1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  27 #include "gc_implementation/g1/concurrentMark.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  32 #include "gc_implementation/g1/g1Log.hpp"
  33 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  34 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  35 #include "runtime/arguments.hpp"
  36 #include "runtime/java.hpp"
  37 #include "runtime/mutexLocker.hpp"
  38 #include "utilities/debug.hpp"
  39 
  40 // Different defaults for different number of GC threads
  41 // They were chosen by running GCOld and SPECjbb on debris with different
  42 //   numbers of GC threads and choosing them based on the results
  43 
  44 // all the same
  45 static double rs_length_diff_defaults[] = {
  46   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  47 };
  48 
  49 static double cost_per_card_ms_defaults[] = {
  50   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  51 };
  52 
  53 // all the same
  54 static double young_cards_per_entry_ratio_defaults[] = {
  55   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  56 };
  57 
  58 static double cost_per_entry_ms_defaults[] = {
  59   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  60 };
  61 
  62 static double cost_per_byte_ms_defaults[] = {
  63   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  64 };
  65 
  66 // these should be pretty consistent
  67 static double constant_other_time_ms_defaults[] = {
  68   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  69 };
  70 
  71 
  72 static double young_other_cost_per_region_ms_defaults[] = {
  73   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  74 };
  75 
  76 static double non_young_other_cost_per_region_ms_defaults[] = {
  77   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  78 };
  79 
  80 // Help class for avoiding interleaved logging
  81 class LineBuffer: public StackObj {
  82 
  83 private:
  84   static const int BUFFER_LEN = 1024;
  85   static const int INDENT_CHARS = 3;
  86   char _buffer[BUFFER_LEN];
  87   int _indent_level;
  88   int _cur;
  89 
  90   void vappend(const char* format, va_list ap) {
  91     int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap);
  92     if (res != -1) {
  93       _cur += res;
  94     } else {
  95       DEBUG_ONLY(warning("buffer too small in LineBuffer");)
  96       _buffer[BUFFER_LEN -1] = 0;
  97       _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again
  98     }
  99   }
 100 
 101 public:
 102   explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) {
 103     for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) {
 104       _buffer[_cur] = ' ';
 105     }
 106   }
 107 
 108 #ifndef PRODUCT
 109   ~LineBuffer() {
 110     assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?");
 111   }
 112 #endif
 113 
 114   void append(const char* format, ...) {
 115     va_list ap;
 116     va_start(ap, format);
 117     vappend(format, ap);
 118     va_end(ap);
 119   }
 120 
 121   void append_and_print_cr(const char* format, ...) {
 122     va_list ap;
 123     va_start(ap, format);
 124     vappend(format, ap);
 125     va_end(ap);
 126     gclog_or_tty->print_cr("%s", _buffer);
 127     _cur = _indent_level * INDENT_CHARS;
 128   }
 129 };
 130 
 131 G1CollectorPolicy::G1CollectorPolicy() :
 132   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
 133                         ? ParallelGCThreads : 1),
 134 
 135   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 136   _all_pause_times_ms(new NumberSeq()),
 137   _stop_world_start(0.0),
 138   _all_stop_world_times_ms(new NumberSeq()),
 139   _all_yield_times_ms(new NumberSeq()),
 140 
 141   _summary(new Summary()),
 142 
 143   _cur_clear_ct_time_ms(0.0),
 144   _root_region_scan_wait_time_ms(0.0),
 145 
 146   _cur_ref_proc_time_ms(0.0),
 147   _cur_ref_enq_time_ms(0.0),
 148 
 149 #ifndef PRODUCT
 150   _min_clear_cc_time_ms(-1.0),
 151   _max_clear_cc_time_ms(-1.0),
 152   _cur_clear_cc_time_ms(0.0),
 153   _cum_clear_cc_time_ms(0.0),
 154   _num_cc_clears(0L),
 155 #endif
 156 
 157   _aux_num(10),
 158   _all_aux_times_ms(new NumberSeq[_aux_num]),
 159   _cur_aux_start_times_ms(new double[_aux_num]),
 160   _cur_aux_times_ms(new double[_aux_num]),
 161   _cur_aux_times_set(new bool[_aux_num]),
 162 
 163   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 164   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 165 
 166   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 167   _prev_collection_pause_end_ms(0.0),
 168   _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
 169   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
 170   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 171   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
 172   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
 173   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 174   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 175   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 176   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 177   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 178   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 179   _non_young_other_cost_per_region_ms_seq(
 180                                          new TruncatedSeq(TruncatedSeqLength)),
 181 
 182   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 183   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 184 
 185   _pause_time_target_ms((double) MaxGCPauseMillis),
 186 
 187   _gcs_are_young(true),
 188   _young_pause_num(0),
 189   _mixed_pause_num(0),
 190 
 191   _during_marking(false),
 192   _in_marking_window(false),
 193   _in_marking_window_im(false),
 194 
 195   _recent_prev_end_times_for_all_gcs_sec(
 196                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 197 
 198   _recent_avg_pause_time_ratio(0.0),
 199 
 200   _all_full_gc_times_ms(new NumberSeq()),
 201 
 202   _initiate_conc_mark_if_possible(false),
 203   _during_initial_mark_pause(false),
 204   _last_young_gc(false),
 205   _last_gc_was_young(false),
 206 
 207   _eden_bytes_before_gc(0),
 208   _survivor_bytes_before_gc(0),
 209   _capacity_before_gc(0),
 210 
 211   _eden_cset_region_length(0),
 212   _survivor_cset_region_length(0),
 213   _old_cset_region_length(0),
 214 
 215   _collection_set(NULL),
 216   _collection_set_bytes_used_before(0),
 217 
 218   // Incremental CSet attributes
 219   _inc_cset_build_state(Inactive),
 220   _inc_cset_head(NULL),
 221   _inc_cset_tail(NULL),
 222   _inc_cset_bytes_used_before(0),
 223   _inc_cset_max_finger(NULL),
 224   _inc_cset_recorded_rs_lengths(0),
 225   _inc_cset_recorded_rs_lengths_diffs(0),
 226   _inc_cset_predicted_elapsed_time_ms(0.0),
 227   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 228 
 229 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 230 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 231 #endif // _MSC_VER
 232 
 233   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
 234                                                  G1YoungSurvRateNumRegionsSummary)),
 235   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
 236                                               G1YoungSurvRateNumRegionsSummary)),
 237   // add here any more surv rate groups
 238   _recorded_survivor_regions(0),
 239   _recorded_survivor_head(NULL),
 240   _recorded_survivor_tail(NULL),
 241   _survivors_age_table(true),
 242 
 243   _gc_overhead_perc(0.0) {
 244 
 245   // Set up the region size and associated fields. Given that the
 246   // policy is created before the heap, we have to set this up here,
 247   // so it's done as soon as possible.
 248   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
 249   HeapRegionRemSet::setup_remset_size();
 250 
 251   G1ErgoVerbose::initialize();
 252   if (PrintAdaptiveSizePolicy) {
 253     // Currently, we only use a single switch for all the heuristics.
 254     G1ErgoVerbose::set_enabled(true);
 255     // Given that we don't currently have a verboseness level
 256     // parameter, we'll hardcode this to high. This can be easily
 257     // changed in the future.
 258     G1ErgoVerbose::set_level(ErgoHigh);
 259   } else {
 260     G1ErgoVerbose::set_enabled(false);
 261   }
 262 
 263   // Verify PLAB sizes
 264   const size_t region_size = HeapRegion::GrainWords;
 265   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
 266     char buffer[128];
 267     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
 268                  OldPLABSize > region_size ? "Old" : "Young", region_size);
 269     vm_exit_during_initialization(buffer);
 270   }
 271 
 272   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 273   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 274 
 275   _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
 276   _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
 277   _par_last_satb_filtering_times_ms = new double[_parallel_gc_threads];
 278 
 279   _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
 280   _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];
 281 
 282   _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];
 283 
 284   _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];
 285 
 286   _par_last_termination_times_ms = new double[_parallel_gc_threads];
 287   _par_last_termination_attempts = new double[_parallel_gc_threads];
 288   _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
 289   _par_last_gc_worker_times_ms = new double[_parallel_gc_threads];
 290   _par_last_gc_worker_other_times_ms = new double[_parallel_gc_threads];
 291 
 292   int index;
 293   if (ParallelGCThreads == 0)
 294     index = 0;
 295   else if (ParallelGCThreads > 8)
 296     index = 7;
 297   else
 298     index = ParallelGCThreads - 1;
 299 
 300   _pending_card_diff_seq->add(0.0);
 301   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 302   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 303   _young_cards_per_entry_ratio_seq->add(
 304                                   young_cards_per_entry_ratio_defaults[index]);
 305   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 306   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 307   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 308   _young_other_cost_per_region_ms_seq->add(
 309                                young_other_cost_per_region_ms_defaults[index]);
 310   _non_young_other_cost_per_region_ms_seq->add(
 311                            non_young_other_cost_per_region_ms_defaults[index]);
 312 
 313   // Below, we might need to calculate the pause time target based on
 314   // the pause interval. When we do so we are going to give G1 maximum
 315   // flexibility and allow it to do pauses when it needs to. So, we'll
 316   // arrange that the pause interval to be pause time target + 1 to
 317   // ensure that a) the pause time target is maximized with respect to
 318   // the pause interval and b) we maintain the invariant that pause
 319   // time target < pause interval. If the user does not want this
 320   // maximum flexibility, they will have to set the pause interval
 321   // explicitly.
 322 
 323   // First make sure that, if either parameter is set, its value is
 324   // reasonable.
 325   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 326     if (MaxGCPauseMillis < 1) {
 327       vm_exit_during_initialization("MaxGCPauseMillis should be "
 328                                     "greater than 0");
 329     }
 330   }
 331   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 332     if (GCPauseIntervalMillis < 1) {
 333       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 334                                     "greater than 0");
 335     }
 336   }
 337 
 338   // Then, if the pause time target parameter was not set, set it to
 339   // the default value.
 340   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 341     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 342       // The default pause time target in G1 is 200ms
 343       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 344     } else {
 345       // We do not allow the pause interval to be set without the
 346       // pause time target
 347       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 348                                     "without setting MaxGCPauseMillis");
 349     }
 350   }
 351 
 352   // Then, if the interval parameter was not set, set it according to
 353   // the pause time target (this will also deal with the case when the
 354   // pause time target is the default value).
 355   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 356     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 357   }
 358 
 359   // Finally, make sure that the two parameters are consistent.
 360   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 361     char buffer[256];
 362     jio_snprintf(buffer, 256,
 363                  "MaxGCPauseMillis (%u) should be less than "
 364                  "GCPauseIntervalMillis (%u)",
 365                  MaxGCPauseMillis, GCPauseIntervalMillis);
 366     vm_exit_during_initialization(buffer);
 367   }
 368 
 369   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 370   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 371   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 372   _sigma = (double) G1ConfidencePercent / 100.0;
 373 
 374   // start conservatively (around 50ms is about right)
 375   _concurrent_mark_remark_times_ms->add(0.05);
 376   _concurrent_mark_cleanup_times_ms->add(0.20);
 377   _tenuring_threshold = MaxTenuringThreshold;
 378   // _max_survivor_regions will be calculated by
 379   // update_young_list_target_length() during initialization.
 380   _max_survivor_regions = 0;
 381 
 382   assert(GCTimeRatio > 0,
 383          "we should have set it to a default value set_g1_gc_flags() "
 384          "if a user set it to 0");
 385   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 386 
 387   uintx reserve_perc = G1ReservePercent;
 388   // Put an artificial ceiling on this so that it's not set to a silly value.
 389   if (reserve_perc > 50) {
 390     reserve_perc = 50;
 391     warning("G1ReservePercent is set to a value that is too large, "
 392             "it's been updated to %u", reserve_perc);
 393   }
 394   _reserve_factor = (double) reserve_perc / 100.0;
 395   // This will be set when the heap is expanded
 396   // for the first time during initialization.
