1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/callGenerator.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/convertnode.hpp"
  38 #include "opto/countbitsnode.hpp"
  39 #include "opto/intrinsicnode.hpp"
  40 #include "opto/idealKit.hpp"
  41 #include "opto/mathexactnode.hpp"
  42 #include "opto/movenode.hpp"
  43 #include "opto/mulnode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/opaquenode.hpp"
  46 #include "opto/parse.hpp"
  47 #include "opto/runtime.hpp"
  48 #include "opto/subnode.hpp"
  49 #include "prims/nativeLookup.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "trace/traceMacros.hpp"
  52 
  53 class LibraryIntrinsic : public InlineCallGenerator {
  54   // Extend the set of intrinsics known to the runtime:
  55  public:
  56  private:
  57   bool             _is_virtual;
  58   bool             _does_virtual_dispatch;
  59   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  60   int8_t           _last_predicate; // Last generated predicate
  61   vmIntrinsics::ID _intrinsic_id;
  62 
  63  public:
  64   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  65     : InlineCallGenerator(m),
  66       _is_virtual(is_virtual),
  67       _does_virtual_dispatch(does_virtual_dispatch),
  68       _predicates_count((int8_t)predicates_count),
  69       _last_predicate((int8_t)-1),
  70       _intrinsic_id(id)
  71   {
  72   }
  73   virtual bool is_intrinsic() const { return true; }
  74   virtual bool is_virtual()   const { return _is_virtual; }
  75   virtual bool is_predicated() const { return _predicates_count > 0; }
  76   virtual int  predicates_count() const { return _predicates_count; }
  77   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  78   virtual JVMState* generate(JVMState* jvms);
  79   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  80   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  81 };
  82 
  83 
  84 // Local helper class for LibraryIntrinsic:
  85 class LibraryCallKit : public GraphKit {
  86  private:
  87   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  88   Node*             _result;        // the result node, if any
  89   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  90 
  91   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  92 
  93  public:
  94   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  95     : GraphKit(jvms),
  96       _intrinsic(intrinsic),
  97       _result(NULL)
  98   {
  99     // Check if this is a root compile.  In that case we don't have a caller.
 100     if (!jvms->has_method()) {
 101       _reexecute_sp = sp();
 102     } else {
 103       // Find out how many arguments the interpreter needs when deoptimizing
 104       // and save the stack pointer value so it can used by uncommon_trap.
 105       // We find the argument count by looking at the declared signature.
 106       bool ignored_will_link;
 107       ciSignature* declared_signature = NULL;
 108       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 109       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 110       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 111     }
 112   }
 113 
 114   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 115 
 116   ciMethod*         caller()    const    { return jvms()->method(); }
 117   int               bci()       const    { return jvms()->bci(); }
 118   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 119   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 120   ciMethod*         callee()    const    { return _intrinsic->method(); }
 121 
 122   bool  try_to_inline(int predicate);
 123   Node* try_to_predicate(int predicate);
 124 
 125   void push_result() {
 126     // Push the result onto the stack.
 127     if (!stopped() && result() != NULL) {
 128       BasicType bt = result()->bottom_type()->basic_type();
 129       push_node(bt, result());
 130     }
 131   }
 132 
 133  private:
 134   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 135     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 136   }
 137 
 138   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 139   void  set_result(RegionNode* region, PhiNode* value);
 140   Node*     result() { return _result; }
 141 
 142   virtual int reexecute_sp() { return _reexecute_sp; }
 143 
 144   // Helper functions to inline natives
 145   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 146   Node* generate_slow_guard(Node* test, RegionNode* region);
 147   Node* generate_fair_guard(Node* test, RegionNode* region);
 148   Node* generate_negative_guard(Node* index, RegionNode* region,
 149                                 // resulting CastII of index:
 150                                 Node* *pos_index = NULL);
 151   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 152                              Node* array_length,
 153                              RegionNode* region);
 154   Node* generate_current_thread(Node* &tls_output);
 155   Node* load_mirror_from_klass(Node* klass);
 156   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 157                                       RegionNode* region, int null_path,
 158                                       int offset);
 159   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 160                                RegionNode* region, int null_path) {
 161     int offset = java_lang_Class::klass_offset_in_bytes();
 162     return load_klass_from_mirror_common(mirror, never_see_null,
 163                                          region, null_path,
 164                                          offset);
 165   }
 166   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 167                                      RegionNode* region, int null_path) {
 168     int offset = java_lang_Class::array_klass_offset_in_bytes();
 169     return load_klass_from_mirror_common(mirror, never_see_null,
 170                                          region, null_path,
 171                                          offset);
 172   }
 173   Node* generate_access_flags_guard(Node* kls,
 174                                     int modifier_mask, int modifier_bits,
 175                                     RegionNode* region);
 176   Node* generate_interface_guard(Node* kls, RegionNode* region);
 177   Node* generate_array_guard(Node* kls, RegionNode* region) {
 178     return generate_array_guard_common(kls, region, false, false);
 179   }
 180   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 181     return generate_array_guard_common(kls, region, false, true);
 182   }
 183   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 184     return generate_array_guard_common(kls, region, true, false);
 185   }
 186   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 187     return generate_array_guard_common(kls, region, true, true);
 188   }
 189   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 190                                     bool obj_array, bool not_array);
 191   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 192   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 193                                      bool is_virtual = false, bool is_static = false);
 194   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 195     return generate_method_call(method_id, false, true);
 196   }
 197   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 198     return generate_method_call(method_id, true, false);
 199   }
 200   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 201 
 202   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 203   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 204   bool inline_string_compareTo();
 205   bool inline_string_indexOf();
 206   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 207   bool inline_string_equals();
 208   Node* round_double_node(Node* n);
 209   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 210   bool inline_math_native(vmIntrinsics::ID id);
 211   bool inline_trig(vmIntrinsics::ID id);
 212   bool inline_math(vmIntrinsics::ID id);
 213   template <typename OverflowOp>
 214   bool inline_math_overflow(Node* arg1, Node* arg2);
 215   void inline_math_mathExact(Node* math, Node* test);
 216   bool inline_math_addExactI(bool is_increment);
 217   bool inline_math_addExactL(bool is_increment);
 218   bool inline_math_multiplyExactI();
 219   bool inline_math_multiplyExactL();
 220   bool inline_math_negateExactI();
 221   bool inline_math_negateExactL();
 222   bool inline_math_subtractExactI(bool is_decrement);
 223   bool inline_math_subtractExactL(bool is_decrement);
 224   bool inline_exp();
 225   bool inline_pow();
 226   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 227   bool inline_min_max(vmIntrinsics::ID id);
 228   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 229   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 230   int classify_unsafe_addr(Node* &base, Node* &offset);
 231   Node* make_unsafe_address(Node* base, Node* offset);
 232   // Helper for inline_unsafe_access.
 233   // Generates the guards that check whether the result of
 234   // Unsafe.getObject should be recorded in an SATB log buffer.
 235   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 236   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 237   static bool klass_needs_init_guard(Node* kls);
 238   bool inline_unsafe_allocate();
 239   bool inline_unsafe_copyMemory();
 240   bool inline_native_currentThread();
 241 #ifdef TRACE_HAVE_INTRINSICS
 242   bool inline_native_classID();
 243   bool inline_native_threadID();
 244 #endif
 245   bool inline_native_time_funcs(address method, const char* funcName);
 246   bool inline_native_isInterrupted();
 247   bool inline_native_Class_query(vmIntrinsics::ID id);
 248   bool inline_native_subtype_check();
 249 
 250   bool inline_native_newArray();
 251   bool inline_native_getLength();
 252   bool inline_array_copyOf(bool is_copyOfRange);
 253   bool inline_array_equals();
 254   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 255   bool inline_native_clone(bool is_virtual);
 256   bool inline_native_Reflection_getCallerClass();
 257   // Helper function for inlining native object hash method
 258   bool inline_native_hashcode(bool is_virtual, bool is_static);
 259   bool inline_native_getClass();
 260 
 261   // Helper functions for inlining arraycopy
 262   bool inline_arraycopy();
 263   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 264                                                 RegionNode* slow_region);
 265   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 266   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp);
 267 
 268   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 269   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 270   bool inline_unsafe_ordered_store(BasicType type);
 271   bool inline_unsafe_fence(vmIntrinsics::ID id);
 272   bool inline_fp_conversions(vmIntrinsics::ID id);
 273   bool inline_number_methods(vmIntrinsics::ID id);
 274   bool inline_reference_get();
 275   bool inline_Class_cast();
 276   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 277   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 278   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 279   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 280   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 281   bool inline_ghash_processBlocks();
 282   Node* get_vars_from_ghash_object(Node *ghash_object, const char *var_name);
 283   bool inline_sha_implCompress(vmIntrinsics::ID id);
 284   bool inline_digestBase_implCompressMB(int predicate);
 285   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 286                                  bool long_state, address stubAddr, const char *stubName,
 287                                  Node* src_start, Node* ofs, Node* limit);
 288   Node* get_state_from_sha_object(Node *sha_object);
 289   Node* get_state_from_sha5_object(Node *sha_object);
 290   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 291   bool inline_encodeISOArray();
 292   bool inline_updateCRC32();
 293   bool inline_updateBytesCRC32();
 294   bool inline_updateByteBufferCRC32();
 295   bool inline_multiplyToLen();
 296   bool inline_squareToLen();
 297   bool inline_mulAdd();
 298 
 299   bool inline_profileBoolean();
 300   bool inline_isCompileConstant();
 301 };
 302 
 303 
 304 //---------------------------make_vm_intrinsic----------------------------
 305 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 306   vmIntrinsics::ID id = m->intrinsic_id();
 307   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 308 
 309   ccstr disable_intr = NULL;
 310 
 311   if ((DisableIntrinsic[0] != '\0'
 312        && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
 313       (method_has_option_value("DisableIntrinsic", disable_intr)
 314        && strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
 315     // disabled by a user request on the command line:
 316     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 317     return NULL;
 318   }
 319 
 320   if (!m->is_loaded()) {
 321     // do not attempt to inline unloaded methods
 322     return NULL;
 323   }
 324 
 325   // Only a few intrinsics implement a virtual dispatch.
 326   // They are expensive calls which are also frequently overridden.
 327   if (is_virtual) {
 328     switch (id) {
 329     case vmIntrinsics::_hashCode:
 330     case vmIntrinsics::_clone:
 331       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 332       break;
 333     default:
 334       return NULL;
 335     }
 336   }
 337 
 338   // -XX:-InlineNatives disables nearly all intrinsics:
 339   if (!InlineNatives) {
 340     switch (id) {
 341     case vmIntrinsics::_indexOf:
 342     case vmIntrinsics::_compareTo:
 343     case vmIntrinsics::_equals:
 344     case vmIntrinsics::_equalsC:
 345     case vmIntrinsics::_getAndAddInt:
 346     case vmIntrinsics::_getAndAddLong:
 347     case vmIntrinsics::_getAndSetInt:
 348     case vmIntrinsics::_getAndSetLong:
 349     case vmIntrinsics::_getAndSetObject:
 350     case vmIntrinsics::_loadFence:
 351     case vmIntrinsics::_storeFence:
 352     case vmIntrinsics::_fullFence:
 353       break;  // InlineNatives does not control String.compareTo
 354     case vmIntrinsics::_Reference_get:
 355       break;  // InlineNatives does not control Reference.get
 356     default:
 357       return NULL;
 358     }
 359   }
 360 
 361   int predicates = 0;
 362   bool does_virtual_dispatch = false;
 363 
 364   switch (id) {
 365   case vmIntrinsics::_compareTo:
 366     if (!SpecialStringCompareTo)  return NULL;
 367     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 368     break;
 369   case vmIntrinsics::_indexOf:
 370     if (!SpecialStringIndexOf)  return NULL;
 371     break;
 372   case vmIntrinsics::_equals:
 373     if (!SpecialStringEquals)  return NULL;
 374     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 375     break;
 376   case vmIntrinsics::_equalsC:
 377     if (!SpecialArraysEquals)  return NULL;
 378     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 379     break;
 380   case vmIntrinsics::_arraycopy:
 381     if (!InlineArrayCopy)  return NULL;
 382     break;
 383   case vmIntrinsics::_copyMemory:
 384     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 385     if (!InlineArrayCopy)  return NULL;
 386     break;
 387   case vmIntrinsics::_hashCode:
 388     if (!InlineObjectHash)  return NULL;
 389     does_virtual_dispatch = true;
 390     break;
 391   case vmIntrinsics::_clone:
 392     does_virtual_dispatch = true;
 393   case vmIntrinsics::_copyOf:
 394   case vmIntrinsics::_copyOfRange:
 395     if (!InlineObjectCopy)  return NULL;
 396     // These also use the arraycopy intrinsic mechanism:
 397     if (!InlineArrayCopy)  return NULL;
 398     break;
 399   case vmIntrinsics::_encodeISOArray:
 400     if (!SpecialEncodeISOArray)  return NULL;
 401     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 402     break;
 403   case vmIntrinsics::_checkIndex:
 404     // We do not intrinsify this.  The optimizer does fine with it.
 405     return NULL;
 406 
 407   case vmIntrinsics::_getCallerClass:
 408     if (!InlineReflectionGetCallerClass)  return NULL;
 409     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 410     break;
 411 
 412   case vmIntrinsics::_bitCount_i:
 413     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 414     break;
 415 
 416   case vmIntrinsics::_bitCount_l:
 417     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 418     break;
 419 
 420   case vmIntrinsics::_numberOfLeadingZeros_i:
 421     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 422     break;
 423 
 424   case vmIntrinsics::_numberOfLeadingZeros_l:
 425     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 426     break;
 427 
 428   case vmIntrinsics::_numberOfTrailingZeros_i:
 429     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 430     break;
 431 
 432   case vmIntrinsics::_numberOfTrailingZeros_l:
 433     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 434     break;
 435 
 436   case vmIntrinsics::_reverseBytes_c:
 437     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 438     break;
 439   case vmIntrinsics::_reverseBytes_s:
 440     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 441     break;
 442   case vmIntrinsics::_reverseBytes_i:
 443     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 444     break;
 445   case vmIntrinsics::_reverseBytes_l:
 446     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 447     break;
 448 
 449   case vmIntrinsics::_Reference_get:
 450     // Use the intrinsic version of Reference.get() so that the value in
 451     // the referent field can be registered by the G1 pre-barrier code.
 452     // Also add memory barrier to prevent commoning reads from this field
 453     // across safepoint since GC can change it value.
 454     break;
 455 
 456   case vmIntrinsics::_compareAndSwapObject:
 457 #ifdef _LP64
 458     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 459 #endif
 460     break;
 461 
 462   case vmIntrinsics::_compareAndSwapLong:
 463     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 464     break;
 465 
 466   case vmIntrinsics::_getAndAddInt:
 467     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 468     break;
 469 
 470   case vmIntrinsics::_getAndAddLong:
 471     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 472     break;
 473 
 474   case vmIntrinsics::_getAndSetInt:
 475     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 476     break;
 477 
 478   case vmIntrinsics::_getAndSetLong:
 479     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 480     break;
 481 
 482   case vmIntrinsics::_getAndSetObject:
 483 #ifdef _LP64
 484     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 485     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 486     break;
 487 #else
 488     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 489     break;
 490 #endif
 491 
 492   case vmIntrinsics::_aescrypt_encryptBlock:
 493   case vmIntrinsics::_aescrypt_decryptBlock:
 494     if (!UseAESIntrinsics) return NULL;
 495     break;
 496 
 497   case vmIntrinsics::_multiplyToLen:
 498     if (!UseMultiplyToLenIntrinsic) return NULL;
 499     break;
 500 
 501   case vmIntrinsics::_squareToLen:
 502     if (!UseSquareToLenIntrinsic) return NULL;
 503     break;
 504 
 505   case vmIntrinsics::_mulAdd:
 506     if (!UseMulAddIntrinsic) return NULL;
 507     break;
 508 
 509   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 510   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 511     if (!UseAESIntrinsics) return NULL;
 512     // these two require the predicated logic
 513     predicates = 1;
 514     break;
 515 
 516   case vmIntrinsics::_sha_implCompress:
 517     if (!UseSHA1Intrinsics) return NULL;
 518     break;
 519 
 520   case vmIntrinsics::_sha2_implCompress:
 521     if (!UseSHA256Intrinsics) return NULL;
 522     break;
 523 
 524   case vmIntrinsics::_sha5_implCompress:
 525     if (!UseSHA512Intrinsics) return NULL;
 526     break;
 527 
 528   case vmIntrinsics::_digestBase_implCompressMB:
 529     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
 530     predicates = 3;
 531     break;
 532 
 533   case vmIntrinsics::_ghash_processBlocks:
 534     if (!UseGHASHIntrinsics) return NULL;
 535     break;
 536 
 537   case vmIntrinsics::_updateCRC32:
 538   case vmIntrinsics::_updateBytesCRC32:
 539   case vmIntrinsics::_updateByteBufferCRC32:
 540     if (!UseCRC32Intrinsics) return NULL;
 541     break;
 542 
 543   case vmIntrinsics::_incrementExactI:
 544   case vmIntrinsics::_addExactI:
 545     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 546     break;
 547   case vmIntrinsics::_incrementExactL:
 548   case vmIntrinsics::_addExactL:
 549     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 550     break;
 551   case vmIntrinsics::_decrementExactI:
 552   case vmIntrinsics::_subtractExactI:
 553     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 554     break;
 555   case vmIntrinsics::_decrementExactL:
 556   case vmIntrinsics::_subtractExactL:
 557     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 558     break;
 559   case vmIntrinsics::_negateExactI:
 560     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 561     break;
 562   case vmIntrinsics::_negateExactL:
 563     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 564     break;
 565   case vmIntrinsics::_multiplyExactI:
 566     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 567     break;
 568   case vmIntrinsics::_multiplyExactL:
 569     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 570     break;
 571 
 572   case vmIntrinsics::_getShortUnaligned:
 573   case vmIntrinsics::_getCharUnaligned:
 574   case vmIntrinsics::_getIntUnaligned:
 575   case vmIntrinsics::_getLongUnaligned:
 576   case vmIntrinsics::_putShortUnaligned:
 577   case vmIntrinsics::_putCharUnaligned:
 578   case vmIntrinsics::_putIntUnaligned:
 579   case vmIntrinsics::_putLongUnaligned:
 580     if (!UseUnalignedAccesses) return NULL;
 581     break;
 582 
 583  default:
 584     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 585     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 586     break;
 587   }
 588 
 589   // -XX:-InlineClassNatives disables natives from the Class class.
 590   // The flag applies to all reflective calls, notably Array.newArray
 591   // (visible to Java programmers as Array.newInstance).
 592   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 593       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 594     if (!InlineClassNatives)  return NULL;
 595   }
 596 
 597   // -XX:-InlineThreadNatives disables natives from the Thread class.
 598   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 599     if (!InlineThreadNatives)  return NULL;
 600   }
 601 
 602   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 603   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 604       m->holder()->name() == ciSymbol::java_lang_Float() ||
 605       m->holder()->name() == ciSymbol::java_lang_Double()) {
 606     if (!InlineMathNatives)  return NULL;
 607   }
 608 
 609   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 610   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 611     if (!InlineUnsafeOps)  return NULL;
 612   }
 613 
 614   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
 615 }
 616 
 617 //----------------------register_library_intrinsics-----------------------
 618 // Initialize this file's data structures, for each Compile instance.
 619 void Compile::register_library_intrinsics() {
 620   // Nothing to do here.
 621 }
 622 
 623 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 624   LibraryCallKit kit(jvms, this);
 625   Compile* C = kit.C;
 626   int nodes = C->unique();
 627 #ifndef PRODUCT
 628   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 629     char buf[1000];
 630     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 631     tty->print_cr("Intrinsic %s", str);
 632   }
 633 #endif
 634   ciMethod* callee = kit.callee();
 635   const int bci    = kit.bci();
 636 
 637   // Try to inline the intrinsic.
 638   if (kit.try_to_inline(_last_predicate)) {
 639     if (C->print_intrinsics() || C->print_inlining()) {
 640       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 641     }
 642     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 643     if (C->log()) {
 644       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 645                      vmIntrinsics::name_at(intrinsic_id()),
 646                      (is_virtual() ? " virtual='1'" : ""),
 647                      C->unique() - nodes);
 648     }
 649     // Push the result from the inlined method onto the stack.
 650     kit.push_result();
 651     C->print_inlining_update(this);
 652     return kit.transfer_exceptions_into_jvms();
 653   }
 654 
 655   // The intrinsic bailed out
 656   if (C->print_intrinsics() || C->print_inlining()) {
 657     if (jvms->has_method()) {
 658       // Not a root compile.
 659       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 660       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 661     } else {
 662       // Root compile
 663       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 664                vmIntrinsics::name_at(intrinsic_id()),
 665                (is_virtual() ? " (virtual)" : ""), bci);
 666     }
 667   }
 668   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 669   C->print_inlining_update(this);
 670   return NULL;
 671 }
 672 
 673 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 674   LibraryCallKit kit(jvms, this);
 675   Compile* C = kit.C;
 676   int nodes = C->unique();
 677   _last_predicate = predicate;
 678 #ifndef PRODUCT
 679   assert(is_predicated() && predicate < predicates_count(), "sanity");
 680   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 681     char buf[1000];
 682     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 683     tty->print_cr("Predicate for intrinsic %s", str);
 684   }
 685 #endif
 686   ciMethod* callee = kit.callee();
 687   const int bci    = kit.bci();
 688 
 689   Node* slow_ctl = kit.try_to_predicate(predicate);
 690   if (!kit.failing()) {
 691     if (C->print_intrinsics() || C->print_inlining()) {
 692       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 693     }
 694     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 695     if (C->log()) {
 696       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 697                      vmIntrinsics::name_at(intrinsic_id()),
 698                      (is_virtual() ? " virtual='1'" : ""),
 699                      C->unique() - nodes);
 700     }
 701     return slow_ctl; // Could be NULL if the check folds.
 702   }
 703 
 704   // The intrinsic bailed out
 705   if (C->print_intrinsics() || C->print_inlining()) {
 706     if (jvms->has_method()) {
 707       // Not a root compile.
 708       const char* msg = "failed to generate predicate for intrinsic";
 709       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 710     } else {
 711       // Root compile
 712       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 713                                         vmIntrinsics::name_at(intrinsic_id()),
 714                                         (is_virtual() ? " (virtual)" : ""), bci);
 715     }
 716   }
 717   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 718   return NULL;
 719 }
 720 
 721 bool LibraryCallKit::try_to_inline(int predicate) {
 722   // Handle symbolic names for otherwise undistinguished boolean switches:
 723   const bool is_store       = true;
 724   const bool is_native_ptr  = true;
 725   const bool is_static      = true;
 726   const bool is_volatile    = true;
 727 
 728   if (!jvms()->has_method()) {
 729     // Root JVMState has a null method.
