->bs()); 2022 if (barrier_set()->is_a(BarrierSet::ModRef)) { 2023 _mr_bs = (ModRefBarrierSet*)_barrier_set; 2024 } else { 2025 vm_exit_during_initialization("G1 requires a mod ref bs."); 2026 return JNI_ENOMEM; 2027 } 2028 2029 // Also create a G1 rem set. 2030 if (mr_bs()->is_a(BarrierSet::CardTableModRef)) { 2031 _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs()); 2032 } else { 2033 vm_exit_during_initialization("G1 requires a cardtable mod ref bs."); 2034 return JNI_ENOMEM; 2035 } 2036 2037 // Carve out the G1 part of the heap. 2038 2039 ReservedSpace g1_rs = heap_rs.first_part(max_byte_size); 2040 _g1_reserved = MemRegion((HeapWord*)g1_rs.base(), 2041 g1_rs.size()/HeapWordSize); 2042 2043 _g1_storage.initialize(g1_rs, 0); 2044 _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0); 2045 _hrs.initialize((HeapWord*) _g1_reserved.start(), 2046 (HeapWord*) _g1_reserved.end(), 2047 _expansion_regions); 2048 2049 // 6843694 - ensure that the maximum region index can fit 2050 // in the remembered set structures. 2051 const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1; 2052 guarantee((max_regions() - 1) <= max_region_idx, "too many regions"); 2053 2054 size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1; 2055 guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized"); 2056 guarantee(HeapRegion::CardsPerRegion < max_cards_per_region, 2057 "too many cards per region"); 2058 2059 HeapRegionSet::set_unrealistically_long_length(max_regions() + 1); 2060 2061 _bot_shared = new G1BlockOffsetSharedArray(_reserved, 2062 heap_word_size(init_byte_size)); 2063 2064 _g1h = this; 2065 2066 _in_cset_fast_test_length = max_regions(); 2067 _in_cset_fast_test_base = 2068 NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC); 2069 2070 // We're biasing _in_cset_fast_test to avoid subtracting the 2071 // beginning of the heap every time we want to index; basically 2072 // it's the same with what we do with the card table. 2073 _in_cset_fast_test = _in_cset_fast_test_base - 2074 ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes); 2075 2076 // Clear the _cset_fast_test bitmap in anticipation of adding 2077 // regions to the incremental collection set for the first 2078 // evacuation pause. 2079 clear_cset_fast_test(); 2080 2081 // Create the ConcurrentMark data structure and thread. 2082 // (Must do this late, so that "max_regions" is defined.) 2083 _cm = new ConcurrentMark(this, heap_rs); 2084 if (_cm == NULL || !_cm->completed_initialization()) { 2085 vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark"); 2086 return JNI_ENOMEM; 2087 } 2088 _cmThread = _cm->cmThread(); 2089 2090 // Initialize the from_card cache structure of HeapRegionRemSet. 2091 HeapRegionRemSet::init_heap(max_regions()); 2092 2093 // Now expand into the initial heap size. 2094 if (!expand(init_byte_size)) { 2095 vm_shutdown_during_initialization("Failed to allocate initial heap."); 2096 return JNI_ENOMEM; 2097 } 2098 2099 // Perform any initialization actions delegated to the policy. 2100 g1_policy()->init(); 2101 2102 _refine_cte_cl = 2103 new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(), 2104 g1_rem_set(), 2105 concurrent_g1_refine()); 2106 JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl); 2107 2108 JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon, 2109 SATB_Q_FL_lock, 2110 G1SATBProcessCompletedThreshold, 2111 Shared_SATB_Q_lock); 2112 2113 JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon, 2114 DirtyCardQ_FL_lock, 2115 concurrent_g1_refine()->yellow_zone(), 2116 concurrent_g1_refine()->red_zone(), 2117 Shared_DirtyCardQ_lock); 2118 2119 if (G1DeferredRSUpdate) { 2120 dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon, 2121 DirtyCardQ_FL_lock, 2122 -1, // never trigger processing 2123 -1, // no limit on length 2124 Shared_DirtyCardQ_lock, 2125 &JavaThread::dirty_card_queue_set()); 2126 } 2127 2128 // Initialize the card queue set used to hold cards containing 2129 // references into the collection set. 2130 _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon, 2131 DirtyCardQ_FL_lock, 2132 -1, // never trigger processing 2133 -1, // no limit on length 2134 Shared_DirtyCardQ_lock, 2135 &JavaThread::dirty_card_queue_set()); 2136 2137 // In case we're keeping closure specialization stats, initialize those 2138 // counts and that mechanism. 2139 SpecializationStats::clear(); 2140 2141 // Do later initialization work for concurrent refinement. 2142 _cg1r->init(); 2143 2144 // Here we allocate the dummy full region that is required by the 2145 // G1AllocRegion class. If we don't pass an address in the reserved 2146 // space here, lots of asserts fire. 2147 2148 HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */, 2149 _g1_reserved.start()); 2150 // We'll re-use the same region whether the alloc region will 2151 // require BOT updates or not and, if it doesn't, then a non-young 2152 // region will complain that it cannot support allocations without 2153 // BOT updates. So we'll tag the dummy region as young to avoid that. 2154 dummy_region->set_young(); 2155 // Make sure it's full. 2156 dummy_region->set_top(dummy_region->end()); 2157 G1AllocRegion::setup(this, dummy_region); 2158 2159 init_mutator_alloc_region(); 2160 2161 // Do create of the monitoring and management support so that 2162 // values in the heap have been properly initialized. 2163 _g1mm = new G1MonitoringSupport(this); 2164 2165 return JNI_OK; 2166 } 2167 2168 void G1CollectedHeap::ref_processing_init() { 2169 // Reference processing in G1 currently works as follows: 2170 // 2171 // * There are two reference processor instances. One is 2172 // used to record and process discovered references 2173 // during concurrent marking; the other is used to 2174 // record and process references during STW pauses 2175 // (both full and incremental). 2176 // * Both ref processors need to 'span' the entire heap as 2177 // the regions in the collection set may be dotted around. 2178 // 2179 // * For the concurrent marking ref processor: 2180 // * Reference discovery is enabled at initial marking. 2181 // * Reference discovery is disabled and the discovered 2182 // references processed etc during remarking. 2183 // * Reference discovery is MT (see below). 2184 // * Reference discovery requires a barrier (see below). 2185 // * Reference processing may or may not be MT 2186 // (depending on the value of ParallelRefProcEnabled 2187 // and ParallelGCThreads). 2188 // * A full GC disables reference discovery by the CM 2189 // ref processor and abandons any entries on it's 2190 // discovered lists. 2191 // 2192 // * For the STW processor: 2193 // * Non MT discovery is enabled at the start of a full GC. 2194 // * Processing and enqueueing during a full GC is non-MT. 2195 // * During a full GC, references are processed after marking. 2196 // 2197 // * Discovery (may or may not be MT) is enabled at the start 2198 // of an incremental evacuation pause. 2199 // * References are processed near the end of a STW evacuation pause. 2200 // * For both types of GC: 2201 // * Discovery is atomic - i.e. not concurrent. 2202 // * Reference discovery will not need a barrier. 2203 2204 SharedHeap::ref_processing_init(); 2205 MemRegion mr = reserved_region(); 2206 2207 // Concurrent Mark ref processor 2208 _ref_processor_cm = 2209 new ReferenceProcessor(mr, // span 2210 ParallelRefProcEnabled && (ParallelGCThreads > 1), 2211 // mt processing 2212 (int) ParallelGCThreads, 2213 // degree of mt processing 2214 (ParallelGCThreads > 1) || (ConcGCThreads > 1), 2215 // mt discovery 2216 (int) MAX2(ParallelGCThreads, ConcGCThreads), 2217 // degree of mt discovery 2218 false, 2219 // Reference discovery is not atomic 2220 &_is_alive_closure_cm, 2221 // is alive closure 2222 // (for efficiency/performance) 2223 true); 2224 // Setting next fields of discovered 2225 // lists requires a barrier. 2226 2227 // STW ref processor 2228 _ref_processor_stw = 2229 new ReferenceProcessor(mr, // span 2230 ParallelRefProcEnabled && (ParallelGCThreads > 1), 2231 // mt processing 2232 MAX2((int)ParallelGCThreads, 1), 2233 // degree of mt processing 2234 (ParallelGCThreads > 1), 2235 // mt discovery 2236 MAX2((int)ParallelGCThreads, 1), 2237 // degree of mt discovery 2238 true, 2239 // Reference discovery is atomic 2240 &_is_alive_closure_stw, 2241 // is alive closure 2242 // (for efficiency/performance) 2243 false); 2244 // Setting next fields of discovered 2245 // lists requires a barrier. 2246 } 2247 2248 size_t G1CollectedHeap::capacity() const { 2249 return _g1_committed.byte_size(); 2250 } 2251 2252 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) { 2253 assert(!hr->continuesHumongous(), "pre-condition"); 2254 hr->reset_gc_time_stamp(); 2255 if (hr->startsHumongous()) { 2256 uint first_index = hr->hrs_index() + 1; 2257 uint last_index = hr->last_hc_index(); 2258 for (uint i = first_index; i < last_index; i += 1) { 2259 HeapRegion* chr = region_at(i); 2260 assert(chr->continuesHumongous(), "sanity"); 2261 chr->reset_gc_time_stamp(); 2262 } 2263 } 2264 } 2265 2266 #ifndef PRODUCT 2267 class CheckGCTimeStampsHRClosure : public HeapRegionClosure { 2268 private: 2269 unsigned _gc_time_stamp; 2270 bool _failures; 2271 2272 public: 2273 CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) : 2274 _gc_time_stamp(gc_time_stamp), _failures(false) { } 2275 2276 virtual bool doHeapRegion(HeapRegion* hr) { 2277 unsigned region_gc_time_stamp = hr->get_gc_time_stamp(); 2278 if (_gc_time_stamp != region_gc_time_stamp) { 2279 gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, " 2280 "expected %d", HR_FORMAT_PARAMS(hr), 2281 region_gc_time_stamp, _gc_time_stamp); 2282 _failures = true; 2283 } 2284 return false; 2285 } 2286 2287 bool failures() { return _failures; } 2288 }; 2289 2290 void G1CollectedHeap::check_gc_time_stamps() { 2291 CheckGCTimeStampsHRClosure cl(_gc_time_stamp); 2292 heap_region_iterate(&cl); 2293 guarantee(!cl.failures(), "all GC time stamps should have been reset"); 2294 } 2295 #endif // PRODUCT 2296 2297 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, 2298 DirtyCardQueue* into_cset_dcq, 2299 bool concurrent, 2300 int worker_i) { 2301 // Clean cards in the hot card cache 2302 concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq); 2303 2304 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 2305 int n_completed_buffers = 0; 2306 while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) { 2307 n_completed_buffers++; 2308 } 2309 g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers); 2310 dcqs.clear_n_completed_buffers(); 2311 assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!"); 2312 } 2313 2314 2315 // Computes the sum of the storage used by the various regions. 2316 2317 size_t G1CollectedHeap::used() const { 2318 assert(Heap_lock->owner() != NULL, 2319 "Should be owned on this thread's behalf."); 2320 size_t result = _summary_bytes_used; 2321 // Read only once in case it is set to NULL concurrently 2322 HeapRegion* hr = _mutator_alloc_region.get(); 2323 if (hr != NULL) 2324 result += hr->used(); 2325 return result; 2326 } 2327 2328 size_t G1CollectedHeap::used_unlocked() const { 2329 size_t result = _summary_bytes_used; 2330 return result; 2331 } 2332 2333 class SumUsedClosure: public HeapRegionClosure { 2334 size_t _used; 2335 public: 2336 SumUsedClosure() : _used(0) {} 2337 bool doHeapRegion(HeapRegion* r) { 2338 if (!r->continuesHumongous()) { 2339 _used += r->used(); 2340 } 2341 return false; 2342 } 2343 size_t result() { return _used; } 2344 }; 2345 2346 size_t G1CollectedHeap::recalculate_used() const { 2347 SumUsedClosure blk; 2348 heap_region_iterate(&blk); 2349 return blk.result(); 2350 } 2351 2352 size_t G1CollectedHeap::unsafe_max_alloc() { 2353 if (free_regions() > 0) return HeapRegion::GrainBytes; 2354 // otherwise, is there space in the current allocation region? 2355 2356 // We need to store the current allocation region in a local variable 2357 // here. The problem is that this method doesn't take any locks and 2358 // there may be other threads which overwrite the current allocation 2359 // region field. attempt_allocation(), for example, sets it to NULL 2360 // and this can happen *after* the NULL check here but before the call 2361 // to free(), resulting in a SIGSEGV. Note that this doesn't appear 2362 // to be a problem in the optimized build, since the two loads of the 2363 // current allocation region field are optimized away. 2364 HeapRegion* hr = _mutator_alloc_region.get(); 2365 if (hr == NULL) { 2366 return 0; 2367 } 2368 return hr->free(); 2369 } 2370 2371 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) { 2372 switch (cause) { 2373 case GCCause::_gc_locker: return GCLockerInvokesConcurrent; 2374 case GCCause::_java_lang_system_gc: return ExplicitGCInvokesConcurrent; 2375 case GCCause::_g1_humongous_allocation: return true; 2376 default: return false; 2377 } 2378 } 2379 2380 #ifndef PRODUCT 2381 void G1CollectedHeap::allocate_dummy_regions() { 2382 // Let's fill up most of the region 2383 size_t word_size = HeapRegion::GrainWords - 1024; 2384 // And as a result the region we'll allocate will be humongous. 2385 guarantee(isHumongous(word_size), "sanity"); 2386 2387 for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) { 2388 // Let's use the existing mechanism for the allocation 2389 HeapWord* dummy_obj = humongous_obj_allocate(word_size); 2390 if (dummy_obj != NULL) { 2391 MemRegion mr(dummy_obj, word_size); 2392 CollectedHeap::fill_with_object(mr); 2393 } else { 2394 // If we can't allocate once, we probably cannot allocate 2395 // again. Let's get out of the loop. 2396 break; 2397 } 2398 } 2399 } 2400 #endif // !PRODUCT 2401 2402 void G1CollectedHeap::increment_old_marking_cycles_started() { 2403 assert(_old_marking_cycles_started == _old_marking_cycles_completed || 2404 _old_marking_cycles_started == _old_marking_cycles_completed + 1, 2405 err_msg("Wrong marking cycle count (started: %d, completed: %d)", 2406 _old_marking_cycles_started, _old_marking_cycles_completed)); 2407 2408 _old_marking_cycles_started++; 2409 } 2410 2411 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) { 2412 MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag); 2413 2414 // We assume that if concurrent == true, then the caller is a 2415 // concurrent thread that was joined the Suspendible Thread 2416 // Set. If there's ever a cheap way to check this, we should add an 2417 // assert here. 2418 2419 // Given that this method is called at the end of a Full GC or of a 2420 // concurrent cycle, and those can be nested (i.e., a Full GC can 2421 // interrupt a concurrent cycle), the number of full collections 2422 // completed should be either one (in the case where there was no 2423 // nesting) or two (when a Full GC interrupted a concurrent cycle) 2424 // behind the number of full collections started. 2425 2426 // This is the case for the inner caller, i.e. a Full GC. 2427 assert(concurrent || 2428 (_old_marking_cycles_started == _old_marking_cycles_completed + 1) || 2429 (_old_marking_cycles_started == _old_marking_cycles_completed + 2), 2430 err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u " 2431 "is inconsistent with _old_marking_cycles_completed = %u", 2432 _old_marking_cycles_started, _old_marking_cycles_completed)); 2433 2434 // This is the case for the outer caller, i.e. the concurrent cycle. 2435 assert(!concurrent || 2436 (_old_marking_cycles_started == _old_marking_cycles_completed + 1), 2437 err_msg("for outer caller (concurrent cycle): " 2438 "_old_marking_cycles_started = %u " 2439 "is inconsistent with _old_marking_cycles_completed = %u", 2440 _old_marking_cycles_started, _old_marking_cycles_completed)); 2441 2442 _old_marking_cycles_completed += 1; 2443 2444 // We need to clear the "in_progress" flag in the CM thread before 2445 // we wake up any waiters (especially when ExplicitInvokesConcurrent 2446 // is set) so that if a waiter requests another System.gc() it doesn't 2447 // incorrectly see that a marking cyle is still in progress. 2448 if (concurrent) { 2449 _cmThread->clear_in_progress(); 2450 } 2451 2452 // This notify_all() will ensure that a thread that called 2453 // System.gc() with (with ExplicitGCInvokesConcurrent set or not) 2454 // and it's waiting for a full GC to finish will be woken up. It is 2455 // waiting in VM_G1IncCollectionPause::doit_epilogue(). 2456 FullGCCount_lock->notify_all(); 2457 } 2458 2459 void G1CollectedHeap::collect(GCCause::Cause cause) { 2460 assert_heap_not_locked(); 2461 2462 unsigned int gc_count_before; 2463 unsigned int old_marking_count_before; 2464 bool retry_gc; 2465 2466 do { 2467 retry_gc = false; 2468 2469 { 2470 MutexLocker ml(Heap_lock); 2471 2472 // Read the GC count while holding the Heap_lock 2473 gc_count_before = total_collections(); 2474 old_marking_count_before = _old_marking_cycles_started; 2475 } 2476 2477 if (should_do_concurrent_full_gc(cause)) { 2478 // Schedule an initial-mark evacuation pause that will start a 2479 // concurrent cycle. We're setting word_size to 0 which means that 2480 // we are not requesting a post-GC allocation. 2481 VM_G1IncCollectionPause op(gc_count_before, 2482 0, /* word_size */ 2483 true, /* should_initiate_conc_mark */ 2484 g1_policy()->max_pause_time_ms(), 2485 cause); 2486 2487 VMThread::execute(&op); 2488 if (!op.pause_succeeded()) { 2489 if (old_marking_count_before == _old_marking_cycles_started) { 2490 retry_gc = op.should_retry_gc(); 2491 } else { 2492 // A Full GC happened while we were trying to schedule the 2493 // initial-mark GC. No point in starting a new cycle given 2494 // that the whole heap was collected anyway. 2495 } 2496 2497 if (retry_gc) { 2498 if (GC_locker::is_active_and_needs_gc()) { 2499 GC_locker::stall_until_clear(); 2500 } 2501 } 2502 } 2503 } else { 2504 if (cause == GCCause::_gc_locker 2505 DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) { 2506 2507 // Schedule a standard evacuation pause. We're setting word_size 2508 // to 0 which means that we are not requesting a post-GC allocation. 2509 VM_G1IncCollectionPause op(gc_count_before, 2510 0, /* word_size */ 2511 false, /* should_initiate_conc_mark */ 2512 g1_policy()->max_pause_time_ms(), 2513 cause); 2514 VMThread::execute(&op); 2515 } else { 2516 // Schedule a Full GC. 2517 VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause); 2518 VMThread::execute(&op); 2519 } 2520 } 2521 } while (retry_gc); 2522 } 2523 2524 bool G1CollectedHeap::is_in(const void* p) const { 2525 if (_g1_committed.contains(p)) { 2526 // Given that we know that p is in the committed space, 2527 // heap_region_containing_raw() should successfully 2528 // return the containing region. 2529 HeapRegion* hr = heap_region_containing_raw(p); 2530 return hr->is_in(p); 2531 } else { 2532 return false; 2533 } 2534 } 2535 2536 // Iteration functions. 2537 2538 // Iterates an OopClosure over all ref-containing fields of objects 2539 // within a HeapRegion. 2540 2541 class IterateOopClosureRegionClosure: public HeapRegionClosure { 2542 MemRegion _mr; 2543 ExtendedOopClosure* _cl; 2544 public: 2545 IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl) 2546 : _mr(mr), _cl(cl) {} 2547 bool doHeapRegion(HeapRegion* r) { 2548 if (!r->continuesHumongous()) { 2549 r->oop_iterate(_cl); 2550 } 2551 return false; 2552 } 2553 }; 2554 2555 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) { 2556 IterateOopClosureRegionClosure blk(_g1_committed, cl); 2557 heap_region_iterate(&blk); 2558 } 2559 2560 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) { 2561 IterateOopClosureRegionClosure blk(mr, cl); 2562 heap_region_iterate(&blk); 2563 } 2564 2565 // Iterates an ObjectClosure over all objects within a HeapRegion. 