1 /*
   2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 #ifndef HEADLESS
  27 
  28 #include <stdlib.h>
  29 #include <math.h>
  30 #include <jlong.h>
  31 
  32 #include "sun_java2d_opengl_OGLTextRenderer.h"
  33 
  34 #include "SurfaceData.h"
  35 #include "OGLContext.h"
  36 #include "OGLSurfaceData.h"
  37 #include "OGLRenderQueue.h"
  38 #include "OGLTextRenderer.h"
  39 #include "OGLVertexCache.h"
  40 #include "AccelGlyphCache.h"
  41 #include "fontscalerdefs.h"
  42 
  43 /**
  44  * The following constants define the inner and outer bounds of the
  45  * accelerated glyph cache.
  46  */
  47 #define OGLTR_CACHE_WIDTH       512
  48 #define OGLTR_CACHE_HEIGHT      512
  49 #define OGLTR_CACHE_CELL_WIDTH  16
  50 #define OGLTR_CACHE_CELL_HEIGHT 16
  51 
  52 /**
  53  * The current "glyph mode" state.  This variable is used to track the
  54  * codepath used to render a particular glyph.  This variable is reset to
  55  * MODE_NOT_INITED at the beginning of every call to OGLTR_DrawGlyphList().
  56  * As each glyph is rendered, the glyphMode variable is updated to reflect
  57  * the current mode, so if the current mode is the same as the mode used
  58  * to render the previous glyph, we can avoid doing costly setup operations
  59  * each time.
  60  */
  61 typedef enum {
  62     MODE_NOT_INITED,
  63     MODE_USE_CACHE_GRAY,
  64     MODE_USE_CACHE_LCD,
  65     MODE_NO_CACHE_GRAY,
  66     MODE_NO_CACHE_LCD
  67 } GlyphMode;
  68 static GlyphMode glyphMode = MODE_NOT_INITED;
  69 
  70 /**
  71  * This enum indicates the current state of the hardware glyph cache.
  72  * Initially the CacheStatus is set to CACHE_NOT_INITED, and then it is
  73  * set to either GRAY or LCD when the glyph cache is initialized.
  74  */
  75 typedef enum {
  76     CACHE_NOT_INITED,
  77     CACHE_GRAY,
  78     CACHE_LCD
  79 } CacheStatus;
  80 static CacheStatus cacheStatus = CACHE_NOT_INITED;
  81 
  82 /**
  83  * This is the one glyph cache.  Once it is initialized as either GRAY or
  84  * LCD, it stays in that mode for the duration of the application.  It should
  85  * be safe to use this one glyph cache for all screens in a multimon
  86  * environment, since the glyph cache texture is shared between all contexts,
  87  * and (in theory) OpenGL drivers should be smart enough to manage that
  88  * texture across all screens.
  89  */
  90 static GlyphCacheInfo *glyphCache = NULL;
  91 
  92 /**
  93  * The handle to the LCD text fragment program object.
  94  */
  95 static GLhandleARB lcdTextProgram = 0;
  96 
  97 /**
  98  * The size of one of the gamma LUT textures in any one dimension along
  99  * the edge, in texels.
 100  */
 101 #define LUT_EDGE 16
 102 
 103 /**
 104  * These are the texture object handles for the gamma and inverse gamma
 105  * lookup tables.
 106  */
 107 static GLuint gammaLutTextureID = 0;
 108 static GLuint invGammaLutTextureID = 0;
 109 
 110 /**
 111  * This value tracks the previous LCD contrast setting, so if the contrast
 112  * value hasn't changed since the last time the lookup tables were
 113  * generated (not very common), then we can skip updating the tables.
 114  */
 115 static jint lastLCDContrast = -1;
 116 
 117 /**
 118  * This value tracks the previous LCD rgbOrder setting, so if the rgbOrder
 119  * value has changed since the last time, it indicates that we need to
 120  * invalidate the cache, which may already store glyph images in the reverse
 121  * order.  Note that in most real world applications this value will not
 122  * change over the course of the application, but tests like Font2DTest
 123  * allow for changing the ordering at runtime, so we need to handle that case.
 124  */
 125 static jboolean lastRGBOrder = JNI_TRUE;
 126 
 127 /**
 128  * This constant defines the size of the tile to use in the
 129  * OGLTR_DrawLCDGlyphNoCache() method.  See below for more on why we
 130  * restrict this value to a particular size.
 131  */
 132 #define OGLTR_NOCACHE_TILE_SIZE 32
 133 
 134 /**
 135  * These constants define the size of the "cached destination" texture.
 136  * This texture is only used when rendering LCD-optimized text, as that
 137  * codepath needs direct access to the destination.  There is no way to
 138  * access the framebuffer directly from an OpenGL shader, so we need to first
 139  * copy the destination region corresponding to a particular glyph into
 140  * this cached texture, and then that texture will be accessed inside the
 141  * shader.  Copying the destination into this cached texture can be a very
 142  * expensive operation (accounting for about half the rendering time for
 143  * LCD text), so to mitigate this cost we try to bulk read a horizontal
 144  * region of the destination at a time.  (These values are empirically
 145  * derived for the common case where text runs horizontally.)
 146  *
 147  * Note: It is assumed in various calculations below that:
 148  *     (OGLTR_CACHED_DEST_WIDTH  >= OGLTR_CACHE_CELL_WIDTH)  &&
 149  *     (OGLTR_CACHED_DEST_WIDTH  >= OGLTR_NOCACHE_TILE_SIZE) &&
 150  *     (OGLTR_CACHED_DEST_HEIGHT >= OGLTR_CACHE_CELL_HEIGHT) &&
 151  *     (OGLTR_CACHED_DEST_HEIGHT >= OGLTR_NOCACHE_TILE_SIZE)
 152  */
 153 #define OGLTR_CACHED_DEST_WIDTH  512
 154 #define OGLTR_CACHED_DEST_HEIGHT 32
 155 
 156 /**
 157  * The handle to the "cached destination" texture object.
 158  */
 159 static GLuint cachedDestTextureID = 0;
 160 
 161 /**
 162  * The current bounds of the "cached destination" texture, in destination
 163  * coordinate space.  The width/height of these bounds will not exceed the
 164  * OGLTR_CACHED_DEST_WIDTH/HEIGHT values defined above.  These bounds are
 165  * only considered valid when the isCachedDestValid flag is JNI_TRUE.
