rev 3484 : 7178363: G1: Remove the serial code for PrintGCDetails and make it a special case of the parallel code Summary: Introduced the WorkerDataArray class. Reviewed-by: mgerdin
1 /* 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc_implementation/g1/concurrentG1Refine.hpp" 27 #include "gc_implementation/g1/concurrentMark.hpp" 28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp" 29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" 30 #include "gc_implementation/g1/g1CollectorPolicy.hpp" 31 #include "gc_implementation/g1/g1ErgoVerbose.hpp" 32 #include "gc_implementation/g1/g1GCPhaseTimes.hpp" 33 #include "gc_implementation/g1/g1Log.hpp" 34 #include "gc_implementation/g1/heapRegionRemSet.hpp" 35 #include "gc_implementation/shared/gcPolicyCounters.hpp" 36 #include "runtime/arguments.hpp" 37 #include "runtime/java.hpp" 38 #include "runtime/mutexLocker.hpp" 39 #include "utilities/debug.hpp" 40 41 // Different defaults for different number of GC threads 42 // They were chosen by running GCOld and SPECjbb on debris with different 43 // numbers of GC threads and choosing them based on the results 44 45 // all the same 46 static double rs_length_diff_defaults[] = { 47 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 48 }; 49 50 static double cost_per_card_ms_defaults[] = { 51 0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015 52 }; 53 54 // all the same 55 static double young_cards_per_entry_ratio_defaults[] = { 56 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 57 }; 58 59 static double cost_per_entry_ms_defaults[] = { 60 0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005 61 }; 62 63 static double cost_per_byte_ms_defaults[] = { 64 0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009 65 }; 66 67 // these should be pretty consistent 68 static double constant_other_time_ms_defaults[] = { 69 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0 70 }; 71 72 73 static double young_other_cost_per_region_ms_defaults[] = { 74 0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1 75 }; 76 77 static double non_young_other_cost_per_region_ms_defaults[] = { 78 1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30 79 }; 80 81 G1CollectorPolicy::G1CollectorPolicy() : 82 _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads() 83 ? ParallelGCThreads : 1), 84 85 _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)), 86 _stop_world_start(0.0), 87 88 _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)), 89 _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)), 90 91 _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)), 92 _prev_collection_pause_end_ms(0.0), 93 _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)), 94 _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)), 95 _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)), 96 _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)), 97 _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)), 98 _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)), 99 _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)), 100 _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)), 101 _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)), 102 _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)), 103 _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)), 104 _non_young_other_cost_per_region_ms_seq( 105 new TruncatedSeq(TruncatedSeqLength)), 106 107 _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)), 108 _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)), 109 110 _pause_time_target_ms((double) MaxGCPauseMillis), 111 112 _gcs_are_young(true), 113 114 _during_marking(false), 115 _in_marking_window(false), 116 _in_marking_window_im(false), 117 118 _recent_prev_end_times_for_all_gcs_sec( 119 new TruncatedSeq(NumPrevPausesForHeuristics)), 120 121 _recent_avg_pause_time_ratio(0.0), 122 123 _initiate_conc_mark_if_possible(false), 124 _during_initial_mark_pause(false), 125 _last_young_gc(false), 126 _last_gc_was_young(false), 127 128 _eden_bytes_before_gc(0), 129 _survivor_bytes_before_gc(0), 130 _capacity_before_gc(0), 131 132 _eden_cset_region_length(0), 133 _survivor_cset_region_length(0), 134 _old_cset_region_length(0), 135 136 _collection_set(NULL), 137 _collection_set_bytes_used_before(0), 138 139 // Incremental CSet attributes 140 _inc_cset_build_state(Inactive), 141 _inc_cset_head(NULL), 142 _inc_cset_tail(NULL), 143 _inc_cset_bytes_used_before(0), 144 _inc_cset_max_finger(NULL), 145 _inc_cset_recorded_rs_lengths(0), 146 _inc_cset_recorded_rs_lengths_diffs(0), 147 _inc_cset_predicted_elapsed_time_ms(0.0), 148 _inc_cset_predicted_elapsed_time_ms_diffs(0.0), 149 150 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away 151 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 152 #endif // _MSC_VER 153 154 _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived", 155 G1YoungSurvRateNumRegionsSummary)), 156 _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor", 157 G1YoungSurvRateNumRegionsSummary)), 158 // add here any more surv rate groups 159 _recorded_survivor_regions(0), 160 _recorded_survivor_head(NULL), 161 _recorded_survivor_tail(NULL), 162 _survivors_age_table(true), 163 164 _gc_overhead_perc(0.0) { 165 166 // Set up the region size and associated fields. Given that the 167 // policy is created before the heap, we have to set this up here, 168 // so it's done as soon as possible. 169 HeapRegion::setup_heap_region_size(Arguments::min_heap_size()); 170 HeapRegionRemSet::setup_remset_size(); 171 172 G1ErgoVerbose::initialize(); 173 if (PrintAdaptiveSizePolicy) { 174 // Currently, we only use a single switch for all the heuristics. 175 G1ErgoVerbose::set_enabled(true); 176 // Given that we don't currently have a verboseness level 177 // parameter, we'll hardcode this to high. This can be easily 178 // changed in the future. 179 G1ErgoVerbose::set_level(ErgoHigh); 180 } else { 181 G1ErgoVerbose::set_enabled(false); 182 } 183 184 // Verify PLAB sizes 185 const size_t region_size = HeapRegion::GrainWords; 186 if (YoungPLABSize > region_size || OldPLABSize > region_size) { 187 char buffer[128]; 188 jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT, 189 OldPLABSize > region_size ? "Old" : "Young", region_size); 190 vm_exit_during_initialization(buffer); 191 } 192 193 _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime()); 194 _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0; 195 196 _phase_times = new G1GCPhaseTimes(_parallel_gc_threads); 197 198 int index = MIN2(_parallel_gc_threads - 1, 7); 199 200 _pending_card_diff_seq->add(0.0); 201 _rs_length_diff_seq->add(rs_length_diff_defaults[index]); 202 _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]); 203 _young_cards_per_entry_ratio_seq->add( 204 young_cards_per_entry_ratio_defaults[index]); 205 _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]); 206 _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]); 207 _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]); 208 _young_other_cost_per_region_ms_seq->add( 209 young_other_cost_per_region_ms_defaults[index]); 210 _non_young_other_cost_per_region_ms_seq->add( 211 non_young_other_cost_per_region_ms_defaults[index]); 212 213 // Below, we might need to calculate the pause time target based on 214 // the pause interval. When we do so we are going to give G1 maximum 215 // flexibility and allow it to do pauses when it needs to. So, we'll 216 // arrange that the pause interval to be pause time target + 1 to 217 // ensure that a) the pause time target is maximized with respect to 218 // the pause interval and b) we maintain the invariant that pause 219 // time target < pause interval. If the user does not want this 220 // maximum flexibility, they will have to set the pause interval 221 // explicitly. 222 223 // First make sure that, if either parameter is set, its value is 224 // reasonable. 225 if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) { 226 if (MaxGCPauseMillis < 1) { 227 vm_exit_during_initialization("MaxGCPauseMillis should be " 228 "greater than 0"); 229 } 230 } 231 if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) { 232 if (GCPauseIntervalMillis < 1) { 233 vm_exit_during_initialization("GCPauseIntervalMillis should be " 234 "greater than 0"); 235 } 236 } 237 238 // Then, if the pause time target parameter was not set, set it to 239 // the default value. 240 if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) { 241 if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) { 242 // The default pause time target in G1 is 200ms 243 FLAG_SET_DEFAULT(MaxGCPauseMillis, 200); 244 } else { 245 // We do not allow the pause interval to be set without the 246 // pause time target 247 vm_exit_during_initialization("GCPauseIntervalMillis cannot be set " 248 "without setting MaxGCPauseMillis"); 249 } 250 } 251 252 // Then, if the interval parameter was not set, set it according to 253 // the pause time target (this will also deal with the case when the 254 // pause time target is the default value). 255 if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) { 256 FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1); 257 } 258 259 // Finally, make sure that the two parameters are consistent. 260 if (MaxGCPauseMillis >= GCPauseIntervalMillis) { 261 char buffer[256]; 262 jio_snprintf(buffer, 256, 263 "MaxGCPauseMillis (%u) should be less than " 264 "GCPauseIntervalMillis (%u)", 265 MaxGCPauseMillis, GCPauseIntervalMillis); 266 vm_exit_during_initialization(buffer); 267 } 268 269 double max_gc_time = (double) MaxGCPauseMillis / 1000.0; 270 double time_slice = (double) GCPauseIntervalMillis / 1000.0; 271 _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time); 272 _sigma = (double) G1ConfidencePercent / 100.0; 273 274 // start conservatively (around 50ms is about right) 275 _concurrent_mark_remark_times_ms->add(0.05); 276 _concurrent_mark_cleanup_times_ms->add(0.20); 277 _tenuring_threshold = MaxTenuringThreshold; 278 // _max_survivor_regions will be calculated by 279 // update_young_list_target_length() during initialization. 280 _max_survivor_regions = 0; 281 282 assert(GCTimeRatio > 0, 283 "we should have set it to a default value set_g1_gc_flags() " 284 "if a user set it to 0"); 285 _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio)); 286 287 uintx reserve_perc = G1ReservePercent; 288 // Put an artificial ceiling on this so that it's not set to a silly value. 