2566 2567 class IterateObjectClosureRegionClosure: public HeapRegionClosure { 2568 ObjectClosure* _cl; 2569 public: 2570 IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {} 2571 bool doHeapRegion(HeapRegion* r) { 2572 if (! r->continuesHumongous()) { 2573 r->object_iterate(_cl); 2574 } 2575 return false; 2576 } 2577 }; 2578 2579 void G1CollectedHeap::object_iterate(ObjectClosure* cl) { 2580 IterateObjectClosureRegionClosure blk(cl); 2581 heap_region_iterate(&blk); 2582 } 2583 2584 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) { 2585 // FIXME: is this right? 2586 guarantee(false, "object_iterate_since_last_GC not supported by G1 heap"); 2587 } 2588 2589 // Calls a SpaceClosure on a HeapRegion. 2590 2591 class SpaceClosureRegionClosure: public HeapRegionClosure { 2592 SpaceClosure* _cl; 2593 public: 2594 SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {} 2595 bool doHeapRegion(HeapRegion* r) { 2596 _cl->do_space(r); 2597 return false; 2598 } 2599 }; 2600 2601 void G1CollectedHeap::space_iterate(SpaceClosure* cl) { 2602 SpaceClosureRegionClosure blk(cl); 2603 heap_region_iterate(&blk); 2604 } 2605 2606 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const { 2607 _hrs.iterate(cl); 2608 } 2609 2610 void 2611 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl, 2612 uint worker_id, 2613 uint no_of_par_workers, 2614 jint claim_value) { 2615 const uint regions = n_regions(); 2616 const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ? 2617 no_of_par_workers : 2618 1); 2619 assert(UseDynamicNumberOfGCThreads || 2620 no_of_par_workers == workers()->total_workers(), 2621 "Non dynamic should use fixed number of workers"); 2622 // try to spread out the starting points of the workers 2623 const HeapRegion* start_hr = 2624 start_region_for_worker(worker_id, no_of_par_workers); 2625 const uint start_index = start_hr->hrs_index(); 2626 2627 // each worker will actually look at all regions 2628 for (uint count = 0; count < regions; ++count) { 2629 const uint index = (start_index + count) % regions; 2630 assert(0 <= index && index < regions, "sanity"); 2631 HeapRegion* r = region_at(index); 2632 // we'll ignore "continues humongous" regions (we'll process them 2633 // when we come across their corresponding "start humongous" 2634 // region) and regions already claimed 2635 if (r->claim_value() == claim_value || r->continuesHumongous()) { 2636 continue; 2637 } 2638 // OK, try to claim it 2639 if (r->claimHeapRegion(claim_value)) { 2640 // success! 2641 assert(!r->continuesHumongous(), "sanity"); 2642 if (r->startsHumongous()) { 2643 // If the region is "starts humongous" we'll iterate over its 2644 // "continues humongous" first; in fact we'll do them 2645 // first. The order is important. In on case, calling the 2646 // closure on the "starts humongous" region might de-allocate 2647 // and clear all its "continues humongous" regions and, as a 2648 // result, we might end up processing them twice. So, we'll do 2649 // them first (notice: most closures will ignore them anyway) and 2650 // then we'll do the "starts humongous" region. 2651 for (uint ch_index = index + 1; ch_index < regions; ++ch_index) { 2652 HeapRegion* chr = region_at(ch_index); 2653 2654 // if the region has already been claimed or it's not 2655 // "continues humongous" we're done 2656 if (chr->claim_value() == claim_value || 2657 !chr->continuesHumongous()) { 2658 break; 2659 } 2660 2661 // Noone should have claimed it directly. We can given 2662 // that we claimed its "starts humongous" region. 2663 assert(chr->claim_value() != claim_value, "sanity"); 2664 assert(chr->humongous_start_region() == r, "sanity"); 2665 2666 if (chr->claimHeapRegion(claim_value)) { 2667 // we should always be able to claim it; noone else should 2668 // be trying to claim this region 2669 2670 bool res2 = cl->doHeapRegion(chr); 2671 assert(!res2, "Should not abort"); 2672 2673 // Right now, this holds (i.e., no closure that actually 2674 // does something with "continues humongous" regions 2675 // clears them). We might have to weaken it in the future, 2676 // but let's leave these two asserts here for extra safety. 2677 assert(chr->continuesHumongous(), "should still be the case"); 2678 assert(chr->humongous_start_region() == r, "sanity"); 2679 } else { 2680 guarantee(false, "we should not reach here"); 2681 } 2682 } 2683 } 2684 2685 assert(!r->continuesHumongous(), "sanity"); 2686 bool res = cl->doHeapRegion(r); 2687 assert(!res, "Should not abort"); 2688 } 2689 } 2690 } 2691 2692 class ResetClaimValuesClosure: public HeapRegionClosure { 2693 public: 2694 bool doHeapRegion(HeapRegion* r) { 2695 r->set_claim_value(HeapRegion::InitialClaimValue); 2696 return false; 2697 } 2698 }; 2699 2700 void G1CollectedHeap::reset_heap_region_claim_values() { 2701 ResetClaimValuesClosure blk; 2702 heap_region_iterate(&blk); 2703 } 2704 2705 void G1CollectedHeap::reset_cset_heap_region_claim_values() { 2706 ResetClaimValuesClosure blk; 2707 collection_set_iterate(&blk); 2708 } 2709 2710 #ifdef ASSERT 2711 // This checks whether all regions in the heap have the correct claim 2712 // value. I also piggy-backed on this a check to ensure that the 2713 // humongous_start_region() information on "continues humongous" 2714 // regions is correct. 2715 2716 class CheckClaimValuesClosure : public HeapRegionClosure { 2717 private: 2718 jint _claim_value; 2719 uint _failures; 2720 HeapRegion* _sh_region; 2721 2722 public: 2723 CheckClaimValuesClosure(jint claim_value) : 2724 _claim_value(claim_value), _failures(0), _sh_region(NULL) { } 2725 bool doHeapRegion(HeapRegion* r) { 2726 if (r->claim_value() != _claim_value) { 2727 gclog_or_tty->print_cr("Region " HR_FORMAT ", " 2728 "claim value = %d, should be %d", 2729 HR_FORMAT_PARAMS(r), 2730 r->claim_value(), _claim_value); 2731 ++_failures; 2732 } 2733 if (!r->isHumongous()) { 2734 _sh_region = NULL; 2735 } else if (r->startsHumongous()) { 2736 _sh_region = r; 2737 } else if (r->continuesHumongous()) { 2738 if (r->humongous_start_region() != _sh_region) { 2739 gclog_or_tty->print_cr("Region " HR_FORMAT ", " 2740 "HS = "PTR_FORMAT", should be "PTR_FORMAT, 2741 HR_FORMAT_PARAMS(r), 2742 r->humongous_start_region(), 2743 _sh_region); 2744 ++_failures; 2745 } 2746 } 2747 return false; 2748 } 2749 uint failures() { return _failures; } 2750 }; 2751 2752 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) { 2753 CheckClaimValuesClosure cl(claim_value); 2754 heap_region_iterate(&cl); 2755 return cl.failures() == 0; 2756 } 2757 2758 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure { 2759 private: 2760 jint _claim_value; 2761 uint _failures; 2762 2763 public: 2764 CheckClaimValuesInCSetHRClosure(jint claim_value) : 2765 _claim_value(claim_value), _failures(0) { } 2766 2767 uint failures() { return _failures; } 2768 2769 bool doHeapRegion(HeapRegion* hr) { 2770 assert(hr->in_collection_set(), "how?"); 2771 assert(!hr->isHumongous(), "H-region in CSet"); 2772 if (hr->claim_value() != _claim_value) { 2773 gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", " 2774 "claim value = %d, should be %d", 2775 HR_FORMAT_PARAMS(hr), 2776 hr->claim_value(), _claim_value); 2777 _failures += 1; 2778 } 2779 return false; 2780 } 2781 }; 2782 2783 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) { 2784 CheckClaimValuesInCSetHRClosure cl(claim_value); 2785 collection_set_iterate(&cl); 2786 return cl.failures() == 0; 2787 } 2788 #endif // ASSERT 2789 2790 // Clear the cached CSet starting regions and (more importantly) 2791 // the time stamps. Called when we reset the GC time stamp. 2792 void G1CollectedHeap::clear_cset_start_regions() { 2793 assert(_worker_cset_start_region != NULL, "sanity"); 2794 assert(_worker_cset_start_region_time_stamp != NULL, "sanity"); 2795 2796 int n_queues = MAX2((int)ParallelGCThreads, 1); 2797 for (int i = 0; i < n_queues; i++) { 2798 _worker_cset_start_region[i] = NULL; 2799 _worker_cset_start_region_time_stamp[i] = 0; 2800 } 2801 } 2802 2803 // Given the id of a worker, obtain or calculate a suitable 2804 // starting region for iterating over the current collection set. 2805 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) { 2806 assert(get_gc_time_stamp() > 0, "should have been updated by now"); 2807 2808 HeapRegion* result = NULL; 2809 unsigned gc_time_stamp = get_gc_time_stamp(); 2810 2811 if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) { 2812 // Cached starting region for current worker was set 2813 // during the current pause - so it's valid. 2814 // Note: the cached starting heap region may be NULL 2815 // (when the collection set is empty). 2816 result = _worker_cset_start_region[worker_i]; 2817 assert(result == NULL || result->in_collection_set(), "sanity"); 2818 return result; 2819 } 2820 2821 // The cached entry was not valid so let's calculate 2822 // a suitable starting heap region for this worker. 2823 2824 // We want the parallel threads to start their collection 2825 // set iteration at different collection set regions to 2826 // avoid contention. 2827 // If we have: 2828 // n collection set regions 2829 // p threads 2830 // Then thread t will start at region floor ((t * n) / p) 2831 2832 result = g1_policy()->collection_set(); 2833 if (G1CollectedHeap::use_parallel_gc_threads()) { 2834 uint cs_size = g1_policy()->cset_region_length(); 2835 uint active_workers = workers()->active_workers(); 2836 assert(UseDynamicNumberOfGCThreads || 2837 active_workers == workers()->total_workers(), 2838 "Unless dynamic should use total workers"); 2839 2840 uint end_ind = (cs_size * worker_i) / active_workers; 2841 uint start_ind = 0; 2842 2843 if (worker_i > 0 && 2844 _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) { 2845 // Previous workers starting region is valid 2846 // so let's iterate from there 2847 start_ind = (cs_size * (worker_i - 1)) / active_workers; 2848 result = _worker_cset_start_region[worker_i - 1]; 2849 } 2850 2851 for (uint i = start_ind; i < end_ind; i++) { 2852 result = result->next_in_collection_set(); 2853 } 2854 } 2855 2856 // Note: the calculated starting heap region may be NULL 2857 // (when the collection set is empty). 2858 assert(result == NULL || result->in_collection_set(), "sanity"); 2859 assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp, 2860 "should be updated only once per pause"); 2861 _worker_cset_start_region[worker_i] = result; 2862 OrderAccess::storestore(); 2863 _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp; 2864 return result; 2865 } 2866 2867 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i, 2868 uint no_of_par_workers) { 2869 uint worker_num = 2870 G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U; 2871 assert(UseDynamicNumberOfGCThreads || 2872 no_of_par_workers == workers()->total_workers(), 2873 "Non dynamic should use fixed number of workers"); 2874 const uint start_index = n_regions() * worker_i / worker_num; 2875 return region_at(start_index); 2876 } 2877 2878 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) { 2879 HeapRegion* r = g1_policy()->collection_set(); 2880 while (r != NULL) { 2881 HeapRegion* next = r->next_in_collection_set(); 2882 if (cl->doHeapRegion(r)) { 2883 cl->incomplete(); 2884 return; 2885 } 2886 r = next; 2887 } 2888 } 2889 2890 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r, 2891 HeapRegionClosure *cl) { 2892 if (r == NULL) { 2893 // The CSet is empty so there's nothing to do. 2894 return; 2895 } 2896 2897 assert(r->in_collection_set(), 2898 "Start region must be a member of the collection set."); 2899 HeapRegion* cur = r; 2900 while (cur != NULL) { 2901 HeapRegion* next = cur->next_in_collection_set(); 2902 if (cl->doHeapRegion(cur) && false) { 2903 cl->incomplete(); 2904 return; 2905 } 2906 cur = next; 2907 } 2908 cur = g1_policy()->collection_set(); 2909 while (cur != r) { 2910 HeapRegion* next = cur->next_in_collection_set(); 2911 if (cl->doHeapRegion(cur) && false) { 2912 cl->incomplete(); 2913 return; 2914 } 2915 cur = next; 2916 } 2917 } 2918 2919 CompactibleSpace* G1CollectedHeap::first_compactible_space() { 2920 return n_regions() > 0 ? region_at(0) : NULL; 2921 } 2922 2923 2924 Space* G1CollectedHeap::space_containing(const void* addr) const { 2925 Space* res = heap_region_containing(addr); 2926 return res; 2927 } 2928 2929 HeapWord* G1CollectedHeap::block_start(const void* addr) const { 2930 Space* sp = space_containing(addr); 2931 if (sp != NULL) { 2932 return sp->block_start(addr); 2933 } 2934 return NULL; 2935 } 2936 2937 size_t G1CollectedHeap::block_size(const HeapWord* addr) const { 2938 Space* sp = space_containing(addr); 2939 assert(sp != NULL, "block_size of address outside of heap"); 2940 return sp->block_size(addr); 2941 } 2942 2943 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const { 2944 Space* sp = space_containing(addr); 2945 return sp->block_is_obj(addr); 2946 } 2947 2948 bool G1CollectedHeap::supports_tlab_allocation() const { 2949 return true; 2950 } 2951 2952 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const { 2953 return HeapRegion::GrainBytes; 2954 } 2955 2956 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const { 2957 // Return the remaining space in the cur alloc region, but not less than 2958 // the min TLAB size. 2959 2960 // Also, this value can be at most the humongous object threshold, 2961 // since we can't allow tlabs to grow big enough to accomodate 2962 // humongous objects. 2963 2964 HeapRegion* hr = _mutator_alloc_region.get(); 2965 size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize; 2966 if (hr == NULL) { 2967 return max_tlab_size; 2968 } else { 2969 return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size); 2970 } 2971 } 2972 2973 size_t G1CollectedHeap::max_capacity() const { 2974 return _g1_reserved.byte_size(); 2975 } 2976 2977 jlong G1CollectedHeap::millis_since_last_gc() { 2978 // assert(false, "NYI"); 2979 return 0; 2980 } 2981 2982 void G1CollectedHeap::prepare_for_verify() { 2983 if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) { 2984 ensure_parsability(false); 2985 } 2986 g1_rem_set()->prepare_for_verify(); 2987 } 2988 2989 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr, 2990 VerifyOption vo) { 2991 switch (vo) { 2992 case VerifyOption_G1UsePrevMarking: 2993 return hr->obj_allocated_since_prev_marking(obj); 2994 case VerifyOption_G1UseNextMarking: 2995 return hr->obj_allocated_since_next_marking(obj); 2996 case VerifyOption_G1UseMarkWord: 2997 return false; 2998 default: 2999 ShouldNotReachHere(); 3000 } 3001 return false; // keep some compilers happy 3002 } 3003 3004 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) { 3005 switch (vo) { 3006 case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start(); 3007 case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start(); 3008 case VerifyOption_G1UseMarkWord: return NULL; 3009 default: ShouldNotReachHere(); 3010 } 3011 return NULL; // keep some compilers happy 3012 } 3013 3014 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) { 3015 switch (vo) { 3016 case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj); 3017 case VerifyOption_G1UseNextMarking: return isMarkedNext(obj); 3018 case VerifyOption_G1UseMarkWord: return obj->is_gc_marked(); 3019 default: ShouldNotReachHere(); 3020 } 3021 return false; // keep some compilers happy 3022 } 3023 3024 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) { 3025 switch (vo) { 3026 case VerifyOption_G1UsePrevMarking: return "PTAMS"; 3027 case VerifyOption_G1UseNextMarking: return "NTAMS"; 3028 case VerifyOption_G1UseMarkWord: return "NONE"; 3029 default: ShouldNotReachHere(); 3030 } 3031 return NULL; // keep some compilers happy 3032 } 3033 3034 class VerifyLivenessOopClosure: public OopClosure { 3035 G1CollectedHeap* _g1h; 3036 VerifyOption _vo; 3037 public: 3038 VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo): 3039 _g1h(g1h), _vo(vo) 3040 { } 3041 void do_oop(narrowOop *p) { do_oop_work(p); } 3042 void do_oop( oop *p) { do_oop_work(p); } 3043 3044 template <class T> void do_oop_work(T *p) { 3045 oop obj = oopDesc::load_decode_heap_oop(p); 3046 guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo), 3047 "Dead object referenced by a not dead object"); 3048 } 3049 }; 3050 3051 class VerifyObjsInRegionClosure: public ObjectClosure { 3052 private: 3053 G1CollectedHeap* _g1h; 3054 size_t _live_bytes; 3055 HeapRegion *_hr; 3056 VerifyOption _vo; 3057 public: 3058 // _vo == UsePrevMarking -> use "prev" marking information, 3059 // _vo == UseNextMarking -> use "next" marking information, 3060 // _vo == UseMarkWord -> use mark word from object header. 3061 VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo) 3062 : _live_bytes(0), _hr(hr), _vo(vo) { 3063 _g1h = G1CollectedHeap::heap(); 3064 } 3065 void do_object(oop o) { 3066 VerifyLivenessOopClosure isLive(_g1h, _vo); 3067 assert(o != NULL, "Huh?"); 3068 if (!_g1h->is_obj_dead_cond(o, _vo)) { 3069 // If the object is alive according to the mark word, 3070 // then verify that the marking information agrees. 3071 // Note we can't verify the contra-positive of the 3072 // above: if the object is dead (according to the mark 3073 // word), it may not be marked, or may have been marked 3074 // but has since became dead, or may have been allocated 3075 // since the last marking. 3076 if (_vo == VerifyOption_G1UseMarkWord) { 3077 guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch"); 3078 } 3079 3080 o->oop_iterate_no_header(&isLive); 3081 if (!_hr->obj_allocated_since_prev_marking(o)) { 3082 size_t obj_size = o->size(); // Make sure we don't overflow 3083 _live_bytes += (obj_size * HeapWordSize); 3084 } 3085 } 3086 } 3087 size_t live_bytes() { return _live_bytes; } 3088 }; 3089 3090 class PrintObjsInRegionClosure : public ObjectClosure { 3091 HeapRegion *_hr; 3092 G1CollectedHeap *_g1; 3093 public: 3094 PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) { 3095 _g1 = G1CollectedHeap::heap(); 3096 }; 3097 3098 void do_object(oop o) { 3099 if (o != NULL) { 3100 HeapWord *start = (HeapWord *) o; 3101 size_t word_sz = o->size(); 3102 gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT 3103 " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n", 3104 (void*) o, word_sz, 3105 _g1->isMarkedPrev(o), 3106 _g1->isMarkedNext(o), 3107 _hr->obj_allocated_since_prev_marking(o)); 3108 HeapWord *end = start + word_sz; 3109 HeapWord *cur; 3110 int *val; 3111 for (cur = start; cur < end; cur++) { 3112 val = (int *) cur; 3113 gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val); 3114 } 3115 } 3116 } 3117 }; 3118 3119 class VerifyRegionClosure: public HeapRegionClosure { 3120 private: 3121 bool _par; 3122 VerifyOption _vo; 3123 bool _failures; 3124 public: 3125 // _vo == UsePrevMarking -> use "prev" marking information, 3126 // _vo == UseNextMarking -> use "next" marking information, 3127 // _vo == UseMarkWord -> use mark word from object header. 