 166  */
 167 static SurfaceDataBounds cachedDestBounds;
 168 
 169 /**
 170  * This flag indicates whether the "cached destination" texture contains
 171  * valid data.  This flag is reset to JNI_FALSE at the beginning of every
 172  * call to OGLTR_DrawGlyphList().  Once we copy valid destination data
 173  * into the cached texture, this flag is set to JNI_TRUE.  This way, we can
 174  * limit the number of times we need to copy destination data, which is a
 175  * very costly operation.
 176  */
 177 static jboolean isCachedDestValid = JNI_FALSE;
 178 
 179 /**
 180  * The bounds of the previously rendered LCD glyph, in destination
 181  * coordinate space.  We use these bounds to determine whether the glyph
 182  * currently being rendered overlaps the previously rendered glyph (i.e.
 183  * its bounding box intersects that of the previously rendered glyph).  If
 184  * so, we need to re-read the destination area associated with that previous
 185  * glyph so that we can correctly blend with the actual destination data.
 186  */
 187 static SurfaceDataBounds previousGlyphBounds;
 188 
 189 /**
 190  * Initializes the one glyph cache (texture and data structure).
 191  * If lcdCache is JNI_TRUE, the texture will contain RGB data,
 192  * otherwise we will simply store the grayscale/monochrome glyph images
 193  * as intensity values (which work well with the GL_MODULATE function).
 194  */
 195 static jboolean
 196 OGLTR_InitGlyphCache(jboolean lcdCache)
 197 {
 198     GlyphCacheInfo *gcinfo;
 199     GLclampf priority = 1.0f;
 200     GLenum internalFormat = lcdCache ? GL_RGB8 : GL_INTENSITY8;
 201     GLenum pixelFormat = lcdCache ? GL_RGB : GL_LUMINANCE;
 202 
 203     J2dTraceLn(J2D_TRACE_INFO, "OGLTR_InitGlyphCache");
 204 
 205     // init glyph cache data structure
 206     gcinfo = AccelGlyphCache_Init(OGLTR_CACHE_WIDTH,
 207                                   OGLTR_CACHE_HEIGHT,
 208                                   OGLTR_CACHE_CELL_WIDTH,
 209                                   OGLTR_CACHE_CELL_HEIGHT,
 210                                   OGLVertexCache_FlushVertexCache);
 211     if (gcinfo == NULL) {
 212         J2dRlsTraceLn(J2D_TRACE_ERROR,
 213                       "OGLTR_InitGlyphCache: could not init OGL glyph cache");
 214         return JNI_FALSE;
 215     }
 216 
 217     // init cache texture object
 218     j2d_glGenTextures(1, &gcinfo->cacheID);
 219     j2d_glBindTexture(GL_TEXTURE_2D, gcinfo->cacheID);
 220     j2d_glPrioritizeTextures(1, &gcinfo->cacheID, &priority);
 221     j2d_glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 222     j2d_glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
 223 
 224     j2d_glTexImage2D(GL_TEXTURE_2D, 0, internalFormat,
 225                      OGLTR_CACHE_WIDTH, OGLTR_CACHE_HEIGHT, 0,
 226                      pixelFormat, GL_UNSIGNED_BYTE, NULL);
 227 
 228     cacheStatus = (lcdCache ? CACHE_LCD : CACHE_GRAY);
 229     glyphCache = gcinfo;
 230 
 231     return JNI_TRUE;
 232 }
 233 
 234 /**
 235  * Adds the given glyph to the glyph cache (texture and data structure)
 236  * associated with the given OGLContext.
 237  */
 238 static void
 239 OGLTR_AddToGlyphCache(GlyphInfo *glyph, jboolean rgbOrder)
 240 {
 241     GLenum pixelFormat;
 242     CacheCellInfo *ccinfo;
 243 
 244     J2dTraceLn(J2D_TRACE_INFO, "OGLTR_AddToGlyphCache");
 245 
 246     if ((glyphCache == NULL) || (glyph->image == NULL)) {
 247         return;
 248     }
 249 
 250     if (cacheStatus == CACHE_LCD) {
 251         pixelFormat = rgbOrder ? GL_RGB : GL_BGR;
 252     } else {
 253         pixelFormat = GL_LUMINANCE;
 254     }
 255 
 256     AccelGlyphCache_AddGlyph(glyphCache, glyph);
 257     ccinfo = (CacheCellInfo *) glyph->cellInfo;
 258 
 259     if (ccinfo != NULL) {
 260         // store glyph image in texture cell
 261         j2d_glTexSubImage2D(GL_TEXTURE_2D, 0,
 262                             ccinfo->x, ccinfo->y,
 263                             glyph->width, glyph->height,
 264                             pixelFormat, GL_UNSIGNED_BYTE, glyph->image);
 265     }
 266 }
 267 
 268 /**
 269  * This is the GLSL fragment shader source code for rendering LCD-optimized
 270  * text.  Do not be frightened; it is much easier to understand than the
 271  * equivalent ASM-like fragment program!
 272  *
 273  * The "uniform" variables at the top are initialized once the program is
 274  * linked, and are updated at runtime as needed (e.g. when the source color
 275  * changes, we will modify the "src_adj" value in OGLTR_UpdateLCDTextColor()).
 276  *
 277  * The "main" function is executed for each "fragment" (or pixel) in the
 278  * glyph image. The pow() routine operates on vectors, gives precise results,
 279  * and provides acceptable level of performance, so we use it to perform
 280  * the gamma adjustment.