289 if (reserve_perc > 50) { 290 reserve_perc = 50; 291 warning("G1ReservePercent is set to a value that is too large, " 292 "it's been updated to %u", reserve_perc); 293 } 294 _reserve_factor = (double) reserve_perc / 100.0; 295 // This will be set when the heap is expanded 296 // for the first time during initialization. 297 _reserve_regions = 0; 298 299 initialize_all(); 300 _collectionSetChooser = new CollectionSetChooser(); 301 _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags 302 } 303 304 void G1CollectorPolicy::initialize_flags() { 305 set_min_alignment(HeapRegion::GrainBytes); 306 set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name())); 307 if (SurvivorRatio < 1) { 308 vm_exit_during_initialization("Invalid survivor ratio specified"); 309 } 310 CollectorPolicy::initialize_flags(); 311 } 312 313 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) { 314 assert(G1DefaultMinNewGenPercent <= G1DefaultMaxNewGenPercent, "Min larger than max"); 315 assert(G1DefaultMinNewGenPercent > 0 && G1DefaultMinNewGenPercent < 100, "Min out of bounds"); 316 assert(G1DefaultMaxNewGenPercent > 0 && G1DefaultMaxNewGenPercent < 100, "Max out of bounds"); 317 318 if (FLAG_IS_CMDLINE(NewRatio)) { 319 if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) { 320 warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio"); 321 } else { 322 _sizer_kind = SizerNewRatio; 323 _adaptive_size = false; 324 return; 325 } 326 } 327 328 if (FLAG_IS_CMDLINE(NewSize)) { 329 _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes), 330 1U); 331 if (FLAG_IS_CMDLINE(MaxNewSize)) { 332 _max_desired_young_length = 333 MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes), 334 1U); 335 _sizer_kind = SizerMaxAndNewSize; 336 _adaptive_size = _min_desired_young_length == _max_desired_young_length; 337 } else { 338 _sizer_kind = SizerNewSizeOnly; 339 } 340 } else if (FLAG_IS_CMDLINE(MaxNewSize)) { 341 _max_desired_young_length = 342 MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes), 343 1U); 344 _sizer_kind = SizerMaxNewSizeOnly; 345 } 346 } 347 348 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) { 349 uint default_value = (new_number_of_heap_regions * G1DefaultMinNewGenPercent) / 100; 350 return MAX2(1U, default_value); 351 } 352 353 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) { 354 uint default_value = (new_number_of_heap_regions * G1DefaultMaxNewGenPercent) / 100; 355 return MAX2(1U, default_value); 356 } 357 358 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) { 359 assert(new_number_of_heap_regions > 0, "Heap must be initialized"); 360 361 switch (_sizer_kind) { 362 case SizerDefaults: 363 _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions); 364 _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions); 365 break; 366 case SizerNewSizeOnly: 367 _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions); 368 _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length); 369 break; 370 case SizerMaxNewSizeOnly: 371 _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions); 372 _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length); 373 break; 374 case SizerMaxAndNewSize: 375 // Do nothing. Values set on the command line, don't update them at runtime. 376 break; 377 case SizerNewRatio: 378 _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1); 379 _max_desired_young_length = _min_desired_young_length; 380 break; 381 default: 382 ShouldNotReachHere(); 383 } 384 385 assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values"); 386 } 387 388 void G1CollectorPolicy::init() { 389 // Set aside an initial future to_space. 390 _g1 = G1CollectedHeap::heap(); 391 392 assert(Heap_lock->owned_by_self(), "Locking discipline."); 393 394 initialize_gc_policy_counters(); 395 396 if (adaptive_young_list_length()) { 397 _young_list_fixed_length = 0; 398 } else { 399 _young_list_fixed_length = _young_gen_sizer->min_desired_young_length(); 400 } 401 _free_regions_at_end_of_collection = _g1->free_regions(); 402 update_young_list_target_length(); 403 _prev_eden_capacity = _young_list_target_length * HeapRegion::GrainBytes; 404 405 // We may immediately start allocating regions and placing them on the 406 // collection set list. Initialize the per-collection set info 407 start_incremental_cset_building(); 408 } 409 410 // Create the jstat counters for the policy. 411 void G1CollectorPolicy::initialize_gc_policy_counters() { 412 _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3); 413 } 414 415 bool G1CollectorPolicy::predict_will_fit(uint young_length, 416 double base_time_ms, 417 uint base_free_regions, 418 double target_pause_time_ms) { 419 if (young_length >= base_free_regions) { 420 // end condition 1: not enough space for the young regions 421 return false; 422 } 423 424 double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1); 425 size_t bytes_to_copy = 426 (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes); 427 double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy); 428 double young_other_time_ms = predict_young_other_time_ms(young_length); 429 double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms; 430 if (pause_time_ms > target_pause_time_ms) { 431 // end condition 2: prediction is over the target pause time 432 return false; 433 } 434 435 size_t free_bytes = 436 (base_free_regions - young_length) * HeapRegion::GrainBytes; 437 if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) { 438 // end condition 3: out-of-space (conservatively!) 439 return false; 440 } 441 442 // success! 443 return true; 444 } 445 446 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) { 447 // re-calculate the necessary reserve 448 double reserve_regions_d = (double) new_number_of_regions * _reserve_factor; 449 // We use ceiling so that if reserve_regions_d is > 0.0 (but 450 // smaller than 1.0) we'll get 1. 451 _reserve_regions = (uint) ceil(reserve_regions_d); 452 453 _young_gen_sizer->heap_size_changed(new_number_of_regions); 454 } 455 456 uint G1CollectorPolicy::calculate_young_list_desired_min_length( 457 uint base_min_length) { 458 uint desired_min_length = 0; 459 if (adaptive_young_list_length()) { 460 if (_alloc_rate_ms_seq->num() > 3) { 461 double now_sec = os::elapsedTime(); 462 double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0; 463 double alloc_rate_ms = predict_alloc_rate_ms(); 464 desired_min_length = (uint) ceil(alloc_rate_ms * when_ms); 465 } else { 466 // otherwise we don't have enough info to make the prediction 467 } 468 } 469 desired_min_length += base_min_length; 470 // make sure we don't go below any user-defined minimum bound 471 return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length); 472 } 473 474 uint G1CollectorPolicy::calculate_young_list_desired_max_length() { 475 // Here, we might want to also take into account any additional 476 // constraints (i.e., user-defined minimum bound). Currently, we 477 // effectively don't set this bound. 478 return _young_gen_sizer->max_desired_young_length(); 479 } 480 481 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) { 482 if (rs_lengths == (size_t) -1) { 483 // if it's set to the default value (-1), we should predict it; 484 // otherwise, use the given value. 485 rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq); 486 } 487 488 // Calculate the absolute and desired min bounds. 489 490 // This is how many young regions we already have (currently: the survivors). 491 uint base_min_length = recorded_survivor_regions(); 492 // This is the absolute minimum young length, which ensures that we 493 // can allocate one eden region in the worst-case. 494 uint absolute_min_length = base_min_length + 1; 495 uint desired_min_length = 496 calculate_young_list_desired_min_length(base_min_length); 497 if (desired_min_length < absolute_min_length) { 498 desired_min_length = absolute_min_length; 499 } 500 501 // Calculate the absolute and desired max bounds. 502 503 // We will try our best not to "eat" into the reserve. 504 uint absolute_max_length = 0; 505 if (_free_regions_at_end_of_collection > _reserve_regions) { 506 absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions; 507 } 508 uint desired_max_length = calculate_young_list_desired_max_length(); 509 if (desired_max_length > absolute_max_length) { 510 desired_max_length = absolute_max_length; 511 } 512 513 uint young_list_target_length = 0; 514 if (adaptive_young_list_length()) { 515 if (gcs_are_young()) { 516 young_list_target_length = 517 calculate_young_list_target_length(rs_lengths, 518 base_min_length, 519 desired_min_length, 520 desired_max_length); 521 _rs_lengths_prediction = rs_lengths; 522 } else { 523 // Don't calculate anything and let the code below bound it to 524 // the desired_min_length, i.e., do the next GC as soon as 525 // possible to maximize how many old regions we can add to it. 526 } 527 } else { 528 // The user asked for a fixed young gen so we'll fix the young gen 529 // whether the next GC is young or mixed. 530 young_list_target_length = _young_list_fixed_length; 531 } 532 533 // Make sure we don't go over the desired max length, nor under the 534 // desired min length. In case they clash, desired_min_length wins 535 // which is why that test is second. 536 if (young_list_target_length > desired_max_length) { 537 young_list_target_length = desired_max_length; 538 } 539 if (young_list_target_length < desired_min_length) { 540 young_list_target_length = desired_min_length; 541 } 542 543 assert(young_list_target_length > recorded_survivor_regions(), 544 "we should be able to allocate at least one eden region"); 545 assert(young_list_target_length >= absolute_min_length, "post-condition"); 546 _young_list_target_length = young_list_target_length; 547 548 update_max_gc_locker_expansion(); 549 } 550 551 uint 552 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths, 553 uint base_min_length, 554 uint desired_min_length, 555 uint desired_max_length) { 556 assert(adaptive_young_list_length(), "pre-condition"); 557 assert(gcs_are_young(), "only call this for young GCs"); 558 559 // In case some edge-condition makes the desired max length too small... 