 397   _reserve_regions = 0;
 398 
 399   initialize_all();
 400   _collectionSetChooser = new CollectionSetChooser();
 401   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 402 }
 403 
 404 void G1CollectorPolicy::initialize_flags() {
 405   set_min_alignment(HeapRegion::GrainBytes);
 406   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
 407   if (SurvivorRatio < 1) {
 408     vm_exit_during_initialization("Invalid survivor ratio specified");
 409   }
 410   CollectorPolicy::initialize_flags();
 411 }
 412 
 413 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
 414   assert(G1DefaultMinNewGenPercent <= G1DefaultMaxNewGenPercent, "Min larger than max");
 415   assert(G1DefaultMinNewGenPercent > 0 && G1DefaultMinNewGenPercent < 100, "Min out of bounds");
 416   assert(G1DefaultMaxNewGenPercent > 0 && G1DefaultMaxNewGenPercent < 100, "Max out of bounds");
 417 
 418   if (FLAG_IS_CMDLINE(NewRatio)) {
 419     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 420       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 421     } else {
 422       _sizer_kind = SizerNewRatio;
 423       _adaptive_size = false;
 424       return;
 425     }
 426   }
 427 
 428   if (FLAG_IS_CMDLINE(NewSize)) {
 429     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 430                                      1U);
 431     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 432       _max_desired_young_length =
 433                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 434                                   1U);
 435       _sizer_kind = SizerMaxAndNewSize;
 436       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 437     } else {
 438       _sizer_kind = SizerNewSizeOnly;
 439     }
 440   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 441     _max_desired_young_length =
 442                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 443                                   1U);
 444     _sizer_kind = SizerMaxNewSizeOnly;
 445   }
 446 }
 447 
 448 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 449   uint default_value = (new_number_of_heap_regions * G1DefaultMinNewGenPercent) / 100;
 450   return MAX2(1U, default_value);
 451 }
 452 
 453 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 454   uint default_value = (new_number_of_heap_regions * G1DefaultMaxNewGenPercent) / 100;
 455   return MAX2(1U, default_value);
 456 }
 457 
 458 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 459   assert(new_number_of_heap_regions > 0, "Heap must be initialized");
 460 
 461   switch (_sizer_kind) {
 462     case SizerDefaults:
 463       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
 464       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
 465       break;
 466     case SizerNewSizeOnly:
 467       _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
 468       _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
 469       break;
 470     case SizerMaxNewSizeOnly:
 471       _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
 472       _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
 473       break;
 474     case SizerMaxAndNewSize:
 475       // Do nothing. Values set on the command line, don't update them at runtime.
 476       break;
 477     case SizerNewRatio:
 478       _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
 479       _max_desired_young_length = _min_desired_young_length;
 480       break;
 481     default:
 482       ShouldNotReachHere();
 483   }
 484 
 485   assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
 486 }
 487 
 488 void G1CollectorPolicy::init() {
 489   // Set aside an initial future to_space.
 490   _g1 = G1CollectedHeap::heap();
 491 
 492   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 493 
 494   initialize_gc_policy_counters();
 495 
 496   if (adaptive_young_list_length()) {
 497     _young_list_fixed_length = 0;
 498   } else {
 499     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 500   }
 501   _free_regions_at_end_of_collection = _g1->free_regions();
 502   update_young_list_target_length();
 503   _prev_eden_capacity = _young_list_target_length * HeapRegion::GrainBytes;
 504 
 505   // We may immediately start allocating regions and placing them on the
 506   // collection set list. Initialize the per-collection set info
 507   start_incremental_cset_building();
 508 }
 509 
 510 // Create the jstat counters for the policy.
 511 void G1CollectorPolicy::initialize_gc_policy_counters() {
 512   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 513 }
 514 
 515 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 516                                          double base_time_ms,
 517                                          uint base_free_regions,
 518                                          double target_pause_time_ms) {
 519   if (young_length >= base_free_regions) {
 520     // end condition 1: not enough space for the young regions
 521     return false;
 522   }
 523 
 524   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 525   size_t bytes_to_copy =
 526                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 527   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 528   double young_other_time_ms = predict_young_other_time_ms(young_length);
 529   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 530   if (pause_time_ms > target_pause_time_ms) {
 531     // end condition 2: prediction is over the target pause time
 532     return false;
 533   }
 534 
 535   size_t free_bytes =
 536                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
 537   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
 538     // end condition 3: out-of-space (conservatively!)
 539     return false;
 540   }
 541 
 542   // success!
 543   return true;
 544 }
 545 
 546 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 547   // re-calculate the necessary reserve
 548   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 549   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 550   // smaller than 1.0) we'll get 1.
 551   _reserve_regions = (uint) ceil(reserve_regions_d);
 552 
 553   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 554 }
 555 
 556 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 557                                                        uint base_min_length) {
 558   uint desired_min_length = 0;
 559   if (adaptive_young_list_length()) {
 560     if (_alloc_rate_ms_seq->num() > 3) {
 561       double now_sec = os::elapsedTime();
 562       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 563       double alloc_rate_ms = predict_alloc_rate_ms();
 564       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 565     } else {
 566       // otherwise we don't have enough info to make the prediction
 567     }
 568   }
 569   desired_min_length += base_min_length;
 570   // make sure we don't go below any user-defined minimum bound
 571   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 572 }
 573 
 574 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
 575   // Here, we might want to also take into account any additional
 576   // constraints (i.e., user-defined minimum bound). Currently, we
 577   // effectively don't set this bound.
 578   return _young_gen_sizer->max_desired_young_length();
 579 }
 580 
 581 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 582   if (rs_lengths == (size_t) -1) {
 583     // if it's set to the default value (-1), we should predict it;
 584     // otherwise, use the given value.
 585     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
 586   }
 587 
 588   // Calculate the absolute and desired min bounds.
 589 
 590   // This is how many young regions we already have (currently: the survivors).
 591   uint base_min_length = recorded_survivor_regions();
 592   // This is the absolute minimum young length, which ensures that we
 593   // can allocate one eden region in the worst-case.
 594   uint absolute_min_length = base_min_length + 1;
 595   uint desired_min_length =
 596                      calculate_young_list_desired_min_length(base_min_length);
 597   if (desired_min_length < absolute_min_length) {
 598     desired_min_length = absolute_min_length;
 599   }
 600 
 601   // Calculate the absolute and desired max bounds.
 602 
 603   // We will try our best not to "eat" into the reserve.
 604   uint absolute_max_length = 0;
 605   if (_free_regions_at_end_of_collection > _reserve_regions) {
 606     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 607   }
 608   uint desired_max_length = calculate_young_list_desired_max_length();
 609   if (desired_max_length > absolute_max_length) {
 610     desired_max_length = absolute_max_length;
 611   }
 612 
 613   uint young_list_target_length = 0;
 614   if (adaptive_young_list_length()) {
 615     if (gcs_are_young()) {
 616       young_list_target_length =
 617                         calculate_young_list_target_length(rs_lengths,
 618                                                            base_min_length,
 619                                                            desired_min_length,
 620                                                            desired_max_length);
 621       _rs_lengths_prediction = rs_lengths;
 622     } else {
 623       // Don't calculate anything and let the code below bound it to
 624       // the desired_min_length, i.e., do the next GC as soon as
 625       // possible to maximize how many old regions we can add to it.
 626     }
 627   } else {
 628     // The user asked for a fixed young gen so we'll fix the young gen
 629     // whether the next GC is young or mixed.
 630     young_list_target_length = _young_list_fixed_length;
 631   }
 632 
 633   // Make sure we don't go over the desired max length, nor under the
 634   // desired min length. In case they clash, desired_min_length wins
 635   // which is why that test is second.
 636   if (young_list_target_length > desired_max_length) {
 637     young_list_target_length = desired_max_length;
 638   }
 639   if (young_list_target_length < desired_min_length) {
 640     young_list_target_length = desired_min_length;
 641   }
 642 
 643   assert(young_list_target_length > recorded_survivor_regions(),
 644          "we should be able to allocate at least one eden region");
 645   assert(young_list_target_length >= absolute_min_length, "post-condition");
 646   _young_list_target_length = young_list_target_length;
 647 
 648   update_max_gc_locker_expansion();
 649 }
 650 
 651 uint
 652 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 653                                                      uint base_min_length,
 654                                                      uint desired_min_length,
 655                                                      uint desired_max_length) {
 656   assert(adaptive_young_list_length(), "pre-condition");
 657   assert(gcs_are_young(), "only call this for young GCs");
 658 
 659   // In case some edge-condition makes the desired max length too small...
 660   if (desired_max_length <= desired_min_length) {
 661     return desired_min_length;
 662   }
 663 
 664   // We'll adjust min_young_length and max_young_length not to include
 665   // the already allocated young regions (i.e., so they reflect the
 666   // min and max eden regions we'll allocate). The base_min_length
 667   // will be reflected in the predictions by the
 668   // survivor_regions_evac_time prediction.
 669   assert(desired_min_length > base_min_length, "invariant");
 670   uint min_young_length = desired_min_length - base_min_length;
 671   assert(desired_max_length > base_min_length, "invariant");
 672   uint max_young_length = desired_max_length - base_min_length;
 673 
 674   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 675   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 676   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 677   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 678   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 679   double base_time_ms =
 680     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 681     survivor_regions_evac_time;
 682   uint available_free_regions = _free_regions_at_end_of_collection;
 683   uint base_free_regions = 0;
 684   if (available_free_regions > _reserve_regions) {
 685     base_free_regions = available_free_regions - _reserve_regions;
 686   }
 687 
 688   // Here, we will make sure that the shortest young length that
 689   // makes sense fits within the target pause time.
 690 
 691   if (predict_will_fit(min_young_length, base_time_ms,
 692                        base_free_regions, target_pause_time_ms)) {
 693     // The shortest young length will fit into the target pause time;
 694     // we'll now check whether the absolute maximum number of young
 695     // regions will fit in the target pause time. If not, we'll do
 696     // a binary search between min_young_length and max_young_length.
 697     if (predict_will_fit(max_young_length, base_time_ms,
 698                          base_free_regions, target_pause_time_ms)) {
 699       // The maximum young length will fit into the target pause time.
 700       // We are done so set min young length to the maximum length (as
 701       // the result is assumed to be returned in min_young_length).
 702       min_young_length = max_young_length;
 703     } else {
 704       // The maximum possible number of young regions will not fit within
 705       // the target pause time so we'll search for the optimal
 706       // length. The loop invariants are:
 707       //
 708       // min_young_length < max_young_length
 709       // min_young_length is known to fit into the target pause time
 710       // max_young_length is known not to fit into the target pause time
 711       //
 712       // Going into the loop we know the above hold as we've just
 713       // checked them. Every time around the loop we check whether
 714       // the middle value between min_young_length and
 715       // max_young_length fits into the target pause time. If it
 716       // does, it becomes the new min. If it doesn't, it becomes
 717       // the new max. This way we maintain the loop invariants.
 718 
 719       assert(min_young_length < max_young_length, "invariant");
 720       uint diff = (max_young_length - min_young_length) / 2;
 721       while (diff > 0) {
 722         uint young_length = min_young_length + diff;
 723         if (predict_will_fit(young_length, base_time_ms,
 724                              base_free_regions, target_pause_time_ms)) {
 725           min_young_length = young_length;
 726         } else {
 727           max_young_length = young_length;
 728         }
 729         assert(min_young_length <  max_young_length, "invariant");
 730         diff = (max_young_length - min_young_length) / 2;
 731       }
 732       // The results is min_young_length which, according to the
 733       // loop invariants, should fit within the target pause time.
 734 
 735       // These are the post-conditions of the binary search above:
 736       assert(min_young_length < max_young_length,
 737              "otherwise we should have discovered that max_young_length "
 738              "fits into the pause target and not done the binary search");
 739       assert(predict_will_fit(min_young_length, base_time_ms,
 740                               base_free_regions, target_pause_time_ms),
 741              "min_young_length, the result of the binary search, should "
 742              "fit into the pause target");
 743       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 744                                base_free_regions, target_pause_time_ms),
 745              "min_young_length, the result of the binary search, should be "
 746              "optimal, so no larger length should fit into the pause target");
 747     }
 748   } else {
 749     // Even the minimum length doesn't fit into the pause time
 750     // target, return it as the result nevertheless.