 730     assert(map()->memory()->Opcode() == Op_Parm, "");
 731     // Insert the memory aliasing node
 732     set_all_memory(reset_memory());
 733   }
 734   assert(merged_memory(), "");
 735 
 736 
 737   switch (intrinsic_id()) {
 738   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 739   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 740   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 741 
 742   case vmIntrinsics::_dsin:
 743   case vmIntrinsics::_dcos:
 744   case vmIntrinsics::_dtan:
 745   case vmIntrinsics::_dabs:
 746   case vmIntrinsics::_datan2:
 747   case vmIntrinsics::_dsqrt:
 748   case vmIntrinsics::_dexp:
 749   case vmIntrinsics::_dlog:
 750   case vmIntrinsics::_dlog10:
 751   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 752 
 753   case vmIntrinsics::_min:
 754   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 755 
 756   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 757   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 758   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 759   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 760   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 761   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 762   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 763   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 764   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 765   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 766   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 767   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 768 
 769   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 770 
 771   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 772   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 773   case vmIntrinsics::_equals:                   return inline_string_equals();
 774 
 775   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 776   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 777   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 778   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 779   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 780   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 781   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 782   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 783   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 784 
 785   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 786   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 787   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 788   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 789   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 790   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 791   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 792   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 793   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 794 
 795   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 796   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 797   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 798   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 799   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 800   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 801   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 802   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 803 
 804   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 805   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 806   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 807   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 808   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 809   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 810   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 811   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 812 
 813   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 814   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 815   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 816   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 817   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 818   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 819   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 820   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 821   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 822 
 823   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 824   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 825   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 826   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 827   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 828   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 829   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 830   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 831   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 832 
 833   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 834   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 835   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 836   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 837 
 838   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 839   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 840   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 841   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 842 
 843   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 844   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 845   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 846 
 847   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 848   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 849   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 850 
 851   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 852   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 853   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 854   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 855   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 856 
 857   case vmIntrinsics::_loadFence:
 858   case vmIntrinsics::_storeFence:
 859   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 860 
 861   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 862   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 863 
 864 #ifdef TRACE_HAVE_INTRINSICS
 865   case vmIntrinsics::_classID:                  return inline_native_classID();
 866   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 867   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 868 #endif
 869   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 870   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 871   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 872   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 873   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 874   case vmIntrinsics::_getLength:                return inline_native_getLength();
 875   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 876   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 877   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 878   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 879 
 880   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 881 
 882   case vmIntrinsics::_isInstance:
 883   case vmIntrinsics::_getModifiers:
 884   case vmIntrinsics::_isInterface:
 885   case vmIntrinsics::_isArray:
 886   case vmIntrinsics::_isPrimitive:
 887   case vmIntrinsics::_getSuperclass:
 888   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 889 
 890   case vmIntrinsics::_floatToRawIntBits:
 891   case vmIntrinsics::_floatToIntBits:
 892   case vmIntrinsics::_intBitsToFloat:
 893   case vmIntrinsics::_doubleToRawLongBits:
 894   case vmIntrinsics::_doubleToLongBits:
 895   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 896 
 897   case vmIntrinsics::_numberOfLeadingZeros_i:
 898   case vmIntrinsics::_numberOfLeadingZeros_l:
 899   case vmIntrinsics::_numberOfTrailingZeros_i:
 900   case vmIntrinsics::_numberOfTrailingZeros_l:
 901   case vmIntrinsics::_bitCount_i:
 902   case vmIntrinsics::_bitCount_l:
 903   case vmIntrinsics::_reverseBytes_i:
 904   case vmIntrinsics::_reverseBytes_l:
 905   case vmIntrinsics::_reverseBytes_s:
 906   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 907 
 908   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 909 
 910   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 911 
 912   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 913 
 914   case vmIntrinsics::_aescrypt_encryptBlock:
 915   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 916 
 917   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 918   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 919     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 920 
 921   case vmIntrinsics::_sha_implCompress:
 922   case vmIntrinsics::_sha2_implCompress:
 923   case vmIntrinsics::_sha5_implCompress:
 924     return inline_sha_implCompress(intrinsic_id());
 925 
 926   case vmIntrinsics::_digestBase_implCompressMB:
 927     return inline_digestBase_implCompressMB(predicate);
 928 
 929   case vmIntrinsics::_multiplyToLen:
 930     return inline_multiplyToLen();
 931 
 932   case vmIntrinsics::_squareToLen:
 933     return inline_squareToLen();
 934 
 935   case vmIntrinsics::_mulAdd:
 936     return inline_mulAdd();
 937 
 938   case vmIntrinsics::_ghash_processBlocks:
 939     return inline_ghash_processBlocks();
 940 
 941   case vmIntrinsics::_encodeISOArray:
 942     return inline_encodeISOArray();
 943 
 944   case vmIntrinsics::_updateCRC32:
 945     return inline_updateCRC32();
 946   case vmIntrinsics::_updateBytesCRC32:
 947     return inline_updateBytesCRC32();
 948   case vmIntrinsics::_updateByteBufferCRC32:
 949     return inline_updateByteBufferCRC32();
 950 
 951   case vmIntrinsics::_profileBoolean:
 952     return inline_profileBoolean();
 953   case vmIntrinsics::_isCompileConstant:
 954     return inline_isCompileConstant();
 955 
 956   default:
 957     // If you get here, it may be that someone has added a new intrinsic
 958     // to the list in vmSymbols.hpp without implementing it here.
 959 #ifndef PRODUCT
 960     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 961       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 962                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 963     }
 964 #endif
 965     return false;
 966   }
 967 }
 968 
 969 Node* LibraryCallKit::try_to_predicate(int predicate) {
 970   if (!jvms()->has_method()) {
 971     // Root JVMState has a null method.
 972     assert(map()->memory()->Opcode() == Op_Parm, "");
 973     // Insert the memory aliasing node
 974     set_all_memory(reset_memory());
 975   }
 976   assert(merged_memory(), "");
 977 
 978   switch (intrinsic_id()) {
 979   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 980     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 981   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 982     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 983   case vmIntrinsics::_digestBase_implCompressMB:
 984     return inline_digestBase_implCompressMB_predicate(predicate);
 985 
 986   default:
 987     // If you get here, it may be that someone has added a new intrinsic
 988     // to the list in vmSymbols.hpp without implementing it here.
 989 #ifndef PRODUCT
 990     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 991       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 992                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 993     }
 994 #endif
 995     Node* slow_ctl = control();
 996     set_control(top()); // No fast path instrinsic
 997     return slow_ctl;
 998   }
 999 }
1000 
1001 //------------------------------set_result-------------------------------
1002 // Helper function for finishing intrinsics.
1003 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
1004   record_for_igvn(region);
1005   set_control(_gvn.transform(region));
1006   set_result( _gvn.transform(value));
1007   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
1008 }
1009 
1010 //------------------------------generate_guard---------------------------
1011 // Helper function for generating guarded fast-slow graph structures.
1012 // The given 'test', if true, guards a slow path.  If the test fails
1013 // then a fast path can be taken.  (We generally hope it fails.)
1014 // In all cases, GraphKit::control() is updated to the fast path.
1015 // The returned value represents the control for the slow path.
1016 // The return value is never 'top'; it is either a valid control
1017 // or NULL if it is obvious that the slow path can never be taken.
1018 // Also, if region and the slow control are not NULL, the slow edge
1019 // is appended to the region.
1020 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
1021   if (stopped()) {
1022     // Already short circuited.
1023     return NULL;
1024   }
1025 
1026   // Build an if node and its projections.
1027   // If test is true we take the slow path, which we assume is uncommon.
1028   if (_gvn.type(test) == TypeInt::ZERO) {
1029     // The slow branch is never taken.  No need to build this guard.
1030     return NULL;
1031   }
1032 
1033   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
1034 
1035   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
1036   if (if_slow == top()) {
1037     // The slow branch is never taken.  No need to build this guard.
1038     return NULL;
1039   }
1040 
1041   if (region != NULL)
1042     region->add_req(if_slow);
1043 
1044   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
1045   set_control(if_fast);
1046 
1047   return if_slow;
1048 }
1049 
1050 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
1051   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
1052 }
1053 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1054   return generate_guard(test, region, PROB_FAIR);
1055 }
1056 
1057 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1058                                                      Node* *pos_index) {
1059   if (stopped())
1060     return NULL;                // already stopped
1061   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1062     return NULL;                // index is already adequately typed
1063   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
1064   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1065   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1066   if (is_neg != NULL && pos_index != NULL) {
1067     // Emulate effect of Parse::adjust_map_after_if.
1068     Node* ccast = new CastIINode(index, TypeInt::POS);
1069     ccast->set_req(0, control());
1070     (*pos_index) = _gvn.transform(ccast);
1071   }
1072   return is_neg;
1073 }
1074 
1075 // Make sure that 'position' is a valid limit index, in [0..length].
1076 // There are two equivalent plans for checking this:
1077 //   A. (offset + copyLength)  unsigned<=  arrayLength
1078 //   B. offset  <=  (arrayLength - copyLength)
1079 // We require that all of the values above, except for the sum and
1080 // difference, are already known to be non-negative.
1081 // Plan A is robust in the face of overflow, if offset and copyLength
1082 // are both hugely positive.
1083 //
1084 // Plan B is less direct and intuitive, but it does not overflow at
1085 // all, since the difference of two non-negatives is always
1086 // representable.  Whenever Java methods must perform the equivalent
1087 // check they generally use Plan B instead of Plan A.
1088 // For the moment we use Plan A.
1089 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1090                                                   Node* subseq_length,
1091                                                   Node* array_length,
1092                                                   RegionNode* region) {
1093   if (stopped())
1094     return NULL;                // already stopped
1095   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1096   if (zero_offset && subseq_length->eqv_uncast(array_length))
1097     return NULL;                // common case of whole-array copy
1098   Node* last = subseq_length;
1099   if (!zero_offset)             // last += offset
1100     last = _gvn.transform(new AddINode(last, offset));
1101   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1102   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1103   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1104   return is_over;
1105 }
1106 
1107 
1108 //--------------------------generate_current_thread--------------------
1109 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1110   ciKlass*    thread_klass = env()->Thread_klass();
1111   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1112   Node* thread = _gvn.transform(new ThreadLocalNode());
1113   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1114   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1115   tls_output = thread;
1116   return threadObj;
1117 }
1118 
1119 
1120 //------------------------------make_string_method_node------------------------
1121 // Helper method for String intrinsic functions. This version is called
1122 // with str1 and str2 pointing to String object nodes.
1123 //
1124 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1125   Node* no_ctrl = NULL;
1126 
1127   // Get start addr of string
1128   Node* str1_value   = load_String_value(no_ctrl, str1);
1129   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1130   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1131 
1132   // Get length of string 1
1133   Node* str1_len  = load_String_length(no_ctrl, str1);
1134 
1135   Node* str2_value   = load_String_value(no_ctrl, str2);
1136   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1137   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1138 
1139   Node* str2_len = NULL;
1140   Node* result = NULL;
1141 
1142   switch (opcode) {
1143   case Op_StrIndexOf:
1144     // Get length of string 2
1145     str2_len = load_String_length(no_ctrl, str2);
1146 
1147     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1148                                 str1_start, str1_len, str2_start, str2_len);
1149     break;
1150   case Op_StrComp:
1151     // Get length of string 2
1152     str2_len = load_String_length(no_ctrl, str2);
1153 
1154     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1155                              str1_start, str1_len, str2_start, str2_len);
1156     break;
1157   case Op_StrEquals:
1158     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1159                                str1_start, str2_start, str1_len);
1160     break;
1161   default:
1162     ShouldNotReachHere();
1163     return NULL;
1164   }
1165 
1166   // All these intrinsics have checks.
1167   C->set_has_split_ifs(true); // Has chance for split-if optimization
1168 
1169   return _gvn.transform(result);
1170 }
1171 
1172 // Helper method for String intrinsic functions. This version is called
1173 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1174 // to Int nodes containing the lenghts of str1 and str2.
1175 //
1176 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1177   Node* result = NULL;
1178   switch (opcode) {
1179   case Op_StrIndexOf:
1180     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1181                                 str1_start, cnt1, str2_start, cnt2);
1182     break;
1183   case Op_StrComp:
1184     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1185                              str1_start, cnt1, str2_start, cnt2);
1186     break;
1187   case Op_StrEquals:
1188     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1189                                str1_start, str2_start, cnt1);
1190     break;
1191   default:
1192     ShouldNotReachHere();
1193     return NULL;
1194   }
1195 
1196   // All these intrinsics have checks.
1197   C->set_has_split_ifs(true); // Has chance for split-if optimization
1198 
1199   return _gvn.transform(result);
1200 }
1201 
1202 //------------------------------inline_string_compareTo------------------------
1203 // public int java.lang.String.compareTo(String anotherString);
1204 bool LibraryCallKit::inline_string_compareTo() {
1205   Node* receiver = null_check(argument(0));
1206   Node* arg      = null_check(argument(1));
1207   if (stopped()) {
1208     return true;
1209   }
1210   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1211   return true;
1212 }
1213 
1214 //------------------------------inline_string_equals------------------------
1215 bool LibraryCallKit::inline_string_equals() {
1216   Node* receiver = null_check_receiver();
1217   // NOTE: Do not null check argument for String.equals() because spec
1218   // allows to specify NULL as argument.
1219   Node* argument = this->argument(1);
1220   if (stopped()) {
1221     return true;
1222   }
1223 
1224   // paths (plus control) merge
1225   RegionNode* region = new RegionNode(5);
1226   Node* phi = new PhiNode(region, TypeInt::BOOL);
1227 
1228   // does source == target string?
1229   Node* cmp = _gvn.transform(new CmpPNode(receiver, argument));
1230   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1231 
1232   Node* if_eq = generate_slow_guard(bol, NULL);
1233   if (if_eq != NULL) {
1234     // receiver == argument
1235     phi->init_req(2, intcon(1));
1236     region->init_req(2, if_eq);
1237   }
1238 
1239   // get String klass for instanceOf
1240   ciInstanceKlass* klass = env()->String_klass();
1241 
1242   if (!stopped()) {
1243     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1244     Node* cmp  = _gvn.transform(new CmpINode(inst, intcon(1)));
1245     Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1246 
1247     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1248     //instanceOf == true, fallthrough
1249 
1250     if (inst_false != NULL) {
1251       phi->init_req(3, intcon(0));
1252       region->init_req(3, inst_false);
1253     }
1254   }
1255 
1256   if (!stopped()) {
1257     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1258 
1259     // Properly cast the argument to String
1260     argument = _gvn.transform(new CheckCastPPNode(control(), argument, string_type));
1261     // This path is taken only when argument's type is String:NotNull.
1262     argument = cast_not_null(argument, false);
1263 
1264     Node* no_ctrl = NULL;
1265 
1266     // Get start addr of receiver
1267     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1268     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1269     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1270 
1271     // Get length of receiver
1272     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1273 
1274     // Get start addr of argument
1275     Node* argument_val    = load_String_value(no_ctrl, argument);
1276     Node* argument_offset = load_String_offset(no_ctrl, argument);
1277     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1278 
1279     // Get length of argument
1280     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1281 
1282     // Check for receiver count != argument count
1283     Node* cmp = _gvn.transform(new CmpINode(receiver_cnt, argument_cnt));
1284     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1285     Node* if_ne = generate_slow_guard(bol, NULL);
1286     if (if_ne != NULL) {
1287       phi->init_req(4, intcon(0));
1288       region->init_req(4, if_ne);
1289     }
1290 
1291     // Check for count == 0 is done by assembler code for StrEquals.
1292 
1293     if (!stopped()) {
1294       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1295       phi->init_req(1, equals);
1296       region->init_req(1, control());
1297     }
1298   }
1299 
1300   // post merge
1301   set_control(_gvn.transform(region));
1302   record_for_igvn(region);
1303 
1304   set_result(_gvn.transform(phi));
1305   return true;
1306 }
1307 
1308 //------------------------------inline_array_equals----------------------------
1309 bool LibraryCallKit::inline_array_equals() {
1310   Node* arg1 = argument(0);
1311   Node* arg2 = argument(1);
1312   set_result(_gvn.transform(new AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1313   return true;
1314 }
1315 
1316 // Java version of String.indexOf(constant string)
1317 // class StringDecl {
1318 //   StringDecl(char[] ca) {
1319 //     offset = 0;
1320 //     count = ca.length;
1321 //     value = ca;
1322 //   }
1323 //   int offset;
1324 //   int count;
1325 //   char[] value;
1326 // }
1327 //
1328 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1329 //                             int targetOffset, int cache_i, int md2) {
1330 //   int cache = cache_i;
1331 //   int sourceOffset = string_object.offset;
1332 //   int sourceCount = string_object.count;
1333 //   int targetCount = target_object.length;
1334 //
1335 //   int targetCountLess1 = targetCount - 1;
1336 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1337 //
1338 //   char[] source = string_object.value;
1339 //   char[] target = target_object;
1340 //   int lastChar = target[targetCountLess1];
1341 //
1342 //  outer_loop:
1343 //   for (int i = sourceOffset; i < sourceEnd; ) {
1344 //     int src = source[i + targetCountLess1];
1345 //     if (src == lastChar) {
1346 //       // With random strings and a 4-character alphabet,
1347 //       // reverse matching at this point sets up 0.8% fewer
1348 //       // frames, but (paradoxically) makes 0.3% more probes.
1349 //       // Since those probes are nearer the lastChar probe,
1350 //       // there is may be a net D$ win with reverse matching.
1351 //       // But, reversing loop inhibits unroll of inner loop
1352 //       // for unknown reason.  So, does running outer loop from
1353 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1354 //       for (int j = 0; j < targetCountLess1; j++) {
1355 //         if (target[targetOffset + j] != source[i+j]) {
1356 //           if ((cache & (1 << source[i+j])) == 0) {
1357 //             if (md2 < j+1) {
1358 //               i += j+1;
1359 //               continue outer_loop;
1360 //             }
1361 //           }
1362 //           i += md2;
1363 //           continue outer_loop;
1364 //         }
1365 //       }
1366 //       return i - sourceOffset;
1367 //     }
1368 //     if ((cache & (1 << src)) == 0) {
1369 //       i += targetCountLess1;
1370 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1371 //     i++;
1372 //   }
1373 //   return -1;
1374 // }
1375 
1376 //------------------------------string_indexOf------------------------
1377 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1378                                      jint cache_i, jint md2_i) {
1379 
1380   Node* no_ctrl  = NULL;
1381   float likely   = PROB_LIKELY(0.9);
1382   float unlikely = PROB_UNLIKELY(0.9);
1383 
1384   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1385 
1386   Node* source        = load_String_value(no_ctrl, string_object);
1387   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1388   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1389 
1390   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1391   jint target_length = target_array->length();
1392   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1393   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1394 
1395   // String.value field is known to be @Stable.
1396   if (UseImplicitStableValues) {
1397     target = cast_array_to_stable(target, target_type);
1398   }
1399 
1400   IdealKit kit(this, false, true);
1401 #define __ kit.
1402   Node* zero             = __ ConI(0);
1403   Node* one              = __ ConI(1);
1404   Node* cache            = __ ConI(cache_i);
1405   Node* md2              = __ ConI(md2_i);
1406   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1407   Node* targetCountLess1 = __ ConI(target_length - 1);
1408   Node* targetOffset     = __ ConI(targetOffset_i);
1409   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1410 
1411   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1412   Node* outer_loop = __ make_label(2 /* goto */);
1413   Node* return_    = __ make_label(1);
1414 
1415   __ set(rtn,__ ConI(-1));
1416   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1417        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1418        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1419        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1420        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1421          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1422               Node* tpj = __ AddI(targetOffset, __ value(j));
1423               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1424               Node* ipj  = __ AddI(__ value(i), __ value(j));
1425               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1426               __ if_then(targ, BoolTest::ne, src2); {
1427                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1428                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1429                     __ increment(i, __ AddI(__ value(j), one));
1430                     __ goto_(outer_loop);
1431                   } __ end_if(); __ dead(j);
1432                 }__ end_if(); __ dead(j);
1433                 __ increment(i, md2);
1434                 __ goto_(outer_loop);
1435               }__ end_if();
1436               __ increment(j, one);
1437          }__ end_loop(); __ dead(j);
1438          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1439          __ goto_(return_);
1440        }__ end_if();
1441        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1442          __ increment(i, targetCountLess1);
1443        }__ end_if();
1444        __ increment(i, one);
1445        __ bind(outer_loop);
1446   }__ end_loop(); __ dead(i);
1447   __ bind(return_);
1448 
1449   // Final sync IdealKit and GraphKit.
1450   final_sync(kit);
1451   Node* result = __ value(rtn);
1452 #undef __
1453   C->set_has_loops(true);
1454   return result;
1455 }
1456 
1457 //------------------------------inline_string_indexOf------------------------
1458 bool LibraryCallKit::inline_string_indexOf() {
1459   Node* receiver = argument(0);
1460   Node* arg      = argument(1);
1461 
1462   Node* result;
1463   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1464       UseSSE42Intrinsics) {
1465     // Generate SSE4.2 version of indexOf
1466     // We currently only have match rules that use SSE4.2
1467 
1468     receiver = null_check(receiver);
1469     arg      = null_check(arg);
1470     if (stopped()) {
1471       return true;
1472     }
1473 
1474     // Make the merge point
1475     RegionNode* result_rgn = new RegionNode(4);
1476     Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1477     Node* no_ctrl  = NULL;
1478 
1479     // Get start addr of source string
1480     Node* source = load_String_value(no_ctrl, receiver);
1481     Node* source_offset = load_String_offset(no_ctrl, receiver);
1482     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1483 
1484     // Get length of source string
1485     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1486 
1487     // Get start addr of substring
1488     Node* substr = load_String_value(no_ctrl, arg);
1489     Node* substr_offset = load_String_offset(no_ctrl, arg);
1490     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1491 
1492     // Get length of source string
1493     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1494 
1495     // Check for substr count > string count
1496     Node* cmp = _gvn.transform(new CmpINode(substr_cnt, source_cnt));
1497     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1498     Node* if_gt = generate_slow_guard(bol, NULL);
1499     if (if_gt != NULL) {
1500       result_phi->init_req(2, intcon(-1));
1501       result_rgn->init_req(2, if_gt);
1502     }
1503 
1504     if (!stopped()) {
1505       // Check for substr count == 0
1506       cmp = _gvn.transform(new CmpINode(substr_cnt, intcon(0)));
1507       bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1508       Node* if_zero = generate_slow_guard(bol, NULL);
1509       if (if_zero != NULL) {
1510         result_phi->init_req(3, intcon(0));
1511         result_rgn->init_req(3, if_zero);
1512       }
1513     }
1514 
1515     if (!stopped()) {
1516       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1517       result_phi->init_req(1, result);
1518       result_rgn->init_req(1, control());
1519     }
1520     set_control(_gvn.transform(result_rgn));
1521     record_for_igvn(result_rgn);
1522     result = _gvn.transform(result_phi);
1523 
1524   } else { // Use LibraryCallKit::string_indexOf
1525     // don't intrinsify if argument isn't a constant string.
1526     if (!arg->is_Con()) {
1527      return false;
1528     }
1529     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1530     if (str_type == NULL) {
1531       return false;
1532     }
1533     ciInstanceKlass* klass = env()->String_klass();
1534     ciObject* str_const = str_type->const_oop();
1535     if (str_const == NULL || str_const->klass() != klass) {
1536       return false;
1537     }
1538     ciInstance* str = str_const->as_instance();
1539     assert(str != NULL, "must be instance");
1540 
1541     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1542     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1543 
1544     int o;
1545     int c;
1546     if (java_lang_String::has_offset_field()) {
1547       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1548       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1549     } else {
1550       o = 0;
1551       c = pat->length();
1552     }
1553 
1554     // constant strings have no offset and count == length which
1555     // simplifies the resulting code somewhat so lets optimize for that.
1556     if (o != 0 || c != pat->length()) {
1557      return false;
1558     }
1559 
1560     receiver = null_check(receiver, T_OBJECT);
1561     // NOTE: No null check on the argument is needed since it's a constant String oop.
1562     if (stopped()) {
1563       return true;
1564     }
1565 
1566     // The null string as a pattern always returns 0 (match at beginning of string)
1567     if (c == 0) {
1568       set_result(intcon(0));
1569       return true;
1570     }
1571 
1572     // Generate default indexOf
1573     jchar lastChar = pat->char_at(o + (c - 1));
1574     int cache = 0;
1575     int i;
1576     for (i = 0; i < c - 1; i++) {
1577       assert(i < pat->length(), "out of range");
1578       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1579     }
1580 
1581     int md2 = c;
1582     for (i = 0; i < c - 1; i++) {
1583       assert(i < pat->length(), "out of range");
1584       if (pat->char_at(o + i) == lastChar) {
1585         md2 = (c - 1) - i;
1586       }
1587     }
1588 
1589     result = string_indexOf(receiver, pat, o, cache, md2);
1590   }
1591   set_result(result);
1592   return true;
1593 }
1594 
1595 //--------------------------round_double_node--------------------------------
1596 // Round a double node if necessary.
1597 Node* LibraryCallKit::round_double_node(Node* n) {
1598   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1599     n = _gvn.transform(new RoundDoubleNode(0, n));
1600   return n;
1601 }
1602 
1603 //------------------------------inline_math-----------------------------------
1604 // public static double Math.abs(double)
1605 // public static double Math.sqrt(double)
1606 // public static double Math.log(double)
1607 // public static double Math.log10(double)
1608 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1609   Node* arg = round_double_node(argument(0));
1610   Node* n;
1611   switch (id) {
1612   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1613   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1614   case vmIntrinsics::_dlog:   n = new LogDNode(C, control(),   arg);  break;
1615   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1616   default:  fatal_unexpected_iid(id);  break;
1617   }
1618   set_result(_gvn.transform(n));
1619   return true;
1620 }
1621 
1622 //------------------------------inline_trig----------------------------------
1623 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1624 // argument reduction which will turn into a fast/slow diamond.
1625 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1626   Node* arg = round_double_node(argument(0));
1627   Node* n = NULL;
1628 
1629   switch (id) {
1630   case vmIntrinsics::_dsin:  n = new SinDNode(C, control(), arg);  break;
1631   case vmIntrinsics::_dcos:  n = new CosDNode(C, control(), arg);  break;
1632   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1633   default:  fatal_unexpected_iid(id);  break;
1634   }
1635   n = _gvn.transform(n);
1636 
1637   // Rounding required?  Check for argument reduction!