560 if (desired_max_length <= desired_min_length) { 561 return desired_min_length; 562 } 563 564 // We'll adjust min_young_length and max_young_length not to include 565 // the already allocated young regions (i.e., so they reflect the 566 // min and max eden regions we'll allocate). The base_min_length 567 // will be reflected in the predictions by the 568 // survivor_regions_evac_time prediction. 569 assert(desired_min_length > base_min_length, "invariant"); 570 uint min_young_length = desired_min_length - base_min_length; 571 assert(desired_max_length > base_min_length, "invariant"); 572 uint max_young_length = desired_max_length - base_min_length; 573 574 double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0; 575 double survivor_regions_evac_time = predict_survivor_regions_evac_time(); 576 size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq); 577 size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff(); 578 size_t scanned_cards = predict_young_card_num(adj_rs_lengths); 579 double base_time_ms = 580 predict_base_elapsed_time_ms(pending_cards, scanned_cards) + 581 survivor_regions_evac_time; 582 uint available_free_regions = _free_regions_at_end_of_collection; 583 uint base_free_regions = 0; 584 if (available_free_regions > _reserve_regions) { 585 base_free_regions = available_free_regions - _reserve_regions; 586 } 587 588 // Here, we will make sure that the shortest young length that 589 // makes sense fits within the target pause time. 590 591 if (predict_will_fit(min_young_length, base_time_ms, 592 base_free_regions, target_pause_time_ms)) { 593 // The shortest young length will fit into the target pause time; 594 // we'll now check whether the absolute maximum number of young 595 // regions will fit in the target pause time. If not, we'll do 596 // a binary search between min_young_length and max_young_length. 597 if (predict_will_fit(max_young_length, base_time_ms, 598 base_free_regions, target_pause_time_ms)) { 599 // The maximum young length will fit into the target pause time. 600 // We are done so set min young length to the maximum length (as 601 // the result is assumed to be returned in min_young_length). 602 min_young_length = max_young_length; 603 } else { 604 // The maximum possible number of young regions will not fit within 605 // the target pause time so we'll search for the optimal 606 // length. The loop invariants are: 607 // 608 // min_young_length < max_young_length 609 // min_young_length is known to fit into the target pause time 610 // max_young_length is known not to fit into the target pause time 611 // 612 // Going into the loop we know the above hold as we've just 613 // checked them. Every time around the loop we check whether 614 // the middle value between min_young_length and 615 // max_young_length fits into the target pause time. If it 616 // does, it becomes the new min. If it doesn't, it becomes 617 // the new max. This way we maintain the loop invariants. 618 619 assert(min_young_length < max_young_length, "invariant"); 620 uint diff = (max_young_length - min_young_length) / 2; 621 while (diff > 0) { 622 uint young_length = min_young_length + diff; 623 if (predict_will_fit(young_length, base_time_ms, 624 base_free_regions, target_pause_time_ms)) { 625 min_young_length = young_length; 626 } else { 627 max_young_length = young_length; 628 } 629 assert(min_young_length < max_young_length, "invariant"); 630 diff = (max_young_length - min_young_length) / 2; 631 } 632 // The results is min_young_length which, according to the 633 // loop invariants, should fit within the target pause time. 634 635 // These are the post-conditions of the binary search above: 636 assert(min_young_length < max_young_length, 637 "otherwise we should have discovered that max_young_length " 638 "fits into the pause target and not done the binary search"); 639 assert(predict_will_fit(min_young_length, base_time_ms, 640 base_free_regions, target_pause_time_ms), 641 "min_young_length, the result of the binary search, should " 642 "fit into the pause target"); 643 assert(!predict_will_fit(min_young_length + 1, base_time_ms, 644 base_free_regions, target_pause_time_ms), 645 "min_young_length, the result of the binary search, should be " 646 "optimal, so no larger length should fit into the pause target"); 647 } 648 } else { 649 // Even the minimum length doesn't fit into the pause time 650 // target, return it as the result nevertheless. 651 } 652 return base_min_length + min_young_length; 653 } 654 655 double G1CollectorPolicy::predict_survivor_regions_evac_time() { 656 double survivor_regions_evac_time = 0.0; 657 for (HeapRegion * r = _recorded_survivor_head; 658 r != NULL && r != _recorded_survivor_tail->get_next_young_region(); 659 r = r->get_next_young_region()) { 660 survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true); 661 } 662 return survivor_regions_evac_time; 663 } 664 665 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() { 666 guarantee( adaptive_young_list_length(), "should not call this otherwise" ); 667 668 size_t rs_lengths = _g1->young_list()->sampled_rs_lengths(); 669 if (rs_lengths > _rs_lengths_prediction) { 670 // add 10% to avoid having to recalculate often 671 size_t rs_lengths_prediction = rs_lengths * 1100 / 1000; 672 update_young_list_target_length(rs_lengths_prediction); 673 } 674 } 675 676 677 678 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size, 679 bool is_tlab, 680 bool* gc_overhead_limit_was_exceeded) { 681 guarantee(false, "Not using this policy feature yet."); 682 return NULL; 683 } 684 685 // This method controls how a collector handles one or more 686 // of its generations being fully allocated. 687 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size, 688 bool is_tlab) { 689 guarantee(false, "Not using this policy feature yet."); 690 return NULL; 691 } 692 693 694 #ifndef PRODUCT 695 bool G1CollectorPolicy::verify_young_ages() { 696 HeapRegion* head = _g1->young_list()->first_region(); 697 return 698 verify_young_ages(head, _short_lived_surv_rate_group); 699 // also call verify_young_ages on any additional surv rate groups 700 } 701 702 bool 703 G1CollectorPolicy::verify_young_ages(HeapRegion* head, 704 SurvRateGroup *surv_rate_group) { 705 guarantee( surv_rate_group != NULL, "pre-condition" ); 706 707 const char* name = surv_rate_group->name(); 708 bool ret = true; 709 int prev_age = -1; 710 711 for (HeapRegion* curr = head; 712 curr != NULL; 713 curr = curr->get_next_young_region()) { 714 SurvRateGroup* group = curr->surv_rate_group(); 715 if (group == NULL && !curr->is_survivor()) { 716 gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name); 717 ret = false; 718 } 719 720 if (surv_rate_group == group) { 721 int age = curr->age_in_surv_rate_group(); 722 723 if (age < 0) { 724 gclog_or_tty->print_cr("## %s: encountered negative age", name); 725 ret = false; 726 } 727 728 if (age <= prev_age) { 729 gclog_or_tty->print_cr("## %s: region ages are not strictly increasing " 730 "(%d, %d)", name, age, prev_age); 731 ret = false; 732 } 733 prev_age = age; 734 } 735 } 736 737 return ret; 738 } 739 #endif // PRODUCT 740 741 void G1CollectorPolicy::record_full_collection_start() { 742 _full_collection_start_sec = os::elapsedTime(); 743 // Release the future to-space so that it is available for compaction into. 744 _g1->set_full_collection(); 745 } 746 747 void G1CollectorPolicy::record_full_collection_end() { 748 // Consider this like a collection pause for the purposes of allocation 749 // since last pause. 750 double end_sec = os::elapsedTime(); 751 double full_gc_time_sec = end_sec - _full_collection_start_sec; 752 double full_gc_time_ms = full_gc_time_sec * 1000.0; 753 754 _trace_gen1_time_data.record_full_collection(full_gc_time_ms); 755 756 update_recent_gc_times(end_sec, full_gc_time_ms); 757 758 _g1->clear_full_collection(); 759 760 // "Nuke" the heuristics that control the young/mixed GC 761 // transitions and make sure we start with young GCs after the Full GC. 762 set_gcs_are_young(true); 763 _last_young_gc = false; 764 clear_initiate_conc_mark_if_possible(); 765 clear_during_initial_mark_pause(); 766 _in_marking_window = false; 767 _in_marking_window_im = false; 768 769 _short_lived_surv_rate_group->start_adding_regions(); 770 // also call this on any additional surv rate groups 771 772 record_survivor_regions(0, NULL, NULL); 773 774 _free_regions_at_end_of_collection = _g1->free_regions(); 775 // Reset survivors SurvRateGroup. 776 _survivor_surv_rate_group->reset(); 777 update_young_list_target_length(); 778 _collectionSetChooser->clear(); 779 } 780 781 void G1CollectorPolicy::record_stop_world_start() { 782 _stop_world_start = os::elapsedTime(); 783 } 784 785 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec, 786 size_t start_used) { 787 // We only need to do this here as the policy will only be applied 788 // to the GC we're about to start. so, no point is calculating this 789 // every time we calculate / recalculate the target young length. 