 281  *
 282  * The variables involved in the equation can be expressed as follows:
 283  *
 284  *   Cs = Color component of the source (foreground color) [0.0, 1.0]
 285  *   Cd = Color component of the destination (background color) [0.0, 1.0]
 286  *   Cr = Color component to be written to the destination [0.0, 1.0]
 287  *   Ag = Glyph alpha (aka intensity or coverage) [0.0, 1.0]
 288  *   Ga = Gamma adjustment in the range [1.0, 2.5]
 289  *   (^ means raised to the power)
 290  *
 291  * And here is the theoretical equation approximated by this shader:
 292  *
 293  *            Cr = (Ag*(Cs^Ga) + (1-Ag)*(Cd^Ga)) ^ (1/Ga)
 294  */
 295 static const char *lcdTextShaderSource =
 296     "uniform vec3 src_adj;"
 297     "uniform sampler2D glyph_tex;"
 298     "uniform sampler2D dst_tex;"
 299     "uniform vec3 gamma;"
 300     "uniform vec3 invgamma;"
 301     ""
 302     "void main(void)"
 303     "{"
 304          // load the RGB value from the glyph image at the current texcoord
 305     "    vec3 glyph_clr = vec3(texture2D(glyph_tex, gl_TexCoord[0].st));"
 306     "    if (glyph_clr == vec3(0.0)) {"
 307              // zero coverage, so skip this fragment
 308     "        discard;"
 309     "    }"
 310          // load the RGB value from the corresponding destination pixel
 311     "    vec3 dst_clr = vec3(texture2D(dst_tex, gl_TexCoord[1].st));"
 312          // gamma adjust the dest color
 313     "    vec3 dst_adj = pow(dst_clr.rgb, invgamma);"
 314          // linearly interpolate the three color values
 315     "    vec3 result = mix(dst_adj, src_adj, glyph_clr);"
 316          // gamma re-adjust the resulting color (alpha is always set to 1.0)
 317     "    gl_FragColor = vec4(pow(result.rgb, gamma), 1.0);"
 318     "}";
 319 
 320 /**
 321  * Compiles and links the LCD text shader program.  If successful, this
 322  * function returns a handle to the newly created shader program; otherwise
 323  * returns 0.
 324  */
 325 static GLhandleARB
 326 OGLTR_CreateLCDTextProgram()
 327 {
 328     GLhandleARB lcdTextProgram;
 329     GLint loc;
 330 
 331     J2dTraceLn(J2D_TRACE_INFO, "OGLTR_CreateLCDTextProgram");
 332 
 333     lcdTextProgram = OGLContext_CreateFragmentProgram(lcdTextShaderSource);
 334     if (lcdTextProgram == 0) {
 335         J2dRlsTraceLn(J2D_TRACE_ERROR,
 336                       "OGLTR_CreateLCDTextProgram: error creating program");
 337         return 0;
 338     }
 339 
 340     // "use" the program object temporarily so that we can set the uniforms
 341     j2d_glUseProgramObjectARB(lcdTextProgram);
 342 
 343     // set the "uniform" values
 344     loc = j2d_glGetUniformLocationARB(lcdTextProgram, "glyph_tex");
 345     j2d_glUniform1iARB(loc, 0); // texture unit 0
 346     loc = j2d_glGetUniformLocationARB(lcdTextProgram, "dst_tex");
 347     j2d_glUniform1iARB(loc, 1); // texture unit 1




 348     
 349     // "unuse" the program object; it will be re-bound later as needed
 350     j2d_glUseProgramObjectARB(0);
 351 
 352     return lcdTextProgram;
 353 }
 354 
 355 /**
 356  * (Re)Initializes the gamma related uniforms.






































 357  *
 358  * The given contrast value is an int in the range [100, 250] which we will
 359  * then scale to fit in the range [1.0, 2.5].  








 360  */
 361 static jboolean
 362 OGLTR_UpdateLCDTextContrast(jint contrast)
 363 {
 364     double gamma = ((double)contrast) / 100.0;
 365     double ig = gamma;
 366     double g = 1.0 / ig;
 367     GLint loc;




 368 
 369     J2dTraceLn1(J2D_TRACE_INFO,
 370                 "OGLTR_UpdateLCDTextContrast: contrast=%d", contrast);
 371     
 372     loc = j2d_glGetUniformLocationARB(lcdTextProgram, "gamma");
 373     j2d_glUniform3fARB(loc, g, g, g);












 374 
 375     loc = j2d_glGetUniformLocationARB(lcdTextProgram, "invgamma");
 376     j2d_glUniform3fARB(loc, ig, ig, ig);



















 377 
 378     return JNI_TRUE;
 379 }
 380 
 381 /**
 382  * Updates the current gamma-adjusted source color ("src_adj") of the LCD
 383  * text shader program.  Note that we could calculate this value in the
 384  * shader (e.g. just as we do for "dst_adj"), but would be unnecessary work
 385  * (and a measurable performance hit, maybe around 5%) since this value is
 386  * constant over the entire glyph list.  So instead we just calculate the
 387  * gamma-adjusted value once and update the uniform parameter of the LCD
 388  * shader as needed.
 389  */
 390 static jboolean
 391 OGLTR_UpdateLCDTextColor(jint contrast)
 392 {
 393     double invgamma = ((double)contrast) / 100;
 394     GLfloat radj, gadj, badj;
 395     GLfloat clr[4];
 396     GLint loc;
 397 
 398     J2dTraceLn1(J2D_TRACE_INFO,
 399                 "OGLTR_UpdateLCDTextColor: contrast=%d", contrast);
 400 
 401     /*
 402      * Note: Ideally we would update the "src_adj" uniform parameter only
 403      * when there is a change in the source color.  Fortunately, the cost
 404      * of querying the current OpenGL color state and updating the uniform
 405      * value is quite small, and in the common case we only need to do this
 406      * once per GlyphList, so we gain little from trying to optimize too
 407      * eagerly here.
 408      */
 409 
 410     // get the current OpenGL primary color state
 411     j2d_glGetFloatv(GL_CURRENT_COLOR, clr);
 412 
 413     // gamma adjust the primary color
 414     radj = (GLfloat)pow(clr[0], invgamma);
 415     gadj = (GLfloat)pow(clr[1], invgamma);
 416     badj = (GLfloat)pow(clr[2], invgamma);
 417 
 418     // update the "src_adj" parameter of the shader program with this value
 419     loc = j2d_glGetUniformLocationARB(lcdTextProgram, "src_adj");
 420     j2d_glUniform3fARB(loc, radj, gadj, badj);
 421 
 422     return JNI_TRUE;
 423 }
 424 
 425 /**
 426  * Enables the LCD text shader and updates any related state, such as the
 427  * gamma lookup table textures.