3128 VerifyRegionClosure(bool par, VerifyOption vo) 3129 : _par(par), 3130 _vo(vo), 3131 _failures(false) {} 3132 3133 bool failures() { 3134 return _failures; 3135 } 3136 3137 bool doHeapRegion(HeapRegion* r) { 3138 if (!r->continuesHumongous()) { 3139 bool failures = false; 3140 r->verify(_vo, &failures); 3141 if (failures) { 3142 _failures = true; 3143 } else { 3144 VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo); 3145 r->object_iterate(¬_dead_yet_cl); 3146 if (_vo != VerifyOption_G1UseNextMarking) { 3147 if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) { 3148 gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] " 3149 "max_live_bytes "SIZE_FORMAT" " 3150 "< calculated "SIZE_FORMAT, 3151 r->bottom(), r->end(), 3152 r->max_live_bytes(), 3153 not_dead_yet_cl.live_bytes()); 3154 _failures = true; 3155 } 3156 } else { 3157 // When vo == UseNextMarking we cannot currently do a sanity 3158 // check on the live bytes as the calculation has not been 3159 // finalized yet. 3160 } 3161 } 3162 } 3163 return false; // stop the region iteration if we hit a failure 3164 } 3165 }; 3166 3167 class YoungRefCounterClosure : public OopClosure { 3168 G1CollectedHeap* _g1h; 3169 int _count; 3170 public: 3171 YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {} 3172 void do_oop(oop* p) { if (_g1h->is_in_young(*p)) { _count++; } } 3173 void do_oop(narrowOop* p) { ShouldNotReachHere(); } 3174 3175 int count() { return _count; } 3176 void reset_count() { _count = 0; }; 3177 }; 3178 3179 class VerifyKlassClosure: public KlassClosure { 3180 YoungRefCounterClosure _young_ref_counter_closure; 3181 OopClosure *_oop_closure; 3182 public: 3183 VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {} 3184 void do_klass(Klass* k) { 3185 k->oops_do(_oop_closure); 3186 3187 _young_ref_counter_closure.reset_count(); 3188 k->oops_do(&_young_ref_counter_closure); 3189 if (_young_ref_counter_closure.count() > 0) { 3190 guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k)); 3191 } 3192 } 3193 }; 3194 3195 // TODO: VerifyRootsClosure extends OopsInGenClosure so that we can 3196 // pass it as the perm_blk to SharedHeap::process_strong_roots. 3197 // When process_strong_roots stop calling perm_blk->younger_refs_iterate 3198 // we can change this closure to extend the simpler OopClosure. 3199 class VerifyRootsClosure: public OopsInGenClosure { 3200 private: 3201 G1CollectedHeap* _g1h; 3202 VerifyOption _vo; 3203 bool _failures; 3204 public: 3205 // _vo == UsePrevMarking -> use "prev" marking information, 3206 // _vo == UseNextMarking -> use "next" marking information, 3207 // _vo == UseMarkWord -> use mark word from object header. 3208 VerifyRootsClosure(VerifyOption vo) : 3209 _g1h(G1CollectedHeap::heap()), 3210 _vo(vo), 3211 _failures(false) { } 3212 3213 bool failures() { return _failures; } 3214 3215 template <class T> void do_oop_nv(T* p) { 3216 T heap_oop = oopDesc::load_heap_oop(p); 3217 if (!oopDesc::is_null(heap_oop)) { 3218 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 3219 if (_g1h->is_obj_dead_cond(obj, _vo)) { 3220 gclog_or_tty->print_cr("Root location "PTR_FORMAT" " 3221 "points to dead obj "PTR_FORMAT, p, (void*) obj); 3222 if (_vo == VerifyOption_G1UseMarkWord) { 3223 gclog_or_tty->print_cr(" Mark word: "PTR_FORMAT, (void*)(obj->mark())); 3224 } 3225 obj->print_on(gclog_or_tty); 3226 _failures = true; 3227 } 3228 } 3229 } 3230 3231 void do_oop(oop* p) { do_oop_nv(p); } 3232 void do_oop(narrowOop* p) { do_oop_nv(p); } 3233 }; 3234 3235 // This is the task used for parallel heap verification. 3236 3237 class G1ParVerifyTask: public AbstractGangTask { 3238 private: 3239 G1CollectedHeap* _g1h; 3240 VerifyOption _vo; 3241 bool _failures; 3242 3243 public: 3244 // _vo == UsePrevMarking -> use "prev" marking information, 3245 // _vo == UseNextMarking -> use "next" marking information, 3246 // _vo == UseMarkWord -> use mark word from object header. 3247 G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) : 3248 AbstractGangTask("Parallel verify task"), 3249 _g1h(g1h), 3250 _vo(vo), 3251 _failures(false) { } 3252 3253 bool failures() { 3254 return _failures; 3255 } 3256 3257 void work(uint worker_id) { 3258 HandleMark hm; 3259 VerifyRegionClosure blk(true, _vo); 3260 _g1h->heap_region_par_iterate_chunked(&blk, worker_id, 3261 _g1h->workers()->active_workers(), 3262 HeapRegion::ParVerifyClaimValue); 3263 if (blk.failures()) { 3264 _failures = true; 3265 } 3266 } 3267 }; 3268 3269 void G1CollectedHeap::verify(bool silent) { 3270 verify(silent, VerifyOption_G1UsePrevMarking); 3271 } 3272 3273 void G1CollectedHeap::verify(bool silent, 3274 VerifyOption vo) { 3275 if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) { 3276 if (!silent) { gclog_or_tty->print("Roots "); } 3277 VerifyRootsClosure rootsCl(vo); 3278 3279 assert(Thread::current()->is_VM_thread(), 3280 "Expected to be executed serially by the VM thread at this point"); 3281 3282 CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false); 3283 VerifyKlassClosure klassCl(this, &rootsCl); 3284 3285 // We apply the relevant closures to all the oops in the 3286 // system dictionary, the string table and the code cache. 3287 const int so = SO_AllClasses | SO_Strings | SO_CodeCache; 3288 3289 // Need cleared claim bits for the strong roots processing 3290 ClassLoaderDataGraph::clear_claimed_marks(); 3291 3292 process_strong_roots(true, // activate StrongRootsScope 3293 false, // we set "is scavenging" to false, 3294 // so we don't reset the dirty cards. 3295 ScanningOption(so), // roots scanning options 3296 &rootsCl, 3297 &blobsCl, 3298 &klassCl 3299 ); 3300 3301 bool failures = rootsCl.failures(); 3302 3303 if (vo != VerifyOption_G1UseMarkWord) { 3304 // If we're verifying during a full GC then the region sets 3305 // will have been torn down at the start of the GC. Therefore 3306 // verifying the region sets will fail. So we only verify 3307 // the region sets when not in a full GC. 3308 if (!silent) { gclog_or_tty->print("HeapRegionSets "); } 3309 verify_region_sets(); 3310 } 3311 3312 if (!silent) { gclog_or_tty->print("HeapRegions "); } 3313 if (GCParallelVerificationEnabled && ParallelGCThreads > 1) { 3314 assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue), 3315 "sanity check"); 3316 3317 G1ParVerifyTask task(this, vo); 3318 assert(UseDynamicNumberOfGCThreads || 3319 workers()->active_workers() == workers()->total_workers(), 3320 "If not dynamic should be using all the workers"); 3321 int n_workers = workers()->active_workers(); 3322 set_par_threads(n_workers); 3323 workers()->run_task(&task); 3324 set_par_threads(0); 3325 if (task.failures()) { 3326 failures = true; 3327 } 3328 3329 // Checks that the expected amount of parallel work was done. 3330 // The implication is that n_workers is > 0. 3331 assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue), 3332 "sanity check"); 3333 3334 reset_heap_region_claim_values(); 3335 3336 assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue), 3337 "sanity check"); 3338 } else { 3339 VerifyRegionClosure blk(false, vo); 3340 heap_region_iterate(&blk); 3341 if (blk.failures()) { 3342 failures = true; 3343 } 3344 } 3345 if (!silent) gclog_or_tty->print("RemSet "); 3346 rem_set()->verify(); 3347 3348 if (failures) { 3349 gclog_or_tty->print_cr("Heap:"); 3350 // It helps to have the per-region information in the output to 3351 // help us track down what went wrong. This is why we call 3352 // print_extended_on() instead of print_on(). 3353 print_extended_on(gclog_or_tty); 3354 gclog_or_tty->print_cr(""); 3355 #ifndef PRODUCT 3356 if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) { 3357 concurrent_mark()->print_reachable("at-verification-failure", 3358 vo, false /* all */); 3359 } 3360 #endif 3361 gclog_or_tty->flush(); 3362 } 3363 guarantee(!failures, "there should not have been any failures"); 3364 } else { 3365 if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) "); 3366 } 3367 } 3368 3369 class PrintRegionClosure: public HeapRegionClosure { 3370 outputStream* _st; 3371 public: 3372 PrintRegionClosure(outputStream* st) : _st(st) {} 3373 bool doHeapRegion(HeapRegion* r) { 3374 r->print_on(_st); 3375 return false; 3376 } 3377 }; 3378 3379 void G1CollectedHeap::print_on(outputStream* st) const { 3380 st->print(" %-20s", "garbage-first heap"); 3381 st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K", 3382 capacity()/K, used_unlocked()/K); 3383 st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")", 3384 _g1_storage.low_boundary(), 3385 _g1_storage.high(), 3386 _g1_storage.high_boundary()); 3387 st->cr(); 3388 st->print(" region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K); 3389 uint young_regions = _young_list->length(); 3390 st->print("%u young (" SIZE_FORMAT "K), ", young_regions, 3391 (size_t) young_regions * HeapRegion::GrainBytes / K); 3392 uint survivor_regions = g1_policy()->recorded_survivor_regions(); 3393 st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions, 3394 (size_t) survivor_regions * HeapRegion::GrainBytes / K); 3395 st->cr(); 3396 MetaspaceAux::print_on(st); 3397 } 3398 3399 void G1CollectedHeap::print_extended_on(outputStream* st) const { 3400 print_on(st); 3401 3402 // Print the per-region information. 3403 st->cr(); 3404 st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), " 3405 "HS=humongous(starts), HC=humongous(continues), " 3406 "CS=collection set, F=free, TS=gc time stamp, " 3407 "PTAMS=previous top-at-mark-start, " 3408 "NTAMS=next top-at-mark-start)"); 3409 PrintRegionClosure blk(st); 3410 heap_region_iterate(&blk); 3411 } 3412 3413 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const { 3414 if (G1CollectedHeap::use_parallel_gc_threads()) { 3415 workers()->print_worker_threads_on(st); 3416 } 3417 _cmThread->print_on(st); 3418 st->cr(); 3419 _cm->print_worker_threads_on(st); 3420 _cg1r->print_worker_threads_on(st); 3421 } 3422 3423 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const { 3424 if (G1CollectedHeap::use_parallel_gc_threads()) { 3425 workers()->threads_do(tc); 3426 } 3427 tc->do_thread(_cmThread); 3428 _cg1r->threads_do(tc); 3429 } 3430 3431 void G1CollectedHeap::print_tracing_info() const { 3432 // We'll overload this to mean "trace GC pause statistics." 3433 if (TraceGen0Time || TraceGen1Time) { 3434 // The "G1CollectorPolicy" is keeping track of these stats, so delegate 3435 // to that. 3436 g1_policy()->print_tracing_info(); 3437 } 3438 if (G1SummarizeRSetStats) { 3439 g1_rem_set()->print_summary_info(); 3440 } 3441 if (G1SummarizeConcMark) { 3442 concurrent_mark()->print_summary_info(); 3443 } 3444 g1_policy()->print_yg_surv_rate_info(); 3445 SpecializationStats::print(); 3446 } 3447 3448 #ifndef PRODUCT 3449 // Helpful for debugging RSet issues. 3450 3451 class PrintRSetsClosure : public HeapRegionClosure { 3452 private: 3453 const char* _msg; 3454 size_t _occupied_sum; 3455 3456 public: 3457 bool doHeapRegion(HeapRegion* r) { 3458 HeapRegionRemSet* hrrs = r->rem_set(); 3459 size_t occupied = hrrs->occupied(); 3460 _occupied_sum += occupied; 3461 3462 gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT, 3463 HR_FORMAT_PARAMS(r)); 3464 if (occupied == 0) { 3465 gclog_or_tty->print_cr(" RSet is empty"); 3466 } else { 3467 hrrs->print(); 3468 } 3469 gclog_or_tty->print_cr("----------"); 3470 return false; 3471 } 3472 3473 PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) { 3474 gclog_or_tty->cr(); 3475 gclog_or_tty->print_cr("========================================"); 3476 gclog_or_tty->print_cr(msg); 3477 gclog_or_tty->cr(); 3478 } 3479 3480 ~PrintRSetsClosure() { 3481 gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum); 3482 gclog_or_tty->print_cr("========================================"); 3483 gclog_or_tty->cr(); 3484 } 3485 }; 3486 3487 void G1CollectedHeap::print_cset_rsets() { 3488 PrintRSetsClosure cl("Printing CSet RSets"); 3489 collection_set_iterate(&cl); 3490 } 3491 3492 void G1CollectedHeap::print_all_rsets() { 3493 PrintRSetsClosure cl("Printing All RSets");; 3494 heap_region_iterate(&cl); 3495 } 3496 #endif // PRODUCT 3497 3498 G1CollectedHeap* G1CollectedHeap::heap() { 3499 assert(_sh->kind() == CollectedHeap::G1CollectedHeap, 3500 "not a garbage-first heap"); 3501 return _g1h; 3502 } 3503 3504 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) { 3505 // always_do_update_barrier = false; 3506 assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer"); 3507 // Call allocation profiler 3508 AllocationProfiler::iterate_since_last_gc(); 3509 // Fill TLAB's and such 3510 ensure_parsability(true); 3511 } 3512 3513 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) { 3514 // FIXME: what is this about? 3515 // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled" 3516 // is set. 3517 COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(), 3518 "derived pointer present")); 3519 // always_do_update_barrier = true; 3520 3521 // We have just completed a GC. Update the soft reference 3522 // policy with the new heap occupancy 3523 Universe::update_heap_info_at_gc(); 3524 } 3525 3526 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size, 3527 unsigned int gc_count_before, 3528 bool* succeeded) { 3529 assert_heap_not_locked_and_not_at_safepoint(); 3530 g1_policy()->record_stop_world_start(); 3531 VM_G1IncCollectionPause op(gc_count_before, 3532 word_size, 3533 false, /* should_initiate_conc_mark */ 3534 g1_policy()->max_pause_time_ms(), 3535 GCCause::_g1_inc_collection_pause); 3536 VMThread::execute(&op); 3537 3538 HeapWord* result = op.result(); 3539 bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded(); 3540 assert(result == NULL || ret_succeeded, 3541 "the result should be NULL if the VM did not succeed"); 3542 *succeeded = ret_succeeded; 3543 3544 assert_heap_not_locked(); 3545 return result; 3546 } 3547 3548 void 3549 G1CollectedHeap::doConcurrentMark() { 3550 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 3551 if (!_cmThread->in_progress()) { 3552 _cmThread->set_started(); 3553 CGC_lock->notify(); 3554 } 3555 } 3556 3557 size_t G1CollectedHeap::pending_card_num() { 3558 size_t extra_cards = 0; 3559 JavaThread *curr = Threads::first(); 3560 while (curr != NULL) { 3561 DirtyCardQueue& dcq = curr->dirty_card_queue(); 3562 extra_cards += dcq.size(); 3563 curr = curr->next(); 3564 } 3565 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 3566 size_t buffer_size = dcqs.buffer_size(); 3567 size_t buffer_num = dcqs.completed_buffers_num(); 3568 3569 // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes 3570 // in bytes - not the number of 'entries'. We need to convert 3571 // into a number of cards. 3572 return (buffer_size * buffer_num + extra_cards) / oopSize; 3573 } 3574 3575 size_t G1CollectedHeap::cards_scanned() { 3576 return g1_rem_set()->cardsScanned(); 3577 } 3578 3579 void 3580 G1CollectedHeap::setup_surviving_young_words() { 3581 assert(_surviving_young_words == NULL, "pre-condition"); 3582 uint array_length = g1_policy()->young_cset_region_length(); 3583 _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC); 3584 if (_surviving_young_words == NULL) { 3585 vm_exit_out_of_memory(sizeof(size_t) * array_length, 3586 "Not enough space for young surv words summary."); 3587 } 3588 memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t)); 3589 #ifdef ASSERT 3590 for (uint i = 0; i < array_length; ++i) { 3591 assert( _surviving_young_words[i] == 0, "memset above" ); 3592 } 3593 #endif // !ASSERT 3594 } 3595 3596 void 3597 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) { 3598 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); 3599 uint array_length = g1_policy()->young_cset_region_length(); 3600 for (uint i = 0; i < array_length; ++i) { 3601 _surviving_young_words[i] += surv_young_words[i]; 3602 } 3603 } 3604 3605 void 3606 G1CollectedHeap::cleanup_surviving_young_words() { 3607 guarantee( _surviving_young_words != NULL, "pre-condition" ); 3608 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC); 3609 _surviving_young_words = NULL; 3610 } 3611 3612 #ifdef ASSERT 3613 class VerifyCSetClosure: public HeapRegionClosure { 3614 public: 3615 bool doHeapRegion(HeapRegion* hr) { 3616 // Here we check that the CSet region's RSet is ready for parallel 3617 // iteration. The fields that we'll verify are only manipulated 3618 // when the region is part of a CSet and is collected. Afterwards, 3619 // we reset these fields when we clear the region's RSet (when the 3620 // region is freed) so they are ready when the region is 3621 // re-allocated. The only exception to this is if there's an 3622 // evacuation failure and instead of freeing the region we leave 3623 // it in the heap. In that case, we reset these fields during 3624 // evacuation failure handling. 3625 guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification"); 3626 3627 // Here's a good place to add any other checks we'd like to 3628 // perform on CSet regions. 3629 return false; 3630 } 3631 }; 3632 #endif // ASSERT 3633 3634 #if TASKQUEUE_STATS 3635 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) { 3636 st->print_raw_cr("GC Task Stats"); 3637 st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr(); 3638 st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr(); 3639 } 3640 3641 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const { 3642 print_taskqueue_stats_hdr(st); 3643 3644 TaskQueueStats totals; 3645 const int n = workers() != NULL ? workers()->total_workers() : 1; 3646 for (int i = 0; i < n; ++i) { 3647 st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr(); 3648 totals += task_queue(i)->stats; 3649 } 3650 st->print_raw("tot "); totals.print(st); st->cr(); 3651 3652 DEBUG_ONLY(totals.verify()); 3653 } 3654 3655 void G1CollectedHeap::reset_taskqueue_stats() { 3656 const int n = workers() != NULL ? workers()->total_workers() : 1; 3657 for (int i = 0; i < n; ++i) { 3658 task_queue(i)->stats.reset(); 3659 } 3660 } 3661 #endif // TASKQUEUE_STATS 3662 3663 void G1CollectedHeap::log_gc_header() { 3664 if (!G1Log::fine()) { 3665 return; 3666 } 3667 3668 gclog_or_tty->date_stamp(PrintGCDateStamps); 3669 gclog_or_tty->stamp(PrintGCTimeStamps); 3670 3671 GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause()) 3672 .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)") 3673 .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : ""); 3674 3675 gclog_or_tty->print("[%s", (const char*)gc_cause_str); 3676 } 3677 3678 void G1CollectedHeap::log_gc_footer(double pause_time_sec) { 3679 if (!G1Log::fine()) { 3680 return; 3681 } 3682 3683 if (G1Log::finer()) { 3684 if (evacuation_failed()) { 3685 gclog_or_tty->print(" (to-space exhausted)"); 3686 } 3687 gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec); 3688 g1_policy()->phase_times()->note_gc_end(); 3689 g1_policy()->phase_times()->print(pause_time_sec); 3690 g1_policy()->print_detailed_heap_transition(); 3691 } else { 3692 if (evacuation_failed()) { 3693 gclog_or_tty->print("--"); 3694 } 3695 g1_policy()->print_heap_transition(); 3696 gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec); 3697 } 3698 gclog_or_tty->flush(); 3699 } 3700 3701 bool 3702 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) { 3703 assert_at_safepoint(true /* should_be_vm_thread */); 3704 guarantee(!is_gc_active(), "collection is not reentrant"); 3705 3706 if (GC_locker::check_active_before_gc()) { 3707 return false; 3708 } 3709 3710 SvcGCMarker sgcm(SvcGCMarker::MINOR); 3711 ResourceMark rm; 3712 3713 print_heap_before_gc(); 3714 3715 HRSPhaseSetter x(HRSPhaseEvacuation); 3716 verify_region_sets_optional(); 3717 verify_dirty_young_regions(); 3718 3719 // This call will decide whether this pause is an initial-mark 3720 // pause. If it is, during_initial_mark_pause() will return true 3721 // for the duration of this pause. 3722 g1_policy()->decide_on_conc_mark_initiation(); 3723 3724 // We do not allow initial-mark to be piggy-backed on a mixed GC. 3725 assert(!g1_policy()->during_initial_mark_pause() || 3726 g1_policy()->gcs_are_young(), "sanity"); 3727 3728 // We also do not allow mixed GCs during marking. 3729 assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity"); 3730 3731 // Record whether this pause is an initial mark. When the current 3732 // thread has completed its logging output and it's safe to signal 3733 // the CM thread, the flag's value in the policy has been reset. 