 751   }
 752   return base_min_length + min_young_length;
 753 }
 754 
 755 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
 756   double survivor_regions_evac_time = 0.0;
 757   for (HeapRegion * r = _recorded_survivor_head;
 758        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 759        r = r->get_next_young_region()) {
 760     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
 761   }
 762   return survivor_regions_evac_time;
 763 }
 764 
 765 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 766   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 767 
 768   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 769   if (rs_lengths > _rs_lengths_prediction) {
 770     // add 10% to avoid having to recalculate often
 771     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 772     update_young_list_target_length(rs_lengths_prediction);
 773   }
 774 }
 775 
 776 
 777 
 778 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 779                                                bool is_tlab,
 780                                                bool* gc_overhead_limit_was_exceeded) {
 781   guarantee(false, "Not using this policy feature yet.");
 782   return NULL;
 783 }
 784 
 785 // This method controls how a collector handles one or more
 786 // of its generations being fully allocated.
 787 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 788                                                        bool is_tlab) {
 789   guarantee(false, "Not using this policy feature yet.");
 790   return NULL;
 791 }
 792 
 793 
 794 #ifndef PRODUCT
 795 bool G1CollectorPolicy::verify_young_ages() {
 796   HeapRegion* head = _g1->young_list()->first_region();
 797   return
 798     verify_young_ages(head, _short_lived_surv_rate_group);
 799   // also call verify_young_ages on any additional surv rate groups
 800 }
 801 
 802 bool
 803 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 804                                      SurvRateGroup *surv_rate_group) {
 805   guarantee( surv_rate_group != NULL, "pre-condition" );
 806 
 807   const char* name = surv_rate_group->name();
 808   bool ret = true;
 809   int prev_age = -1;
 810 
 811   for (HeapRegion* curr = head;
 812        curr != NULL;
 813        curr = curr->get_next_young_region()) {
 814     SurvRateGroup* group = curr->surv_rate_group();
 815     if (group == NULL && !curr->is_survivor()) {
 816       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 817       ret = false;
 818     }
 819 
 820     if (surv_rate_group == group) {
 821       int age = curr->age_in_surv_rate_group();
 822 
 823       if (age < 0) {
 824         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 825         ret = false;
 826       }
 827 
 828       if (age <= prev_age) {
 829         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 830                                "(%d, %d)", name, age, prev_age);
 831         ret = false;
 832       }
 833       prev_age = age;
 834     }
 835   }
 836 
 837   return ret;
 838 }
 839 #endif // PRODUCT
 840 
 841 void G1CollectorPolicy::record_full_collection_start() {
 842   _cur_collection_start_sec = os::elapsedTime();
 843   // Release the future to-space so that it is available for compaction into.
 844   _g1->set_full_collection();
 845 }
 846 
 847 void G1CollectorPolicy::record_full_collection_end() {
 848   // Consider this like a collection pause for the purposes of allocation
 849   // since last pause.
 850   double end_sec = os::elapsedTime();
 851   double full_gc_time_sec = end_sec - _cur_collection_start_sec;
 852   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 853 
 854   _all_full_gc_times_ms->add(full_gc_time_ms);
 855 
 856   update_recent_gc_times(end_sec, full_gc_time_ms);
 857 
 858   _g1->clear_full_collection();
 859 
 860   // "Nuke" the heuristics that control the young/mixed GC
 861   // transitions and make sure we start with young GCs after the Full GC.
 862   set_gcs_are_young(true);
 863   _last_young_gc = false;
 864   clear_initiate_conc_mark_if_possible();
 865   clear_during_initial_mark_pause();
 866   _in_marking_window = false;
 867   _in_marking_window_im = false;
 868 
 869   _short_lived_surv_rate_group->start_adding_regions();
 870   // also call this on any additional surv rate groups
 871 
 872   record_survivor_regions(0, NULL, NULL);
 873 
 874   _free_regions_at_end_of_collection = _g1->free_regions();
 875   // Reset survivors SurvRateGroup.
 876   _survivor_surv_rate_group->reset();
 877   update_young_list_target_length();
 878   _collectionSetChooser->clear();
 879 }
 880 
 881 void G1CollectorPolicy::record_stop_world_start() {
 882   _stop_world_start = os::elapsedTime();
 883 }
 884 
 885 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
 886                                                       size_t start_used) {
 887   if (G1Log::finer()) {
 888     gclog_or_tty->stamp(PrintGCTimeStamps);
 889     gclog_or_tty->print("[%s", (const char*)GCCauseString("GC pause", _g1->gc_cause())
 890       .append(gcs_are_young() ? " (young)" : " (mixed)"));
 891   }
 892 
 893   // We only need to do this here as the policy will only be applied
 894   // to the GC we're about to start. so, no point is calculating this
 895   // every time we calculate / recalculate the target young length.
 896   update_survivors_policy();
 897 
 898   assert(_g1->used() == _g1->recalculate_used(),
 899          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
 900                  _g1->used(), _g1->recalculate_used()));
 901 
 902   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 903   _all_stop_world_times_ms->add(s_w_t_ms);
 904   _stop_world_start = 0.0;
 905 
 906   _cur_collection_start_sec = start_time_sec;
 907   _cur_collection_pause_used_at_start_bytes = start_used;
 908   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
 909   _pending_cards = _g1->pending_card_num();
 910   _max_pending_cards = _g1->max_pending_card_num();
 911 
 912   _bytes_in_collection_set_before_gc = 0;
 913   _bytes_copied_during_gc = 0;
 914 
 915   YoungList* young_list = _g1->young_list();
 916   _eden_bytes_before_gc = young_list->eden_used_bytes();
 917   _survivor_bytes_before_gc = young_list->survivor_used_bytes();
 918   _capacity_before_gc = _g1->capacity();
 919 
 920 #ifdef DEBUG
 921   // initialise these to something well known so that we can spot
 922   // if they are not set properly
 923 
 924   for (int i = 0; i < _parallel_gc_threads; ++i) {
 925     _par_last_gc_worker_start_times_ms[i] = -1234.0;
 926     _par_last_ext_root_scan_times_ms[i] = -1234.0;
 927     _par_last_satb_filtering_times_ms[i] = -1234.0;
 928     _par_last_update_rs_times_ms[i] = -1234.0;
 929     _par_last_update_rs_processed_buffers[i] = -1234.0;
 930     _par_last_scan_rs_times_ms[i] = -1234.0;
 931     _par_last_obj_copy_times_ms[i] = -1234.0;
 932     _par_last_termination_times_ms[i] = -1234.0;
 933     _par_last_termination_attempts[i] = -1234.0;
 934     _par_last_gc_worker_end_times_ms[i] = -1234.0;
 935     _par_last_gc_worker_times_ms[i] = -1234.0;
 936     _par_last_gc_worker_other_times_ms[i] = -1234.0;
 937   }
 938 #endif
 939 
 940   for (int i = 0; i < _aux_num; ++i) {
 941     _cur_aux_times_ms[i] = 0.0;
 942     _cur_aux_times_set[i] = false;
 943   }
 944 
 945   // This is initialized to zero here and is set during the evacuation
 946   // pause if we actually waited for the root region scanning to finish.
 947   _root_region_scan_wait_time_ms = 0.0;
 948 
 949   _last_gc_was_young = false;
 950 
 951   // do that for any other surv rate groups
 952   _short_lived_surv_rate_group->stop_adding_regions();
 953   _survivors_age_table.clear();
 954 
 955   assert( verify_young_ages(), "region age verification" );
 956 }
 957 
 958 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 959                                                    mark_init_elapsed_time_ms) {
 960   _during_marking = true;
 961   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
 962   clear_during_initial_mark_pause();
 963   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 964 }
 965 
 966 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 967   _mark_remark_start_sec = os::elapsedTime();
 968   _during_marking = false;
 969 }
 970 
 971 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 972   double end_time_sec = os::elapsedTime();
 973   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 974   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 975   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 976   _prev_collection_pause_end_ms += elapsed_time_ms;
 977 
 978   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
 979 }
 980 
 981 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 982   _mark_cleanup_start_sec = os::elapsedTime();
 983 }
 984 
 985 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 986   _last_young_gc = true;
 987   _in_marking_window = false;
 988 }
 989 
 990 void G1CollectorPolicy::record_concurrent_pause() {
 991   if (_stop_world_start > 0.0) {
 992     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 993     _all_yield_times_ms->add(yield_ms);
 994   }
 995 }
 996 
 997 void G1CollectorPolicy::record_concurrent_pause_end() {
 998 }
 999 
1000 template<class T>
1001 T sum_of(T* sum_arr, int start, int n, int N) {
1002   T sum = (T)0;
1003   for (int i = 0; i < n; i++) {
1004     int j = (start + i) % N;
1005     sum += sum_arr[j];
1006   }
1007   return sum;
1008 }
1009 
1010 void G1CollectorPolicy::print_par_stats(int level,
1011                                         const char* str,
1012                                         double* data,
1013                                         bool showDecimals) {
1014   double min = data[0], max = data[0];
1015   double total = 0.0;
1016   LineBuffer buf(level);
1017   buf.append("[%s (ms):", str);
1018   for (uint i = 0; i < no_of_gc_threads(); ++i) {
1019     double val = data[i];
1020     if (val < min)
1021       min = val;
1022     if (val > max)
1023       max = val;
1024     total += val;
1025     if (G1Log::finest()) {
1026       if (showDecimals) {
1027         buf.append("  %.1lf", val);
1028       } else {
1029         buf.append("  %d", (int)val);
1030       }
1031     }
1032   }
1033 
1034   if (G1Log::finest()) {
1035     buf.append_and_print_cr("");
1036   }
1037   double avg = total / (double) no_of_gc_threads();
1038   if (showDecimals) {
1039     buf.append_and_print_cr(" Min: %.1lf, Avg: %.1lf, Max: %.1lf, Diff: %.1lf, Sum: %.1lf]",
1040       min, avg, max, max - min, total);
1041   } else {
1042     buf.append_and_print_cr(" Min: %d, Avg: %d, Max: %d, Diff: %d, Sum: %d]",
1043       (int)min, (int)avg, (int)max, (int)max - (int)min, (int)total);
1044   }
1045 }
1046 
1047 void G1CollectorPolicy::print_stats(int level,
1048                                     const char* str,
1049                                     double value) {
1050   LineBuffer(level).append_and_print_cr("[%s: %.1lf ms]", str, value);
1051 }
1052 
1053 void G1CollectorPolicy::print_stats(int level,
1054                                     const char* str,
1055                                     double value,
1056                                     int workers) {
1057   LineBuffer(level).append_and_print_cr("[%s: %.1lf ms, GC Workers: %d]", str, value, workers);
1058 }
1059 
1060 void G1CollectorPolicy::print_stats(int level,
1061                                     const char* str,
1062                                     int value) {
1063   LineBuffer(level).append_and_print_cr("[%s: %d]", str, value);
1064 }
1065 
1066 double G1CollectorPolicy::avg_value(double* data) {
1067   if (G1CollectedHeap::use_parallel_gc_threads()) {
1068     double ret = 0.0;
1069     for (uint i = 0; i < no_of_gc_threads(); ++i) {
1070       ret += data[i];
1071     }
1072     return ret / (double) no_of_gc_threads();
1073   } else {
1074     return data[0];
1075   }
1076 }
1077 
1078 double G1CollectorPolicy::max_value(double* data) {
1079   if (G1CollectedHeap::use_parallel_gc_threads()) {
1080     double ret = data[0];
1081     for (uint i = 1; i < no_of_gc_threads(); ++i) {
1082       if (data[i] > ret) {
1083         ret = data[i];
1084       }
1085     }
1086     return ret;
1087   } else {
1088     return data[0];
1089   }
1090 }
1091 
1092 double G1CollectorPolicy::sum_of_values(double* data) {
1093   if (G1CollectedHeap::use_parallel_gc_threads()) {
1094     double sum = 0.0;
1095     for (uint i = 0; i < no_of_gc_threads(); i++) {
1096       sum += data[i];
1097     }
1098     return sum;
1099   } else {
1100     return data[0];
1101   }
1102 }
1103 
1104 double G1CollectorPolicy::max_sum(double* data1, double* data2) {
1105   double ret = data1[0] + data2[0];
1106 
1107   if (G1CollectedHeap::use_parallel_gc_threads()) {
1108     for (uint i = 1; i < no_of_gc_threads(); ++i) {
1109       double data = data1[i] + data2[i];
1110       if (data > ret) {
1111         ret = data;
1112       }
1113     }
1114   }
1115   return ret;
1116 }
1117 
1118 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
1119   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
1120     return false;
1121   }
1122 
1123   size_t marking_initiating_used_threshold =
1124     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
1125   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
1126   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
1127 
1128   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
1129     if (gcs_are_young()) {
1130       ergo_verbose5(ErgoConcCycles,
1131         "request concurrent cycle initiation",
1132         ergo_format_reason("occupancy higher than threshold")
1133         ergo_format_byte("occupancy")
1134         ergo_format_byte("allocation request")
1135         ergo_format_byte_perc("threshold")
1136         ergo_format_str("source"),
1137         cur_used_bytes,
1138         alloc_byte_size,
1139         marking_initiating_used_threshold,
1140         (double) InitiatingHeapOccupancyPercent,
1141         source);
1142       return true;
1143     } else {
1144       ergo_verbose5(ErgoConcCycles,
1145         "do not request concurrent cycle initiation",
1146         ergo_format_reason("still doing mixed collections")
1147         ergo_format_byte("occupancy")
1148         ergo_format_byte("allocation request")
1149         ergo_format_byte_perc("threshold")
1150         ergo_format_str("source"),
1151         cur_used_bytes,
1152         alloc_byte_size,
1153         marking_initiating_used_threshold,
1154         (double) InitiatingHeapOccupancyPercent,
1155         source);
1156     }
1157   }
1158 
1159   return false;
1160 }
1161 
1162 // Anything below that is considered to be zero
1163 #define MIN_TIMER_GRANULARITY 0.0000001
1164 
1165 void G1CollectorPolicy::record_collection_pause_end(int no_of_gc_threads) {
1166   double end_time_sec = os::elapsedTime();
1167   double elapsed_ms = _last_pause_time_ms;
1168   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
1169   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
1170          "otherwise, the subtraction below does not make sense");
1171   size_t rs_size =
1172             _cur_collection_pause_used_regions_at_start - cset_region_length();
1173   size_t cur_used_bytes = _g1->used();
1174   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
1175   bool last_pause_included_initial_mark = false;
1176   bool update_stats = !_g1->evacuation_failed();
1177   set_no_of_gc_threads(no_of_gc_threads);
1178 
1179 #ifndef PRODUCT
1180   if (G1YoungSurvRateVerbose) {
1181     gclog_or_tty->print_cr("");
1182     _short_lived_surv_rate_group->print();
1183     // do that for any other surv rate groups too
1184   }
1185 #endif // PRODUCT
1186 
1187   last_pause_included_initial_mark = during_initial_mark_pause();
1188   if (last_pause_included_initial_mark) {
1189     record_concurrent_mark_init_end(0.0);
1190   } else if (!_last_young_gc && need_to_start_conc_mark("end of GC")) {
1191     // Note: this might have already been set, if during the last
1192     // pause we decided to start a cycle but at the beginning of
1193     // this pause we decided to postpone it. That's OK.