790 update_survivors_policy(); 791 792 assert(_g1->used() == _g1->recalculate_used(), 793 err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT, 794 _g1->used(), _g1->recalculate_used())); 795 796 double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0; 797 _trace_gen0_time_data.record_start_collection(s_w_t_ms); 798 _stop_world_start = 0.0; 799 800 phase_times()->_cur_collection_start_sec = start_time_sec; 801 _cur_collection_pause_used_at_start_bytes = start_used; 802 _cur_collection_pause_used_regions_at_start = _g1->used_regions(); 803 _pending_cards = _g1->pending_card_num(); 804 _max_pending_cards = _g1->max_pending_card_num(); 805 806 _bytes_in_collection_set_before_gc = 0; 807 _bytes_copied_during_gc = 0; 808 809 YoungList* young_list = _g1->young_list(); 810 _eden_bytes_before_gc = young_list->eden_used_bytes(); 811 _survivor_bytes_before_gc = young_list->survivor_used_bytes(); 812 _capacity_before_gc = _g1->capacity(); 813 814 _last_gc_was_young = false; 815 816 // do that for any other surv rate groups 817 _short_lived_surv_rate_group->stop_adding_regions(); 818 _survivors_age_table.clear(); 819 820 assert( verify_young_ages(), "region age verification" ); 821 } 822 823 void G1CollectorPolicy::record_concurrent_mark_init_end(double 824 mark_init_elapsed_time_ms) { 825 _during_marking = true; 826 assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now"); 827 clear_during_initial_mark_pause(); 828 _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms; 829 } 830 831 void G1CollectorPolicy::record_concurrent_mark_remark_start() { 832 _mark_remark_start_sec = os::elapsedTime(); 833 _during_marking = false; 834 } 835 836 void G1CollectorPolicy::record_concurrent_mark_remark_end() { 837 double end_time_sec = os::elapsedTime(); 838 double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0; 839 _concurrent_mark_remark_times_ms->add(elapsed_time_ms); 840 _cur_mark_stop_world_time_ms += elapsed_time_ms; 841 _prev_collection_pause_end_ms += elapsed_time_ms; 842 843 _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true); 844 } 845 846 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() { 847 _mark_cleanup_start_sec = os::elapsedTime(); 848 } 849 850 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() { 851 _last_young_gc = true; 852 _in_marking_window = false; 853 } 854 855 void G1CollectorPolicy::record_concurrent_pause() { 856 if (_stop_world_start > 0.0) { 857 double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0; 858 _trace_gen0_time_data.record_yield_time(yield_ms); 859 } 860 } 861 862 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) { 863 if (_g1->concurrent_mark()->cmThread()->during_cycle()) { 864 return false; 865 } 866 867 size_t marking_initiating_used_threshold = 868 (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent; 869 size_t cur_used_bytes = _g1->non_young_capacity_bytes(); 870 size_t alloc_byte_size = alloc_word_size * HeapWordSize; 871 872 if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) { 873 if (gcs_are_young()) { 874 ergo_verbose5(ErgoConcCycles, 875 "request concurrent cycle initiation", 876 ergo_format_reason("occupancy higher than threshold") 877 ergo_format_byte("occupancy") 878 ergo_format_byte("allocation request") 879 ergo_format_byte_perc("threshold") 880 ergo_format_str("source"), 881 cur_used_bytes, 882 alloc_byte_size, 883 marking_initiating_used_threshold, 884 (double) InitiatingHeapOccupancyPercent, 885 source); 886 return true; 887 } else { 888 ergo_verbose5(ErgoConcCycles, 889 "do not request concurrent cycle initiation", 890 ergo_format_reason("still doing mixed collections") 891 ergo_format_byte("occupancy") 892 ergo_format_byte("allocation request") 893 ergo_format_byte_perc("threshold") 894 ergo_format_str("source"), 895 cur_used_bytes, 896 alloc_byte_size, 897 marking_initiating_used_threshold, 898 (double) InitiatingHeapOccupancyPercent, 899 source); 900 } 901 } 902 903 return false; 904 } 905 906 // Anything below that is considered to be zero 907 #define MIN_TIMER_GRANULARITY 0.0000001 908 909 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms) { 910 double end_time_sec = os::elapsedTime(); 911 assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(), 912 "otherwise, the subtraction below does not make sense"); 913 size_t rs_size = 914 _cur_collection_pause_used_regions_at_start - cset_region_length(); 915 size_t cur_used_bytes = _g1->used(); 916 assert(cur_used_bytes == _g1->recalculate_used(), "It should!"); 917 bool last_pause_included_initial_mark = false; 918 bool update_stats = !_g1->evacuation_failed(); 919 920 #ifndef PRODUCT 921 if (G1YoungSurvRateVerbose) { 922 gclog_or_tty->print_cr(""); 923 _short_lived_surv_rate_group->print(); 924 // do that for any other surv rate groups too 925 } 926 #endif // PRODUCT 927 928 last_pause_included_initial_mark = during_initial_mark_pause(); 929 if (last_pause_included_initial_mark) { 930 record_concurrent_mark_init_end(0.0); 931 } else if (!_last_young_gc && need_to_start_conc_mark("end of GC")) { 932 // Note: this might have already been set, if during the last 933 // pause we decided to start a cycle but at the beginning of 934 // this pause we decided to postpone it. That's OK. 935 set_initiate_conc_mark_if_possible(); 936 } 937 938 _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0, 939 end_time_sec, false); 940 941 size_t freed_bytes = 942 _cur_collection_pause_used_at_start_bytes - cur_used_bytes; 943 size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes; 944 945 double survival_fraction = 946 (double)surviving_bytes/ 947 (double)_collection_set_bytes_used_before; 948 949 if (update_stats) { 950 _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times()); 951 // this is where we update the allocation rate of the application 952 double app_time_ms = 953 (phase_times()->_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms); 954 if (app_time_ms < MIN_TIMER_GRANULARITY) { 955 // This usually happens due to the timer not having the required 956 // granularity. Some Linuxes are the usual culprits. 957 // We'll just set it to something (arbitrarily) small. 958 app_time_ms = 1.0; 959 } 960 // We maintain the invariant that all objects allocated by mutator 961 // threads will be allocated out of eden regions. So, we can use 962 // the eden region number allocated since the previous GC to 963 // calculate the application's allocate rate. The only exception 964 // to that is humongous objects that are allocated separately. But 965 // given that humongous object allocations do not really affect 966 // either the pause's duration nor when the next pause will take 967 // place we can safely ignore them here. 968 uint regions_allocated = eden_cset_region_length(); 969 double alloc_rate_ms = (double) regions_allocated / app_time_ms; 970 _alloc_rate_ms_seq->add(alloc_rate_ms); 971 972 double interval_ms = 973 (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0; 974 update_recent_gc_times(end_time_sec, pause_time_ms); 975 _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms; 976 if (recent_avg_pause_time_ratio() < 0.0 || 977 (recent_avg_pause_time_ratio() - 1.0 > 0.0)) { 978 #ifndef PRODUCT 979 // Dump info to allow post-facto debugging 980 gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds"); 981 gclog_or_tty->print_cr("-------------------------------------------"); 982 gclog_or_tty->print_cr("Recent GC Times (ms):"); 983 _recent_gc_times_ms->dump(); 984 gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec); 985 _recent_prev_end_times_for_all_gcs_sec->dump(); 986 gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f", 987 _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio()); 988 // In debug mode, terminate the JVM if the user wants to debug at this point. 989 assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above"); 990 #endif // !PRODUCT 991 // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in 992 // CR 6902692 by redoing the manner in which the ratio is incrementally computed. 993 if (_recent_avg_pause_time_ratio < 0.0) { 994 _recent_avg_pause_time_ratio = 0.0; 995 } else { 996 assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant"); 997 _recent_avg_pause_time_ratio = 1.0; 998 } 999 } 1000 } 1001 bool new_in_marking_window = _in_marking_window; 1002 bool new_in_marking_window_im = false; 1003 if (during_initial_mark_pause()) { 1004 new_in_marking_window = true; 1005 new_in_marking_window_im = true; 1006 } 1007 1008 if (_last_young_gc) { 1009 // This is supposed to to be the "last young GC" before we start 1010 // doing mixed GCs. Here we decide whether to start mixed GCs or not. 1011 1012 if (!last_pause_included_initial_mark) { 1013 if (next_gc_should_be_mixed("start mixed GCs", 1014 "do not start mixed GCs")) { 1015 set_gcs_are_young(false); 1016 } 1017 } else { 1018 ergo_verbose0(ErgoMixedGCs, 1019 "do not start mixed GCs", 1020 ergo_format_reason("concurrent cycle is about to start")); 1021 } 1022 _last_young_gc = false; 1023 } 1024 1025 if (!_last_gc_was_young) { 1026 // This is a mixed GC. Here we decide whether to continue doing 1027 // mixed GCs or not. 1028 1029 if (!next_gc_should_be_mixed("continue mixed GCs", 1030 "do not continue mixed GCs")) { 1031 set_gcs_are_young(true); 1032 } 1033 } 1034 1035 _short_lived_surv_rate_group->start_adding_regions(); 1036 // do that for any other surv rate groupsx 1037 1038 if (update_stats) { 1039 size_t diff = 0; 1040 if (_max_pending_cards >= _pending_cards) { 1041 diff = _max_pending_cards - _pending_cards; 1042 } 1043 _pending_card_diff_seq->add((double) diff); 1044 1045 double cost_per_card_ms = 0.0; 1046 if (_pending_cards > 0) { 1047 cost_per_card_ms = phase_times()->_update_rs_time / (double) _pending_cards; 1048 _cost_per_card_ms_seq->add(cost_per_card_ms); 1049 } 1050 1051 size_t cards_scanned = _g1->cards_scanned(); 1052 1053 double cost_per_entry_ms = 0.0; 1054 if (cards_scanned > 10) { 1055 cost_per_entry_ms = phase_times()->_scan_rs_time / (double) cards_scanned; 1056 if (_last_gc_was_young) { 1057 _cost_per_entry_ms_seq->add(cost_per_entry_ms); 1058 } else { 1059 _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms); 1060 } 1061 } 1062 1063 if (_max_rs_lengths > 0) { 1064 double cards_per_entry_ratio = 1065 (double) cards_scanned / (double) _max_rs_lengths; 1066 if (_last_gc_was_young) { 1067 _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio); 1068 } else { 1069 _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio); 1070 } 1071 } 1072 1073 // This is defensive. For a while _max_rs_lengths could get 1074 // smaller than _recorded_rs_lengths which was causing 1075 // rs_length_diff to get very large and mess up the RSet length 1076 // predictions. The reason was unsafe concurrent updates to the 1077 // _inc_cset_recorded_rs_lengths field which the code below guards 1078 // against (see CR 7118202). This bug has now been fixed (see CR 1079 // 7119027). However, I'm still worried that 1080 // _inc_cset_recorded_rs_lengths might still end up somewhat 1081 // inaccurate. The concurrent refinement thread calculates an 1082 // RSet's length concurrently with other CR threads updating it 1083 // which might cause it to calculate the length incorrectly (if, 1084 // say, it's in mid-coarsening). So I'll leave in the defensive 1085 // conditional below just in case. 1086 size_t rs_length_diff = 0; 1087 if (_max_rs_lengths > _recorded_rs_lengths) { 1088 rs_length_diff = _max_rs_lengths - _recorded_rs_lengths; 1089 } 1090 _rs_length_diff_seq->add((double) rs_length_diff); 1091 1092 size_t copied_bytes = surviving_bytes; 1093 double cost_per_byte_ms = 0.0; 1094 if (copied_bytes > 0) { 1095 cost_per_byte_ms = phase_times()->_obj_copy_time / (double) copied_bytes; 1096 if (_in_marking_window) { 1097 _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms); 1098 } else { 1099 _cost_per_byte_ms_seq->add(cost_per_byte_ms); 1100 } 1101 } 1102 1103 double all_other_time_ms = pause_time_ms - 1104 (phase_times()->_update_rs_time + phase_times()->_scan_rs_time + phase_times()->_obj_copy_time + phase_times()->_termination_time); 1105 1106 double young_other_time_ms = 0.0; 1107 if (young_cset_region_length() > 0) { 1108 young_other_time_ms = 1109 phase_times()->_recorded_young_cset_choice_time_ms + 1110 phase_times()->_recorded_young_free_cset_time_ms; 1111 _young_other_cost_per_region_ms_seq->add(young_other_time_ms / 1112 (double) young_cset_region_length()); 1113 } 1114 double non_young_other_time_ms = 0.0; 1115 if (old_cset_region_length() > 0) { 1116 non_young_other_time_ms = 1117 phase_times()->_recorded_non_young_cset_choice_time_ms + 1118 phase_times()->_recorded_non_young_free_cset_time_ms; 1119 1120 _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms / 1121 (double) old_cset_region_length()); 1122 } 1123 1124 double constant_other_time_ms = all_other_time_ms - 1125 (young_other_time_ms + non_young_other_time_ms); 1126 _constant_other_time_ms_seq->add(constant_other_time_ms); 1127 1128 double survival_ratio = 0.0; 1129 if (_bytes_in_collection_set_before_gc > 0) { 1130 survival_ratio = (double) _bytes_copied_during_gc / 1131 (double) _bytes_in_collection_set_before_gc; 1132 } 1133 1134 _pending_cards_seq->add((double) _pending_cards); 1135 _rs_lengths_seq->add((double) _max_rs_lengths); 1136 } 1137 1138 _in_marking_window = new_in_marking_window; 1139 _in_marking_window_im = new_in_marking_window_im; 1140 _free_regions_at_end_of_collection = _g1->free_regions(); 1141 update_young_list_target_length(); 1142 1143 // Note that _mmu_tracker->max_gc_time() returns the time in seconds. 1144 double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0; 1145 adjust_concurrent_refinement(phase_times()->_update_rs_time, phase_times()->_update_rs_processed_buffers, update_rs_time_goal_ms); 1146 1147 _collectionSetChooser->verify(); 1148 } 1149 1150 #define EXT_SIZE_FORMAT "%.1f%s" 1151 #define EXT_SIZE_PARAMS(bytes) \ 1152 byte_size_in_proper_unit((double)(bytes)), \ 1153 proper_unit_for_byte_size((bytes)) 1154 1155 void G1CollectorPolicy::print_heap_transition() { 1156 if (G1Log::finer()) { 1157 YoungList* young_list = _g1->young_list(); 1158 size_t eden_bytes = young_list->eden_used_bytes(); 1159 size_t survivor_bytes = young_list->survivor_used_bytes(); 1160 size_t used_before_gc = _cur_collection_pause_used_at_start_bytes; 1161 size_t used = _g1->used(); 1162 size_t capacity = _g1->capacity(); 1163 size_t eden_capacity = 1164 (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes; 1165 1166 gclog_or_tty->print_cr( 1167 " [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") " 1168 "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" " 1169 "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->" 1170 EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]", 1171 EXT_SIZE_PARAMS(_eden_bytes_before_gc), 1172 EXT_SIZE_PARAMS(_prev_eden_capacity), 1173 EXT_SIZE_PARAMS(eden_bytes), 1174 EXT_SIZE_PARAMS(eden_capacity), 1175 EXT_SIZE_PARAMS(_survivor_bytes_before_gc), 1176 EXT_SIZE_PARAMS(survivor_bytes), 1177 EXT_SIZE_PARAMS(used_before_gc), 1178 EXT_SIZE_PARAMS(_capacity_before_gc), 1179 EXT_SIZE_PARAMS(used), 1180 EXT_SIZE_PARAMS(capacity)); 1181 1182 _prev_eden_capacity = eden_capacity; 1183 } else if (G1Log::fine()) { 1184 _g1->print_size_transition(gclog_or_tty, 1185 _cur_collection_pause_used_at_start_bytes, 1186 _g1->used(), _g1->capacity()); 1187 } 1188 } 1189 1190 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time, 1191 double update_rs_processed_buffers, 1192 double goal_ms) { 1193 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 1194 ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine(); 1195 1196 if (G1UseAdaptiveConcRefinement) { 1197 const int k_gy = 3, k_gr = 6; 1198 const double inc_k = 1.1, dec_k = 0.9; 1199 1200 int g = cg1r->green_zone(); 1201 if (update_rs_time > goal_ms) { 1202 g = (int)(g * dec_k); // Can become 0, that's OK. That would mean a mutator-only processing. 1203 } else { 1204 if (update_rs_time < goal_ms && update_rs_processed_buffers > g) { 1205 g = (int)MAX2(g * inc_k, g + 1.0); 1206 } 1207 } 1208 // Change the refinement threads params 1209 cg1r->set_green_zone(g); 1210 cg1r->set_yellow_zone(g * k_gy); 1211 cg1r->set_red_zone(g * k_gr); 1212 cg1r->reinitialize_threads(); 1213 1214 int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1); 1215 int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta, 1216 cg1r->yellow_zone()); 1217 // Change the barrier params 1218 dcqs.set_process_completed_threshold(processing_threshold); 1219 dcqs.set_max_completed_queue(cg1r->red_zone()); 1220 } 1221 1222 int curr_queue_size = dcqs.completed_buffers_num(); 1223 if (curr_queue_size >= cg1r->yellow_zone()) { 1224 dcqs.set_completed_queue_padding(curr_queue_size); 1225 } else { 1226 dcqs.set_completed_queue_padding(0); 1227 } 1228 dcqs.notify_if_necessary(); 1229 } 1230 1231 double 1232 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) { 1233 size_t rs_length = predict_rs_length_diff(); 1234 size_t card_num; 1235 if (gcs_are_young()) { 1236 card_num = predict_young_card_num(rs_length); 1237 } else { 1238 card_num = predict_non_young_card_num(rs_length); 1239 } 1240 return predict_base_elapsed_time_ms(pending_cards, card_num); 1241 } 1242 1243 double 1244 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards, 1245 size_t scanned_cards) { 1246 return 1247 predict_rs_update_time_ms(pending_cards) + 1248 predict_rs_scan_time_ms(scanned_cards) + 1249 predict_constant_other_time_ms(); 1250 } 1251 1252 double 1253 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr, 1254 bool young) { 1255 size_t rs_length = hr->rem_set()->occupied(); 1256 size_t card_num; 1257 if (gcs_are_young()) { 1258 card_num = predict_young_card_num(rs_length); 1259 } else { 1260 card_num = predict_non_young_card_num(rs_length); 1261 } 1262 size_t bytes_to_copy = predict_bytes_to_copy(hr); 1263 1264 double region_elapsed_time_ms = 1265 predict_rs_scan_time_ms(card_num) + 1266 predict_object_copy_time_ms(bytes_to_copy); 1267 1268 if (young) 1269 region_elapsed_time_ms += predict_young_other_time_ms(1); 1270 else 1271 region_elapsed_time_ms += predict_non_young_other_time_ms(1); 1272 1273 return region_elapsed_time_ms; 1274 } 1275 1276 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) { 1277 size_t bytes_to_copy; 1278 if (hr->is_marked()) 1279 bytes_to_copy = hr->max_live_bytes(); 1280 else { 1281 assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant"); 1282 int age = hr->age_in_surv_rate_group(); 1283 double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group()); 1284 bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate); 1285 } 1286 return bytes_to_copy; 1287 } 1288 1289 void 1290 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length, 1291 uint survivor_cset_region_length) { 1292 _eden_cset_region_length = eden_cset_region_length; 1293 _survivor_cset_region_length = survivor_cset_region_length; 1294 _old_cset_region_length = 0; 1295 } 1296 1297 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) { 1298 _recorded_rs_lengths = rs_lengths; 1299 } 1300 1301 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec, 1302 double elapsed_ms) { 1303 _recent_gc_times_ms->add(elapsed_ms); 1304 _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec); 1305 _prev_collection_pause_end_ms = end_time_sec * 1000.0; 1306 } 1307 1308 size_t G1CollectorPolicy::expansion_amount() { 1309 double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0; 1310 double threshold = _gc_overhead_perc; 1311 if (recent_gc_overhead > threshold) { 1312 // We will double the existing space, or take 1313 // G1ExpandByPercentOfAvailable % of the available expansion 1314 // space, whichever is smaller, bounded below by a minimum 1315 // expansion (unless that's all that's left.) 1316 const size_t min_expand_bytes = 1*M; 1317 size_t reserved_bytes = _g1->max_capacity(); 1318 size_t committed_bytes = _g1->capacity(); 1319 size_t uncommitted_bytes = reserved_bytes - committed_bytes; 1320 size_t expand_bytes; 1321 size_t expand_bytes_via_pct = 1322 uncommitted_bytes * G1ExpandByPercentOfAvailable / 100; 1323 expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes); 1324 expand_bytes = MAX2(expand_bytes, min_expand_bytes); 1325 expand_bytes = MIN2(expand_bytes, uncommitted_bytes); 1326 1327 ergo_verbose5(ErgoHeapSizing, 1328 "attempt heap expansion", 1329 ergo_format_reason("recent GC overhead higher than " 1330 "threshold after GC") 1331 ergo_format_perc("recent GC overhead") 1332 ergo_format_perc("threshold") 1333 ergo_format_byte("uncommitted") 1334 ergo_format_byte_perc("calculated expansion amount"), 1335 recent_gc_overhead, threshold, 1336 uncommitted_bytes, 1337 expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable); 1338 1339 return expand_bytes; 1340 } else { 1341 return 0; 1342 } 1343 } 1344 1345 class CountCSClosure: public HeapRegionClosure { 1346 G1CollectorPolicy* _g1_policy; 1347 public: 1348 CountCSClosure(G1CollectorPolicy* g1_policy) : 1349 _g1_policy(g1_policy) {} 1350 bool doHeapRegion(HeapRegion* r) { 1351 _g1_policy->_bytes_in_collection_set_before_gc += r->used(); 1352 return false; 1353 } 1354 }; 1355 1356 void G1CollectorPolicy::count_CS_bytes_used() { 1357 CountCSClosure cs_closure(this); 1358 _g1->collection_set_iterate(&cs_closure); 1359 } 1360 1361 void G1CollectorPolicy::print_tracing_info() const { 1362 _trace_gen0_time_data.print(); 1363 _trace_gen1_time_data.print(); 1364 } 1365 1366 void G1CollectorPolicy::print_yg_surv_rate_info() const { 1367 #ifndef PRODUCT 1368 _short_lived_surv_rate_group->print_surv_rate_summary(); 1369 // add this call for any other surv rate groups 1370 #endif // PRODUCT 1371 } 1372 1373 #ifndef PRODUCT 1374 // for debugging, bit of a hack... 1375 static char* 1376 region_num_to_mbs(int length) { 1377 static char buffer[64]; 1378 double bytes = (double) (length * HeapRegion::GrainBytes); 1379 double mbs = bytes / (double) (1024 * 1024); 1380 sprintf(buffer, "%7.2lfMB", mbs); 1381 return buffer; 1382 } 1383 #endif // PRODUCT 1384 1385 uint G1CollectorPolicy::max_regions(int purpose) { 1386 switch (purpose) { 1387 case GCAllocForSurvived: 1388 return _max_survivor_regions; 1389 case GCAllocForTenured: 1390 return REGIONS_UNLIMITED; 1391 default: 1392 ShouldNotReachHere(); 1393 return REGIONS_UNLIMITED; 1394 }; 1395 } 1396 1397 void G1CollectorPolicy::update_max_gc_locker_expansion() { 1398 uint expansion_region_num = 0; 1399 if (GCLockerEdenExpansionPercent > 0) { 1400 double perc = (double) GCLockerEdenExpansionPercent / 100.0; 1401 double expansion_region_num_d = perc * (double) _young_list_target_length; 1402 // We use ceiling so that if expansion_region_num_d is > 0.0 (but 1403 // less than 1.0) we'll get 1. 