3734 bool should_start_conc_mark = g1_policy()->during_initial_mark_pause(); 3735 3736 // Inner scope for scope based logging, timers, and stats collection 3737 { 3738 if (g1_policy()->during_initial_mark_pause()) { 3739 // We are about to start a marking cycle, so we increment the 3740 // full collection counter. 3741 increment_old_marking_cycles_started(); 3742 } 3743 TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty); 3744 3745 int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ? 3746 workers()->active_workers() : 1); 3747 double pause_start_sec = os::elapsedTime(); 3748 g1_policy()->phase_times()->note_gc_start(active_workers); 3749 log_gc_header(); 3750 3751 TraceCollectorStats tcs(g1mm()->incremental_collection_counters()); 3752 TraceMemoryManagerStats tms(false /* fullGC */, gc_cause()); 3753 3754 // If the secondary_free_list is not empty, append it to the 3755 // free_list. No need to wait for the cleanup operation to finish; 3756 // the region allocation code will check the secondary_free_list 3757 // and wait if necessary. If the G1StressConcRegionFreeing flag is 3758 // set, skip this step so that the region allocation code has to 3759 // get entries from the secondary_free_list. 3760 if (!G1StressConcRegionFreeing) { 3761 append_secondary_free_list_if_not_empty_with_lock(); 3762 } 3763 3764 assert(check_young_list_well_formed(), 3765 "young list should be well formed"); 3766 3767 // Don't dynamically change the number of GC threads this early. A value of 3768 // 0 is used to indicate serial work. When parallel work is done, 3769 // it will be set. 3770 3771 { // Call to jvmpi::post_class_unload_events must occur outside of active GC 3772 IsGCActiveMark x; 3773 3774 gc_prologue(false); 3775 increment_total_collections(false /* full gc */); 3776 increment_gc_time_stamp(); 3777 3778 verify_before_gc(); 3779 3780 COMPILER2_PRESENT(DerivedPointerTable::clear()); 3781 3782 // Please see comment in g1CollectedHeap.hpp and 3783 // G1CollectedHeap::ref_processing_init() to see how 3784 // reference processing currently works in G1. 3785 3786 // Enable discovery in the STW reference processor 3787 ref_processor_stw()->enable_discovery(true /*verify_disabled*/, 3788 true /*verify_no_refs*/); 3789 3790 { 3791 // We want to temporarily turn off discovery by the 3792 // CM ref processor, if necessary, and turn it back on 3793 // on again later if we do. Using a scoped 3794 // NoRefDiscovery object will do this. 3795 NoRefDiscovery no_cm_discovery(ref_processor_cm()); 3796 3797 // Forget the current alloc region (we might even choose it to be part 3798 // of the collection set!). 3799 release_mutator_alloc_region(); 3800 3801 // We should call this after we retire the mutator alloc 3802 // region(s) so that all the ALLOC / RETIRE events are generated 3803 // before the start GC event. 3804 _hr_printer.start_gc(false /* full */, (size_t) total_collections()); 3805 3806 // This timing is only used by the ergonomics to handle our pause target. 3807 // It is unclear why this should not include the full pause. We will 3808 // investigate this in CR 7178365. 3809 // 3810 // Preserving the old comment here if that helps the investigation: 3811 // 3812 // The elapsed time induced by the start time below deliberately elides 3813 // the possible verification above. 3814 double sample_start_time_sec = os::elapsedTime(); 3815 size_t start_used_bytes = used(); 3816 3817 #if YOUNG_LIST_VERBOSE 3818 gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:"); 3819 _young_list->print(); 3820 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); 3821 #endif // YOUNG_LIST_VERBOSE 3822 3823 g1_policy()->record_collection_pause_start(sample_start_time_sec, 3824 start_used_bytes); 3825 3826 double scan_wait_start = os::elapsedTime(); 3827 // We have to wait until the CM threads finish scanning the 3828 // root regions as it's the only way to ensure that all the 3829 // objects on them have been correctly scanned before we start 3830 // moving them during the GC. 3831 bool waited = _cm->root_regions()->wait_until_scan_finished(); 3832 double wait_time_ms = 0.0; 3833 if (waited) { 3834 double scan_wait_end = os::elapsedTime(); 3835 wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0; 3836 } 3837 g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms); 3838 3839 #if YOUNG_LIST_VERBOSE 3840 gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:"); 3841 _young_list->print(); 3842 #endif // YOUNG_LIST_VERBOSE 3843 3844 if (g1_policy()->during_initial_mark_pause()) { 3845 concurrent_mark()->checkpointRootsInitialPre(); 3846 } 3847 3848 #if YOUNG_LIST_VERBOSE 3849 gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:"); 3850 _young_list->print(); 3851 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); 3852 #endif // YOUNG_LIST_VERBOSE 3853 3854 g1_policy()->finalize_cset(target_pause_time_ms); 3855 3856 _cm->note_start_of_gc(); 3857 // We should not verify the per-thread SATB buffers given that 3858 // we have not filtered them yet (we'll do so during the 3859 // GC). We also call this after finalize_cset() to 3860 // ensure that the CSet has been finalized. 3861 _cm->verify_no_cset_oops(true /* verify_stacks */, 3862 true /* verify_enqueued_buffers */, 3863 false /* verify_thread_buffers */, 3864 true /* verify_fingers */); 3865 3866 if (_hr_printer.is_active()) { 3867 HeapRegion* hr = g1_policy()->collection_set(); 3868 while (hr != NULL) { 3869 G1HRPrinter::RegionType type; 3870 if (!hr->is_young()) { 3871 type = G1HRPrinter::Old; 3872 } else if (hr->is_survivor()) { 3873 type = G1HRPrinter::Survivor; 3874 } else { 3875 type = G1HRPrinter::Eden; 3876 } 3877 _hr_printer.cset(hr); 3878 hr = hr->next_in_collection_set(); 3879 } 3880 } 3881 3882 #ifdef ASSERT 3883 VerifyCSetClosure cl; 3884 collection_set_iterate(&cl); 3885 #endif // ASSERT 3886 3887 setup_surviving_young_words(); 3888 3889 // Initialize the GC alloc regions. 3890 init_gc_alloc_regions(); 3891 3892 // Actually do the work... 3893 evacuate_collection_set(); 3894 3895 // We do this to mainly verify the per-thread SATB buffers 3896 // (which have been filtered by now) since we didn't verify 3897 // them earlier. No point in re-checking the stacks / enqueued 3898 // buffers given that the CSet has not changed since last time 3899 // we checked. 3900 _cm->verify_no_cset_oops(false /* verify_stacks */, 3901 false /* verify_enqueued_buffers */, 3902 true /* verify_thread_buffers */, 3903 true /* verify_fingers */); 3904 3905 free_collection_set(g1_policy()->collection_set()); 3906 g1_policy()->clear_collection_set(); 3907 3908 cleanup_surviving_young_words(); 3909 3910 // Start a new incremental collection set for the next pause. 3911 g1_policy()->start_incremental_cset_building(); 3912 3913 // Clear the _cset_fast_test bitmap in anticipation of adding 3914 // regions to the incremental collection set for the next 3915 // evacuation pause. 3916 clear_cset_fast_test(); 3917 3918 _young_list->reset_sampled_info(); 3919 3920 // Don't check the whole heap at this point as the 3921 // GC alloc regions from this pause have been tagged 3922 // as survivors and moved on to the survivor list. 3923 // Survivor regions will fail the !is_young() check. 3924 assert(check_young_list_empty(false /* check_heap */), 3925 "young list should be empty"); 3926 3927 #if YOUNG_LIST_VERBOSE 3928 gclog_or_tty->print_cr("Before recording survivors.\nYoung List:"); 3929 _young_list->print(); 3930 #endif // YOUNG_LIST_VERBOSE 3931 3932 g1_policy()->record_survivor_regions(_young_list->survivor_length(), 3933 _young_list->first_survivor_region(), 3934 _young_list->last_survivor_region()); 3935 3936 _young_list->reset_auxilary_lists(); 3937 3938 if (evacuation_failed()) { 3939 _summary_bytes_used = recalculate_used(); 3940 } else { 3941 // The "used" of the the collection set have already been subtracted 3942 // when they were freed. Add in the bytes evacuated. 3943 _summary_bytes_used += g1_policy()->bytes_copied_during_gc(); 3944 } 3945 3946 if (g1_policy()->during_initial_mark_pause()) { 3947 // We have to do this before we notify the CM threads that 3948 // they can start working to make sure that all the 3949 // appropriate initialization is done on the CM object. 3950 concurrent_mark()->checkpointRootsInitialPost(); 3951 set_marking_started(); 3952 // Note that we don't actually trigger the CM thread at 3953 // this point. We do that later when we're sure that 3954 // the current thread has completed its logging output. 3955 } 3956 3957 allocate_dummy_regions(); 3958 3959 #if YOUNG_LIST_VERBOSE 3960 gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:"); 3961 _young_list->print(); 3962 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); 3963 #endif // YOUNG_LIST_VERBOSE 3964 3965 init_mutator_alloc_region(); 3966 3967 { 3968 size_t expand_bytes = g1_policy()->expansion_amount(); 3969 if (expand_bytes > 0) { 3970 size_t bytes_before = capacity(); 3971 // No need for an ergo verbose message here, 3972 // expansion_amount() does this when it returns a value > 0. 3973 if (!expand(expand_bytes)) { 3974 // We failed to expand the heap so let's verify that 3975 // committed/uncommitted amount match the backing store 3976 assert(capacity() == _g1_storage.committed_size(), "committed size mismatch"); 3977 assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch"); 3978 } 3979 } 3980 } 3981 3982 // We redo the verificaiton but now wrt to the new CSet which 3983 // has just got initialized after the previous CSet was freed. 3984 _cm->verify_no_cset_oops(true /* verify_stacks */, 3985 true /* verify_enqueued_buffers */, 3986 true /* verify_thread_buffers */, 3987 true /* verify_fingers */); 3988 _cm->note_end_of_gc(); 3989 3990 // This timing is only used by the ergonomics to handle our pause target. 3991 // It is unclear why this should not include the full pause. We will 3992 // investigate this in CR 7178365. 3993 double sample_end_time_sec = os::elapsedTime(); 3994 double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS; 3995 g1_policy()->record_collection_pause_end(pause_time_ms); 3996 3997 MemoryService::track_memory_usage(); 3998 3999 // In prepare_for_verify() below we'll need to scan the deferred 4000 // update buffers to bring the RSets up-to-date if 4001 // G1HRRSFlushLogBuffersOnVerify has been set. While scanning 4002 // the update buffers we'll probably need to scan cards on the 4003 // regions we just allocated to (i.e., the GC alloc 4004 // regions). However, during the last GC we called 4005 // set_saved_mark() on all the GC alloc regions, so card 4006 // scanning might skip the [saved_mark_word()...top()] area of 4007 // those regions (i.e., the area we allocated objects into 4008 // during the last GC). But it shouldn't. Given that 4009 // saved_mark_word() is conditional on whether the GC time stamp 4010 // on the region is current or not, by incrementing the GC time 4011 // stamp here we invalidate all the GC time stamps on all the 4012 // regions and saved_mark_word() will simply return top() for 4013 // all the regions. This is a nicer way of ensuring this rather 4014 // than iterating over the regions and fixing them. In fact, the 4015 // GC time stamp increment here also ensures that 4016 // saved_mark_word() will return top() between pauses, i.e., 4017 // during concurrent refinement. So we don't need the 4018 // is_gc_active() check to decided which top to use when 4019 // scanning cards (see CR 7039627). 4020 increment_gc_time_stamp(); 4021 4022 verify_after_gc(); 4023 4024 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 4025 ref_processor_stw()->verify_no_references_recorded(); 4026 4027 // CM reference discovery will be re-enabled if necessary. 4028 } 4029 4030 // We should do this after we potentially expand the heap so 4031 // that all the COMMIT events are generated before the end GC 4032 // event, and after we retire the GC alloc regions so that all 4033 // RETIRE events are generated before the end GC event. 4034 _hr_printer.end_gc(false /* full */, (size_t) total_collections()); 4035 4036 if (mark_in_progress()) { 4037 concurrent_mark()->update_g1_committed(); 4038 } 4039 4040 #ifdef TRACESPINNING 4041 ParallelTaskTerminator::print_termination_counts(); 4042 #endif 4043 4044 gc_epilogue(false); 4045 } 4046 4047 // Print the remainder of the GC log output. 4048 log_gc_footer(os::elapsedTime() - pause_start_sec); 4049 4050 // It is not yet to safe to tell the concurrent mark to 4051 // start as we have some optional output below. We don't want the 4052 // output from the concurrent mark thread interfering with this 4053 // logging output either. 4054 4055 _hrs.verify_optional(); 4056 verify_region_sets_optional(); 4057 4058 TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats()); 4059 TASKQUEUE_STATS_ONLY(reset_taskqueue_stats()); 4060 4061 print_heap_after_gc(); 4062 4063 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 4064 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 4065 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 4066 // before any GC notifications are raised. 4067 g1mm()->update_sizes(); 4068 } 4069 4070 if (G1SummarizeRSetStats && 4071 (G1SummarizeRSetStatsPeriod > 0) && 4072 (total_collections() % G1SummarizeRSetStatsPeriod == 0)) { 4073 g1_rem_set()->print_summary_info(); 4074 } 4075 4076 // It should now be safe to tell the concurrent mark thread to start 4077 // without its logging output interfering with the logging output 4078 // that came from the pause. 4079 4080 if (should_start_conc_mark) { 4081 // CAUTION: after the doConcurrentMark() call below, 4082 // the concurrent marking thread(s) could be running 4083 // concurrently with us. Make sure that anything after 4084 // this point does not assume that we are the only GC thread 4085 // running. Note: of course, the actual marking work will 4086 // not start until the safepoint itself is released in 4087 // ConcurrentGCThread::safepoint_desynchronize(). 4088 doConcurrentMark(); 4089 } 4090 4091 return true; 4092 } 4093 4094 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose) 4095 { 4096 size_t gclab_word_size; 4097 switch (purpose) { 4098 case GCAllocForSurvived: 4099 gclab_word_size = _survivor_plab_stats.desired_plab_sz(); 4100 break; 4101 case GCAllocForTenured: 4102 gclab_word_size = _old_plab_stats.desired_plab_sz(); 4103 break; 4104 default: 4105 assert(false, "unknown GCAllocPurpose"); 4106 gclab_word_size = _old_plab_stats.desired_plab_sz(); 4107 break; 4108 } 4109 4110 // Prevent humongous PLAB sizes for two reasons: 4111 // * PLABs are allocated using a similar paths as oops, but should 4112 // never be in a humongous region 4113 // * Allowing humongous PLABs needlessly churns the region free lists 4114 return MIN2(_humongous_object_threshold_in_words, gclab_word_size); 4115 } 4116 4117 void G1CollectedHeap::init_mutator_alloc_region() { 4118 assert(_mutator_alloc_region.get() == NULL, "pre-condition"); 4119 _mutator_alloc_region.init(); 4120 } 4121 4122 void G1CollectedHeap::release_mutator_alloc_region() { 4123 _mutator_alloc_region.release(); 4124 assert(_mutator_alloc_region.get() == NULL, "post-condition"); 4125 } 4126 4127 void G1CollectedHeap::init_gc_alloc_regions() { 4128 assert_at_safepoint(true /* should_be_vm_thread */); 4129 4130 _survivor_gc_alloc_region.init(); 4131 _old_gc_alloc_region.init(); 4132 HeapRegion* retained_region = _retained_old_gc_alloc_region; 4133 _retained_old_gc_alloc_region = NULL; 4134 4135 // We will discard the current GC alloc region if: 4136 // a) it's in the collection set (it can happen!), 4137 // b) it's already full (no point in using it), 4138 // c) it's empty (this means that it was emptied during 4139 // a cleanup and it should be on the free list now), or 4140 // d) it's humongous (this means that it was emptied 4141 // during a cleanup and was added to the free list, but 4142 // has been subseqently used to allocate a humongous 4143 // object that may be less than the region size). 4144 if (retained_region != NULL && 4145 !retained_region->in_collection_set() && 4146 !(retained_region->top() == retained_region->end()) && 4147 !retained_region->is_empty() && 4148 !retained_region->isHumongous()) { 4149 retained_region->set_saved_mark(); 4150 // The retained region was added to the old region set when it was 4151 // retired. We have to remove it now, since we don't allow regions 4152 // we allocate to in the region sets. We'll re-add it later, when 4153 // it's retired again. 4154 _old_set.remove(retained_region); 4155 bool during_im = g1_policy()->during_initial_mark_pause(); 4156 retained_region->note_start_of_copying(during_im); 4157 _old_gc_alloc_region.set(retained_region); 4158 _hr_printer.reuse(retained_region); 4159 } 4160 } 4161 4162 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers) { 4163 _survivor_gc_alloc_region.release(); 4164 // If we have an old GC alloc region to release, we'll save it in 4165 // _retained_old_gc_alloc_region. If we don't 4166 // _retained_old_gc_alloc_region will become NULL. This is what we 4167 // want either way so no reason to check explicitly for either 4168 // condition. 4169 _retained_old_gc_alloc_region = _old_gc_alloc_region.release(); 4170 4171 if (ResizePLAB) { 4172 _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers); 4173 _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers); 4174 } 4175 } 4176 4177 void G1CollectedHeap::abandon_gc_alloc_regions() { 4178 assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition"); 4179 assert(_old_gc_alloc_region.get() == NULL, "pre-condition"); 4180 _retained_old_gc_alloc_region = NULL; 4181 } 4182 4183 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) { 4184 _drain_in_progress = false; 4185 set_evac_failure_closure(cl); 4186 _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true); 4187 } 4188 4189 void G1CollectedHeap::finalize_for_evac_failure() { 4190 assert(_evac_failure_scan_stack != NULL && 4191 _evac_failure_scan_stack->length() == 0, 4192 "Postcondition"); 4193 assert(!_drain_in_progress, "Postcondition"); 4194 delete _evac_failure_scan_stack; 4195 _evac_failure_scan_stack = NULL; 4196 } 4197 4198 void G1CollectedHeap::remove_self_forwarding_pointers() { 4199 assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity"); 4200 4201 G1ParRemoveSelfForwardPtrsTask rsfp_task(this); 4202 4203 if (G1CollectedHeap::use_parallel_gc_threads()) { 4204 set_par_threads(); 4205 workers()->run_task(&rsfp_task); 4206 set_par_threads(0); 4207 } else { 4208 rsfp_task.work(0); 4209 } 4210 4211 assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity"); 4212 4213 // Reset the claim values in the regions in the collection set. 4214 reset_cset_heap_region_claim_values(); 4215 4216 assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity"); 4217 4218 // Now restore saved marks, if any. 4219 while (_preserved_marks.has_data()) { 4220 G1PreserveMarkQueueEntry e = _preserved_marks.remove_first(); 4221 e.obj->set_mark(e.mark); 4222 } 4223 } 4224 4225 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) { 4226 _evac_failure_scan_stack->push(obj); 4227 } 4228 4229 void G1CollectedHeap::drain_evac_failure_scan_stack() { 4230 assert(_evac_failure_scan_stack != NULL, "precondition"); 4231 4232 while (_evac_failure_scan_stack->length() > 0) { 4233 oop obj = _evac_failure_scan_stack->pop(); 4234 _evac_failure_closure->set_region(heap_region_containing(obj)); 4235 obj->oop_iterate_backwards(_evac_failure_closure); 4236 } 4237 } 4238 4239 oop 4240 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, 4241 oop old) { 4242 assert(obj_in_cs(old), 4243 err_msg("obj: "PTR_FORMAT" should still be in the CSet", 4244 (HeapWord*) old)); 4245 markOop m = old->mark(); 4246 oop forward_ptr = old->forward_to_atomic(old); 4247 if (forward_ptr == NULL) { 4248 // Forward-to-self succeeded. 