1194     set_initiate_conc_mark_if_possible();
1195   }
1196 
1197   _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
1198                           end_time_sec, false);
1199 
1200   // This assert is exempted when we're doing parallel collection pauses,
1201   // because the fragmentation caused by the parallel GC allocation buffers
1202   // can lead to more memory being used during collection than was used
1203   // before. Best leave this out until the fragmentation problem is fixed.
1204   // Pauses in which evacuation failed can also lead to negative
1205   // collections, since no space is reclaimed from a region containing an
1206   // object whose evacuation failed.
1207   // Further, we're now always doing parallel collection.  But I'm still
1208   // leaving this here as a placeholder for a more precise assertion later.
1209   // (DLD, 10/05.)
1210   assert((true || parallel) // Always using GC LABs now.
1211          || _g1->evacuation_failed()
1212          || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
1213          "Negative collection");
1214 
1215   size_t freed_bytes =
1216     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
1217   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
1218 
1219   double survival_fraction =
1220     (double)surviving_bytes/
1221     (double)_collection_set_bytes_used_before;
1222 
1223   // These values are used to update the summary information that is
1224   // displayed when TraceGen0Time is enabled, and are output as part
1225   // of the "finer" output, in the non-parallel case.
1226 
1227   double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
1228   double satb_filtering_time = avg_value(_par_last_satb_filtering_times_ms);
1229   double update_rs_time = avg_value(_par_last_update_rs_times_ms);
1230   double update_rs_processed_buffers =
1231     sum_of_values(_par_last_update_rs_processed_buffers);
1232   double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
1233   double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
1234   double termination_time = avg_value(_par_last_termination_times_ms);
1235 
1236   double known_time = ext_root_scan_time +
1237                       satb_filtering_time +
1238                       update_rs_time +
1239                       scan_rs_time +
1240                       obj_copy_time;
1241 
1242   double other_time_ms = elapsed_ms;
1243 
1244   // Subtract the root region scanning wait time. It's initialized to
1245   // zero at the start of the pause.
1246   other_time_ms -= _root_region_scan_wait_time_ms;
1247 
1248   if (parallel) {
1249     other_time_ms -= _cur_collection_par_time_ms;
1250   } else {
1251     other_time_ms -= known_time;
1252   }
1253 
1254   // Now subtract the time taken to fix up roots in generated code
1255   other_time_ms -= _cur_collection_code_root_fixup_time_ms;
1256 
1257   // Subtract the time taken to clean the card table from the
1258   // current value of "other time"
1259   other_time_ms -= _cur_clear_ct_time_ms;
1260 
1261   // TraceGen0Time and TraceGen1Time summary info updating.
1262   _all_pause_times_ms->add(elapsed_ms);
1263 
1264   if (update_stats) {
1265     _summary->record_total_time_ms(elapsed_ms);
1266     _summary->record_other_time_ms(other_time_ms);
1267 
1268     MainBodySummary* body_summary = _summary->main_body_summary();
1269     assert(body_summary != NULL, "should not be null!");
1270 
1271     body_summary->record_root_region_scan_wait_time_ms(
1272                                                _root_region_scan_wait_time_ms);
1273     body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
1274     body_summary->record_satb_filtering_time_ms(satb_filtering_time);
1275     body_summary->record_update_rs_time_ms(update_rs_time);
1276     body_summary->record_scan_rs_time_ms(scan_rs_time);
1277     body_summary->record_obj_copy_time_ms(obj_copy_time);
1278 
1279     if (parallel) {
1280       body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
1281       body_summary->record_termination_time_ms(termination_time);
1282 
1283       double parallel_known_time = known_time + termination_time;
1284       double parallel_other_time = _cur_collection_par_time_ms - parallel_known_time;
1285       body_summary->record_parallel_other_time_ms(parallel_other_time);
1286     }
1287 
1288     body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
1289 
1290     // We exempt parallel collection from this check because Alloc Buffer
1291     // fragmentation can produce negative collections.  Same with evac
1292     // failure.
1293     // Further, we're now always doing parallel collection.  But I'm still
1294     // leaving this here as a placeholder for a more precise assertion later.
1295     // (DLD, 10/05.
1296     assert((true || parallel)
1297            || _g1->evacuation_failed()
1298            || surviving_bytes <= _collection_set_bytes_used_before,
1299            "Or else negative collection!");
1300 
1301     // this is where we update the allocation rate of the application
1302     double app_time_ms =
1303       (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
1304     if (app_time_ms < MIN_TIMER_GRANULARITY) {
1305       // This usually happens due to the timer not having the required
1306       // granularity. Some Linuxes are the usual culprits.
1307       // We'll just set it to something (arbitrarily) small.
1308       app_time_ms = 1.0;
1309     }
1310     // We maintain the invariant that all objects allocated by mutator
1311     // threads will be allocated out of eden regions. So, we can use
1312     // the eden region number allocated since the previous GC to
1313     // calculate the application's allocate rate. The only exception
1314     // to that is humongous objects that are allocated separately. But
1315     // given that humongous object allocations do not really affect
1316     // either the pause's duration nor when the next pause will take
1317     // place we can safely ignore them here.
1318     uint regions_allocated = eden_cset_region_length();
1319     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
1320     _alloc_rate_ms_seq->add(alloc_rate_ms);
1321 
1322     double interval_ms =
1323       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1324     update_recent_gc_times(end_time_sec, elapsed_ms);
1325     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1326     if (recent_avg_pause_time_ratio() < 0.0 ||
1327         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
1328 #ifndef PRODUCT
1329       // Dump info to allow post-facto debugging
1330       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
1331       gclog_or_tty->print_cr("-------------------------------------------");
1332       gclog_or_tty->print_cr("Recent GC Times (ms):");
1333       _recent_gc_times_ms->dump();
1334       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
1335       _recent_prev_end_times_for_all_gcs_sec->dump();
1336       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
1337                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
1338       // In debug mode, terminate the JVM if the user wants to debug at this point.