1638   if (Matcher::strict_fp_requires_explicit_rounding) {
1639     static const double     pi_4 =  0.7853981633974483;
1640     static const double neg_pi_4 = -0.7853981633974483;
1641     // pi/2 in 80-bit extended precision
1642     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1643     // -pi/2 in 80-bit extended precision
1644     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1645     // Cutoff value for using this argument reduction technique
1646     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1647     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1648 
1649     // Pseudocode for sin:
1650     // if (x <= Math.PI / 4.0) {
1651     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1652     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1653     // } else {
1654     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1655     // }
1656     // return StrictMath.sin(x);
1657 
1658     // Pseudocode for cos:
1659     // if (x <= Math.PI / 4.0) {
1660     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1661     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1662     // } else {
1663     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1664     // }
1665     // return StrictMath.cos(x);
1666 
1667     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1668     // requires a special machine instruction to load it.  Instead we'll try
1669     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1670     // probably do the math inside the SIN encoding.
1671 
1672     // Make the merge point
1673     RegionNode* r = new RegionNode(3);
1674     Node* phi = new PhiNode(r, Type::DOUBLE);
1675 
1676     // Flatten arg so we need only 1 test
1677     Node *abs = _gvn.transform(new AbsDNode(arg));
1678     // Node for PI/4 constant
1679     Node *pi4 = makecon(TypeD::make(pi_4));
1680     // Check PI/4 : abs(arg)
1681     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1682     // Check: If PI/4 < abs(arg) then go slow
1683     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1684     // Branch either way
1685     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1686     set_control(opt_iff(r,iff));
1687 
1688     // Set fast path result
1689     phi->init_req(2, n);
1690 
1691     // Slow path - non-blocking leaf call
1692     Node* call = NULL;
1693     switch (id) {
1694     case vmIntrinsics::_dsin:
1695       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1696                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1697                                "Sin", NULL, arg, top());
1698       break;
1699     case vmIntrinsics::_dcos:
1700       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1701                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1702                                "Cos", NULL, arg, top());
1703       break;
1704     case vmIntrinsics::_dtan:
1705       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1706                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1707                                "Tan", NULL, arg, top());
1708       break;
1709     }
1710     assert(control()->in(0) == call, "");
1711     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1712     r->init_req(1, control());
1713     phi->init_req(1, slow_result);
1714 
1715     // Post-merge
1716     set_control(_gvn.transform(r));
1717     record_for_igvn(r);
1718     n = _gvn.transform(phi);
1719 
1720     C->set_has_split_ifs(true); // Has chance for split-if optimization
1721   }
1722   set_result(n);
1723   return true;
1724 }
1725 
1726 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1727   //-------------------
1728   //result=(result.isNaN())? funcAddr():result;
1729   // Check: If isNaN() by checking result!=result? then either trap
1730   // or go to runtime
1731   Node* cmpisnan = _gvn.transform(new CmpDNode(result, result));
1732   // Build the boolean node
1733   Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq));
1734 
1735   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1736     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1737       // The pow or exp intrinsic returned a NaN, which requires a call
1738       // to the runtime.  Recompile with the runtime call.
1739       uncommon_trap(Deoptimization::Reason_intrinsic,
1740                     Deoptimization::Action_make_not_entrant);
1741     }
1742     return result;
1743   } else {
1744     // If this inlining ever returned NaN in the past, we compile a call
1745     // to the runtime to properly handle corner cases
1746 
1747     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1748     Node* if_slow = _gvn.transform(new IfFalseNode(iff));
1749     Node* if_fast = _gvn.transform(new IfTrueNode(iff));
1750 
1751     if (!if_slow->is_top()) {
1752       RegionNode* result_region = new RegionNode(3);
1753       PhiNode*    result_val = new PhiNode(result_region, Type::DOUBLE);
1754 
1755       result_region->init_req(1, if_fast);
1756       result_val->init_req(1, result);
1757 
1758       set_control(if_slow);
1759 
1760       const TypePtr* no_memory_effects = NULL;
1761       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1762                                    no_memory_effects,
1763                                    x, top(), y, y ? top() : NULL);
1764       Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0));
1765 #ifdef ASSERT
1766       Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1));
1767       assert(value_top == top(), "second value must be top");
1768 #endif
1769 
1770       result_region->init_req(2, control());
1771       result_val->init_req(2, value);
1772       set_control(_gvn.transform(result_region));
1773       return _gvn.transform(result_val);
1774     } else {
1775       return result;
1776     }
1777   }
1778 }
1779 
1780 //------------------------------inline_exp-------------------------------------
1781 // Inline exp instructions, if possible.  The Intel hardware only misses
1782 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1783 bool LibraryCallKit::inline_exp() {
1784   Node* arg = round_double_node(argument(0));
1785   Node* n   = _gvn.transform(new ExpDNode(C, control(), arg));
1786 
1787   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1788   set_result(n);
1789 
1790   C->set_has_split_ifs(true); // Has chance for split-if optimization
1791   return true;
1792 }
1793 
1794 //------------------------------inline_pow-------------------------------------
1795 // Inline power instructions, if possible.
1796 bool LibraryCallKit::inline_pow() {
1797   // Pseudocode for pow
1798   // if (y == 2) {
1799   //   return x * x;
1800   // } else {
1801   //   if (x <= 0.0) {
1802   //     long longy = (long)y;
1803   //     if ((double)longy == y) { // if y is long
1804   //       if (y + 1 == y) longy = 0; // huge number: even
1805   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1806   //     } else {
1807   //       result = NaN;
1808   //     }
1809   //   } else {
1810   //     result = DPow(x,y);
1811   //   }
1812   //   if (result != result)?  {
1813   //     result = uncommon_trap() or runtime_call();
1814   //   }
1815   //   return result;
1816   // }
1817 
1818   Node* x = round_double_node(argument(0));
1819   Node* y = round_double_node(argument(2));
1820 
1821   Node* result = NULL;
1822 
1823   Node*   const_two_node = makecon(TypeD::make(2.0));
1824   Node*   cmp_node       = _gvn.transform(new CmpDNode(y, const_two_node));
1825   Node*   bool_node      = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq));
1826   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1827   Node*   if_true        = _gvn.transform(new IfTrueNode(if_node));
1828   Node*   if_false       = _gvn.transform(new IfFalseNode(if_node));
1829 
1830   RegionNode* region_node = new RegionNode(3);
1831   region_node->init_req(1, if_true);
1832 
1833   Node* phi_node = new PhiNode(region_node, Type::DOUBLE);
1834   // special case for x^y where y == 2, we can convert it to x * x
1835   phi_node->init_req(1, _gvn.transform(new MulDNode(x, x)));
1836 
1837   // set control to if_false since we will now process the false branch
1838   set_control(if_false);
1839 
1840   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1841     // Short form: skip the fancy tests and just check for NaN result.
1842     result = _gvn.transform(new PowDNode(C, control(), x, y));
1843   } else {
1844     // If this inlining ever returned NaN in the past, include all
1845     // checks + call to the runtime.
1846 
1847     // Set the merge point for If node with condition of (x <= 0.0)
1848     // There are four possible paths to region node and phi node
1849     RegionNode *r = new RegionNode(4);
1850     Node *phi = new PhiNode(r, Type::DOUBLE);
1851 
1852     // Build the first if node: if (x <= 0.0)
1853     // Node for 0 constant
1854     Node *zeronode = makecon(TypeD::ZERO);
1855     // Check x:0
1856     Node *cmp = _gvn.transform(new CmpDNode(x, zeronode));
1857     // Check: If (x<=0) then go complex path
1858     Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le ));
1859     // Branch either way
1860     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1861     // Fast path taken; set region slot 3
1862     Node *fast_taken = _gvn.transform(new IfFalseNode(if1));
1863     r->init_req(3,fast_taken); // Capture fast-control
1864 
1865     // Fast path not-taken, i.e. slow path
1866     Node *complex_path = _gvn.transform(new IfTrueNode(if1));
1867 
1868     // Set fast path result
1869     Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y));
1870     phi->init_req(3, fast_result);
1871 
1872     // Complex path
1873     // Build the second if node (if y is long)
1874     // Node for (long)y
1875     Node *longy = _gvn.transform(new ConvD2LNode(y));
1876     // Node for (double)((long) y)
1877     Node *doublelongy= _gvn.transform(new ConvL2DNode(longy));
1878     // Check (double)((long) y) : y
1879     Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y));
1880     // Check if (y isn't long) then go to slow path
1881 
1882     Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne ));
1883     // Branch either way
1884     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1885     Node* ylong_path = _gvn.transform(new IfFalseNode(if2));
1886 
1887     Node *slow_path = _gvn.transform(new IfTrueNode(if2));
1888 
1889     // Calculate DPow(abs(x), y)*(1 & (long)y)
1890     // Node for constant 1
1891     Node *conone = longcon(1);
1892     // 1& (long)y
1893     Node *signnode= _gvn.transform(new AndLNode(conone, longy));
1894 
1895     // A huge number is always even. Detect a huge number by checking
1896     // if y + 1 == y and set integer to be tested for parity to 0.
1897     // Required for corner case:
1898     // (long)9.223372036854776E18 = max_jlong
1899     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1900     // max_jlong is odd but 9.223372036854776E18 is even
1901     Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1))));
1902     Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y));
1903     Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq ));
1904     Node* correctedsign = NULL;
1905     if (ConditionalMoveLimit != 0) {
1906       correctedsign = _gvn.transform(CMoveNode::make(NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1907     } else {
1908       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1909       RegionNode *r = new RegionNode(3);
1910       Node *phi = new PhiNode(r, TypeLong::LONG);
1911       r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1)));
1912       r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1)));
1913       phi->init_req(1, signnode);
1914       phi->init_req(2, longcon(0));
1915       correctedsign = _gvn.transform(phi);
1916       ylong_path = _gvn.transform(r);
1917       record_for_igvn(r);
1918     }
1919 
1920     // zero node
1921     Node *conzero = longcon(0);
1922     // Check (1&(long)y)==0?
1923     Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero));
1924     // Check if (1&(long)y)!=0?, if so the result is negative
1925     Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne ));
1926     // abs(x)
1927     Node *absx=_gvn.transform(new AbsDNode(x));
1928     // abs(x)^y
1929     Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y));
1930     // -abs(x)^y
1931     Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy));
1932     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1933     Node *signresult = NULL;
1934     if (ConditionalMoveLimit != 0) {
1935       signresult = _gvn.transform(CMoveNode::make(NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1936     } else {
1937       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1938       RegionNode *r = new RegionNode(3);
1939       Node *phi = new PhiNode(r, Type::DOUBLE);
1940       r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven)));
1941       r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven)));
1942       phi->init_req(1, absxpowy);
1943       phi->init_req(2, negabsxpowy);
1944       signresult = _gvn.transform(phi);
1945       ylong_path = _gvn.transform(r);
1946       record_for_igvn(r);
1947     }
1948     // Set complex path fast result
1949     r->init_req(2, ylong_path);
1950     phi->init_req(2, signresult);
1951 
1952     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1953     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1954     r->init_req(1,slow_path);
1955     phi->init_req(1,slow_result);
1956 
1957     // Post merge
1958     set_control(_gvn.transform(r));
1959     record_for_igvn(r);
1960     result = _gvn.transform(phi);
1961   }
1962 
1963   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1964 
1965   // control from finish_pow_exp is now input to the region node
1966   region_node->set_req(2, control());
1967   // the result from finish_pow_exp is now input to the phi node
1968   phi_node->init_req(2, result);
1969   set_control(_gvn.transform(region_node));
1970   record_for_igvn(region_node);
1971   set_result(_gvn.transform(phi_node));
1972 
1973   C->set_has_split_ifs(true); // Has chance for split-if optimization
1974   return true;
1975 }
1976 
1977 //------------------------------runtime_math-----------------------------
1978 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1979   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1980          "must be (DD)D or (D)D type");
1981 
1982   // Inputs
1983   Node* a = round_double_node(argument(0));
1984   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1985 
1986   const TypePtr* no_memory_effects = NULL;
1987   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1988                                  no_memory_effects,
1989                                  a, top(), b, b ? top() : NULL);
1990   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1991 #ifdef ASSERT
1992   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1993   assert(value_top == top(), "second value must be top");
1994 #endif
1995 
1996   set_result(value);
1997   return true;
1998 }
1999 
2000 //------------------------------inline_math_native-----------------------------
2001 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
2002 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
2003   switch (id) {
2004     // These intrinsics are not properly supported on all hardware
2005   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
2006     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
2007   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
2008     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
2009   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
2010     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
2011 
2012   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
2013     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
2014   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
2015     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
2016 
2017     // These intrinsics are supported on all hardware
2018   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
2019   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
2020 
2021   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
2022     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
2023   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
2024     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
2025 #undef FN_PTR
2026 
2027    // These intrinsics are not yet correctly implemented
2028   case vmIntrinsics::_datan2:
2029     return false;
2030 
2031   default:
2032     fatal_unexpected_iid(id);
2033     return false;
2034   }
2035 }
2036 
2037 static bool is_simple_name(Node* n) {
2038   return (n->req() == 1         // constant
2039           || (n->is_Type() && n->as_Type()->type()->singleton())
2040           || n->is_Proj()       // parameter or return value
2041           || n->is_Phi()        // local of some sort
2042           );
2043 }
2044 
2045 //----------------------------inline_min_max-----------------------------------
2046 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
2047   set_result(generate_min_max(id, argument(0), argument(1)));
2048   return true;
2049 }
2050 
2051 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2052   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
2053   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2054   Node* fast_path = _gvn.transform( new IfFalseNode(check));
2055   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
2056 
2057   {
2058     PreserveJVMState pjvms(this);
2059     PreserveReexecuteState preexecs(this);
2060     jvms()->set_should_reexecute(true);
2061 
2062     set_control(slow_path);
2063     set_i_o(i_o());
2064 
2065     uncommon_trap(Deoptimization::Reason_intrinsic,
2066                   Deoptimization::Action_none);
2067   }
2068 
2069   set_control(fast_path);
2070   set_result(math);
2071 }
2072 
2073 template <typename OverflowOp>
2074 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2075   typedef typename OverflowOp::MathOp MathOp;
2076 
2077   MathOp* mathOp = new MathOp(arg1, arg2);
2078   Node* operation = _gvn.transform( mathOp );
2079   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2080   inline_math_mathExact(operation, ofcheck);
2081   return true;
2082 }
2083 
2084 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2085   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2086 }
2087 
2088 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2089   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2090 }
2091 
2092 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2093   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2094 }
2095 
2096 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2097   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2098 }
2099 
2100 bool LibraryCallKit::inline_math_negateExactI() {
2101   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2102 }
2103 
2104 bool LibraryCallKit::inline_math_negateExactL() {
2105   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2106 }
2107 
2108 bool LibraryCallKit::inline_math_multiplyExactI() {
2109   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2110 }
2111 
2112 bool LibraryCallKit::inline_math_multiplyExactL() {
2113   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2114 }
2115 
2116 Node*
2117 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2118   // These are the candidate return value:
2119   Node* xvalue = x0;
2120   Node* yvalue = y0;
2121 
2122   if (xvalue == yvalue) {
2123     return xvalue;
2124   }
2125 
2126   bool want_max = (id == vmIntrinsics::_max);
2127 
2128   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2129   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2130   if (txvalue == NULL || tyvalue == NULL)  return top();
2131   // This is not really necessary, but it is consistent with a
2132   // hypothetical MaxINode::Value method:
2133   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2134 
2135   // %%% This folding logic should (ideally) be in a different place.
2136   // Some should be inside IfNode, and there to be a more reliable
2137   // transformation of ?: style patterns into cmoves.  We also want
2138   // more powerful optimizations around cmove and min/max.
2139 
2140   // Try to find a dominating comparison of these guys.
2141   // It can simplify the index computation for Arrays.copyOf
2142   // and similar uses of System.arraycopy.
2143   // First, compute the normalized version of CmpI(x, y).
2144   int   cmp_op = Op_CmpI;
2145   Node* xkey = xvalue;
2146   Node* ykey = yvalue;
2147   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2148   if (ideal_cmpxy->is_Cmp()) {
2149     // E.g., if we have CmpI(length - offset, count),
2150     // it might idealize to CmpI(length, count + offset)
2151     cmp_op = ideal_cmpxy->Opcode();
2152     xkey = ideal_cmpxy->in(1);
2153     ykey = ideal_cmpxy->in(2);
2154   }
2155 
2156   // Start by locating any relevant comparisons.
2157   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2158   Node* cmpxy = NULL;
2159   Node* cmpyx = NULL;
2160   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2161     Node* cmp = start_from->fast_out(k);
2162     if (cmp->outcnt() > 0 &&            // must have prior uses
2163         cmp->in(0) == NULL &&           // must be context-independent
2164         cmp->Opcode() == cmp_op) {      // right kind of compare
2165       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2166       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2167     }
2168   }
2169 
2170   const int NCMPS = 2;
2171   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2172   int cmpn;
2173   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2174     if (cmps[cmpn] != NULL)  break;     // find a result
2175   }
2176   if (cmpn < NCMPS) {
2177     // Look for a dominating test that tells us the min and max.
2178     int depth = 0;                // Limit search depth for speed
2179     Node* dom = control();
2180     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2181       if (++depth >= 100)  break;
2182       Node* ifproj = dom;
2183       if (!ifproj->is_Proj())  continue;
2184       Node* iff = ifproj->in(0);
2185       if (!iff->is_If())  continue;
2186       Node* bol = iff->in(1);
2187       if (!bol->is_Bool())  continue;
2188       Node* cmp = bol->in(1);
2189       if (cmp == NULL)  continue;
2190       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2191         if (cmps[cmpn] == cmp)  break;
2192       if (cmpn == NCMPS)  continue;
2193       BoolTest::mask btest = bol->as_Bool()->_test._test;
2194       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2195       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2196       // At this point, we know that 'x btest y' is true.
2197       switch (btest) {
2198       case BoolTest::eq:
2199         // They are proven equal, so we can collapse the min/max.
2200         // Either value is the answer.  Choose the simpler.
2201         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2202           return yvalue;
2203         return xvalue;
2204       case BoolTest::lt:          // x < y
2205       case BoolTest::le:          // x <= y
2206         return (want_max ? yvalue : xvalue);
2207       case BoolTest::gt:          // x > y
2208       case BoolTest::ge:          // x >= y
2209         return (want_max ? xvalue : yvalue);
2210       }
2211     }
2212   }
2213 
2214   // We failed to find a dominating test.
2215   // Let's pick a test that might GVN with prior tests.
2216   Node*          best_bol   = NULL;
2217   BoolTest::mask best_btest = BoolTest::illegal;
2218   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2219     Node* cmp = cmps[cmpn];
2220     if (cmp == NULL)  continue;
2221     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2222       Node* bol = cmp->fast_out(j);
2223       if (!bol->is_Bool())  continue;
2224       BoolTest::mask btest = bol->as_Bool()->_test._test;
2225       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2226       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2227       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2228         best_bol   = bol->as_Bool();
2229         best_btest = btest;
2230       }
2231     }
2232   }
2233 
2234   Node* answer_if_true  = NULL;
2235   Node* answer_if_false = NULL;
2236   switch (best_btest) {
2237   default:
2238     if (cmpxy == NULL)
2239       cmpxy = ideal_cmpxy;
2240     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2241     // and fall through:
2242   case BoolTest::lt:          // x < y
2243   case BoolTest::le:          // x <= y
2244     answer_if_true  = (want_max ? yvalue : xvalue);
2245     answer_if_false = (want_max ? xvalue : yvalue);
2246     break;
2247   case BoolTest::gt:          // x > y
2248   case BoolTest::ge:          // x >= y
2249     answer_if_true  = (want_max ? xvalue : yvalue);
2250     answer_if_false = (want_max ? yvalue : xvalue);
2251     break;
2252   }
2253 
2254   jint hi, lo;
2255   if (want_max) {
2256     // We can sharpen the minimum.
2257     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2258     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2259   } else {
2260     // We can sharpen the maximum.
2261     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2262     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2263   }
2264 
2265   // Use a flow-free graph structure, to avoid creating excess control edges
2266   // which could hinder other optimizations.
2267   // Since Math.min/max is often used with arraycopy, we want
2268   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2269   Node* cmov = CMoveNode::make(NULL, best_bol,
2270                                answer_if_false, answer_if_true,
2271                                TypeInt::make(lo, hi, widen));
2272 
2273   return _gvn.transform(cmov);
2274 
2275   /*
2276   // This is not as desirable as it may seem, since Min and Max
2277   // nodes do not have a full set of optimizations.
2278   // And they would interfere, anyway, with 'if' optimizations
2279   // and with CMoveI canonical forms.
2280   switch (id) {
2281   case vmIntrinsics::_min:
2282     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2283   case vmIntrinsics::_max:
2284     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2285   default:
2286     ShouldNotReachHere();
2287   }
2288   */
2289 }
2290 
2291 inline int
2292 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2293   const TypePtr* base_type = TypePtr::NULL_PTR;
2294   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2295   if (base_type == NULL) {
2296     // Unknown type.
2297     return Type::AnyPtr;
2298   } else if (base_type == TypePtr::NULL_PTR) {
2299     // Since this is a NULL+long form, we have to switch to a rawptr.
2300     base   = _gvn.transform(new CastX2PNode(offset));
2301     offset = MakeConX(0);
2302     return Type::RawPtr;
2303   } else if (base_type->base() == Type::RawPtr) {
2304     return Type::RawPtr;
2305   } else if (base_type->isa_oopptr()) {
2306     // Base is never null => always a heap address.
2307     if (base_type->ptr() == TypePtr::NotNull) {
2308       return Type::OopPtr;
2309     }
2310     // Offset is small => always a heap address.
2311     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2312     if (offset_type != NULL &&
2313         base_type->offset() == 0 &&     // (should always be?)
2314         offset_type->_lo >= 0 &&
2315         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2316       return Type::OopPtr;
2317     }
2318     // Otherwise, it might either be oop+off or NULL+addr.
2319     return Type::AnyPtr;
2320   } else {
2321     // No information:
2322     return Type::AnyPtr;
2323   }
2324 }
2325 
2326 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2327   int kind = classify_unsafe_addr(base, offset);
2328   if (kind == Type::RawPtr) {
2329     return basic_plus_adr(top(), base, offset);
2330   } else {
2331     return basic_plus_adr(base, offset);
2332   }
2333 }
2334 
2335 //--------------------------inline_number_methods-----------------------------
2336 // inline int     Integer.numberOfLeadingZeros(int)
2337 // inline int        Long.numberOfLeadingZeros(long)
2338 //
2339 // inline int     Integer.numberOfTrailingZeros(int)
2340 // inline int        Long.numberOfTrailingZeros(long)
2341 //
2342 // inline int     Integer.bitCount(int)
2343 // inline int        Long.bitCount(long)
2344 //
2345 // inline char  Character.reverseBytes(char)
2346 // inline short     Short.reverseBytes(short)
2347 // inline int     Integer.reverseBytes(int)
2348 // inline long       Long.reverseBytes(long)
2349 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2350   Node* arg = argument(0);
2351   Node* n;
2352   switch (id) {
2353   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2354   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2355   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2356   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2357   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2358   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2359   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2360   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2361   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2362   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2363   default:  fatal_unexpected_iid(id);  break;
2364   }
2365   set_result(_gvn.transform(n));
2366   return true;
2367 }
2368 
2369 //----------------------------inline_unsafe_access----------------------------
2370 
2371 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2372 
2373 // Helper that guards and inserts a pre-barrier.
2374 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2375                                         Node* pre_val, bool need_mem_bar) {
2376   // We could be accessing the referent field of a reference object. If so, when G1
2377   // is enabled, we need to log the value in the referent field in an SATB buffer.
2378   // This routine performs some compile time filters and generates suitable
2379   // runtime filters that guard the pre-barrier code.
2380   // Also add memory barrier for non volatile load from the referent field
2381   // to prevent commoning of loads across safepoint.
2382   if (!UseG1GC && !need_mem_bar)
2383     return;
2384 
2385   // Some compile time checks.
2386 
2387   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2388   const TypeX* otype = offset->find_intptr_t_type();
2389   if (otype != NULL && otype->is_con() &&
2390       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2391     // Constant offset but not the reference_offset so just return
2392     return;
2393   }
2394 
2395   // We only need to generate the runtime guards for instances.
2396   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2397   if (btype != NULL) {
2398     if (btype->isa_aryptr()) {
2399       // Array type so nothing to do
2400       return;
2401     }
2402 
2403     const TypeInstPtr* itype = btype->isa_instptr();
2404     if (itype != NULL) {
2405       // Can the klass of base_oop be statically determined to be
2406       // _not_ a sub-class of Reference and _not_ Object?
2407       ciKlass* klass = itype->klass();
2408       if ( klass->is_loaded() &&
2409           !klass->is_subtype_of(env()->Reference_klass()) &&
2410           !env()->Object_klass()->is_subtype_of(klass)) {
2411         return;
2412       }
2413     }
2414   }
2415 
2416   // The compile time filters did not reject base_oop/offset so
2417   // we need to generate the following runtime filters
2418   //
2419   // if (offset == java_lang_ref_Reference::_reference_offset) {
2420   //   if (instance_of(base, java.lang.ref.Reference)) {
2421   //     pre_barrier(_, pre_val, ...);
2422   //   }
2423   // }
2424 
2425   float likely   = PROB_LIKELY(  0.999);
2426   float unlikely = PROB_UNLIKELY(0.999);
2427 
2428   IdealKit ideal(this);
2429 #define __ ideal.