4249 4250 if (_evac_failure_closure != cl) { 4251 MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag); 4252 assert(!_drain_in_progress, 4253 "Should only be true while someone holds the lock."); 4254 // Set the global evac-failure closure to the current thread's. 4255 assert(_evac_failure_closure == NULL, "Or locking has failed."); 4256 set_evac_failure_closure(cl); 4257 // Now do the common part. 4258 handle_evacuation_failure_common(old, m); 4259 // Reset to NULL. 4260 set_evac_failure_closure(NULL); 4261 } else { 4262 // The lock is already held, and this is recursive. 4263 assert(_drain_in_progress, "This should only be the recursive case."); 4264 handle_evacuation_failure_common(old, m); 4265 } 4266 return old; 4267 } else { 4268 // Forward-to-self failed. Either someone else managed to allocate 4269 // space for this object (old != forward_ptr) or they beat us in 4270 // self-forwarding it (old == forward_ptr). 4271 assert(old == forward_ptr || !obj_in_cs(forward_ptr), 4272 err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" " 4273 "should not be in the CSet", 4274 (HeapWord*) old, (HeapWord*) forward_ptr)); 4275 return forward_ptr; 4276 } 4277 } 4278 4279 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) { 4280 set_evacuation_failed(true); 4281 4282 preserve_mark_if_necessary(old, m); 4283 4284 HeapRegion* r = heap_region_containing(old); 4285 if (!r->evacuation_failed()) { 4286 r->set_evacuation_failed(true); 4287 _hr_printer.evac_failure(r); 4288 } 4289 4290 push_on_evac_failure_scan_stack(old); 4291 4292 if (!_drain_in_progress) { 4293 // prevent recursion in copy_to_survivor_space() 4294 _drain_in_progress = true; 4295 drain_evac_failure_scan_stack(); 4296 _drain_in_progress = false; 4297 } 4298 } 4299 4300 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) { 4301 assert(evacuation_failed(), "Oversaving!"); 4302 // We want to call the "for_promotion_failure" version only in the 4303 // case of a promotion failure. 4304 if (m->must_be_preserved_for_promotion_failure(obj)) { 4305 _preserved_marks.append(obj, m); 4306 } 4307 } 4308 4309 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose, 4310 size_t word_size) { 4311 if (purpose == GCAllocForSurvived) { 4312 HeapWord* result = survivor_attempt_allocation(word_size); 4313 if (result != NULL) { 4314 return result; 4315 } else { 4316 // Let's try to allocate in the old gen in case we can fit the 4317 // object there. 4318 return old_attempt_allocation(word_size); 4319 } 4320 } else { 4321 assert(purpose == GCAllocForTenured, "sanity"); 4322 HeapWord* result = old_attempt_allocation(word_size); 4323 if (result != NULL) { 4324 return result; 4325 } else { 4326 // Let's try to allocate in the survivors in case we can fit the 4327 // object there. 4328 return survivor_attempt_allocation(word_size); 4329 } 4330 } 4331 4332 ShouldNotReachHere(); 4333 // Trying to keep some compilers happy. 4334 return NULL; 4335 } 4336 4337 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) : 4338 ParGCAllocBuffer(gclab_word_size), _retired(false) { } 4339 4340 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num) 4341 : _g1h(g1h), 4342 _refs(g1h->task_queue(queue_num)), 4343 _dcq(&g1h->dirty_card_queue_set()), 4344 _ct_bs((CardTableModRefBS*)_g1h->barrier_set()), 4345 _g1_rem(g1h->g1_rem_set()), 4346 _hash_seed(17), _queue_num(queue_num), 4347 _term_attempts(0), 4348 _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)), 4349 _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)), 4350 _age_table(false), 4351 _strong_roots_time(0), _term_time(0), 4352 _alloc_buffer_waste(0), _undo_waste(0) { 4353 // we allocate G1YoungSurvRateNumRegions plus one entries, since 4354 // we "sacrifice" entry 0 to keep track of surviving bytes for 4355 // non-young regions (where the age is -1) 4356 // We also add a few elements at the beginning and at the end in 4357 // an attempt to eliminate cache contention 4358 uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length(); 4359 uint array_length = PADDING_ELEM_NUM + 4360 real_length + 4361 PADDING_ELEM_NUM; 4362 _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC); 4363 if (_surviving_young_words_base == NULL) 4364 vm_exit_out_of_memory(array_length * sizeof(size_t), 4365 "Not enough space for young surv histo."); 4366 _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM; 4367 memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t)); 4368 4369 _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer; 4370 _alloc_buffers[GCAllocForTenured] = &_tenured_alloc_buffer; 4371 4372 _start = os::elapsedTime(); 4373 } 4374 4375 void 4376 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st) 4377 { 4378 st->print_raw_cr("GC Termination Stats"); 4379 st->print_raw_cr(" elapsed --strong roots-- -------termination-------" 4380 " ------waste (KiB)------"); 4381 st->print_raw_cr("thr ms ms % ms % attempts" 4382 " total alloc undo"); 4383 st->print_raw_cr("--- --------- --------- ------ --------- ------ --------" 4384 " ------- ------- -------"); 4385 } 4386 4387 void 4388 G1ParScanThreadState::print_termination_stats(int i, 4389 outputStream* const st) const 4390 { 4391 const double elapsed_ms = elapsed_time() * 1000.0; 4392 const double s_roots_ms = strong_roots_time() * 1000.0; 4393 const double term_ms = term_time() * 1000.0; 4394 st->print_cr("%3d %9.2f %9.2f %6.2f " 4395 "%9.2f %6.2f " SIZE_FORMAT_W(8) " " 4396 SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7), 4397 i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms, 4398 term_ms, term_ms * 100 / elapsed_ms, term_attempts(), 4399 (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K, 4400 alloc_buffer_waste() * HeapWordSize / K, 4401 undo_waste() * HeapWordSize / K); 4402 } 4403 4404 #ifdef ASSERT 4405 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const { 4406 assert(ref != NULL, "invariant"); 4407 assert(UseCompressedOops, "sanity"); 4408 assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref)); 4409 oop p = oopDesc::load_decode_heap_oop(ref); 4410 assert(_g1h->is_in_g1_reserved(p), 4411 err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p))); 4412 return true; 4413 } 4414 4415 bool G1ParScanThreadState::verify_ref(oop* ref) const { 4416 assert(ref != NULL, "invariant"); 4417 if (has_partial_array_mask(ref)) { 4418 // Must be in the collection set--it's already been copied. 4419 oop p = clear_partial_array_mask(ref); 4420 assert(_g1h->obj_in_cs(p), 4421 err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p))); 4422 } else { 4423 oop p = oopDesc::load_decode_heap_oop(ref); 4424 assert(_g1h->is_in_g1_reserved(p), 4425 err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p))); 4426 } 4427 return true; 4428 } 4429 4430 bool G1ParScanThreadState::verify_task(StarTask ref) const { 4431 if (ref.is_narrow()) { 4432 return verify_ref((narrowOop*) ref); 4433 } else { 4434 return verify_ref((oop*) ref); 4435 } 4436 } 4437 #endif // ASSERT 4438 4439 void G1ParScanThreadState::trim_queue() { 4440 assert(_evac_cl != NULL, "not set"); 4441 assert(_evac_failure_cl != NULL, "not set"); 4442 assert(_partial_scan_cl != NULL, "not set"); 4443 4444 StarTask ref; 4445 do { 4446 // Drain the overflow stack first, so other threads can steal. 4447 while (refs()->pop_overflow(ref)) { 4448 deal_with_reference(ref); 4449 } 4450 4451 while (refs()->pop_local(ref)) { 4452 deal_with_reference(ref); 4453 } 4454 } while (!refs()->is_empty()); 4455 } 4456 4457 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, 4458 G1ParScanThreadState* par_scan_state) : 4459 _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()), 4460 _par_scan_state(par_scan_state), 4461 _worker_id(par_scan_state->queue_num()), 4462 _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()), 4463 _mark_in_progress(_g1->mark_in_progress()) { } 4464 4465 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object> 4466 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) { 4467 #ifdef ASSERT 4468 HeapRegion* hr = _g1->heap_region_containing(obj); 4469 assert(hr != NULL, "sanity"); 4470 assert(!hr->in_collection_set(), "should not mark objects in the CSet"); 4471 #endif // ASSERT 4472 4473 // We know that the object is not moving so it's safe to read its size. 4474 _cm->grayRoot(obj, (size_t) obj->size(), _worker_id); 4475 } 4476 4477 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object> 4478 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object> 4479 ::mark_forwarded_object(oop from_obj, oop to_obj) { 4480 #ifdef ASSERT 4481 assert(from_obj->is_forwarded(), "from obj should be forwarded"); 4482 assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee"); 4483 assert(from_obj != to_obj, "should not be self-forwarded"); 4484 4485 HeapRegion* from_hr = _g1->heap_region_containing(from_obj); 4486 assert(from_hr != NULL, "sanity"); 4487 assert(from_hr->in_collection_set(), "from obj should be in the CSet"); 4488 4489 HeapRegion* to_hr = _g1->heap_region_containing(to_obj); 4490 assert(to_hr != NULL, "sanity"); 4491 assert(!to_hr->in_collection_set(), "should not mark objects in the CSet"); 4492 #endif // ASSERT 4493 4494 // The object might be in the process of being copied by another 4495 // worker so we cannot trust that its to-space image is 4496 // well-formed. So we have to read its size from its from-space 4497 // image which we know should not be changing. 4498 _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id); 4499 } 4500 4501 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object> 4502 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object> 4503 ::copy_to_survivor_space(oop old) { 4504 size_t word_sz = old->size(); 4505 HeapRegion* from_region = _g1->heap_region_containing_raw(old); 4506 // +1 to make the -1 indexes valid... 4507 int young_index = from_region->young_index_in_cset()+1; 4508 assert( (from_region->is_young() && young_index > 0) || 4509 (!from_region->is_young() && young_index == 0), "invariant" ); 4510 G1CollectorPolicy* g1p = _g1->g1_policy(); 4511 markOop m = old->mark(); 4512 int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age() 4513 : m->age(); 4514 GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age, 4515 word_sz); 4516 HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz); 4517 #ifndef PRODUCT 4518 // Should this evacuation fail? 4519 if (_g1->evacuation_should_fail()) { 4520 if (obj_ptr != NULL) { 4521 _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz); 4522 obj_ptr = NULL; 4523 } 4524 } 4525 #endif // !PRODUCT 4526 4527 if (obj_ptr == NULL) { 4528 // This will either forward-to-self, or detect that someone else has 4529 // installed a forwarding pointer. 4530 OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure(); 4531 return _g1->handle_evacuation_failure_par(cl, old); 4532 } 4533 4534 oop obj = oop(obj_ptr); 4535 4536 // We're going to allocate linearly, so might as well prefetch ahead. 4537 Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes); 4538 4539 oop forward_ptr = old->forward_to_atomic(obj); 4540 if (forward_ptr == NULL) { 4541 Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz); 4542 if (g1p->track_object_age(alloc_purpose)) { 4543 // We could simply do obj->incr_age(). However, this causes a 4544 // performance issue. obj->incr_age() will first check whether 4545 // the object has a displaced mark by checking its mark word; 4546 // getting the mark word from the new location of the object 4547 // stalls. So, given that we already have the mark word and we 4548 // are about to install it anyway, it's better to increase the 4549 // age on the mark word, when the object does not have a 4550 // displaced mark word. We're not expecting many objects to have 4551 // a displaced marked word, so that case is not optimized 4552 // further (it could be...) and we simply call obj->incr_age(). 4553 4554 if (m->has_displaced_mark_helper()) { 4555 // in this case, we have to install the mark word first, 4556 // otherwise obj looks to be forwarded (the old mark word, 4557 // which contains the forward pointer, was copied) 4558 obj->set_mark(m); 4559 obj->incr_age(); 4560 } else { 4561 m = m->incr_age(); 4562 obj->set_mark(m); 4563 } 4564 _par_scan_state->age_table()->add(obj, word_sz); 4565 } else { 4566 obj->set_mark(m); 4567 } 4568 4569 size_t* surv_young_words = _par_scan_state->surviving_young_words(); 4570 surv_young_words[young_index] += word_sz; 4571 4572 if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) { 4573 // We keep track of the next start index in the length field of 4574 // the to-space object. The actual length can be found in the 4575 // length field of the from-space object. 4576 arrayOop(obj)->set_length(0); 4577 oop* old_p = set_partial_array_mask(old); 4578 _par_scan_state->push_on_queue(old_p); 4579 } else { 4580 // No point in using the slower heap_region_containing() method, 4581 // given that we know obj is in the heap. 4582 _scanner.set_region(_g1->heap_region_containing_raw(obj)); 4583 obj->oop_iterate_backwards(&_scanner); 4584 } 4585 } else { 4586 _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz); 4587 obj = forward_ptr; 4588 } 4589 return obj; 4590 } 4591 4592 template <class T> 4593 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) { 4594 if (_g1->heap_region_containing_raw(new_obj)->is_young()) { 4595 _scanned_klass->record_modified_oops(); 4596 } 4597 } 4598 4599 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object> 4600 template <class T> 4601 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object> 4602 ::do_oop_work(T* p) { 4603 oop obj = oopDesc::load_decode_heap_oop(p); 4604 assert(barrier != G1BarrierRS || obj != NULL, 4605 "Precondition: G1BarrierRS implies obj is non-NULL"); 4606 4607 assert(_worker_id == _par_scan_state->queue_num(), "sanity"); 4608 4609 // here the null check is implicit in the cset_fast_test() test 4610 if (_g1->in_cset_fast_test(obj)) { 4611 oop forwardee; 4612 if (obj->is_forwarded()) { 4613 forwardee = obj->forwardee(); 4614 } else { 4615 forwardee = copy_to_survivor_space(obj); 4616 } 4617 assert(forwardee != NULL, "forwardee should not be NULL"); 4618 oopDesc::encode_store_heap_oop(p, forwardee); 4619 if (do_mark_object && forwardee != obj) { 4620 // If the object is self-forwarded we don't need to explicitly 4621 // mark it, the evacuation failure protocol will do so. 4622 mark_forwarded_object(obj, forwardee); 4623 } 4624 4625 // When scanning the RS, we only care about objs in CS. 4626 if (barrier == G1BarrierRS) { 4627 _par_scan_state->update_rs(_from, p, _worker_id); 4628 } else if (barrier == G1BarrierKlass) { 4629 do_klass_barrier(p, forwardee); 4630 } 4631 } else { 4632 // The object is not in collection set. If we're a root scanning 4633 // closure during an initial mark pause (i.e. do_mark_object will 4634 // be true) then attempt to mark the object. 4635 if (do_mark_object && _g1->is_in_g1_reserved(obj)) { 4636 mark_object(obj); 4637 } 4638 } 4639 4640 if (barrier == G1BarrierEvac && obj != NULL) { 4641 _par_scan_state->update_rs(_from, p, _worker_id); 4642 } 4643 4644 if (do_gen_barrier && obj != NULL) { 4645 par_do_barrier(p); 4646 } 4647 } 4648 4649 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p); 4650 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p); 4651 4652 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) { 4653 assert(has_partial_array_mask(p), "invariant"); 4654 oop from_obj = clear_partial_array_mask(p); 4655 4656 assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap."); 4657 assert(from_obj->is_objArray(), "must be obj array"); 4658 objArrayOop from_obj_array = objArrayOop(from_obj); 4659 // The from-space object contains the real length. 4660 int length = from_obj_array->length(); 4661 4662 assert(from_obj->is_forwarded(), "must be forwarded"); 4663 oop to_obj = from_obj->forwardee(); 4664 assert(from_obj != to_obj, "should not be chunking self-forwarded objects"); 4665 objArrayOop to_obj_array = objArrayOop(to_obj); 4666 // We keep track of the next start index in the length field of the 4667 // to-space object. 4668 int next_index = to_obj_array->length(); 4669 assert(0 <= next_index && next_index < length, 4670 err_msg("invariant, next index: %d, length: %d", next_index, length)); 4671 4672 int start = next_index; 4673 int end = length; 4674 int remainder = end - start; 4675 // We'll try not to push a range that's smaller than ParGCArrayScanChunk. 4676 if (remainder > 2 * ParGCArrayScanChunk) { 4677 end = start + ParGCArrayScanChunk; 4678 to_obj_array->set_length(end); 4679 // Push the remainder before we process the range in case another 4680 // worker has run out of things to do and can steal it. 4681 oop* from_obj_p = set_partial_array_mask(from_obj); 4682 _par_scan_state->push_on_queue(from_obj_p); 4683 } else { 4684 assert(length == end, "sanity"); 4685 // We'll process the final range for this object. Restore the length 4686 // so that the heap remains parsable in case of evacuation failure. 4687 to_obj_array->set_length(end); 4688 } 4689 _scanner.set_region(_g1->heap_region_containing_raw(to_obj)); 4690 // Process indexes [start,end). It will also process the header 4691 // along with the first chunk (i.e., the chunk with start == 0). 4692 // Note that at this point the length field of to_obj_array is not 4693 // correct given that we are using it to keep track of the next 4694 // start index. oop_iterate_range() (thankfully!) ignores the length 4695 // field and only relies on the start / end parameters. It does 4696 // however return the size of the object which will be incorrect. So 4697 // we have to ignore it even if we wanted to use it. 4698 to_obj_array->oop_iterate_range(&_scanner, start, end); 4699 } 4700 4701 class G1ParEvacuateFollowersClosure : public VoidClosure { 4702 protected: 4703 G1CollectedHeap* _g1h; 4704 G1ParScanThreadState* _par_scan_state; 4705 RefToScanQueueSet* _queues; 4706 ParallelTaskTerminator* _terminator; 4707 4708 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 4709 RefToScanQueueSet* queues() { return _queues; } 4710 ParallelTaskTerminator* terminator() { return _terminator; } 4711 4712 public: 4713 G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h, 4714 G1ParScanThreadState* par_scan_state, 4715 RefToScanQueueSet* queues, 4716 ParallelTaskTerminator* terminator) 4717 : _g1h(g1h), _par_scan_state(par_scan_state), 4718 _queues(queues), _terminator(terminator) {} 4719 4720 void do_void(); 4721 4722 private: 4723 inline bool offer_termination(); 4724 }; 4725 4726 bool G1ParEvacuateFollowersClosure::offer_termination() { 4727 G1ParScanThreadState* const pss = par_scan_state(); 4728 pss->start_term_time(); 4729 const bool res = terminator()->offer_termination(); 4730 pss->end_term_time(); 4731 return res; 4732 } 4733 4734 void G1ParEvacuateFollowersClosure::do_void() { 4735 StarTask stolen_task; 4736 G1ParScanThreadState* const pss = par_scan_state(); 4737 pss->trim_queue(); 4738 4739 do { 4740 while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) { 4741 assert(pss->verify_task(stolen_task), "sanity"); 4742 if (stolen_task.is_narrow()) { 4743 pss->deal_with_reference((narrowOop*) stolen_task); 4744 } else { 4745 pss->deal_with_reference((oop*) stolen_task); 4746 } 4747 4748 // We've just processed a reference and we might have made 4749 // available new entries on the queues. So we have to make sure 4750 // we drain the queues as necessary. 