1339       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
1340 #endif  // !PRODUCT
1341       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1342       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1343       if (_recent_avg_pause_time_ratio < 0.0) {
1344         _recent_avg_pause_time_ratio = 0.0;
1345       } else {
1346         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1347         _recent_avg_pause_time_ratio = 1.0;
1348       }
1349     }
1350   }
1351 
1352   for (int i = 0; i < _aux_num; ++i) {
1353     if (_cur_aux_times_set[i]) {
1354       _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
1355     }
1356   }
1357 
1358   if (G1Log::finer()) {
1359     bool print_marking_info =
1360       _g1->mark_in_progress() && !last_pause_included_initial_mark;
1361 
1362     gclog_or_tty->print_cr("%s, %1.8lf secs]",
1363                            (last_pause_included_initial_mark) ? " (initial-mark)" : "",
1364                            elapsed_ms / 1000.0);
1365 
1366     if (_root_region_scan_wait_time_ms > 0.0) {
1367       print_stats(1, "Root Region Scan Waiting", _root_region_scan_wait_time_ms);
1368     }
1369     if (parallel) {
1370       print_stats(1, "Parallel Time", _cur_collection_par_time_ms, no_of_gc_threads);
1371       print_par_stats(2, "GC Worker Start", _par_last_gc_worker_start_times_ms);
1372       print_par_stats(2, "Ext Root Scanning", _par_last_ext_root_scan_times_ms);
1373       if (print_marking_info) {
1374         print_par_stats(2, "SATB Filtering", _par_last_satb_filtering_times_ms);
1375       }
1376       print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
1377       if (G1Log::finest()) {
1378         print_par_stats(3, "Processed Buffers", _par_last_update_rs_processed_buffers,
1379           false /* showDecimals */);
1380       }
1381       print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
1382       print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
1383       print_par_stats(2, "Termination", _par_last_termination_times_ms);
1384       if (G1Log::finest()) {
1385         print_par_stats(3, "Termination Attempts", _par_last_termination_attempts,
1386           false /* showDecimals */);
1387       }
1388 
1389       for (int i = 0; i < _parallel_gc_threads; i++) {
1390         _par_last_gc_worker_times_ms[i] = _par_last_gc_worker_end_times_ms[i] -
1391                                           _par_last_gc_worker_start_times_ms[i];
1392 
1393         double worker_known_time = _par_last_ext_root_scan_times_ms[i] +
1394                                    _par_last_satb_filtering_times_ms[i] +
1395                                    _par_last_update_rs_times_ms[i] +
1396                                    _par_last_scan_rs_times_ms[i] +
1397                                    _par_last_obj_copy_times_ms[i] +
1398                                    _par_last_termination_times_ms[i];
1399 
1400         _par_last_gc_worker_other_times_ms[i] = _par_last_gc_worker_times_ms[i] -
1401                                                 worker_known_time;
1402       }
1403 
1404       print_par_stats(2, "GC Worker Other", _par_last_gc_worker_other_times_ms);
1405       print_par_stats(2, "GC Worker Total", _par_last_gc_worker_times_ms);
1406       print_par_stats(2, "GC Worker End", _par_last_gc_worker_end_times_ms);
1407     } else {
1408       print_stats(1, "Ext Root Scanning", ext_root_scan_time);
1409       if (print_marking_info) {
1410         print_stats(1, "SATB Filtering", satb_filtering_time);
1411       }
1412       print_stats(1, "Update RS", update_rs_time);
1413       if (G1Log::finest()) {
1414         print_stats(2, "Processed Buffers", (int)update_rs_processed_buffers);
1415       }
1416       print_stats(1, "Scan RS", scan_rs_time);
1417       print_stats(1, "Object Copying", obj_copy_time);
1418     }
1419     print_stats(1, "Code Root Fixup", _cur_collection_code_root_fixup_time_ms);
1420     print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
1421 #ifndef PRODUCT
1422     print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
1423     print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
1424     print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
1425     print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
1426     if (_num_cc_clears > 0) {
1427       print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
1428     }
1429 #endif
1430     print_stats(1, "Other", other_time_ms);
1431     print_stats(2, "Choose CSet",
1432                    (_recorded_young_cset_choice_time_ms +
1433                     _recorded_non_young_cset_choice_time_ms));
1434     print_stats(2, "Ref Proc", _cur_ref_proc_time_ms);
1435     print_stats(2, "Ref Enq", _cur_ref_enq_time_ms);
1436     print_stats(2, "Free CSet",
1437                    (_recorded_young_free_cset_time_ms +
1438                     _recorded_non_young_free_cset_time_ms));
1439 
1440     for (int i = 0; i < _aux_num; ++i) {
1441       if (_cur_aux_times_set[i]) {
1442         char buffer[96];
1443         sprintf(buffer, "Aux%d", i);
1444         print_stats(1, buffer, _cur_aux_times_ms[i]);
1445       }
1446     }
1447   }
1448 
1449   bool new_in_marking_window = _in_marking_window;
1450   bool new_in_marking_window_im = false;
1451   if (during_initial_mark_pause()) {
1452     new_in_marking_window = true;
1453     new_in_marking_window_im = true;
1454   }
1455 
1456   if (_last_young_gc) {
1457     // This is supposed to to be the "last young GC" before we start
1458     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1459 
1460     if (!last_pause_included_initial_mark) {
1461       if (next_gc_should_be_mixed("start mixed GCs",
1462                                   "do not start mixed GCs")) {
1463         set_gcs_are_young(false);
1464       }
1465     } else {
1466       ergo_verbose0(ErgoMixedGCs,
1467                     "do not start mixed GCs",
1468                     ergo_format_reason("concurrent cycle is about to start"));
1469     }
1470     _last_young_gc = false;
1471   }
1472 
1473   if (!_last_gc_was_young) {
1474     // This is a mixed GC. Here we decide whether to continue doing
1475     // mixed GCs or not.
1476 
1477     if (!next_gc_should_be_mixed("continue mixed GCs",
1478                                  "do not continue mixed GCs")) {
1479       set_gcs_are_young(true);
1480     }
1481   }
1482 
1483   _short_lived_surv_rate_group->start_adding_regions();
1484   // do that for any other surv rate groupsx
1485 
1486   if (update_stats) {
1487     double pause_time_ms = elapsed_ms;
1488 
1489     size_t diff = 0;
1490     if (_max_pending_cards >= _pending_cards) {
1491       diff = _max_pending_cards - _pending_cards;
1492     }
1493     _pending_card_diff_seq->add((double) diff);
1494 
1495     double cost_per_card_ms = 0.0;
1496     if (_pending_cards > 0) {
1497       cost_per_card_ms = update_rs_time / (double) _pending_cards;
1498       _cost_per_card_ms_seq->add(cost_per_card_ms);
1499     }
1500 
1501     size_t cards_scanned = _g1->cards_scanned();
1502 
1503     double cost_per_entry_ms = 0.0;
1504     if (cards_scanned > 10) {
1505       cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
1506       if (_last_gc_was_young) {
1507         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1508       } else {
1509         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1510       }
1511     }
1512 
1513     if (_max_rs_lengths > 0) {
1514       double cards_per_entry_ratio =
1515         (double) cards_scanned / (double) _max_rs_lengths;
1516       if (_last_gc_was_young) {
1517         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1518       } else {
1519         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1520       }
1521     }
1522 
1523     // This is defensive. For a while _max_rs_lengths could get
1524     // smaller than _recorded_rs_lengths which was causing
1525     // rs_length_diff to get very large and mess up the RSet length
1526     // predictions. The reason was unsafe concurrent updates to the
1527     // _inc_cset_recorded_rs_lengths field which the code below guards
1528     // against (see CR 7118202). This bug has now been fixed (see CR
1529     // 7119027). However, I'm still worried that
1530     // _inc_cset_recorded_rs_lengths might still end up somewhat
1531     // inaccurate. The concurrent refinement thread calculates an
1532     // RSet's length concurrently with other CR threads updating it
1533     // which might cause it to calculate the length incorrectly (if,
1534     // say, it's in mid-coarsening). So I'll leave in the defensive
1535     // conditional below just in case.
1536     size_t rs_length_diff = 0;
1537     if (_max_rs_lengths > _recorded_rs_lengths) {
1538       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1539     }
1540     _rs_length_diff_seq->add((double) rs_length_diff);
1541 
1542     size_t copied_bytes = surviving_bytes;
1543     double cost_per_byte_ms = 0.0;
1544     if (copied_bytes > 0) {
1545       cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
1546       if (_in_marking_window) {
1547         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1548       } else {
1549         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1550       }
1551     }
1552 
1553     double all_other_time_ms = pause_time_ms -
1554       (update_rs_time + scan_rs_time + obj_copy_time + termination_time);
1555 
1556     double young_other_time_ms = 0.0;
1557     if (young_cset_region_length() > 0) {
1558       young_other_time_ms =
1559         _recorded_young_cset_choice_time_ms +
1560         _recorded_young_free_cset_time_ms;
1561       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1562                                           (double) young_cset_region_length());
1563     }
1564     double non_young_other_time_ms = 0.0;
1565     if (old_cset_region_length() > 0) {
1566       non_young_other_time_ms =
1567         _recorded_non_young_cset_choice_time_ms +
1568         _recorded_non_young_free_cset_time_ms;
1569 
1570       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1571                                             (double) old_cset_region_length());
1572     }
1573 
1574     double constant_other_time_ms = all_other_time_ms -
1575       (young_other_time_ms + non_young_other_time_ms);
1576     _constant_other_time_ms_seq->add(constant_other_time_ms);
1577 
1578     double survival_ratio = 0.0;
1579     if (_bytes_in_collection_set_before_gc > 0) {
1580       survival_ratio = (double) _bytes_copied_during_gc /
1581                                    (double) _bytes_in_collection_set_before_gc;
1582     }
1583 
1584     _pending_cards_seq->add((double) _pending_cards);
1585     _rs_lengths_seq->add((double) _max_rs_lengths);
1586   }
1587 
1588   _in_marking_window = new_in_marking_window;
1589   _in_marking_window_im = new_in_marking_window_im;
1590   _free_regions_at_end_of_collection = _g1->free_regions();
1591   update_young_list_target_length();
1592 
1593   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1594   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1595   adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
1596 
1597   _collectionSetChooser->verify();
1598 }
1599 
1600 #define EXT_SIZE_FORMAT "%.1f%s"
1601 #define EXT_SIZE_PARAMS(bytes)                                  \
1602   byte_size_in_proper_unit((double)(bytes)),                    \
1603   proper_unit_for_byte_size((bytes))
1604 
1605 void G1CollectorPolicy::print_heap_transition() {
1606   if (G1Log::finer()) {
1607     YoungList* young_list = _g1->young_list();
1608     size_t eden_bytes = young_list->eden_used_bytes();
1609     size_t survivor_bytes = young_list->survivor_used_bytes();
1610     size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
1611     size_t used = _g1->used();
1612     size_t capacity = _g1->capacity();
1613     size_t eden_capacity =
1614       (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
1615 
1616     gclog_or_tty->print_cr(
1617       "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
1618       "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
1619       "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
1620       EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
1621       EXT_SIZE_PARAMS(_eden_bytes_before_gc),
1622       EXT_SIZE_PARAMS(_prev_eden_capacity),
1623       EXT_SIZE_PARAMS(eden_bytes),
1624       EXT_SIZE_PARAMS(eden_capacity),
1625       EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
1626       EXT_SIZE_PARAMS(survivor_bytes),
1627       EXT_SIZE_PARAMS(used_before_gc),
1628       EXT_SIZE_PARAMS(_capacity_before_gc),
1629       EXT_SIZE_PARAMS(used),
1630       EXT_SIZE_PARAMS(capacity));
1631 
1632     _prev_eden_capacity = eden_capacity;
1633   } else if (G1Log::fine()) {
1634     _g1->print_size_transition(gclog_or_tty,
1635                                _cur_collection_pause_used_at_start_bytes,
1636                                _g1->used(), _g1->capacity());
1637   }
1638 }
1639 
1640 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1641                                                      double update_rs_processed_buffers,
1642                                                      double goal_ms) {
1643   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1644   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1645 
1646   if (G1UseAdaptiveConcRefinement) {
1647     const int k_gy = 3, k_gr = 6;
1648     const double inc_k = 1.1, dec_k = 0.9;
1649 
1650     int g = cg1r->green_zone();
1651     if (update_rs_time > goal_ms) {
1652       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1653     } else {
1654       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1655         g = (int)MAX2(g * inc_k, g + 1.0);
1656       }
1657     }
1658     // Change the refinement threads params
1659     cg1r->set_green_zone(g);
1660     cg1r->set_yellow_zone(g * k_gy);
1661     cg1r->set_red_zone(g * k_gr);
1662     cg1r->reinitialize_threads();
1663 
1664     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1665     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1666                                     cg1r->yellow_zone());
1667     // Change the barrier params
1668     dcqs.set_process_completed_threshold(processing_threshold);
1669     dcqs.set_max_completed_queue(cg1r->red_zone());
1670   }
1671 
1672   int curr_queue_size = dcqs.completed_buffers_num();
1673   if (curr_queue_size >= cg1r->yellow_zone()) {
1674     dcqs.set_completed_queue_padding(curr_queue_size);
1675   } else {
1676     dcqs.set_completed_queue_padding(0);
1677   }
1678   dcqs.notify_if_necessary();
1679 }
1680 
1681 double
1682 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1683   size_t rs_length = predict_rs_length_diff();
1684   size_t card_num;
1685   if (gcs_are_young()) {
1686     card_num = predict_young_card_num(rs_length);
1687   } else {
1688     card_num = predict_non_young_card_num(rs_length);
1689   }
1690   return predict_base_elapsed_time_ms(pending_cards, card_num);
1691 }
1692 
1693 double
1694 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1695                                                 size_t scanned_cards) {
1696   return
1697     predict_rs_update_time_ms(pending_cards) +
1698     predict_rs_scan_time_ms(scanned_cards) +
1699     predict_constant_other_time_ms();
1700 }
1701 
1702 double
1703 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1704                                                   bool young) {
1705   size_t rs_length = hr->rem_set()->occupied();
1706   size_t card_num;
1707   if (gcs_are_young()) {
1708     card_num = predict_young_card_num(rs_length);
1709   } else {
1710     card_num = predict_non_young_card_num(rs_length);
1711   }
1712   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1713 
1714   double region_elapsed_time_ms =
1715     predict_rs_scan_time_ms(card_num) +
1716     predict_object_copy_time_ms(bytes_to_copy);
1717 
1718   if (young)
1719     region_elapsed_time_ms += predict_young_other_time_ms(1);
1720   else
1721     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1722 
1723   return region_elapsed_time_ms;
1724 }
1725 
1726 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1727   size_t bytes_to_copy;
1728   if (hr->is_marked())
1729     bytes_to_copy = hr->max_live_bytes();
1730   else {
1731     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1732     int age = hr->age_in_surv_rate_group();
1733     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1734     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1735   }
1736   return bytes_to_copy;
1737 }
1738 
1739 void
1740 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1741                                             uint survivor_cset_region_length) {
1742   _eden_cset_region_length     = eden_cset_region_length;
1743   _survivor_cset_region_length = survivor_cset_region_length;
1744   _old_cset_region_length      = 0;
1745 }
1746 
1747 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1748   _recorded_rs_lengths = rs_lengths;
1749 }
1750 
1751 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1752                                                double elapsed_ms) {
1753   _recent_gc_times_ms->add(elapsed_ms);
1754   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1755   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1756 }
1757 
1758 size_t G1CollectorPolicy::expansion_amount() {
1759   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1760   double threshold = _gc_overhead_perc;
1761   if (recent_gc_overhead > threshold) {
1762     // We will double the existing space, or take
1763     // G1ExpandByPercentOfAvailable % of the available expansion
1764     // space, whichever is smaller, bounded below by a minimum
1765     // expansion (unless that's all that's left.)