1404 expansion_region_num = (uint) ceil(expansion_region_num_d); 1405 } else { 1406 assert(expansion_region_num == 0, "sanity"); 1407 } 1408 _young_list_max_length = _young_list_target_length + expansion_region_num; 1409 assert(_young_list_target_length <= _young_list_max_length, "post-condition"); 1410 } 1411 1412 // Calculates survivor space parameters. 1413 void G1CollectorPolicy::update_survivors_policy() { 1414 double max_survivor_regions_d = 1415 (double) _young_list_target_length / (double) SurvivorRatio; 1416 // We use ceiling so that if max_survivor_regions_d is > 0.0 (but 1417 // smaller than 1.0) we'll get 1. 1418 _max_survivor_regions = (uint) ceil(max_survivor_regions_d); 1419 1420 _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold( 1421 HeapRegion::GrainWords * _max_survivor_regions); 1422 } 1423 1424 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle( 1425 GCCause::Cause gc_cause) { 1426 bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle(); 1427 if (!during_cycle) { 1428 ergo_verbose1(ErgoConcCycles, 1429 "request concurrent cycle initiation", 1430 ergo_format_reason("requested by GC cause") 1431 ergo_format_str("GC cause"), 1432 GCCause::to_string(gc_cause)); 1433 set_initiate_conc_mark_if_possible(); 1434 return true; 1435 } else { 1436 ergo_verbose1(ErgoConcCycles, 1437 "do not request concurrent cycle initiation", 1438 ergo_format_reason("concurrent cycle already in progress") 1439 ergo_format_str("GC cause"), 1440 GCCause::to_string(gc_cause)); 1441 return false; 1442 } 1443 } 1444 1445 void 1446 G1CollectorPolicy::decide_on_conc_mark_initiation() { 1447 // We are about to decide on whether this pause will be an 1448 // initial-mark pause. 1449 1450 // First, during_initial_mark_pause() should not be already set. We 1451 // will set it here if we have to. However, it should be cleared by 1452 // the end of the pause (it's only set for the duration of an 1453 // initial-mark pause). 1454 assert(!during_initial_mark_pause(), "pre-condition"); 1455 1456 if (initiate_conc_mark_if_possible()) { 1457 // We had noticed on a previous pause that the heap occupancy has 1458 // gone over the initiating threshold and we should start a 1459 // concurrent marking cycle. So we might initiate one. 1460 1461 bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle(); 1462 if (!during_cycle) { 1463 // The concurrent marking thread is not "during a cycle", i.e., 1464 // it has completed the last one. So we can go ahead and 1465 // initiate a new cycle. 1466 1467 set_during_initial_mark_pause(); 1468 // We do not allow mixed GCs during marking. 1469 if (!gcs_are_young()) { 1470 set_gcs_are_young(true); 1471 ergo_verbose0(ErgoMixedGCs, 1472 "end mixed GCs", 1473 ergo_format_reason("concurrent cycle is about to start")); 1474 } 1475 1476 // And we can now clear initiate_conc_mark_if_possible() as 1477 // we've already acted on it. 1478 clear_initiate_conc_mark_if_possible(); 1479 1480 ergo_verbose0(ErgoConcCycles, 1481 "initiate concurrent cycle", 1482 ergo_format_reason("concurrent cycle initiation requested")); 1483 } else { 1484 // The concurrent marking thread is still finishing up the 1485 // previous cycle. If we start one right now the two cycles 1486 // overlap. In particular, the concurrent marking thread might 1487 // be in the process of clearing the next marking bitmap (which 1488 // we will use for the next cycle if we start one). Starting a 1489 // cycle now will be bad given that parts of the marking 1490 // information might get cleared by the marking thread. And we 1491 // cannot wait for the marking thread to finish the cycle as it 1492 // periodically yields while clearing the next marking bitmap 1493 // and, if it's in a yield point, it's waiting for us to 1494 // finish. So, at this point we will not start a cycle and we'll 1495 // let the concurrent marking thread complete the last one. 1496 ergo_verbose0(ErgoConcCycles, 1497 "do not initiate concurrent cycle", 1498 ergo_format_reason("concurrent cycle already in progress")); 1499 } 1500 } 1501 } 1502 1503 class KnownGarbageClosure: public HeapRegionClosure { 1504 G1CollectedHeap* _g1h; 1505 CollectionSetChooser* _hrSorted; 1506 1507 public: 1508 KnownGarbageClosure(CollectionSetChooser* hrSorted) : 1509 _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { } 1510 1511 bool doHeapRegion(HeapRegion* r) { 1512 // We only include humongous regions in collection 1513 // sets when concurrent mark shows that their contained object is 1514 // unreachable. 1515 1516 // Do we have any marking information for this region? 1517 if (r->is_marked()) { 1518 // We will skip any region that's currently used as an old GC 1519 // alloc region (we should not consider those for collection 1520 // before we fill them up). 1521 if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) { 1522 _hrSorted->add_region(r); 1523 } 1524 } 1525 return false; 1526 } 1527 }; 1528 1529 class ParKnownGarbageHRClosure: public HeapRegionClosure { 1530 G1CollectedHeap* _g1h; 1531 CollectionSetChooser* _hrSorted; 1532 uint _marked_regions_added; 1533 size_t _reclaimable_bytes_added; 1534 uint _chunk_size; 1535 uint _cur_chunk_idx; 1536 uint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end) 1537 1538 void get_new_chunk() { 1539 _cur_chunk_idx = _hrSorted->claim_array_chunk(_chunk_size); 1540 _cur_chunk_end = _cur_chunk_idx + _chunk_size; 1541 } 1542 void add_region(HeapRegion* r) { 1543 if (_cur_chunk_idx == _cur_chunk_end) { 1544 get_new_chunk(); 1545 } 1546 assert(_cur_chunk_idx < _cur_chunk_end, "postcondition"); 1547 _hrSorted->set_region(_cur_chunk_idx, r); 1548 _marked_regions_added++; 1549 _reclaimable_bytes_added += r->reclaimable_bytes(); 1550 _cur_chunk_idx++; 1551 } 1552 1553 public: 1554 ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted, 1555 uint chunk_size) : 1556 _g1h(G1CollectedHeap::heap()), 1557 _hrSorted(hrSorted), _chunk_size(chunk_size), 1558 _marked_regions_added(0), _reclaimable_bytes_added(0), 1559 _cur_chunk_idx(0), _cur_chunk_end(0) { } 1560 1561 bool doHeapRegion(HeapRegion* r) { 1562 // Do we have any marking information for this region? 1563 if (r->is_marked()) { 1564 // We will skip any region that's currently used as an old GC 1565 // alloc region (we should not consider those for collection 1566 // before we fill them up). 1567 if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) { 1568 add_region(r); 1569 } 1570 } 1571 return false; 1572 } 1573 uint marked_regions_added() { return _marked_regions_added; } 1574 size_t reclaimable_bytes_added() { return _reclaimable_bytes_added; } 1575 }; 1576 1577 class ParKnownGarbageTask: public AbstractGangTask { 1578 CollectionSetChooser* _hrSorted; 1579 uint _chunk_size; 1580 G1CollectedHeap* _g1; 1581 public: 1582 ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) : 1583 AbstractGangTask("ParKnownGarbageTask"), 1584 _hrSorted(hrSorted), _chunk_size(chunk_size), 1585 _g1(G1CollectedHeap::heap()) { } 1586 1587 void work(uint worker_id) { 1588 ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size); 1589 1590 // Back to zero for the claim value. 1591 _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id, 1592 _g1->workers()->active_workers(), 1593 HeapRegion::InitialClaimValue); 1594 uint regions_added = parKnownGarbageCl.marked_regions_added(); 1595 size_t reclaimable_bytes_added = 1596 parKnownGarbageCl.reclaimable_bytes_added(); 1597 _hrSorted->update_totals(regions_added, reclaimable_bytes_added); 1598 } 1599 }; 1600 1601 void 1602 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) { 1603 _collectionSetChooser->clear(); 1604 1605 uint region_num = _g1->n_regions(); 1606 if (G1CollectedHeap::use_parallel_gc_threads()) { 1607 const uint OverpartitionFactor = 4; 1608 uint WorkUnit; 1609 // The use of MinChunkSize = 8 in the original code 1610 // causes some assertion failures when the total number of 1611 // region is less than 8. The code here tries to fix that. 1612 // Should the original code also be fixed? 1613 if (no_of_gc_threads > 0) { 1614 const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U); 1615 WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor), 1616 MinWorkUnit); 1617 } else { 1618 assert(no_of_gc_threads > 0, 1619 "The active gc workers should be greater than 0"); 1620 // In a product build do something reasonable to avoid a crash. 1621 const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U); 1622 WorkUnit = 1623 MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor), 1624 MinWorkUnit); 1625 } 1626 _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(), 1627 WorkUnit); 1628 ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser, 1629 (int) WorkUnit); 1630 _g1->workers()->run_task(&parKnownGarbageTask); 1631 1632 assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue), 1633 "sanity check"); 1634 } else { 1635 KnownGarbageClosure knownGarbagecl(_collectionSetChooser); 1636 _g1->heap_region_iterate(&knownGarbagecl); 1637 } 1638 1639 _collectionSetChooser->sort_regions(); 1640 1641 double end_sec = os::elapsedTime(); 1642 double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0; 1643 _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms); 1644 _cur_mark_stop_world_time_ms += elapsed_time_ms; 1645 _prev_collection_pause_end_ms += elapsed_time_ms; 1646 _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true); 1647 } 1648 1649 // Add the heap region at the head of the non-incremental collection set 1650 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) { 1651 assert(_inc_cset_build_state == Active, "Precondition"); 1652 assert(!hr->is_young(), "non-incremental add of young region"); 1653 1654 assert(!hr->in_collection_set(), "should not already be in the CSet"); 1655 hr->set_in_collection_set(true); 1656 hr->set_next_in_collection_set(_collection_set); 1657 _collection_set = hr; 1658 _collection_set_bytes_used_before += hr->used(); 1659 _g1->register_region_with_in_cset_fast_test(hr); 1660 size_t rs_length = hr->rem_set()->occupied(); 1661 _recorded_rs_lengths += rs_length; 1662 _old_cset_region_length += 1; 1663 } 1664 1665 // Initialize the per-collection-set information 1666 void G1CollectorPolicy::start_incremental_cset_building() { 1667 assert(_inc_cset_build_state == Inactive, "Precondition"); 1668 1669 _inc_cset_head = NULL; 1670 _inc_cset_tail = NULL; 1671 _inc_cset_bytes_used_before = 0; 1672 1673 _inc_cset_max_finger = 0; 1674 _inc_cset_recorded_rs_lengths = 0; 1675 _inc_cset_recorded_rs_lengths_diffs = 0; 1676 _inc_cset_predicted_elapsed_time_ms = 0.0; 1677 _inc_cset_predicted_elapsed_time_ms_diffs = 0.0; 1678 _inc_cset_build_state = Active; 1679 } 1680 1681 void G1CollectorPolicy::finalize_incremental_cset_building() { 1682 assert(_inc_cset_build_state == Active, "Precondition"); 1683 assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint"); 1684 1685 // The two "main" fields, _inc_cset_recorded_rs_lengths and 1686 // _inc_cset_predicted_elapsed_time_ms, are updated by the thread 1687 // that adds a new region to the CSet. Further updates by the 1688 // concurrent refinement thread that samples the young RSet lengths 1689 // are accumulated in the *_diffs fields. Here we add the diffs to 1690 // the "main" fields. 