4751 pss->trim_queue(); 4752 } 4753 } while (!offer_termination()); 4754 4755 pss->retire_alloc_buffers(); 4756 } 4757 4758 class G1KlassScanClosure : public KlassClosure { 4759 G1ParCopyHelper* _closure; 4760 bool _process_only_dirty; 4761 int _count; 4762 public: 4763 G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty) 4764 : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {} 4765 void do_klass(Klass* klass) { 4766 // If the klass has not been dirtied we know that there's 4767 // no references into the young gen and we can skip it. 4768 if (!_process_only_dirty || klass->has_modified_oops()) { 4769 // Clean the klass since we're going to scavenge all the metadata. 4770 klass->clear_modified_oops(); 4771 4772 // Tell the closure that this klass is the Klass to scavenge 4773 // and is the one to dirty if oops are left pointing into the young gen. 4774 _closure->set_scanned_klass(klass); 4775 4776 klass->oops_do(_closure); 4777 4778 _closure->set_scanned_klass(NULL); 4779 } 4780 _count++; 4781 } 4782 }; 4783 4784 class G1ParTask : public AbstractGangTask { 4785 protected: 4786 G1CollectedHeap* _g1h; 4787 RefToScanQueueSet *_queues; 4788 ParallelTaskTerminator _terminator; 4789 uint _n_workers; 4790 4791 Mutex _stats_lock; 4792 Mutex* stats_lock() { return &_stats_lock; } 4793 4794 size_t getNCards() { 4795 return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1) 4796 / G1BlockOffsetSharedArray::N_bytes; 4797 } 4798 4799 public: 4800 G1ParTask(G1CollectedHeap* g1h, 4801 RefToScanQueueSet *task_queues) 4802 : AbstractGangTask("G1 collection"), 4803 _g1h(g1h), 4804 _queues(task_queues), 4805 _terminator(0, _queues), 4806 _stats_lock(Mutex::leaf, "parallel G1 stats lock", true) 4807 {} 4808 4809 RefToScanQueueSet* queues() { return _queues; } 4810 4811 RefToScanQueue *work_queue(int i) { 4812 return queues()->queue(i); 4813 } 4814 4815 ParallelTaskTerminator* terminator() { return &_terminator; } 4816 4817 virtual void set_for_termination(int active_workers) { 4818 // This task calls set_n_termination() in par_non_clean_card_iterate_work() 4819 // in the young space (_par_seq_tasks) in the G1 heap 4820 // for SequentialSubTasksDone. 4821 // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap 4822 // both of which need setting by set_n_termination(). 4823 _g1h->SharedHeap::set_n_termination(active_workers); 4824 _g1h->set_n_termination(active_workers); 4825 terminator()->reset_for_reuse(active_workers); 4826 _n_workers = active_workers; 4827 } 4828 4829 void work(uint worker_id) { 4830 if (worker_id >= _n_workers) return; // no work needed this round 4831 4832 double start_time_ms = os::elapsedTime() * 1000.0; 4833 _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms); 4834 4835 { 4836 ResourceMark rm; 4837 HandleMark hm; 4838 4839 ReferenceProcessor* rp = _g1h->ref_processor_stw(); 4840 4841 G1ParScanThreadState pss(_g1h, worker_id); 4842 G1ParScanHeapEvacClosure scan_evac_cl(_g1h, &pss, rp); 4843 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp); 4844 G1ParScanPartialArrayClosure partial_scan_cl(_g1h, &pss, rp); 4845 4846 pss.set_evac_closure(&scan_evac_cl); 4847 pss.set_evac_failure_closure(&evac_failure_cl); 4848 pss.set_partial_scan_closure(&partial_scan_cl); 4849 4850 G1ParScanExtRootClosure only_scan_root_cl(_g1h, &pss, rp); 4851 G1ParScanMetadataClosure only_scan_metadata_cl(_g1h, &pss, rp); 4852 4853 G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp); 4854 G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp); 4855 4856 bool only_young = _g1h->g1_policy()->gcs_are_young(); 4857 G1KlassScanClosure scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false); 4858 G1KlassScanClosure only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young); 4859 4860 OopClosure* scan_root_cl = &only_scan_root_cl; 4861 G1KlassScanClosure* scan_klasses_cl = &only_scan_klasses_cl_s; 4862 4863 if (_g1h->g1_policy()->during_initial_mark_pause()) { 4864 // We also need to mark copied objects. 4865 scan_root_cl = &scan_mark_root_cl; 4866 scan_klasses_cl = &scan_mark_klasses_cl_s; 4867 } 4868 4869 G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss); 4870 4871 int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache; 4872 4873 pss.start_strong_roots(); 4874 _g1h->g1_process_strong_roots(/* is scavenging */ true, 4875 SharedHeap::ScanningOption(so), 4876 scan_root_cl, 4877 &push_heap_rs_cl, 4878 scan_klasses_cl, 4879 worker_id); 4880 pss.end_strong_roots(); 4881 4882 { 4883 double start = os::elapsedTime(); 4884 G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator); 4885 evac.do_void(); 4886 double elapsed_ms = (os::elapsedTime()-start)*1000.0; 4887 double term_ms = pss.term_time()*1000.0; 4888 _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms); 4889 _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts()); 4890 } 4891 _g1h->g1_policy()->record_thread_age_table(pss.age_table()); 4892 _g1h->update_surviving_young_words(pss.surviving_young_words()+1); 4893 4894 if (ParallelGCVerbose) { 4895 MutexLocker x(stats_lock()); 4896 pss.print_termination_stats(worker_id); 4897 } 4898 4899 assert(pss.refs()->is_empty(), "should be empty"); 4900 4901 // Close the inner scope so that the ResourceMark and HandleMark 4902 // destructors are executed here and are included as part of the 4903 // "GC Worker Time". 4904 } 4905 4906 double end_time_ms = os::elapsedTime() * 1000.0; 4907 _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms); 4908 } 4909 }; 4910 4911 // *** Common G1 Evacuation Stuff 4912 4913 // Closures that support the filtering of CodeBlobs scanned during 4914 // external root scanning. 4915 4916 // Closure applied to reference fields in code blobs (specifically nmethods) 4917 // to determine whether an nmethod contains references that point into 4918 // the collection set. Used as a predicate when walking code roots so 4919 // that only nmethods that point into the collection set are added to the 4920 // 'marked' list. 4921 4922 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure { 4923 4924 class G1PointsIntoCSOopClosure : public OopClosure { 4925 G1CollectedHeap* _g1; 4926 bool _points_into_cs; 4927 public: 4928 G1PointsIntoCSOopClosure(G1CollectedHeap* g1) : 4929 _g1(g1), _points_into_cs(false) { } 4930 4931 bool points_into_cs() const { return _points_into_cs; } 4932 4933 template <class T> 4934 void do_oop_nv(T* p) { 4935 if (!_points_into_cs) { 4936 T heap_oop = oopDesc::load_heap_oop(p); 4937 if (!oopDesc::is_null(heap_oop) && 4938 _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) { 4939 _points_into_cs = true; 4940 } 4941 } 4942 } 4943 4944 virtual void do_oop(oop* p) { do_oop_nv(p); } 4945 virtual void do_oop(narrowOop* p) { do_oop_nv(p); } 4946 }; 4947 4948 G1CollectedHeap* _g1; 4949 4950 public: 4951 G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) : 4952 CodeBlobToOopClosure(cl, true), _g1(g1) { } 4953 4954 virtual void do_code_blob(CodeBlob* cb) { 4955 nmethod* nm = cb->as_nmethod_or_null(); 4956 if (nm != NULL && !(nm->test_oops_do_mark())) { 4957 G1PointsIntoCSOopClosure predicate_cl(_g1); 4958 nm->oops_do(&predicate_cl); 4959 4960 if (predicate_cl.points_into_cs()) { 4961 // At least one of the reference fields or the oop relocations 4962 // in the nmethod points into the collection set. We have to 4963 // 'mark' this nmethod. 4964 // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob() 4965 // or MarkingCodeBlobClosure::do_code_blob() change. 4966 if (!nm->test_set_oops_do_mark()) { 4967 do_newly_marked_nmethod(nm); 4968 } 4969 } 4970 } 4971 } 4972 }; 4973 4974 // This method is run in a GC worker. 4975 4976 void 4977 G1CollectedHeap:: 4978 g1_process_strong_roots(bool is_scavenging, 4979 ScanningOption so, 4980 OopClosure* scan_non_heap_roots, 4981 OopsInHeapRegionClosure* scan_rs, 4982 G1KlassScanClosure* scan_klasses, 4983 int worker_i) { 4984 4985 // First scan the strong roots 4986 double ext_roots_start = os::elapsedTime(); 4987 double closure_app_time_sec = 0.0; 4988 4989 BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots); 4990 4991 // Walk the code cache w/o buffering, because StarTask cannot handle 4992 // unaligned oop locations. 4993 G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots); 4994 4995 process_strong_roots(false, // no scoping; this is parallel code 4996 is_scavenging, so, 4997 &buf_scan_non_heap_roots, 4998 &eager_scan_code_roots, 4999 scan_klasses 5000 ); 5001 5002 // Now the CM ref_processor roots. 5003 if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) { 5004 // We need to treat the discovered reference lists of the 5005 // concurrent mark ref processor as roots and keep entries 5006 // (which are added by the marking threads) on them live 5007 // until they can be processed at the end of marking. 5008 ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots); 5009 } 5010 5011 // Finish up any enqueued closure apps (attributed as object copy time). 5012 buf_scan_non_heap_roots.done(); 5013 5014 double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds(); 5015 5016 g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0); 5017 5018 double ext_root_time_ms = 5019 ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0; 5020 5021 g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms); 5022 5023 // During conc marking we have to filter the per-thread SATB buffers 5024 // to make sure we remove any oops into the CSet (which will show up 5025 // as implicitly live). 5026 double satb_filtering_ms = 0.0; 5027 if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) { 5028 if (mark_in_progress()) { 5029 double satb_filter_start = os::elapsedTime(); 5030 5031 JavaThread::satb_mark_queue_set().filter_thread_buffers(); 5032 5033 satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0; 5034 } 5035 } 5036 g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms); 5037 5038 // Now scan the complement of the collection set. 5039 if (scan_rs != NULL) { 5040 g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i); 5041 } 5042 _process_strong_tasks->all_tasks_completed(); 5043 } 5044 5045 void 5046 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure, 5047 OopClosure* non_root_closure) { 5048 CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false); 5049 SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure); 5050 } 5051 5052 // Weak Reference Processing support 5053 5054 // An always "is_alive" closure that is used to preserve referents. 5055 // If the object is non-null then it's alive. Used in the preservation 5056 // of referent objects that are pointed to by reference objects 5057 // discovered by the CM ref processor. 5058 class G1AlwaysAliveClosure: public BoolObjectClosure { 5059 G1CollectedHeap* _g1; 5060 public: 5061 G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 5062 void do_object(oop p) { assert(false, "Do not call."); } 5063 bool do_object_b(oop p) { 5064 if (p != NULL) { 5065 return true; 5066 } 5067 return false; 5068 } 5069 }; 5070 5071 bool G1STWIsAliveClosure::do_object_b(oop p) { 5072 // An object is reachable if it is outside the collection set, 5073 // or is inside and copied. 5074 return !_g1->obj_in_cs(p) || p->is_forwarded(); 5075 } 5076 5077 // Non Copying Keep Alive closure 5078 class G1KeepAliveClosure: public OopClosure { 5079 G1CollectedHeap* _g1; 5080 public: 5081 G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 5082 void do_oop(narrowOop* p) { guarantee(false, "Not needed"); } 5083 void do_oop( oop* p) { 5084 oop obj = *p; 5085 5086 if (_g1->obj_in_cs(obj)) { 5087 assert( obj->is_forwarded(), "invariant" ); 5088 *p = obj->forwardee(); 5089 } 5090 } 5091 }; 5092 5093 // Copying Keep Alive closure - can be called from both 5094 // serial and parallel code as long as different worker 5095 // threads utilize different G1ParScanThreadState instances 5096 // and different queues. 5097 5098 class G1CopyingKeepAliveClosure: public OopClosure { 5099 G1CollectedHeap* _g1h; 5100 OopClosure* _copy_non_heap_obj_cl; 5101 OopsInHeapRegionClosure* _copy_metadata_obj_cl; 5102 G1ParScanThreadState* _par_scan_state; 5103 5104 public: 5105 G1CopyingKeepAliveClosure(G1CollectedHeap* g1h, 5106 OopClosure* non_heap_obj_cl, 5107 OopsInHeapRegionClosure* metadata_obj_cl, 5108 G1ParScanThreadState* pss): 5109 _g1h(g1h), 5110 _copy_non_heap_obj_cl(non_heap_obj_cl), 5111 _copy_metadata_obj_cl(metadata_obj_cl), 5112 _par_scan_state(pss) 5113 {} 5114 5115 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 5116 virtual void do_oop( oop* p) { do_oop_work(p); } 5117 5118 template <class T> void do_oop_work(T* p) { 5119 oop obj = oopDesc::load_decode_heap_oop(p); 5120 5121 if (_g1h->obj_in_cs(obj)) { 5122 // If the referent object has been forwarded (either copied 5123 // to a new location or to itself in the event of an 5124 // evacuation failure) then we need to update the reference 5125 // field and, if both reference and referent are in the G1 5126 // heap, update the RSet for the referent. 5127 // 5128 // If the referent has not been forwarded then we have to keep 5129 // it alive by policy. Therefore we have copy the referent. 5130 // 5131 // If the reference field is in the G1 heap then we can push 5132 // on the PSS queue. When the queue is drained (after each 5133 // phase of reference processing) the object and it's followers 5134 // will be copied, the reference field set to point to the 5135 // new location, and the RSet updated. Otherwise we need to 5136 // use the the non-heap or metadata closures directly to copy 5137 // the refernt object and update the pointer, while avoiding 5138 // updating the RSet. 5139 5140 if (_g1h->is_in_g1_reserved(p)) { 5141 _par_scan_state->push_on_queue(p); 5142 } else { 5143 assert(!ClassLoaderDataGraph::contains((address)p), 5144 err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) " 5145 PTR_FORMAT, p)); 5146 _copy_non_heap_obj_cl->do_oop(p); 5147 } 5148 } 5149 } 5150 }; 5151 5152 // Serial drain queue closure. Called as the 'complete_gc' 5153 // closure for each discovered list in some of the 5154 // reference processing phases. 5155 5156 class G1STWDrainQueueClosure: public VoidClosure { 5157 protected: 5158 G1CollectedHeap* _g1h; 5159 G1ParScanThreadState* _par_scan_state; 5160 5161 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 5162 5163 public: 5164 G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) : 5165 _g1h(g1h), 5166 _par_scan_state(pss) 5167 { } 5168 5169 void do_void() { 5170 G1ParScanThreadState* const pss = par_scan_state(); 5171 pss->trim_queue(); 5172 } 5173 }; 5174 5175 // Parallel Reference Processing closures 5176 5177 // Implementation of AbstractRefProcTaskExecutor for parallel reference 5178 // processing during G1 evacuation pauses. 5179 5180 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor { 5181 private: 5182 G1CollectedHeap* _g1h; 5183 RefToScanQueueSet* _queues; 5184 FlexibleWorkGang* _workers; 5185 int _active_workers; 5186 5187 public: 5188 G1STWRefProcTaskExecutor(G1CollectedHeap* g1h, 5189 FlexibleWorkGang* workers, 5190 RefToScanQueueSet *task_queues, 5191 int n_workers) : 5192 _g1h(g1h), 5193 _queues(task_queues), 5194 _workers(workers), 5195 _active_workers(n_workers) 5196 { 5197 assert(n_workers > 0, "shouldn't call this otherwise"); 5198 } 5199 5200 // Executes the given task using concurrent marking worker threads. 5201 virtual void execute(ProcessTask& task); 5202 virtual void execute(EnqueueTask& task); 5203 }; 5204 5205 // Gang task for possibly parallel reference processing 5206 5207 class G1STWRefProcTaskProxy: public AbstractGangTask { 5208 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; 5209 ProcessTask& _proc_task; 5210 G1CollectedHeap* _g1h; 5211 RefToScanQueueSet *_task_queues; 5212 ParallelTaskTerminator* _terminator; 5213 5214 public: 5215 G1STWRefProcTaskProxy(ProcessTask& proc_task, 5216 G1CollectedHeap* g1h, 5217 RefToScanQueueSet *task_queues, 5218 ParallelTaskTerminator* terminator) : 5219 AbstractGangTask("Process reference objects in parallel"), 5220 _proc_task(proc_task), 5221 _g1h(g1h), 5222 _task_queues(task_queues), 5223 _terminator(terminator) 5224 {} 5225 5226 virtual void work(uint worker_id) { 5227 // The reference processing task executed by a single worker. 5228 ResourceMark rm; 5229 HandleMark hm; 5230 5231 G1STWIsAliveClosure is_alive(_g1h); 5232 5233 G1ParScanThreadState pss(_g1h, worker_id); 5234 5235 G1ParScanHeapEvacClosure scan_evac_cl(_g1h, &pss, NULL); 5236 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL); 5237 G1ParScanPartialArrayClosure partial_scan_cl(_g1h, &pss, NULL); 5238 5239 pss.set_evac_closure(&scan_evac_cl); 5240 pss.set_evac_failure_closure(&evac_failure_cl); 5241 pss.set_partial_scan_closure(&partial_scan_cl); 5242 5243 G1ParScanExtRootClosure only_copy_non_heap_cl(_g1h, &pss, NULL); 5244 G1ParScanMetadataClosure only_copy_metadata_cl(_g1h, &pss, NULL); 5245 5246 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL); 5247 G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL); 5248 5249 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl; 5250 OopsInHeapRegionClosure* copy_metadata_cl = &only_copy_metadata_cl; 5251 5252 if (_g1h->g1_policy()->during_initial_mark_pause()) { 5253 // We also need to mark copied objects. 5254 copy_non_heap_cl = ©_mark_non_heap_cl; 5255 copy_metadata_cl = ©_mark_metadata_cl; 5256 } 5257 5258 // Keep alive closure. 5259 G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss); 5260 5261 // Complete GC closure 5262 G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator); 5263 5264 // Call the reference processing task's work routine. 5265 _proc_task.work(worker_id, is_alive, keep_alive, drain_queue); 5266 5267 // Note we cannot assert that the refs array is empty here as not all 5268 // of the processing tasks (specifically phase2 - pp2_work) execute 5269 // the complete_gc closure (which ordinarily would drain the queue) so 5270 // the queue may not be empty. 5271 } 5272 }; 5273 5274 // Driver routine for parallel reference processing. 5275 // Creates an instance of the ref processing gang 5276 // task and has the worker threads execute it. 5277 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) { 5278 assert(_workers != NULL, "Need parallel worker threads."); 5279 5280 ParallelTaskTerminator terminator(_active_workers, _queues); 5281 G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator); 5282 5283 _g1h->set_par_threads(_active_workers); 5284 _workers->run_task(&proc_task_proxy); 5285 _g1h->set_par_threads(0); 5286 } 5287 5288 // Gang task for parallel reference enqueueing. 5289 5290 class G1STWRefEnqueueTaskProxy: public AbstractGangTask { 5291 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask; 5292 EnqueueTask& _enq_task; 5293 5294 public: 5295 G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) : 5296 AbstractGangTask("Enqueue reference objects in parallel"), 5297 _enq_task(enq_task) 5298 { } 5299 5300 virtual void work(uint worker_id) { 5301 _enq_task.work(worker_id); 5302 } 5303 }; 5304 5305 // Driver routine for parallel reference enqueing. 5306 // Creates an instance of the ref enqueueing gang 5307 // task and has the worker threads execute it. 5308 5309 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) { 5310 assert(_workers != NULL, "Need parallel worker threads."); 5311 5312 G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task); 5313 5314 _g1h->set_par_threads(_active_workers); 5315 _workers->run_task(&enq_task_proxy); 5316 _g1h->set_par_threads(0); 5317 } 5318 5319 // End of weak reference support closures 5320 5321 // Abstract task used to preserve (i.e. copy) any referent objects 5322 // that are in the collection set and are pointed to by reference 5323 // objects discovered by the CM ref processor. 