1766     const size_t min_expand_bytes = 1*M;
1767     size_t reserved_bytes = _g1->max_capacity();
1768     size_t committed_bytes = _g1->capacity();
1769     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1770     size_t expand_bytes;
1771     size_t expand_bytes_via_pct =
1772       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1773     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1774     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1775     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1776 
1777     ergo_verbose5(ErgoHeapSizing,
1778                   "attempt heap expansion",
1779                   ergo_format_reason("recent GC overhead higher than "
1780                                      "threshold after GC")
1781                   ergo_format_perc("recent GC overhead")
1782                   ergo_format_perc("threshold")
1783                   ergo_format_byte("uncommitted")
1784                   ergo_format_byte_perc("calculated expansion amount"),
1785                   recent_gc_overhead, threshold,
1786                   uncommitted_bytes,
1787                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
1788 
1789     return expand_bytes;
1790   } else {
1791     return 0;
1792   }
1793 }
1794 
1795 class CountCSClosure: public HeapRegionClosure {
1796   G1CollectorPolicy* _g1_policy;
1797 public:
1798   CountCSClosure(G1CollectorPolicy* g1_policy) :
1799     _g1_policy(g1_policy) {}
1800   bool doHeapRegion(HeapRegion* r) {
1801     _g1_policy->_bytes_in_collection_set_before_gc += r->used();
1802     return false;
1803   }
1804 };
1805 
1806 void G1CollectorPolicy::count_CS_bytes_used() {
1807   CountCSClosure cs_closure(this);
1808   _g1->collection_set_iterate(&cs_closure);
1809 }
1810 
1811 void G1CollectorPolicy::print_summary(int level,
1812                                       const char* str,
1813                                       NumberSeq* seq) const {
1814   double sum = seq->sum();
1815   LineBuffer(level + 1).append_and_print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
1816                 str, sum / 1000.0, seq->avg());
1817 }
1818 
1819 void G1CollectorPolicy::print_summary_sd(int level,
1820                                          const char* str,
1821                                          NumberSeq* seq) const {
1822   print_summary(level, str, seq);
1823   LineBuffer(level + 6).append_and_print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
1824                 seq->num(), seq->sd(), seq->maximum());
1825 }
1826 
1827 void G1CollectorPolicy::check_other_times(int level,
1828                                         NumberSeq* other_times_ms,
1829                                         NumberSeq* calc_other_times_ms) const {
1830   bool should_print = false;
1831   LineBuffer buf(level + 2);
1832 
1833   double max_sum = MAX2(fabs(other_times_ms->sum()),
1834                         fabs(calc_other_times_ms->sum()));
1835   double min_sum = MIN2(fabs(other_times_ms->sum()),
1836                         fabs(calc_other_times_ms->sum()));
1837   double sum_ratio = max_sum / min_sum;
1838   if (sum_ratio > 1.1) {
1839     should_print = true;
1840     buf.append_and_print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
1841   }
1842 
1843   double max_avg = MAX2(fabs(other_times_ms->avg()),
1844                         fabs(calc_other_times_ms->avg()));
1845   double min_avg = MIN2(fabs(other_times_ms->avg()),
1846                         fabs(calc_other_times_ms->avg()));
1847   double avg_ratio = max_avg / min_avg;
1848   if (avg_ratio > 1.1) {
1849     should_print = true;
1850     buf.append_and_print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
1851   }
1852 
1853   if (other_times_ms->sum() < -0.01) {
1854     buf.append_and_print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
1855   }
1856 
1857   if (other_times_ms->avg() < -0.01) {
1858     buf.append_and_print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
1859   }
1860 
1861   if (calc_other_times_ms->sum() < -0.01) {
1862     should_print = true;
1863     buf.append_and_print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
1864   }
1865 
1866   if (calc_other_times_ms->avg() < -0.01) {
1867     should_print = true;
1868     buf.append_and_print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
1869   }
1870 
1871   if (should_print)
1872     print_summary(level, "Other(Calc)", calc_other_times_ms);
1873 }
1874 
1875 void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
1876   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
1877   MainBodySummary*    body_summary = summary->main_body_summary();
1878   if (summary->get_total_seq()->num() > 0) {
1879     print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
1880     if (body_summary != NULL) {
1881       print_summary(1, "Root Region Scan Wait", body_summary->get_root_region_scan_wait_seq());
1882       if (parallel) {
1883         print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
1884         print_summary(2, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
1885         print_summary(2, "SATB Filtering", body_summary->get_satb_filtering_seq());
1886         print_summary(2, "Update RS", body_summary->get_update_rs_seq());
1887         print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
1888         print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
1889         print_summary(2, "Termination", body_summary->get_termination_seq());
1890         print_summary(2, "Parallel Other", body_summary->get_parallel_other_seq());
1891         {
1892           NumberSeq* other_parts[] = {
1893             body_summary->get_ext_root_scan_seq(),
1894             body_summary->get_satb_filtering_seq(),
1895             body_summary->get_update_rs_seq(),
1896             body_summary->get_scan_rs_seq(),
1897             body_summary->get_obj_copy_seq(),
1898             body_summary->get_termination_seq()
1899           };
1900           NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
1901                                         6, other_parts);
1902           check_other_times(2, body_summary->get_parallel_other_seq(),
1903                             &calc_other_times_ms);
1904         }
1905       } else {
1906         print_summary(1, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
1907         print_summary(1, "SATB Filtering", body_summary->get_satb_filtering_seq());
1908         print_summary(1, "Update RS", body_summary->get_update_rs_seq());
1909         print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
1910         print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
1911       }
1912     }
1913     print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
1914     print_summary(1, "Other", summary->get_other_seq());
1915     {
1916       if (body_summary != NULL) {
1917         NumberSeq calc_other_times_ms;
1918         if (parallel) {
1919           // parallel
1920           NumberSeq* other_parts[] = {
1921             body_summary->get_root_region_scan_wait_seq(),
1922             body_summary->get_parallel_seq(),
1923             body_summary->get_clear_ct_seq()
1924           };
1925           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
1926                                           3, other_parts);
1927         } else {
1928           // serial
1929           NumberSeq* other_parts[] = {
1930             body_summary->get_root_region_scan_wait_seq(),
1931             body_summary->get_update_rs_seq(),
1932             body_summary->get_ext_root_scan_seq(),
1933             body_summary->get_satb_filtering_seq(),
1934             body_summary->get_scan_rs_seq(),
1935             body_summary->get_obj_copy_seq()
1936           };
1937           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
1938                                           6, other_parts);
1939         }
1940         check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
1941       }
1942     }
1943   } else {
1944     LineBuffer(1).append_and_print_cr("none");
1945   }
1946   LineBuffer(0).append_and_print_cr("");
1947 }
1948 
1949 void G1CollectorPolicy::print_tracing_info() const {
1950   if (TraceGen0Time) {
1951     gclog_or_tty->print_cr("ALL PAUSES");
1952     print_summary_sd(0, "Total", _all_pause_times_ms);
1953     gclog_or_tty->print_cr("");
1954     gclog_or_tty->print_cr("");
1955     gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
1956     gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
1957     gclog_or_tty->print_cr("");
1958 
1959     gclog_or_tty->print_cr("EVACUATION PAUSES");
1960     print_summary(_summary);
1961 
1962     gclog_or_tty->print_cr("MISC");
1963     print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
1964     print_summary_sd(0, "Yields", _all_yield_times_ms);
1965     for (int i = 0; i < _aux_num; ++i) {
1966       if (_all_aux_times_ms[i].num() > 0) {
1967         char buffer[96];
1968         sprintf(buffer, "Aux%d", i);
1969         print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
1970       }
1971     }
1972   }
1973   if (TraceGen1Time) {
1974     if (_all_full_gc_times_ms->num() > 0) {
1975       gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
1976                  _all_full_gc_times_ms->num(),
1977                  _all_full_gc_times_ms->sum() / 1000.0);
1978       gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
1979       gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
1980                     _all_full_gc_times_ms->sd(),
1981                     _all_full_gc_times_ms->maximum());
1982     }
1983   }
1984 }
1985 
1986 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1987 #ifndef PRODUCT
1988   _short_lived_surv_rate_group->print_surv_rate_summary();
1989   // add this call for any other surv rate groups
1990 #endif // PRODUCT
1991 }
1992 
1993 #ifndef PRODUCT
1994 // for debugging, bit of a hack...
1995 static char*
1996 region_num_to_mbs(int length) {
1997   static char buffer[64];
1998   double bytes = (double) (length * HeapRegion::GrainBytes);
1999   double mbs = bytes / (double) (1024 * 1024);
2000   sprintf(buffer, "%7.2lfMB", mbs);
2001   return buffer;
2002 }
2003 #endif // PRODUCT
2004 
2005 uint G1CollectorPolicy::max_regions(int purpose) {
2006   switch (purpose) {
2007     case GCAllocForSurvived:
2008       return _max_survivor_regions;
2009     case GCAllocForTenured:
2010       return REGIONS_UNLIMITED;
2011     default:
2012       ShouldNotReachHere();
2013       return REGIONS_UNLIMITED;
2014   };
2015 }
2016 
2017 void G1CollectorPolicy::update_max_gc_locker_expansion() {
2018   uint expansion_region_num = 0;
2019   if (GCLockerEdenExpansionPercent > 0) {
2020     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
2021     double expansion_region_num_d = perc * (double) _young_list_target_length;
2022     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
2023     // less than 1.0) we'll get 1.
2024     expansion_region_num = (uint) ceil(expansion_region_num_d);
2025   } else {
2026     assert(expansion_region_num == 0, "sanity");
2027   }
2028   _young_list_max_length = _young_list_target_length + expansion_region_num;
2029   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
2030 }
2031 
2032 // Calculates survivor space parameters.
2033 void G1CollectorPolicy::update_survivors_policy() {
2034   double max_survivor_regions_d =
2035                  (double) _young_list_target_length / (double) SurvivorRatio;
2036   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
2037   // smaller than 1.0) we'll get 1.
2038   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
2039 
2040   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
2041         HeapRegion::GrainWords * _max_survivor_regions);
2042 }
2043 
2044 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
2045                                                      GCCause::Cause gc_cause) {
2046   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
2047   if (!during_cycle) {
2048     ergo_verbose1(ErgoConcCycles,
2049                   "request concurrent cycle initiation",
2050                   ergo_format_reason("requested by GC cause")
2051                   ergo_format_str("GC cause"),
2052                   GCCause::to_string(gc_cause));
2053     set_initiate_conc_mark_if_possible();
2054     return true;
2055   } else {
2056     ergo_verbose1(ErgoConcCycles,
2057                   "do not request concurrent cycle initiation",
2058                   ergo_format_reason("concurrent cycle already in progress")
2059                   ergo_format_str("GC cause"),
2060                   GCCause::to_string(gc_cause));
2061     return false;
2062   }
2063 }
2064 
2065 void
2066 G1CollectorPolicy::decide_on_conc_mark_initiation() {
2067   // We are about to decide on whether this pause will be an
2068   // initial-mark pause.
