1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableModRefBS.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  58 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  59   // -----------------Table 4.5 -------------------- //
  60   16, 32, 64,  // EVEX_FV(0)
  61   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  62   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  63   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  64   8,  16, 32,  // EVEX_HV(0)
  65   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  66   // -----------------Table 4.6 -------------------- //
  67   16, 32, 64,  // EVEX_FVM(0)
  68   1,  1,  1,   // EVEX_T1S(0)
  69   2,  2,  2,   // EVEX_T1S(1)
  70   4,  4,  4,   // EVEX_T1S(2)
  71   8,  8,  8,   // EVEX_T1S(3)
  72   4,  4,  4,   // EVEX_T1F(0)
  73   8,  8,  8,   // EVEX_T1F(1)
  74   8,  8,  8,   // EVEX_T2(0)
  75   0,  16, 16,  // EVEX_T2(1)
  76   0,  16, 16,  // EVEX_T4(0)
  77   0,  0,  32,  // EVEX_T4(1)
  78   0,  0,  32,  // EVEX_T8(0)
  79   8,  16, 32,  // EVEX_HVM(0)
  80   4,  8,  16,  // EVEX_QVM(0)
  81   2,  4,  8,   // EVEX_OVM(0)
  82   16, 16, 16,  // EVEX_M128(0)
  83   8,  32, 64,  // EVEX_DUP(0)
  84   0,  0,  0    // EVEX_NTUP
  85 };
  86 
  87 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  88   _is_lval = false;
  89   _target = target;
  90   switch (rtype) {
  91   case relocInfo::oop_type:
  92   case relocInfo::metadata_type:
  93     // Oops are a special case. Normally they would be their own section
  94     // but in cases like icBuffer they are literals in the code stream that
  95     // we don't have a section for. We use none so that we get a literal address
  96     // which is always patchable.
  97     break;
  98   case relocInfo::external_word_type:
  99     _rspec = external_word_Relocation::spec(target);
 100     break;
 101   case relocInfo::internal_word_type:
 102     _rspec = internal_word_Relocation::spec(target);
 103     break;
 104   case relocInfo::opt_virtual_call_type:
 105     _rspec = opt_virtual_call_Relocation::spec();
 106     break;
 107   case relocInfo::static_call_type:
 108     _rspec = static_call_Relocation::spec();
 109     break;
 110   case relocInfo::runtime_call_type:
 111     _rspec = runtime_call_Relocation::spec();
 112     break;
 113   case relocInfo::poll_type:
 114   case relocInfo::poll_return_type:
 115     _rspec = Relocation::spec_simple(rtype);
 116     break;
 117   case relocInfo::none:
 118     break;
 119   default:
 120     ShouldNotReachHere();
 121     break;
 122   }
 123 }
 124 
 125 // Implementation of Address
 126 
 127 #ifdef _LP64
 128 
 129 Address Address::make_array(ArrayAddress adr) {
 130   // Not implementable on 64bit machines
 131   // Should have been handled higher up the call chain.
 132   ShouldNotReachHere();
 133   return Address();
 134 }
 135 
 136 // exceedingly dangerous constructor
 137 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 138   _base  = noreg;
 139   _index = noreg;
 140   _scale = no_scale;
 141   _disp  = disp;
 142   switch (rtype) {
 143     case relocInfo::external_word_type:
 144       _rspec = external_word_Relocation::spec(loc);
 145       break;
 146     case relocInfo::internal_word_type:
 147       _rspec = internal_word_Relocation::spec(loc);
 148       break;
 149     case relocInfo::runtime_call_type:
 150       // HMM
 151       _rspec = runtime_call_Relocation::spec();
 152       break;
 153     case relocInfo::poll_type:
 154     case relocInfo::poll_return_type:
 155       _rspec = Relocation::spec_simple(rtype);
 156       break;
 157     case relocInfo::none:
 158       break;
 159     default:
 160       ShouldNotReachHere();
 161   }
 162 }
 163 #else // LP64
 164 
 165 Address Address::make_array(ArrayAddress adr) {
 166   AddressLiteral base = adr.base();
 167   Address index = adr.index();
 168   assert(index._disp == 0, "must not have disp"); // maybe it can?
 169   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 170   array._rspec = base._rspec;
 171   return array;
 172 }
 173 
 174 // exceedingly dangerous constructor
 175 Address::Address(address loc, RelocationHolder spec) {
 176   _base  = noreg;
 177   _index = noreg;
 178   _scale = no_scale;
 179   _disp  = (intptr_t) loc;
 180   _rspec = spec;
 181 }
 182 
 183 #endif // _LP64
 184 
 185 
 186 
 187 // Convert the raw encoding form into the form expected by the constructor for
 188 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 189 // that to noreg for the Address constructor.
 190 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 191   RelocationHolder rspec;
 192   if (disp_reloc != relocInfo::none) {
 193     rspec = Relocation::spec_simple(disp_reloc);
 194   }
 195   bool valid_index = index != rsp->encoding();
 196   if (valid_index) {
 197     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 198     madr._rspec = rspec;
 199     return madr;
 200   } else {
 201     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 202     madr._rspec = rspec;
 203     return madr;
 204   }
 205 }
 206 
 207 // Implementation of Assembler
 208 
 209 int AbstractAssembler::code_fill_byte() {
 210   return (u_char)'\xF4'; // hlt
 211 }
 212 
 213 // make this go away someday
 214 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 215   if (rtype == relocInfo::none)
 216     emit_int32(data);
 217   else
 218     emit_data(data, Relocation::spec_simple(rtype), format);
 219 }
 220 
 221 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 222   assert(imm_operand == 0, "default format must be immediate in this file");
 223   assert(inst_mark() != NULL, "must be inside InstructionMark");
 224   if (rspec.type() !=  relocInfo::none) {
 225     #ifdef ASSERT
 226       check_relocation(rspec, format);
 227     #endif
 228     // Do not use AbstractAssembler::relocate, which is not intended for
 229     // embedded words.  Instead, relocate to the enclosing instruction.
 230 
 231     // hack. call32 is too wide for mask so use disp32
 232     if (format == call32_operand)
 233       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 234     else
 235       code_section()->relocate(inst_mark(), rspec, format);
 236   }
 237   emit_int32(data);
 238 }
 239 
 240 static int encode(Register r) {
 241   int enc = r->encoding();
 242   if (enc >= 8) {
 243     enc -= 8;
 244   }
 245   return enc;
 246 }
 247 
 248 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 249   assert(dst->has_byte_register(), "must have byte register");
 250   assert(isByte(op1) && isByte(op2), "wrong opcode");
 251   assert(isByte(imm8), "not a byte");
 252   assert((op1 & 0x01) == 0, "should be 8bit operation");
 253   emit_int8(op1);
 254   emit_int8(op2 | encode(dst));
 255   emit_int8(imm8);
 256 }
 257 
 258 
 259 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 260   assert(isByte(op1) && isByte(op2), "wrong opcode");
 261   assert((op1 & 0x01) == 1, "should be 32bit operation");
 262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 263   if (is8bit(imm32)) {
 264     emit_int8(op1 | 0x02); // set sign bit
 265     emit_int8(op2 | encode(dst));
 266     emit_int8(imm32 & 0xFF);
 267   } else {
 268     emit_int8(op1);
 269     emit_int8(op2 | encode(dst));
 270     emit_int32(imm32);
 271   }
 272 }
 273 
 274 // Force generation of a 4 byte immediate value even if it fits into 8bit
 275 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 276   assert(isByte(op1) && isByte(op2), "wrong opcode");
 277   assert((op1 & 0x01) == 1, "should be 32bit operation");
 278   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 279   emit_int8(op1);
 280   emit_int8(op2 | encode(dst));
 281   emit_int32(imm32);
 282 }
 283 
 284 // immediate-to-memory forms
 285 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 286   assert((op1 & 0x01) == 1, "should be 32bit operation");
 287   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 288   if (is8bit(imm32)) {
 289     emit_int8(op1 | 0x02); // set sign bit
 290     emit_operand(rm, adr, 1);
 291     emit_int8(imm32 & 0xFF);
 292   } else {
 293     emit_int8(op1);
 294     emit_operand(rm, adr, 4);
 295     emit_int32(imm32);
 296   }
 297 }
 298 
 299 
 300 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 301   assert(isByte(op1) && isByte(op2), "wrong opcode");
 302   emit_int8(op1);
 303   emit_int8(op2 | encode(dst) << 3 | encode(src));
 304 }
 305 
 306 
 307 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 308                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 309   int mod_idx = 0;
 310   // We will test if the displacement fits the compressed format and if so
 311   // apply the compression to the displacment iff the result is8bit.
 312   if (VM_Version::supports_evex() && is_evex_inst) {
 313     switch (cur_tuple_type) {
 314     case EVEX_FV:
 315       if ((cur_encoding & VEX_W) == VEX_W) {
 316         mod_idx += 2 + ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 317       } else {
 318         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 319       }
 320       break;
 321 
 322     case EVEX_HV:
 323       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 324       break;
 325 
 326     case EVEX_FVM:
 327       break;
 328 
 329     case EVEX_T1S:
 330       switch (in_size_in_bits) {
 331       case EVEX_8bit:
 332         break;
 333 
 334       case EVEX_16bit:
 335         mod_idx = 1;
 336         break;
 337 
 338       case EVEX_32bit:
 339         mod_idx = 2;
 340         break;
 341 
 342       case EVEX_64bit:
 343         mod_idx = 3;
 344         break;
 345       }
 346       break;
 347 
 348     case EVEX_T1F:
 349     case EVEX_T2:
 350     case EVEX_T4:
 351       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 352       break;
 353 
 354     case EVEX_T8:
 355       break;
 356 
 357     case EVEX_HVM:
 358       break;
 359 
 360     case EVEX_QVM:
 361       break;
 362 
 363     case EVEX_OVM:
 364       break;
 365 
 366     case EVEX_M128:
 367       break;
 368 
 369     case EVEX_DUP:
 370       break;
 371 
 372     default:
 373       assert(0, "no valid evex tuple_table entry");
 374       break;
 375     }
 376 
 377     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 378       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 379       if ((disp % disp_factor) == 0) {
 380         int new_disp = disp / disp_factor;
 381         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 382           disp = new_disp;
 383         }
 384       } else {
 385         return false;
 386       }
 387     }
 388   }
 389   return (-0x80 <= disp && disp < 0x80);
 390 }
 391 
 392 
 393 bool Assembler::emit_compressed_disp_byte(int &disp) {
 394   int mod_idx = 0;
 395   // We will test if the displacement fits the compressed format and if so
 396   // apply the compression to the displacment iff the result is8bit.
 397   if (VM_Version::supports_evex() && is_evex_instruction) {
 398     switch (tuple_type) {
 399     case EVEX_FV:
 400       if ((evex_encoding & VEX_W) == VEX_W) {
 401         mod_idx += 2 + ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 402       } else {
 403         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 404       }
 405       break;
 406 
 407     case EVEX_HV:
 408       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 409       break;
 410 
 411     case EVEX_FVM:
 412       break;
 413 
 414     case EVEX_T1S:
 415       switch (input_size_in_bits) {
 416       case EVEX_8bit:
 417         break;
 418 
 419       case EVEX_16bit:
 420         mod_idx = 1;
 421         break;
 422 
 423       case EVEX_32bit:
 424         mod_idx = 2;
 425         break;
 426 
 427       case EVEX_64bit:
 428         mod_idx = 3;
 429         break;
 430       }
 431       break;
 432 
 433     case EVEX_T1F:
 434     case EVEX_T2:
 435     case EVEX_T4:
 436       mod_idx = (input_size_in_bits == EVEX_64bit) ? 1 : 0;
 437       break;
 438 
 439     case EVEX_T8:
 440       break;
 441 
 442     case EVEX_HVM:
 443       break;
 444 
 445     case EVEX_QVM:
 446       break;
 447 
 448     case EVEX_OVM:
 449       break;
 450 
 451     case EVEX_M128:
 452       break;
 453 
 454     case EVEX_DUP:
 455       break;
 456 
 457     default:
 458       assert(0, "no valid evex tuple_table entry");
 459       break;
 460     }
 461 
 462     if (avx_vector_len >= AVX_128bit && avx_vector_len <= AVX_512bit) {
 463       int disp_factor = tuple_table[tuple_type + mod_idx][avx_vector_len];
 464       if ((disp % disp_factor) == 0) {
 465         int new_disp = disp / disp_factor;
 466         if (is8bit(new_disp)) {
 467           disp = new_disp;
 468         }
 469       } else {
 470         return false;
 471       }
 472     }
 473   }
 474   return is8bit(disp);
 475 }
 476 
 477 
 478 void Assembler::emit_operand(Register reg, Register base, Register index,
 479                              Address::ScaleFactor scale, int disp,
 480                              RelocationHolder const& rspec,
 481                              int rip_relative_correction) {
 482   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 483 
 484   // Encode the registers as needed in the fields they are used in
 485 
 486   int regenc = encode(reg) << 3;
 487   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 488   int baseenc = base->is_valid() ? encode(base) : 0;
 489 
 490   if (base->is_valid()) {
 491     if (index->is_valid()) {
 492       assert(scale != Address::no_scale, "inconsistent address");
 493       // [base + index*scale + disp]
 494       if (disp == 0 && rtype == relocInfo::none  &&
 495           base != rbp LP64_ONLY(&& base != r13)) {
 496         // [base + index*scale]
 497         // [00 reg 100][ss index base]
 498         assert(index != rsp, "illegal addressing mode");
 499         emit_int8(0x04 | regenc);
 500         emit_int8(scale << 6 | indexenc | baseenc);
 501       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 502         // [base + index*scale + imm8]
 503         // [01 reg 100][ss index base] imm8
 504         assert(index != rsp, "illegal addressing mode");
 505         emit_int8(0x44 | regenc);
 506         emit_int8(scale << 6 | indexenc | baseenc);
 507         emit_int8(disp & 0xFF);
 508       } else {
 509         // [base + index*scale + disp32]
 510         // [10 reg 100][ss index base] disp32
 511         assert(index != rsp, "illegal addressing mode");
 512         emit_int8(0x84 | regenc);
 513         emit_int8(scale << 6 | indexenc | baseenc);
 514         emit_data(disp, rspec, disp32_operand);
 515       }
 516     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 517       // [rsp + disp]
 518       if (disp == 0 && rtype == relocInfo::none) {
 519         // [rsp]
 520         // [00 reg 100][00 100 100]
 521         emit_int8(0x04 | regenc);
 522         emit_int8(0x24);
 523       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 524         // [rsp + imm8]
 525         // [01 reg 100][00 100 100] disp8
 526         emit_int8(0x44 | regenc);
 527         emit_int8(0x24);
 528         emit_int8(disp & 0xFF);
 529       } else {
 530         // [rsp + imm32]
 531         // [10 reg 100][00 100 100] disp32
 532         emit_int8(0x84 | regenc);
 533         emit_int8(0x24);
 534         emit_data(disp, rspec, disp32_operand);
 535       }
 536     } else {
 537       // [base + disp]
 538       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 539       if (disp == 0 && rtype == relocInfo::none &&
 540           base != rbp LP64_ONLY(&& base != r13)) {
 541         // [base]
 542         // [00 reg base]
 543         emit_int8(0x00 | regenc | baseenc);
 544       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 545         // [base + disp8]
 546         // [01 reg base] disp8
 547         emit_int8(0x40 | regenc | baseenc);
 548         emit_int8(disp & 0xFF);
 549       } else {
 550         // [base + disp32]
 551         // [10 reg base] disp32
 552         emit_int8(0x80 | regenc | baseenc);
 553         emit_data(disp, rspec, disp32_operand);
 554       }
 555     }
 556   } else {
 557     if (index->is_valid()) {
 558       assert(scale != Address::no_scale, "inconsistent address");
 559       // [index*scale + disp]
 560       // [00 reg 100][ss index 101] disp32
 561       assert(index != rsp, "illegal addressing mode");
 562       emit_int8(0x04 | regenc);
 563       emit_int8(scale << 6 | indexenc | 0x05);
 564       emit_data(disp, rspec, disp32_operand);
 565     } else if (rtype != relocInfo::none ) {
 566       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 567       // [00 000 101] disp32
 568 
 569       emit_int8(0x05 | regenc);
 570       // Note that the RIP-rel. correction applies to the generated
 571       // disp field, but _not_ to the target address in the rspec.
 572 
 573       // disp was created by converting the target address minus the pc
 574       // at the start of the instruction. That needs more correction here.
 575       // intptr_t disp = target - next_ip;
 576       assert(inst_mark() != NULL, "must be inside InstructionMark");
 577       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 578       int64_t adjusted = disp;
 579       // Do rip-rel adjustment for 64bit
 580       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 581       assert(is_simm32(adjusted),
 582              "must be 32bit offset (RIP relative address)");
 583       emit_data((int32_t) adjusted, rspec, disp32_operand);
 584 
 585     } else {
 586       // 32bit never did this, did everything as the rip-rel/disp code above
 587       // [disp] ABSOLUTE
 588       // [00 reg 100][00 100 101] disp32
 589       emit_int8(0x04 | regenc);
 590       emit_int8(0x25);
 591       emit_data(disp, rspec, disp32_operand);
 592     }
 593   }
 594   is_evex_instruction = false;
 595 }
 596 
 597 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 598                              Address::ScaleFactor scale, int disp,
 599                              RelocationHolder const& rspec) {
 600   if (UseAVX > 2) {
 601     int xreg_enc = reg->encoding();
 602     if (xreg_enc > 15) {
 603       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 604       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 605       return;
 606     }
 607   }
 608   emit_operand((Register)reg, base, index, scale, disp, rspec);
 609 }
 610 
 611 // Secret local extension to Assembler::WhichOperand:
 612 #define end_pc_operand (_WhichOperand_limit)
 613 
 614 address Assembler::locate_operand(address inst, WhichOperand which) {
 615   // Decode the given instruction, and return the address of
 616   // an embedded 32-bit operand word.
 617 
 618   // If "which" is disp32_operand, selects the displacement portion
 619   // of an effective address specifier.
 620   // If "which" is imm64_operand, selects the trailing immediate constant.
 621   // If "which" is call32_operand, selects the displacement of a call or jump.
 622   // Caller is responsible for ensuring that there is such an operand,
 623   // and that it is 32/64 bits wide.
 624 
 625   // If "which" is end_pc_operand, find the end of the instruction.
 626 
 627   address ip = inst;
 628   bool is_64bit = false;
 629 
 630   debug_only(bool has_disp32 = false);
 631   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 632 
 633   again_after_prefix:
 634   switch (0xFF & *ip++) {
 635 
 636   // These convenience macros generate groups of "case" labels for the switch.
 637 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 638 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 639              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 640 #define REP16(x) REP8((x)+0): \
 641               case REP8((x)+8)
 642 
 643   case CS_segment:
 644   case SS_segment:
 645   case DS_segment:
 646   case ES_segment:
 647   case FS_segment:
 648   case GS_segment:
 649     // Seems dubious
 650     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 651     assert(ip == inst+1, "only one prefix allowed");
 652     goto again_after_prefix;
 653 
 654   case 0x67:
 655   case REX:
 656   case REX_B:
 657   case REX_X:
 658   case REX_XB:
 659   case REX_R:
 660   case REX_RB:
 661   case REX_RX:
 662   case REX_RXB:
 663     NOT_LP64(assert(false, "64bit prefixes"));
 664     goto again_after_prefix;
 665 
 666   case REX_W:
 667   case REX_WB:
 668   case REX_WX:
 669   case REX_WXB:
 670   case REX_WR:
 671   case REX_WRB:
 672   case REX_WRX:
 673   case REX_WRXB:
 674     NOT_LP64(assert(false, "64bit prefixes"));
 675     is_64bit = true;
 676     goto again_after_prefix;
 677 
 678   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 679   case 0x88: // movb a, r
 680   case 0x89: // movl a, r
 681   case 0x8A: // movb r, a
 682   case 0x8B: // movl r, a
 683   case 0x8F: // popl a
 684     debug_only(has_disp32 = true);
 685     break;
 686 
 687   case 0x68: // pushq #32
 688     if (which == end_pc_operand) {
 689       return ip + 4;
 690     }
 691     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 692     return ip;                  // not produced by emit_operand
 693 
 694   case 0x66: // movw ... (size prefix)
 695     again_after_size_prefix2:
 696     switch (0xFF & *ip++) {
 697     case REX:
 698     case REX_B:
 699     case REX_X:
 700     case REX_XB:
 701     case REX_R:
 702     case REX_RB:
 703     case REX_RX:
 704     case REX_RXB:
 705     case REX_W:
 706     case REX_WB:
 707     case REX_WX:
 708     case REX_WXB:
 709     case REX_WR:
 710     case REX_WRB:
 711     case REX_WRX:
 712     case REX_WRXB:
 713       NOT_LP64(assert(false, "64bit prefix found"));
 714       goto again_after_size_prefix2;
 715     case 0x8B: // movw r, a
 716     case 0x89: // movw a, r
 717       debug_only(has_disp32 = true);
 718       break;
 719     case 0xC7: // movw a, #16
 720       debug_only(has_disp32 = true);
 721       tail_size = 2;  // the imm16
 722       break;
 723     case 0x0F: // several SSE/SSE2 variants
 724       ip--;    // reparse the 0x0F
 725       goto again_after_prefix;
 726     default:
 727       ShouldNotReachHere();
 728     }
 729     break;
 730 
 731   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 732     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 733     // these asserts are somewhat nonsensical
 734 #ifndef _LP64
 735     assert(which == imm_operand || which == disp32_operand,
 736            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 737 #else
 738     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 739            which == narrow_oop_operand && !is_64bit,
 740            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 741 #endif // _LP64
 742     return ip;
 743 
 744   case 0x69: // imul r, a, #32
 745   case 0xC7: // movl a, #32(oop?)