5324 5325 class G1ParPreserveCMReferentsTask: public AbstractGangTask { 5326 protected: 5327 G1CollectedHeap* _g1h; 5328 RefToScanQueueSet *_queues; 5329 ParallelTaskTerminator _terminator; 5330 uint _n_workers; 5331 5332 public: 5333 G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) : 5334 AbstractGangTask("ParPreserveCMReferents"), 5335 _g1h(g1h), 5336 _queues(task_queues), 5337 _terminator(workers, _queues), 5338 _n_workers(workers) 5339 { } 5340 5341 void work(uint worker_id) { 5342 ResourceMark rm; 5343 HandleMark hm; 5344 5345 G1ParScanThreadState pss(_g1h, worker_id); 5346 G1ParScanHeapEvacClosure scan_evac_cl(_g1h, &pss, NULL); 5347 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL); 5348 G1ParScanPartialArrayClosure partial_scan_cl(_g1h, &pss, NULL); 5349 5350 pss.set_evac_closure(&scan_evac_cl); 5351 pss.set_evac_failure_closure(&evac_failure_cl); 5352 pss.set_partial_scan_closure(&partial_scan_cl); 5353 5354 assert(pss.refs()->is_empty(), "both queue and overflow should be empty"); 5355 5356 5357 G1ParScanExtRootClosure only_copy_non_heap_cl(_g1h, &pss, NULL); 5358 G1ParScanMetadataClosure only_copy_metadata_cl(_g1h, &pss, NULL); 5359 5360 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL); 5361 G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL); 5362 5363 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl; 5364 OopsInHeapRegionClosure* copy_metadata_cl = &only_copy_metadata_cl; 5365 5366 if (_g1h->g1_policy()->during_initial_mark_pause()) { 5367 // We also need to mark copied objects. 5368 copy_non_heap_cl = ©_mark_non_heap_cl; 5369 copy_metadata_cl = ©_mark_metadata_cl; 5370 } 5371 5372 // Is alive closure 5373 G1AlwaysAliveClosure always_alive(_g1h); 5374 5375 // Copying keep alive closure. Applied to referent objects that need 5376 // to be copied. 5377 G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss); 5378 5379 ReferenceProcessor* rp = _g1h->ref_processor_cm(); 5380 5381 uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q(); 5382 uint stride = MIN2(MAX2(_n_workers, 1U), limit); 5383 5384 // limit is set using max_num_q() - which was set using ParallelGCThreads. 5385 // So this must be true - but assert just in case someone decides to 5386 // change the worker ids. 5387 assert(0 <= worker_id && worker_id < limit, "sanity"); 5388 assert(!rp->discovery_is_atomic(), "check this code"); 5389 5390 // Select discovered lists [i, i+stride, i+2*stride,...,limit) 5391 for (uint idx = worker_id; idx < limit; idx += stride) { 5392 DiscoveredList& ref_list = rp->discovered_refs()[idx]; 5393 5394 DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive); 5395 while (iter.has_next()) { 5396 // Since discovery is not atomic for the CM ref processor, we 5397 // can see some null referent objects. 5398 iter.load_ptrs(DEBUG_ONLY(true)); 5399 oop ref = iter.obj(); 5400 5401 // This will filter nulls. 5402 if (iter.is_referent_alive()) { 5403 iter.make_referent_alive(); 5404 } 5405 iter.move_to_next(); 5406 } 5407 } 5408 5409 // Drain the queue - which may cause stealing 5410 G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator); 5411 drain_queue.do_void(); 5412 // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure 5413 assert(pss.refs()->is_empty(), "should be"); 5414 } 5415 }; 5416 5417 // Weak Reference processing during an evacuation pause (part 1). 5418 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) { 5419 double ref_proc_start = os::elapsedTime(); 5420 5421 ReferenceProcessor* rp = _ref_processor_stw; 5422 assert(rp->discovery_enabled(), "should have been enabled"); 5423 5424 // Any reference objects, in the collection set, that were 'discovered' 5425 // by the CM ref processor should have already been copied (either by 5426 // applying the external root copy closure to the discovered lists, or 5427 // by following an RSet entry). 5428 // 5429 // But some of the referents, that are in the collection set, that these 5430 // reference objects point to may not have been copied: the STW ref 5431 // processor would have seen that the reference object had already 5432 // been 'discovered' and would have skipped discovering the reference, 5433 // but would not have treated the reference object as a regular oop. 5434 // As a reult the copy closure would not have been applied to the 5435 // referent object. 5436 // 5437 // We need to explicitly copy these referent objects - the references 5438 // will be processed at the end of remarking. 5439 // 5440 // We also need to do this copying before we process the reference 5441 // objects discovered by the STW ref processor in case one of these 5442 // referents points to another object which is also referenced by an 5443 // object discovered by the STW ref processor. 5444 5445 assert(!G1CollectedHeap::use_parallel_gc_threads() || 5446 no_of_gc_workers == workers()->active_workers(), 5447 "Need to reset active GC workers"); 5448 5449 set_par_threads(no_of_gc_workers); 5450 G1ParPreserveCMReferentsTask keep_cm_referents(this, 5451 no_of_gc_workers, 5452 _task_queues); 5453 5454 if (G1CollectedHeap::use_parallel_gc_threads()) { 5455 workers()->run_task(&keep_cm_referents); 5456 } else { 5457 keep_cm_referents.work(0); 5458 } 5459 5460 set_par_threads(0); 5461 5462 // Closure to test whether a referent is alive. 5463 G1STWIsAliveClosure is_alive(this); 5464 5465 // Even when parallel reference processing is enabled, the processing 5466 // of JNI refs is serial and performed serially by the current thread 5467 // rather than by a worker. The following PSS will be used for processing 5468 // JNI refs. 5469 5470 // Use only a single queue for this PSS. 5471 G1ParScanThreadState pss(this, 0); 5472 5473 // We do not embed a reference processor in the copying/scanning 5474 // closures while we're actually processing the discovered 5475 // reference objects. 5476 G1ParScanHeapEvacClosure scan_evac_cl(this, &pss, NULL); 5477 G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL); 5478 G1ParScanPartialArrayClosure partial_scan_cl(this, &pss, NULL); 5479 5480 pss.set_evac_closure(&scan_evac_cl); 5481 pss.set_evac_failure_closure(&evac_failure_cl); 5482 pss.set_partial_scan_closure(&partial_scan_cl); 5483 5484 assert(pss.refs()->is_empty(), "pre-condition"); 5485 5486 G1ParScanExtRootClosure only_copy_non_heap_cl(this, &pss, NULL); 5487 G1ParScanMetadataClosure only_copy_metadata_cl(this, &pss, NULL); 5488 5489 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL); 5490 G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL); 5491 5492 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl; 5493 OopsInHeapRegionClosure* copy_metadata_cl = &only_copy_metadata_cl; 5494 5495 if (_g1h->g1_policy()->during_initial_mark_pause()) { 5496 // We also need to mark copied objects. 5497 copy_non_heap_cl = ©_mark_non_heap_cl; 5498 copy_metadata_cl = ©_mark_metadata_cl; 5499 } 5500 5501 // Keep alive closure. 5502 G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss); 5503 5504 // Serial Complete GC closure 5505 G1STWDrainQueueClosure drain_queue(this, &pss); 5506 5507 // Setup the soft refs policy... 5508 rp->setup_policy(false); 5509 5510 if (!rp->processing_is_mt()) { 5511 // Serial reference processing... 5512 rp->process_discovered_references(&is_alive, 5513 &keep_alive, 5514 &drain_queue, 5515 NULL); 5516 } else { 5517 // Parallel reference processing 5518 assert(rp->num_q() == no_of_gc_workers, "sanity"); 5519 assert(no_of_gc_workers <= rp->max_num_q(), "sanity"); 5520 5521 G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers); 5522 rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor); 5523 } 5524 5525 // We have completed copying any necessary live referent objects 5526 // (that were not copied during the actual pause) so we can 5527 // retire any active alloc buffers 5528 pss.retire_alloc_buffers(); 5529 assert(pss.refs()->is_empty(), "both queue and overflow should be empty"); 5530 5531 double ref_proc_time = os::elapsedTime() - ref_proc_start; 5532 g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0); 5533 } 5534 5535 // Weak Reference processing during an evacuation pause (part 2). 5536 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) { 5537 double ref_enq_start = os::elapsedTime(); 5538 5539 ReferenceProcessor* rp = _ref_processor_stw; 5540 assert(!rp->discovery_enabled(), "should have been disabled as part of processing"); 5541 5542 // Now enqueue any remaining on the discovered lists on to 5543 // the pending list. 5544 if (!rp->processing_is_mt()) { 5545 // Serial reference processing... 5546 rp->enqueue_discovered_references(); 5547 } else { 5548 // Parallel reference enqueuing 5549 5550 assert(no_of_gc_workers == workers()->active_workers(), 5551 "Need to reset active workers"); 5552 assert(rp->num_q() == no_of_gc_workers, "sanity"); 5553 assert(no_of_gc_workers <= rp->max_num_q(), "sanity"); 5554 5555 G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers); 5556 rp->enqueue_discovered_references(&par_task_executor); 5557 } 5558 5559 rp->verify_no_references_recorded(); 5560 assert(!rp->discovery_enabled(), "should have been disabled"); 5561 5562 // FIXME 5563 // CM's reference processing also cleans up the string and symbol tables. 5564 // Should we do that here also? We could, but it is a serial operation 5565 // and could signicantly increase the pause time. 5566 5567 double ref_enq_time = os::elapsedTime() - ref_enq_start; 5568 g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0); 5569 } 5570 5571 void G1CollectedHeap::evacuate_collection_set() { 5572 _expand_heap_after_alloc_failure = true; 5573 set_evacuation_failed(false); 5574 5575 // Should G1EvacuationFailureALot be in effect for this GC? 5576 NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();) 5577 5578 g1_rem_set()->prepare_for_oops_into_collection_set_do(); 5579 concurrent_g1_refine()->set_use_cache(false); 5580 concurrent_g1_refine()->clear_hot_cache_claimed_index(); 5581 5582 uint n_workers; 5583 if (G1CollectedHeap::use_parallel_gc_threads()) { 5584 n_workers = 5585 AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(), 5586 workers()->active_workers(), 5587 Threads::number_of_non_daemon_threads()); 5588 assert(UseDynamicNumberOfGCThreads || 5589 n_workers == workers()->total_workers(), 5590 "If not dynamic should be using all the workers"); 5591 workers()->set_active_workers(n_workers); 5592 set_par_threads(n_workers); 5593 } else { 5594 assert(n_par_threads() == 0, 5595 "Should be the original non-parallel value"); 5596 n_workers = 1; 5597 } 5598 5599 G1ParTask g1_par_task(this, _task_queues); 5600 5601 init_for_evac_failure(NULL); 5602 5603 rem_set()->prepare_for_younger_refs_iterate(true); 5604 5605 assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty"); 5606 double start_par_time_sec = os::elapsedTime(); 5607 double end_par_time_sec; 5608 5609 { 5610 StrongRootsScope srs(this); 5611 5612 if (G1CollectedHeap::use_parallel_gc_threads()) { 5613 // The individual threads will set their evac-failure closures. 5614 if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr(); 5615 // These tasks use ShareHeap::_process_strong_tasks 5616 assert(UseDynamicNumberOfGCThreads || 5617 workers()->active_workers() == workers()->total_workers(), 5618 "If not dynamic should be using all the workers"); 5619 workers()->run_task(&g1_par_task); 5620 } else { 5621 g1_par_task.set_for_termination(n_workers); 5622 g1_par_task.work(0); 5623 } 5624 end_par_time_sec = os::elapsedTime(); 5625 5626 // Closing the inner scope will execute the destructor 5627 // for the StrongRootsScope object. We record the current 5628 // elapsed time before closing the scope so that time 5629 // taken for the SRS destructor is NOT included in the 5630 // reported parallel time. 5631 } 5632 5633 double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0; 5634 g1_policy()->phase_times()->record_par_time(par_time_ms); 5635 5636 double code_root_fixup_time_ms = 5637 (os::elapsedTime() - end_par_time_sec) * 1000.0; 5638 g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms); 5639 5640 set_par_threads(0); 5641 5642 // Process any discovered reference objects - we have 5643 // to do this _before_ we retire the GC alloc regions 5644 // as we may have to copy some 'reachable' referent 5645 // objects (and their reachable sub-graphs) that were 5646 // not copied during the pause. 5647 process_discovered_references(n_workers); 5648 5649 // Weak root processing. 5650 // Note: when JSR 292 is enabled and code blobs can contain 5651 // non-perm oops then we will need to process the code blobs 5652 // here too. 5653 { 5654 G1STWIsAliveClosure is_alive(this); 5655 G1KeepAliveClosure keep_alive(this); 5656 JNIHandles::weak_oops_do(&is_alive, &keep_alive); 5657 } 5658 5659 release_gc_alloc_regions(n_workers); 5660 g1_rem_set()->cleanup_after_oops_into_collection_set_do(); 5661 5662 concurrent_g1_refine()->clear_hot_cache(); 5663 concurrent_g1_refine()->set_use_cache(true); 5664 5665 finalize_for_evac_failure(); 5666 5667 if (evacuation_failed()) { 5668 remove_self_forwarding_pointers(); 5669 5670 // Reset the G1EvacuationFailureALot counters and flags 5671 // Note: the values are reset only when an actual 5672 // evacuation failure occurs. 5673 NOT_PRODUCT(reset_evacuation_should_fail();) 5674 } 5675 5676 // Enqueue any remaining references remaining on the STW 5677 // reference processor's discovered lists. We need to do 5678 // this after the card table is cleaned (and verified) as 5679 // the act of enqueuing entries on to the pending list 5680 // will log these updates (and dirty their associated 5681 // cards). We need these updates logged to update any 5682 // RSets. 5683 enqueue_discovered_references(n_workers); 5684 5685 if (G1DeferredRSUpdate) { 5686 RedirtyLoggedCardTableEntryFastClosure redirty; 5687 dirty_card_queue_set().set_closure(&redirty); 5688 dirty_card_queue_set().apply_closure_to_all_completed_buffers(); 5689 5690 DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set(); 5691 dcq.merge_bufferlists(&dirty_card_queue_set()); 5692 assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed"); 5693 } 5694 COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); 5695 } 5696 5697 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr, 5698 size_t* pre_used, 5699 FreeRegionList* free_list, 5700 OldRegionSet* old_proxy_set, 5701 HumongousRegionSet* humongous_proxy_set, 5702 HRRSCleanupTask* hrrs_cleanup_task, 5703 bool par) { 5704 if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) { 5705 if (hr->isHumongous()) { 5706 assert(hr->startsHumongous(), "we should only see starts humongous"); 5707 free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par); 5708 } else { 5709 _old_set.remove_with_proxy(hr, old_proxy_set); 5710 free_region(hr, pre_used, free_list, par); 5711 } 5712 } else { 5713 hr->rem_set()->do_cleanup_work(hrrs_cleanup_task); 5714 } 5715 } 5716 5717 void G1CollectedHeap::free_region(HeapRegion* hr, 5718 size_t* pre_used, 5719 FreeRegionList* free_list, 5720 bool par) { 5721 assert(!hr->isHumongous(), "this is only for non-humongous regions"); 5722 assert(!hr->is_empty(), "the region should not be empty"); 5723 assert(free_list != NULL, "pre-condition"); 5724 5725 *pre_used += hr->used(); 5726 hr->hr_clear(par, true /* clear_space */); 5727 free_list->add_as_head(hr); 5728 } 5729 5730 void G1CollectedHeap::free_humongous_region(HeapRegion* hr, 5731 size_t* pre_used, 5732 FreeRegionList* free_list, 5733 HumongousRegionSet* humongous_proxy_set, 5734 bool par) { 5735 assert(hr->startsHumongous(), "this is only for starts humongous regions"); 5736 assert(free_list != NULL, "pre-condition"); 5737 assert(humongous_proxy_set != NULL, "pre-condition"); 5738 5739 size_t hr_used = hr->used(); 5740 size_t hr_capacity = hr->capacity(); 5741 size_t hr_pre_used = 0; 5742 _humongous_set.remove_with_proxy(hr, humongous_proxy_set); 5743 // We need to read this before we make the region non-humongous, 5744 // otherwise the information will be gone. 5745 uint last_index = hr->last_hc_index(); 5746 hr->set_notHumongous(); 5747 free_region(hr, &hr_pre_used, free_list, par); 5748 5749 uint i = hr->hrs_index() + 1; 5750 while (i < last_index) { 5751 HeapRegion* curr_hr = region_at(i); 5752 assert(curr_hr->continuesHumongous(), "invariant"); 5753 curr_hr->set_notHumongous(); 5754 free_region(curr_hr, &hr_pre_used, free_list, par); 5755 i += 1; 5756 } 5757 assert(hr_pre_used == hr_used, 5758 err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" " 5759 "should be the same", hr_pre_used, hr_used)); 5760 *pre_used += hr_pre_used; 5761 } 5762 5763 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used, 5764 FreeRegionList* free_list, 5765 OldRegionSet* old_proxy_set, 5766 HumongousRegionSet* humongous_proxy_set, 5767 bool par) { 5768 if (pre_used > 0) { 5769 Mutex* lock = (par) ? ParGCRareEvent_lock : NULL; 5770 MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag); 5771 assert(_summary_bytes_used >= pre_used, 5772 err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" " 5773 "should be >= pre_used: "SIZE_FORMAT, 5774 _summary_bytes_used, pre_used)); 5775 _summary_bytes_used -= pre_used; 5776 } 5777 if (free_list != NULL && !free_list->is_empty()) { 5778 MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag); 5779 _free_list.add_as_head(free_list); 5780 } 5781 if (old_proxy_set != NULL && !old_proxy_set->is_empty()) { 5782 MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag); 5783 _old_set.update_from_proxy(old_proxy_set); 5784 } 5785 if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) { 5786 MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag); 5787 _humongous_set.update_from_proxy(humongous_proxy_set); 5788 } 5789 } 5790 5791 class G1ParCleanupCTTask : public AbstractGangTask { 5792 CardTableModRefBS* _ct_bs; 5793 G1CollectedHeap* _g1h; 5794 HeapRegion* volatile _su_head; 5795 public: 5796 G1ParCleanupCTTask(CardTableModRefBS* ct_bs, 5797 G1CollectedHeap* g1h) : 5798 AbstractGangTask("G1 Par Cleanup CT Task"), 5799 _ct_bs(ct_bs), _g1h(g1h) { } 5800 5801 void work(uint worker_id) { 5802 HeapRegion* r; 5803 while (r = _g1h->pop_dirty_cards_region()) { 5804 clear_cards(r); 5805 } 5806 } 5807 5808 void clear_cards(HeapRegion* r) { 5809 // Cards of the survivors should have already been dirtied. 5810 if (!r->is_survivor()) { 5811 _ct_bs->clear(MemRegion(r->bottom(), r->end())); 5812 } 5813 } 5814 }; 5815 5816 #ifndef PRODUCT 5817 class G1VerifyCardTableCleanup: public HeapRegionClosure { 5818 G1CollectedHeap* _g1h; 5819 CardTableModRefBS* _ct_bs; 5820 public: 5821 G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs) 5822 : _g1h(g1h), _ct_bs(ct_bs) { } 5823 virtual bool doHeapRegion(HeapRegion* r) { 5824 if (r->is_survivor()) { 5825 _g1h->verify_dirty_region(r); 5826 } else { 5827 _g1h->verify_not_dirty_region(r); 5828 } 5829 return false; 5830 } 5831 }; 5832 5833 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) { 5834 // All of the region should be clean. 5835 CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set(); 5836 MemRegion mr(hr->bottom(), hr->end()); 5837 ct_bs->verify_not_dirty_region(mr); 5838 } 5839 5840 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) { 5841 // We cannot guarantee that [bottom(),end()] is dirty. Threads 5842 // dirty allocated blocks as they allocate them. The thread that 5843 // retires each region and replaces it with a new one will do a 5844 // maximal allocation to fill in [pre_dummy_top(),end()] but will 5845 // not dirty that area (one less thing to have to do while holding 5846 // a lock). So we can only verify that [bottom(),pre_dummy_top()] 5847 // is dirty. 