2430 
2431   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2432 
2433   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2434       // Update graphKit memory and control from IdealKit.
2435       sync_kit(ideal);
2436 
2437       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2438       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2439 
2440       // Update IdealKit memory and control from graphKit.
2441       __ sync_kit(this);
2442 
2443       Node* one = __ ConI(1);
2444       // is_instof == 0 if base_oop == NULL
2445       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2446 
2447         // Update graphKit from IdeakKit.
2448         sync_kit(ideal);
2449 
2450         // Use the pre-barrier to record the value in the referent field
2451         pre_barrier(false /* do_load */,
2452                     __ ctrl(),
2453                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2454                     pre_val /* pre_val */,
2455                     T_OBJECT);
2456         if (need_mem_bar) {
2457           // Add memory barrier to prevent commoning reads from this field
2458           // across safepoint since GC can change its value.
2459           insert_mem_bar(Op_MemBarCPUOrder);
2460         }
2461         // Update IdealKit from graphKit.
2462         __ sync_kit(this);
2463 
2464       } __ end_if(); // _ref_type != ref_none
2465   } __ end_if(); // offset == referent_offset
2466 
2467   // Final sync IdealKit and GraphKit.
2468   final_sync(ideal);
2469 #undef __
2470 }
2471 
2472 
2473 // Interpret Unsafe.fieldOffset cookies correctly:
2474 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2475 
2476 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2477   // Attempt to infer a sharper value type from the offset and base type.
2478   ciKlass* sharpened_klass = NULL;
2479 
2480   // See if it is an instance field, with an object type.
2481   if (alias_type->field() != NULL) {
2482     assert(!is_native_ptr, "native pointer op cannot use a java address");
2483     if (alias_type->field()->type()->is_klass()) {
2484       sharpened_klass = alias_type->field()->type()->as_klass();
2485     }
2486   }
2487 
2488   // See if it is a narrow oop array.
2489   if (adr_type->isa_aryptr()) {
2490     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2491       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2492       if (elem_type != NULL) {
2493         sharpened_klass = elem_type->klass();
2494       }
2495     }
2496   }
2497 
2498   // The sharpened class might be unloaded if there is no class loader
2499   // contraint in place.
2500   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2501     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2502 
2503 #ifndef PRODUCT
2504     if (C->print_intrinsics() || C->print_inlining()) {
2505       tty->print("  from base type: ");  adr_type->dump();
2506       tty->print("  sharpened value: ");  tjp->dump();
2507     }
2508 #endif
2509     // Sharpen the value type.
2510     return tjp;
2511   }
2512   return NULL;
2513 }
2514 
2515 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2516   if (callee()->is_static())  return false;  // caller must have the capability!
2517 
2518 #ifndef PRODUCT
2519   {
2520     ResourceMark rm;
2521     // Check the signatures.
2522     ciSignature* sig = callee()->signature();
2523 #ifdef ASSERT
2524     if (!is_store) {
2525       // Object getObject(Object base, int/long offset), etc.
2526       BasicType rtype = sig->return_type()->basic_type();
2527       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2528           rtype = T_ADDRESS;  // it is really a C void*
2529       assert(rtype == type, "getter must return the expected value");
2530       if (!is_native_ptr) {
2531         assert(sig->count() == 2, "oop getter has 2 arguments");
2532         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2533         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2534       } else {
2535         assert(sig->count() == 1, "native getter has 1 argument");
2536         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2537       }
2538     } else {
2539       // void putObject(Object base, int/long offset, Object x), etc.
2540       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2541       if (!is_native_ptr) {
2542         assert(sig->count() == 3, "oop putter has 3 arguments");
2543         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2544         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2545       } else {
2546         assert(sig->count() == 2, "native putter has 2 arguments");
2547         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2548       }
2549       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2550       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2551         vtype = T_ADDRESS;  // it is really a C void*
2552       assert(vtype == type, "putter must accept the expected value");
2553     }
2554 #endif // ASSERT
2555  }
2556 #endif //PRODUCT
2557 
2558   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2559 
2560   Node* receiver = argument(0);  // type: oop
2561 
2562   // Build address expression.
2563   Node* adr;
2564   Node* heap_base_oop = top();
2565   Node* offset = top();
2566   Node* val;
2567 
2568   if (!is_native_ptr) {
2569     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2570     Node* base = argument(1);  // type: oop
2571     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2572     offset = argument(2);  // type: long
2573     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2574     // to be plain byte offsets, which are also the same as those accepted
2575     // by oopDesc::field_base.
2576     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2577            "fieldOffset must be byte-scaled");
2578     // 32-bit machines ignore the high half!
2579     offset = ConvL2X(offset);
2580     adr = make_unsafe_address(base, offset);
2581     heap_base_oop = base;
2582     val = is_store ? argument(4) : NULL;
2583   } else {
2584     Node* ptr = argument(1);  // type: long
2585     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2586     adr = make_unsafe_address(NULL, ptr);
2587     val = is_store ? argument(3) : NULL;
2588   }
2589 
2590   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2591 
2592   // First guess at the value type.
2593   const Type *value_type = Type::get_const_basic_type(type);
2594 
2595   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2596   // there was not enough information to nail it down.
2597   Compile::AliasType* alias_type = C->alias_type(adr_type);
2598   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2599 
2600   // We will need memory barriers unless we can determine a unique
2601   // alias category for this reference.  (Note:  If for some reason
2602   // the barriers get omitted and the unsafe reference begins to "pollute"
2603   // the alias analysis of the rest of the graph, either Compile::can_alias
2604   // or Compile::must_alias will throw a diagnostic assert.)
2605   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2606 
2607   // If we are reading the value of the referent field of a Reference
2608   // object (either by using Unsafe directly or through reflection)
2609   // then, if G1 is enabled, we need to record the referent in an
2610   // SATB log buffer using the pre-barrier mechanism.
2611   // Also we need to add memory barrier to prevent commoning reads
2612   // from this field across safepoint since GC can change its value.
2613   bool need_read_barrier = !is_native_ptr && !is_store &&
2614                            offset != top() && heap_base_oop != top();
2615 
2616   if (!is_store && type == T_OBJECT) {
2617     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2618     if (tjp != NULL) {
2619       value_type = tjp;
2620     }
2621   }
2622 
2623   receiver = null_check(receiver);
2624   if (stopped()) {
2625     return true;
2626   }
2627   // Heap pointers get a null-check from the interpreter,
2628   // as a courtesy.  However, this is not guaranteed by Unsafe,
2629   // and it is not possible to fully distinguish unintended nulls
2630   // from intended ones in this API.
2631 
2632   if (is_volatile) {
2633     // We need to emit leading and trailing CPU membars (see below) in
2634     // addition to memory membars when is_volatile. This is a little
2635     // too strong, but avoids the need to insert per-alias-type
2636     // volatile membars (for stores; compare Parse::do_put_xxx), which
2637     // we cannot do effectively here because we probably only have a
2638     // rough approximation of type.
2639     need_mem_bar = true;
2640     // For Stores, place a memory ordering barrier now.
2641     if (is_store) {
2642       insert_mem_bar(Op_MemBarRelease);
2643     } else {
2644       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2645         insert_mem_bar(Op_MemBarVolatile);
2646       }
2647     }
2648   }
2649 
2650   // Memory barrier to prevent normal and 'unsafe' accesses from
2651   // bypassing each other.  Happens after null checks, so the
2652   // exception paths do not take memory state from the memory barrier,
2653   // so there's no problems making a strong assert about mixing users
2654   // of safe & unsafe memory.
2655   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2656 
2657   if (!is_store) {
2658     MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2659     // To be valid, unsafe loads may depend on other conditions than
2660     // the one that guards them: pin the Load node
2661     Node* p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, is_volatile);
2662     // load value
2663     switch (type) {
2664     case T_BOOLEAN:
2665     case T_CHAR:
2666     case T_BYTE:
2667     case T_SHORT:
2668     case T_INT:
2669     case T_LONG:
2670     case T_FLOAT:
2671     case T_DOUBLE:
2672       break;
2673     case T_OBJECT:
2674       if (need_read_barrier) {
2675         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2676       }
2677       break;
2678     case T_ADDRESS:
2679       // Cast to an int type.
2680       p = _gvn.transform(new CastP2XNode(NULL, p));
2681       p = ConvX2UL(p);
2682       break;
2683     default:
2684       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2685       break;
2686     }
2687     // The load node has the control of the preceding MemBarCPUOrder.  All
2688     // following nodes will have the control of the MemBarCPUOrder inserted at
2689     // the end of this method.  So, pushing the load onto the stack at a later
2690     // point is fine.
2691     set_result(p);
2692   } else {
2693     // place effect of store into memory
2694     switch (type) {
2695     case T_DOUBLE:
2696       val = dstore_rounding(val);
2697       break;
2698     case T_ADDRESS:
2699       // Repackage the long as a pointer.
2700       val = ConvL2X(val);
2701       val = _gvn.transform(new CastX2PNode(val));
2702       break;
2703     }
2704 
2705     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2706     if (type != T_OBJECT ) {
2707       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2708     } else {
2709       // Possibly an oop being stored to Java heap or native memory
2710       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2711         // oop to Java heap.
2712         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2713       } else {
2714         // We can't tell at compile time if we are storing in the Java heap or outside
2715         // of it. So we need to emit code to conditionally do the proper type of
2716         // store.
2717 
2718         IdealKit ideal(this);
2719 #define __ ideal.
2720         // QQQ who knows what probability is here??
2721         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2722           // Sync IdealKit and graphKit.
2723           sync_kit(ideal);
2724           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2725           // Update IdealKit memory.
2726           __ sync_kit(this);
2727         } __ else_(); {
2728           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2729         } __ end_if();
2730         // Final sync IdealKit and GraphKit.
2731         final_sync(ideal);
2732 #undef __
2733       }
2734     }
2735   }
2736 
2737   if (is_volatile) {
2738     if (!is_store) {
2739       insert_mem_bar(Op_MemBarAcquire);
2740     } else {
2741       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2742         insert_mem_bar(Op_MemBarVolatile);
2743       }
2744     }
2745   }
2746 
2747   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2748 
2749   return true;
2750 }
2751 
2752 //----------------------------inline_unsafe_load_store----------------------------
2753 // This method serves a couple of different customers (depending on LoadStoreKind):
2754 //
2755 // LS_cmpxchg:
2756 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2757 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2758 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2759 //
2760 // LS_xadd:
2761 //   public int  getAndAddInt( Object o, long offset, int  delta)
2762 //   public long getAndAddLong(Object o, long offset, long delta)
2763 //
2764 // LS_xchg:
2765 //   int    getAndSet(Object o, long offset, int    newValue)
2766 //   long   getAndSet(Object o, long offset, long   newValue)
2767 //   Object getAndSet(Object o, long offset, Object newValue)
2768 //
2769 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2770   // This basic scheme here is the same as inline_unsafe_access, but
2771   // differs in enough details that combining them would make the code
2772   // overly confusing.  (This is a true fact! I originally combined
2773   // them, but even I was confused by it!) As much code/comments as
2774   // possible are retained from inline_unsafe_access though to make
2775   // the correspondences clearer. - dl
2776 
2777   if (callee()->is_static())  return false;  // caller must have the capability!
2778 
2779 #ifndef PRODUCT
2780   BasicType rtype;
2781   {
2782     ResourceMark rm;
2783     // Check the signatures.
2784     ciSignature* sig = callee()->signature();
2785     rtype = sig->return_type()->basic_type();
2786     if (kind == LS_xadd || kind == LS_xchg) {
2787       // Check the signatures.
2788 #ifdef ASSERT
2789       assert(rtype == type, "get and set must return the expected type");
2790       assert(sig->count() == 3, "get and set has 3 arguments");
2791       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2792       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2793       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2794 #endif // ASSERT
2795     } else if (kind == LS_cmpxchg) {
2796       // Check the signatures.
2797 #ifdef ASSERT
2798       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2799       assert(sig->count() == 4, "CAS has 4 arguments");
2800       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2801       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2802 #endif // ASSERT
2803     } else {
2804       ShouldNotReachHere();
2805     }
2806   }
2807 #endif //PRODUCT
2808 
2809   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2810 
2811   // Get arguments:
2812   Node* receiver = NULL;
2813   Node* base     = NULL;
2814   Node* offset   = NULL;
2815   Node* oldval   = NULL;
2816   Node* newval   = NULL;
2817   if (kind == LS_cmpxchg) {
2818     const bool two_slot_type = type2size[type] == 2;
2819     receiver = argument(0);  // type: oop
2820     base     = argument(1);  // type: oop
2821     offset   = argument(2);  // type: long
2822     oldval   = argument(4);  // type: oop, int, or long
2823     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2824   } else if (kind == LS_xadd || kind == LS_xchg){
2825     receiver = argument(0);  // type: oop
2826     base     = argument(1);  // type: oop
2827     offset   = argument(2);  // type: long
2828     oldval   = NULL;
2829     newval   = argument(4);  // type: oop, int, or long
2830   }
2831 
2832   // Null check receiver.
2833   receiver = null_check(receiver);
2834   if (stopped()) {
2835     return true;
2836   }
2837 
2838   // Build field offset expression.
2839   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2840   // to be plain byte offsets, which are also the same as those accepted
2841   // by oopDesc::field_base.
2842   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2843   // 32-bit machines ignore the high half of long offsets
2844   offset = ConvL2X(offset);
2845   Node* adr = make_unsafe_address(base, offset);
2846   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2847 
2848   // For CAS, unlike inline_unsafe_access, there seems no point in
2849   // trying to refine types. Just use the coarse types here.
2850   const Type *value_type = Type::get_const_basic_type(type);
2851   Compile::AliasType* alias_type = C->alias_type(adr_type);
2852   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2853 
2854   if (kind == LS_xchg && type == T_OBJECT) {
2855     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2856     if (tjp != NULL) {
2857       value_type = tjp;
2858     }
2859   }
2860 
2861   int alias_idx = C->get_alias_index(adr_type);
2862 
2863   // Memory-model-wise, a LoadStore acts like a little synchronized
2864   // block, so needs barriers on each side.  These don't translate
2865   // into actual barriers on most machines, but we still need rest of
2866   // compiler to respect ordering.
2867 
2868   insert_mem_bar(Op_MemBarRelease);
2869   insert_mem_bar(Op_MemBarCPUOrder);
2870 
2871   // 4984716: MemBars must be inserted before this
2872   //          memory node in order to avoid a false
2873   //          dependency which will confuse the scheduler.
2874   Node *mem = memory(alias_idx);
2875 
2876   // For now, we handle only those cases that actually exist: ints,
2877   // longs, and Object. Adding others should be straightforward.
2878   Node* load_store;
2879   switch(type) {
2880   case T_INT:
2881     if (kind == LS_xadd) {
2882       load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2883     } else if (kind == LS_xchg) {
2884       load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2885     } else if (kind == LS_cmpxchg) {
2886       load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
2887     } else {
2888       ShouldNotReachHere();
2889     }
2890     break;
2891   case T_LONG:
2892     if (kind == LS_xadd) {
2893       load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2894     } else if (kind == LS_xchg) {
2895       load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2896     } else if (kind == LS_cmpxchg) {
2897       load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2898     } else {
2899       ShouldNotReachHere();
2900     }
2901     break;
2902   case T_OBJECT:
2903     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2904     // could be delayed during Parse (for example, in adjust_map_after_if()).
2905     // Execute transformation here to avoid barrier generation in such case.
2906     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2907       newval = _gvn.makecon(TypePtr::NULL_PTR);
2908 
2909     // Reference stores need a store barrier.
2910     if (kind == LS_xchg) {
2911       // If pre-barrier must execute before the oop store, old value will require do_load here.
2912       if (!can_move_pre_barrier()) {
2913         pre_barrier(true /* do_load*/,
2914                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2915                     NULL /* pre_val*/,
2916                     T_OBJECT);
2917       } // Else move pre_barrier to use load_store value, see below.
2918     } else if (kind == LS_cmpxchg) {
2919       // Same as for newval above:
2920       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2921         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2922       }
2923       // The only known value which might get overwritten is oldval.
2924       pre_barrier(false /* do_load */,
2925                   control(), NULL, NULL, max_juint, NULL, NULL,
2926                   oldval /* pre_val */,
2927                   T_OBJECT);
2928     } else {
2929       ShouldNotReachHere();
2930     }
2931 
2932 #ifdef _LP64
2933     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2934       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2935       if (kind == LS_xchg) {
2936         load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
2937                                                        newval_enc, adr_type, value_type->make_narrowoop()));
2938       } else {
2939         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2940         Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2941         load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
2942                                                                 newval_enc, oldval_enc));
2943       }
2944     } else
2945 #endif
2946     {
2947       if (kind == LS_xchg) {
2948         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2949       } else {
2950         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2951         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2952       }
2953     }
2954     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2955     break;
2956   default:
2957     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2958     break;
2959   }
2960 
2961   // SCMemProjNodes represent the memory state of a LoadStore. Their
2962   // main role is to prevent LoadStore nodes from being optimized away
2963   // when their results aren't used.
2964   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
2965   set_memory(proj, alias_idx);
2966 
2967   if (type == T_OBJECT && kind == LS_xchg) {
2968 #ifdef _LP64
2969     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2970       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
2971     }
2972 #endif
2973     if (can_move_pre_barrier()) {
2974       // Don't need to load pre_val. The old value is returned by load_store.
2975       // The pre_barrier can execute after the xchg as long as no safepoint
2976       // gets inserted between them.
2977       pre_barrier(false /* do_load */,
2978                   control(), NULL, NULL, max_juint, NULL, NULL,
2979                   load_store /* pre_val */,
2980                   T_OBJECT);
2981     }
2982   }
2983 
2984   // Add the trailing membar surrounding the access
2985   insert_mem_bar(Op_MemBarCPUOrder);
2986   insert_mem_bar(Op_MemBarAcquire);
2987 
2988   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2989   set_result(load_store);
2990   return true;
2991 }
2992 
2993 //----------------------------inline_unsafe_ordered_store----------------------
2994 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2995 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
2996 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
2997 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2998   // This is another variant of inline_unsafe_access, differing in
2999   // that it always issues store-store ("release") barrier and ensures
3000   // store-atomicity (which only matters for "long").
3001 
3002   if (callee()->is_static())  return false;  // caller must have the capability!
3003 
3004 #ifndef PRODUCT
3005   {
3006     ResourceMark rm;
3007     // Check the signatures.
3008     ciSignature* sig = callee()->signature();
3009 #ifdef ASSERT
3010     BasicType rtype = sig->return_type()->basic_type();
3011     assert(rtype == T_VOID, "must return void");
3012     assert(sig->count() == 3, "has 3 arguments");
3013     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3014     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3015 #endif // ASSERT
3016   }
3017 #endif //PRODUCT
3018 
3019   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3020 
3021   // Get arguments:
3022   Node* receiver = argument(0);  // type: oop
3023   Node* base     = argument(1);  // type: oop
3024   Node* offset   = argument(2);  // type: long
3025   Node* val      = argument(4);  // type: oop, int, or long
3026 
3027   // Null check receiver.
3028   receiver = null_check(receiver);
3029   if (stopped()) {
3030     return true;
3031   }
3032 
3033   // Build field offset expression.
3034   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3035   // 32-bit machines ignore the high half of long offsets
3036   offset = ConvL2X(offset);
3037   Node* adr = make_unsafe_address(base, offset);
3038   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3039   const Type *value_type = Type::get_const_basic_type(type);
3040   Compile::AliasType* alias_type = C->alias_type(adr_type);
3041 
3042   insert_mem_bar(Op_MemBarRelease);
3043   insert_mem_bar(Op_MemBarCPUOrder);
3044   // Ensure that the store is atomic for longs:
3045   const bool require_atomic_access = true;
3046   Node* store;
3047   if (type == T_OBJECT) // reference stores need a store barrier.
3048     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3049   else {
3050     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3051   }
3052   insert_mem_bar(Op_MemBarCPUOrder);
3053   return true;
3054 }
3055 
3056 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3057   // Regardless of form, don't allow previous ld/st to move down,
3058   // then issue acquire, release, or volatile mem_bar.
3059   insert_mem_bar(Op_MemBarCPUOrder);
3060   switch(id) {
3061     case vmIntrinsics::_loadFence:
3062       insert_mem_bar(Op_LoadFence);
3063       return true;
3064     case vmIntrinsics::_storeFence:
3065       insert_mem_bar(Op_StoreFence);
3066       return true;
3067     case vmIntrinsics::_fullFence:
3068       insert_mem_bar(Op_MemBarVolatile);
3069       return true;
3070     default:
3071       fatal_unexpected_iid(id);
3072       return false;
3073   }
3074 }
3075 
3076 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3077   if (!kls->is_Con()) {
3078     return true;
3079   }
3080   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3081   if (klsptr == NULL) {
3082     return true;
3083   }
3084   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3085   // don't need a guard for a klass that is already initialized
3086   return !ik->is_initialized();
3087 }
3088 
3089 //----------------------------inline_unsafe_allocate---------------------------
3090 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3091 bool LibraryCallKit::inline_unsafe_allocate() {
3092   if (callee()->is_static())  return false;  // caller must have the capability!
3093 
3094   null_check_receiver();  // null-check, then ignore
3095   Node* cls = null_check(argument(1));
3096   if (stopped())  return true;
3097 
3098   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3099   kls = null_check(kls);
3100   if (stopped())  return true;  // argument was like int.class
3101 
3102   Node* test = NULL;
3103   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3104     // Note:  The argument might still be an illegal value like
3105     // Serializable.class or Object[].class.   The runtime will handle it.
3106     // But we must make an explicit check for initialization.
3107     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3108     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3109     // can generate code to load it as unsigned byte.
3110     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3111     Node* bits = intcon(InstanceKlass::fully_initialized);
3112     test = _gvn.transform(new SubINode(inst, bits));
3113     // The 'test' is non-zero if we need to take a slow path.
3114   }
3115 
3116   Node* obj = new_instance(kls, test);
3117   set_result(obj);
3118   return true;
3119 }
3120 
3121 #ifdef TRACE_HAVE_INTRINSICS
3122 /*
3123  * oop -> myklass
3124  * myklass->trace_id |= USED
3125  * return myklass->trace_id & ~0x3
3126  */
3127 bool LibraryCallKit::inline_native_classID() {
3128   null_check_receiver();  // null-check, then ignore
3129   Node* cls = null_check(argument(1), T_OBJECT);
3130   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3131   kls = null_check(kls, T_OBJECT);
3132   ByteSize offset = TRACE_ID_OFFSET;
3133   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3134   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3135   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3136   Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
3137   Node* clsused = longcon(0x01l); // set the class bit
3138   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3139 
3140   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3141   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3142   set_result(andl);
3143   return true;
3144 }
3145 
3146 bool LibraryCallKit::inline_native_threadID() {
3147   Node* tls_ptr = NULL;
3148   Node* cur_thr = generate_current_thread(tls_ptr);
3149   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3150   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3151   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3152 
3153   Node* threadid = NULL;
3154   size_t thread_id_size = OSThread::thread_id_size();
3155   if (thread_id_size == (size_t) BytesPerLong) {
3156     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3157   } else if (thread_id_size == (size_t) BytesPerInt) {
3158     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3159   } else {
3160     ShouldNotReachHere();
3161   }
3162   set_result(threadid);
3163   return true;
3164 }
3165 #endif
3166 
3167 //------------------------inline_native_time_funcs--------------
3168 // inline code for System.currentTimeMillis() and System.nanoTime()
3169 // these have the same type and signature
3170 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3171   const TypeFunc* tf = OptoRuntime::void_long_Type();
3172   const TypePtr* no_memory_effects = NULL;
3173   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3174   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3175 #ifdef ASSERT
3176   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3177   assert(value_top == top(), "second value must be top");
3178 #endif
3179   set_result(value);
3180   return true;
3181 }
3182 
3183 //------------------------inline_native_currentThread------------------
3184 bool LibraryCallKit::inline_native_currentThread() {
3185   Node* junk = NULL;
3186   set_result(generate_current_thread(junk));
3187   return true;
3188 }
3189 
3190 //------------------------inline_native_isInterrupted------------------
3191 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3192 bool LibraryCallKit::inline_native_isInterrupted() {
3193   // Add a fast path to t.isInterrupted(clear_int):
3194   //   (t == Thread.current() &&
3195   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3196   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3197   // So, in the common case that the interrupt bit is false,
3198   // we avoid making a call into the VM.  Even if the interrupt bit
3199   // is true, if the clear_int argument is false, we avoid the VM call.
3200   // However, if the receiver is not currentThread, we must call the VM,
3201   // because there must be some locking done around the operation.
3202 
3203   // We only go to the fast case code if we pass two guards.