 746     tail_size = 4;
 747     debug_only(has_disp32 = true); // has both kinds of operands!
 748     break;
 749 
 750   case 0x0F: // movx..., etc.
 751     switch (0xFF & *ip++) {
 752     case 0x3A: // pcmpestri
 753       tail_size = 1;
 754     case 0x38: // ptest, pmovzxbw
 755       ip++; // skip opcode
 756       debug_only(has_disp32 = true); // has both kinds of operands!
 757       break;
 758 
 759     case 0x70: // pshufd r, r/a, #8
 760       debug_only(has_disp32 = true); // has both kinds of operands!
 761     case 0x73: // psrldq r, #8
 762       tail_size = 1;
 763       break;
 764 
 765     case 0x12: // movlps
 766     case 0x28: // movaps
 767     case 0x2E: // ucomiss
 768     case 0x2F: // comiss
 769     case 0x54: // andps
 770     case 0x55: // andnps
 771     case 0x56: // orps
 772     case 0x57: // xorps
 773     case 0x6E: // movd
 774     case 0x7E: // movd
 775     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 776       debug_only(has_disp32 = true);
 777       break;
 778 
 779     case 0xAD: // shrd r, a, %cl
 780     case 0xAF: // imul r, a
 781     case 0xBE: // movsbl r, a (movsxb)
 782     case 0xBF: // movswl r, a (movsxw)
 783     case 0xB6: // movzbl r, a (movzxb)
 784     case 0xB7: // movzwl r, a (movzxw)
 785     case REP16(0x40): // cmovl cc, r, a
 786     case 0xB0: // cmpxchgb
 787     case 0xB1: // cmpxchg
 788     case 0xC1: // xaddl
 789     case 0xC7: // cmpxchg8
 790     case REP16(0x90): // setcc a
 791       debug_only(has_disp32 = true);
 792       // fall out of the switch to decode the address
 793       break;
 794 
 795     case 0xC4: // pinsrw r, a, #8
 796       debug_only(has_disp32 = true);
 797     case 0xC5: // pextrw r, r, #8
 798       tail_size = 1;  // the imm8
 799       break;
 800 
 801     case 0xAC: // shrd r, a, #8
 802       debug_only(has_disp32 = true);
 803       tail_size = 1;  // the imm8
 804       break;
 805 
 806     case REP16(0x80): // jcc rdisp32
 807       if (which == end_pc_operand)  return ip + 4;
 808       assert(which == call32_operand, "jcc has no disp32 or imm");
 809       return ip;
 810     default:
 811       ShouldNotReachHere();
 812     }
 813     break;
 814 
 815   case 0x81: // addl a, #32; addl r, #32
 816     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 817     // on 32bit in the case of cmpl, the imm might be an oop
 818     tail_size = 4;
 819     debug_only(has_disp32 = true); // has both kinds of operands!
 820     break;
 821 
 822   case 0x83: // addl a, #8; addl r, #8
 823     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 824     debug_only(has_disp32 = true); // has both kinds of operands!
 825     tail_size = 1;
 826     break;
 827 
 828   case 0x9B:
 829     switch (0xFF & *ip++) {
 830     case 0xD9: // fnstcw a
 831       debug_only(has_disp32 = true);
 832       break;
 833     default:
 834       ShouldNotReachHere();
 835     }
 836     break;
 837 
 838   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 839   case REP4(0x10): // adc...
 840   case REP4(0x20): // and...
 841   case REP4(0x30): // xor...
 842   case REP4(0x08): // or...
 843   case REP4(0x18): // sbb...
 844   case REP4(0x28): // sub...
 845   case 0xF7: // mull a
 846   case 0x8D: // lea r, a
 847   case 0x87: // xchg r, a
 848   case REP4(0x38): // cmp...
 849   case 0x85: // test r, a
 850     debug_only(has_disp32 = true); // has both kinds of operands!
 851     break;
 852 
 853   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 854   case 0xC6: // movb a, #8
 855   case 0x80: // cmpb a, #8
 856   case 0x6B: // imul r, a, #8
 857     debug_only(has_disp32 = true); // has both kinds of operands!
 858     tail_size = 1; // the imm8
 859     break;
 860 
 861   case 0xC4: // VEX_3bytes
 862   case 0xC5: // VEX_2bytes
 863     assert((UseAVX > 0), "shouldn't have VEX prefix");
 864     assert(ip == inst+1, "no prefixes allowed");
 865     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 866     // but they have prefix 0x0F and processed when 0x0F processed above.
 867     //
 868     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 869     // instructions (these instructions are not supported in 64-bit mode).
 870     // To distinguish them bits [7:6] are set in the VEX second byte since
 871     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 872     // those VEX bits REX and vvvv bits are inverted.
 873     //
 874     // Fortunately C2 doesn't generate these instructions so we don't need
 875     // to check for them in product version.
 876 
 877     // Check second byte
 878     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 879 
 880     // First byte
 881     if ((0xFF & *inst) == VEX_3bytes) {
 882       ip++; // third byte
 883       is_64bit = ((VEX_W & *ip) == VEX_W);
 884     }
 885     ip++; // opcode
 886     // To find the end of instruction (which == end_pc_operand).
 887     switch (0xFF & *ip) {
 888     case 0x61: // pcmpestri r, r/a, #8
 889     case 0x70: // pshufd r, r/a, #8
 890     case 0x73: // psrldq r, #8
 891       tail_size = 1;  // the imm8
 892       break;
 893     default:
 894       break;
 895     }
 896     ip++; // skip opcode
 897     debug_only(has_disp32 = true); // has both kinds of operands!
 898     break;
 899 
 900   case 0x62: // EVEX_4bytes
 901     assert((UseAVX > 0), "shouldn't have EVEX prefix");
 902     assert(ip == inst+1, "no prefixes allowed");
 903     // no EVEX collisions, all instructions that have 0x62 opcodes
 904     // have EVEX versions and are subopcodes of 0x66
 905     ip++; // skip P0 and exmaine W in P1
 906     is_64bit = ((VEX_W & *ip) == VEX_W);
 907     ip++; // move to P2
 908     ip++; // skip P2, move to opcode
 909     // To find the end of instruction (which == end_pc_operand).
 910     switch (0xFF & *ip) {
 911     case 0x61: // pcmpestri r, r/a, #8
 912     case 0x70: // pshufd r, r/a, #8
 913     case 0x73: // psrldq r, #8
 914       tail_size = 1;  // the imm8
 915       break;
 916     default:
 917       break;
 918     }
 919     ip++; // skip opcode
 920     debug_only(has_disp32 = true); // has both kinds of operands!
 921     break;
 922 
 923   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 924   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 925   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 926   case 0xDD: // fld_d a; fst_d a; fstp_d a
 927   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 928   case 0xDF: // fild_d a; fistp_d a
 929   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 930   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 931   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 932     debug_only(has_disp32 = true);
 933     break;
 934 
 935   case 0xE8: // call rdisp32
 936   case 0xE9: // jmp  rdisp32
 937     if (which == end_pc_operand)  return ip + 4;
 938     assert(which == call32_operand, "call has no disp32 or imm");
 939     return ip;
 940 
 941   case 0xF0:                    // Lock
 942     assert(os::is_MP(), "only on MP");
 943     goto again_after_prefix;
 944 
 945   case 0xF3:                    // For SSE
 946   case 0xF2:                    // For SSE2
 947     switch (0xFF & *ip++) {
 948     case REX:
 949     case REX_B:
 950     case REX_X:
 951     case REX_XB:
 952     case REX_R:
 953     case REX_RB:
 954     case REX_RX:
 955     case REX_RXB:
 956     case REX_W:
 957     case REX_WB:
 958     case REX_WX:
 959     case REX_WXB:
 960     case REX_WR:
 961     case REX_WRB:
 962     case REX_WRX:
 963     case REX_WRXB:
 964       NOT_LP64(assert(false, "found 64bit prefix"));
 965       ip++;
 966     default:
 967       ip++;
 968     }
 969     debug_only(has_disp32 = true); // has both kinds of operands!
 970     break;
 971 
 972   default:
 973     ShouldNotReachHere();
 974 
 975 #undef REP8
 976 #undef REP16
 977   }
 978 
 979   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 980 #ifdef _LP64
 981   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 982 #else
 983   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
 984   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
 985 #endif // LP64
 986   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
 987 
 988   // parse the output of emit_operand
 989   int op2 = 0xFF & *ip++;
 990   int base = op2 & 0x07;
 991   int op3 = -1;
 992   const int b100 = 4;
 993   const int b101 = 5;
 994   if (base == b100 && (op2 >> 6) != 3) {
 995     op3 = 0xFF & *ip++;
 996     base = op3 & 0x07;   // refetch the base
 997   }
 998   // now ip points at the disp (if any)
 999 
1000   switch (op2 >> 6) {
1001   case 0:
1002     // [00 reg  100][ss index base]
1003     // [00 reg  100][00   100  esp]
1004     // [00 reg base]
1005     // [00 reg  100][ss index  101][disp32]
1006     // [00 reg  101]               [disp32]
1007 
1008     if (base == b101) {
1009       if (which == disp32_operand)
1010         return ip;              // caller wants the disp32
1011       ip += 4;                  // skip the disp32
1012     }
1013     break;
1014 
1015   case 1:
1016     // [01 reg  100][ss index base][disp8]
1017     // [01 reg  100][00   100  esp][disp8]
1018     // [01 reg base]               [disp8]
1019     ip += 1;                    // skip the disp8
1020     break;
1021 
1022   case 2:
1023     // [10 reg  100][ss index base][disp32]
1024     // [10 reg  100][00   100  esp][disp32]
1025     // [10 reg base]               [disp32]
1026     if (which == disp32_operand)
1027       return ip;                // caller wants the disp32
1028     ip += 4;                    // skip the disp32
1029     break;
1030 
1031   case 3:
1032     // [11 reg base]  (not a memory addressing mode)
1033     break;
1034   }
1035 
1036   if (which == end_pc_operand) {
1037     return ip + tail_size;
1038   }
1039 
1040 #ifdef _LP64
1041   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1042 #else
1043   assert(which == imm_operand, "instruction has only an imm field");
1044 #endif // LP64
1045   return ip;
1046 }
1047 
1048 address Assembler::locate_next_instruction(address inst) {
1049   // Secretly share code with locate_operand:
1050   return locate_operand(inst, end_pc_operand);
1051 }
1052 
1053 
1054 #ifdef ASSERT
1055 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1056   address inst = inst_mark();
1057   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1058   address opnd;
1059 
1060   Relocation* r = rspec.reloc();
1061   if (r->type() == relocInfo::none) {
1062     return;
1063   } else if (r->is_call() || format == call32_operand) {
1064     // assert(format == imm32_operand, "cannot specify a nonzero format");
1065     opnd = locate_operand(inst, call32_operand);
1066   } else if (r->is_data()) {
1067     assert(format == imm_operand || format == disp32_operand
1068            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1069     opnd = locate_operand(inst, (WhichOperand)format);
1070   } else {
1071     assert(format == imm_operand, "cannot specify a format");
1072     return;
1073   }
1074   assert(opnd == pc(), "must put operand where relocs can find it");
1075 }
1076 #endif // ASSERT
1077 
1078 void Assembler::emit_operand32(Register reg, Address adr) {
1079   assert(reg->encoding() < 8, "no extended registers");
1080   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1081   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1082                adr._rspec);
1083 }
1084 
1085 void Assembler::emit_operand(Register reg, Address adr,
1086                              int rip_relative_correction) {
1087   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1088                adr._rspec,
1089                rip_relative_correction);
1090 }
1091 
1092 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1093   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1094                adr._rspec);
1095 }
1096 
1097 // MMX operations
1098 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1099   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1100   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1101 }
1102 
1103 // work around gcc (3.2.1-7a) bug
1104 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1105   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1106   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1107 }
1108 
1109 
1110 void Assembler::emit_farith(int b1, int b2, int i) {
1111   assert(isByte(b1) && isByte(b2), "wrong opcode");
1112   assert(0 <= i &&  i < 8, "illegal stack offset");
1113   emit_int8(b1);
1114   emit_int8(b2 + i);
1115 }
1116 
1117 
1118 // Now the Assembler instructions (identical for 32/64 bits)
1119 
1120 void Assembler::adcl(Address dst, int32_t imm32) {
1121   InstructionMark im(this);
1122   prefix(dst);
1123   emit_arith_operand(0x81, rdx, dst, imm32);
1124 }
1125 
1126 void Assembler::adcl(Address dst, Register src) {
1127   InstructionMark im(this);
1128   prefix(dst, src);
1129   emit_int8(0x11);
1130   emit_operand(src, dst);
1131 }
1132 
1133 void Assembler::adcl(Register dst, int32_t imm32) {
1134   prefix(dst);
1135   emit_arith(0x81, 0xD0, dst, imm32);
1136 }
1137 
1138 void Assembler::adcl(Register dst, Address src) {
1139   InstructionMark im(this);
1140   prefix(src, dst);
1141   emit_int8(0x13);
1142   emit_operand(dst, src);
1143 }
1144 
1145 void Assembler::adcl(Register dst, Register src) {
1146   (void) prefix_and_encode(dst->encoding(), src->encoding());
1147   emit_arith(0x13, 0xC0, dst, src);
1148 }
1149 
1150 void Assembler::addl(Address dst, int32_t imm32) {
1151   InstructionMark im(this);
1152   prefix(dst);
1153   emit_arith_operand(0x81, rax, dst, imm32);
1154 }
1155 
1156 void Assembler::addl(Address dst, Register src) {
1157   InstructionMark im(this);
1158   prefix(dst, src);
1159   emit_int8(0x01);
1160   emit_operand(src, dst);
1161 }
1162 
1163 void Assembler::addl(Register dst, int32_t imm32) {
1164   prefix(dst);
1165   emit_arith(0x81, 0xC0, dst, imm32);
1166 }
1167 
1168 void Assembler::addl(Register dst, Address src) {
1169   InstructionMark im(this);
1170   prefix(src, dst);
1171   emit_int8(0x03);
1172   emit_operand(dst, src);
1173 }
1174 
1175 void Assembler::addl(Register dst, Register src) {
1176   (void) prefix_and_encode(dst->encoding(), src->encoding());
1177   emit_arith(0x03, 0xC0, dst, src);
1178 }
1179 
1180 void Assembler::addr_nop_4() {
1181   assert(UseAddressNop, "no CPU support");
1182   // 4 bytes: NOP DWORD PTR [EAX+0]
1183   emit_int8(0x0F);
1184   emit_int8(0x1F);
1185   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1186   emit_int8(0);    // 8-bits offset (1 byte)
1187 }
1188 
1189 void Assembler::addr_nop_5() {
1190   assert(UseAddressNop, "no CPU support");
1191   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1192   emit_int8(0x0F);
1193   emit_int8(0x1F);
1194   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1195   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1196   emit_int8(0);    // 8-bits offset (1 byte)
1197 }
1198 
1199 void Assembler::addr_nop_7() {
1200   assert(UseAddressNop, "no CPU support");
1201   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1202   emit_int8(0x0F);
1203   emit_int8(0x1F);
1204   emit_int8((unsigned char)0x80);
1205                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1206   emit_int32(0);   // 32-bits offset (4 bytes)
1207 }
1208 
1209 void Assembler::addr_nop_8() {
1210   assert(UseAddressNop, "no CPU support");
1211   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1212   emit_int8(0x0F);
1213   emit_int8(0x1F);
1214   emit_int8((unsigned char)0x84);
1215                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1216   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1217   emit_int32(0);   // 32-bits offset (4 bytes)
1218 }
1219 
1220 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1221   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1222   if (VM_Version::supports_evex()) {
1223     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_F2);
1224   } else {
1225     emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
1226   }
1227 }
1228 
1229 void Assembler::addsd(XMMRegister dst, Address src) {
1230   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1231   if (VM_Version::supports_evex()) {
1232     tuple_type = EVEX_T1S;
1233     input_size_in_bits = EVEX_64bit;
1234     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_F2);
1235   } else {
1236     emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
1237   }
1238 }
1239 
1240 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1241   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1242   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1243 }
1244 
1245 void Assembler::addss(XMMRegister dst, Address src) {
1246   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1247   if (VM_Version::supports_evex()) {
1248     tuple_type = EVEX_T1S;
1249     input_size_in_bits = EVEX_32bit;
1250   }
1251   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1252 }
1253 
1254 void Assembler::aesdec(XMMRegister dst, Address src) {
1255   assert(VM_Version::supports_aes(), "");
1256   InstructionMark im(this);
1257   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1258               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1259   emit_int8((unsigned char)0xDE);
1260   emit_operand(dst, src);
1261 }
1262 
1263 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1264   assert(VM_Version::supports_aes(), "");
1265   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1266                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1267   emit_int8((unsigned char)0xDE);
1268   emit_int8(0xC0 | encode);
1269 }
1270 
1271 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1272   assert(VM_Version::supports_aes(), "");
1273   InstructionMark im(this);
1274   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1275               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1276   emit_int8((unsigned char)0xDF);
1277   emit_operand(dst, src);
1278 }
1279 
1280 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1281   assert(VM_Version::supports_aes(), "");
1282   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1283                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1284   emit_int8((unsigned char)0xDF);
1285   emit_int8((unsigned char)(0xC0 | encode));
1286 }
1287 
1288 void Assembler::aesenc(XMMRegister dst, Address src) {
1289   assert(VM_Version::supports_aes(), "");
1290   InstructionMark im(this);
1291   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1292               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1293   emit_int8((unsigned char)0xDC);
1294   emit_operand(dst, src);
1295 }
1296 
1297 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1298   assert(VM_Version::supports_aes(), "");
1299   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1300                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1301   emit_int8((unsigned char)0xDC);
1302   emit_int8(0xC0 | encode);
1303 }
1304 
1305 void Assembler::aesenclast(XMMRegister dst, Address src) {
1306   assert(VM_Version::supports_aes(), "");
1307   InstructionMark im(this);
1308   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1309               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1310   emit_int8((unsigned char)0xDD);
1311   emit_operand(dst, src);
1312 }
1313 
1314 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1315   assert(VM_Version::supports_aes(), "");
1316   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1317                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1318   emit_int8((unsigned char)0xDD);
1319   emit_int8((unsigned char)(0xC0 | encode));
1320 }
1321 
1322 
1323 void Assembler::andl(Address dst, int32_t imm32) {
1324   InstructionMark im(this);
1325   prefix(dst);
1326   emit_int8((unsigned char)0x81);
1327   emit_operand(rsp, dst, 4);
1328   emit_int32(imm32);
1329 }
1330 
1331 void Assembler::andl(Register dst, int32_t imm32) {
1332   prefix(dst);
1333   emit_arith(0x81, 0xE0, dst, imm32);
1334 }
1335 
1336 void Assembler::andl(Register dst, Address src) {
1337   InstructionMark im(this);
1338   prefix(src, dst);
1339   emit_int8(0x23);
1340   emit_operand(dst, src);
1341 }
1342 
1343 void Assembler::andl(Register dst, Register src) {
1344   (void) prefix_and_encode(dst->encoding(), src->encoding());
1345   emit_arith(0x23, 0xC0, dst, src);
1346 }
1347 
1348 void Assembler::andnl(Register dst, Register src1, Register src2) {
1349   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1350   int encode = vex_prefix_0F38_and_encode(dst, src1, src2, false);
1351   emit_int8((unsigned char)0xF2);
1352   emit_int8((unsigned char)(0xC0 | encode));
1353 }
1354 
1355 void Assembler::andnl(Register dst, Register src1, Address src2) {
1356   InstructionMark im(this);
1357   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1358   vex_prefix_0F38(dst, src1, src2, false);
1359   emit_int8((unsigned char)0xF2);
1360   emit_operand(dst, src2);
1361 }
1362 
1363 void Assembler::bsfl(Register dst, Register src) {
1364   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1365   emit_int8(0x0F);
1366   emit_int8((unsigned char)0xBC);
1367   emit_int8((unsigned char)(0xC0 | encode));
1368 }
1369 
1370 void Assembler::bsrl(Register dst, Register src) {
1371   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1372   emit_int8(0x0F);
1373   emit_int8((unsigned char)0xBD);
1374   emit_int8((unsigned char)(0xC0 | encode));
1375 }
1376 
1377 void Assembler::bswapl(Register reg) { // bswap
1378   int encode = prefix_and_encode(reg->encoding());
1379   emit_int8(0x0F);
1380   emit_int8((unsigned char)(0xC8 | encode));
1381 }
1382 
1383 void Assembler::blsil(Register dst, Register src) {
1384   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1385   int encode = vex_prefix_0F38_and_encode(rbx, dst, src, false);
1386   emit_int8((unsigned char)0xF3);
1387   emit_int8((unsigned char)(0xC0 | encode));
1388 }
1389 
1390 void Assembler::blsil(Register dst, Address src) {
1391   InstructionMark im(this);
1392   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1393   vex_prefix_0F38(rbx, dst, src, false);
1394   emit_int8((unsigned char)0xF3);
1395   emit_operand(rbx, src);
1396 }
1397 
1398 void Assembler::blsmskl(Register dst, Register src) {
1399   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1400   int encode = vex_prefix_0F38_and_encode(rdx, dst, src, false);
1401   emit_int8((unsigned char)0xF3);
1402   emit_int8((unsigned char)(0xC0 | encode));
1403 }
1404 
1405 void Assembler::blsmskl(Register dst, Address src) {
1406   InstructionMark im(this);
1407   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1408   vex_prefix_0F38(rdx, dst, src, false);
1409   emit_int8((unsigned char)0xF3);
1410   emit_operand(rdx, src);
1411 }
1412 
1413 void Assembler::blsrl(Register dst, Register src) {
1414   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1415   int encode = vex_prefix_0F38_and_encode(rcx, dst, src, false);
1416   emit_int8((unsigned char)0xF3);
1417   emit_int8((unsigned char)(0xC0 | encode));
1418 }
1419 
1420 void Assembler::blsrl(Register dst, Address src) {
1421   InstructionMark im(this);
1422   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1423   vex_prefix_0F38(rcx, dst, src, false);
1424   emit_int8((unsigned char)0xF3);
1425   emit_operand(rcx, src);
1426 }
1427 
1428 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1429   // suspect disp32 is always good
1430   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1431 
1432   if (L.is_bound()) {
1433     const int long_size = 5;
1434     int offs = (int)( target(L) - pc() );
1435     assert(offs <= 0, "assembler error");
1436     InstructionMark im(this);
1437     // 1110 1000 #32-bit disp
1438     emit_int8((unsigned char)0xE8);
1439     emit_data(offs - long_size, rtype, operand);
1440   } else {
1441     InstructionMark im(this);
1442     // 1110 1000 #32-bit disp
1443     L.add_patch_at(code(), locator());
1444 
1445     emit_int8((unsigned char)0xE8);
1446     emit_data(int(0), rtype, operand);
1447   }
1448 }
1449 
1450 void Assembler::call(Register dst) {
1451   int encode = prefix_and_encode(dst->encoding());
1452   emit_int8((unsigned char)0xFF);
1453   emit_int8((unsigned char)(0xD0 | encode));
1454 }
1455 
1456 
1457 void Assembler::call(Address adr) {
1458   InstructionMark im(this);
1459   prefix(adr);
1460   emit_int8((unsigned char)0xFF);
1461   emit_operand(rdx, adr);
1462 }
1463 
1464 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1465   assert(entry != NULL, "call most probably wrong");
1466   InstructionMark im(this);
1467   emit_int8((unsigned char)0xE8);
1468   intptr_t disp = entry - (pc() + sizeof(int32_t));
1469   assert(is_simm32(disp), "must be 32bit offset (call2)");
1470   // Technically, should use call32_operand, but this format is
1471   // implied by the fact that we're emitting a call instruction.