1691 1692 if (_inc_cset_recorded_rs_lengths_diffs >= 0) { 1693 _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs; 1694 } else { 1695 // This is defensive. The diff should in theory be always positive 1696 // as RSets can only grow between GCs. However, given that we 1697 // sample their size concurrently with other threads updating them 1698 // it's possible that we might get the wrong size back, which 1699 // could make the calculations somewhat inaccurate. 1700 size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs); 1701 if (_inc_cset_recorded_rs_lengths >= diffs) { 1702 _inc_cset_recorded_rs_lengths -= diffs; 1703 } else { 1704 _inc_cset_recorded_rs_lengths = 0; 1705 } 1706 } 1707 _inc_cset_predicted_elapsed_time_ms += 1708 _inc_cset_predicted_elapsed_time_ms_diffs; 1709 1710 _inc_cset_recorded_rs_lengths_diffs = 0; 1711 _inc_cset_predicted_elapsed_time_ms_diffs = 0.0; 1712 } 1713 1714 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) { 1715 // This routine is used when: 1716 // * adding survivor regions to the incremental cset at the end of an 1717 // evacuation pause, 1718 // * adding the current allocation region to the incremental cset 1719 // when it is retired, and 1720 // * updating existing policy information for a region in the 1721 // incremental cset via young list RSet sampling. 1722 // Therefore this routine may be called at a safepoint by the 1723 // VM thread, or in-between safepoints by mutator threads (when 1724 // retiring the current allocation region) or a concurrent 1725 // refine thread (RSet sampling). 1726 1727 double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true); 1728 size_t used_bytes = hr->used(); 1729 _inc_cset_recorded_rs_lengths += rs_length; 1730 _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms; 1731 _inc_cset_bytes_used_before += used_bytes; 1732 1733 // Cache the values we have added to the aggregated informtion 1734 // in the heap region in case we have to remove this region from 1735 // the incremental collection set, or it is updated by the 1736 // rset sampling code 1737 hr->set_recorded_rs_length(rs_length); 1738 hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms); 1739 } 1740 1741 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr, 1742 size_t new_rs_length) { 1743 // Update the CSet information that is dependent on the new RS length 1744 assert(hr->is_young(), "Precondition"); 1745 assert(!SafepointSynchronize::is_at_safepoint(), 1746 "should not be at a safepoint"); 1747 1748 // We could have updated _inc_cset_recorded_rs_lengths and 1749 // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do 1750 // that atomically, as this code is executed by a concurrent 1751 // refinement thread, potentially concurrently with a mutator thread 1752 // allocating a new region and also updating the same fields. To 1753 // avoid the atomic operations we accumulate these updates on two 1754 // separate fields (*_diffs) and we'll just add them to the "main" 1755 // fields at the start of a GC. 1756 1757 ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length(); 1758 ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length; 1759 _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff; 1760 1761 double old_elapsed_time_ms = hr->predicted_elapsed_time_ms(); 1762 double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true); 1763 double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms; 1764 _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff; 1765 1766 hr->set_recorded_rs_length(new_rs_length); 1767 hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms); 1768 } 1769 1770 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) { 1771 assert(hr->is_young(), "invariant"); 1772 assert(hr->young_index_in_cset() > -1, "should have already been set"); 1773 assert(_inc_cset_build_state == Active, "Precondition"); 1774 1775 // We need to clear and set the cached recorded/cached collection set 1776 // information in the heap region here (before the region gets added 1777 // to the collection set). An individual heap region's cached values 1778 // are calculated, aggregated with the policy collection set info, 1779 // and cached in the heap region here (initially) and (subsequently) 1780 // by the Young List sampling code. 1781 1782 size_t rs_length = hr->rem_set()->occupied(); 1783 add_to_incremental_cset_info(hr, rs_length); 1784 1785 HeapWord* hr_end = hr->end(); 1786 _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end); 1787 1788 assert(!hr->in_collection_set(), "invariant"); 1789 hr->set_in_collection_set(true); 1790 assert( hr->next_in_collection_set() == NULL, "invariant"); 1791 1792 _g1->register_region_with_in_cset_fast_test(hr); 1793 } 1794 1795 // Add the region at the RHS of the incremental cset 1796 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) { 1797 // We should only ever be appending survivors at the end of a pause 1798 assert( hr->is_survivor(), "Logic"); 1799 1800 // Do the 'common' stuff 1801 add_region_to_incremental_cset_common(hr); 1802 1803 // Now add the region at the right hand side 1804 if (_inc_cset_tail == NULL) { 1805 assert(_inc_cset_head == NULL, "invariant"); 1806 _inc_cset_head = hr; 1807 } else { 1808 _inc_cset_tail->set_next_in_collection_set(hr); 1809 } 1810 _inc_cset_tail = hr; 1811 } 1812 1813 // Add the region to the LHS of the incremental cset 1814 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) { 1815 // Survivors should be added to the RHS at the end of a pause 1816 assert(!hr->is_survivor(), "Logic"); 1817 1818 // Do the 'common' stuff 1819 add_region_to_incremental_cset_common(hr); 1820 1821 // Add the region at the left hand side 1822 hr->set_next_in_collection_set(_inc_cset_head); 1823 if (_inc_cset_head == NULL) { 1824 assert(_inc_cset_tail == NULL, "Invariant"); 1825 _inc_cset_tail = hr; 1826 } 1827 _inc_cset_head = hr; 1828 } 1829 1830 #ifndef PRODUCT 1831 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) { 1832 assert(list_head == inc_cset_head() || list_head == collection_set(), "must be"); 1833 1834 st->print_cr("\nCollection_set:"); 1835 HeapRegion* csr = list_head; 1836 while (csr != NULL) { 1837 HeapRegion* next = csr->next_in_collection_set(); 1838 assert(csr->in_collection_set(), "bad CS"); 1839 st->print_cr(" "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d", 1840 HR_FORMAT_PARAMS(csr), 1841 csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(), 1842 csr->age_in_surv_rate_group_cond()); 1843 csr = next; 1844 } 1845 } 1846 #endif // !PRODUCT 1847 1848 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str, 1849 const char* false_action_str) { 1850 CollectionSetChooser* cset_chooser = _collectionSetChooser; 1851 if (cset_chooser->is_empty()) { 1852 ergo_verbose0(ErgoMixedGCs, 1853 false_action_str, 1854 ergo_format_reason("candidate old regions not available")); 1855 return false; 1856 } 1857 size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes(); 1858 size_t capacity_bytes = _g1->capacity(); 1859 double perc = (double) reclaimable_bytes * 100.0 / (double) capacity_bytes; 1860 double threshold = (double) G1HeapWastePercent; 1861 if (perc < threshold) { 1862 ergo_verbose4(ErgoMixedGCs, 1863 false_action_str, 1864 ergo_format_reason("reclaimable percentage lower than threshold") 1865 ergo_format_region("candidate old regions") 1866 ergo_format_byte_perc("reclaimable") 1867 ergo_format_perc("threshold"), 1868 cset_chooser->remaining_regions(), 1869 reclaimable_bytes, perc, threshold); 1870 return false; 1871 } 1872 1873 ergo_verbose4(ErgoMixedGCs, 1874 true_action_str, 1875 ergo_format_reason("candidate old regions available") 1876 ergo_format_region("candidate old regions") 1877 ergo_format_byte_perc("reclaimable") 1878 ergo_format_perc("threshold"), 1879 cset_chooser->remaining_regions(), 1880 reclaimable_bytes, perc, threshold); 1881 return true; 1882 } 1883 1884 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms) { 1885 // Set this here - in case we're not doing young collections. 1886 double non_young_start_time_sec = os::elapsedTime(); 1887 1888 YoungList* young_list = _g1->young_list(); 1889 finalize_incremental_cset_building(); 1890 1891 guarantee(target_pause_time_ms > 0.0, 1892 err_msg("target_pause_time_ms = %1.6lf should be positive", 1893 target_pause_time_ms)); 1894 guarantee(_collection_set == NULL, "Precondition"); 1895 1896 double base_time_ms = predict_base_elapsed_time_ms(_pending_cards); 1897 double predicted_pause_time_ms = base_time_ms; 1898 double time_remaining_ms = target_pause_time_ms - base_time_ms; 1899 1900 ergo_verbose3(ErgoCSetConstruction | ErgoHigh, 1901 "start choosing CSet", 1902 ergo_format_ms("predicted base time") 1903 ergo_format_ms("remaining time") 1904 ergo_format_ms("target pause time"), 1905 base_time_ms, time_remaining_ms, target_pause_time_ms); 1906 1907 HeapRegion* hr; 1908 double young_start_time_sec = os::elapsedTime(); 1909 1910 _collection_set_bytes_used_before = 0; 1911 _last_gc_was_young = gcs_are_young() ? true : false; 1912 1913 if (_last_gc_was_young) { 1914 _trace_gen0_time_data.increment_young_collection_count(); 1915 } else { 1916 _trace_gen0_time_data.increment_mixed_collection_count(); 1917 } 1918 1919 // The young list is laid with the survivor regions from the previous 1920 // pause are appended to the RHS of the young list, i.e. 1921 // [Newly Young Regions ++ Survivors from last pause]. 