2069 
2070   // First, during_initial_mark_pause() should not be already set. We
2071   // will set it here if we have to. However, it should be cleared by
2072   // the end of the pause (it's only set for the duration of an
2073   // initial-mark pause).
2074   assert(!during_initial_mark_pause(), "pre-condition");
2075 
2076   if (initiate_conc_mark_if_possible()) {
2077     // We had noticed on a previous pause that the heap occupancy has
2078     // gone over the initiating threshold and we should start a
2079     // concurrent marking cycle. So we might initiate one.
2080 
2081     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
2082     if (!during_cycle) {
2083       // The concurrent marking thread is not "during a cycle", i.e.,
2084       // it has completed the last one. So we can go ahead and
2085       // initiate a new cycle.
2086 
2087       set_during_initial_mark_pause();
2088       // We do not allow mixed GCs during marking.
2089       if (!gcs_are_young()) {
2090         set_gcs_are_young(true);
2091         ergo_verbose0(ErgoMixedGCs,
2092                       "end mixed GCs",
2093                       ergo_format_reason("concurrent cycle is about to start"));
2094       }
2095 
2096       // And we can now clear initiate_conc_mark_if_possible() as
2097       // we've already acted on it.
2098       clear_initiate_conc_mark_if_possible();
2099 
2100       ergo_verbose0(ErgoConcCycles,
2101                   "initiate concurrent cycle",
2102                   ergo_format_reason("concurrent cycle initiation requested"));
2103     } else {
2104       // The concurrent marking thread is still finishing up the
2105       // previous cycle. If we start one right now the two cycles
2106       // overlap. In particular, the concurrent marking thread might
2107       // be in the process of clearing the next marking bitmap (which
2108       // we will use for the next cycle if we start one). Starting a
2109       // cycle now will be bad given that parts of the marking
2110       // information might get cleared by the marking thread. And we
2111       // cannot wait for the marking thread to finish the cycle as it
2112       // periodically yields while clearing the next marking bitmap
2113       // and, if it's in a yield point, it's waiting for us to
2114       // finish. So, at this point we will not start a cycle and we'll
2115       // let the concurrent marking thread complete the last one.
2116       ergo_verbose0(ErgoConcCycles,
2117                     "do not initiate concurrent cycle",
2118                     ergo_format_reason("concurrent cycle already in progress"));
2119     }
2120   }
2121 }
2122 
2123 class KnownGarbageClosure: public HeapRegionClosure {
2124   G1CollectedHeap* _g1h;
2125   CollectionSetChooser* _hrSorted;
2126 
2127 public:
2128   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
2129     _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
2130 
2131   bool doHeapRegion(HeapRegion* r) {
2132     // We only include humongous regions in collection
2133     // sets when concurrent mark shows that their contained object is
2134     // unreachable.
2135 
2136     // Do we have any marking information for this region?
2137     if (r->is_marked()) {
2138       // We will skip any region that's currently used as an old GC
2139       // alloc region (we should not consider those for collection
2140       // before we fill them up).
2141       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
2142         _hrSorted->add_region(r);
2143       }
2144     }
2145     return false;
2146   }
2147 };
2148 
2149 class ParKnownGarbageHRClosure: public HeapRegionClosure {
2150   G1CollectedHeap* _g1h;
2151   CollectionSetChooser* _hrSorted;
2152   uint _marked_regions_added;
2153   size_t _reclaimable_bytes_added;
2154   uint _chunk_size;
2155   uint _cur_chunk_idx;
2156   uint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
2157 
2158   void get_new_chunk() {
2159     _cur_chunk_idx = _hrSorted->claim_array_chunk(_chunk_size);
2160     _cur_chunk_end = _cur_chunk_idx + _chunk_size;
2161   }
2162   void add_region(HeapRegion* r) {
2163     if (_cur_chunk_idx == _cur_chunk_end) {
2164       get_new_chunk();
2165     }
2166     assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
2167     _hrSorted->set_region(_cur_chunk_idx, r);
2168     _marked_regions_added++;
2169     _reclaimable_bytes_added += r->reclaimable_bytes();
2170     _cur_chunk_idx++;
2171   }
2172 
2173 public:
2174   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
2175                            uint chunk_size) :
2176       _g1h(G1CollectedHeap::heap()),
2177       _hrSorted(hrSorted), _chunk_size(chunk_size),
2178       _marked_regions_added(0), _reclaimable_bytes_added(0),
2179       _cur_chunk_idx(0), _cur_chunk_end(0) { }
2180 
2181   bool doHeapRegion(HeapRegion* r) {
2182     // Do we have any marking information for this region?
2183     if (r->is_marked()) {
2184       // We will skip any region that's currently used as an old GC
2185       // alloc region (we should not consider those for collection
2186       // before we fill them up).
2187       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
2188         add_region(r);
2189       }
2190     }
2191     return false;
2192   }
2193   uint marked_regions_added() { return _marked_regions_added; }
2194   size_t reclaimable_bytes_added() { return _reclaimable_bytes_added; }
2195 };
2196 
2197 class ParKnownGarbageTask: public AbstractGangTask {
2198   CollectionSetChooser* _hrSorted;
2199   uint _chunk_size;
2200   G1CollectedHeap* _g1;
2201 public:
2202   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
2203     AbstractGangTask("ParKnownGarbageTask"),
2204     _hrSorted(hrSorted), _chunk_size(chunk_size),
2205     _g1(G1CollectedHeap::heap()) { }
2206 
2207   void work(uint worker_id) {
2208     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
2209 
2210     // Back to zero for the claim value.
2211     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
2212                                          _g1->workers()->active_workers(),
2213                                          HeapRegion::InitialClaimValue);
2214     uint regions_added = parKnownGarbageCl.marked_regions_added();
2215     size_t reclaimable_bytes_added =
2216                                    parKnownGarbageCl.reclaimable_bytes_added();
2217     _hrSorted->update_totals(regions_added, reclaimable_bytes_added);
2218   }
2219 };
2220 
2221 void
2222 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
2223   _collectionSetChooser->clear();
2224 
2225   uint region_num = _g1->n_regions();
2226   if (G1CollectedHeap::use_parallel_gc_threads()) {
2227     const uint OverpartitionFactor = 4;
2228     uint WorkUnit;
2229     // The use of MinChunkSize = 8 in the original code
2230     // causes some assertion failures when the total number of
2231     // region is less than 8.  The code here tries to fix that.
2232     // Should the original code also be fixed?
2233     if (no_of_gc_threads > 0) {
2234       const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
2235       WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
2236                       MinWorkUnit);
2237     } else {
2238       assert(no_of_gc_threads > 0,
2239         "The active gc workers should be greater than 0");
2240       // In a product build do something reasonable to avoid a crash.
2241       const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
2242       WorkUnit =
2243         MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
2244              MinWorkUnit);
2245     }
2246     _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
2247                                                            WorkUnit);
2248     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
2249                                             (int) WorkUnit);
2250     _g1->workers()->run_task(&parKnownGarbageTask);
2251 
2252     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2253            "sanity check");
2254   } else {
2255     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
2256     _g1->heap_region_iterate(&knownGarbagecl);
2257   }
2258 
2259   _collectionSetChooser->sort_regions();
2260 
2261   double end_sec = os::elapsedTime();
2262   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
2263   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
2264   _cur_mark_stop_world_time_ms += elapsed_time_ms;
2265   _prev_collection_pause_end_ms += elapsed_time_ms;
2266   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
2267 }
2268 
2269 // Add the heap region at the head of the non-incremental collection set
2270 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
2271   assert(_inc_cset_build_state == Active, "Precondition");
2272   assert(!hr->is_young(), "non-incremental add of young region");
2273 
2274   assert(!hr->in_collection_set(), "should not already be in the CSet");
2275   hr->set_in_collection_set(true);
2276   hr->set_next_in_collection_set(_collection_set);
2277   _collection_set = hr;
2278   _collection_set_bytes_used_before += hr->used();
2279   _g1->register_region_with_in_cset_fast_test(hr);
2280   size_t rs_length = hr->rem_set()->occupied();
2281   _recorded_rs_lengths += rs_length;
2282   _old_cset_region_length += 1;
2283 }
2284 
2285 // Initialize the per-collection-set information
2286 void G1CollectorPolicy::start_incremental_cset_building() {
2287   assert(_inc_cset_build_state == Inactive, "Precondition");
2288 
2289   _inc_cset_head = NULL;
2290   _inc_cset_tail = NULL;
2291   _inc_cset_bytes_used_before = 0;
2292 
2293   _inc_cset_max_finger = 0;
2294   _inc_cset_recorded_rs_lengths = 0;
2295   _inc_cset_recorded_rs_lengths_diffs = 0;
2296   _inc_cset_predicted_elapsed_time_ms = 0.0;
2297   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
2298   _inc_cset_build_state = Active;
2299 }
2300 
2301 void G1CollectorPolicy::finalize_incremental_cset_building() {
2302   assert(_inc_cset_build_state == Active, "Precondition");
2303   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
2304 
2305   // The two "main" fields, _inc_cset_recorded_rs_lengths and
2306   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
2307   // that adds a new region to the CSet. Further updates by the
2308   // concurrent refinement thread that samples the young RSet lengths
2309   // are accumulated in the *_diffs fields. Here we add the diffs to
2310   // the "main" fields.
2311 
2312   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
2313     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
2314   } else {
2315     // This is defensive. The diff should in theory be always positive
2316     // as RSets can only grow between GCs. However, given that we
2317     // sample their size concurrently with other threads updating them
2318     // it's possible that we might get the wrong size back, which
2319     // could make the calculations somewhat inaccurate.
2320     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
2321     if (_inc_cset_recorded_rs_lengths >= diffs) {
2322       _inc_cset_recorded_rs_lengths -= diffs;
2323     } else {
2324       _inc_cset_recorded_rs_lengths = 0;
2325     }
2326   }
2327   _inc_cset_predicted_elapsed_time_ms +=
2328                                      _inc_cset_predicted_elapsed_time_ms_diffs;
2329 
2330   _inc_cset_recorded_rs_lengths_diffs = 0;
2331   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
2332 }
2333 
2334 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
2335   // This routine is used when:
2336   // * adding survivor regions to the incremental cset at the end of an
2337   //   evacuation pause,
2338   // * adding the current allocation region to the incremental cset
2339   //   when it is retired, and
2340   // * updating existing policy information for a region in the
2341   //   incremental cset via young list RSet sampling.
2342   // Therefore this routine may be called at a safepoint by the
2343   // VM thread, or in-between safepoints by mutator threads (when
2344   // retiring the current allocation region) or a concurrent
2345   // refine thread (RSet sampling).
2346 
2347   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
2348   size_t used_bytes = hr->used();
2349   _inc_cset_recorded_rs_lengths += rs_length;
2350   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
2351   _inc_cset_bytes_used_before += used_bytes;
2352 
2353   // Cache the values we have added to the aggregated informtion
2354   // in the heap region in case we have to remove this region from
2355   // the incremental collection set, or it is updated by the
2356   // rset sampling code
2357   hr->set_recorded_rs_length(rs_length);
2358   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
2359 }
2360 
2361 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
2362                                                      size_t new_rs_length) {
2363   // Update the CSet information that is dependent on the new RS length
2364   assert(hr->is_young(), "Precondition");
2365   assert(!SafepointSynchronize::is_at_safepoint(),
2366                                                "should not be at a safepoint");
2367 
2368   // We could have updated _inc_cset_recorded_rs_lengths and
2369   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
2370   // that atomically, as this code is executed by a concurrent
2371   // refinement thread, potentially concurrently with a mutator thread
2372   // allocating a new region and also updating the same fields. To
2373   // avoid the atomic operations we accumulate these updates on two
2374   // separate fields (*_diffs) and we'll just add them to the "main"
2375   // fields at the start of a GC.