1472 
1473   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1474   emit_data((int) disp, rspec, operand);
1475 }
1476 
1477 void Assembler::cdql() {
1478   emit_int8((unsigned char)0x99);
1479 }
1480 
1481 void Assembler::cld() {
1482   emit_int8((unsigned char)0xFC);
1483 }
1484 
1485 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1486   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1487   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1488   emit_int8(0x0F);
1489   emit_int8(0x40 | cc);
1490   emit_int8((unsigned char)(0xC0 | encode));
1491 }
1492 
1493 
1494 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1495   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1496   prefix(src, dst);
1497   emit_int8(0x0F);
1498   emit_int8(0x40 | cc);
1499   emit_operand(dst, src);
1500 }
1501 
1502 void Assembler::cmpb(Address dst, int imm8) {
1503   InstructionMark im(this);
1504   prefix(dst);
1505   emit_int8((unsigned char)0x80);
1506   emit_operand(rdi, dst, 1);
1507   emit_int8(imm8);
1508 }
1509 
1510 void Assembler::cmpl(Address dst, int32_t imm32) {
1511   InstructionMark im(this);
1512   prefix(dst);
1513   emit_int8((unsigned char)0x81);
1514   emit_operand(rdi, dst, 4);
1515   emit_int32(imm32);
1516 }
1517 
1518 void Assembler::cmpl(Register dst, int32_t imm32) {
1519   prefix(dst);
1520   emit_arith(0x81, 0xF8, dst, imm32);
1521 }
1522 
1523 void Assembler::cmpl(Register dst, Register src) {
1524   (void) prefix_and_encode(dst->encoding(), src->encoding());
1525   emit_arith(0x3B, 0xC0, dst, src);
1526 }
1527 
1528 
1529 void Assembler::cmpl(Register dst, Address  src) {
1530   InstructionMark im(this);
1531   prefix(src, dst);
1532   emit_int8((unsigned char)0x3B);
1533   emit_operand(dst, src);
1534 }
1535 
1536 void Assembler::cmpw(Address dst, int imm16) {
1537   InstructionMark im(this);
1538   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1539   emit_int8(0x66);
1540   emit_int8((unsigned char)0x81);
1541   emit_operand(rdi, dst, 2);
1542   emit_int16(imm16);
1543 }
1544 
1545 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1546 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1547 // The ZF is set if the compared values were equal, and cleared otherwise.
1548 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1549   InstructionMark im(this);
1550   prefix(adr, reg);
1551   emit_int8(0x0F);
1552   emit_int8((unsigned char)0xB1);
1553   emit_operand(reg, adr);
1554 }
1555 
1556 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1557 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1558 // The ZF is set if the compared values were equal, and cleared otherwise.
1559 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1560   InstructionMark im(this);
1561   prefix(adr, reg, true);
1562   emit_int8(0x0F);
1563   emit_int8((unsigned char)0xB0);
1564   emit_operand(reg, adr);
1565 }
1566 
1567 void Assembler::comisd(XMMRegister dst, Address src) {
1568   // NOTE: dbx seems to decode this as comiss even though the
1569   // 0x66 is there. Strangly ucomisd comes out correct
1570   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1571   if (VM_Version::supports_evex()) {
1572     tuple_type = EVEX_T1S;
1573     input_size_in_bits = EVEX_64bit;
1574     emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, true);
1575   } else {
1576     emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1577   }
1578 }
1579 
1580 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1581   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1582   if (VM_Version::supports_evex()) {
1583     emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, true);
1584   } else {
1585     emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1586   }
1587 }
1588 
1589 void Assembler::comiss(XMMRegister dst, Address src) {
1590   if (VM_Version::supports_evex()) {
1591     tuple_type = EVEX_T1S;
1592     input_size_in_bits = EVEX_32bit;
1593   }
1594   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1595   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, true);
1596 }
1597 
1598 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1599   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1600   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, true);
1601 }
1602 
1603 void Assembler::cpuid() {
1604   emit_int8(0x0F);
1605   emit_int8((unsigned char)0xA2);
1606 }
1607 
1608 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1609   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1610   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
1611 }
1612 
1613 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1614   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1615   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
1616 }
1617 
1618 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1619   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1620   if (VM_Version::supports_evex()) {
1621     emit_simd_arith_q(0x5A, dst, src, VEX_SIMD_F2);
1622   } else {
1623     emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1624   }
1625 }
1626 
1627 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1628   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1629   if (VM_Version::supports_evex()) {
1630     tuple_type = EVEX_T1F;
1631     input_size_in_bits = EVEX_64bit;
1632     emit_simd_arith_q(0x5A, dst, src, VEX_SIMD_F2);
1633   } else {
1634     emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1635   }
1636 }
1637 
1638 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1639   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1640   int encode = 0;
1641   if (VM_Version::supports_evex()) {
1642     encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2, true);
1643   } else {
1644     encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, false);
1645   }
1646   emit_int8(0x2A);
1647   emit_int8((unsigned char)(0xC0 | encode));
1648 }
1649 
1650 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1651   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1652   if (VM_Version::supports_evex()) {
1653     tuple_type = EVEX_T1S;
1654     input_size_in_bits = EVEX_32bit;
1655     emit_simd_arith_q(0x2A, dst, src, VEX_SIMD_F2, true);
1656   } else {
1657     emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
1658   }
1659 }
1660 
1661 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1662   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1663   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, true);
1664   emit_int8(0x2A);
1665   emit_int8((unsigned char)(0xC0 | encode));
1666 }
1667 
1668 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1669   if (VM_Version::supports_evex()) {
1670     tuple_type = EVEX_T1S;
1671     input_size_in_bits = EVEX_32bit;
1672   }
1673   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1674   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3, true);
1675 }
1676 
1677 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1678   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1679   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1680 }
1681 
1682 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1683   if (VM_Version::supports_evex()) {
1684     tuple_type = EVEX_T1S;
1685     input_size_in_bits = EVEX_32bit;
1686   }
1687   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1688   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1689 }
1690 
1691 
1692 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1693   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1694   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, true);
1695   emit_int8(0x2C);
1696   emit_int8((unsigned char)(0xC0 | encode));
1697 }
1698 
1699 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1700   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1701   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, true);
1702   emit_int8(0x2C);
1703   emit_int8((unsigned char)(0xC0 | encode));
1704 }
1705 
1706 void Assembler::decl(Address dst) {
1707   // Don't use it directly. Use MacroAssembler::decrement() instead.
1708   InstructionMark im(this);
1709   prefix(dst);
1710   emit_int8((unsigned char)0xFF);
1711   emit_operand(rcx, dst);
1712 }
1713 
1714 void Assembler::divsd(XMMRegister dst, Address src) {
1715   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1716   if (VM_Version::supports_evex()) {
1717     tuple_type = EVEX_T1S;
1718     input_size_in_bits = EVEX_64bit;
1719     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_F2);
1720   } else {
1721     emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1722   }
1723 }
1724 
1725 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1726   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1727   if (VM_Version::supports_evex()) {
1728     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_F2);
1729   } else {
1730     emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1731   }
1732 }
1733 
1734 void Assembler::divss(XMMRegister dst, Address src) {
1735   if (VM_Version::supports_evex()) {
1736     tuple_type = EVEX_T1S;
1737     input_size_in_bits = EVEX_32bit;
1738   }
1739   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1740   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1741 }
1742 
1743 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1744   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1745   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1746 }
1747 
1748 void Assembler::emms() {
1749   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1750   emit_int8(0x0F);
1751   emit_int8(0x77);
1752 }
1753 
1754 void Assembler::hlt() {
1755   emit_int8((unsigned char)0xF4);
1756 }
1757 
1758 void Assembler::idivl(Register src) {
1759   int encode = prefix_and_encode(src->encoding());
1760   emit_int8((unsigned char)0xF7);
1761   emit_int8((unsigned char)(0xF8 | encode));
1762 }
1763 
1764 void Assembler::divl(Register src) { // Unsigned
1765   int encode = prefix_and_encode(src->encoding());
1766   emit_int8((unsigned char)0xF7);
1767   emit_int8((unsigned char)(0xF0 | encode));
1768 }
1769 
1770 void Assembler::imull(Register dst, Register src) {
1771   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1772   emit_int8(0x0F);
1773   emit_int8((unsigned char)0xAF);
1774   emit_int8((unsigned char)(0xC0 | encode));
1775 }
1776 
1777 
1778 void Assembler::imull(Register dst, Register src, int value) {
1779   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1780   if (is8bit(value)) {
1781     emit_int8(0x6B);
1782     emit_int8((unsigned char)(0xC0 | encode));
1783     emit_int8(value & 0xFF);
1784   } else {
1785     emit_int8(0x69);
1786     emit_int8((unsigned char)(0xC0 | encode));
1787     emit_int32(value);
1788   }
1789 }
1790 
1791 void Assembler::imull(Register dst, Address src) {
1792   InstructionMark im(this);
1793   prefix(src, dst);
1794   emit_int8(0x0F);
1795   emit_int8((unsigned char) 0xAF);
1796   emit_operand(dst, src);
1797 }
1798 
1799 
1800 void Assembler::incl(Address dst) {
1801   // Don't use it directly. Use MacroAssembler::increment() instead.
1802   InstructionMark im(this);
1803   prefix(dst);
1804   emit_int8((unsigned char)0xFF);
1805   emit_operand(rax, dst);
1806 }
1807 
1808 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1809   InstructionMark im(this);
1810   assert((0 <= cc) && (cc < 16), "illegal cc");
1811   if (L.is_bound()) {
1812     address dst = target(L);
1813     assert(dst != NULL, "jcc most probably wrong");
1814 
1815     const int short_size = 2;
1816     const int long_size = 6;
1817     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1818     if (maybe_short && is8bit(offs - short_size)) {
1819       // 0111 tttn #8-bit disp
1820       emit_int8(0x70 | cc);
1821       emit_int8((offs - short_size) & 0xFF);
1822     } else {
1823       // 0000 1111 1000 tttn #32-bit disp
1824       assert(is_simm32(offs - long_size),
1825              "must be 32bit offset (call4)");
1826       emit_int8(0x0F);
1827       emit_int8((unsigned char)(0x80 | cc));
1828       emit_int32(offs - long_size);
1829     }
1830   } else {
1831     // Note: could eliminate cond. jumps to this jump if condition
1832     //       is the same however, seems to be rather unlikely case.
1833     // Note: use jccb() if label to be bound is very close to get
1834     //       an 8-bit displacement
1835     L.add_patch_at(code(), locator());
1836     emit_int8(0x0F);
1837     emit_int8((unsigned char)(0x80 | cc));
1838     emit_int32(0);
1839   }
1840 }
1841 
1842 void Assembler::jccb(Condition cc, Label& L) {
1843   if (L.is_bound()) {
1844     const int short_size = 2;
1845     address entry = target(L);
1846 #ifdef ASSERT
1847     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1848     intptr_t delta = short_branch_delta();
1849     if (delta != 0) {
1850       dist += (dist < 0 ? (-delta) :delta);
1851     }
1852     assert(is8bit(dist), "Dispacement too large for a short jmp");
1853 #endif
1854     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1855     // 0111 tttn #8-bit disp
1856     emit_int8(0x70 | cc);
1857     emit_int8((offs - short_size) & 0xFF);
1858   } else {
1859     InstructionMark im(this);
1860     L.add_patch_at(code(), locator());
1861     emit_int8(0x70 | cc);
1862     emit_int8(0);
1863   }
1864 }
1865 
1866 void Assembler::jmp(Address adr) {
1867   InstructionMark im(this);
1868   prefix(adr);
1869   emit_int8((unsigned char)0xFF);
1870   emit_operand(rsp, adr);
1871 }
1872 
1873 void Assembler::jmp(Label& L, bool maybe_short) {
1874   if (L.is_bound()) {
1875     address entry = target(L);
1876     assert(entry != NULL, "jmp most probably wrong");
1877     InstructionMark im(this);
1878     const int short_size = 2;
1879     const int long_size = 5;
1880     intptr_t offs = entry - pc();
1881     if (maybe_short && is8bit(offs - short_size)) {
1882       emit_int8((unsigned char)0xEB);
1883       emit_int8((offs - short_size) & 0xFF);
1884     } else {
1885       emit_int8((unsigned char)0xE9);
1886       emit_int32(offs - long_size);
1887     }
1888   } else {
1889     // By default, forward jumps are always 32-bit displacements, since
1890     // we can't yet know where the label will be bound.  If you're sure that
1891     // the forward jump will not run beyond 256 bytes, use jmpb to
1892     // force an 8-bit displacement.
1893     InstructionMark im(this);
1894     L.add_patch_at(code(), locator());
1895     emit_int8((unsigned char)0xE9);
1896     emit_int32(0);
1897   }
1898 }
1899 
1900 void Assembler::jmp(Register entry) {
1901   int encode = prefix_and_encode(entry->encoding());
1902   emit_int8((unsigned char)0xFF);
1903   emit_int8((unsigned char)(0xE0 | encode));
1904 }
1905 
1906 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
1907   InstructionMark im(this);
1908   emit_int8((unsigned char)0xE9);
1909   assert(dest != NULL, "must have a target");
1910   intptr_t disp = dest - (pc() + sizeof(int32_t));
1911   assert(is_simm32(disp), "must be 32bit offset (jmp)");
1912   emit_data(disp, rspec.reloc(), call32_operand);
1913 }
1914 
1915 void Assembler::jmpb(Label& L) {
1916   if (L.is_bound()) {
1917     const int short_size = 2;
1918     address entry = target(L);
1919     assert(entry != NULL, "jmp most probably wrong");
1920 #ifdef ASSERT
1921     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1922     intptr_t delta = short_branch_delta();
1923     if (delta != 0) {
1924       dist += (dist < 0 ? (-delta) :delta);
1925     }
1926     assert(is8bit(dist), "Dispacement too large for a short jmp");
1927 #endif
1928     intptr_t offs = entry - pc();
1929     emit_int8((unsigned char)0xEB);
1930     emit_int8((offs - short_size) & 0xFF);
1931   } else {
1932     InstructionMark im(this);
1933     L.add_patch_at(code(), locator());
1934     emit_int8((unsigned char)0xEB);
1935     emit_int8(0);
1936   }
1937 }
1938 
1939 void Assembler::ldmxcsr( Address src) {
1940   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1941   InstructionMark im(this);
1942   prefix(src);
1943   emit_int8(0x0F);
1944   emit_int8((unsigned char)0xAE);
1945   emit_operand(as_Register(2), src);
1946 }
1947 
1948 void Assembler::leal(Register dst, Address src) {
1949   InstructionMark im(this);
1950 #ifdef _LP64
1951   emit_int8(0x67); // addr32
1952   prefix(src, dst);
1953 #endif // LP64
1954   emit_int8((unsigned char)0x8D);
1955   emit_operand(dst, src);
1956 }
1957 
1958 void Assembler::lfence() {
1959   emit_int8(0x0F);
1960   emit_int8((unsigned char)0xAE);
1961   emit_int8((unsigned char)0xE8);
1962 }
1963 
1964 void Assembler::lock() {
1965   emit_int8((unsigned char)0xF0);
1966 }
1967 
1968 void Assembler::lzcntl(Register dst, Register src) {
1969   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
1970   emit_int8((unsigned char)0xF3);
1971   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1972   emit_int8(0x0F);
1973   emit_int8((unsigned char)0xBD);
1974   emit_int8((unsigned char)(0xC0 | encode));
1975 }
1976 
1977 // Emit mfence instruction
1978 void Assembler::mfence() {
1979   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
1980   emit_int8(0x0F);
1981   emit_int8((unsigned char)0xAE);
1982   emit_int8((unsigned char)0xF0);
1983 }
1984 
1985 void Assembler::mov(Register dst, Register src) {
1986   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
1987 }
1988 
1989 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
1990   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1991   if (VM_Version::supports_evex()) {
1992     emit_simd_arith_nonds_q(0x28, dst, src, VEX_SIMD_66, true);
1993   } else {
1994     emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
1995   }
1996 }
1997 
1998 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
1999   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2000   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
2001 }
2002 
2003 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2004   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2005   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, true, VEX_OPCODE_0F,
2006                                       false, AVX_128bit);
2007   emit_int8(0x16);
2008   emit_int8((unsigned char)(0xC0 | encode));
2009 }
2010 
2011 void Assembler::movb(Register dst, Address src) {
2012   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2013   InstructionMark im(this);
2014   prefix(src, dst, true);
2015   emit_int8((unsigned char)0x8A);
2016   emit_operand(dst, src);
2017 }
2018 
2019 void Assembler::kmovq(KRegister dst, KRegister src) {
2020   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2021   int encode = kreg_prefix_and_encode(dst, knoreg, src, VEX_SIMD_NONE,
2022                                       true, VEX_OPCODE_0F, true);
2023   emit_int8((unsigned char)0x90);
2024   emit_int8((unsigned char)(0xC0 | encode));
2025 }
2026 
2027 void Assembler::kmovq(KRegister dst, Address src) {
2028   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2029   int dst_enc = dst->encoding();
2030   int nds_enc = 0;
2031   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_NONE,
2032              VEX_OPCODE_0F, true, AVX_128bit, true, true);
2033   emit_int8((unsigned char)0x90);
2034   emit_operand((Register)dst, src);
2035 }
2036 
2037 void Assembler::kmovq(Address dst, KRegister src) {
2038   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2039   int src_enc = src->encoding();
2040   int nds_enc = 0;
2041   vex_prefix(dst, nds_enc, src_enc, VEX_SIMD_NONE,
2042              VEX_OPCODE_0F, true, AVX_128bit, true, true);
2043   emit_int8((unsigned char)0x90);
2044   emit_operand((Register)src, dst);
2045 }
2046 
2047 void Assembler::kmovql(KRegister dst, Register src) {
2048   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2049   bool supports_bw = VM_Version::supports_avx512bw();
2050   VexSimdPrefix pre = supports_bw ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2051   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, true,
2052                                       VEX_OPCODE_0F, supports_bw);
2053   emit_int8((unsigned char)0x92);
2054   emit_int8((unsigned char)(0xC0 | encode));
2055 }
2056 
2057 void Assembler::kmovdl(KRegister dst, Register src) {
2058   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2059   VexSimdPrefix pre = VM_Version::supports_avx512bw() ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2060   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, true, VEX_OPCODE_0F, false);
2061   emit_int8((unsigned char)0x92);
2062   emit_int8((unsigned char)(0xC0 | encode));
2063 }
2064 
2065 void Assembler::movb(Address dst, int imm8) {
2066   InstructionMark im(this);
2067    prefix(dst);
2068   emit_int8((unsigned char)0xC6);
2069   emit_operand(rax, dst, 1);
2070   emit_int8(imm8);
2071 }
2072 
2073 
2074 void Assembler::movb(Address dst, Register src) {
2075   assert(src->has_byte_register(), "must have byte register");
2076   InstructionMark im(this);
2077   prefix(dst, src, true);
2078   emit_int8((unsigned char)0x88);
2079   emit_operand(src, dst);
2080 }
2081 
2082 void Assembler::movdl(XMMRegister dst, Register src) {
2083   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2084   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, true);
2085   emit_int8(0x6E);
2086   emit_int8((unsigned char)(0xC0 | encode));
2087 }
2088 
2089 void Assembler::movdl(Register dst, XMMRegister src) {
2090   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2091   // swap src/dst to get correct prefix
2092   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66, true);
2093   emit_int8(0x7E);
2094   emit_int8((unsigned char)(0xC0 | encode));
2095 }
2096 
2097 void Assembler::movdl(XMMRegister dst, Address src) {
2098   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2099   if (VM_Version::supports_evex()) {
2100     tuple_type = EVEX_T1S;
2101     input_size_in_bits = EVEX_32bit;
2102   }
2103   InstructionMark im(this);
2104   simd_prefix(dst, src, VEX_SIMD_66, true, VEX_OPCODE_0F);
2105   emit_int8(0x6E);
2106   emit_operand(dst, src);
2107 }
2108 
2109 void Assembler::movdl(Address dst, XMMRegister src) {
2110   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2111   if (VM_Version::supports_evex()) {
2112     tuple_type = EVEX_T1S;
2113     input_size_in_bits = EVEX_32bit;
2114   }
2115   InstructionMark im(this);
2116   simd_prefix(dst, src, VEX_SIMD_66, true);
2117   emit_int8(0x7E);
2118   emit_operand(src, dst);
2119 }
2120 
2121 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2122   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2123   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
2124 }
2125 
2126 void Assembler::movdqa(XMMRegister dst, Address src) {
2127   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2128   if (VM_Version::supports_evex()) {
2129     tuple_type = EVEX_FVM;
2130   }
2131   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
2132 }
2133 
2134 void Assembler::movdqu(XMMRegister dst, Address src) {
2135   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2136   if (VM_Version::supports_evex()) {
2137     tuple_type = EVEX_FVM;
2138   }
2139   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
2140 }
2141 
2142 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2143   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2144   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
2145 }
2146 
2147 void Assembler::movdqu(Address dst, XMMRegister src) {
2148   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2149   if (VM_Version::supports_evex()) {
2150     tuple_type = EVEX_FVM;
2151   }
2152   InstructionMark im(this);
2153   simd_prefix(dst, src, VEX_SIMD_F3, false);
2154   emit_int8(0x7F);
2155   emit_operand(src, dst);
2156 }
2157 
2158 // Move Unaligned 256bit Vector
2159 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2160   assert(UseAVX > 0, "");
2161   if (VM_Version::supports_evex()) {
2162     tuple_type = EVEX_FVM;
2163   }
2164   int vector_len = AVX_256bit;
2165   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector_len);
2166   emit_int8(0x6F);
2167   emit_int8((unsigned char)(0xC0 | encode));
2168 }
2169 
2170 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2171   assert(UseAVX > 0, "");
2172   if (VM_Version::supports_evex()) {
2173     tuple_type = EVEX_FVM;
2174   }
2175   InstructionMark im(this);
2176   int vector_len = AVX_256bit;
2177   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2178   emit_int8(0x6F);
2179   emit_operand(dst, src);
2180 }
2181 
2182 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2183   assert(UseAVX > 0, "");
2184   if (VM_Version::supports_evex()) {
2185     tuple_type = EVEX_FVM;
2186   }
2187   InstructionMark im(this);
2188   int vector_len = AVX_256bit;
2189   // swap src<->dst for encoding
2190   assert(src != xnoreg, "sanity");
2191   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2192   emit_int8(0x7F);
2193   emit_operand(src, dst);
2194 }
2195 
2196 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2197 void Assembler::evmovdqu(XMMRegister dst, XMMRegister src, int vector_len) {
2198   assert(UseAVX > 0, "");
2199   int src_enc = src->encoding();
2200   int dst_enc = dst->encoding();
2201   int encode = vex_prefix_and_encode(dst_enc, 0, src_enc, VEX_SIMD_F3, VEX_OPCODE_0F,
2202                                      true, vector_len, false, false);
2203   emit_int8(0x6F);
2204   emit_int8((unsigned char)(0xC0 | encode));
2205 }
2206 
2207 void Assembler::evmovdqu(XMMRegister dst, Address src, int vector_len) {
2208   assert(UseAVX > 0, "");
2209   InstructionMark im(this);
2210   if (VM_Version::supports_evex()) {
2211     tuple_type = EVEX_FVM;
2212     vex_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2213   } else {
2214     vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2215   }
2216   emit_int8(0x6F);
2217   emit_operand(dst, src);
2218 }
2219 
2220 void Assembler::evmovdqu(Address dst, XMMRegister src, int vector_len) {
2221   assert(UseAVX > 0, "");
2222   InstructionMark im(this);
2223   assert(src != xnoreg, "sanity");
2224   if (VM_Version::supports_evex()) {
2225     tuple_type = EVEX_FVM;
2226     // swap src<->dst for encoding
2227     vex_prefix_q(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2228   } else {
2229     // swap src<->dst for encoding
2230     vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2231   }
2232   emit_int8(0x7F);
2233   emit_operand(src, dst);
2234 }
2235 
2236 // Uses zero extension on 64bit
2237 
2238 void Assembler::movl(Register dst, int32_t imm32) {
2239   int encode = prefix_and_encode(dst->encoding());
2240   emit_int8((unsigned char)(0xB8 | encode));
2241   emit_int32(imm32);
2242 }
2243 
2244 void Assembler::movl(Register dst, Register src) {
2245   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2246   emit_int8((unsigned char)0x8B);
2247   emit_int8((unsigned char)(0xC0 | encode));
2248 }
2249 
2250 void Assembler::movl(Register dst, Address src) {
2251   InstructionMark im(this);
2252   prefix(src, dst);
2253   emit_int8((unsigned char)0x8B);
2254   emit_operand(dst, src);
2255 }
2256 
2257 void Assembler::movl(Address dst, int32_t imm32) {
2258   InstructionMark im(this);
2259   prefix(dst);
2260   emit_int8((unsigned char)0xC7);
2261   emit_operand(rax, dst, 4);
2262   emit_int32(imm32);
2263 }
2264 
2265 void Assembler::movl(Address dst, Register src) {
2266   InstructionMark im(this);
2267   prefix(dst, src);
2268   emit_int8((unsigned char)0x89);
2269   emit_operand(src, dst);
2270 }
2271 
2272 // New cpus require to use movsd and movss to avoid partial register stall
2273 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2274 // The selection is done in MacroAssembler::movdbl() and movflt().