1922 1923 uint survivor_region_length = young_list->survivor_length(); 1924 uint eden_region_length = young_list->length() - survivor_region_length; 1925 init_cset_region_lengths(eden_region_length, survivor_region_length); 1926 hr = young_list->first_survivor_region(); 1927 while (hr != NULL) { 1928 assert(hr->is_survivor(), "badly formed young list"); 1929 hr->set_young(); 1930 hr = hr->get_next_young_region(); 1931 } 1932 1933 // Clear the fields that point to the survivor list - they are all young now. 1934 young_list->clear_survivors(); 1935 1936 _collection_set = _inc_cset_head; 1937 _collection_set_bytes_used_before = _inc_cset_bytes_used_before; 1938 time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms; 1939 predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms; 1940 1941 ergo_verbose3(ErgoCSetConstruction | ErgoHigh, 1942 "add young regions to CSet", 1943 ergo_format_region("eden") 1944 ergo_format_region("survivors") 1945 ergo_format_ms("predicted young region time"), 1946 eden_region_length, survivor_region_length, 1947 _inc_cset_predicted_elapsed_time_ms); 1948 1949 // The number of recorded young regions is the incremental 1950 // collection set's current size 1951 set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths); 1952 1953 double young_end_time_sec = os::elapsedTime(); 1954 phase_times()->_recorded_young_cset_choice_time_ms = 1955 (young_end_time_sec - young_start_time_sec) * 1000.0; 1956 1957 // We are doing young collections so reset this. 1958 non_young_start_time_sec = young_end_time_sec; 1959 1960 if (!gcs_are_young()) { 1961 CollectionSetChooser* cset_chooser = _collectionSetChooser; 1962 cset_chooser->verify(); 1963 const uint min_old_cset_length = cset_chooser->calc_min_old_cset_length(); 1964 const uint max_old_cset_length = cset_chooser->calc_max_old_cset_length(); 1965 1966 uint expensive_region_num = 0; 1967 bool check_time_remaining = adaptive_young_list_length(); 1968 HeapRegion* hr = cset_chooser->peek(); 1969 while (hr != NULL) { 1970 if (old_cset_region_length() >= max_old_cset_length) { 1971 // Added maximum number of old regions to the CSet. 1972 ergo_verbose2(ErgoCSetConstruction, 1973 "finish adding old regions to CSet", 1974 ergo_format_reason("old CSet region num reached max") 1975 ergo_format_region("old") 1976 ergo_format_region("max"), 1977 old_cset_region_length(), max_old_cset_length); 1978 break; 1979 } 1980 1981 double predicted_time_ms = predict_region_elapsed_time_ms(hr, false); 1982 if (check_time_remaining) { 1983 if (predicted_time_ms > time_remaining_ms) { 1984 // Too expensive for the current CSet. 1985 1986 if (old_cset_region_length() >= min_old_cset_length) { 1987 // We have added the minimum number of old regions to the CSet, 1988 // we are done with this CSet. 1989 ergo_verbose4(ErgoCSetConstruction, 1990 "finish adding old regions to CSet", 1991 ergo_format_reason("predicted time is too high") 1992 ergo_format_ms("predicted time") 1993 ergo_format_ms("remaining time") 1994 ergo_format_region("old") 1995 ergo_format_region("min"), 1996 predicted_time_ms, time_remaining_ms, 1997 old_cset_region_length(), min_old_cset_length); 1998 break; 1999 } 2000 2001 // We'll add it anyway given that we haven't reached the 2002 // minimum number of old regions. 2003 expensive_region_num += 1; 2004 } 2005 } else { 2006 if (old_cset_region_length() >= min_old_cset_length) { 2007 // In the non-auto-tuning case, we'll finish adding regions 2008 // to the CSet if we reach the minimum. 2009 ergo_verbose2(ErgoCSetConstruction, 2010 "finish adding old regions to CSet", 2011 ergo_format_reason("old CSet region num reached min") 2012 ergo_format_region("old") 2013 ergo_format_region("min"), 2014 old_cset_region_length(), min_old_cset_length); 2015 break; 2016 } 2017 } 2018 2019 // We will add this region to the CSet. 2020 time_remaining_ms -= predicted_time_ms; 2021 predicted_pause_time_ms += predicted_time_ms; 2022 cset_chooser->remove_and_move_to_next(hr); 2023 _g1->old_set_remove(hr); 2024 add_old_region_to_cset(hr); 2025 2026 hr = cset_chooser->peek(); 2027 } 2028 if (hr == NULL) { 2029 ergo_verbose0(ErgoCSetConstruction, 2030 "finish adding old regions to CSet", 2031 ergo_format_reason("candidate old regions not available")); 2032 } 2033 2034 if (expensive_region_num > 0) { 2035 // We print the information once here at the end, predicated on 2036 // whether we added any apparently expensive regions or not, to 2037 // avoid generating output per region. 2038 ergo_verbose4(ErgoCSetConstruction, 2039 "added expensive regions to CSet", 2040 ergo_format_reason("old CSet region num not reached min") 2041 ergo_format_region("old") 2042 ergo_format_region("expensive") 2043 ergo_format_region("min") 2044 ergo_format_ms("remaining time"), 2045 old_cset_region_length(), 2046 expensive_region_num, 2047 min_old_cset_length, 2048 time_remaining_ms); 2049 } 2050 2051 cset_chooser->verify(); 2052 } 2053 2054 stop_incremental_cset_building(); 2055 2056 count_CS_bytes_used(); 2057 2058 ergo_verbose5(ErgoCSetConstruction, 2059 "finish choosing CSet", 2060 ergo_format_region("eden") 2061 ergo_format_region("survivors") 2062 ergo_format_region("old") 2063 ergo_format_ms("predicted pause time") 2064 ergo_format_ms("target pause time"), 2065 eden_region_length, survivor_region_length, 2066 old_cset_region_length(), 2067 predicted_pause_time_ms, target_pause_time_ms); 2068 2069 double non_young_end_time_sec = os::elapsedTime(); 2070 phase_times()->_recorded_non_young_cset_choice_time_ms = 2071 (non_young_end_time_sec - non_young_start_time_sec) * 1000.0; 2072 } 2073 2074 void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) { 2075 if(TraceGen0Time) { 2076 _all_stop_world_times_ms.add(time_to_stop_the_world_ms); 2077 } 2078 } 2079 2080 void TraceGen0TimeData::record_yield_time(double yield_time_ms) { 2081 if(TraceGen0Time) { 2082 _all_yield_times_ms.add(yield_time_ms); 2083 } 2084 } 2085 2086 void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) { 2087 if(TraceGen0Time) { 2088 _total.add(pause_time_ms); 2089 _other.add(pause_time_ms - phase_times->accounted_time_ms()); 2090 _root_region_scan_wait.add(phase_times->_root_region_scan_wait_time_ms); 2091 _parallel.add(phase_times->_cur_collection_par_time_ms); 2092 _ext_root_scan.add(phase_times->_ext_root_scan_time); 2093 _satb_filtering.add(phase_times->_satb_filtering_time); 2094 _update_rs.add(phase_times->_update_rs_time); 2095 _scan_rs.add(phase_times->_scan_rs_time); 2096 _obj_copy.add(phase_times->_obj_copy_time); 2097 _termination.add(phase_times->_termination_time); 2098 2099 double parallel_known_time = phase_times->_ext_root_scan_time + 2100 phase_times->_satb_filtering_time + 2101 phase_times->_update_rs_time + 2102 phase_times->_scan_rs_time + 2103 phase_times->_obj_copy_time + 2104 + phase_times->_termination_time; 2105 2106 double parallel_other_time = phase_times->_cur_collection_par_time_ms - parallel_known_time; 2107 _parallel_other.add(parallel_other_time); 2108 _clear_ct.add(phase_times->_cur_clear_ct_time_ms); 2109 } 2110 } 2111 2112 void TraceGen0TimeData::increment_young_collection_count() { 2113 if(TraceGen0Time) { 2114 ++_young_pause_num; 2115 } 2116 } 2117 2118 void TraceGen0TimeData::increment_mixed_collection_count() { 2119 if(TraceGen0Time) { 2120 ++_mixed_pause_num; 2121 } 2122 } 2123 2124 void TraceGen0TimeData::print_summary(const char* str, 2125 const NumberSeq* seq) const { 2126 double sum = seq->sum(); 2127 gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)", 2128 str, sum / 1000.0, seq->avg()); 2129 } 2130 2131 void TraceGen0TimeData::print_summary_sd(const char* str, 2132 const NumberSeq* seq) const { 2133 print_summary(str, seq); 2134 gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)", 2135 "(num", seq->num(), seq->sd(), seq->maximum()); 2136 } 2137 2138 void TraceGen0TimeData::print() const { 2139 if (!TraceGen0Time) { 2140 return; 2141 } 2142 2143 gclog_or_tty->print_cr("ALL PAUSES"); 2144 print_summary_sd(" Total", &_total); 2145 gclog_or_tty->print_cr(""); 2146 gclog_or_tty->print_cr(""); 2147 gclog_or_tty->print_cr(" Young GC Pauses: %8d", _young_pause_num); 2148 gclog_or_tty->print_cr(" Mixed GC Pauses: %8d", _mixed_pause_num); 2149 gclog_or_tty->print_cr(""); 2150 2151 gclog_or_tty->print_cr("EVACUATION PAUSES"); 2152 2153 if (_young_pause_num == 0 && _mixed_pause_num == 0) { 2154 gclog_or_tty->print_cr("none"); 2155 } else { 2156 print_summary_sd(" Evacuation Pauses", &_total); 2157 print_summary(" Root Region Scan Wait", &_root_region_scan_wait); 2158 print_summary(" Parallel Time", &_parallel); 2159 print_summary(" Ext Root Scanning", &_ext_root_scan); 2160 print_summary(" SATB Filtering", &_satb_filtering); 2161 print_summary(" Update RS", &_update_rs); 2162 print_summary(" Scan RS", &_scan_rs); 2163 print_summary(" Object Copy", &_obj_copy); 2164 print_summary(" Termination", &_termination); 2165 print_summary(" Parallel Other", &_parallel_other); 2166 print_summary(" Clear CT", &_clear_ct); 2167 print_summary(" Other", &_other); 2168 } 2169 gclog_or_tty->print_cr(""); 2170 2171 gclog_or_tty->print_cr("MISC"); 2172 print_summary_sd(" Stop World", &_all_stop_world_times_ms); 2173 print_summary_sd(" Yields", &_all_yield_times_ms); 2174 } 2175 2176 void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) { 2177 if (TraceGen1Time) { 2178 _all_full_gc_times.add(full_gc_time_ms); 2179 } 2180 } 2181 2182 void TraceGen1TimeData::print() const { 2183 if (!TraceGen1Time) { 2184 return; 2185 } 2186 2187 if (_all_full_gc_times.num() > 0) { 2188 gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s", 2189 _all_full_gc_times.num(), 2190 _all_full_gc_times.sum() / 1000.0); 2191 gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg()); 2192 gclog_or_tty->print_cr(" [std. dev = %8.2f ms, max = %8.2f ms]", 2193 _all_full_gc_times.sd(), 2194 _all_full_gc_times.maximum()); 2195 } 2196 } --- EOF ---