3204   // Paths which do not pass are accumulated in the slow_region.
3205 
3206   enum {
3207     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3208     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3209     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3210     PATH_LIMIT
3211   };
3212 
3213   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3214   // out of the function.
3215   insert_mem_bar(Op_MemBarCPUOrder);
3216 
3217   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3218   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3219 
3220   RegionNode* slow_region = new RegionNode(1);
3221   record_for_igvn(slow_region);
3222 
3223   // (a) Receiving thread must be the current thread.
3224   Node* rec_thr = argument(0);
3225   Node* tls_ptr = NULL;
3226   Node* cur_thr = generate_current_thread(tls_ptr);
3227   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3228   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3229 
3230   generate_slow_guard(bol_thr, slow_region);
3231 
3232   // (b) Interrupt bit on TLS must be false.
3233   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3234   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3235   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3236 
3237   // Set the control input on the field _interrupted read to prevent it floating up.
3238   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3239   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3240   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3241 
3242   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3243 
3244   // First fast path:  if (!TLS._interrupted) return false;
3245   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3246   result_rgn->init_req(no_int_result_path, false_bit);
3247   result_val->init_req(no_int_result_path, intcon(0));
3248 
3249   // drop through to next case
3250   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3251 
3252 #ifndef TARGET_OS_FAMILY_windows
3253   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3254   Node* clr_arg = argument(1);
3255   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3256   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3257   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3258 
3259   // Second fast path:  ... else if (!clear_int) return true;
3260   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3261   result_rgn->init_req(no_clear_result_path, false_arg);
3262   result_val->init_req(no_clear_result_path, intcon(1));
3263 
3264   // drop through to next case
3265   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3266 #else
3267   // To return true on Windows you must read the _interrupted field
3268   // and check the the event state i.e. take the slow path.
3269 #endif // TARGET_OS_FAMILY_windows
3270 
3271   // (d) Otherwise, go to the slow path.
3272   slow_region->add_req(control());
3273   set_control( _gvn.transform(slow_region));
3274 
3275   if (stopped()) {
3276     // There is no slow path.
3277     result_rgn->init_req(slow_result_path, top());
3278     result_val->init_req(slow_result_path, top());
3279   } else {
3280     // non-virtual because it is a private non-static
3281     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3282 
3283     Node* slow_val = set_results_for_java_call(slow_call);
3284     // this->control() comes from set_results_for_java_call
3285 
3286     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3287     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3288 
3289     // These two phis are pre-filled with copies of of the fast IO and Memory
3290     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3291     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3292 
3293     result_rgn->init_req(slow_result_path, control());
3294     result_io ->init_req(slow_result_path, i_o());
3295     result_mem->init_req(slow_result_path, reset_memory());
3296     result_val->init_req(slow_result_path, slow_val);
3297 
3298     set_all_memory(_gvn.transform(result_mem));
3299     set_i_o(       _gvn.transform(result_io));
3300   }
3301 
3302   C->set_has_split_ifs(true); // Has chance for split-if optimization
3303   set_result(result_rgn, result_val);
3304   return true;
3305 }
3306 
3307 //---------------------------load_mirror_from_klass----------------------------
3308 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3309 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3310   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3311   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3312 }
3313 
3314 //-----------------------load_klass_from_mirror_common-------------------------
3315 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3316 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3317 // and branch to the given path on the region.
3318 // If never_see_null, take an uncommon trap on null, so we can optimistically
3319 // compile for the non-null case.
3320 // If the region is NULL, force never_see_null = true.
3321 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3322                                                     bool never_see_null,
3323                                                     RegionNode* region,
3324                                                     int null_path,
3325                                                     int offset) {
3326   if (region == NULL)  never_see_null = true;
3327   Node* p = basic_plus_adr(mirror, offset);
3328   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3329   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3330   Node* null_ctl = top();
3331   kls = null_check_oop(kls, &null_ctl, never_see_null);
3332   if (region != NULL) {
3333     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3334     region->init_req(null_path, null_ctl);
3335   } else {
3336     assert(null_ctl == top(), "no loose ends");
3337   }
3338   return kls;
3339 }
3340 
3341 //--------------------(inline_native_Class_query helpers)---------------------
3342 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3343 // Fall through if (mods & mask) == bits, take the guard otherwise.
3344 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3345   // Branch around if the given klass has the given modifier bit set.
3346   // Like generate_guard, adds a new path onto the region.
3347   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3348   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3349   Node* mask = intcon(modifier_mask);
3350   Node* bits = intcon(modifier_bits);
3351   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3352   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3353   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3354   return generate_fair_guard(bol, region);
3355 }
3356 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3357   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3358 }
3359 
3360 //-------------------------inline_native_Class_query-------------------
3361 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3362   const Type* return_type = TypeInt::BOOL;
3363   Node* prim_return_value = top();  // what happens if it's a primitive class?
3364   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3365   bool expect_prim = false;     // most of these guys expect to work on refs
3366 
3367   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3368 
3369   Node* mirror = argument(0);
3370   Node* obj    = top();
3371 
3372   switch (id) {
3373   case vmIntrinsics::_isInstance:
3374     // nothing is an instance of a primitive type
3375     prim_return_value = intcon(0);
3376     obj = argument(1);
3377     break;
3378   case vmIntrinsics::_getModifiers:
3379     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3380     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3381     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3382     break;
3383   case vmIntrinsics::_isInterface:
3384     prim_return_value = intcon(0);
3385     break;
3386   case vmIntrinsics::_isArray:
3387     prim_return_value = intcon(0);
3388     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3389     break;
3390   case vmIntrinsics::_isPrimitive:
3391     prim_return_value = intcon(1);
3392     expect_prim = true;  // obviously
3393     break;
3394   case vmIntrinsics::_getSuperclass:
3395     prim_return_value = null();
3396     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3397     break;
3398   case vmIntrinsics::_getClassAccessFlags:
3399     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3400     return_type = TypeInt::INT;  // not bool!  6297094
3401     break;
3402   default:
3403     fatal_unexpected_iid(id);
3404     break;
3405   }
3406 
3407   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3408   if (mirror_con == NULL)  return false;  // cannot happen?
3409 
3410 #ifndef PRODUCT
3411   if (C->print_intrinsics() || C->print_inlining()) {
3412     ciType* k = mirror_con->java_mirror_type();
3413     if (k) {
3414       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3415       k->print_name();
3416       tty->cr();
3417     }
3418   }
3419 #endif
3420 
3421   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3422   RegionNode* region = new RegionNode(PATH_LIMIT);
3423   record_for_igvn(region);
3424   PhiNode* phi = new PhiNode(region, return_type);
3425 
3426   // The mirror will never be null of Reflection.getClassAccessFlags, however
3427   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3428   // if it is. See bug 4774291.
3429 
3430   // For Reflection.getClassAccessFlags(), the null check occurs in
3431   // the wrong place; see inline_unsafe_access(), above, for a similar
3432   // situation.
3433   mirror = null_check(mirror);
3434   // If mirror or obj is dead, only null-path is taken.
3435   if (stopped())  return true;
3436 
3437   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3438 
3439   // Now load the mirror's klass metaobject, and null-check it.
3440   // Side-effects region with the control path if the klass is null.
3441   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3442   // If kls is null, we have a primitive mirror.
3443   phi->init_req(_prim_path, prim_return_value);
3444   if (stopped()) { set_result(region, phi); return true; }
3445   bool safe_for_replace = (region->in(_prim_path) == top());
3446 
3447   Node* p;  // handy temp
3448   Node* null_ctl;
3449 
3450   // Now that we have the non-null klass, we can perform the real query.
3451   // For constant classes, the query will constant-fold in LoadNode::Value.
3452   Node* query_value = top();
3453   switch (id) {
3454   case vmIntrinsics::_isInstance:
3455     // nothing is an instance of a primitive type
3456     query_value = gen_instanceof(obj, kls, safe_for_replace);
3457     break;
3458 
3459   case vmIntrinsics::_getModifiers:
3460     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3461     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3462     break;
3463 
3464   case vmIntrinsics::_isInterface:
3465     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3466     if (generate_interface_guard(kls, region) != NULL)
3467       // A guard was added.  If the guard is taken, it was an interface.
3468       phi->add_req(intcon(1));
3469     // If we fall through, it's a plain class.
3470     query_value = intcon(0);
3471     break;
3472 
3473   case vmIntrinsics::_isArray:
3474     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3475     if (generate_array_guard(kls, region) != NULL)
3476       // A guard was added.  If the guard is taken, it was an array.
3477       phi->add_req(intcon(1));
3478     // If we fall through, it's a plain class.
3479     query_value = intcon(0);
3480     break;
3481 
3482   case vmIntrinsics::_isPrimitive:
3483     query_value = intcon(0); // "normal" path produces false
3484     break;
3485 
3486   case vmIntrinsics::_getSuperclass:
3487     // The rules here are somewhat unfortunate, but we can still do better
3488     // with random logic than with a JNI call.
3489     // Interfaces store null or Object as _super, but must report null.
3490     // Arrays store an intermediate super as _super, but must report Object.
3491     // Other types can report the actual _super.
3492     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3493     if (generate_interface_guard(kls, region) != NULL)
3494       // A guard was added.  If the guard is taken, it was an interface.
3495       phi->add_req(null());
3496     if (generate_array_guard(kls, region) != NULL)
3497       // A guard was added.  If the guard is taken, it was an array.
3498       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3499     // If we fall through, it's a plain class.  Get its _super.
3500     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3501     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3502     null_ctl = top();
3503     kls = null_check_oop(kls, &null_ctl);
3504     if (null_ctl != top()) {
3505       // If the guard is taken, Object.superClass is null (both klass and mirror).
3506       region->add_req(null_ctl);
3507       phi   ->add_req(null());
3508     }
3509     if (!stopped()) {
3510       query_value = load_mirror_from_klass(kls);
3511     }
3512     break;
3513 
3514   case vmIntrinsics::_getClassAccessFlags:
3515     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3516     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3517     break;
3518 
3519   default:
3520     fatal_unexpected_iid(id);
3521     break;
3522   }
3523 
3524   // Fall-through is the normal case of a query to a real class.
3525   phi->init_req(1, query_value);
3526   region->init_req(1, control());
3527 
3528   C->set_has_split_ifs(true); // Has chance for split-if optimization
3529   set_result(region, phi);
3530   return true;
3531 }
3532 
3533 //-------------------------inline_Class_cast-------------------
3534 bool LibraryCallKit::inline_Class_cast() {
3535   Node* mirror = argument(0); // Class
3536   Node* obj    = argument(1);
3537   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3538   if (mirror_con == NULL) {
3539     return false;  // dead path (mirror->is_top()).
3540   }
3541   if (obj == NULL || obj->is_top()) {
3542     return false;  // dead path
3543   }
3544   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3545 
3546   // First, see if Class.cast() can be folded statically.
3547   // java_mirror_type() returns non-null for compile-time Class constants.
3548   ciType* tm = mirror_con->java_mirror_type();
3549   if (tm != NULL && tm->is_klass() &&
3550       tp != NULL && tp->klass() != NULL) {
3551     if (!tp->klass()->is_loaded()) {
3552       // Don't use intrinsic when class is not loaded.
3553       return false;
3554     } else {
3555       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3556       if (static_res == Compile::SSC_always_true) {
3557         // isInstance() is true - fold the code.
3558         set_result(obj);
3559         return true;
3560       } else if (static_res == Compile::SSC_always_false) {
3561         // Don't use intrinsic, have to throw ClassCastException.
3562         // If the reference is null, the non-intrinsic bytecode will
3563         // be optimized appropriately.
3564         return false;
3565       }
3566     }
3567   }
3568 
3569   // Bailout intrinsic and do normal inlining if exception path is frequent.
3570   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3571     return false;
3572   }
3573 
3574   // Generate dynamic checks.
3575   // Class.cast() is java implementation of _checkcast bytecode.
3576   // Do checkcast (Parse::do_checkcast()) optimizations here.
3577 
3578   mirror = null_check(mirror);
3579   // If mirror is dead, only null-path is taken.
3580   if (stopped()) {
3581     return true;
3582   }
3583 
3584   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3585   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3586   RegionNode* region = new RegionNode(PATH_LIMIT);
3587   record_for_igvn(region);
3588 
3589   // Now load the mirror's klass metaobject, and null-check it.
3590   // If kls is null, we have a primitive mirror and
3591   // nothing is an instance of a primitive type.
3592   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3593 
3594   Node* res = top();
3595   if (!stopped()) {
3596     Node* bad_type_ctrl = top();
3597     // Do checkcast optimizations.
3598     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3599     region->init_req(_bad_type_path, bad_type_ctrl);
3600   }
3601   if (region->in(_prim_path) != top() ||
3602       region->in(_bad_type_path) != top()) {
3603     // Let Interpreter throw ClassCastException.
3604     PreserveJVMState pjvms(this);
3605     set_control(_gvn.transform(region));
3606     uncommon_trap(Deoptimization::Reason_intrinsic,
3607                   Deoptimization::Action_maybe_recompile);
3608   }
3609   if (!stopped()) {
3610     set_result(res);
3611   }
3612   return true;
3613 }
3614 
3615 
3616 //--------------------------inline_native_subtype_check------------------------
3617 // This intrinsic takes the JNI calls out of the heart of
3618 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3619 bool LibraryCallKit::inline_native_subtype_check() {
3620   // Pull both arguments off the stack.
3621   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3622   args[0] = argument(0);
3623   args[1] = argument(1);
3624   Node* klasses[2];             // corresponding Klasses: superk, subk
3625   klasses[0] = klasses[1] = top();
3626 
3627   enum {
3628     // A full decision tree on {superc is prim, subc is prim}:
3629     _prim_0_path = 1,           // {P,N} => false
3630                                 // {P,P} & superc!=subc => false
3631     _prim_same_path,            // {P,P} & superc==subc => true
3632     _prim_1_path,               // {N,P} => false
3633     _ref_subtype_path,          // {N,N} & subtype check wins => true
3634     _both_ref_path,             // {N,N} & subtype check loses => false
3635     PATH_LIMIT
3636   };
3637 
3638   RegionNode* region = new RegionNode(PATH_LIMIT);
3639   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3640   record_for_igvn(region);
3641 
3642   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3643   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3644   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3645 
3646   // First null-check both mirrors and load each mirror's klass metaobject.
3647   int which_arg;
3648   for (which_arg = 0; which_arg <= 1; which_arg++) {
3649     Node* arg = args[which_arg];
3650     arg = null_check(arg);
3651     if (stopped())  break;
3652     args[which_arg] = arg;
3653 
3654     Node* p = basic_plus_adr(arg, class_klass_offset);
3655     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3656     klasses[which_arg] = _gvn.transform(kls);
3657   }
3658 
3659   // Having loaded both klasses, test each for null.
3660   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3661   for (which_arg = 0; which_arg <= 1; which_arg++) {
3662     Node* kls = klasses[which_arg];
3663     Node* null_ctl = top();
3664     kls = null_check_oop(kls, &null_ctl, never_see_null);
3665     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3666     region->init_req(prim_path, null_ctl);
3667     if (stopped())  break;
3668     klasses[which_arg] = kls;
3669   }
3670 
3671   if (!stopped()) {
3672     // now we have two reference types, in klasses[0..1]
3673     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3674     Node* superk = klasses[0];  // the receiver
3675     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3676     // now we have a successful reference subtype check
3677     region->set_req(_ref_subtype_path, control());
3678   }
3679 
3680   // If both operands are primitive (both klasses null), then
3681   // we must return true when they are identical primitives.
3682   // It is convenient to test this after the first null klass check.
3683   set_control(region->in(_prim_0_path)); // go back to first null check
3684   if (!stopped()) {
3685     // Since superc is primitive, make a guard for the superc==subc case.
3686     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3687     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3688     generate_guard(bol_eq, region, PROB_FAIR);
3689     if (region->req() == PATH_LIMIT+1) {
3690       // A guard was added.  If the added guard is taken, superc==subc.
3691       region->swap_edges(PATH_LIMIT, _prim_same_path);
3692       region->del_req(PATH_LIMIT);
3693     }
3694     region->set_req(_prim_0_path, control()); // Not equal after all.
3695   }
3696 
3697   // these are the only paths that produce 'true':
3698   phi->set_req(_prim_same_path,   intcon(1));
3699   phi->set_req(_ref_subtype_path, intcon(1));
3700 
3701   // pull together the cases:
3702   assert(region->req() == PATH_LIMIT, "sane region");
3703   for (uint i = 1; i < region->req(); i++) {
3704     Node* ctl = region->in(i);
3705     if (ctl == NULL || ctl == top()) {
3706       region->set_req(i, top());
3707       phi   ->set_req(i, top());
3708     } else if (phi->in(i) == NULL) {
3709       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3710     }
3711   }
3712 
3713   set_control(_gvn.transform(region));
3714   set_result(_gvn.transform(phi));
3715   return true;
3716 }
3717 
3718 //---------------------generate_array_guard_common------------------------
3719 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3720                                                   bool obj_array, bool not_array) {
3721 
3722   if (stopped()) {
3723     return NULL;
3724   }
3725 
3726   // If obj_array/non_array==false/false:
3727   // Branch around if the given klass is in fact an array (either obj or prim).
3728   // If obj_array/non_array==false/true:
3729   // Branch around if the given klass is not an array klass of any kind.
3730   // If obj_array/non_array==true/true:
3731   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3732   // If obj_array/non_array==true/false:
3733   // Branch around if the kls is an oop array (Object[] or subtype)
3734   //
3735   // Like generate_guard, adds a new path onto the region.
3736   jint  layout_con = 0;
3737   Node* layout_val = get_layout_helper(kls, layout_con);
3738   if (layout_val == NULL) {
3739     bool query = (obj_array
3740                   ? Klass::layout_helper_is_objArray(layout_con)
3741                   : Klass::layout_helper_is_array(layout_con));
3742     if (query == not_array) {
3743       return NULL;                       // never a branch
3744     } else {                             // always a branch
3745       Node* always_branch = control();
3746       if (region != NULL)
3747         region->add_req(always_branch);
3748       set_control(top());
3749       return always_branch;
3750     }
3751   }
3752   // Now test the correct condition.
3753   jint  nval = (obj_array
3754                 ? ((jint)Klass::_lh_array_tag_type_value
3755                    <<    Klass::_lh_array_tag_shift)
3756                 : Klass::_lh_neutral_value);
3757   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3758   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3759   // invert the test if we are looking for a non-array
3760   if (not_array)  btest = BoolTest(btest).negate();
3761   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3762   return generate_fair_guard(bol, region);
3763 }
3764 
3765 
3766 //-----------------------inline_native_newArray--------------------------
3767 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3768 bool LibraryCallKit::inline_native_newArray() {
3769   Node* mirror    = argument(0);
3770   Node* count_val = argument(1);
3771 
3772   mirror = null_check(mirror);
3773   // If mirror or obj is dead, only null-path is taken.
3774   if (stopped())  return true;
3775 
3776   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3777   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3778   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3779   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3780   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3781 
3782   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3783   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3784                                                   result_reg, _slow_path);
3785   Node* normal_ctl   = control();
3786   Node* no_array_ctl = result_reg->in(_slow_path);
3787 
3788   // Generate code for the slow case.  We make a call to newArray().
3789   set_control(no_array_ctl);
3790   if (!stopped()) {
3791     // Either the input type is void.class, or else the
3792     // array klass has not yet been cached.  Either the
3793     // ensuing call will throw an exception, or else it
3794     // will cache the array klass for next time.
3795     PreserveJVMState pjvms(this);
3796     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3797     Node* slow_result = set_results_for_java_call(slow_call);
3798     // this->control() comes from set_results_for_java_call
3799     result_reg->set_req(_slow_path, control());
3800     result_val->set_req(_slow_path, slow_result);
3801     result_io ->set_req(_slow_path, i_o());
3802     result_mem->set_req(_slow_path, reset_memory());
3803   }
3804 
3805   set_control(normal_ctl);
3806   if (!stopped()) {
3807     // Normal case:  The array type has been cached in the java.lang.Class.
3808     // The following call works fine even if the array type is polymorphic.
3809     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3810     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3811     result_reg->init_req(_normal_path, control());
3812     result_val->init_req(_normal_path, obj);
3813     result_io ->init_req(_normal_path, i_o());
3814     result_mem->init_req(_normal_path, reset_memory());
3815   }
3816 
3817   // Return the combined state.
3818   set_i_o(        _gvn.transform(result_io)  );
3819   set_all_memory( _gvn.transform(result_mem));
3820 
3821   C->set_has_split_ifs(true); // Has chance for split-if optimization
3822   set_result(result_reg, result_val);
3823   return true;
3824 }
3825 
3826 //----------------------inline_native_getLength--------------------------
3827 // public static native int java.lang.reflect.Array.getLength(Object array);
3828 bool LibraryCallKit::inline_native_getLength() {
3829   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3830 
3831   Node* array = null_check(argument(0));
3832   // If array is dead, only null-path is taken.
3833   if (stopped())  return true;
3834 
3835   // Deoptimize if it is a non-array.
3836   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3837 
3838   if (non_array != NULL) {
3839     PreserveJVMState pjvms(this);
3840     set_control(non_array);
3841     uncommon_trap(Deoptimization::Reason_intrinsic,
3842                   Deoptimization::Action_maybe_recompile);
3843   }
3844 
3845   // If control is dead, only non-array-path is taken.
3846   if (stopped())  return true;
3847 
3848   // The works fine even if the array type is polymorphic.
3849   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3850   Node* result = load_array_length(array);
3851 
3852   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3853   set_result(result);
3854   return true;
3855 }
3856 
3857 //------------------------inline_array_copyOf----------------------------
3858 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3859 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3860 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3861   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3862 
3863   // Get the arguments.
3864   Node* original          = argument(0);
3865   Node* start             = is_copyOfRange? argument(1): intcon(0);
3866   Node* end               = is_copyOfRange? argument(2): argument(1);
3867   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3868 
3869   Node* newcopy;
3870 
3871   // Set the original stack and the reexecute bit for the interpreter to reexecute
3872   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3873   { PreserveReexecuteState preexecs(this);
3874     jvms()->set_should_reexecute(true);
3875 
3876     array_type_mirror = null_check(array_type_mirror);
3877     original          = null_check(original);
3878 
3879     // Check if a null path was taken unconditionally.
3880     if (stopped())  return true;
3881 
3882     Node* orig_length = load_array_length(original);
3883 
3884     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3885     klass_node = null_check(klass_node);
3886 
3887     RegionNode* bailout = new RegionNode(1);
3888     record_for_igvn(bailout);
3889 
3890     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3891     // Bail out if that is so.
3892     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3893     if (not_objArray != NULL) {
3894       // Improve the klass node's type from the new optimistic assumption:
3895       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3896       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3897       Node* cast = new CastPPNode(klass_node, akls);
3898       cast->init_req(0, control());
3899       klass_node = _gvn.transform(cast);
3900     }
3901 
3902     // Bail out if either start or end is negative.
3903     generate_negative_guard(start, bailout, &start);
3904     generate_negative_guard(end,   bailout, &end);
3905 
3906     Node* length = end;
3907     if (_gvn.type(start) != TypeInt::ZERO) {
3908       length = _gvn.transform(new SubINode(end, start));
3909     }
3910 
3911     // Bail out if length is negative.
3912     // Without this the new_array would throw
3913     // NegativeArraySizeException but IllegalArgumentException is what
3914     // should be thrown
3915     generate_negative_guard(length, bailout, &length);
3916 
3917     if (bailout->req() > 1) {
3918       PreserveJVMState pjvms(this);
3919       set_control(_gvn.transform(bailout));
3920       uncommon_trap(Deoptimization::Reason_intrinsic,
3921                     Deoptimization::Action_maybe_recompile);
3922     }
3923 
3924     if (!stopped()) {
3925       // How many elements will we copy from the original?
3926       // The answer is MinI(orig_length - start, length).
3927       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3928       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3929 
3930       // Generate a direct call to the right arraycopy function(s).
3931       // We know the copy is disjoint but we might not know if the
3932       // oop stores need checking.
3933       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3934       // This will fail a store-check if x contains any non-nulls.
3935 
3936       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3937       // loads/stores but it is legal only if we're sure the
3938       // Arrays.copyOf would succeed. So we need all input arguments
3939       // to the copyOf to be validated, including that the copy to the
3940       // new array won't trigger an ArrayStoreException. That subtype
3941       // check can be optimized if we know something on the type of
3942       // the input array from type speculation.
3943       if (_gvn.type(klass_node)->singleton()) {
3944         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3945         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3946 
3947         int test = C->static_subtype_check(superk, subk);
3948         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3949           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3950           if (t_original->speculative_type() != NULL) {
3951             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3952           }
3953         }
3954       }
3955 
3956       bool validated = false;
3957       // Reason_class_check rather than Reason_intrinsic because we
3958       // want to intrinsify even if this traps.