2275 void Assembler::movlpd(XMMRegister dst, Address src) {
2276   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2277   if (VM_Version::supports_evex()) {
2278     tuple_type = EVEX_T1S;
2279     input_size_in_bits = EVEX_32bit;
2280   }
2281   emit_simd_arith(0x12, dst, src, VEX_SIMD_66, true);
2282 }
2283 
2284 void Assembler::movq( MMXRegister dst, Address src ) {
2285   assert( VM_Version::supports_mmx(), "" );
2286   emit_int8(0x0F);
2287   emit_int8(0x6F);
2288   emit_operand(dst, src);
2289 }
2290 
2291 void Assembler::movq( Address dst, MMXRegister src ) {
2292   assert( VM_Version::supports_mmx(), "" );
2293   emit_int8(0x0F);
2294   emit_int8(0x7F);
2295   // workaround gcc (3.2.1-7a) bug
2296   // In that version of gcc with only an emit_operand(MMX, Address)
2297   // gcc will tail jump and try and reverse the parameters completely
2298   // obliterating dst in the process. By having a version available
2299   // that doesn't need to swap the args at the tail jump the bug is
2300   // avoided.
2301   emit_operand(dst, src);
2302 }
2303 
2304 void Assembler::movq(XMMRegister dst, Address src) {
2305   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2306   InstructionMark im(this);
2307   if (VM_Version::supports_evex()) {
2308     tuple_type = EVEX_T1S;
2309     input_size_in_bits = EVEX_64bit;
2310     simd_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, true);
2311   } else {
2312     simd_prefix(dst, src, VEX_SIMD_F3, true, VEX_OPCODE_0F);
2313   }
2314   emit_int8(0x7E);
2315   emit_operand(dst, src);
2316 }
2317 
2318 void Assembler::movq(Address dst, XMMRegister src) {
2319   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2320   InstructionMark im(this);
2321   if (VM_Version::supports_evex()) {
2322     tuple_type = EVEX_T1S;
2323     input_size_in_bits = EVEX_64bit;
2324     simd_prefix(src, xnoreg, dst, VEX_SIMD_66, true,
2325                 VEX_OPCODE_0F, true, AVX_128bit);
2326   } else {
2327     simd_prefix(dst, src, VEX_SIMD_66, true);
2328   }
2329   emit_int8((unsigned char)0xD6);
2330   emit_operand(src, dst);
2331 }
2332 
2333 void Assembler::movsbl(Register dst, Address src) { // movsxb
2334   InstructionMark im(this);
2335   prefix(src, dst);
2336   emit_int8(0x0F);
2337   emit_int8((unsigned char)0xBE);
2338   emit_operand(dst, src);
2339 }
2340 
2341 void Assembler::movsbl(Register dst, Register src) { // movsxb
2342   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2343   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
2344   emit_int8(0x0F);
2345   emit_int8((unsigned char)0xBE);
2346   emit_int8((unsigned char)(0xC0 | encode));
2347 }
2348 
2349 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2350   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2351   if (VM_Version::supports_evex()) {
2352     emit_simd_arith_q(0x10, dst, src, VEX_SIMD_F2, true);
2353   } else {
2354     emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
2355   }
2356 }
2357 
2358 void Assembler::movsd(XMMRegister dst, Address src) {
2359   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2360   if (VM_Version::supports_evex()) {
2361     tuple_type = EVEX_T1S;
2362     input_size_in_bits = EVEX_64bit;
2363     emit_simd_arith_nonds_q(0x10, dst, src, VEX_SIMD_F2, true);
2364   } else {
2365     emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
2366   }
2367 }
2368 
2369 void Assembler::movsd(Address dst, XMMRegister src) {
2370   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2371   InstructionMark im(this);
2372   if (VM_Version::supports_evex()) {
2373     tuple_type = EVEX_T1S;
2374     input_size_in_bits = EVEX_64bit;
2375     simd_prefix_q(src, xnoreg, dst, VEX_SIMD_F2);
2376   } else {
2377     simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, false);
2378   }
2379   emit_int8(0x11);
2380   emit_operand(src, dst);
2381 }
2382 
2383 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2384   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2385   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3, true);
2386 }
2387 
2388 void Assembler::movss(XMMRegister dst, Address src) {
2389   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2390   if (VM_Version::supports_evex()) {
2391     tuple_type = EVEX_T1S;
2392     input_size_in_bits = EVEX_32bit;
2393   }
2394   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3, true);
2395 }
2396 
2397 void Assembler::movss(Address dst, XMMRegister src) {
2398   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2399   if (VM_Version::supports_evex()) {
2400     tuple_type = EVEX_T1S;
2401     input_size_in_bits = EVEX_32bit;
2402   }
2403   InstructionMark im(this);
2404   simd_prefix(dst, src, VEX_SIMD_F3, false);
2405   emit_int8(0x11);
2406   emit_operand(src, dst);
2407 }
2408 
2409 void Assembler::movswl(Register dst, Address src) { // movsxw
2410   InstructionMark im(this);
2411   prefix(src, dst);
2412   emit_int8(0x0F);
2413   emit_int8((unsigned char)0xBF);
2414   emit_operand(dst, src);
2415 }
2416 
2417 void Assembler::movswl(Register dst, Register src) { // movsxw
2418   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2419   emit_int8(0x0F);
2420   emit_int8((unsigned char)0xBF);
2421   emit_int8((unsigned char)(0xC0 | encode));
2422 }
2423 
2424 void Assembler::movw(Address dst, int imm16) {
2425   InstructionMark im(this);
2426 
2427   emit_int8(0x66); // switch to 16-bit mode
2428   prefix(dst);
2429   emit_int8((unsigned char)0xC7);
2430   emit_operand(rax, dst, 2);
2431   emit_int16(imm16);
2432 }
2433 
2434 void Assembler::movw(Register dst, Address src) {
2435   InstructionMark im(this);
2436   emit_int8(0x66);
2437   prefix(src, dst);
2438   emit_int8((unsigned char)0x8B);
2439   emit_operand(dst, src);
2440 }
2441 
2442 void Assembler::movw(Address dst, Register src) {
2443   InstructionMark im(this);
2444   emit_int8(0x66);
2445   prefix(dst, src);
2446   emit_int8((unsigned char)0x89);
2447   emit_operand(src, dst);
2448 }
2449 
2450 void Assembler::movzbl(Register dst, Address src) { // movzxb
2451   InstructionMark im(this);
2452   prefix(src, dst);
2453   emit_int8(0x0F);
2454   emit_int8((unsigned char)0xB6);
2455   emit_operand(dst, src);
2456 }
2457 
2458 void Assembler::movzbl(Register dst, Register src) { // movzxb
2459   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2460   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
2461   emit_int8(0x0F);
2462   emit_int8((unsigned char)0xB6);
2463   emit_int8(0xC0 | encode);
2464 }
2465 
2466 void Assembler::movzwl(Register dst, Address src) { // movzxw
2467   InstructionMark im(this);
2468   prefix(src, dst);
2469   emit_int8(0x0F);
2470   emit_int8((unsigned char)0xB7);
2471   emit_operand(dst, src);
2472 }
2473 
2474 void Assembler::movzwl(Register dst, Register src) { // movzxw
2475   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2476   emit_int8(0x0F);
2477   emit_int8((unsigned char)0xB7);
2478   emit_int8(0xC0 | encode);
2479 }
2480 
2481 void Assembler::mull(Address src) {
2482   InstructionMark im(this);
2483   prefix(src);
2484   emit_int8((unsigned char)0xF7);
2485   emit_operand(rsp, src);
2486 }
2487 
2488 void Assembler::mull(Register src) {
2489   int encode = prefix_and_encode(src->encoding());
2490   emit_int8((unsigned char)0xF7);
2491   emit_int8((unsigned char)(0xE0 | encode));
2492 }
2493 
2494 void Assembler::mulsd(XMMRegister dst, Address src) {
2495   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2496   if (VM_Version::supports_evex()) {
2497     tuple_type = EVEX_T1S;
2498     input_size_in_bits = EVEX_64bit;
2499     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_F2);
2500   } else {
2501     emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2502   }
2503 }
2504 
2505 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2506   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2507   if (VM_Version::supports_evex()) {
2508     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_F2);
2509   } else {
2510     emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2511   }
2512 }
2513 
2514 void Assembler::mulss(XMMRegister dst, Address src) {
2515   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2516   if (VM_Version::supports_evex()) {
2517     tuple_type = EVEX_T1S;
2518     input_size_in_bits = EVEX_32bit;
2519   }
2520   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2521 }
2522 
2523 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2524   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2525   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2526 }
2527 
2528 void Assembler::negl(Register dst) {
2529   int encode = prefix_and_encode(dst->encoding());
2530   emit_int8((unsigned char)0xF7);
2531   emit_int8((unsigned char)(0xD8 | encode));
2532 }
2533 
2534 void Assembler::nop(int i) {
2535 #ifdef ASSERT
2536   assert(i > 0, " ");
2537   // The fancy nops aren't currently recognized by debuggers making it a
2538   // pain to disassemble code while debugging. If asserts are on clearly
2539   // speed is not an issue so simply use the single byte traditional nop
2540   // to do alignment.
2541 
2542   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2543   return;
2544 
2545 #endif // ASSERT
2546 
2547   if (UseAddressNop && VM_Version::is_intel()) {
2548     //
2549     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2550     //  1: 0x90
2551     //  2: 0x66 0x90
2552     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2553     //  4: 0x0F 0x1F 0x40 0x00
2554     //  5: 0x0F 0x1F 0x44 0x00 0x00
2555     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2556     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2557     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2558     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2559     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2560     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2561 
2562     // The rest coding is Intel specific - don't use consecutive address nops
2563 
2564     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2565     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2566     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2567     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2568 
2569     while(i >= 15) {
2570       // For Intel don't generate consecutive addess nops (mix with regular nops)
2571       i -= 15;
2572       emit_int8(0x66);   // size prefix
2573       emit_int8(0x66);   // size prefix
2574       emit_int8(0x66);   // size prefix
2575       addr_nop_8();
2576       emit_int8(0x66);   // size prefix
2577       emit_int8(0x66);   // size prefix
2578       emit_int8(0x66);   // size prefix
2579       emit_int8((unsigned char)0x90);
2580                          // nop
2581     }
2582     switch (i) {
2583       case 14:
2584         emit_int8(0x66); // size prefix
2585       case 13:
2586         emit_int8(0x66); // size prefix
2587       case 12:
2588         addr_nop_8();
2589         emit_int8(0x66); // size prefix
2590         emit_int8(0x66); // size prefix
2591         emit_int8(0x66); // size prefix
2592         emit_int8((unsigned char)0x90);
2593                          // nop
2594         break;
2595       case 11:
2596         emit_int8(0x66); // size prefix
2597       case 10:
2598         emit_int8(0x66); // size prefix
2599       case 9:
2600         emit_int8(0x66); // size prefix
2601       case 8:
2602         addr_nop_8();
2603         break;
2604       case 7:
2605         addr_nop_7();
2606         break;
2607       case 6:
2608         emit_int8(0x66); // size prefix
2609       case 5:
2610         addr_nop_5();
2611         break;
2612       case 4:
2613         addr_nop_4();
2614         break;
2615       case 3:
2616         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2617         emit_int8(0x66); // size prefix
2618       case 2:
2619         emit_int8(0x66); // size prefix
2620       case 1:
2621         emit_int8((unsigned char)0x90);
2622                          // nop
2623         break;
2624       default:
2625         assert(i == 0, " ");
2626     }
2627     return;
2628   }
2629   if (UseAddressNop && VM_Version::is_amd()) {
2630     //
2631     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2632     //  1: 0x90
2633     //  2: 0x66 0x90
2634     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2635     //  4: 0x0F 0x1F 0x40 0x00
2636     //  5: 0x0F 0x1F 0x44 0x00 0x00
2637     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2638     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2639     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2640     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2641     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2642     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2643 
2644     // The rest coding is AMD specific - use consecutive address nops
2645 
2646     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2647     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2648     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2649     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2650     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2651     //     Size prefixes (0x66) are added for larger sizes
2652 
2653     while(i >= 22) {
2654       i -= 11;
2655       emit_int8(0x66); // size prefix
2656       emit_int8(0x66); // size prefix
2657       emit_int8(0x66); // size prefix
2658       addr_nop_8();
2659     }
2660     // Generate first nop for size between 21-12
2661     switch (i) {
2662       case 21:
2663         i -= 1;
2664         emit_int8(0x66); // size prefix
2665       case 20:
2666       case 19:
2667         i -= 1;
2668         emit_int8(0x66); // size prefix
2669       case 18:
2670       case 17:
2671         i -= 1;
2672         emit_int8(0x66); // size prefix
2673       case 16:
2674       case 15:
2675         i -= 8;
2676         addr_nop_8();
2677         break;
2678       case 14:
2679       case 13:
2680         i -= 7;
2681         addr_nop_7();
2682         break;
2683       case 12:
2684         i -= 6;
2685         emit_int8(0x66); // size prefix
2686         addr_nop_5();
2687         break;
2688       default:
2689         assert(i < 12, " ");
2690     }
2691 
2692     // Generate second nop for size between 11-1
2693     switch (i) {
2694       case 11:
2695         emit_int8(0x66); // size prefix
2696       case 10:
2697         emit_int8(0x66); // size prefix
2698       case 9:
2699         emit_int8(0x66); // size prefix
2700       case 8:
2701         addr_nop_8();
2702         break;
2703       case 7:
2704         addr_nop_7();
2705         break;
2706       case 6:
2707         emit_int8(0x66); // size prefix
2708       case 5:
2709         addr_nop_5();
2710         break;
2711       case 4:
2712         addr_nop_4();
2713         break;
2714       case 3:
2715         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2716         emit_int8(0x66); // size prefix
2717       case 2:
2718         emit_int8(0x66); // size prefix
2719       case 1:
2720         emit_int8((unsigned char)0x90);
2721                          // nop
2722         break;
2723       default:
2724         assert(i == 0, " ");
2725     }
2726     return;
2727   }
2728 
2729   // Using nops with size prefixes "0x66 0x90".