 428  */
 429 static jboolean
 430 OGLTR_EnableLCDGlyphModeState(GLuint glyphTextureID, jint contrast)
 431 {
 432     // bind the texture containing glyph data to texture unit 0
 433     j2d_glActiveTextureARB(GL_TEXTURE0_ARB);
 434     j2d_glBindTexture(GL_TEXTURE_2D, glyphTextureID);
 435 
 436     // bind the texture tile containing destination data to texture unit 1
 437     j2d_glActiveTextureARB(GL_TEXTURE1_ARB);
 438     if (cachedDestTextureID == 0) {
 439         cachedDestTextureID =
 440             OGLContext_CreateBlitTexture(GL_RGB8, GL_RGB,
 441                                          OGLTR_CACHED_DEST_WIDTH,
 442                                          OGLTR_CACHED_DEST_HEIGHT);
 443         if (cachedDestTextureID == 0) {
 444             return JNI_FALSE;
 445         }
 446     }
 447     j2d_glBindTexture(GL_TEXTURE_2D, cachedDestTextureID);
 448 
 449     // note that GL_TEXTURE_2D was already enabled for texture unit 0,
 450     // but we need to explicitly enable it for texture unit 1
 451     j2d_glEnable(GL_TEXTURE_2D);
 452 
 453     // create the LCD text shader, if necessary
 454     if (lcdTextProgram == 0) {
 455         lcdTextProgram = OGLTR_CreateLCDTextProgram();
 456         if (lcdTextProgram == 0) {
 457             return JNI_FALSE;
 458         }
 459     }
 460 
 461     // enable the LCD text shader
 462     j2d_glUseProgramObjectARB(lcdTextProgram);
 463 
 464     // update the current contrast settings, if necessary
 465     if (lastLCDContrast != contrast) {
 466         if (!OGLTR_UpdateLCDTextContrast(contrast)) {
 467             return JNI_FALSE;
 468         }
 469         lastLCDContrast = contrast;
 470     }
 471 
 472     // update the current color settings
 473     if (!OGLTR_UpdateLCDTextColor(contrast)) {
 474         return JNI_FALSE;
 475     }
 476 
 477     // bind the gamma LUT textures
 478     j2d_glActiveTextureARB(GL_TEXTURE2_ARB);
 479     j2d_glBindTexture(GL_TEXTURE_3D, invGammaLutTextureID);
 480     j2d_glEnable(GL_TEXTURE_3D);
 481     j2d_glActiveTextureARB(GL_TEXTURE3_ARB);
 482     j2d_glBindTexture(GL_TEXTURE_3D, gammaLutTextureID);
 483     j2d_glEnable(GL_TEXTURE_3D);
 484 
 485     return JNI_TRUE;
 486 }
 487 
 488 void
 489 OGLTR_EnableGlyphVertexCache(OGLContext *oglc)
 490 {
 491     J2dTraceLn(J2D_TRACE_INFO, "OGLTR_EnableGlyphVertexCache");
 492 
 493     if (!OGLVertexCache_InitVertexCache(oglc)) {
 494         return;
 495     }
 496 
 497     if (glyphCache == NULL) {
 498         if (!OGLTR_InitGlyphCache(JNI_FALSE)) {
 499             return;
 500         }
 501     }
 502 
 503     j2d_glEnable(GL_TEXTURE_2D);
 504     j2d_glBindTexture(GL_TEXTURE_2D, glyphCache->cacheID);
 505     j2d_glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
 506 
 507     // for grayscale/monochrome text, the current OpenGL source color
 508     // is modulated with the glyph image as part of the texture
 509     // application stage, so we use GL_MODULATE here
 510     OGLC_UPDATE_TEXTURE_FUNCTION(oglc, GL_MODULATE);
 511 }
 512 
 513 void
 514 OGLTR_DisableGlyphVertexCache(OGLContext *oglc)
 515 {
 516     J2dTraceLn(J2D_TRACE_INFO, "OGLTR_DisableGlyphVertexCache");
 517 
 518     OGLVertexCache_FlushVertexCache();
 519     OGLVertexCache_RestoreColorState(oglc);
 520 
 521     j2d_glDisable(GL_TEXTURE_2D);
 522     j2d_glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
 523     j2d_glPixelStorei(GL_UNPACK_SKIP_PIXELS, 0);
 524     j2d_glPixelStorei(GL_UNPACK_SKIP_ROWS, 0);
 525     j2d_glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
 526 }
 527 
 528 /**
 529  * Disables any pending state associated with the current "glyph mode".
 530  */
 531 static void
 532 OGLTR_DisableGlyphModeState()
 533 {
 534     switch (glyphMode) {
 535     case MODE_NO_CACHE_LCD:
 536         j2d_glPixelStorei(GL_UNPACK_SKIP_PIXELS, 0);
 537         j2d_glPixelStorei(GL_UNPACK_SKIP_ROWS, 0);
 538         /* FALLTHROUGH */
 539 
 540     case MODE_USE_CACHE_LCD:
 541         j2d_glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
 542         j2d_glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
 543         j2d_glUseProgramObjectARB(0);
 544         j2d_glActiveTextureARB(GL_TEXTURE3_ARB);
 545         j2d_glDisable(GL_TEXTURE_3D);
 546         j2d_glActiveTextureARB(GL_TEXTURE2_ARB);
 547         j2d_glDisable(GL_TEXTURE_3D);
 548         j2d_glActiveTextureARB(GL_TEXTURE1_ARB);
 549         j2d_glDisable(GL_TEXTURE_2D);
 550         j2d_glActiveTextureARB(GL_TEXTURE0_ARB);
 551         break;
 552 
 553     case MODE_NO_CACHE_GRAY:
 554     case MODE_USE_CACHE_GRAY:
 555     case MODE_NOT_INITED:
 556     default:
 557         break;
 558     }
 559 }
 560 
 561 static jboolean
 562 OGLTR_DrawGrayscaleGlyphViaCache(OGLContext *oglc,
 563                                  GlyphInfo *ginfo, jint x, jint y)
 564 {
 565     CacheCellInfo *cell;
 566     jfloat x1, y1, x2, y2;
 567 
 568     if (glyphMode != MODE_USE_CACHE_GRAY) {
 569         OGLTR_DisableGlyphModeState();
 570         CHECK_PREVIOUS_OP(OGL_STATE_GLYPH_OP);
 571         glyphMode = MODE_USE_CACHE_GRAY;
 572     }
 573 
 574     if (ginfo->cellInfo == NULL) {
 575         // attempt to add glyph to accelerated glyph cache
 576         OGLTR_AddToGlyphCache(ginfo, JNI_FALSE);
 577 
 578         if (ginfo->cellInfo == NULL) {
 579             // we'll just no-op in the rare case that the cell is NULL
 580             return JNI_TRUE;
 581         }
 582     }
 583 
 584     cell = (CacheCellInfo *) (ginfo->cellInfo);
 585     cell->timesRendered++;
 586 
 587     x1 = (jfloat)x;
 588     y1 = (jfloat)y;
 589     x2 = x1 + ginfo->width;
 590     y2 = y1 + ginfo->height;
 591 
 592     OGLVertexCache_AddGlyphQuad(oglc,
 593                                 cell->tx1, cell->ty1,
 594                                 cell->tx2, cell->ty2,
 595                                 x1, y1, x2, y2);
 596 
 597     return JNI_TRUE;
 598 }
 599 
 600 /**
 601  * Evaluates to true if the rectangle defined by gx1/gy1/gx2/gy2 is
 602  * inside outerBounds.