3959       if (!too_many_traps(Deoptimization::Reason_class_check)) {
3960         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3961                                                    klass_node);
3962 
3963         if (not_subtype_ctrl != top()) {
3964           PreserveJVMState pjvms(this);
3965           set_control(not_subtype_ctrl);
3966           uncommon_trap(Deoptimization::Reason_class_check,
3967                         Deoptimization::Action_make_not_entrant);
3968           assert(stopped(), "Should be stopped");
3969         }
3970         validated = true;
3971       }
3972 
3973       if (!stopped()) {
3974         newcopy = new_array(klass_node, length, 0);  // no arguments to push
3975 
3976         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true,
3977                                                 load_object_klass(original), klass_node);
3978         if (!is_copyOfRange) {
3979           ac->set_copyof(validated);
3980         } else {
3981           ac->set_copyofrange(validated);
3982         }
3983         Node* n = _gvn.transform(ac);
3984         if (n == ac) {
3985           ac->connect_outputs(this);
3986         } else {
3987           assert(validated, "shouldn't transform if all arguments not validated");
3988           set_all_memory(n);
3989         }
3990       }
3991     }
3992   } // original reexecute is set back here
3993 
3994   C->set_has_split_ifs(true); // Has chance for split-if optimization
3995   if (!stopped()) {
3996     set_result(newcopy);
3997   }
3998   return true;
3999 }
4000 
4001 
4002 //----------------------generate_virtual_guard---------------------------
4003 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4004 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4005                                              RegionNode* slow_region) {
4006   ciMethod* method = callee();
4007   int vtable_index = method->vtable_index();
4008   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4009          err_msg_res("bad index %d", vtable_index));
4010   // Get the Method* out of the appropriate vtable entry.
4011   int entry_offset  = (InstanceKlass::vtable_start_offset() +
4012                      vtable_index*vtableEntry::size()) * wordSize +
4013                      vtableEntry::method_offset_in_bytes();
4014   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4015   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4016 
4017   // Compare the target method with the expected method (e.g., Object.hashCode).
4018   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4019 
4020   Node* native_call = makecon(native_call_addr);
4021   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4022   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4023 
4024   return generate_slow_guard(test_native, slow_region);
4025 }
4026 
4027 //-----------------------generate_method_call----------------------------
4028 // Use generate_method_call to make a slow-call to the real
4029 // method if the fast path fails.  An alternative would be to
4030 // use a stub like OptoRuntime::slow_arraycopy_Java.
4031 // This only works for expanding the current library call,
4032 // not another intrinsic.  (E.g., don't use this for making an
4033 // arraycopy call inside of the copyOf intrinsic.)
4034 CallJavaNode*
4035 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4036   // When compiling the intrinsic method itself, do not use this technique.
4037   guarantee(callee() != C->method(), "cannot make slow-call to self");
4038 
4039   ciMethod* method = callee();
4040   // ensure the JVMS we have will be correct for this call
4041   guarantee(method_id == method->intrinsic_id(), "must match");
4042 
4043   const TypeFunc* tf = TypeFunc::make(method);
4044   CallJavaNode* slow_call;
4045   if (is_static) {
4046     assert(!is_virtual, "");
4047     slow_call = new CallStaticJavaNode(C, tf,
4048                            SharedRuntime::get_resolve_static_call_stub(),
4049                            method, bci());
4050   } else if (is_virtual) {
4051     null_check_receiver();
4052     int vtable_index = Method::invalid_vtable_index;
4053     if (UseInlineCaches) {
4054       // Suppress the vtable call
4055     } else {
4056       // hashCode and clone are not a miranda methods,
4057       // so the vtable index is fixed.
4058       // No need to use the linkResolver to get it.
4059        vtable_index = method->vtable_index();
4060        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4061               err_msg_res("bad index %d", vtable_index));
4062     }
4063     slow_call = new CallDynamicJavaNode(tf,
4064                           SharedRuntime::get_resolve_virtual_call_stub(),
4065                           method, vtable_index, bci());
4066   } else {  // neither virtual nor static:  opt_virtual
4067     null_check_receiver();
4068     slow_call = new CallStaticJavaNode(C, tf,
4069                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4070                                 method, bci());
4071     slow_call->set_optimized_virtual(true);
4072   }
4073   set_arguments_for_java_call(slow_call);
4074   set_edges_for_java_call(slow_call);
4075   return slow_call;
4076 }
4077 
4078 
4079 /**
4080  * Build special case code for calls to hashCode on an object. This call may
4081  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4082  * slightly different code.
4083  */
4084 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4085   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4086   assert(!(is_virtual && is_static), "either virtual, special, or static");
4087 
4088   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4089 
4090   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4091   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4092   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4093   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4094   Node* obj = NULL;
4095   if (!is_static) {
4096     // Check for hashing null object
4097     obj = null_check_receiver();
4098     if (stopped())  return true;        // unconditionally null
4099     result_reg->init_req(_null_path, top());
4100     result_val->init_req(_null_path, top());
4101   } else {
4102     // Do a null check, and return zero if null.
4103     // System.identityHashCode(null) == 0
4104     obj = argument(0);
4105     Node* null_ctl = top();
4106     obj = null_check_oop(obj, &null_ctl);
4107     result_reg->init_req(_null_path, null_ctl);
4108     result_val->init_req(_null_path, _gvn.intcon(0));
4109   }
4110 
4111   // Unconditionally null?  Then return right away.
4112   if (stopped()) {
4113     set_control( result_reg->in(_null_path));
4114     if (!stopped())
4115       set_result(result_val->in(_null_path));
4116     return true;
4117   }
4118 
4119   // We only go to the fast case code if we pass a number of guards.  The
4120   // paths which do not pass are accumulated in the slow_region.
4121   RegionNode* slow_region = new RegionNode(1);
4122   record_for_igvn(slow_region);
4123 
4124   // If this is a virtual call, we generate a funny guard.  We pull out
4125   // the vtable entry corresponding to hashCode() from the target object.
4126   // If the target method which we are calling happens to be the native
4127   // Object hashCode() method, we pass the guard.  We do not need this
4128   // guard for non-virtual calls -- the caller is known to be the native
4129   // Object hashCode().
4130   if (is_virtual) {
4131     // After null check, get the object's klass.
4132     Node* obj_klass = load_object_klass(obj);
4133     generate_virtual_guard(obj_klass, slow_region);
4134   }
4135 
4136   // Get the header out of the object, use LoadMarkNode when available
4137   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4138   // The control of the load must be NULL. Otherwise, the load can move before
4139   // the null check after castPP removal.
4140   Node* no_ctrl = NULL;
4141   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4142 
4143   // Test the header to see if it is unlocked.
4144   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4145   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4146   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4147   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4148   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4149 
4150   generate_slow_guard(test_unlocked, slow_region);
4151 
4152   // Get the hash value and check to see that it has been properly assigned.
4153   // We depend on hash_mask being at most 32 bits and avoid the use of
4154   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4155   // vm: see markOop.hpp.
4156   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4157   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4158   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4159   // This hack lets the hash bits live anywhere in the mark object now, as long
4160   // as the shift drops the relevant bits into the low 32 bits.  Note that
4161   // Java spec says that HashCode is an int so there's no point in capturing
4162   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4163   hshifted_header      = ConvX2I(hshifted_header);
4164   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4165 
4166   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4167   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4168   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4169 
4170   generate_slow_guard(test_assigned, slow_region);
4171 
4172   Node* init_mem = reset_memory();
4173   // fill in the rest of the null path:
4174   result_io ->init_req(_null_path, i_o());
4175   result_mem->init_req(_null_path, init_mem);
4176 
4177   result_val->init_req(_fast_path, hash_val);
4178   result_reg->init_req(_fast_path, control());
4179   result_io ->init_req(_fast_path, i_o());
4180   result_mem->init_req(_fast_path, init_mem);
4181 
4182   // Generate code for the slow case.  We make a call to hashCode().
4183   set_control(_gvn.transform(slow_region));
4184   if (!stopped()) {
4185     // No need for PreserveJVMState, because we're using up the present state.
4186     set_all_memory(init_mem);
4187     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4188     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4189     Node* slow_result = set_results_for_java_call(slow_call);
4190     // this->control() comes from set_results_for_java_call
4191     result_reg->init_req(_slow_path, control());
4192     result_val->init_req(_slow_path, slow_result);
4193     result_io  ->set_req(_slow_path, i_o());
4194     result_mem ->set_req(_slow_path, reset_memory());
4195   }
4196 
4197   // Return the combined state.
4198   set_i_o(        _gvn.transform(result_io)  );
4199   set_all_memory( _gvn.transform(result_mem));
4200 
4201   set_result(result_reg, result_val);
4202   return true;
4203 }
4204 
4205 //---------------------------inline_native_getClass----------------------------
4206 // public final native Class<?> java.lang.Object.getClass();
4207 //
4208 // Build special case code for calls to getClass on an object.
4209 bool LibraryCallKit::inline_native_getClass() {
4210   Node* obj = null_check_receiver();
4211   if (stopped())  return true;
4212   set_result(load_mirror_from_klass(load_object_klass(obj)));
4213   return true;
4214 }
4215 
4216 //-----------------inline_native_Reflection_getCallerClass---------------------
4217 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4218 //
4219 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4220 //
4221 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4222 // in that it must skip particular security frames and checks for
4223 // caller sensitive methods.
4224 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4225 #ifndef PRODUCT
4226   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4227     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4228   }
4229 #endif
4230 
4231   if (!jvms()->has_method()) {
4232 #ifndef PRODUCT
4233     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4234       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4235     }
4236 #endif
4237     return false;
4238   }
4239 
4240   // Walk back up the JVM state to find the caller at the required
4241   // depth.
4242   JVMState* caller_jvms = jvms();
4243 
4244   // Cf. JVM_GetCallerClass
4245   // NOTE: Start the loop at depth 1 because the current JVM state does
4246   // not include the Reflection.getCallerClass() frame.
4247   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4248     ciMethod* m = caller_jvms->method();
4249     switch (n) {
4250     case 0:
4251       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4252       break;
4253     case 1:
4254       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4255       if (!m->caller_sensitive()) {
4256 #ifndef PRODUCT
4257         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4258           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4259         }
4260 #endif
4261         return false;  // bail-out; let JVM_GetCallerClass do the work
4262       }
4263       break;
4264     default:
4265       if (!m->is_ignored_by_security_stack_walk()) {
4266         // We have reached the desired frame; return the holder class.
4267         // Acquire method holder as java.lang.Class and push as constant.
4268         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4269         ciInstance* caller_mirror = caller_klass->java_mirror();
4270         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4271 
4272 #ifndef PRODUCT
4273         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4274           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4275           tty->print_cr("  JVM state at this point:");
4276           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4277             ciMethod* m = jvms()->of_depth(i)->method();
4278             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4279           }
4280         }
4281 #endif
4282         return true;
4283       }
4284       break;
4285     }
4286   }
4287 
4288 #ifndef PRODUCT
4289   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4290     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4291     tty->print_cr("  JVM state at this point:");
4292     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4293       ciMethod* m = jvms()->of_depth(i)->method();
4294       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4295     }
4296   }
4297 #endif
4298 
4299   return false;  // bail-out; let JVM_GetCallerClass do the work
4300 }
4301 
4302 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4303   Node* arg = argument(0);
4304   Node* result;
4305 
4306   switch (id) {
4307   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4308   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4309   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4310   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4311 
4312   case vmIntrinsics::_doubleToLongBits: {
4313     // two paths (plus control) merge in a wood
4314     RegionNode *r = new RegionNode(3);
4315     Node *phi = new PhiNode(r, TypeLong::LONG);
4316 
4317     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4318     // Build the boolean node
4319     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4320 
4321     // Branch either way.
4322     // NaN case is less traveled, which makes all the difference.
4323     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4324     Node *opt_isnan = _gvn.transform(ifisnan);
4325     assert( opt_isnan->is_If(), "Expect an IfNode");
4326     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4327     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4328 
4329     set_control(iftrue);
4330 
4331     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4332     Node *slow_result = longcon(nan_bits); // return NaN
4333     phi->init_req(1, _gvn.transform( slow_result ));
4334     r->init_req(1, iftrue);
4335 
4336     // Else fall through
4337     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4338     set_control(iffalse);
4339 
4340     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4341     r->init_req(2, iffalse);
4342 
4343     // Post merge
4344     set_control(_gvn.transform(r));
4345     record_for_igvn(r);
4346 
4347     C->set_has_split_ifs(true); // Has chance for split-if optimization
4348     result = phi;
4349     assert(result->bottom_type()->isa_long(), "must be");
4350     break;
4351   }
4352 
4353   case vmIntrinsics::_floatToIntBits: {
4354     // two paths (plus control) merge in a wood
4355     RegionNode *r = new RegionNode(3);
4356     Node *phi = new PhiNode(r, TypeInt::INT);
4357 
4358     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4359     // Build the boolean node
4360     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4361 
4362     // Branch either way.
4363     // NaN case is less traveled, which makes all the difference.
4364     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4365     Node *opt_isnan = _gvn.transform(ifisnan);
4366     assert( opt_isnan->is_If(), "Expect an IfNode");
4367     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4368     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4369 
4370     set_control(iftrue);
4371 
4372     static const jint nan_bits = 0x7fc00000;
4373     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4374     phi->init_req(1, _gvn.transform( slow_result ));
4375     r->init_req(1, iftrue);
4376 
4377     // Else fall through
4378     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4379     set_control(iffalse);
4380 
4381     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4382     r->init_req(2, iffalse);
4383 
4384     // Post merge
4385     set_control(_gvn.transform(r));
4386     record_for_igvn(r);
4387 
4388     C->set_has_split_ifs(true); // Has chance for split-if optimization
4389     result = phi;
4390     assert(result->bottom_type()->isa_int(), "must be");
4391     break;
4392   }
4393 
4394   default:
4395     fatal_unexpected_iid(id);
4396     break;
4397   }
4398   set_result(_gvn.transform(result));
4399   return true;
4400 }
4401 
4402 #ifdef _LP64
4403 #define XTOP ,top() /*additional argument*/
4404 #else  //_LP64
4405 #define XTOP        /*no additional argument*/
4406 #endif //_LP64
4407 
4408 //----------------------inline_unsafe_copyMemory-------------------------
4409 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4410 bool LibraryCallKit::inline_unsafe_copyMemory() {
4411   if (callee()->is_static())  return false;  // caller must have the capability!
4412   null_check_receiver();  // null-check receiver
4413   if (stopped())  return true;
4414 
4415   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4416 
4417   Node* src_ptr =         argument(1);   // type: oop
4418   Node* src_off = ConvL2X(argument(2));  // type: long
4419   Node* dst_ptr =         argument(4);   // type: oop
4420   Node* dst_off = ConvL2X(argument(5));  // type: long
4421   Node* size    = ConvL2X(argument(7));  // type: long
4422 
4423   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4424          "fieldOffset must be byte-scaled");
4425 
4426   Node* src = make_unsafe_address(src_ptr, src_off);
4427   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4428 
4429   // Conservatively insert a memory barrier on all memory slices.
4430   // Do not let writes of the copy source or destination float below the copy.
4431   insert_mem_bar(Op_MemBarCPUOrder);
4432 
4433   // Call it.  Note that the length argument is not scaled.
4434   make_runtime_call(RC_LEAF|RC_NO_FP,
4435                     OptoRuntime::fast_arraycopy_Type(),
4436                     StubRoutines::unsafe_arraycopy(),
4437                     "unsafe_arraycopy",
4438                     TypeRawPtr::BOTTOM,
4439                     src, dst, size XTOP);
4440 
4441   // Do not let reads of the copy destination float above the copy.
4442   insert_mem_bar(Op_MemBarCPUOrder);
4443 
4444   return true;
4445 }
4446 
4447 //------------------------clone_coping-----------------------------------
4448 // Helper function for inline_native_clone.
4449 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4450   assert(obj_size != NULL, "");
4451   Node* raw_obj = alloc_obj->in(1);
4452   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4453 
4454   AllocateNode* alloc = NULL;
4455   if (ReduceBulkZeroing) {
4456     // We will be completely responsible for initializing this object -
4457     // mark Initialize node as complete.
4458     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4459     // The object was just allocated - there should be no any stores!
4460     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4461     // Mark as complete_with_arraycopy so that on AllocateNode
4462     // expansion, we know this AllocateNode is initialized by an array
4463     // copy and a StoreStore barrier exists after the array copy.
4464     alloc->initialization()->set_complete_with_arraycopy();
4465   }
4466 
4467   // Copy the fastest available way.
4468   // TODO: generate fields copies for small objects instead.
4469   Node* src  = obj;
4470   Node* dest = alloc_obj;
4471   Node* size = _gvn.transform(obj_size);
4472 
4473   // Exclude the header but include array length to copy by 8 bytes words.
4474   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4475   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4476                             instanceOopDesc::base_offset_in_bytes();
4477   // base_off:
4478   // 8  - 32-bit VM
4479   // 12 - 64-bit VM, compressed klass
4480   // 16 - 64-bit VM, normal klass
4481   if (base_off % BytesPerLong != 0) {
4482     assert(UseCompressedClassPointers, "");
4483     if (is_array) {
4484       // Exclude length to copy by 8 bytes words.
4485       base_off += sizeof(int);
4486     } else {
4487       // Include klass to copy by 8 bytes words.
4488       base_off = instanceOopDesc::klass_offset_in_bytes();
4489     }
4490     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4491   }
4492   src  = basic_plus_adr(src,  base_off);
4493   dest = basic_plus_adr(dest, base_off);
4494 
4495   // Compute the length also, if needed:
4496   Node* countx = size;
4497   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4498   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4499 
4500   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4501 
4502   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4503   ac->set_clonebasic();
4504   Node* n = _gvn.transform(ac);
4505   if (n == ac) {
4506     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4507   } else {
4508     set_all_memory(n);
4509   }
4510 
4511   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4512   if (card_mark) {
4513     assert(!is_array, "");
4514     // Put in store barrier for any and all oops we are sticking
4515     // into this object.  (We could avoid this if we could prove
4516     // that the object type contains no oop fields at all.)
4517     Node* no_particular_value = NULL;
4518     Node* no_particular_field = NULL;
4519     int raw_adr_idx = Compile::AliasIdxRaw;
4520     post_barrier(control(),
4521                  memory(raw_adr_type),
4522                  alloc_obj,
4523                  no_particular_field,
4524                  raw_adr_idx,
4525                  no_particular_value,
4526                  T_OBJECT,
4527                  false);
4528   }
4529 
4530   // Do not let reads from the cloned object float above the arraycopy.
4531   if (alloc != NULL) {
4532     // Do not let stores that initialize this object be reordered with
4533     // a subsequent store that would make this object accessible by
4534     // other threads.
4535     // Record what AllocateNode this StoreStore protects so that
4536     // escape analysis can go from the MemBarStoreStoreNode to the
4537     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4538     // based on the escape status of the AllocateNode.
4539     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4540   } else {
4541     insert_mem_bar(Op_MemBarCPUOrder);
4542   }
4543 }
4544 
4545 //------------------------inline_native_clone----------------------------
4546 // protected native Object java.lang.Object.clone();
4547 //
4548 // Here are the simple edge cases:
4549 //  null receiver => normal trap
4550 //  virtual and clone was overridden => slow path to out-of-line clone
4551 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4552 //
4553 // The general case has two steps, allocation and copying.
4554 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4555 //
4556 // Copying also has two cases, oop arrays and everything else.
4557 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4558 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4559 //
4560 // These steps fold up nicely if and when the cloned object's klass
4561 // can be sharply typed as an object array, a type array, or an instance.
4562 //
4563 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4564   PhiNode* result_val;
4565 
4566   // Set the reexecute bit for the interpreter to reexecute
4567   // the bytecode that invokes Object.clone if deoptimization happens.
4568   { PreserveReexecuteState preexecs(this);
4569     jvms()->set_should_reexecute(true);
4570 
4571     Node* obj = null_check_receiver();
4572     if (stopped())  return true;
4573 
4574     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4575 
4576     // If we are going to clone an instance, we need its exact type to
4577     // know the number and types of fields to convert the clone to
4578     // loads/stores. Maybe a speculative type can help us.
4579     if (!obj_type->klass_is_exact() &&
4580         obj_type->speculative_type() != NULL &&
4581         obj_type->speculative_type()->is_instance_klass()) {
4582       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4583       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4584           !spec_ik->has_injected_fields()) {
4585         ciKlass* k = obj_type->klass();
4586         if (!k->is_instance_klass() ||
4587             k->as_instance_klass()->is_interface() ||
4588             k->as_instance_klass()->has_subklass()) {
4589           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4590         }
4591       }
4592     }
4593 
4594     Node* obj_klass = load_object_klass(obj);
4595     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4596     const TypeOopPtr*   toop   = ((tklass != NULL)
4597                                 ? tklass->as_instance_type()
4598                                 : TypeInstPtr::NOTNULL);
4599 
4600     // Conservatively insert a memory barrier on all memory slices.
4601     // Do not let writes into the original float below the clone.
4602     insert_mem_bar(Op_MemBarCPUOrder);
4603 
4604     // paths into result_reg:
4605     enum {
4606       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4607       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4608       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4609       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4610       PATH_LIMIT
4611     };
4612     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4613     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4614     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4615     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4616     record_for_igvn(result_reg);
4617 
4618     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4619     int raw_adr_idx = Compile::AliasIdxRaw;
4620 
4621     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4622     if (array_ctl != NULL) {
4623       // It's an array.
4624       PreserveJVMState pjvms(this);
4625       set_control(array_ctl);
4626       Node* obj_length = load_array_length(obj);
4627       Node* obj_size  = NULL;
4628       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4629 
4630       if (!use_ReduceInitialCardMarks()) {
4631         // If it is an oop array, it requires very special treatment,
4632         // because card marking is required on each card of the array.
4633         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4634         if (is_obja != NULL) {
4635           PreserveJVMState pjvms2(this);
4636           set_control(is_obja);
4637           // Generate a direct call to the right arraycopy function(s).
4638           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4639           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4640           ac->set_cloneoop();
4641           Node* n = _gvn.transform(ac);
4642           assert(n == ac, "cannot disappear");
4643           ac->connect_outputs(this);
4644 
4645           result_reg->init_req(_objArray_path, control());
4646           result_val->init_req(_objArray_path, alloc_obj);
4647           result_i_o ->set_req(_objArray_path, i_o());
4648           result_mem ->set_req(_objArray_path, reset_memory());
4649         }
4650       }
4651       // Otherwise, there are no card marks to worry about.
4652       // (We can dispense with card marks if we know the allocation
4653       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4654       //  causes the non-eden paths to take compensating steps to
4655       //  simulate a fresh allocation, so that no further
4656       //  card marks are required in compiled code to initialize
4657       //  the object.)
4658 
4659       if (!stopped()) {
4660         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4661 
4662         // Present the results of the copy.
4663         result_reg->init_req(_array_path, control());
4664         result_val->init_req(_array_path, alloc_obj);
4665         result_i_o ->set_req(_array_path, i_o());
4666         result_mem ->set_req(_array_path, reset_memory());
4667       }
4668     }
4669 
4670     // We only go to the instance fast case code if we pass a number of guards.
4671     // The paths which do not pass are accumulated in the slow_region.
4672     RegionNode* slow_region = new RegionNode(1);
4673     record_for_igvn(slow_region);
4674     if (!stopped()) {
4675       // It's an instance (we did array above).  Make the slow-path tests.
4676       // If this is a virtual call, we generate a funny guard.  We grab
4677       // the vtable entry corresponding to clone() from the target object.
4678       // If the target method which we are calling happens to be the
4679       // Object clone() method, we pass the guard.  We do not need this
4680       // guard for non-virtual calls; the caller is known to be the native
4681       // Object clone().
4682       if (is_virtual) {
4683         generate_virtual_guard(obj_klass, slow_region);
4684       }
4685 
4686       // The object must be cloneable and must not have a finalizer.
4687       // Both of these conditions may be checked in a single test.
4688       // We could optimize the cloneable test further, but we don't care.
4689       generate_access_flags_guard(obj_klass,
4690                                   // Test both conditions:
4691                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4692                                   // Must be cloneable but not finalizer:
4693                                   JVM_ACC_IS_CLONEABLE,
4694                                   slow_region);
4695     }
4696 
4697     if (!stopped()) {
4698       // It's an instance, and it passed the slow-path tests.
4699       PreserveJVMState pjvms(this);
4700       Node* obj_size  = NULL;
4701       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4702       // is reexecuted if deoptimization occurs and there could be problems when merging
4703       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4704       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4705 
4706       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4707 
4708       // Present the results of the slow call.
4709       result_reg->init_req(_instance_path, control());
4710       result_val->init_req(_instance_path, alloc_obj);
4711       result_i_o ->set_req(_instance_path, i_o());
4712       result_mem ->set_req(_instance_path, reset_memory());
4713     }
4714 
4715     // Generate code for the slow case.  We make a call to clone().