2730   // From AMD Optimization Guide:
2731   //  1: 0x90
2732   //  2: 0x66 0x90
2733   //  3: 0x66 0x66 0x90
2734   //  4: 0x66 0x66 0x66 0x90
2735   //  5: 0x66 0x66 0x90 0x66 0x90
2736   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2737   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2738   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2739   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2740   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2741   //
2742   while(i > 12) {
2743     i -= 4;
2744     emit_int8(0x66); // size prefix
2745     emit_int8(0x66);
2746     emit_int8(0x66);
2747     emit_int8((unsigned char)0x90);
2748                      // nop
2749   }
2750   // 1 - 12 nops
2751   if(i > 8) {
2752     if(i > 9) {
2753       i -= 1;
2754       emit_int8(0x66);
2755     }
2756     i -= 3;
2757     emit_int8(0x66);
2758     emit_int8(0x66);
2759     emit_int8((unsigned char)0x90);
2760   }
2761   // 1 - 8 nops
2762   if(i > 4) {
2763     if(i > 6) {
2764       i -= 1;
2765       emit_int8(0x66);
2766     }
2767     i -= 3;
2768     emit_int8(0x66);
2769     emit_int8(0x66);
2770     emit_int8((unsigned char)0x90);
2771   }
2772   switch (i) {
2773     case 4:
2774       emit_int8(0x66);
2775     case 3:
2776       emit_int8(0x66);
2777     case 2:
2778       emit_int8(0x66);
2779     case 1:
2780       emit_int8((unsigned char)0x90);
2781       break;
2782     default:
2783       assert(i == 0, " ");
2784   }
2785 }
2786 
2787 void Assembler::notl(Register dst) {
2788   int encode = prefix_and_encode(dst->encoding());
2789   emit_int8((unsigned char)0xF7);
2790   emit_int8((unsigned char)(0xD0 | encode));
2791 }
2792 
2793 void Assembler::orl(Address dst, int32_t imm32) {
2794   InstructionMark im(this);
2795   prefix(dst);
2796   emit_arith_operand(0x81, rcx, dst, imm32);
2797 }
2798 
2799 void Assembler::orl(Register dst, int32_t imm32) {
2800   prefix(dst);
2801   emit_arith(0x81, 0xC8, dst, imm32);
2802 }
2803 
2804 void Assembler::orl(Register dst, Address src) {
2805   InstructionMark im(this);
2806   prefix(src, dst);
2807   emit_int8(0x0B);
2808   emit_operand(dst, src);
2809 }
2810 
2811 void Assembler::orl(Register dst, Register src) {
2812   (void) prefix_and_encode(dst->encoding(), src->encoding());
2813   emit_arith(0x0B, 0xC0, dst, src);
2814 }
2815 
2816 void Assembler::orl(Address dst, Register src) {
2817   InstructionMark im(this);
2818   prefix(dst, src);
2819   emit_int8(0x09);
2820   emit_operand(src, dst);
2821 }
2822 
2823 void Assembler::packuswb(XMMRegister dst, Address src) {
2824   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2825   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2826   if (VM_Version::supports_evex()) {
2827     tuple_type = EVEX_FV;
2828     input_size_in_bits = EVEX_32bit;
2829   }
2830   emit_simd_arith(0x67, dst, src, VEX_SIMD_66,
2831                   false, (VM_Version::supports_avx512dq() == false));
2832 }
2833 
2834 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
2835   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2836   emit_simd_arith(0x67, dst, src, VEX_SIMD_66,
2837                   false, (VM_Version::supports_avx512dq() == false));
2838 }
2839 
2840 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
2841   assert(UseAVX > 0, "some form of AVX must be enabled");
2842   emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector_len,
2843                  false, (VM_Version::supports_avx512dq() == false));
2844 }
2845 
2846 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
2847   assert(VM_Version::supports_avx2(), "");
2848   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false,
2849                                       VEX_OPCODE_0F_3A, true, vector_len);
2850   emit_int8(0x00);
2851   emit_int8(0xC0 | encode);
2852   emit_int8(imm8);
2853 }
2854 
2855 void Assembler::pause() {
2856   emit_int8((unsigned char)0xF3);
2857   emit_int8((unsigned char)0x90);
2858 }
2859 
2860 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
2861   assert(VM_Version::supports_sse4_2(), "");
2862   InstructionMark im(this);
2863   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, false, VEX_OPCODE_0F_3A,
2864               false, AVX_128bit, true);
2865   emit_int8(0x61);
2866   emit_operand(dst, src);
2867   emit_int8(imm8);
2868 }
2869 
2870 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
2871   assert(VM_Version::supports_sse4_2(), "");
2872   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false,
2873                                       VEX_OPCODE_0F_3A, false, AVX_128bit, true);
2874   emit_int8(0x61);
2875   emit_int8((unsigned char)(0xC0 | encode));
2876   emit_int8(imm8);
2877 }
2878 
2879 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
2880   assert(VM_Version::supports_sse4_1(), "");
2881   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2882                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2883   emit_int8(0x16);
2884   emit_int8((unsigned char)(0xC0 | encode));
2885   emit_int8(imm8);
2886 }
2887 
2888 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
2889   assert(VM_Version::supports_sse4_1(), "");
2890   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2891                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2892   emit_int8(0x16);
2893   emit_int8((unsigned char)(0xC0 | encode));
2894   emit_int8(imm8);
2895 }
2896 
2897 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
2898   assert(VM_Version::supports_sse4_1(), "");
2899   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2900                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2901   emit_int8(0x22);
2902   emit_int8((unsigned char)(0xC0 | encode));
2903   emit_int8(imm8);
2904 }
2905 
2906 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
2907   assert(VM_Version::supports_sse4_1(), "");
2908   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2909                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2910   emit_int8(0x22);
2911   emit_int8((unsigned char)(0xC0 | encode));
2912   emit_int8(imm8);
2913 }
2914 
2915 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
2916   assert(VM_Version::supports_sse4_1(), "");
2917   if (VM_Version::supports_evex()) {
2918     tuple_type = EVEX_HVM;
2919   }
2920   InstructionMark im(this);
2921   simd_prefix(dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38);
2922   emit_int8(0x30);
2923   emit_operand(dst, src);
2924 }
2925 
2926 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
2927   assert(VM_Version::supports_sse4_1(), "");
2928   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38);
2929   emit_int8(0x30);
2930   emit_int8((unsigned char)(0xC0 | encode));
2931 }
2932 
2933 // generic
2934 void Assembler::pop(Register dst) {
2935   int encode = prefix_and_encode(dst->encoding());
2936   emit_int8(0x58 | encode);
2937 }
2938 
2939 void Assembler::popcntl(Register dst, Address src) {
2940   assert(VM_Version::supports_popcnt(), "must support");
2941   InstructionMark im(this);
2942   emit_int8((unsigned char)0xF3);
2943   prefix(src, dst);
2944   emit_int8(0x0F);
2945   emit_int8((unsigned char)0xB8);
2946   emit_operand(dst, src);
2947 }
2948 
2949 void Assembler::popcntl(Register dst, Register src) {
2950   assert(VM_Version::supports_popcnt(), "must support");
2951   emit_int8((unsigned char)0xF3);
2952   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2953   emit_int8(0x0F);
2954   emit_int8((unsigned char)0xB8);
2955   emit_int8((unsigned char)(0xC0 | encode));
2956 }
2957 
2958 void Assembler::popf() {
2959   emit_int8((unsigned char)0x9D);
2960 }
2961 
2962 #ifndef _LP64 // no 32bit push/pop on amd64
2963 void Assembler::popl(Address dst) {
2964   // NOTE: this will adjust stack by 8byte on 64bits
2965   InstructionMark im(this);
2966   prefix(dst);
2967   emit_int8((unsigned char)0x8F);
2968   emit_operand(rax, dst);
2969 }
2970 #endif
2971 
2972 void Assembler::prefetch_prefix(Address src) {
2973   prefix(src);
2974   emit_int8(0x0F);
2975 }
2976 
2977 void Assembler::prefetchnta(Address src) {
2978   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2979   InstructionMark im(this);
2980   prefetch_prefix(src);
2981   emit_int8(0x18);
2982   emit_operand(rax, src); // 0, src
2983 }
2984 
2985 void Assembler::prefetchr(Address src) {
2986   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2987   InstructionMark im(this);
2988   prefetch_prefix(src);
2989   emit_int8(0x0D);
2990   emit_operand(rax, src); // 0, src
2991 }
2992 
2993 void Assembler::prefetcht0(Address src) {
2994   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2995   InstructionMark im(this);
2996   prefetch_prefix(src);
2997   emit_int8(0x18);
2998   emit_operand(rcx, src); // 1, src
2999 }
3000 
3001 void Assembler::prefetcht1(Address src) {
3002   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3003   InstructionMark im(this);
3004   prefetch_prefix(src);
3005   emit_int8(0x18);
3006   emit_operand(rdx, src); // 2, src
3007 }
3008 
3009 void Assembler::prefetcht2(Address src) {
3010   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3011   InstructionMark im(this);
3012   prefetch_prefix(src);
3013   emit_int8(0x18);
3014   emit_operand(rbx, src); // 3, src
3015 }
3016 
3017 void Assembler::prefetchw(Address src) {
3018   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3019   InstructionMark im(this);
3020   prefetch_prefix(src);
3021   emit_int8(0x0D);
3022   emit_operand(rcx, src); // 1, src
3023 }
3024 
3025 void Assembler::prefix(Prefix p) {
3026   emit_int8(p);
3027 }
3028 
3029 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3030   assert(VM_Version::supports_ssse3(), "");
3031   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38,
3032                                       false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3033   emit_int8(0x00);
3034   emit_int8((unsigned char)(0xC0 | encode));
3035 }
3036 
3037 void Assembler::pshufb(XMMRegister dst, Address src) {
3038   assert(VM_Version::supports_ssse3(), "");
3039   if (VM_Version::supports_evex()) {
3040     tuple_type = EVEX_FVM;
3041   }
3042   InstructionMark im(this);
3043   simd_prefix(dst, dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38,
3044               false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3045   emit_int8(0x00);
3046   emit_operand(dst, src);
3047 }
3048 
3049 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
3050   assert(isByte(mode), "invalid value");
3051   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3052   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
3053   emit_int8(mode & 0xFF);
3054 
3055 }
3056 
3057 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
3058   assert(isByte(mode), "invalid value");
3059   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3060   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3061   if (VM_Version::supports_evex()) {
3062     tuple_type = EVEX_FV;
3063     input_size_in_bits = EVEX_32bit;
3064   }
3065   InstructionMark im(this);
3066   simd_prefix(dst, src, VEX_SIMD_66, false);
3067   emit_int8(0x70);
3068   emit_operand(dst, src);
3069   emit_int8(mode & 0xFF);
3070 }
3071 
3072 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3073   assert(isByte(mode), "invalid value");
3074   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3075   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2, false,
3076                         (VM_Version::supports_avx512bw() == false));
3077   emit_int8(mode & 0xFF);
3078 }
3079 
3080 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
3081   assert(isByte(mode), "invalid value");
3082   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3083   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3084   if (VM_Version::supports_evex()) {
3085     tuple_type = EVEX_FVM;
3086   }
3087   InstructionMark im(this);
3088   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, false, VEX_OPCODE_0F,
3089               false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3090   emit_int8(0x70);
3091   emit_operand(dst, src);
3092   emit_int8(mode & 0xFF);
3093 }
3094 
3095 void Assembler::psrldq(XMMRegister dst, int shift) {
3096   // Shift 128 bit value in xmm register by number of bytes.
3097   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3098   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3099   emit_int8(0x73);
3100   emit_int8((unsigned char)(0xC0 | encode));
3101   emit_int8(shift);
3102 }
3103 
3104 void Assembler::pslldq(XMMRegister dst, int shift) {
3105   // Shift left 128 bit value in xmm register by number of bytes.
3106   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3107   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3108   emit_int8(0x73);
3109   emit_int8((unsigned char)(0xC0 | encode));
3110   emit_int8(shift);
3111 }
3112 
3113 void Assembler::ptest(XMMRegister dst, Address src) {
3114   assert(VM_Version::supports_sse4_1(), "");
3115   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3116   InstructionMark im(this);
3117   simd_prefix(dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38);
3118   emit_int8(0x17);
3119   emit_operand(dst, src);
3120 }
3121 
3122 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
3123   assert(VM_Version::supports_sse4_1(), "");
3124   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
3125                                       false, VEX_OPCODE_0F_38);
3126   emit_int8(0x17);
3127   emit_int8((unsigned char)(0xC0 | encode));
3128 }
3129 
3130 void Assembler::vptest(XMMRegister dst, Address src) {
3131   assert(VM_Version::supports_avx(), "");
3132   InstructionMark im(this);
3133   int vector_len = AVX_256bit;
3134   assert(dst != xnoreg, "sanity");
3135   int dst_enc = dst->encoding();
3136   // swap src<->dst for encoding
3137   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
3138   emit_int8(0x17);
3139   emit_operand(dst, src);
3140 }
3141 
3142 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
3143   assert(VM_Version::supports_avx(), "");
3144   int vector_len = AVX_256bit;
3145   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
3146                                      vector_len, VEX_OPCODE_0F_38);
3147   emit_int8(0x17);
3148   emit_int8((unsigned char)(0xC0 | encode));
3149 }
3150 
3151 void Assembler::punpcklbw(XMMRegister dst, Address src) {
3152   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3153   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3154   if (VM_Version::supports_evex()) {
3155     tuple_type = EVEX_FVM;
3156   }
3157   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
3158 }
3159 
3160 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3161   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3162   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
3163 }
3164 
3165 void Assembler::punpckldq(XMMRegister dst, Address src) {
3166   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3167   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3168   if (VM_Version::supports_evex()) {
3169     tuple_type = EVEX_FV;
3170     input_size_in_bits = EVEX_32bit;
3171   }
3172   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
3173 }
3174 
3175 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
3176   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3177   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
3178 }
3179 
3180 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
3181   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3182   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
3183 }
3184 
3185 void Assembler::push(int32_t imm32) {
3186   // in 64bits we push 64bits onto the stack but only
3187   // take a 32bit immediate
3188   emit_int8(0x68);
3189   emit_int32(imm32);
3190 }
3191 
3192 void Assembler::push(Register src) {
3193   int encode = prefix_and_encode(src->encoding());
3194 
3195   emit_int8(0x50 | encode);
3196 }
3197 
3198 void Assembler::pushf() {
3199   emit_int8((unsigned char)0x9C);
3200 }
3201 
3202 #ifndef _LP64 // no 32bit push/pop on amd64
3203 void Assembler::pushl(Address src) {
3204   // Note this will push 64bit on 64bit
3205   InstructionMark im(this);
3206   prefix(src);
3207   emit_int8((unsigned char)0xFF);
3208   emit_operand(rsi, src);
3209 }
3210 #endif
3211 
3212 void Assembler::rcll(Register dst, int imm8) {
3213   assert(isShiftCount(imm8), "illegal shift count");
3214   int encode = prefix_and_encode(dst->encoding());
3215   if (imm8 == 1) {
3216     emit_int8((unsigned char)0xD1);
3217     emit_int8((unsigned char)(0xD0 | encode));
3218   } else {
3219     emit_int8((unsigned char)0xC1);
3220     emit_int8((unsigned char)0xD0 | encode);
3221     emit_int8(imm8);
3222   }
3223 }
3224 
3225 void Assembler::rdtsc() {
3226   emit_int8((unsigned char)0x0F);
3227   emit_int8((unsigned char)0x31);
3228 }
3229 
3230 // copies data from [esi] to [edi] using rcx pointer sized words
3231 // generic
3232 void Assembler::rep_mov() {
3233   emit_int8((unsigned char)0xF3);
3234   // MOVSQ
3235   LP64_ONLY(prefix(REX_W));
3236   emit_int8((unsigned char)0xA5);
3237 }
3238 
3239 // sets rcx bytes with rax, value at [edi]
3240 void Assembler::rep_stosb() {
3241   emit_int8((unsigned char)0xF3); // REP
3242   LP64_ONLY(prefix(REX_W));
3243   emit_int8((unsigned char)0xAA); // STOSB
3244 }
3245 
3246 // sets rcx pointer sized words with rax, value at [edi]
3247 // generic
3248 void Assembler::rep_stos() {
3249   emit_int8((unsigned char)0xF3); // REP
3250   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
3251   emit_int8((unsigned char)0xAB);
3252 }
3253 
3254 // scans rcx pointer sized words at [edi] for occurance of rax,
3255 // generic
3256 void Assembler::repne_scan() { // repne_scan
3257   emit_int8((unsigned char)0xF2);
3258   // SCASQ
3259   LP64_ONLY(prefix(REX_W));
3260   emit_int8((unsigned char)0xAF);
3261 }
3262 
3263 #ifdef _LP64
3264 // scans rcx 4 byte words at [edi] for occurance of rax,
3265 // generic
3266 void Assembler::repne_scanl() { // repne_scan
3267   emit_int8((unsigned char)0xF2);
3268   // SCASL
3269   emit_int8((unsigned char)0xAF);
3270 }
3271 #endif
3272 
3273 void Assembler::ret(int imm16) {
3274   if (imm16 == 0) {
3275     emit_int8((unsigned char)0xC3);
3276   } else {
3277     emit_int8((unsigned char)0xC2);
3278     emit_int16(imm16);
3279   }
3280 }
3281 
3282 void Assembler::sahf() {
3283 #ifdef _LP64
3284   // Not supported in 64bit mode
3285   ShouldNotReachHere();
3286 #endif
3287   emit_int8((unsigned char)0x9E);
3288 }
3289 
3290 void Assembler::sarl(Register dst, int imm8) {
3291   int encode = prefix_and_encode(dst->encoding());
3292   assert(isShiftCount(imm8), "illegal shift count");
3293   if (imm8 == 1) {
3294     emit_int8((unsigned char)0xD1);
3295     emit_int8((unsigned char)(0xF8 | encode));
3296   } else {
3297     emit_int8((unsigned char)0xC1);
3298     emit_int8((unsigned char)(0xF8 | encode));
3299     emit_int8(imm8);
3300   }
3301 }
3302 
3303 void Assembler::sarl(Register dst) {
3304   int encode = prefix_and_encode(dst->encoding());
3305   emit_int8((unsigned char)0xD3);
3306   emit_int8((unsigned char)(0xF8 | encode));
3307 }
3308 
3309 void Assembler::sbbl(Address dst, int32_t imm32) {
3310   InstructionMark im(this);
3311   prefix(dst);
3312   emit_arith_operand(0x81, rbx, dst, imm32);
3313 }
3314 
3315 void Assembler::sbbl(Register dst, int32_t imm32) {
3316   prefix(dst);
3317   emit_arith(0x81, 0xD8, dst, imm32);
3318 }
3319 
3320 
3321 void Assembler::sbbl(Register dst, Address src) {
3322   InstructionMark im(this);
3323   prefix(src, dst);
3324   emit_int8(0x1B);
3325   emit_operand(dst, src);
3326 }
3327 
3328 void Assembler::sbbl(Register dst, Register src) {
3329   (void) prefix_and_encode(dst->encoding(), src->encoding());
3330   emit_arith(0x1B, 0xC0, dst, src);
3331 }
3332 
3333 void Assembler::setb(Condition cc, Register dst) {
3334   assert(0 <= cc && cc < 16, "illegal cc");
3335   int encode = prefix_and_encode(dst->encoding(), true);
3336   emit_int8(0x0F);
3337   emit_int8((unsigned char)0x90 | cc);
3338   emit_int8((unsigned char)(0xC0 | encode));
3339 }
3340 
3341 void Assembler::shll(Register dst, int imm8) {
3342   assert(isShiftCount(imm8), "illegal shift count");
3343   int encode = prefix_and_encode(dst->encoding());
3344   if (imm8 == 1 ) {
3345     emit_int8((unsigned char)0xD1);
3346     emit_int8((unsigned char)(0xE0 | encode));
3347   } else {
3348     emit_int8((unsigned char)0xC1);
3349     emit_int8((unsigned char)(0xE0 | encode));
3350     emit_int8(imm8);
3351   }
3352 }
3353 
3354 void Assembler::shll(Register dst) {
3355   int encode = prefix_and_encode(dst->encoding());
3356   emit_int8((unsigned char)0xD3);
3357   emit_int8((unsigned char)(0xE0 | encode));
3358 }
3359 
3360 void Assembler::shrl(Register dst, int imm8) {
3361   assert(isShiftCount(imm8), "illegal shift count");
3362   int encode = prefix_and_encode(dst->encoding());
3363   emit_int8((unsigned char)0xC1);
3364   emit_int8((unsigned char)(0xE8 | encode));
3365   emit_int8(imm8);
3366 }
3367 
3368 void Assembler::shrl(Register dst) {
3369   int encode = prefix_and_encode(dst->encoding());
3370   emit_int8((unsigned char)0xD3);
3371   emit_int8((unsigned char)(0xE8 | encode));
3372 }
3373 
3374 // copies a single word from [esi] to [edi]
3375 void Assembler::smovl() {
3376   emit_int8((unsigned char)0xA5);
3377 }
3378 
3379 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
3380   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3381   if (VM_Version::supports_evex()) {
3382     emit_simd_arith_q(0x51, dst, src, VEX_SIMD_F2);
3383   } else {
3384     emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
3385   }
3386 }
3387 
3388 void Assembler::sqrtsd(XMMRegister dst, Address src) {
3389   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3390   if (VM_Version::supports_evex()) {
3391     tuple_type = EVEX_T1S;
3392     input_size_in_bits = EVEX_64bit;
3393     emit_simd_arith_q(0x51, dst, src, VEX_SIMD_F2);
3394   } else {
3395     emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
3396   }
3397 }
3398 
3399 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
3400   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3401   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
3402 }
3403 
3404 void Assembler::std() {
3405   emit_int8((unsigned char)0xFD);
3406 }
3407 
3408 void Assembler::sqrtss(XMMRegister dst, Address src) {
3409   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3410   if (VM_Version::supports_evex()) {
3411     tuple_type = EVEX_T1S;
3412     input_size_in_bits = EVEX_32bit;
3413   }
3414   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
3415 }
3416 
3417 void Assembler::stmxcsr( Address dst) {
3418   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3419   InstructionMark im(this);
3420   prefix(dst);
3421   emit_int8(0x0F);
3422   emit_int8((unsigned char)0xAE);
3423   emit_operand(as_Register(3), dst);
3424 }
3425 
3426 void Assembler::subl(Address dst, int32_t imm32) {
3427   InstructionMark im(this);
3428   prefix(dst);
3429   emit_arith_operand(0x81, rbp, dst, imm32);
3430 }
3431 
3432 void Assembler::subl(Address dst, Register src) {
3433   InstructionMark im(this);
3434   prefix(dst, src);
3435   emit_int8(0x29);
3436   emit_operand(src, dst);
3437 }
3438 
3439 void Assembler::subl(Register dst, int32_t imm32) {
3440   prefix(dst);
3441   emit_arith(0x81, 0xE8, dst, imm32);
3442 }
3443 
3444 // Force generation of a 4 byte immediate value even if it fits into 8bit
3445 void Assembler::subl_imm32(Register dst, int32_t imm32) {
3446   prefix(dst);
3447   emit_arith_imm32(0x81, 0xE8, dst, imm32);
3448 }
3449 
3450 void Assembler::subl(Register dst, Address src) {
3451   InstructionMark im(this);
3452   prefix(src, dst);
3453   emit_int8(0x2B);
3454   emit_operand(dst, src);
3455 }
3456 
3457 void Assembler::subl(Register dst, Register src) {
3458   (void) prefix_and_encode(dst->encoding(), src->encoding());
3459   emit_arith(0x2B, 0xC0, dst, src);
3460 }
3461 
3462 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
3463   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3464   if (VM_Version::supports_evex()) {
3465     emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_F2);
3466   } else {
3467     emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
3468   }
3469 }
3470 
3471 void Assembler::subsd(XMMRegister dst, Address src) {
3472   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3473   if (VM_Version::supports_evex()) {
3474     tuple_type = EVEX_T1S;
3475     input_size_in_bits = EVEX_64bit;
3476   }
3477   emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_F2);
3478 }
3479 
3480 void Assembler::subss(XMMRegister dst, XMMRegister src) {
3481   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3482   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
3483 }
3484 
3485 void Assembler::subss(XMMRegister dst, Address src) {
3486   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3487   if (VM_Version::supports_evex()) {
3488     tuple_type = EVEX_T1S;
3489     input_size_in_bits = EVEX_32bit;
3490   }
3491   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
3492 }
3493 
3494 void Assembler::testb(Register dst, int imm8) {
3495   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
3496   (void) prefix_and_encode(dst->encoding(), true);
3497   emit_arith_b(0xF6, 0xC0, dst, imm8);
3498 }
3499 
3500 void Assembler::testl(Register dst, int32_t imm32) {
3501   // not using emit_arith because test
3502   // doesn't support sign-extension of
3503   // 8bit operands
3504   int encode = dst->encoding();
3505   if (encode == 0) {
3506     emit_int8((unsigned char)0xA9);
3507   } else {
3508     encode = prefix_and_encode(encode);
3509     emit_int8((unsigned char)0xF7);
3510     emit_int8((unsigned char)(0xC0 | encode));
3511   }
3512   emit_int32(imm32);
3513 }
3514 
3515 void Assembler::testl(Register dst, Register src) {
3516   (void) prefix_and_encode(dst->encoding(), src->encoding());
3517   emit_arith(0x85, 0xC0, dst, src);
3518 }
3519 
3520 void Assembler::testl(Register dst, Address  src) {
3521   InstructionMark im(this);
3522   prefix(src, dst);
3523   emit_int8((unsigned char)0x85);
3524   emit_operand(dst, src);
3525 }
3526 
3527 void Assembler::tzcntl(Register dst, Register src) {
3528   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3529   emit_int8((unsigned char)0xF3);
3530   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3531   emit_int8(0x0F);
3532   emit_int8((unsigned char)0xBC);
3533   emit_int8((unsigned char)0xC0 | encode);
3534 }
3535 
3536 void Assembler::tzcntq(Register dst, Register src) {
3537   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3538   emit_int8((unsigned char)0xF3);
3539   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3540   emit_int8(0x0F);
3541   emit_int8((unsigned char)0xBC);
3542   emit_int8((unsigned char)(0xC0 | encode));
3543 }
3544 
3545 void Assembler::ucomisd(XMMRegister dst, Address src) {
3546   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3547   if (VM_Version::supports_evex()) {
3548     tuple_type = EVEX_T1S;
3549     input_size_in_bits = EVEX_64bit;
3550     emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, true);
3551   } else {
3552     emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
3553   }
3554 }
3555 
3556 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
3557   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3558   if (VM_Version::supports_evex()) {
3559     emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, true);
3560   } else {
3561     emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
3562   }
3563 }
3564 
3565 void Assembler::ucomiss(XMMRegister dst, Address src) {
3566   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3567   if (VM_Version::supports_evex()) {
3568     tuple_type = EVEX_T1S;
3569     input_size_in_bits = EVEX_32bit;
3570   }
3571   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, true);
3572 }
3573 
3574 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
3575   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3576   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, true);
3577 }
3578 
3579 void Assembler::xabort(int8_t imm8) {
3580   emit_int8((unsigned char)0xC6);
3581   emit_int8((unsigned char)0xF8);
3582   emit_int8((unsigned char)(imm8 & 0xFF));
3583 }
3584 
3585 void Assembler::xaddl(Address dst, Register src) {
3586   InstructionMark im(this);
3587   prefix(dst, src);
3588   emit_int8(0x0F);
3589   emit_int8((unsigned char)0xC1);
3590   emit_operand(src, dst);
3591 }
3592 
3593 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
3594   InstructionMark im(this);
3595   relocate(rtype);
3596   if (abort.is_bound()) {
3597     address entry = target(abort);
3598     assert(entry != NULL, "abort entry NULL");
3599     intptr_t offset = entry - pc();
3600     emit_int8((unsigned char)0xC7);
3601     emit_int8((unsigned char)0xF8);
3602     emit_int32(offset - 6); // 2 opcode + 4 address
3603   } else {
3604     abort.add_patch_at(code(), locator());
3605     emit_int8((unsigned char)0xC7);
3606     emit_int8((unsigned char)0xF8);
3607     emit_int32(0);
3608   }
3609 }
3610 
3611 void Assembler::xchgl(Register dst, Address src) { // xchg
3612   InstructionMark im(this);
3613   prefix(src, dst);
3614   emit_int8((unsigned char)0x87);
3615   emit_operand(dst, src);
3616 }
3617 
3618 void Assembler::xchgl(Register dst, Register src) {