2376 
2377   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
2378   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
2379   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
2380 
2381   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
2382   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
2383   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
2384   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
2385 
2386   hr->set_recorded_rs_length(new_rs_length);
2387   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
2388 }
2389 
2390 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
2391   assert(hr->is_young(), "invariant");
2392   assert(hr->young_index_in_cset() > -1, "should have already been set");
2393   assert(_inc_cset_build_state == Active, "Precondition");
2394 
2395   // We need to clear and set the cached recorded/cached collection set
2396   // information in the heap region here (before the region gets added
2397   // to the collection set). An individual heap region's cached values
2398   // are calculated, aggregated with the policy collection set info,
2399   // and cached in the heap region here (initially) and (subsequently)
2400   // by the Young List sampling code.
2401 
2402   size_t rs_length = hr->rem_set()->occupied();
2403   add_to_incremental_cset_info(hr, rs_length);
2404 
2405   HeapWord* hr_end = hr->end();
2406   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
2407 
2408   assert(!hr->in_collection_set(), "invariant");
2409   hr->set_in_collection_set(true);
2410   assert( hr->next_in_collection_set() == NULL, "invariant");
2411 
2412   _g1->register_region_with_in_cset_fast_test(hr);
2413 }
2414 
2415 // Add the region at the RHS of the incremental cset
2416 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
2417   // We should only ever be appending survivors at the end of a pause
2418   assert( hr->is_survivor(), "Logic");
2419 
2420   // Do the 'common' stuff
2421   add_region_to_incremental_cset_common(hr);
2422 
2423   // Now add the region at the right hand side
2424   if (_inc_cset_tail == NULL) {
2425     assert(_inc_cset_head == NULL, "invariant");
2426     _inc_cset_head = hr;
2427   } else {
2428     _inc_cset_tail->set_next_in_collection_set(hr);
2429   }
2430   _inc_cset_tail = hr;
2431 }
2432 
2433 // Add the region to the LHS of the incremental cset
2434 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
2435   // Survivors should be added to the RHS at the end of a pause
2436   assert(!hr->is_survivor(), "Logic");
2437 
2438   // Do the 'common' stuff
2439   add_region_to_incremental_cset_common(hr);
2440 
2441   // Add the region at the left hand side
2442   hr->set_next_in_collection_set(_inc_cset_head);
2443   if (_inc_cset_head == NULL) {
2444     assert(_inc_cset_tail == NULL, "Invariant");
2445     _inc_cset_tail = hr;
2446   }
2447   _inc_cset_head = hr;
2448 }
2449 
2450 #ifndef PRODUCT
2451 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
2452   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
2453 
2454   st->print_cr("\nCollection_set:");
2455   HeapRegion* csr = list_head;
2456   while (csr != NULL) {
2457     HeapRegion* next = csr->next_in_collection_set();
2458     assert(csr->in_collection_set(), "bad CS");
2459     st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
2460                  HR_FORMAT_PARAMS(csr),
2461                  csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
2462                  csr->age_in_surv_rate_group_cond());
2463     csr = next;
2464   }
2465 }
2466 #endif // !PRODUCT
2467 
2468 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
2469                                                 const char* false_action_str) {
2470   CollectionSetChooser* cset_chooser = _collectionSetChooser;
2471   if (cset_chooser->is_empty()) {
2472     ergo_verbose0(ErgoMixedGCs,
2473                   false_action_str,
2474                   ergo_format_reason("candidate old regions not available"));
2475     return false;
2476   }
2477   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
2478   size_t capacity_bytes = _g1->capacity();
2479   double perc = (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
2480   double threshold = (double) G1HeapWastePercent;
2481   if (perc < threshold) {
2482     ergo_verbose4(ErgoMixedGCs,
2483               false_action_str,
2484               ergo_format_reason("reclaimable percentage lower than threshold")
2485               ergo_format_region("candidate old regions")
2486               ergo_format_byte_perc("reclaimable")
2487               ergo_format_perc("threshold"),
2488               cset_chooser->remaining_regions(),
2489               reclaimable_bytes, perc, threshold);
2490     return false;
2491   }
2492 
2493   ergo_verbose4(ErgoMixedGCs,
2494                 true_action_str,
2495                 ergo_format_reason("candidate old regions available")
2496                 ergo_format_region("candidate old regions")
2497                 ergo_format_byte_perc("reclaimable")
2498                 ergo_format_perc("threshold"),
2499                 cset_chooser->remaining_regions(),
2500                 reclaimable_bytes, perc, threshold);
2501   return true;
2502 }
2503 
2504 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms) {
2505   // Set this here - in case we're not doing young collections.
2506   double non_young_start_time_sec = os::elapsedTime();
2507 
2508   YoungList* young_list = _g1->young_list();
2509   finalize_incremental_cset_building();
2510 
2511   guarantee(target_pause_time_ms > 0.0,
2512             err_msg("target_pause_time_ms = %1.6lf should be positive",
2513                     target_pause_time_ms));
2514   guarantee(_collection_set == NULL, "Precondition");
2515 
2516   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
2517   double predicted_pause_time_ms = base_time_ms;
2518   double time_remaining_ms = target_pause_time_ms - base_time_ms;
2519 
2520   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
2521                 "start choosing CSet",
2522                 ergo_format_ms("predicted base time")
2523                 ergo_format_ms("remaining time")
2524                 ergo_format_ms("target pause time"),
2525                 base_time_ms, time_remaining_ms, target_pause_time_ms);
2526 
2527   HeapRegion* hr;
2528   double young_start_time_sec = os::elapsedTime();
2529 
2530   _collection_set_bytes_used_before = 0;
2531   _last_gc_was_young = gcs_are_young() ? true : false;
2532 
2533   if (_last_gc_was_young) {
2534     ++_young_pause_num;
2535   } else {
2536     ++_mixed_pause_num;
2537   }
2538 
2539   // The young list is laid with the survivor regions from the previous
2540   // pause are appended to the RHS of the young list, i.e.
2541   //   [Newly Young Regions ++ Survivors from last pause].
2542 
2543   uint survivor_region_length = young_list->survivor_length();
2544   uint eden_region_length = young_list->length() - survivor_region_length;
2545   init_cset_region_lengths(eden_region_length, survivor_region_length);
2546   hr = young_list->first_survivor_region();
2547   while (hr != NULL) {
2548     assert(hr->is_survivor(), "badly formed young list");
2549     hr->set_young();
2550     hr = hr->get_next_young_region();
2551   }
2552 
2553   // Clear the fields that point to the survivor list - they are all young now.
2554   young_list->clear_survivors();
2555 
2556   _collection_set = _inc_cset_head;
2557   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
2558   time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
2559   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
2560 
2561   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
2562                 "add young regions to CSet",
2563                 ergo_format_region("eden")
2564                 ergo_format_region("survivors")
2565                 ergo_format_ms("predicted young region time"),
2566                 eden_region_length, survivor_region_length,
2567                 _inc_cset_predicted_elapsed_time_ms);
2568 
2569   // The number of recorded young regions is the incremental
2570   // collection set's current size
2571   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2572 
2573   double young_end_time_sec = os::elapsedTime();
2574   _recorded_young_cset_choice_time_ms =
2575     (young_end_time_sec - young_start_time_sec) * 1000.0;
2576 
2577   // We are doing young collections so reset this.
2578   non_young_start_time_sec = young_end_time_sec;
2579 
2580   if (!gcs_are_young()) {
2581     CollectionSetChooser* cset_chooser = _collectionSetChooser;
2582     cset_chooser->verify();
2583     const uint min_old_cset_length = cset_chooser->calc_min_old_cset_length();
2584     const uint max_old_cset_length = cset_chooser->calc_max_old_cset_length();
2585 
2586     uint expensive_region_num = 0;
2587     bool check_time_remaining = adaptive_young_list_length();
2588     HeapRegion* hr = cset_chooser->peek();
2589     while (hr != NULL) {
2590       if (old_cset_region_length() >= max_old_cset_length) {
2591         // Added maximum number of old regions to the CSet.
2592         ergo_verbose2(ErgoCSetConstruction,
2593                       "finish adding old regions to CSet",
2594                       ergo_format_reason("old CSet region num reached max")
2595                       ergo_format_region("old")
2596                       ergo_format_region("max"),
2597                       old_cset_region_length(), max_old_cset_length);
2598         break;
2599       }
2600 
2601       double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
2602       if (check_time_remaining) {
2603         if (predicted_time_ms > time_remaining_ms) {
2604           // Too expensive for the current CSet.
2605 
2606           if (old_cset_region_length() >= min_old_cset_length) {
2607             // We have added the minimum number of old regions to the CSet,
2608             // we are done with this CSet.
2609             ergo_verbose4(ErgoCSetConstruction,
2610                           "finish adding old regions to CSet",
2611                           ergo_format_reason("predicted time is too high")
2612                           ergo_format_ms("predicted time")
2613                           ergo_format_ms("remaining time")
2614                           ergo_format_region("old")
2615                           ergo_format_region("min"),
2616                           predicted_time_ms, time_remaining_ms,
2617                           old_cset_region_length(), min_old_cset_length);
2618             break;
2619           }
2620 
2621           // We'll add it anyway given that we haven't reached the
2622           // minimum number of old regions.
2623           expensive_region_num += 1;
2624         }
2625       } else {
2626         if (old_cset_region_length() >= min_old_cset_length) {
2627           // In the non-auto-tuning case, we'll finish adding regions
2628           // to the CSet if we reach the minimum.
2629           ergo_verbose2(ErgoCSetConstruction,
2630                         "finish adding old regions to CSet",
2631                         ergo_format_reason("old CSet region num reached min")
2632                         ergo_format_region("old")
2633                         ergo_format_region("min"),
2634                         old_cset_region_length(), min_old_cset_length);
2635           break;
2636         }
2637       }
2638 
2639       // We will add this region to the CSet.
2640       time_remaining_ms -= predicted_time_ms;
2641       predicted_pause_time_ms += predicted_time_ms;
2642       cset_chooser->remove_and_move_to_next(hr);
2643       _g1->old_set_remove(hr);
2644       add_old_region_to_cset(hr);
2645 
2646       hr = cset_chooser->peek();
2647     }
2648     if (hr == NULL) {
2649       ergo_verbose0(ErgoCSetConstruction,
2650                     "finish adding old regions to CSet",
2651                     ergo_format_reason("candidate old regions not available"));
2652     }
2653 
2654     if (expensive_region_num > 0) {
2655       // We print the information once here at the end, predicated on
2656       // whether we added any apparently expensive regions or not, to
2657       // avoid generating output per region.
2658       ergo_verbose4(ErgoCSetConstruction,
2659                     "added expensive regions to CSet",
2660                     ergo_format_reason("old CSet region num not reached min")
2661                     ergo_format_region("old")
2662                     ergo_format_region("expensive")
2663                     ergo_format_region("min")
2664                     ergo_format_ms("remaining time"),
2665                     old_cset_region_length(),
2666                     expensive_region_num,
2667                     min_old_cset_length,
2668                     time_remaining_ms);
2669     }
2670 
2671     cset_chooser->verify();
2672   }
2673 
2674   stop_incremental_cset_building();
2675 
2676   count_CS_bytes_used();
2677 
2678   ergo_verbose5(ErgoCSetConstruction,
2679                 "finish choosing CSet",
2680                 ergo_format_region("eden")
2681                 ergo_format_region("survivors")
2682                 ergo_format_region("old")
2683                 ergo_format_ms("predicted pause time")
2684                 ergo_format_ms("target pause time"),
2685                 eden_region_length, survivor_region_length,
2686                 old_cset_region_length(),
2687                 predicted_pause_time_ms, target_pause_time_ms);
2688 
2689   double non_young_end_time_sec = os::elapsedTime();
2690   _recorded_non_young_cset_choice_time_ms =
2691     (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;
2692 }