4716     set_control(_gvn.transform(slow_region));
4717     if (!stopped()) {
4718       PreserveJVMState pjvms(this);
4719       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4720       Node* slow_result = set_results_for_java_call(slow_call);
4721       // this->control() comes from set_results_for_java_call
4722       result_reg->init_req(_slow_path, control());
4723       result_val->init_req(_slow_path, slow_result);
4724       result_i_o ->set_req(_slow_path, i_o());
4725       result_mem ->set_req(_slow_path, reset_memory());
4726     }
4727 
4728     // Return the combined state.
4729     set_control(    _gvn.transform(result_reg));
4730     set_i_o(        _gvn.transform(result_i_o));
4731     set_all_memory( _gvn.transform(result_mem));
4732   } // original reexecute is set back here
4733 
4734   set_result(_gvn.transform(result_val));
4735   return true;
4736 }
4737 
4738 // If we have a tighly coupled allocation, the arraycopy may take care
4739 // of the array initialization. If one of the guards we insert between
4740 // the allocation and the arraycopy causes a deoptimization, an
4741 // unitialized array will escape the compiled method. To prevent that
4742 // we set the JVM state for uncommon traps between the allocation and
4743 // the arraycopy to the state before the allocation so, in case of
4744 // deoptimization, we'll reexecute the allocation and the
4745 // initialization.
4746 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4747   if (alloc != NULL) {
4748     ciMethod* trap_method = alloc->jvms()->method();
4749     int trap_bci = alloc->jvms()->bci();
4750 
4751     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4752           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4753       // Make sure there's no store between the allocation and the
4754       // arraycopy otherwise visible side effects could be rexecuted
4755       // in case of deoptimization and cause incorrect execution.
4756       bool no_interfering_store = true;
4757       Node* mem = alloc->in(TypeFunc::Memory);
4758       if (mem->is_MergeMem()) {
4759         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4760           Node* n = mms.memory();
4761           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4762             assert(n->is_Store(), "what else?");
4763             no_interfering_store = false;
4764             break;
4765           }
4766         }
4767       } else {
4768         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4769           Node* n = mms.memory();
4770           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4771             assert(n->is_Store(), "what else?");
4772             no_interfering_store = false;
4773             break;
4774           }
4775         }
4776       }
4777 
4778       if (no_interfering_store) {
4779         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4780         uint size = alloc->req();
4781         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4782         old_jvms->set_map(sfpt);
4783         for (uint i = 0; i < size; i++) {
4784           sfpt->init_req(i, alloc->in(i));
4785         }
4786         // re-push array length for deoptimization
4787         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4788         old_jvms->set_sp(old_jvms->sp()+1);
4789         old_jvms->set_monoff(old_jvms->monoff()+1);
4790         old_jvms->set_scloff(old_jvms->scloff()+1);
4791         old_jvms->set_endoff(old_jvms->endoff()+1);
4792         old_jvms->set_should_reexecute(true);
4793 
4794         sfpt->set_i_o(map()->i_o());
4795         sfpt->set_memory(map()->memory());
4796         sfpt->set_control(map()->control());
4797 
4798         JVMState* saved_jvms = jvms();
4799         saved_reexecute_sp = _reexecute_sp;
4800 
4801         set_jvms(sfpt->jvms());
4802         _reexecute_sp = jvms()->sp();
4803 
4804         return saved_jvms;
4805       }
4806     }
4807   }
4808   return NULL;
4809 }
4810 
4811 // In case of a deoptimization, we restart execution at the
4812 // allocation, allocating a new array. We would leave an uninitialized
4813 // array in the heap that GCs wouldn't expect. Move the allocation
4814 // after the traps so we don't allocate the array if we
4815 // deoptimize. This is possible because tightly_coupled_allocation()
4816 // guarantees there's no observer of the allocated array at this point
4817 // and the control flow is simple enough.
4818 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp) {
4819   if (saved_jvms != NULL && !stopped()) {
4820     assert(alloc != NULL, "only with a tightly coupled allocation");
4821     // restore JVM state to the state at the arraycopy
4822     saved_jvms->map()->set_control(map()->control());
4823     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4824     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4825     // If we've improved the types of some nodes (null check) while
4826     // emitting the guards, propagate them to the current state
4827     map()->replaced_nodes().apply(saved_jvms->map());
4828     set_jvms(saved_jvms);
4829     _reexecute_sp = saved_reexecute_sp;
4830 
4831     // Remove the allocation from above the guards
4832     CallProjections callprojs;
4833     alloc->extract_projections(&callprojs, true);
4834     InitializeNode* init = alloc->initialization();
4835     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4836     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4837     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4838     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4839 
4840     // move the allocation here (after the guards)
4841     _gvn.hash_delete(alloc);
4842     alloc->set_req(TypeFunc::Control, control());
4843     alloc->set_req(TypeFunc::I_O, i_o());
4844     Node *mem = reset_memory();
4845     set_all_memory(mem);
4846     alloc->set_req(TypeFunc::Memory, mem);
4847     set_control(init->proj_out(TypeFunc::Control));
4848     set_i_o(callprojs.fallthrough_ioproj);
4849 
4850     // Update memory as done in GraphKit::set_output_for_allocation()
4851     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4852     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4853     if (ary_type->isa_aryptr() && length_type != NULL) {
4854       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4855     }
4856     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4857     int            elemidx  = C->get_alias_index(telemref);
4858     set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
4859     set_memory(init->proj_out(TypeFunc::Memory), elemidx);
4860 
4861     Node* allocx = _gvn.transform(alloc);
4862     assert(allocx == alloc, "where has the allocation gone?");
4863     assert(dest->is_CheckCastPP(), "not an allocation result?");
4864 
4865     _gvn.hash_delete(dest);
4866     dest->set_req(0, control());
4867     Node* destx = _gvn.transform(dest);
4868     assert(destx == dest, "where has the allocation result gone?");
4869   }
4870 }
4871 
4872 
4873 //------------------------------inline_arraycopy-----------------------
4874 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4875 //                                                      Object dest, int destPos,
4876 //                                                      int length);
4877 bool LibraryCallKit::inline_arraycopy() {
4878   // Get the arguments.
4879   Node* src         = argument(0);  // type: oop
4880   Node* src_offset  = argument(1);  // type: int
4881   Node* dest        = argument(2);  // type: oop
4882   Node* dest_offset = argument(3);  // type: int
4883   Node* length      = argument(4);  // type: int
4884 
4885 
4886   // Check for allocation before we add nodes that would confuse
4887   // tightly_coupled_allocation()
4888   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4889 
4890   int saved_reexecute_sp = -1;
4891   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4892   // See arraycopy_restore_alloc_state() comment
4893   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4894   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4895   // if saved_jvms == NULL and alloc != NULL, we can’t emit any guards
4896   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4897 
4898   // The following tests must be performed
4899   // (1) src and dest are arrays.
4900   // (2) src and dest arrays must have elements of the same BasicType
4901   // (3) src and dest must not be null.
4902   // (4) src_offset must not be negative.
4903   // (5) dest_offset must not be negative.
4904   // (6) length must not be negative.
4905   // (7) src_offset + length must not exceed length of src.
4906   // (8) dest_offset + length must not exceed length of dest.
4907   // (9) each element of an oop array must be assignable
4908 
4909   // (3) src and dest must not be null.
4910   // always do this here because we need the JVM state for uncommon traps
4911   Node* null_ctl = top();
4912   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4913   assert(null_ctl->is_top(), "no null control here");
4914   dest = null_check(dest, T_ARRAY);
4915 
4916   if (!can_emit_guards) {
4917     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4918     // guards but the arraycopy node could still take advantage of a
4919     // tightly allocated allocation. tightly_coupled_allocation() is
4920     // called again to make sure it takes the null check above into
4921     // account: the null check is mandatory and if it caused an
4922     // uncommon trap to be emitted then the allocation can't be
4923     // considered tightly coupled in this context.
4924     alloc = tightly_coupled_allocation(dest, NULL);
4925   }
4926 
4927   bool validated = false;
4928 
4929   const Type* src_type  = _gvn.type(src);
4930   const Type* dest_type = _gvn.type(dest);
4931   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4932   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4933 
4934   // Do we have the type of src?
4935   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4936   // Do we have the type of dest?
4937   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4938   // Is the type for src from speculation?
4939   bool src_spec = false;
4940   // Is the type for dest from speculation?
4941   bool dest_spec = false;
4942 
4943   if ((!has_src || !has_dest) && can_emit_guards) {
4944     // We don't have sufficient type information, let's see if
4945     // speculative types can help. We need to have types for both src
4946     // and dest so that it pays off.
4947 
4948     // Do we already have or could we have type information for src
4949     bool could_have_src = has_src;
4950     // Do we already have or could we have type information for dest
4951     bool could_have_dest = has_dest;
4952 
4953     ciKlass* src_k = NULL;
4954     if (!has_src) {
4955       src_k = src_type->speculative_type_not_null();
4956       if (src_k != NULL && src_k->is_array_klass()) {
4957         could_have_src = true;
4958       }
4959     }
4960 
4961     ciKlass* dest_k = NULL;
4962     if (!has_dest) {
4963       dest_k = dest_type->speculative_type_not_null();
4964       if (dest_k != NULL && dest_k->is_array_klass()) {
4965         could_have_dest = true;
4966       }
4967     }
4968 
4969     if (could_have_src && could_have_dest) {
4970       // This is going to pay off so emit the required guards
4971       if (!has_src) {
4972         src = maybe_cast_profiled_obj(src, src_k, true);
4973         src_type  = _gvn.type(src);
4974         top_src  = src_type->isa_aryptr();
4975         has_src = (top_src != NULL && top_src->klass() != NULL);
4976         src_spec = true;
4977       }
4978       if (!has_dest) {
4979         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4980         dest_type  = _gvn.type(dest);
4981         top_dest  = dest_type->isa_aryptr();
4982         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4983         dest_spec = true;
4984       }
4985     }
4986   }
4987 
4988   if (has_src && has_dest && can_emit_guards) {
4989     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4990     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4991     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4992     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4993 
4994     if (src_elem == dest_elem && src_elem == T_OBJECT) {
4995       // If both arrays are object arrays then having the exact types
4996       // for both will remove the need for a subtype check at runtime
4997       // before the call and may make it possible to pick a faster copy
4998       // routine (without a subtype check on every element)
4999       // Do we have the exact type of src?
5000       bool could_have_src = src_spec;
5001       // Do we have the exact type of dest?
5002       bool could_have_dest = dest_spec;
5003       ciKlass* src_k = top_src->klass();
5004       ciKlass* dest_k = top_dest->klass();
5005       if (!src_spec) {
5006         src_k = src_type->speculative_type_not_null();
5007         if (src_k != NULL && src_k->is_array_klass()) {
5008           could_have_src = true;
5009         }
5010       }
5011       if (!dest_spec) {
5012         dest_k = dest_type->speculative_type_not_null();
5013         if (dest_k != NULL && dest_k->is_array_klass()) {
5014           could_have_dest = true;
5015         }
5016       }
5017       if (could_have_src && could_have_dest) {
5018         // If we can have both exact types, emit the missing guards
5019         if (could_have_src && !src_spec) {
5020           src = maybe_cast_profiled_obj(src, src_k, true);
5021         }
5022         if (could_have_dest && !dest_spec) {
5023           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5024         }
5025       }
5026     }
5027   }
5028 
5029   ciMethod* trap_method = method();
5030   int trap_bci = bci();
5031   if (saved_jvms != NULL) {
5032     trap_method = alloc->jvms()->method();
5033     trap_bci = alloc->jvms()->bci();
5034   }
5035 
5036   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5037       can_emit_guards &&
5038       !src->is_top() && !dest->is_top()) {
5039     // validate arguments: enables transformation the ArrayCopyNode
5040     validated = true;
5041 
5042     RegionNode* slow_region = new RegionNode(1);
5043     record_for_igvn(slow_region);
5044 
5045     // (1) src and dest are arrays.
5046     generate_non_array_guard(load_object_klass(src), slow_region);
5047     generate_non_array_guard(load_object_klass(dest), slow_region);
5048 
5049     // (2) src and dest arrays must have elements of the same BasicType
5050     // done at macro expansion or at Ideal transformation time
5051 
5052     // (4) src_offset must not be negative.
5053     generate_negative_guard(src_offset, slow_region);
5054 
5055     // (5) dest_offset must not be negative.
5056     generate_negative_guard(dest_offset, slow_region);
5057 
5058     // (7) src_offset + length must not exceed length of src.
5059     generate_limit_guard(src_offset, length,
5060                          load_array_length(src),
5061                          slow_region);
5062 
5063     // (8) dest_offset + length must not exceed length of dest.
5064     generate_limit_guard(dest_offset, length,
5065                          load_array_length(dest),
5066                          slow_region);
5067 
5068     // (9) each element of an oop array must be assignable
5069     Node* src_klass  = load_object_klass(src);
5070     Node* dest_klass = load_object_klass(dest);
5071     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5072 
5073     if (not_subtype_ctrl != top()) {
5074       PreserveJVMState pjvms(this);
5075       set_control(not_subtype_ctrl);
5076       uncommon_trap(Deoptimization::Reason_intrinsic,
5077                     Deoptimization::Action_make_not_entrant);
5078       assert(stopped(), "Should be stopped");
5079     }
5080     {
5081       PreserveJVMState pjvms(this);
5082       set_control(_gvn.transform(slow_region));
5083       uncommon_trap(Deoptimization::Reason_intrinsic,
5084                     Deoptimization::Action_make_not_entrant);
5085       assert(stopped(), "Should be stopped");
5086     }
5087   }
5088 
5089   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp);
5090 
5091   if (stopped()) {
5092     return true;
5093   }
5094 
5095   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
5096                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5097                                           // so the compiler has a chance to eliminate them: during macro expansion,
5098                                           // we have to set their control (CastPP nodes are eliminated).
5099                                           load_object_klass(src), load_object_klass(dest),
5100                                           load_array_length(src), load_array_length(dest));
5101 
5102   ac->set_arraycopy(validated);
5103 
5104   Node* n = _gvn.transform(ac);
5105   if (n == ac) {
5106     ac->connect_outputs(this);
5107   } else {
5108     assert(validated, "shouldn't transform if all arguments not validated");
5109     set_all_memory(n);
5110   }
5111 
5112   return true;
5113 }
5114 
5115 
5116 // Helper function which determines if an arraycopy immediately follows
5117 // an allocation, with no intervening tests or other escapes for the object.
5118 AllocateArrayNode*
5119 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5120                                            RegionNode* slow_region) {
5121   if (stopped())             return NULL;  // no fast path
5122   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5123 
5124   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5125   if (alloc == NULL)  return NULL;
5126 
5127   Node* rawmem = memory(Compile::AliasIdxRaw);
5128   // Is the allocation's memory state untouched?
5129   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5130     // Bail out if there have been raw-memory effects since the allocation.
5131     // (Example:  There might have been a call or safepoint.)
5132     return NULL;
5133   }
5134   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5135   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5136     return NULL;
5137   }
5138 
5139   // There must be no unexpected observers of this allocation.
5140   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5141     Node* obs = ptr->fast_out(i);
5142     if (obs != this->map()) {
5143       return NULL;
5144     }
5145   }
5146 
5147   // This arraycopy must unconditionally follow the allocation of the ptr.
5148   Node* alloc_ctl = ptr->in(0);
5149   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5150 
5151   Node* ctl = control();
5152   while (ctl != alloc_ctl) {
5153     // There may be guards which feed into the slow_region.
5154     // Any other control flow means that we might not get a chance
5155     // to finish initializing the allocated object.
5156     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5157       IfNode* iff = ctl->in(0)->as_If();
5158       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5159       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5160       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5161         ctl = iff->in(0);       // This test feeds the known slow_region.
5162         continue;
5163       }
5164       // One more try:  Various low-level checks bottom out in
5165       // uncommon traps.  If the debug-info of the trap omits
5166       // any reference to the allocation, as we've already
5167       // observed, then there can be no objection to the trap.
5168       bool found_trap = false;
5169       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5170         Node* obs = not_ctl->fast_out(j);
5171         if (obs->in(0) == not_ctl && obs->is_Call() &&
5172             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5173           found_trap = true; break;
5174         }
5175       }
5176       if (found_trap) {
5177         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5178         continue;
5179       }
5180     }
5181     return NULL;
5182   }
5183 
5184   // If we get this far, we have an allocation which immediately
5185   // precedes the arraycopy, and we can take over zeroing the new object.
5186   // The arraycopy will finish the initialization, and provide
5187   // a new control state to which we will anchor the destination pointer.
5188 
5189   return alloc;
5190 }
5191 
5192 //-------------inline_encodeISOArray-----------------------------------
5193 // encode char[] to byte[] in ISO_8859_1
5194 bool LibraryCallKit::inline_encodeISOArray() {
5195   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5196   // no receiver since it is static method
5197   Node *src         = argument(0);
5198   Node *src_offset  = argument(1);
5199   Node *dst         = argument(2);
5200   Node *dst_offset  = argument(3);
5201   Node *length      = argument(4);
5202 
5203   const Type* src_type = src->Value(&_gvn);
5204   const Type* dst_type = dst->Value(&_gvn);
5205   const TypeAryPtr* top_src = src_type->isa_aryptr();
5206   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5207   if (top_src  == NULL || top_src->klass()  == NULL ||
5208       top_dest == NULL || top_dest->klass() == NULL) {
5209     // failed array check
5210     return false;
5211   }
5212 
5213   // Figure out the size and type of the elements we will be copying.
5214   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5215   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5216   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5217     return false;
5218   }
5219   Node* src_start = array_element_address(src, src_offset, src_elem);
5220   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5221   // 'src_start' points to src array + scaled offset
5222   // 'dst_start' points to dst array + scaled offset
5223 
5224   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5225   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5226   enc = _gvn.transform(enc);
5227   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5228   set_memory(res_mem, mtype);
5229   set_result(enc);
5230   return true;
5231 }
5232 
5233 //-------------inline_multiplyToLen-----------------------------------
5234 bool LibraryCallKit::inline_multiplyToLen() {
5235   assert(UseMultiplyToLenIntrinsic, "not implementated on this platform");
5236 
5237   address stubAddr = StubRoutines::multiplyToLen();
5238   if (stubAddr == NULL) {
5239     return false; // Intrinsic's stub is not implemented on this platform
5240   }
5241   const char* stubName = "multiplyToLen";
5242 
5243   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5244 
5245   Node* x    = argument(1);
5246   Node* xlen = argument(2);
5247   Node* y    = argument(3);
5248   Node* ylen = argument(4);
5249   Node* z    = argument(5);
5250 
5251   const Type* x_type = x->Value(&_gvn);
5252   const Type* y_type = y->Value(&_gvn);
5253   const TypeAryPtr* top_x = x_type->isa_aryptr();
5254   const TypeAryPtr* top_y = y_type->isa_aryptr();
5255   if (top_x  == NULL || top_x->klass()  == NULL ||
5256       top_y == NULL || top_y->klass() == NULL) {
5257     // failed array check
5258     return false;
5259   }
5260 
5261   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5262   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5263   if (x_elem != T_INT || y_elem != T_INT) {
5264     return false;
5265   }
5266 
5267   // Set the original stack and the reexecute bit for the interpreter to reexecute
5268   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5269   // on the return from z array allocation in runtime.
5270   { PreserveReexecuteState preexecs(this);
5271     jvms()->set_should_reexecute(true);
5272 
5273     Node* x_start = array_element_address(x, intcon(0), x_elem);
5274     Node* y_start = array_element_address(y, intcon(0), y_elem);
5275     // 'x_start' points to x array + scaled xlen
5276     // 'y_start' points to y array + scaled ylen
5277 
5278     // Allocate the result array
5279     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5280     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5281     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5282 
5283     IdealKit ideal(this);
5284 
5285 #define __ ideal.
5286      Node* one = __ ConI(1);
5287      Node* zero = __ ConI(0);
5288      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5289      __ set(need_alloc, zero);
5290      __ set(z_alloc, z);
5291      __ if_then(z, BoolTest::eq, null()); {
5292        __ increment (need_alloc, one);
5293      } __ else_(); {
5294        // Update graphKit memory and control from IdealKit.
5295        sync_kit(ideal);
5296        Node* zlen_arg = load_array_length(z);
5297        // Update IdealKit memory and control from graphKit.
5298        __ sync_kit(this);
5299        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5300          __ increment (need_alloc, one);
5301        } __ end_if();
5302      } __ end_if();
5303 
5304      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5305        // Update graphKit memory and control from IdealKit.
5306        sync_kit(ideal);
5307        Node * narr = new_array(klass_node, zlen, 1);
5308        // Update IdealKit memory and control from graphKit.
5309        __ sync_kit(this);
5310        __ set(z_alloc, narr);
5311      } __ end_if();
5312 
5313      sync_kit(ideal);
5314      z = __ value(z_alloc);
5315      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5316      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5317      // Final sync IdealKit and GraphKit.
5318      final_sync(ideal);
5319 #undef __
5320 
5321     Node* z_start = array_element_address(z, intcon(0), T_INT);
5322 
5323     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5324                                    OptoRuntime::multiplyToLen_Type(),
5325                                    stubAddr, stubName, TypePtr::BOTTOM,
5326                                    x_start, xlen, y_start, ylen, z_start, zlen);
5327   } // original reexecute is set back here
5328 
5329   C->set_has_split_ifs(true); // Has chance for split-if optimization
5330   set_result(z);
5331   return true;
5332 }
5333 
5334 //-------------inline_squareToLen------------------------------------
5335 bool LibraryCallKit::inline_squareToLen() {
5336   assert(UseSquareToLenIntrinsic, "not implementated on this platform");
5337 
5338   address stubAddr = StubRoutines::squareToLen();
5339   if (stubAddr == NULL) {
5340     return false; // Intrinsic's stub is not implemented on this platform
5341   }
5342   const char* stubName = "squareToLen";
5343 
5344   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5345 
5346   Node* x    = argument(0);
5347   Node* len  = argument(1);
5348   Node* z    = argument(2);
5349   Node* zlen = argument(3);
5350 
5351   const Type* x_type = x->Value(&_gvn);
5352   const Type* z_type = z->Value(&_gvn);
5353   const TypeAryPtr* top_x = x_type->isa_aryptr();
5354   const TypeAryPtr* top_z = z_type->isa_aryptr();
5355   if (top_x  == NULL || top_x->klass()  == NULL ||
5356       top_z  == NULL || top_z->klass()  == NULL) {
5357     // failed array check
5358     return false;
5359   }
5360 
5361   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5362   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5363   if (x_elem != T_INT || z_elem != T_INT) {
5364     return false;
5365   }
5366 
5367 
5368   Node* x_start = array_element_address(x, intcon(0), x_elem);
5369   Node* z_start = array_element_address(z, intcon(0), z_elem);
5370 
5371   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5372                                   OptoRuntime::squareToLen_Type(),
5373                                   stubAddr, stubName, TypePtr::BOTTOM,
5374                                   x_start, len, z_start, zlen);
5375 
5376   set_result(z);
5377   return true;
5378 }
5379 
5380 //-------------inline_mulAdd------------------------------------------
5381 bool LibraryCallKit::inline_mulAdd() {
5382   assert(UseMulAddIntrinsic, "not implementated on this platform");
5383 
5384   address stubAddr = StubRoutines::mulAdd();
5385   if (stubAddr == NULL) {
5386     return false; // Intrinsic's stub is not implemented on this platform
5387   }
5388   const char* stubName = "mulAdd";
5389 
5390   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5391 
5392   Node* out      = argument(0);
5393   Node* in       = argument(1);
5394   Node* offset   = argument(2);
5395   Node* len      = argument(3);
5396   Node* k        = argument(4);
5397 
5398   const Type* out_type = out->Value(&_gvn);
5399   const Type* in_type = in->Value(&_gvn);
5400   const TypeAryPtr* top_out = out_type->isa_aryptr();
5401   const TypeAryPtr* top_in = in_type->isa_aryptr();
5402   if (top_out  == NULL || top_out->klass()  == NULL ||
5403       top_in == NULL || top_in->klass() == NULL) {
5404     // failed array check
5405     return false;
5406   }
5407 
5408   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5409   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5410   if (out_elem != T_INT || in_elem != T_INT) {
5411     return false;
5412   }
5413 
5414   Node* outlen = load_array_length(out);
5415   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5416   Node* out_start = array_element_address(out, intcon(0), out_elem);
5417   Node* in_start = array_element_address(in, intcon(0), in_elem);
5418 
5419   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5420                                   OptoRuntime::mulAdd_Type(),
5421                                   stubAddr, stubName, TypePtr::BOTTOM,
5422                                   out_start,in_start, new_offset, len, k);
5423   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5424   set_result(result);
5425   return true;
5426 }
5427 
5428 
5429 /**
5430  * Calculate CRC32 for byte.