3619   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3620   emit_int8((unsigned char)0x87);
3621   emit_int8((unsigned char)(0xC0 | encode));
3622 }
3623 
3624 void Assembler::xend() {
3625   emit_int8((unsigned char)0x0F);
3626   emit_int8((unsigned char)0x01);
3627   emit_int8((unsigned char)0xD5);
3628 }
3629 
3630 void Assembler::xgetbv() {
3631   emit_int8(0x0F);
3632   emit_int8(0x01);
3633   emit_int8((unsigned char)0xD0);
3634 }
3635 
3636 void Assembler::xorl(Register dst, int32_t imm32) {
3637   prefix(dst);
3638   emit_arith(0x81, 0xF0, dst, imm32);
3639 }
3640 
3641 void Assembler::xorl(Register dst, Address src) {
3642   InstructionMark im(this);
3643   prefix(src, dst);
3644   emit_int8(0x33);
3645   emit_operand(dst, src);
3646 }
3647 
3648 void Assembler::xorl(Register dst, Register src) {
3649   (void) prefix_and_encode(dst->encoding(), src->encoding());
3650   emit_arith(0x33, 0xC0, dst, src);
3651 }
3652 
3653 
3654 // AVX 3-operands scalar float-point arithmetic instructions
3655 
3656 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
3657   assert(VM_Version::supports_avx(), "");
3658   if (VM_Version::supports_evex()) {
3659     tuple_type = EVEX_T1S;
3660     input_size_in_bits = EVEX_64bit;
3661     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3662   } else {
3663     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3664   }
3665 }
3666 
3667 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3668   assert(VM_Version::supports_avx(), "");
3669   if (VM_Version::supports_evex()) {
3670     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3671   } else {
3672     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3673   }
3674 }
3675 
3676 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
3677   assert(VM_Version::supports_avx(), "");
3678   if (VM_Version::supports_evex()) {
3679     tuple_type = EVEX_T1S;
3680     input_size_in_bits = EVEX_32bit;
3681   }
3682   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3683 }
3684 
3685 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3686   assert(VM_Version::supports_avx(), "");
3687   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3688 }
3689 
3690 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
3691   assert(VM_Version::supports_avx(), "");
3692   if (VM_Version::supports_evex()) {
3693     tuple_type = EVEX_T1S;
3694     input_size_in_bits = EVEX_64bit;
3695     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3696   } else {
3697     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3698   }
3699 }
3700 
3701 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3702   assert(VM_Version::supports_avx(), "");
3703   if (VM_Version::supports_evex()) {
3704     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3705   } else {
3706     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3707   }
3708 }
3709 
3710 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
3711   assert(VM_Version::supports_avx(), "");
3712   if (VM_Version::supports_evex()) {
3713     tuple_type = EVEX_T1S;
3714     input_size_in_bits = EVEX_32bit;
3715   }
3716   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3717 }
3718 
3719 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3720   assert(VM_Version::supports_avx(), "");
3721   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3722 }
3723 
3724 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
3725   assert(VM_Version::supports_avx(), "");
3726   if (VM_Version::supports_evex()) {
3727     tuple_type = EVEX_T1S;
3728     input_size_in_bits = EVEX_64bit;
3729     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3730   } else {
3731     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3732   }
3733 }
3734 
3735 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3736   assert(VM_Version::supports_avx(), "");
3737   if (VM_Version::supports_evex()) {
3738     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3739   } else {
3740     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3741   }
3742 }
3743 
3744 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
3745   assert(VM_Version::supports_avx(), "");
3746   if (VM_Version::supports_evex()) {
3747     tuple_type = EVEX_T1S;
3748     input_size_in_bits = EVEX_32bit;
3749   }
3750   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3751 }
3752 
3753 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3754   assert(VM_Version::supports_avx(), "");
3755   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3756 }
3757 
3758 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
3759   assert(VM_Version::supports_avx(), "");
3760   if (VM_Version::supports_evex()) {
3761     tuple_type = EVEX_T1S;
3762     input_size_in_bits = EVEX_64bit;
3763     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3764   } else {
3765     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3766   }
3767 }
3768 
3769 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3770   assert(VM_Version::supports_avx(), "");
3771   if (VM_Version::supports_evex()) {
3772     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3773   } else {
3774     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3775   }
3776 }
3777 
3778 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
3779   assert(VM_Version::supports_avx(), "");
3780   if (VM_Version::supports_evex()) {
3781     tuple_type = EVEX_T1S;
3782     input_size_in_bits = EVEX_32bit;
3783   }
3784   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3785 }
3786 
3787 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3788   assert(VM_Version::supports_avx(), "");
3789   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3790 }
3791 
3792 //====================VECTOR ARITHMETIC=====================================
3793 
3794 // Float-point vector arithmetic
3795 
3796 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
3797   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3798   if (VM_Version::supports_evex()) {
3799     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_66);
3800   } else {
3801     emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
3802   }
3803 }
3804 
3805 void Assembler::addps(XMMRegister dst, XMMRegister src) {
3806   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3807   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
3808 }
3809 
3810 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3811   assert(VM_Version::supports_avx(), "");
3812   if (VM_Version::supports_evex()) {
3813     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3814   } else {
3815     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3816   }
3817 }
3818 
3819 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3820   assert(VM_Version::supports_avx(), "");
3821   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector_len);
3822 }
3823 
3824 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3825   assert(VM_Version::supports_avx(), "");
3826   if (VM_Version::supports_evex()) {
3827     tuple_type = EVEX_FV;
3828     input_size_in_bits = EVEX_64bit;
3829     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3830   } else {
3831     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3832   }
3833 }
3834 
3835 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3836   assert(VM_Version::supports_avx(), "");
3837   if (VM_Version::supports_evex()) {
3838     tuple_type = EVEX_FV;
3839     input_size_in_bits = EVEX_32bit;
3840   }
3841   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector_len);
3842 }
3843 
3844 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
3845   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3846   if (VM_Version::supports_evex()) {
3847     emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_66);
3848   } else {
3849     emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
3850   }
3851 }
3852 
3853 void Assembler::subps(XMMRegister dst, XMMRegister src) {
3854   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3855   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
3856 }
3857 
3858 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3859   assert(VM_Version::supports_avx(), "");
3860   if (VM_Version::supports_evex()) {
3861     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3862   } else {
3863     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3864   }
3865 }
3866 
3867 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3868   assert(VM_Version::supports_avx(), "");
3869   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector_len);
3870 }
3871 
3872 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3873   assert(VM_Version::supports_avx(), "");
3874   if (VM_Version::supports_evex()) {
3875     tuple_type = EVEX_FV;
3876     input_size_in_bits = EVEX_64bit;
3877     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3878   } else {
3879     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3880   }
3881 }
3882 
3883 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3884   assert(VM_Version::supports_avx(), "");
3885   if (VM_Version::supports_evex()) {
3886     tuple_type = EVEX_FV;
3887     input_size_in_bits = EVEX_32bit;
3888   }
3889   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector_len);
3890 }
3891 
3892 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
3893   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3894   if (VM_Version::supports_evex()) {
3895     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_66);
3896   } else {
3897     emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
3898   }
3899 }
3900 
3901 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
3902   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3903   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
3904 }
3905 
3906 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3907   assert(VM_Version::supports_avx(), "");
3908   if (VM_Version::supports_evex()) {
3909     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3910   } else {
3911     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3912   }
3913 }
3914 
3915 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3916   assert(VM_Version::supports_avx(), "");
3917   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector_len);
3918 }
3919 
3920 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3921   assert(VM_Version::supports_avx(), "");
3922   if (VM_Version::supports_evex()) {
3923     tuple_type = EVEX_FV;
3924     input_size_in_bits = EVEX_64bit;
3925     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3926   } else {
3927     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3928   }
3929 }
3930 
3931 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3932   assert(VM_Version::supports_avx(), "");
3933   if (VM_Version::supports_evex()) {
3934     tuple_type = EVEX_FV;
3935     input_size_in_bits = EVEX_32bit;
3936   }
3937   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector_len);
3938 }
3939 
3940 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
3941   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3942   if (VM_Version::supports_evex()) {
3943     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_66);
3944   } else {
3945     emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
3946   }
3947 }
3948 
3949 void Assembler::divps(XMMRegister dst, XMMRegister src) {
3950   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3951   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
3952 }
3953 
3954 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3955   assert(VM_Version::supports_avx(), "");
3956   if (VM_Version::supports_evex()) {
3957     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3958   } else {
3959     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3960   }
3961 }
3962 
3963 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3964   assert(VM_Version::supports_avx(), "");
3965   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector_len);
3966 }
3967 
3968 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3969   assert(VM_Version::supports_avx(), "");
3970   if (VM_Version::supports_evex()) {
3971     tuple_type = EVEX_FV;
3972     input_size_in_bits = EVEX_64bit;
3973     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3974   } else {
3975     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3976   }
3977 }
3978 
3979 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3980   assert(VM_Version::supports_avx(), "");
3981   if (VM_Version::supports_evex()) {
3982     tuple_type = EVEX_FV;
3983     input_size_in_bits = EVEX_32bit;
3984   }
3985   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector_len);
3986 }
3987 
3988 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
3989   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3990   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
3991     emit_simd_arith_q(0x54, dst, src, VEX_SIMD_66);
3992   } else {
3993     emit_simd_arith(0x54, dst, src, VEX_SIMD_66, false, true);
3994   }
3995 }
3996 
3997 void Assembler::andps(XMMRegister dst, XMMRegister src) {
3998   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3999   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE, false,
4000                   (VM_Version::supports_avx512dq() == false));
4001 }
4002 
4003 void Assembler::andps(XMMRegister dst, Address src) {
4004   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4005   if (VM_Version::supports_evex()) {
4006     tuple_type = EVEX_FV;
4007     input_size_in_bits = EVEX_32bit;
4008   }
4009   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE,
4010                   false, (VM_Version::supports_avx512dq() == false));
4011 }
4012 
4013 void Assembler::andpd(XMMRegister dst, Address src) {
4014   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4015   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4016     tuple_type = EVEX_FV;
4017     input_size_in_bits = EVEX_64bit;
4018     emit_simd_arith_q(0x54, dst, src, VEX_SIMD_66);
4019   } else {
4020     emit_simd_arith(0x54, dst, src, VEX_SIMD_66, false, true);
4021   }
4022 }
4023 
4024 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4025   assert(VM_Version::supports_avx(), "");
4026   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4027     emit_vex_arith_q(0x54, dst, nds, src, VEX_SIMD_66, vector_len);
4028   } else {
4029     emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, true);
4030   }
4031 }
4032 
4033 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4034   assert(VM_Version::supports_avx(), "");
4035   bool legacy_mode = (VM_Version::supports_avx512dq() == false);
4036   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len, legacy_mode);
4037 }
4038 
4039 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4040   assert(VM_Version::supports_avx(), "");
4041   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4042     tuple_type = EVEX_FV;
4043     input_size_in_bits = EVEX_64bit;
4044     emit_vex_arith_q(0x54, dst, nds, src, VEX_SIMD_66, vector_len);
4045   } else {
4046     emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, true);
4047   }
4048 }
4049 
4050 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4051   assert(VM_Version::supports_avx(), "");
4052   if (VM_Version::supports_evex()) {
4053     tuple_type = EVEX_FV;
4054     input_size_in_bits = EVEX_32bit;
4055   }
4056   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len,
4057                  (VM_Version::supports_avx512dq() == false));
4058 }
4059 
4060 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
4061   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4062   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4063     emit_simd_arith_q(0x57, dst, src, VEX_SIMD_66);
4064   } else {
4065     emit_simd_arith(0x57, dst, src, VEX_SIMD_66, false, true);
4066   }
4067 }
4068 
4069 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
4070   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4071   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE,
4072                   false, (VM_Version::supports_avx512dq() == false));
4073 }
4074 
4075 void Assembler::xorpd(XMMRegister dst, Address src) {
4076   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4077   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4078     tuple_type = EVEX_FV;
4079     input_size_in_bits = EVEX_64bit;
4080     emit_simd_arith_q(0x57, dst, src, VEX_SIMD_66);
4081   } else {
4082     emit_simd_arith(0x57, dst, src, VEX_SIMD_66, false, true);
4083   }
4084 }
4085 
4086 void Assembler::xorps(XMMRegister dst, Address src) {
4087   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4088   if (VM_Version::supports_evex()) {
4089     tuple_type = EVEX_FV;
4090     input_size_in_bits = EVEX_32bit;
4091   }
4092   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE, false,
4093                   (VM_Version::supports_avx512dq() == false));
4094 }
4095 
4096 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4097   assert(VM_Version::supports_avx(), "");
4098   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4099     emit_vex_arith_q(0x57, dst, nds, src, VEX_SIMD_66, vector_len);
4100   } else {
4101     emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, true);
4102   }
4103 }
4104 
4105 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4106   assert(VM_Version::supports_avx(), "");
4107   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len,
4108                  (VM_Version::supports_avx512dq() == false));
4109 }
4110 
4111 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4112   assert(VM_Version::supports_avx(), "");
4113   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4114     tuple_type = EVEX_FV;
4115     input_size_in_bits = EVEX_64bit;
4116     emit_vex_arith_q(0x57, dst, nds, src, VEX_SIMD_66, vector_len);
4117   } else {
4118     emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, true);
4119   }
4120 }
4121 
4122 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4123   assert(VM_Version::supports_avx(), "");
4124   if (VM_Version::supports_evex()) {
4125     tuple_type = EVEX_FV;
4126     input_size_in_bits = EVEX_32bit;
4127   }
4128   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len,
4129                  (VM_Version::supports_avx512dq() == false));
4130 }
4131 
4132 // Integer vector arithmetic
4133 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4134   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4135          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4136   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len,
4137                                      VEX_OPCODE_0F_38, true, false);
4138   emit_int8(0x01);
4139   emit_int8((unsigned char)(0xC0 | encode));
4140 }
4141 
4142 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4143   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4144          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4145   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len,
4146                                      VEX_OPCODE_0F_38, true, false);
4147   emit_int8(0x02);
4148   emit_int8((unsigned char)(0xC0 | encode));
4149 }
4150 
4151 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
4152   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4153   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
4154 }
4155 
4156 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
4157   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4158   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
4159 }
4160 
4161 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
4162   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4163   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
4164 }
4165 
4166 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
4167   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4168   if (VM_Version::supports_evex()) {
4169     emit_simd_arith_q(0xD4, dst, src, VEX_SIMD_66);
4170   } else {
4171     emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
4172   }
4173 }
4174 
4175 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
4176   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4177   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
4178                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
4179   emit_int8(0x01);
4180   emit_int8((unsigned char)(0xC0 | encode));
4181 }
4182 
4183 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
4184   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4185   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
4186                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
4187   emit_int8(0x02);
4188   emit_int8((unsigned char)(0xC0 | encode));
4189 }
4190 
4191 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4192   assert(UseAVX > 0, "requires some form of AVX");
4193   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len,
4194                  (VM_Version::supports_avx512bw() == false));
4195 }
4196 
4197 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4198   assert(UseAVX > 0, "requires some form of AVX");
4199   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len,
4200                  (VM_Version::supports_avx512bw() == false));
4201 }
4202 
4203 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4204   assert(UseAVX > 0, "requires some form of AVX");
4205   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector_len);
4206 }
4207 
4208 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4209   assert(UseAVX > 0, "requires some form of AVX");
4210   if (VM_Version::supports_evex()) {
4211     emit_vex_arith_q(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4212   } else {
4213     emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4214   }
4215 }
4216 
4217 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4218   assert(UseAVX > 0, "requires some form of AVX");
4219   if (VM_Version::supports_evex()) {
4220     tuple_type = EVEX_FVM;
4221   }
4222   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len);
4223 }
4224 
4225 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4226   assert(UseAVX > 0, "requires some form of AVX");
4227   if (VM_Version::supports_evex()) {
4228     tuple_type = EVEX_FVM;
4229   }
4230   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len);
4231 }
4232 
4233 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4234   assert(UseAVX > 0, "requires some form of AVX");
4235   if (VM_Version::supports_evex()) {
4236     tuple_type = EVEX_FV;
4237     input_size_in_bits = EVEX_32bit;
4238   }
4239   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector_len);
4240 }
4241 
4242 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4243   assert(UseAVX > 0, "requires some form of AVX");
4244   if (VM_Version::supports_evex()) {
4245     tuple_type = EVEX_FV;
4246     input_size_in_bits = EVEX_64bit;
4247     emit_vex_arith_q(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4248   } else {
4249     emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4250   }
4251 }
4252 
4253 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
4254   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4255   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
4256 }
4257 
4258 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
4259   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4260   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
4261 }
4262 
4263 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
4264   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4265   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
4266 }
4267 
4268 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
4269   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4270   if (VM_Version::supports_evex()) {
4271     emit_simd_arith_q(0xFB, dst, src, VEX_SIMD_66);
4272   } else {
4273     emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
4274   }
4275 }
4276 
4277 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4278   assert(UseAVX > 0, "requires some form of AVX");
4279   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len,
4280                  (VM_Version::supports_avx512bw() == false));
4281 }
4282 
4283 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4284   assert(UseAVX > 0, "requires some form of AVX");
4285   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len,
4286                  (VM_Version::supports_avx512bw() == false));
4287 }
4288 
4289 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4290   assert(UseAVX > 0, "requires some form of AVX");
4291   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector_len);
4292 }
4293 
4294 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4295   assert(UseAVX > 0, "requires some form of AVX");
4296   if (VM_Version::supports_evex()) {
4297     emit_vex_arith_q(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4298   } else {
4299     emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4300   }
4301 }
4302 
4303 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4304   assert(UseAVX > 0, "requires some form of AVX");
4305   if (VM_Version::supports_evex()) {
4306     tuple_type = EVEX_FVM;
4307   }
4308   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len,
4309                  (VM_Version::supports_avx512bw() == false));
4310 }
4311 
4312 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4313   assert(UseAVX > 0, "requires some form of AVX");
4314   if (VM_Version::supports_evex()) {
4315     tuple_type = EVEX_FVM;
4316   }
4317   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len,
4318                  (VM_Version::supports_avx512bw() == false));
4319 }
4320 
4321 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4322   assert(UseAVX > 0, "requires some form of AVX");
4323   if (VM_Version::supports_evex()) {
4324     tuple_type = EVEX_FV;
4325     input_size_in_bits = EVEX_32bit;
4326   }
4327   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector_len);
4328 }
4329 
4330 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4331   assert(UseAVX > 0, "requires some form of AVX");
4332   if (VM_Version::supports_evex()) {
4333     tuple_type = EVEX_FV;
4334     input_size_in_bits = EVEX_64bit;
4335     emit_vex_arith_q(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4336   } else {
4337     emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4338   }
4339 }
4340 
4341 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
4342   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4343   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66,
4344                   (VM_Version::supports_avx512bw() == false));
4345 }
4346 
4347 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
4348   assert(VM_Version::supports_sse4_1(), "");
4349   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66,
4350                                       false, VEX_OPCODE_0F_38);
4351   emit_int8(0x40);
4352   emit_int8((unsigned char)(0xC0 | encode));
4353 }
4354 
4355 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4356   assert(UseAVX > 0, "requires some form of AVX");
4357   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len,
4358                  (VM_Version::supports_avx512bw() == false));
4359 }
4360 
4361 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4362   assert(UseAVX > 0, "requires some form of AVX");
4363   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66,
4364                                      vector_len, VEX_OPCODE_0F_38);
4365   emit_int8(0x40);
4366   emit_int8((unsigned char)(0xC0 | encode));
4367 }
4368 
4369 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4370   assert(UseAVX > 2, "requires some form of AVX");
4371   int src_enc = src->encoding();
4372   int dst_enc = dst->encoding();
4373   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4374   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66,
4375                                      VEX_OPCODE_0F_38, true, vector_len, false, false);
4376   emit_int8(0x40);
4377   emit_int8((unsigned char)(0xC0 | encode));
4378 }
4379 
4380 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4381   assert(UseAVX > 0, "requires some form of AVX");
4382   if (VM_Version::supports_evex()) {
4383     tuple_type = EVEX_FVM;
4384   }
4385   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len);
4386 }
4387 
4388 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4389   assert(UseAVX > 0, "requires some form of AVX");
4390   if (VM_Version::supports_evex()) {
4391     tuple_type = EVEX_FV;
4392     input_size_in_bits = EVEX_32bit;
4393   }
4394   InstructionMark im(this);
4395   int dst_enc = dst->encoding();
4396   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4397   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66,
4398              VEX_OPCODE_0F_38, false, vector_len);
4399   emit_int8(0x40);
4400   emit_operand(dst, src);
4401 }
4402 
4403 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4404   assert(UseAVX > 0, "requires some form of AVX");
4405   if (VM_Version::supports_evex()) {
4406     tuple_type = EVEX_FV;
4407     input_size_in_bits = EVEX_64bit;
4408   }
4409   InstructionMark im(this);
4410   int dst_enc = dst->encoding();
4411   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4412   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, true, vector_len);
4413   emit_int8(0x40);
4414   emit_operand(dst, src);
4415 }
4416 
4417 // Shift packed integers left by specified number of bits.