 603  */
 604 #define INSIDE(gx1, gy1, gx2, gy2, outerBounds) \
 605     (((gx1) >= outerBounds.x1) && ((gy1) >= outerBounds.y1) && \
 606      ((gx2) <= outerBounds.x2) && ((gy2) <= outerBounds.y2))
 607 
 608 /**
 609  * Evaluates to true if the rectangle defined by gx1/gy1/gx2/gy2 intersects
 610  * the rectangle defined by bounds.
 611  */
 612 #define INTERSECTS(gx1, gy1, gx2, gy2, bounds) \
 613     ((bounds.x2 > (gx1)) && (bounds.y2 > (gy1)) && \
 614      (bounds.x1 < (gx2)) && (bounds.y1 < (gy2)))
 615 
 616 /**
 617  * This method checks to see if the given LCD glyph bounds fall within the
 618  * cached destination texture bounds.  If so, this method can return
 619  * immediately.  If not, this method will copy a chunk of framebuffer data
 620  * into the cached destination texture and then update the current cached
 621  * destination bounds before returning.
 622  */
 623 static void
 624 OGLTR_UpdateCachedDestination(OGLSDOps *dstOps, GlyphInfo *ginfo,
 625                               jint gx1, jint gy1, jint gx2, jint gy2,
 626                               jint glyphIndex, jint totalGlyphs)
 627 {
 628     jint dx1, dy1, dx2, dy2;
 629     jint dx1adj, dy1adj;
 630 
 631     if (isCachedDestValid && INSIDE(gx1, gy1, gx2, gy2, cachedDestBounds)) {
 632         // glyph is already within the cached destination bounds; no need
 633         // to read back the entire destination region again, but we do
 634         // need to see if the current glyph overlaps the previous glyph...
 635 
 636         if (INTERSECTS(gx1, gy1, gx2, gy2, previousGlyphBounds)) {
 637             // the current glyph overlaps the destination region touched
 638             // by the previous glyph, so now we need to read back the part
 639             // of the destination corresponding to the previous glyph
 640             dx1 = previousGlyphBounds.x1;
 641             dy1 = previousGlyphBounds.y1;
 642             dx2 = previousGlyphBounds.x2;
 643             dy2 = previousGlyphBounds.y2;
 644 
 645             // this accounts for lower-left origin of the destination region
 646             dx1adj = dstOps->xOffset + dx1;
 647             dy1adj = dstOps->yOffset + dstOps->height - dy2;
 648 
 649             // copy destination into subregion of cached texture tile:
 650             //   dx1-cachedDestBounds.x1 == +xoffset from left side of texture
 651             //   cachedDestBounds.y2-dy2 == +yoffset from bottom of texture
 652             j2d_glActiveTextureARB(GL_TEXTURE1_ARB);
 653             j2d_glCopyTexSubImage2D(GL_TEXTURE_2D, 0,
 654                                     dx1 - cachedDestBounds.x1,
 655                                     cachedDestBounds.y2 - dy2,
 656                                     dx1adj, dy1adj,
 657                                     dx2-dx1, dy2-dy1);
 658         }
 659     } else {
 660         jint remainingWidth;
 661 
 662         // destination region is not valid, so we need to read back a
 663         // chunk of the destination into our cached texture
 664 
 665         // position the upper-left corner of the destination region on the
 666         // "top" line of glyph list
 667         // REMIND: this isn't ideal; it would be better if we had some idea
 668         //         of the bounding box of the whole glyph list (this is
 669         //         do-able, but would require iterating through the whole
 670         //         list up front, which may present its own problems)
 671         dx1 = gx1;
 672         dy1 = gy1;
 673 
 674         if (ginfo->advanceX > 0) {
 675             // estimate the width based on our current position in the glyph
 676             // list and using the x advance of the current glyph (this is just
 677             // a quick and dirty heuristic; if this is a "thin" glyph image,
 678             // then we're likely to underestimate, and if it's "thick" then we
 679             // may end up reading back more than we need to)
 680             remainingWidth =
 681                 (jint)(ginfo->advanceX * (totalGlyphs - glyphIndex));
 682             if (remainingWidth > OGLTR_CACHED_DEST_WIDTH) {
 683                 remainingWidth = OGLTR_CACHED_DEST_WIDTH;
 684             } else if (remainingWidth < ginfo->width) {
 685                 // in some cases, the x-advance may be slightly smaller
 686                 // than the actual width of the glyph; if so, adjust our
 687                 // estimate so that we can accommodate the entire glyph
 688                 remainingWidth = ginfo->width;
 689             }
 690         } else {
 691             // a negative advance is possible when rendering rotated text,
 692             // in which case it is difficult to estimate an appropriate
 693             // region for readback, so we will pick a region that
 694             // encompasses just the current glyph
 695             remainingWidth = ginfo->width;
 696         }
 697         dx2 = dx1 + remainingWidth;
 698 
 699         // estimate the height (this is another sloppy heuristic; we'll
 700         // make the cached destination region tall enough to encompass most
 701         // glyphs that are small enough to fit in the glyph cache, and then
 702         // we add a little something extra to account for descenders
 703         dy2 = dy1 + OGLTR_CACHE_CELL_HEIGHT + 2;
 704 
 705         // this accounts for lower-left origin of the destination region