5848 CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set(); 5849 MemRegion mr(hr->bottom(), hr->pre_dummy_top()); 5850 ct_bs->verify_dirty_region(mr); 5851 } 5852 5853 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) { 5854 CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set(); 5855 for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) { 5856 verify_dirty_region(hr); 5857 } 5858 } 5859 5860 void G1CollectedHeap::verify_dirty_young_regions() { 5861 verify_dirty_young_list(_young_list->first_region()); 5862 } 5863 #endif 5864 5865 void G1CollectedHeap::cleanUpCardTable() { 5866 CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set()); 5867 double start = os::elapsedTime(); 5868 5869 { 5870 // Iterate over the dirty cards region list. 5871 G1ParCleanupCTTask cleanup_task(ct_bs, this); 5872 5873 if (G1CollectedHeap::use_parallel_gc_threads()) { 5874 set_par_threads(); 5875 workers()->run_task(&cleanup_task); 5876 set_par_threads(0); 5877 } else { 5878 while (_dirty_cards_region_list) { 5879 HeapRegion* r = _dirty_cards_region_list; 5880 cleanup_task.clear_cards(r); 5881 _dirty_cards_region_list = r->get_next_dirty_cards_region(); 5882 if (_dirty_cards_region_list == r) { 5883 // The last region. 5884 _dirty_cards_region_list = NULL; 5885 } 5886 r->set_next_dirty_cards_region(NULL); 5887 } 5888 } 5889 #ifndef PRODUCT 5890 if (G1VerifyCTCleanup || VerifyAfterGC) { 5891 G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs); 5892 heap_region_iterate(&cleanup_verifier); 5893 } 5894 #endif 5895 } 5896 5897 double elapsed = os::elapsedTime() - start; 5898 g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0); 5899 } 5900 5901 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) { 5902 size_t pre_used = 0; 5903 FreeRegionList local_free_list("Local List for CSet Freeing"); 5904 5905 double young_time_ms = 0.0; 5906 double non_young_time_ms = 0.0; 5907 5908 // Since the collection set is a superset of the the young list, 5909 // all we need to do to clear the young list is clear its 5910 // head and length, and unlink any young regions in the code below 5911 _young_list->clear(); 5912 5913 G1CollectorPolicy* policy = g1_policy(); 5914 5915 double start_sec = os::elapsedTime(); 5916 bool non_young = true; 5917 5918 HeapRegion* cur = cs_head; 5919 int age_bound = -1; 5920 size_t rs_lengths = 0; 5921 5922 while (cur != NULL) { 5923 assert(!is_on_master_free_list(cur), "sanity"); 5924 if (non_young) { 5925 if (cur->is_young()) { 5926 double end_sec = os::elapsedTime(); 5927 double elapsed_ms = (end_sec - start_sec) * 1000.0; 5928 non_young_time_ms += elapsed_ms; 5929 5930 start_sec = os::elapsedTime(); 5931 non_young = false; 5932 } 5933 } else { 5934 if (!cur->is_young()) { 5935 double end_sec = os::elapsedTime(); 5936 double elapsed_ms = (end_sec - start_sec) * 1000.0; 5937 young_time_ms += elapsed_ms; 5938 5939 start_sec = os::elapsedTime(); 5940 non_young = true; 5941 } 5942 } 5943 5944 rs_lengths += cur->rem_set()->occupied(); 5945 5946 HeapRegion* next = cur->next_in_collection_set(); 5947 assert(cur->in_collection_set(), "bad CS"); 5948 cur->set_next_in_collection_set(NULL); 5949 cur->set_in_collection_set(false); 5950 5951 if (cur->is_young()) { 5952 int index = cur->young_index_in_cset(); 5953 assert(index != -1, "invariant"); 5954 assert((uint) index < policy->young_cset_region_length(), "invariant"); 5955 size_t words_survived = _surviving_young_words[index]; 5956 cur->record_surv_words_in_group(words_survived); 5957 5958 // At this point the we have 'popped' cur from the collection set 5959 // (linked via next_in_collection_set()) but it is still in the 5960 // young list (linked via next_young_region()). Clear the 5961 // _next_young_region field. 5962 cur->set_next_young_region(NULL); 5963 } else { 5964 int index = cur->young_index_in_cset(); 5965 assert(index == -1, "invariant"); 5966 } 5967 5968 assert( (cur->is_young() && cur->young_index_in_cset() > -1) || 5969 (!cur->is_young() && cur->young_index_in_cset() == -1), 5970 "invariant" ); 5971 5972 if (!cur->evacuation_failed()) { 5973 MemRegion used_mr = cur->used_region(); 5974 5975 // And the region is empty. 5976 assert(!used_mr.is_empty(), "Should not have empty regions in a CS."); 5977 free_region(cur, &pre_used, &local_free_list, false /* par */); 5978 } else { 5979 cur->uninstall_surv_rate_group(); 5980 if (cur->is_young()) { 5981 cur->set_young_index_in_cset(-1); 5982 } 5983 cur->set_not_young(); 5984 cur->set_evacuation_failed(false); 5985 // The region is now considered to be old. 5986 _old_set.add(cur); 5987 } 5988 cur = next; 5989 } 5990 5991 policy->record_max_rs_lengths(rs_lengths); 5992 policy->cset_regions_freed(); 5993 5994 double end_sec = os::elapsedTime(); 5995 double elapsed_ms = (end_sec - start_sec) * 1000.0; 5996 5997 if (non_young) { 5998 non_young_time_ms += elapsed_ms; 5999 } else { 6000 young_time_ms += elapsed_ms; 6001 } 6002 6003 update_sets_after_freeing_regions(pre_used, &local_free_list, 6004 NULL /* old_proxy_set */, 6005 NULL /* humongous_proxy_set */, 6006 false /* par */); 6007 policy->phase_times()->record_young_free_cset_time_ms(young_time_ms); 6008 policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms); 6009 } 6010 6011 // This routine is similar to the above but does not record 6012 // any policy statistics or update free lists; we are abandoning 6013 // the current incremental collection set in preparation of a 6014 // full collection. After the full GC we will start to build up 6015 // the incremental collection set again. 6016 // This is only called when we're doing a full collection 6017 // and is immediately followed by the tearing down of the young list. 6018 6019 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) { 6020 HeapRegion* cur = cs_head; 6021 6022 while (cur != NULL) { 6023 HeapRegion* next = cur->next_in_collection_set(); 6024 assert(cur->in_collection_set(), "bad CS"); 6025 cur->set_next_in_collection_set(NULL); 6026 cur->set_in_collection_set(false); 6027 cur->set_young_index_in_cset(-1); 6028 cur = next; 6029 } 6030 } 6031 6032 void G1CollectedHeap::set_free_regions_coming() { 6033 if (G1ConcRegionFreeingVerbose) { 6034 gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : " 6035 "setting free regions coming"); 6036 } 6037 6038 assert(!free_regions_coming(), "pre-condition"); 6039 _free_regions_coming = true; 6040 } 6041 6042 void G1CollectedHeap::reset_free_regions_coming() { 6043 assert(free_regions_coming(), "pre-condition"); 6044 6045 { 6046 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 6047 _free_regions_coming = false; 6048 SecondaryFreeList_lock->notify_all(); 6049 } 6050 6051 if (G1ConcRegionFreeingVerbose) { 6052 gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : " 6053 "reset free regions coming"); 6054 } 6055 } 6056 6057 void G1CollectedHeap::wait_while_free_regions_coming() { 6058 // Most of the time we won't have to wait, so let's do a quick test 6059 // first before we take the lock. 6060 if (!free_regions_coming()) { 6061 return; 6062 } 6063 6064 if (G1ConcRegionFreeingVerbose) { 6065 gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : " 6066 "waiting for free regions"); 6067 } 6068 6069 { 6070 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 6071 while (free_regions_coming()) { 6072 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag); 6073 } 6074 } 6075 6076 if (G1ConcRegionFreeingVerbose) { 6077 gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : " 6078 "done waiting for free regions"); 6079 } 6080 } 6081 6082 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) { 6083 assert(heap_lock_held_for_gc(), 6084 "the heap lock should already be held by or for this thread"); 6085 _young_list->push_region(hr); 6086 } 6087 6088 class NoYoungRegionsClosure: public HeapRegionClosure { 6089 private: 6090 bool _success; 6091 public: 6092 NoYoungRegionsClosure() : _success(true) { } 6093 bool doHeapRegion(HeapRegion* r) { 6094 if (r->is_young()) { 6095 gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young", 6096 r->bottom(), r->end()); 6097 _success = false; 6098 } 6099 return false; 6100 } 6101 bool success() { return _success; } 6102 }; 6103 6104 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) { 6105 bool ret = _young_list->check_list_empty(check_sample); 6106 6107 if (check_heap) { 6108 NoYoungRegionsClosure closure; 6109 heap_region_iterate(&closure); 6110 ret = ret && closure.success(); 6111 } 6112 6113 return ret; 6114 } 6115 6116 class TearDownRegionSetsClosure : public HeapRegionClosure { 6117 private: 6118 OldRegionSet *_old_set; 6119 6120 public: 6121 TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { } 6122 6123 bool doHeapRegion(HeapRegion* r) { 6124 if (r->is_empty()) { 6125 // We ignore empty regions, we'll empty the free list afterwards 6126 } else if (r->is_young()) { 6127 // We ignore young regions, we'll empty the young list afterwards 6128 } else if (r->isHumongous()) { 6129 // We ignore humongous regions, we're not tearing down the 6130 // humongous region set 6131 } else { 6132 // The rest should be old 6133 _old_set->remove(r); 6134 } 6135 return false; 6136 } 6137 6138 ~TearDownRegionSetsClosure() { 6139 assert(_old_set->is_empty(), "post-condition"); 6140 } 6141 }; 6142 6143 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) { 6144 assert_at_safepoint(true /* should_be_vm_thread */); 6145 6146 if (!free_list_only) { 6147 TearDownRegionSetsClosure cl(&_old_set); 6148 heap_region_iterate(&cl); 6149 6150 // Need to do this after the heap iteration to be able to 6151 // recognize the young regions and ignore them during the iteration. 6152 _young_list->empty_list(); 6153 } 6154 _free_list.remove_all(); 6155 } 6156 6157 class RebuildRegionSetsClosure : public HeapRegionClosure { 6158 private: 6159 bool _free_list_only; 6160 OldRegionSet* _old_set; 6161 FreeRegionList* _free_list; 6162 size_t _total_used; 6163 6164 public: 6165 RebuildRegionSetsClosure(bool free_list_only, 6166 OldRegionSet* old_set, FreeRegionList* free_list) : 6167 _free_list_only(free_list_only), 6168 _old_set(old_set), _free_list(free_list), _total_used(0) { 6169 assert(_free_list->is_empty(), "pre-condition"); 6170 if (!free_list_only) { 6171 assert(_old_set->is_empty(), "pre-condition"); 6172 } 6173 } 6174 6175 bool doHeapRegion(HeapRegion* r) { 6176 if (r->continuesHumongous()) { 6177 return false; 6178 } 6179 6180 if (r->is_empty()) { 6181 // Add free regions to the free list 6182 _free_list->add_as_tail(r); 6183 } else if (!_free_list_only) { 6184 assert(!r->is_young(), "we should not come across young regions"); 6185 6186 if (r->isHumongous()) { 6187 // We ignore humongous regions, we left the humongous set unchanged 6188 } else { 6189 // The rest should be old, add them to the old set 6190 _old_set->add(r); 6191 } 6192 _total_used += r->used(); 6193 } 6194 6195 return false; 6196 } 6197 6198 size_t total_used() { 6199 return _total_used; 6200 } 6201 }; 6202 6203 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) { 6204 assert_at_safepoint(true /* should_be_vm_thread */); 6205 6206 RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list); 6207 heap_region_iterate(&cl); 6208 6209 if (!free_list_only) { 6210 _summary_bytes_used = cl.total_used(); 6211 } 6212 assert(_summary_bytes_used == recalculate_used(), 6213 err_msg("inconsistent _summary_bytes_used, " 6214 "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT, 6215 _summary_bytes_used, recalculate_used())); 6216 } 6217 6218 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) { 6219 _refine_cte_cl->set_concurrent(concurrent); 6220 } 6221 6222 bool G1CollectedHeap::is_in_closed_subset(const void* p) const { 6223 HeapRegion* hr = heap_region_containing(p); 6224 if (hr == NULL) { 6225 return false; 6226 } else { 6227 return hr->is_in(p); 6228 } 6229 } 6230 6231 // Methods for the mutator alloc region 6232 6233 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size, 6234 bool force) { 6235 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6236 assert(!force || g1_policy()->can_expand_young_list(), 6237 "if force is true we should be able to expand the young list"); 6238 bool young_list_full = g1_policy()->is_young_list_full(); 6239 if (force || !young_list_full) { 6240 HeapRegion* new_alloc_region = new_region(word_size, 6241 false /* do_expand */); 6242 if (new_alloc_region != NULL) { 6243 set_region_short_lived_locked(new_alloc_region); 6244 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full); 6245 return new_alloc_region; 6246 } 6247 } 6248 return NULL; 6249 } 6250 6251 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region, 6252 size_t allocated_bytes) { 6253 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6254 assert(alloc_region->is_young(), "all mutator alloc regions should be young"); 6255 6256 g1_policy()->add_region_to_incremental_cset_lhs(alloc_region); 6257 _summary_bytes_used += allocated_bytes; 6258 _hr_printer.retire(alloc_region); 6259 // We update the eden sizes here, when the region is retired, 6260 // instead of when it's allocated, since this is the point that its 6261 // used space has been recored in _summary_bytes_used. 6262 g1mm()->update_eden_size(); 6263 } 6264 6265 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size, 6266 bool force) { 6267 return _g1h->new_mutator_alloc_region(word_size, force); 6268 } 6269 6270 void G1CollectedHeap::set_par_threads() { 6271 // Don't change the number of workers. Use the value previously set 6272 // in the workgroup. 6273 assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise"); 6274 uint n_workers = workers()->active_workers(); 6275 assert(UseDynamicNumberOfGCThreads || 6276 n_workers == workers()->total_workers(), 6277 "Otherwise should be using the total number of workers"); 6278 if (n_workers == 0) { 6279 assert(false, "Should have been set in prior evacuation pause."); 6280 n_workers = ParallelGCThreads; 6281 workers()->set_active_workers(n_workers); 6282 } 6283 set_par_threads(n_workers); 6284 } 6285 6286 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region, 6287 size_t allocated_bytes) { 6288 _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes); 6289 } 6290 6291 // Methods for the GC alloc regions 6292 6293 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, 6294 uint count, 6295 GCAllocPurpose ap) { 6296 assert(FreeList_lock->owned_by_self(), "pre-condition"); 6297 6298 if (count < g1_policy()->max_regions(ap)) { 6299 HeapRegion* new_alloc_region = new_region(word_size, 6300 true /* do_expand */); 6301 if (new_alloc_region != NULL) { 6302 // We really only need to do this for old regions given that we 6303 // should never scan survivors. But it doesn't hurt to do it 6304 // for survivors too. 6305 new_alloc_region->set_saved_mark(); 6306 if (ap == GCAllocForSurvived) { 6307 new_alloc_region->set_survivor(); 6308 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor); 6309 } else { 6310 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old); 6311 } 6312 bool during_im = g1_policy()->during_initial_mark_pause(); 6313 new_alloc_region->note_start_of_copying(during_im); 6314 return new_alloc_region; 6315 } else { 6316 g1_policy()->note_alloc_region_limit_reached(ap); 6317 } 6318 } 6319 return NULL; 6320 } 6321 6322 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region, 6323 size_t allocated_bytes, 6324 GCAllocPurpose ap) { 6325 bool during_im = g1_policy()->during_initial_mark_pause(); 6326 alloc_region->note_end_of_copying(during_im); 6327 g1_policy()->record_bytes_copied_during_gc(allocated_bytes); 6328 if (ap == GCAllocForSurvived) { 6329 young_list()->add_survivor_region(alloc_region); 6330 } else { 6331 _old_set.add(alloc_region); 6332 } 6333 _hr_printer.retire(alloc_region); 6334 } 6335 6336 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size, 6337 bool force) { 6338 assert(!force, "not supported for GC alloc regions"); 6339 return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived); 6340 } 6341 6342 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region, 6343 size_t allocated_bytes) { 6344 _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes, 6345 GCAllocForSurvived); 6346 } 6347 6348 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size, 6349 bool force) { 6350 assert(!force, "not supported for GC alloc regions"); 6351 return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured); 6352 } 6353 6354 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region, 6355 size_t allocated_bytes) { 6356 _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes, 6357 GCAllocForTenured); 6358 } 6359 // Heap region set verification 6360 6361 class VerifyRegionListsClosure : public HeapRegionClosure { 6362 private: 6363 FreeRegionList* _free_list; 6364 OldRegionSet* _old_set; 6365 HumongousRegionSet* _humongous_set; 6366 uint _region_count; 6367 6368 public: 6369 VerifyRegionListsClosure(OldRegionSet* old_set, 6370 HumongousRegionSet* humongous_set, 6371 FreeRegionList* free_list) : 6372 _old_set(old_set), _humongous_set(humongous_set), 6373 _free_list(free_list), _region_count(0) { } 6374 6375 uint region_count() { return _region_count; } 6376 6377 bool doHeapRegion(HeapRegion* hr) { 6378 _region_count += 1; 6379 6380 if (hr->continuesHumongous()) { 6381 return false; 6382 } 6383 6384 if (hr->is_young()) { 6385 // TODO 6386 } else if (hr->startsHumongous()) { 6387 _humongous_set->verify_next_region(hr); 6388 } else if (hr->is_empty()) { 6389 _free_list->verify_next_region(hr); 6390 } else { 6391 _old_set->verify_next_region(hr); 6392 } 6393 return false; 6394 } 6395 }; 6396 6397 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index, 6398 HeapWord* bottom) { 6399 HeapWord* end = bottom + HeapRegion::GrainWords; 6400 MemRegion mr(bottom, end); 6401 assert(_g1_reserved.contains(mr), "invariant"); 6402 // This might return NULL if the allocation fails 6403 return new HeapRegion(hrs_index, _bot_shared, mr); 6404 } 6405 6406 void G1CollectedHeap::verify_region_sets() { 6407 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6408 6409 // First, check the explicit lists. 6410 _free_list.verify(); 6411 { 6412 // Given that a concurrent operation might be adding regions to 6413 // the secondary free list we have to take the lock before 6414 // verifying it. 6415 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 6416 _secondary_free_list.verify(); 6417 } 6418 _old_set.verify(); 6419 _humongous_set.verify(); 6420 6421 // If a concurrent region freeing operation is in progress it will 6422 // be difficult to correctly attributed any free regions we come 6423 // across to the correct free list given that they might belong to 6424 // one of several (free_list, secondary_free_list, any local lists, 6425 // etc.). So, if that's the case we will skip the rest of the 6426 // verification operation. Alternatively, waiting for the concurrent 6427 // operation to complete will have a non-trivial effect on the GC's 6428 // operation (no concurrent operation will last longer than the 6429 // interval between two calls to verification) and it might hide 6430 // any issues that we would like to catch during testing. 6431 if (free_regions_coming()) { 6432 return; 6433 } 6434 6435 // Make sure we append the secondary_free_list on the free_list so 6436 // that all free regions we will come across can be safely 6437 // attributed to the free_list. 6438 append_secondary_free_list_if_not_empty_with_lock(); 6439 6440 // Finally, make sure that the region accounting in the lists is 6441 // consistent with what we see in the heap. 6442 _old_set.verify_start(); 6443 _humongous_set.verify_start(); 6444 _free_list.verify_start(); 6445 6446 VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list); 6447 heap_region_iterate(&cl); 6448 6449 _old_set.verify_end(); 6450 _humongous_set.verify_end(); 6451 _free_list.verify_end(); 6452 }