4418 void Assembler::psllw(XMMRegister dst, int shift) {
4419   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4420   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4421   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4422                                       false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
4423   emit_int8(0x71);
4424   emit_int8((unsigned char)(0xC0 | encode));
4425   emit_int8(shift & 0xFF);
4426 }
4427 
4428 void Assembler::pslld(XMMRegister dst, int shift) {
4429   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4430   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4431   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false);
4432   emit_int8(0x72);
4433   emit_int8((unsigned char)(0xC0 | encode));
4434   emit_int8(shift & 0xFF);
4435 }
4436 
4437 void Assembler::psllq(XMMRegister dst, int shift) {
4438   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4439   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4440   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F, true);
4441   emit_int8(0x73);
4442   emit_int8((unsigned char)(0xC0 | encode));
4443   emit_int8(shift & 0xFF);
4444 }
4445 
4446 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
4447   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4448   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66, false,
4449                   (VM_Version::supports_avx512bw() == false));
4450 }
4451 
4452 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
4453   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4454   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
4455 }
4456 
4457 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
4458   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4459   if (VM_Version::supports_evex()) {
4460     emit_simd_arith_q(0xF3, dst, shift, VEX_SIMD_66);
4461   } else {
4462     emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
4463   }
4464 }
4465 
4466 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4467   assert(UseAVX > 0, "requires some form of AVX");
4468   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4469   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector_len,
4470                  (VM_Version::supports_avx512bw() == false));
4471   emit_int8(shift & 0xFF);
4472 }
4473 
4474 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4475   assert(UseAVX > 0, "requires some form of AVX");
4476   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4477   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector_len);
4478   emit_int8(shift & 0xFF);
4479 }
4480 
4481 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4482   assert(UseAVX > 0, "requires some form of AVX");
4483   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4484   if (VM_Version::supports_evex()) {
4485     emit_vex_arith_q(0x73, xmm6, dst, src, VEX_SIMD_66, vector_len);
4486   } else {
4487     emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector_len);
4488   }
4489   emit_int8(shift & 0xFF);
4490 }
4491 
4492 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4493   assert(UseAVX > 0, "requires some form of AVX");
4494   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector_len,
4495                  (VM_Version::supports_avx512bw() == false));
4496 }
4497 
4498 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4499   assert(UseAVX > 0, "requires some form of AVX");
4500   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector_len);
4501 }
4502 
4503 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4504   assert(UseAVX > 0, "requires some form of AVX");
4505   if (VM_Version::supports_evex()) {
4506     emit_vex_arith_q(0xF3, dst, src, shift, VEX_SIMD_66, vector_len);
4507   } else {
4508     emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector_len);
4509   }
4510 }
4511 
4512 // Shift packed integers logically right by specified number of bits.
4513 void Assembler::psrlw(XMMRegister dst, int shift) {
4514   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4515   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
4516   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4517                                       (VM_Version::supports_avx512bw() == false));
4518   emit_int8(0x71);
4519   emit_int8((unsigned char)(0xC0 | encode));
4520   emit_int8(shift & 0xFF);
4521 }
4522 
4523 void Assembler::psrld(XMMRegister dst, int shift) {
4524   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4525   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
4526   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false);
4527   emit_int8(0x72);
4528   emit_int8((unsigned char)(0xC0 | encode));
4529   emit_int8(shift & 0xFF);
4530 }
4531 
4532 void Assembler::psrlq(XMMRegister dst, int shift) {
4533   // Do not confuse it with psrldq SSE2 instruction which
4534   // shifts 128 bit value in xmm register by number of bytes.
4535   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4536   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4537   int encode = 0;
4538   if (VM_Version::supports_evex() && VM_Version::supports_avx512bw()) {
4539     encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, false);
4540   } else {
4541     encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F, true);
4542   }
4543   emit_int8(0x73);
4544   emit_int8((unsigned char)(0xC0 | encode));
4545   emit_int8(shift & 0xFF);
4546 }
4547 
4548 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
4549   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4550   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66, false,
4551                   (VM_Version::supports_avx512bw() == false));
4552 }
4553 
4554 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
4555   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4556   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
4557 }
4558 
4559 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
4560   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4561   if (VM_Version::supports_evex()) {
4562     emit_simd_arith_q(0xD3, dst, shift, VEX_SIMD_66);
4563   } else {
4564     emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
4565   }
4566 }
4567 
4568 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4569   assert(UseAVX > 0, "requires some form of AVX");
4570   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4571   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector_len,
4572                  (VM_Version::supports_avx512bw() == false));
4573   emit_int8(shift & 0xFF);
4574 }
4575 
4576 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4577   assert(UseAVX > 0, "requires some form of AVX");
4578   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4579   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector_len);
4580   emit_int8(shift & 0xFF);
4581 }
4582 
4583 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4584   assert(UseAVX > 0, "requires some form of AVX");
4585   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4586   if (VM_Version::supports_evex()) {
4587     emit_vex_arith_q(0x73, xmm2, dst, src, VEX_SIMD_66, vector_len);
4588   } else {
4589     emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector_len);
4590   }
4591   emit_int8(shift & 0xFF);
4592 }
4593 
4594 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4595   assert(UseAVX > 0, "requires some form of AVX");
4596   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector_len,
4597                  (VM_Version::supports_avx512bw() == false));
4598 }
4599 
4600 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4601   assert(UseAVX > 0, "requires some form of AVX");
4602   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector_len);
4603 }
4604 
4605 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4606   assert(UseAVX > 0, "requires some form of AVX");
4607   if (VM_Version::supports_evex()) {
4608     emit_vex_arith_q(0xD3, dst, src, shift, VEX_SIMD_66, vector_len);
4609   } else {
4610     emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector_len);
4611   }
4612 }
4613 
4614 // Shift packed integers arithmetically right by specified number of bits.
4615 void Assembler::psraw(XMMRegister dst, int shift) {
4616   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4617   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4618   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4619                                       (VM_Version::supports_avx512bw() == false));
4620   emit_int8(0x71);
4621   emit_int8((unsigned char)(0xC0 | encode));
4622   emit_int8(shift & 0xFF);
4623 }
4624 
4625 void Assembler::psrad(XMMRegister dst, int shift) {
4626   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4627   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
4628   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, false);
4629   emit_int8(0x72);
4630   emit_int8((unsigned char)(0xC0 | encode));
4631   emit_int8(shift & 0xFF);
4632 }
4633 
4634 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
4635   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4636   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66,
4637                   (VM_Version::supports_avx512bw() == false));
4638 }
4639 
4640 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
4641   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4642   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
4643 }
4644 
4645 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4646   assert(UseAVX > 0, "requires some form of AVX");
4647   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4648   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector_len,
4649                  (VM_Version::supports_avx512bw() == false));
4650   emit_int8(shift & 0xFF);
4651 }
4652 
4653 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4654   assert(UseAVX > 0, "requires some form of AVX");
4655   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4656   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector_len);
4657   emit_int8(shift & 0xFF);
4658 }
4659 
4660 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4661   assert(UseAVX > 0, "requires some form of AVX");
4662   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector_len,
4663                  (VM_Version::supports_avx512bw() == false));
4664 }
4665 
4666 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4667   assert(UseAVX > 0, "requires some form of AVX");
4668   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector_len);
4669 }
4670 
4671 
4672 // AND packed integers
4673 void Assembler::pand(XMMRegister dst, XMMRegister src) {
4674   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4675   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
4676 }
4677 
4678 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4679   assert(UseAVX > 0, "requires some form of AVX");
4680   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector_len);
4681 }
4682 
4683 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4684   assert(UseAVX > 0, "requires some form of AVX");
4685   if (VM_Version::supports_evex()) {
4686     tuple_type = EVEX_FV;
4687     input_size_in_bits = EVEX_32bit;
4688   }
4689   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector_len);
4690 }
4691 
4692 void Assembler::por(XMMRegister dst, XMMRegister src) {
4693   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4694   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
4695 }
4696 
4697 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4698   assert(UseAVX > 0, "requires some form of AVX");
4699   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector_len);
4700 }
4701 
4702 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4703   assert(UseAVX > 0, "requires some form of AVX");
4704   if (VM_Version::supports_evex()) {
4705     tuple_type = EVEX_FV;
4706     input_size_in_bits = EVEX_32bit;
4707   }
4708   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector_len);
4709 }
4710 
4711 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
4712   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4713   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
4714 }
4715 
4716 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4717   assert(UseAVX > 0, "requires some form of AVX");
4718   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector_len);
4719 }
4720 
4721 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4722   assert(UseAVX > 0, "requires some form of AVX");
4723   if (VM_Version::supports_evex()) {
4724     tuple_type = EVEX_FV;
4725     input_size_in_bits = EVEX_32bit;
4726   }
4727   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector_len);
4728 }
4729 
4730 
4731 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4732   assert(VM_Version::supports_avx(), "");
4733   int vector_len = AVX_256bit;
4734   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4735   emit_int8(0x18);
4736   emit_int8((unsigned char)(0xC0 | encode));
4737   // 0x00 - insert into lower 128 bits
4738   // 0x01 - insert into upper 128 bits
4739   emit_int8(0x01);
4740 }
4741 
4742 void Assembler::vinsertf64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4743   assert(VM_Version::supports_evex(), "");
4744   int vector_len = AVX_512bit;
4745   int src_enc = src->encoding();
4746   int dst_enc = dst->encoding();
4747   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4748   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66,
4749                                      VEX_OPCODE_0F_3A, true, vector_len, false, false);
4750   emit_int8(0x1A);
4751   emit_int8((unsigned char)(0xC0 | encode));
4752   // 0x00 - insert into lower 256 bits
4753   // 0x01 - insert into upper 256 bits
4754   emit_int8(0x01);
4755 }
4756 
4757 void Assembler::vinsertf64x4h(XMMRegister dst, Address src) {
4758   assert(VM_Version::supports_avx(), "");
4759   if (VM_Version::supports_evex()) {
4760     tuple_type = EVEX_T4;
4761     input_size_in_bits = EVEX_64bit;
4762   }
4763   InstructionMark im(this);
4764   int vector_len = AVX_512bit;
4765   assert(dst != xnoreg, "sanity");
4766   int dst_enc = dst->encoding();
4767   // swap src<->dst for encoding
4768   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector_len);
4769   emit_int8(0x1A);
4770   emit_operand(dst, src);
4771   // 0x01 - insert into upper 128 bits
4772   emit_int8(0x01);
4773 }
4774 
4775 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
4776   assert(VM_Version::supports_avx(), "");
4777   if (VM_Version::supports_evex()) {
4778     tuple_type = EVEX_T4;
4779     input_size_in_bits = EVEX_32bit;
4780   }
4781   InstructionMark im(this);
4782   int vector_len = AVX_256bit;
4783   assert(dst != xnoreg, "sanity");
4784   int dst_enc = dst->encoding();
4785   // swap src<->dst for encoding
4786   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4787   emit_int8(0x18);
4788   emit_operand(dst, src);
4789   // 0x01 - insert into upper 128 bits
4790   emit_int8(0x01);
4791 }
4792 
4793 void Assembler::vextractf128h(XMMRegister dst, XMMRegister src) {
4794   assert(VM_Version::supports_avx(), "");
4795   int vector_len = AVX_256bit;
4796   int encode = vex_prefix_and_encode(src, xnoreg, dst, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4797   emit_int8(0x19);
4798   emit_int8((unsigned char)(0xC0 | encode));
4799   // 0x00 - insert into lower 128 bits
4800   // 0x01 - insert into upper 128 bits
4801   emit_int8(0x01);
4802 }
4803 
4804 void Assembler::vextractf128h(Address dst, XMMRegister src) {
4805   assert(VM_Version::supports_avx(), "");
4806   if (VM_Version::supports_evex()) {
4807     tuple_type = EVEX_T4;
4808     input_size_in_bits = EVEX_32bit;
4809   }
4810   InstructionMark im(this);
4811   int vector_len = AVX_256bit;
4812   assert(src != xnoreg, "sanity");
4813   int src_enc = src->encoding();
4814   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4815   emit_int8(0x19);
4816   emit_operand(src, dst);
4817   // 0x01 - extract from upper 128 bits
4818   emit_int8(0x01);
4819 }
4820 
4821 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4822   assert(VM_Version::supports_avx2(), "");
4823   int vector_len = AVX_256bit;
4824   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4825   emit_int8(0x38);
4826   emit_int8((unsigned char)(0xC0 | encode));
4827   // 0x00 - insert into lower 128 bits
4828   // 0x01 - insert into upper 128 bits
4829   emit_int8(0x01);
4830 }
4831 
4832 void Assembler::vinserti64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4833   assert(VM_Version::supports_evex(), "");
4834   int vector_len = AVX_512bit;
4835   int src_enc = src->encoding();
4836   int dst_enc = dst->encoding();
4837   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4838   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4839                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4840   emit_int8(0x38);
4841   emit_int8((unsigned char)(0xC0 | encode));
4842   // 0x00 - insert into lower 256 bits
4843   // 0x01 - insert into upper 256 bits
4844   emit_int8(0x01);
4845 }
4846 
4847 void Assembler::vinserti128h(XMMRegister dst, Address src) {
4848   assert(VM_Version::supports_avx2(), "");
4849   if (VM_Version::supports_evex()) {
4850     tuple_type = EVEX_T4;
4851     input_size_in_bits = EVEX_32bit;
4852   }
4853   InstructionMark im(this);
4854   int vector_len = AVX_256bit;
4855   assert(dst != xnoreg, "sanity");
4856   int dst_enc = dst->encoding();
4857   // swap src<->dst for encoding
4858   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4859   emit_int8(0x38);
4860   emit_operand(dst, src);
4861   // 0x01 - insert into upper 128 bits
4862   emit_int8(0x01);
4863 }
4864 
4865 void Assembler::vextracti128h(XMMRegister dst, XMMRegister src) {
4866   assert(VM_Version::supports_avx(), "");
4867   int vector_len = AVX_256bit;
4868   int encode = vex_prefix_and_encode(src, xnoreg, dst, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4869   emit_int8(0x39);
4870   emit_int8((unsigned char)(0xC0 | encode));
4871   // 0x00 - insert into lower 128 bits
4872   // 0x01 - insert into upper 128 bits
4873   emit_int8(0x01);
4874 }
4875 
4876 void Assembler::vextracti128h(Address dst, XMMRegister src) {
4877   assert(VM_Version::supports_avx2(), "");
4878   if (VM_Version::supports_evex()) {
4879     tuple_type = EVEX_T4;
4880     input_size_in_bits = EVEX_32bit;
4881   }
4882   InstructionMark im(this);
4883   int vector_len = AVX_256bit;
4884   assert(src != xnoreg, "sanity");
4885   int src_enc = src->encoding();
4886   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4887   emit_int8(0x39);
4888   emit_operand(src, dst);
4889   // 0x01 - extract from upper 128 bits
4890   emit_int8(0x01);
4891 }
4892 
4893 void Assembler::vextracti64x4h(XMMRegister dst, XMMRegister src) {
4894   assert(VM_Version::supports_evex(), "");
4895   int vector_len = AVX_512bit;
4896   int src_enc = src->encoding();
4897   int dst_enc = dst->encoding();
4898   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4899                                      true, vector_len, false, false);
4900   emit_int8(0x3B);
4901   emit_int8((unsigned char)(0xC0 | encode));
4902   // 0x01 - extract from upper 256 bits
4903   emit_int8(0x01);
4904 }
4905 
4906 void Assembler::vextracti64x2h(XMMRegister dst, XMMRegister src, int value) {
4907   assert(VM_Version::supports_evex(), "");
4908   int vector_len = AVX_512bit;
4909   int src_enc = src->encoding();
4910   int dst_enc = dst->encoding();
4911   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4912                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4913   emit_int8(0x39);
4914   emit_int8((unsigned char)(0xC0 | encode));
4915   // 0x01 - extract from bits 255:128
4916   // 0x02 - extract from bits 383:256
4917   // 0x03 - extract from bits 511:384
4918   emit_int8(value & 0x3);
4919 }
4920 
4921 void Assembler::vextractf64x4h(XMMRegister dst, XMMRegister src) {
4922   assert(VM_Version::supports_evex(), "");
4923   int vector_len = AVX_512bit;
4924   int src_enc = src->encoding();
4925   int dst_enc = dst->encoding();
4926   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4927                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4928   emit_int8(0x1B);
4929   emit_int8((unsigned char)(0xC0 | encode));
4930   // 0x01 - extract from upper 256 bits
4931   emit_int8(0x01);
4932 }
4933 
4934 void Assembler::vextractf64x4h(Address dst, XMMRegister src) {
4935   assert(VM_Version::supports_avx2(), "");
4936   tuple_type = EVEX_T4;
4937   input_size_in_bits = EVEX_64bit;
4938   InstructionMark im(this);
4939   int vector_len = AVX_512bit;
4940   assert(src != xnoreg, "sanity");
4941   int src_enc = src->encoding();
4942   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4943              VM_Version::supports_avx512dq(), vector_len);
4944   emit_int8(0x1B);
4945   emit_operand(src, dst);
4946   // 0x01 - extract from upper 128 bits
4947   emit_int8(0x01);
4948 }
4949 
4950 void Assembler::vextractf32x4h(XMMRegister dst, XMMRegister src, int value) {
4951   assert(VM_Version::supports_evex(), "");
4952   int vector_len = AVX_512bit;
4953   int src_enc = src->encoding();
4954   int dst_enc = dst->encoding();
4955   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66,
4956                                      VEX_OPCODE_0F_3A, false, vector_len, false, false);
4957   emit_int8(0x19);
4958   emit_int8((unsigned char)(0xC0 | encode));
4959   // 0x01 - extract from bits 255:128
4960   // 0x02 - extract from bits 383:256
4961   // 0x03 - extract from bits 511:384
4962   emit_int8(value & 0x3);
4963 }
4964 
4965 void Assembler::vextractf64x2h(XMMRegister dst, XMMRegister src, int value) {
4966   assert(VM_Version::supports_evex(), "");
4967   int vector_len = AVX_512bit;
4968   int src_enc = src->encoding();
4969   int dst_enc = dst->encoding();
4970   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4971                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4972   emit_int8(0x19);
4973   emit_int8((unsigned char)(0xC0 | encode));
4974   // 0x01 - extract from bits 255:128
4975   // 0x02 - extract from bits 383:256
4976   // 0x03 - extract from bits 511:384
4977   emit_int8(value & 0x3);
4978 }
4979 
4980 // duplicate 4-bytes integer data from src into 8 locations in dest
4981 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
4982   assert(VM_Version::supports_avx2(), "");
4983   int vector_len = AVX_256bit;
4984   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
4985                                      vector_len, VEX_OPCODE_0F_38, false);
4986   emit_int8(0x58);
4987   emit_int8((unsigned char)(0xC0 | encode));
4988 }
4989 
4990 // duplicate 4-bytes integer data from src into 8 locations in dest
4991 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
4992   assert(VM_Version::supports_evex(), "");
4993   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
4994                                      vector_len, VEX_OPCODE_0F_38, false);
4995   emit_int8(0x58);
4996   emit_int8((unsigned char)(0xC0 | encode));
4997 }
4998 
4999 // Carry-Less Multiplication Quadword
5000 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
5001   assert(VM_Version::supports_clmul(), "");
5002   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
5003                                       VEX_OPCODE_0F_3A, false, AVX_128bit, true);
5004   emit_int8(0x44);
5005   emit_int8((unsigned char)(0xC0 | encode));
5006   emit_int8((unsigned char)mask);
5007 }
5008 
5009 // Carry-Less Multiplication Quadword
5010 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
5011   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
5012   int vector_len = AVX_128bit;
5013   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66,
5014                                      vector_len, VEX_OPCODE_0F_3A, true);
5015   emit_int8(0x44);
5016   emit_int8((unsigned char)(0xC0 | encode));
5017   emit_int8((unsigned char)mask);
5018 }
5019 
5020 void Assembler::vzeroupper() {
5021   assert(VM_Version::supports_avx(), "");
5022   if (UseAVX < 3)
5023   {
5024     (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
5025     emit_int8(0x77);
5026   }
5027 }
5028 
5029 
5030 #ifndef _LP64
5031 // 32bit only pieces of the assembler
5032 
5033 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
5034   // NO PREFIX AS NEVER 64BIT
5035   InstructionMark im(this);
5036   emit_int8((unsigned char)0x81);
5037   emit_int8((unsigned char)(0xF8 | src1->encoding()));
5038   emit_data(imm32, rspec, 0);
5039 }
5040 
5041 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
5042   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
5043   InstructionMark im(this);
5044   emit_int8((unsigned char)0x81);
5045   emit_operand(rdi, src1);
5046   emit_data(imm32, rspec, 0);
5047 }
5048 
5049 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
5050 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
5051 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
5052 void Assembler::cmpxchg8(Address adr) {
5053   InstructionMark im(this);
5054   emit_int8(0x0F);
5055   emit_int8((unsigned char)0xC7);
5056   emit_operand(rcx, adr);
5057 }
5058 
5059 void Assembler::decl(Register dst) {
5060   // Don't use it directly. Use MacroAssembler::decrementl() instead.