 706         dx1adj = dstOps->xOffset + dx1;
 707         dy1adj = dstOps->yOffset + dstOps->height - dy2;
 708 
 709         // copy destination into cached texture tile (the lower-left corner
 710         // of the destination region will be positioned at the lower-left
 711         // corner (0,0) of the texture)
 712         j2d_glActiveTextureARB(GL_TEXTURE1_ARB);
 713         j2d_glCopyTexSubImage2D(GL_TEXTURE_2D, 0,
 714                                 0, 0, dx1adj, dy1adj,
 715                                 dx2-dx1, dy2-dy1);
 716 
 717         // update the cached bounds and mark it valid
 718         cachedDestBounds.x1 = dx1;
 719         cachedDestBounds.y1 = dy1;
 720         cachedDestBounds.x2 = dx2;
 721         cachedDestBounds.y2 = dy2;
 722         isCachedDestValid = JNI_TRUE;
 723     }
 724 
 725     // always update the previous glyph bounds
 726     previousGlyphBounds.x1 = gx1;
 727     previousGlyphBounds.y1 = gy1;
 728     previousGlyphBounds.x2 = gx2;
 729     previousGlyphBounds.y2 = gy2;
 730 }
 731 
 732 static jboolean
 733 OGLTR_DrawLCDGlyphViaCache(OGLContext *oglc, OGLSDOps *dstOps,
 734                            GlyphInfo *ginfo, jint x, jint y,
 735                            jint glyphIndex, jint totalGlyphs,
 736                            jboolean rgbOrder, jint contrast)
 737 {
 738     CacheCellInfo *cell;
 739     jint dx1, dy1, dx2, dy2;
 740     jfloat dtx1, dty1, dtx2, dty2;
 741 
 742     if (glyphMode != MODE_USE_CACHE_LCD) {
 743         OGLTR_DisableGlyphModeState();
 744         CHECK_PREVIOUS_OP(GL_TEXTURE_2D);
 745         j2d_glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
 746 
 747         if (glyphCache == NULL) {
 748             if (!OGLTR_InitGlyphCache(JNI_TRUE)) {
 749                 return JNI_FALSE;
 750             }
 751         }
 752 
 753         if (rgbOrder != lastRGBOrder) {
 754             // need to invalidate the cache in this case; see comments
 755             // for lastRGBOrder above
 756             AccelGlyphCache_Invalidate(glyphCache);
 757             lastRGBOrder = rgbOrder;
 758         }
 759 
 760         if (!OGLTR_EnableLCDGlyphModeState(glyphCache->cacheID, contrast)) {
 761             return JNI_FALSE;
 762         }
 763 
 764         // when a fragment shader is enabled, the texture function state is
 765         // ignored, so the following line is not needed...
 766         // OGLC_UPDATE_TEXTURE_FUNCTION(oglc, GL_MODULATE);
 767 
 768         glyphMode = MODE_USE_CACHE_LCD;
 769     }
 770 
 771     if (ginfo->cellInfo == NULL) {
 772         // rowBytes will always be a multiple of 3, so the following is safe
 773         j2d_glPixelStorei(GL_UNPACK_ROW_LENGTH, ginfo->rowBytes / 3);
 774 
 775         // make sure the glyph cache texture is bound to texture unit 0
 776         j2d_glActiveTextureARB(GL_TEXTURE0_ARB);
 777 
 778         // attempt to add glyph to accelerated glyph cache
 779         OGLTR_AddToGlyphCache(ginfo, rgbOrder);
 780 
 781         if (ginfo->cellInfo == NULL) {
 782             // we'll just no-op in the rare case that the cell is NULL
 783             return JNI_TRUE;
 784         }
 785     }
 786 
 787     cell = (CacheCellInfo *) (ginfo->cellInfo);
 788     cell->timesRendered++;
 789 
 790     // location of the glyph in the destination's coordinate space
 791     dx1 = x;
 792     dy1 = y;
 793     dx2 = dx1 + ginfo->width;
 794     dy2 = dy1 + ginfo->height;
 795 
 796     // copy destination into second cached texture, if necessary
 797     OGLTR_UpdateCachedDestination(dstOps, ginfo,
 798                                   dx1, dy1, dx2, dy2,
 799                                   glyphIndex, totalGlyphs);
 800 
 801     // texture coordinates of the destination tile
 802     dtx1 = ((jfloat)(dx1 - cachedDestBounds.x1)) / OGLTR_CACHED_DEST_WIDTH;
 803     dty1 = ((jfloat)(cachedDestBounds.y2 - dy1)) / OGLTR_CACHED_DEST_HEIGHT;
 804     dtx2 = ((jfloat)(dx2 - cachedDestBounds.x1)) / OGLTR_CACHED_DEST_WIDTH;
 805     dty2 = ((jfloat)(cachedDestBounds.y2 - dy2)) / OGLTR_CACHED_DEST_HEIGHT;
 806 
 807     // render composed texture to the destination surface
 808     j2d_glBegin(GL_QUADS);
 809     j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, cell->tx1, cell->ty1);
 810     j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, dtx1, dty1);
 811     j2d_glVertex2i(dx1, dy1);
 812     j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, cell->tx2, cell->ty1);
 813     j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, dtx2, dty1);
 814     j2d_glVertex2i(dx2, dy1);
 815     j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, cell->tx2, cell->ty2);
 816     j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, dtx2, dty2);
 817     j2d_glVertex2i(dx2, dy2);
 818     j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, cell->tx1, cell->ty2);
 819     j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, dtx1, dty2);
 820     j2d_glVertex2i(dx1, dy2);
 821     j2d_glEnd();
 822 
 823     return JNI_TRUE;
 824 }
 825 
 826 static jboolean
 827 OGLTR_DrawGrayscaleGlyphNoCache(OGLContext *oglc,
 828                                 GlyphInfo *ginfo, jint x, jint y)
 829 {
 830     jint tw, th;
 831     jint sx, sy, sw, sh;
 832     jint x0;
 833     jint w = ginfo->width;
 834     jint h = ginfo->height;
 835 
 836     if (glyphMode != MODE_NO_CACHE_GRAY) {
 837         OGLTR_DisableGlyphModeState();