5431  * int java.util.zip.CRC32.update(int crc, int b)
5432  */
5433 bool LibraryCallKit::inline_updateCRC32() {
5434   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5435   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5436   // no receiver since it is static method
5437   Node* crc  = argument(0); // type: int
5438   Node* b    = argument(1); // type: int
5439 
5440   /*
5441    *    int c = ~ crc;
5442    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5443    *    b = b ^ (c >>> 8);
5444    *    crc = ~b;
5445    */
5446 
5447   Node* M1 = intcon(-1);
5448   crc = _gvn.transform(new XorINode(crc, M1));
5449   Node* result = _gvn.transform(new XorINode(crc, b));
5450   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5451 
5452   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5453   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5454   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5455   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5456 
5457   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5458   result = _gvn.transform(new XorINode(crc, result));
5459   result = _gvn.transform(new XorINode(result, M1));
5460   set_result(result);
5461   return true;
5462 }
5463 
5464 /**
5465  * Calculate CRC32 for byte[] array.
5466  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5467  */
5468 bool LibraryCallKit::inline_updateBytesCRC32() {
5469   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5470   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5471   // no receiver since it is static method
5472   Node* crc     = argument(0); // type: int
5473   Node* src     = argument(1); // type: oop
5474   Node* offset  = argument(2); // type: int
5475   Node* length  = argument(3); // type: int
5476 
5477   const Type* src_type = src->Value(&_gvn);
5478   const TypeAryPtr* top_src = src_type->isa_aryptr();
5479   if (top_src  == NULL || top_src->klass()  == NULL) {
5480     // failed array check
5481     return false;
5482   }
5483 
5484   // Figure out the size and type of the elements we will be copying.
5485   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5486   if (src_elem != T_BYTE) {
5487     return false;
5488   }
5489 
5490   // 'src_start' points to src array + scaled offset
5491   Node* src_start = array_element_address(src, offset, src_elem);
5492 
5493   // We assume that range check is done by caller.
5494   // TODO: generate range check (offset+length < src.length) in debug VM.
5495 
5496   // Call the stub.
5497   address stubAddr = StubRoutines::updateBytesCRC32();
5498   const char *stubName = "updateBytesCRC32";
5499 
5500   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5501                                  stubAddr, stubName, TypePtr::BOTTOM,
5502                                  crc, src_start, length);
5503   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5504   set_result(result);
5505   return true;
5506 }
5507 
5508 /**
5509  * Calculate CRC32 for ByteBuffer.
5510  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5511  */
5512 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5513   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5514   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5515   // no receiver since it is static method
5516   Node* crc     = argument(0); // type: int
5517   Node* src     = argument(1); // type: long
5518   Node* offset  = argument(3); // type: int
5519   Node* length  = argument(4); // type: int
5520 
5521   src = ConvL2X(src);  // adjust Java long to machine word
5522   Node* base = _gvn.transform(new CastX2PNode(src));
5523   offset = ConvI2X(offset);
5524 
5525   // 'src_start' points to src array + scaled offset
5526   Node* src_start = basic_plus_adr(top(), base, offset);
5527 
5528   // Call the stub.
5529   address stubAddr = StubRoutines::updateBytesCRC32();
5530   const char *stubName = "updateBytesCRC32";
5531 
5532   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5533                                  stubAddr, stubName, TypePtr::BOTTOM,
5534                                  crc, src_start, length);
5535   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5536   set_result(result);
5537   return true;
5538 }
5539 
5540 //----------------------------inline_reference_get----------------------------
5541 // public T java.lang.ref.Reference.get();
5542 bool LibraryCallKit::inline_reference_get() {
5543   const int referent_offset = java_lang_ref_Reference::referent_offset;
5544   guarantee(referent_offset > 0, "should have already been set");
5545 
5546   // Get the argument:
5547   Node* reference_obj = null_check_receiver();
5548   if (stopped()) return true;
5549 
5550   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5551 
5552   ciInstanceKlass* klass = env()->Object_klass();
5553   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5554 
5555   Node* no_ctrl = NULL;
5556   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5557 
5558   // Use the pre-barrier to record the value in the referent field
5559   pre_barrier(false /* do_load */,
5560               control(),
5561               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5562               result /* pre_val */,
5563               T_OBJECT);
5564 
5565   // Add memory barrier to prevent commoning reads from this field
5566   // across safepoint since GC can change its value.
5567   insert_mem_bar(Op_MemBarCPUOrder);
5568 
5569   set_result(result);
5570   return true;
5571 }
5572 
5573 
5574 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5575                                               bool is_exact=true, bool is_static=false) {
5576 
5577   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5578   assert(tinst != NULL, "obj is null");
5579   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5580   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5581 
5582   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5583                                                                           ciSymbol::make(fieldTypeString),
5584                                                                           is_static);
5585   if (field == NULL) return (Node *) NULL;
5586   assert (field != NULL, "undefined field");
5587 
5588   // Next code  copied from Parse::do_get_xxx():
5589 
5590   // Compute address and memory type.
5591   int offset  = field->offset_in_bytes();
5592   bool is_vol = field->is_volatile();
5593   ciType* field_klass = field->type();
5594   assert(field_klass->is_loaded(), "should be loaded");
5595   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5596   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5597   BasicType bt = field->layout_type();
5598 
5599   // Build the resultant type of the load
5600   const Type *type;
5601   if (bt == T_OBJECT) {
5602     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5603   } else {
5604     type = Type::get_const_basic_type(bt);
5605   }
5606 
5607   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5608     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5609   }
5610   // Build the load.
5611   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5612   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
5613   // If reference is volatile, prevent following memory ops from
5614   // floating up past the volatile read.  Also prevents commoning
5615   // another volatile read.
5616   if (is_vol) {
5617     // Memory barrier includes bogus read of value to force load BEFORE membar
5618     insert_mem_bar(Op_MemBarAcquire, loadedField);
5619   }
5620   return loadedField;
5621 }
5622 
5623 
5624 //------------------------------inline_aescrypt_Block-----------------------
5625 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5626   address stubAddr;
5627   const char *stubName;
5628   assert(UseAES, "need AES instruction support");
5629 
5630   switch(id) {
5631   case vmIntrinsics::_aescrypt_encryptBlock:
5632     stubAddr = StubRoutines::aescrypt_encryptBlock();
5633     stubName = "aescrypt_encryptBlock";
5634     break;
5635   case vmIntrinsics::_aescrypt_decryptBlock:
5636     stubAddr = StubRoutines::aescrypt_decryptBlock();
5637     stubName = "aescrypt_decryptBlock";
5638     break;
5639   }
5640   if (stubAddr == NULL) return false;
5641 
5642   Node* aescrypt_object = argument(0);
5643   Node* src             = argument(1);
5644   Node* src_offset      = argument(2);
5645   Node* dest            = argument(3);
5646   Node* dest_offset     = argument(4);
5647 
5648   // (1) src and dest are arrays.
5649   const Type* src_type = src->Value(&_gvn);
5650   const Type* dest_type = dest->Value(&_gvn);
5651   const TypeAryPtr* top_src = src_type->isa_aryptr();
5652   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5653   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5654 
5655   // for the quick and dirty code we will skip all the checks.
5656   // we are just trying to get the call to be generated.
5657   Node* src_start  = src;
5658   Node* dest_start = dest;
5659   if (src_offset != NULL || dest_offset != NULL) {
5660     assert(src_offset != NULL && dest_offset != NULL, "");
5661     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5662     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5663   }
5664 
5665   // now need to get the start of its expanded key array
5666   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5667   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5668   if (k_start == NULL) return false;
5669 
5670   if (Matcher::pass_original_key_for_aes()) {
5671     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5672     // compatibility issues between Java key expansion and SPARC crypto instructions
5673     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5674     if (original_k_start == NULL) return false;
5675 
5676     // Call the stub.
5677     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5678                       stubAddr, stubName, TypePtr::BOTTOM,
5679                       src_start, dest_start, k_start, original_k_start);
5680   } else {
5681     // Call the stub.
5682     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5683                       stubAddr, stubName, TypePtr::BOTTOM,
5684                       src_start, dest_start, k_start);
5685   }
5686 
5687   return true;
5688 }
5689 
5690 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5691 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5692   address stubAddr;
5693   const char *stubName;
5694 
5695   assert(UseAES, "need AES instruction support");
5696 
5697   switch(id) {
5698   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5699     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5700     stubName = "cipherBlockChaining_encryptAESCrypt";
5701     break;
5702   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5703     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5704     stubName = "cipherBlockChaining_decryptAESCrypt";
5705     break;
5706   }
5707   if (stubAddr == NULL) return false;
5708 
5709   Node* cipherBlockChaining_object = argument(0);
5710   Node* src                        = argument(1);
5711   Node* src_offset                 = argument(2);
5712   Node* len                        = argument(3);
5713   Node* dest                       = argument(4);
5714   Node* dest_offset                = argument(5);
5715 
5716   // (1) src and dest are arrays.
5717   const Type* src_type = src->Value(&_gvn);
5718   const Type* dest_type = dest->Value(&_gvn);
5719   const TypeAryPtr* top_src = src_type->isa_aryptr();
5720   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5721   assert (top_src  != NULL && top_src->klass()  != NULL
5722           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5723 
5724   // checks are the responsibility of the caller
5725   Node* src_start  = src;
5726   Node* dest_start = dest;
5727   if (src_offset != NULL || dest_offset != NULL) {
5728     assert(src_offset != NULL && dest_offset != NULL, "");
5729     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5730     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5731   }
5732 
5733   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5734   // (because of the predicated logic executed earlier).
5735   // so we cast it here safely.
5736   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5737 
5738   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5739   if (embeddedCipherObj == NULL) return false;
5740 
5741   // cast it to what we know it will be at runtime
5742   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5743   assert(tinst != NULL, "CBC obj is null");
5744   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5745   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5746   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5747 
5748   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5749   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5750   const TypeOopPtr* xtype = aklass->as_instance_type();
5751   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
5752   aescrypt_object = _gvn.transform(aescrypt_object);
5753 
5754   // we need to get the start of the aescrypt_object's expanded key array
5755   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5756   if (k_start == NULL) return false;
5757 
5758   // similarly, get the start address of the r vector
5759   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5760   if (objRvec == NULL) return false;
5761   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5762 
5763   Node* cbcCrypt;
5764   if (Matcher::pass_original_key_for_aes()) {
5765     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5766     // compatibility issues between Java key expansion and SPARC crypto instructions
5767     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5768     if (original_k_start == NULL) return false;
5769 
5770     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
5771     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5772                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5773                                  stubAddr, stubName, TypePtr::BOTTOM,
5774                                  src_start, dest_start, k_start, r_start, len, original_k_start);
5775   } else {
5776     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5777     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5778                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5779                                  stubAddr, stubName, TypePtr::BOTTOM,
5780                                  src_start, dest_start, k_start, r_start, len);
5781   }
5782 
5783   // return cipher length (int)
5784   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
5785   set_result(retvalue);
5786   return true;
5787 }
5788 
5789 //------------------------------get_key_start_from_aescrypt_object-----------------------
5790 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5791   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5792   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5793   if (objAESCryptKey == NULL) return (Node *) NULL;
5794 
5795   // now have the array, need to get the start address of the K array
5796   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5797   return k_start;
5798 }
5799 
5800 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
5801 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
5802   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
5803   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5804   if (objAESCryptKey == NULL) return (Node *) NULL;
5805 
5806   // now have the array, need to get the start address of the lastKey array
5807   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
5808   return original_k_start;
5809 }
5810 
5811 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5812 // Return node representing slow path of predicate check.
5813 // the pseudo code we want to emulate with this predicate is:
5814 // for encryption:
5815 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5816 // for decryption:
5817 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5818 //    note cipher==plain is more conservative than the original java code but that's OK
5819 //
5820 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5821   // The receiver was checked for NULL already.
5822   Node* objCBC = argument(0);
5823 
5824   // Load embeddedCipher field of CipherBlockChaining object.
5825   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5826 
5827   // get AESCrypt klass for instanceOf check
5828   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5829   // will have same classloader as CipherBlockChaining object
5830   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5831   assert(tinst != NULL, "CBCobj is null");
5832   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5833 
5834   // we want to do an instanceof comparison against the AESCrypt class
5835   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5836   if (!klass_AESCrypt->is_loaded()) {
5837     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5838     Node* ctrl = control();
5839     set_control(top()); // no regular fast path
5840     return ctrl;
5841   }
5842   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5843 
5844   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5845   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
5846   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
5847 
5848   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5849 
5850   // for encryption, we are done
5851   if (!decrypting)
5852     return instof_false;  // even if it is NULL
5853 
5854   // for decryption, we need to add a further check to avoid
5855   // taking the intrinsic path when cipher and plain are the same
5856   // see the original java code for why.
5857   RegionNode* region = new RegionNode(3);
5858   region->init_req(1, instof_false);
5859   Node* src = argument(1);
5860   Node* dest = argument(4);
5861   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
5862   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
5863   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5864   region->init_req(2, src_dest_conjoint);
5865 
5866   record_for_igvn(region);
5867   return _gvn.transform(region);
5868 }
5869 
5870 //------------------------------get_vars_from_ghash_object-----------------------
5871 Node * LibraryCallKit::get_vars_from_ghash_object(Node *ghash_object, const char *var_name) {
5872   Node* ghash_var = load_field_from_object(ghash_object, var_name, "[J", /*is_exact*/ false);
5873   assert (ghash_var != NULL, "wrong version of sun.security.provider.GHASH");
5874   if (ghash_var == NULL) return (Node *) NULL;
5875 
5876   // now have the array, need to get the start address of the array
5877   Node* var = array_element_address(ghash_var, intcon(0), T_LONG);
5878   return var;
5879 }
5880 
5881 //------------------------------inline_ghash_processBlocks
5882 bool LibraryCallKit::inline_ghash_processBlocks() {
5883   address stubAddr;
5884   const char *stubName;
5885   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
5886 
5887   stubAddr = StubRoutines::ghash_processBlocks();
5888   stubName = "ghash_processBlocks";
5889 
5890   Node* ghash_object   = argument(0);
5891   Node* data           = argument(1);
5892   Node* offset         = argument(2);
5893   Node* len            = argument(3);
5894 
5895   Node* state_start = get_vars_from_ghash_object(ghash_object, "state");
5896   assert(state_start, "Unable to load GHASH state");
5897   Node* subkeyH_start = get_vars_from_ghash_object(ghash_object, "subkeyH");
5898   assert(subkeyH_start, "Unable to load GHASH subkeyH");
5899   Node* data_start  = array_element_address(data, offset, T_BYTE);
5900   assert(data_start, "data is NULL");
5901 
5902   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
5903                                   OptoRuntime::ghash_processBlocks_Type(),
5904                                   stubAddr, stubName, TypePtr::BOTTOM,
5905                                   state_start, subkeyH_start, data_start, len);
5906   return true;
5907 }
5908 
5909 //------------------------------inline_sha_implCompress-----------------------
5910 //
5911 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
5912 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
5913 //
5914 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
5915 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
5916 //
5917 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
5918 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
5919 //
5920 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
5921   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
5922 
5923   Node* sha_obj = argument(0);
5924   Node* src     = argument(1); // type oop
5925   Node* ofs     = argument(2); // type int
5926 
5927   const Type* src_type = src->Value(&_gvn);
5928   const TypeAryPtr* top_src = src_type->isa_aryptr();
5929   if (top_src  == NULL || top_src->klass()  == NULL) {
5930     // failed array check
5931     return false;
5932   }
5933   // Figure out the size and type of the elements we will be copying.
5934   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5935   if (src_elem != T_BYTE) {
5936     return false;
5937   }
5938   // 'src_start' points to src array + offset
5939   Node* src_start = array_element_address(src, ofs, src_elem);
5940   Node* state = NULL;
5941   address stubAddr;
5942   const char *stubName;
5943 
5944   switch(id) {
5945   case vmIntrinsics::_sha_implCompress:
5946     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
5947     state = get_state_from_sha_object(sha_obj);
5948     stubAddr = StubRoutines::sha1_implCompress();
5949     stubName = "sha1_implCompress";
5950     break;
5951   case vmIntrinsics::_sha2_implCompress:
5952     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
5953     state = get_state_from_sha_object(sha_obj);
5954     stubAddr = StubRoutines::sha256_implCompress();
5955     stubName = "sha256_implCompress";
5956     break;
5957   case vmIntrinsics::_sha5_implCompress:
5958     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
5959     state = get_state_from_sha5_object(sha_obj);
5960     stubAddr = StubRoutines::sha512_implCompress();
5961     stubName = "sha512_implCompress";
5962     break;
5963   default:
5964     fatal_unexpected_iid(id);
5965     return false;
5966   }
5967   if (state == NULL) return false;
5968 
5969   // Call the stub.
5970   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
5971                                  stubAddr, stubName, TypePtr::BOTTOM,
5972                                  src_start, state);
5973 
5974   return true;
5975 }
5976 
5977 //------------------------------inline_digestBase_implCompressMB-----------------------
5978 //
5979 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
5980 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
5981 //
5982 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
5983   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
5984          "need SHA1/SHA256/SHA512 instruction support");
5985   assert((uint)predicate < 3, "sanity");
5986   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
5987 
5988   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
5989   Node* src            = argument(1); // byte[] array
5990   Node* ofs            = argument(2); // type int
5991   Node* limit          = argument(3); // type int
5992 
5993   const Type* src_type = src->Value(&_gvn);
5994   const TypeAryPtr* top_src = src_type->isa_aryptr();
5995   if (top_src  == NULL || top_src->klass()  == NULL) {
5996     // failed array check
5997     return false;
5998   }
5999   // Figure out the size and type of the elements we will be copying.
6000   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6001   if (src_elem != T_BYTE) {
6002     return false;
6003   }
6004   // 'src_start' points to src array + offset
6005   Node* src_start = array_element_address(src, ofs, src_elem);
6006 
6007   const char* klass_SHA_name = NULL;
6008   const char* stub_name = NULL;
6009   address     stub_addr = NULL;
6010   bool        long_state = false;
6011 
6012   switch (predicate) {
6013   case 0:
6014     if (UseSHA1Intrinsics) {
6015       klass_SHA_name = "sun/security/provider/SHA";
6016       stub_name = "sha1_implCompressMB";
6017       stub_addr = StubRoutines::sha1_implCompressMB();
6018     }
6019     break;
6020   case 1:
6021     if (UseSHA256Intrinsics) {
6022       klass_SHA_name = "sun/security/provider/SHA2";
6023       stub_name = "sha256_implCompressMB";
6024       stub_addr = StubRoutines::sha256_implCompressMB();
6025     }
6026     break;
6027   case 2:
6028     if (UseSHA512Intrinsics) {
6029       klass_SHA_name = "sun/security/provider/SHA5";
6030       stub_name = "sha512_implCompressMB";
6031       stub_addr = StubRoutines::sha512_implCompressMB();
6032       long_state = true;
6033     }
6034     break;
6035   default:
6036     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6037   }
6038   if (klass_SHA_name != NULL) {
6039     // get DigestBase klass to lookup for SHA klass
6040     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6041     assert(tinst != NULL, "digestBase_obj is not instance???");
6042     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6043 
6044     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6045     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6046     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6047     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6048   }
6049   return false;
6050 }
6051 //------------------------------inline_sha_implCompressMB-----------------------
6052 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6053                                                bool long_state, address stubAddr, const char *stubName,
6054                                                Node* src_start, Node* ofs, Node* limit) {
6055   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6056   const TypeOopPtr* xtype = aklass->as_instance_type();
6057   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6058   sha_obj = _gvn.transform(sha_obj);
6059 
6060   Node* state;
6061   if (long_state) {
6062     state = get_state_from_sha5_object(sha_obj);
6063   } else {
6064     state = get_state_from_sha_object(sha_obj);
6065   }
6066   if (state == NULL) return false;
6067 
6068   // Call the stub.
6069   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6070                                  OptoRuntime::digestBase_implCompressMB_Type(),
6071                                  stubAddr, stubName, TypePtr::BOTTOM,
6072                                  src_start, state, ofs, limit);
6073   // return ofs (int)
6074   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6075   set_result(result);
6076 
6077   return true;
6078 }
6079 
6080 //------------------------------get_state_from_sha_object-----------------------
6081 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6082   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6083   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6084   if (sha_state == NULL) return (Node *) NULL;
6085 
6086   // now have the array, need to get the start address of the state array
6087   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6088   return state;
6089 }
6090 
6091 //------------------------------get_state_from_sha5_object-----------------------
6092 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6093   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6094   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6095   if (sha_state == NULL) return (Node *) NULL;
6096 
6097   // now have the array, need to get the start address of the state array
6098   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6099   return state;
6100 }
6101 
6102 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6103 // Return node representing slow path of predicate check.
6104 // the pseudo code we want to emulate with this predicate is:
6105 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6106 //
6107 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6108   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6109          "need SHA1/SHA256/SHA512 instruction support");
6110   assert((uint)predicate < 3, "sanity");
6111 
6112   // The receiver was checked for NULL already.
6113   Node* digestBaseObj = argument(0);
6114 
6115   // get DigestBase klass for instanceOf check
6116   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6117   assert(tinst != NULL, "digestBaseObj is null");
6118   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6119 
6120   const char* klass_SHA_name = NULL;
6121   switch (predicate) {
6122   case 0:
6123     if (UseSHA1Intrinsics) {
6124       // we want to do an instanceof comparison against the SHA class
6125       klass_SHA_name = "sun/security/provider/SHA";
6126     }
6127     break;
6128   case 1:
6129     if (UseSHA256Intrinsics) {
6130       // we want to do an instanceof comparison against the SHA2 class
6131       klass_SHA_name = "sun/security/provider/SHA2";
6132     }
6133     break;
6134   case 2:
6135     if (UseSHA512Intrinsics) {
6136       // we want to do an instanceof comparison against the SHA5 class
6137       klass_SHA_name = "sun/security/provider/SHA5";
6138     }
6139     break;
6140   default:
6141     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6142   }
6143 
6144   ciKlass* klass_SHA = NULL;
6145   if (klass_SHA_name != NULL) {
6146     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6147   }
6148   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6149     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6150     Node* ctrl = control();
6151     set_control(top()); // no intrinsic path
6152     return ctrl;
6153   }
6154   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6155 
6156   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6157   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6158   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6159   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6160 
6161   return instof_false;  // even if it is NULL
6162 }
6163 
6164 bool LibraryCallKit::inline_profileBoolean() {
6165   Node* counts = argument(1);
6166   const TypeAryPtr* ary = NULL;
6167   ciArray* aobj = NULL;
6168   if (counts->is_Con()
6169       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6170       && (aobj = ary->const_oop()->as_array()) != NULL
6171       && (aobj->length() == 2)) {
6172     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6173     jint false_cnt = aobj->element_value(0).as_int();
6174     jint  true_cnt = aobj->element_value(1).as_int();
6175 
6176     method()->set_injected_profile(true);
6177 
6178     if (C->log() != NULL) {
6179       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6180                      false_cnt, true_cnt);
6181     }
6182 
6183     if (false_cnt + true_cnt == 0) {
6184       // According to profile, never executed.
6185       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6186                           Deoptimization::Action_reinterpret);
6187       return true;
6188     }
6189 
6190     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6191     // is a number of each value occurrences.
6192     Node* result = argument(0);
6193     if (false_cnt == 0 || true_cnt == 0) {
6194       // According to profile, one value has been never seen.
6195       int expected_val = (false_cnt == 0) ? 1 : 0;
6196 
6197       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6198       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6199 
6200       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6201       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6202       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6203 
6204       { // Slow path: uncommon trap for never seen value and then reexecute
6205         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6206         // the value has been seen at least once.
6207         PreserveJVMState pjvms(this);
6208         PreserveReexecuteState preexecs(this);
6209         jvms()->set_should_reexecute(true);
6210 
6211         set_control(slow_path);
6212         set_i_o(i_o());
6213 
6214         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6215                             Deoptimization::Action_reinterpret);
6216       }
6217       // The guard for never seen value enables sharpening of the result and
6218       // returning a constant. It allows to eliminate branches on the same value
6219       // later on.
6220       set_control(fast_path);
6221       result = intcon(expected_val);
6222     }
6223     // Stop profiling.
6224     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6225     // By replacing method body with profile data (represented as ProfileBooleanNode
6226     // on IR level) we effectively disable profiling.
6227     // It enables full speed execution once optimized code is generated.
6228     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6229     C->record_for_igvn(profile);
6230     set_result(profile);
6231     return true;
6232   } else {
6233     // Continue profiling.
6234     // Profile data isn't available at the moment. So, execute method's bytecode version.
6235     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6236     // is compiled and counters aren't available since corresponding MethodHandle
6237     // isn't a compile-time constant.
6238     return false;
6239   }
6240 }
6241 
6242 bool LibraryCallKit::inline_isCompileConstant() {
6243   Node* n = argument(0);
6244   set_result(n->is_Con() ? intcon(1) : intcon(0));
6245   return true;
6246 }