 838         CHECK_PREVIOUS_OP(OGL_STATE_MASK_OP);
 839         glyphMode = MODE_NO_CACHE_GRAY;
 840     }
 841 
 842     x0 = x;
 843     tw = OGLVC_MASK_CACHE_TILE_WIDTH;
 844     th = OGLVC_MASK_CACHE_TILE_HEIGHT;
 845 
 846     for (sy = 0; sy < h; sy += th, y += th) {
 847         x = x0;
 848         sh = ((sy + th) > h) ? (h - sy) : th;
 849 
 850         for (sx = 0; sx < w; sx += tw, x += tw) {
 851             sw = ((sx + tw) > w) ? (w - sx) : tw;
 852 
 853             OGLVertexCache_AddMaskQuad(oglc,
 854                                        sx, sy, x, y, sw, sh,
 855                                        w, ginfo->image);
 856         }
 857     }
 858 
 859     return JNI_TRUE;
 860 }
 861 
 862 static jboolean
 863 OGLTR_DrawLCDGlyphNoCache(OGLContext *oglc, OGLSDOps *dstOps,
 864                           GlyphInfo *ginfo, jint x, jint y,
 865                           jint rowBytesOffset,
 866                           jboolean rgbOrder, jint contrast)
 867 {
 868     GLfloat tx1, ty1, tx2, ty2;
 869     GLfloat dtx1, dty1, dtx2, dty2;
 870     jint tw, th;
 871     jint sx, sy, sw, sh, dxadj, dyadj;
 872     jint x0;
 873     jint w = ginfo->width;
 874     jint h = ginfo->height;
 875     GLenum pixelFormat = rgbOrder ? GL_RGB : GL_BGR;
 876 
 877     if (glyphMode != MODE_NO_CACHE_LCD) {
 878         OGLTR_DisableGlyphModeState();
 879         CHECK_PREVIOUS_OP(GL_TEXTURE_2D);
 880         j2d_glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
 881 
 882         if (oglc->blitTextureID == 0) {
 883             if (!OGLContext_InitBlitTileTexture(oglc)) {
 884                 return JNI_FALSE;
 885             }
 886         }
 887 
 888         if (!OGLTR_EnableLCDGlyphModeState(oglc->blitTextureID, contrast)) {
 889             return JNI_FALSE;
 890         }
 891 
 892         // when a fragment shader is enabled, the texture function state is
 893         // ignored, so the following line is not needed...
 894         // OGLC_UPDATE_TEXTURE_FUNCTION(oglc, GL_MODULATE);
 895 
 896         glyphMode = MODE_NO_CACHE_LCD;
 897     }
 898 
 899     // rowBytes will always be a multiple of 3, so the following is safe
 900     j2d_glPixelStorei(GL_UNPACK_ROW_LENGTH, ginfo->rowBytes / 3);
 901 
 902     x0 = x;
 903     tx1 = 0.0f;
 904     ty1 = 0.0f;
 905     dtx1 = 0.0f;
 906     dty2 = 0.0f;
 907     tw = OGLTR_NOCACHE_TILE_SIZE;
 908     th = OGLTR_NOCACHE_TILE_SIZE;
 909 
 910     for (sy = 0; sy < h; sy += th, y += th) {
 911         x = x0;
 912         sh = ((sy + th) > h) ? (h - sy) : th;
 913 
 914         for (sx = 0; sx < w; sx += tw, x += tw) {
 915             sw = ((sx + tw) > w) ? (w - sx) : tw;
 916 
 917             // update the source pointer offsets
 918             j2d_glPixelStorei(GL_UNPACK_SKIP_PIXELS, sx);
 919             j2d_glPixelStorei(GL_UNPACK_SKIP_ROWS, sy);
 920 
 921             // copy LCD mask into glyph texture tile
 922             j2d_glActiveTextureARB(GL_TEXTURE0_ARB);
 923             j2d_glTexSubImage2D(GL_TEXTURE_2D, 0,
 924                                 0, 0, sw, sh,
 925                                 pixelFormat, GL_UNSIGNED_BYTE,
 926                                 ginfo->image + rowBytesOffset);
 927 
 928             // update the lower-right glyph texture coordinates
 929             tx2 = ((GLfloat)sw) / OGLC_BLIT_TILE_SIZE;
 930             ty2 = ((GLfloat)sh) / OGLC_BLIT_TILE_SIZE;
 931 
 932             // this accounts for lower-left origin of the destination region
 933             dxadj = dstOps->xOffset + x;
 934             dyadj = dstOps->yOffset + dstOps->height - (y + sh);
 935 
 936             // copy destination into cached texture tile (the lower-left
 937             // corner of the destination region will be positioned at the
 938             // lower-left corner (0,0) of the texture)
 939             j2d_glActiveTextureARB(GL_TEXTURE1_ARB);
 940             j2d_glCopyTexSubImage2D(GL_TEXTURE_2D, 0,
 941                                     0, 0,
 942                                     dxadj, dyadj,
 943                                     sw, sh);
 944 
 945             // update the remaining destination texture coordinates
 946             dtx2 = ((GLfloat)sw) / OGLTR_CACHED_DEST_WIDTH;
 947             dty1 = ((GLfloat)sh) / OGLTR_CACHED_DEST_HEIGHT;
 948 
 949             // render composed texture to the destination surface
 950             j2d_glBegin(GL_QUADS);
 951             j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, tx1, ty1);
 952             j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, dtx1, dty1);
 953             j2d_glVertex2i(x, y);
 954             j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, tx2, ty1);
 955             j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, dtx2, dty1);
 956             j2d_glVertex2i(x + sw, y);
 957             j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, tx2, ty2);
 958             j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, dtx2, dty2);
 959             j2d_glVertex2i(x + sw, y + sh);
 960             j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, tx1, ty2);
 961             j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, dtx1, dty2);
 962             j2d_glVertex2i(x, y + sh);
 963             j2d_glEnd();
 964         }
 965     }
 966 
 967     return JNI_TRUE;
 968 }
 969 
 970 // see DrawGlyphList.c for more on this macro...
 971 #define FLOOR_ASSIGN(l, r) \
 972     if ((r)<0) (l) = ((int)floor(r)); else (l) = ((int)(r))
 973 
 974 void
 975 OGLTR_DrawGlyphList(JNIEnv *env, OGLContext *oglc, OGLSDOps *dstOps,
 976                     jint totalGlyphs, jboolean usePositions,
 977                     jboolean subPixPos, jboolean rgbOrder, jint lcdContrast,
 978                     jfloat glyphListOrigX, jfloat glyphListOrigY,
 979                     unsigned char *images, unsigned char *positions)
 980 {
 981     int glyphCounter;
 982 
 983     J2dTraceLn(J2D_TRACE_INFO, "OGLTR_DrawGlyphList");
 984 
 985     RETURN_IF_NULL(oglc);
 986     RETURN_IF_NULL(dstOps);
 987     RETURN_IF_NULL(images);
 988     if (usePositions) {
 989         RETURN_IF_NULL(positions);
 990     }
 991 
 992     glyphMode = MODE_NOT_INITED;
 993     isCachedDestValid = JNI_FALSE;
 994 
 995     for (glyphCounter = 0; glyphCounter < totalGlyphs; glyphCounter++) {
 996         jint x, y;
 997         jfloat glyphx, glyphy;
 998         jboolean grayscale, ok;
 999         GlyphInfo *ginfo = (GlyphInfo *)jlong_to_ptr(NEXT_LONG(images));
1000 
1001         if (ginfo == NULL) {
1002             // this shouldn't happen, but if it does we'll just break out...
1003             J2dRlsTraceLn(J2D_TRACE_ERROR,
1004                           "OGLTR_DrawGlyphList: glyph info is null");
1005             break;
1006         }
1007 
1008         grayscale = (ginfo->rowBytes == ginfo->width);
1009 
1010         if (usePositions) {
1011             jfloat posx = NEXT_FLOAT(positions);
1012             jfloat posy = NEXT_FLOAT(positions);
1013             glyphx = glyphListOrigX + posx + ginfo->topLeftX;
1014             glyphy = glyphListOrigY + posy + ginfo->topLeftY;
1015             FLOOR_ASSIGN(x, glyphx);
1016             FLOOR_ASSIGN(y, glyphy);
1017         } else {
1018             glyphx = glyphListOrigX + ginfo->topLeftX;
1019             glyphy = glyphListOrigY + ginfo->topLeftY;
1020             FLOOR_ASSIGN(x, glyphx);
1021             FLOOR_ASSIGN(y, glyphy);
1022             glyphListOrigX += ginfo->advanceX;
1023             glyphListOrigY += ginfo->advanceY;
1024         }
1025 
1026         if (ginfo->image == NULL) {
1027             continue;
1028         }
1029 
1030         if (grayscale) {
1031             // grayscale or monochrome glyph data
1032             if (cacheStatus != CACHE_LCD &&
1033                 ginfo->width <= OGLTR_CACHE_CELL_WIDTH &&
1034                 ginfo->height <= OGLTR_CACHE_CELL_HEIGHT)
1035             {
1036                 ok = OGLTR_DrawGrayscaleGlyphViaCache(oglc, ginfo, x, y);
1037             } else {
1038                 ok = OGLTR_DrawGrayscaleGlyphNoCache(oglc, ginfo, x, y);
1039             }
1040         } else {
1041             // LCD-optimized glyph data
1042             jint rowBytesOffset = 0;
1043 
1044             if (subPixPos) {
1045                 jint frac = (jint)((glyphx - x) * 3);
1046                 if (frac != 0) {
1047                     rowBytesOffset = 3 - frac;
1048                     x += 1;
1049                 }
1050             }
1051 
1052             if (rowBytesOffset == 0 &&
1053                 cacheStatus != CACHE_GRAY &&
1054                 ginfo->width <= OGLTR_CACHE_CELL_WIDTH &&
1055                 ginfo->height <= OGLTR_CACHE_CELL_HEIGHT)
1056             {
1057                 ok = OGLTR_DrawLCDGlyphViaCache(oglc, dstOps,
1058                                                 ginfo, x, y,
1059                                                 glyphCounter, totalGlyphs,
1060                                                 rgbOrder, lcdContrast);
1061             } else {
1062                 ok = OGLTR_DrawLCDGlyphNoCache(oglc, dstOps,
1063                                                ginfo, x, y,
1064                                                rowBytesOffset,
1065                                                rgbOrder, lcdContrast);
1066             }
1067         }
1068 
1069         if (!ok) {
1070             break;
1071         }
1072     }
1073 
1074     OGLTR_DisableGlyphModeState();
1075 }
1076 
1077 JNIEXPORT void JNICALL
1078 Java_sun_java2d_opengl_OGLTextRenderer_drawGlyphList
1079     (JNIEnv *env, jobject self,
1080      jint numGlyphs, jboolean usePositions,
1081      jboolean subPixPos, jboolean rgbOrder, jint lcdContrast,
1082      jfloat glyphListOrigX, jfloat glyphListOrigY,
1083      jlongArray imgArray, jfloatArray posArray)
1084 {
1085     unsigned char *images;
1086 
1087     J2dTraceLn(J2D_TRACE_INFO, "OGLTextRenderer_drawGlyphList");
1088 
1089     images = (unsigned char *)
1090         (*env)->GetPrimitiveArrayCritical(env, imgArray, NULL);
1091     if (images != NULL) {
1092         OGLContext *oglc = OGLRenderQueue_GetCurrentContext();
1093         OGLSDOps *dstOps = OGLRenderQueue_GetCurrentDestination();
1094 
1095         if (usePositions) {
1096             unsigned char *positions = (unsigned char *)
1097                 (*env)->GetPrimitiveArrayCritical(env, posArray, NULL);
1098             if (positions != NULL) {
1099                 OGLTR_DrawGlyphList(env, oglc, dstOps,
1100                                     numGlyphs, usePositions,
1101                                     subPixPos, rgbOrder, lcdContrast,
1102                                     glyphListOrigX, glyphListOrigY,
1103                                     images, positions);
1104                 (*env)->ReleasePrimitiveArrayCritical(env, posArray,
1105                                                       positions, JNI_ABORT);
1106             }
1107         } else {
1108             OGLTR_DrawGlyphList(env, oglc, dstOps,
1109                                 numGlyphs, usePositions,
1110                                 subPixPos, rgbOrder, lcdContrast,
1111                                 glyphListOrigX, glyphListOrigY,
1112                                 images, NULL);
1113         }
1114 
1115         // 6358147: reset current state, and ensure rendering is
1116         // flushed to dest
1117         if (oglc != NULL) {
1118             RESET_PREVIOUS_OP();
1119             j2d_glFlush();
1120         }
1121 
1122         (*env)->ReleasePrimitiveArrayCritical(env, imgArray,
1123                                               images, JNI_ABORT);
1124     }
1125 }
1126 
1127 #endif /* !HEADLESS */
--- EOF ---