5061  emit_int8(0x48 | dst->encoding());
5062 }
5063 
5064 #endif // _LP64
5065 
5066 // 64bit typically doesn't use the x87 but needs to for the trig funcs
5067 
5068 void Assembler::fabs() {
5069   emit_int8((unsigned char)0xD9);
5070   emit_int8((unsigned char)0xE1);
5071 }
5072 
5073 void Assembler::fadd(int i) {
5074   emit_farith(0xD8, 0xC0, i);
5075 }
5076 
5077 void Assembler::fadd_d(Address src) {
5078   InstructionMark im(this);
5079   emit_int8((unsigned char)0xDC);
5080   emit_operand32(rax, src);
5081 }
5082 
5083 void Assembler::fadd_s(Address src) {
5084   InstructionMark im(this);
5085   emit_int8((unsigned char)0xD8);
5086   emit_operand32(rax, src);
5087 }
5088 
5089 void Assembler::fadda(int i) {
5090   emit_farith(0xDC, 0xC0, i);
5091 }
5092 
5093 void Assembler::faddp(int i) {
5094   emit_farith(0xDE, 0xC0, i);
5095 }
5096 
5097 void Assembler::fchs() {
5098   emit_int8((unsigned char)0xD9);
5099   emit_int8((unsigned char)0xE0);
5100 }
5101 
5102 void Assembler::fcom(int i) {
5103   emit_farith(0xD8, 0xD0, i);
5104 }
5105 
5106 void Assembler::fcomp(int i) {
5107   emit_farith(0xD8, 0xD8, i);
5108 }
5109 
5110 void Assembler::fcomp_d(Address src) {
5111   InstructionMark im(this);
5112   emit_int8((unsigned char)0xDC);
5113   emit_operand32(rbx, src);
5114 }
5115 
5116 void Assembler::fcomp_s(Address src) {
5117   InstructionMark im(this);
5118   emit_int8((unsigned char)0xD8);
5119   emit_operand32(rbx, src);
5120 }
5121 
5122 void Assembler::fcompp() {
5123   emit_int8((unsigned char)0xDE);
5124   emit_int8((unsigned char)0xD9);
5125 }
5126 
5127 void Assembler::fcos() {
5128   emit_int8((unsigned char)0xD9);
5129   emit_int8((unsigned char)0xFF);
5130 }
5131 
5132 void Assembler::fdecstp() {
5133   emit_int8((unsigned char)0xD9);
5134   emit_int8((unsigned char)0xF6);
5135 }
5136 
5137 void Assembler::fdiv(int i) {
5138   emit_farith(0xD8, 0xF0, i);
5139 }
5140 
5141 void Assembler::fdiv_d(Address src) {
5142   InstructionMark im(this);
5143   emit_int8((unsigned char)0xDC);
5144   emit_operand32(rsi, src);
5145 }
5146 
5147 void Assembler::fdiv_s(Address src) {
5148   InstructionMark im(this);
5149   emit_int8((unsigned char)0xD8);
5150   emit_operand32(rsi, src);
5151 }
5152 
5153 void Assembler::fdiva(int i) {
5154   emit_farith(0xDC, 0xF8, i);
5155 }
5156 
5157 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
5158 //       is erroneous for some of the floating-point instructions below.
5159 
5160 void Assembler::fdivp(int i) {
5161   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
5162 }
5163 
5164 void Assembler::fdivr(int i) {
5165   emit_farith(0xD8, 0xF8, i);
5166 }
5167 
5168 void Assembler::fdivr_d(Address src) {
5169   InstructionMark im(this);
5170   emit_int8((unsigned char)0xDC);
5171   emit_operand32(rdi, src);
5172 }
5173 
5174 void Assembler::fdivr_s(Address src) {
5175   InstructionMark im(this);
5176   emit_int8((unsigned char)0xD8);
5177   emit_operand32(rdi, src);
5178 }
5179 
5180 void Assembler::fdivra(int i) {
5181   emit_farith(0xDC, 0xF0, i);
5182 }
5183 
5184 void Assembler::fdivrp(int i) {
5185   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
5186 }
5187 
5188 void Assembler::ffree(int i) {
5189   emit_farith(0xDD, 0xC0, i);
5190 }
5191 
5192 void Assembler::fild_d(Address adr) {
5193   InstructionMark im(this);
5194   emit_int8((unsigned char)0xDF);
5195   emit_operand32(rbp, adr);
5196 }
5197 
5198 void Assembler::fild_s(Address adr) {
5199   InstructionMark im(this);
5200   emit_int8((unsigned char)0xDB);
5201   emit_operand32(rax, adr);
5202 }
5203 
5204 void Assembler::fincstp() {
5205   emit_int8((unsigned char)0xD9);
5206   emit_int8((unsigned char)0xF7);
5207 }
5208 
5209 void Assembler::finit() {
5210   emit_int8((unsigned char)0x9B);
5211   emit_int8((unsigned char)0xDB);
5212   emit_int8((unsigned char)0xE3);
5213 }
5214 
5215 void Assembler::fist_s(Address adr) {
5216   InstructionMark im(this);
5217   emit_int8((unsigned char)0xDB);
5218   emit_operand32(rdx, adr);
5219 }
5220 
5221 void Assembler::fistp_d(Address adr) {
5222   InstructionMark im(this);
5223   emit_int8((unsigned char)0xDF);
5224   emit_operand32(rdi, adr);
5225 }
5226 
5227 void Assembler::fistp_s(Address adr) {
5228   InstructionMark im(this);
5229   emit_int8((unsigned char)0xDB);
5230   emit_operand32(rbx, adr);
5231 }
5232 
5233 void Assembler::fld1() {
5234   emit_int8((unsigned char)0xD9);
5235   emit_int8((unsigned char)0xE8);
5236 }
5237 
5238 void Assembler::fld_d(Address adr) {
5239   InstructionMark im(this);
5240   emit_int8((unsigned char)0xDD);
5241   emit_operand32(rax, adr);
5242 }
5243 
5244 void Assembler::fld_s(Address adr) {
5245   InstructionMark im(this);
5246   emit_int8((unsigned char)0xD9);
5247   emit_operand32(rax, adr);
5248 }
5249 
5250 
5251 void Assembler::fld_s(int index) {
5252   emit_farith(0xD9, 0xC0, index);
5253 }
5254 
5255 void Assembler::fld_x(Address adr) {
5256   InstructionMark im(this);
5257   emit_int8((unsigned char)0xDB);
5258   emit_operand32(rbp, adr);
5259 }
5260 
5261 void Assembler::fldcw(Address src) {
5262   InstructionMark im(this);
5263   emit_int8((unsigned char)0xD9);
5264   emit_operand32(rbp, src);
5265 }
5266 
5267 void Assembler::fldenv(Address src) {
5268   InstructionMark im(this);
5269   emit_int8((unsigned char)0xD9);
5270   emit_operand32(rsp, src);
5271 }
5272 
5273 void Assembler::fldlg2() {
5274   emit_int8((unsigned char)0xD9);
5275   emit_int8((unsigned char)0xEC);
5276 }
5277 
5278 void Assembler::fldln2() {
5279   emit_int8((unsigned char)0xD9);
5280   emit_int8((unsigned char)0xED);
5281 }
5282 
5283 void Assembler::fldz() {
5284   emit_int8((unsigned char)0xD9);
5285   emit_int8((unsigned char)0xEE);
5286 }
5287 
5288 void Assembler::flog() {
5289   fldln2();
5290   fxch();
5291   fyl2x();
5292 }
5293 
5294 void Assembler::flog10() {
5295   fldlg2();
5296   fxch();
5297   fyl2x();
5298 }
5299 
5300 void Assembler::fmul(int i) {
5301   emit_farith(0xD8, 0xC8, i);
5302 }
5303 
5304 void Assembler::fmul_d(Address src) {
5305   InstructionMark im(this);
5306   emit_int8((unsigned char)0xDC);
5307   emit_operand32(rcx, src);
5308 }
5309 
5310 void Assembler::fmul_s(Address src) {
5311   InstructionMark im(this);
5312   emit_int8((unsigned char)0xD8);
5313   emit_operand32(rcx, src);
5314 }
5315 
5316 void Assembler::fmula(int i) {
5317   emit_farith(0xDC, 0xC8, i);
5318 }
5319 
5320 void Assembler::fmulp(int i) {
5321   emit_farith(0xDE, 0xC8, i);
5322 }
5323 
5324 void Assembler::fnsave(Address dst) {
5325   InstructionMark im(this);
5326   emit_int8((unsigned char)0xDD);
5327   emit_operand32(rsi, dst);
5328 }
5329 
5330 void Assembler::fnstcw(Address src) {
5331   InstructionMark im(this);
5332   emit_int8((unsigned char)0x9B);
5333   emit_int8((unsigned char)0xD9);
5334   emit_operand32(rdi, src);
5335 }
5336 
5337 void Assembler::fnstsw_ax() {
5338   emit_int8((unsigned char)0xDF);
5339   emit_int8((unsigned char)0xE0);
5340 }
5341 
5342 void Assembler::fprem() {
5343   emit_int8((unsigned char)0xD9);
5344   emit_int8((unsigned char)0xF8);
5345 }
5346 
5347 void Assembler::fprem1() {
5348   emit_int8((unsigned char)0xD9);
5349   emit_int8((unsigned char)0xF5);
5350 }
5351 
5352 void Assembler::frstor(Address src) {
5353   InstructionMark im(this);
5354   emit_int8((unsigned char)0xDD);
5355   emit_operand32(rsp, src);
5356 }
5357 
5358 void Assembler::fsin() {
5359   emit_int8((unsigned char)0xD9);
5360   emit_int8((unsigned char)0xFE);
5361 }
5362 
5363 void Assembler::fsqrt() {
5364   emit_int8((unsigned char)0xD9);
5365   emit_int8((unsigned char)0xFA);
5366 }
5367 
5368 void Assembler::fst_d(Address adr) {
5369   InstructionMark im(this);
5370   emit_int8((unsigned char)0xDD);
5371   emit_operand32(rdx, adr);
5372 }
5373 
5374 void Assembler::fst_s(Address adr) {
5375   InstructionMark im(this);
5376   emit_int8((unsigned char)0xD9);
5377   emit_operand32(rdx, adr);
5378 }
5379 
5380 void Assembler::fstp_d(Address adr) {
5381   InstructionMark im(this);
5382   emit_int8((unsigned char)0xDD);
5383   emit_operand32(rbx, adr);
5384 }
5385 
5386 void Assembler::fstp_d(int index) {
5387   emit_farith(0xDD, 0xD8, index);
5388 }
5389 
5390 void Assembler::fstp_s(Address adr) {
5391   InstructionMark im(this);
5392   emit_int8((unsigned char)0xD9);
5393   emit_operand32(rbx, adr);
5394 }
5395 
5396 void Assembler::fstp_x(Address adr) {
5397   InstructionMark im(this);
5398   emit_int8((unsigned char)0xDB);
5399   emit_operand32(rdi, adr);
5400 }
5401 
5402 void Assembler::fsub(int i) {
5403   emit_farith(0xD8, 0xE0, i);
5404 }
5405 
5406 void Assembler::fsub_d(Address src) {
5407   InstructionMark im(this);
5408   emit_int8((unsigned char)0xDC);
5409   emit_operand32(rsp, src);
5410 }
5411 
5412 void Assembler::fsub_s(Address src) {
5413   InstructionMark im(this);
5414   emit_int8((unsigned char)0xD8);
5415   emit_operand32(rsp, src);
5416 }
5417 
5418 void Assembler::fsuba(int i) {
5419   emit_farith(0xDC, 0xE8, i);
5420 }
5421 
5422 void Assembler::fsubp(int i) {
5423   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
5424 }
5425 
5426 void Assembler::fsubr(int i) {
5427   emit_farith(0xD8, 0xE8, i);
5428 }
5429 
5430 void Assembler::fsubr_d(Address src) {
5431   InstructionMark im(this);
5432   emit_int8((unsigned char)0xDC);
5433   emit_operand32(rbp, src);
5434 }
5435 
5436 void Assembler::fsubr_s(Address src) {
5437   InstructionMark im(this);
5438   emit_int8((unsigned char)0xD8);
5439   emit_operand32(rbp, src);
5440 }
5441 
5442 void Assembler::fsubra(int i) {
5443   emit_farith(0xDC, 0xE0, i);
5444 }
5445 
5446 void Assembler::fsubrp(int i) {
5447   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
5448 }
5449 
5450 void Assembler::ftan() {
5451   emit_int8((unsigned char)0xD9);
5452   emit_int8((unsigned char)0xF2);
5453   emit_int8((unsigned char)0xDD);
5454   emit_int8((unsigned char)0xD8);
5455 }
5456 
5457 void Assembler::ftst() {
5458   emit_int8((unsigned char)0xD9);
5459   emit_int8((unsigned char)0xE4);
5460 }
5461 
5462 void Assembler::fucomi(int i) {
5463   // make sure the instruction is supported (introduced for P6, together with cmov)
5464   guarantee(VM_Version::supports_cmov(), "illegal instruction");
5465   emit_farith(0xDB, 0xE8, i);
5466 }
5467 
5468 void Assembler::fucomip(int i) {
5469   // make sure the instruction is supported (introduced for P6, together with cmov)
5470   guarantee(VM_Version::supports_cmov(), "illegal instruction");
5471   emit_farith(0xDF, 0xE8, i);
5472 }
5473 
5474 void Assembler::fwait() {
5475   emit_int8((unsigned char)0x9B);
5476 }
5477 
5478 void Assembler::fxch(int i) {
5479   emit_farith(0xD9, 0xC8, i);
5480 }
5481 
5482 void Assembler::fyl2x() {
5483   emit_int8((unsigned char)0xD9);
5484   emit_int8((unsigned char)0xF1);
5485 }
5486 
5487 void Assembler::frndint() {
5488   emit_int8((unsigned char)0xD9);
5489   emit_int8((unsigned char)0xFC);
5490 }
5491 
5492 void Assembler::f2xm1() {
5493   emit_int8((unsigned char)0xD9);
5494   emit_int8((unsigned char)0xF0);
5495 }
5496 
5497 void Assembler::fldl2e() {
5498   emit_int8((unsigned char)0xD9);
5499   emit_int8((unsigned char)0xEA);
5500 }
5501 
5502 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
5503 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
5504 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
5505 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
5506 
5507 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
5508 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
5509   if (pre > 0) {
5510     emit_int8(simd_pre[pre]);
5511   }
5512   if (rex_w) {
5513     prefixq(adr, xreg);
5514   } else {
5515     prefix(adr, xreg);
5516   }
5517   if (opc > 0) {
5518     emit_int8(0x0F);
5519     int opc2 = simd_opc[opc];
5520     if (opc2 > 0) {
5521       emit_int8(opc2);
5522     }
5523   }
5524 }
5525 
5526 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
5527   if (pre > 0) {
5528     emit_int8(simd_pre[pre]);
5529   }
5530   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
5531                           prefix_and_encode(dst_enc, src_enc);
5532   if (opc > 0) {
5533     emit_int8(0x0F);
5534     int opc2 = simd_opc[opc];
5535     if (opc2 > 0) {
5536       emit_int8(opc2);
5537     }
5538   }
5539   return encode;
5540 }
5541 
5542 
5543 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, int vector_len) {
5544   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
5545     prefix(VEX_3bytes);
5546 
5547     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
5548     byte1 = (~byte1) & 0xE0;
5549     byte1 |= opc;
5550     emit_int8(byte1);
5551 
5552     int byte2 = ((~nds_enc) & 0xf) << 3;
5553     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
5554     emit_int8(byte2);
5555   } else {
5556     prefix(VEX_2bytes);
5557 
5558     int byte1 = vex_r ? VEX_R : 0;
5559     byte1 = (~byte1) & 0x80;
5560     byte1 |= ((~nds_enc) & 0xf) << 3;
5561     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
5562     emit_int8(byte1);
5563   }
5564 }
5565 
5566 // This is a 4 byte encoding
5567 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, bool evex_r, bool evex_v,
5568                             int nds_enc, VexSimdPrefix pre, VexOpcode opc,
5569                             bool is_extended_context, bool is_merge_context,
5570                             int vector_len, bool no_mask_reg ){
5571   // EVEX 0x62 prefix
5572   prefix(EVEX_4bytes);
5573   evex_encoding = (vex_w ? VEX_W : 0) | (evex_r ? EVEX_Rb : 0);
5574 
5575   // P0: byte 2, initialized to RXBR`00mm
5576   // instead of not'd
5577   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
5578   byte2 = (~byte2) & 0xF0;
5579   // confine opc opcode extensions in mm bits to lower two bits
5580   // of form {0F, 0F_38, 0F_3A}
5581   byte2 |= opc;
5582   emit_int8(byte2);
5583 
5584   // P1: byte 3 as Wvvvv1pp
5585   int byte3 = ((~nds_enc) & 0xf) << 3;
5586   // p[10] is always 1
5587   byte3 |= EVEX_F;
5588   byte3 |= (vex_w & 1) << 7;
5589   // confine pre opcode extensions in pp bits to lower two bits
5590   // of form {66, F3, F2}
5591   byte3 |= pre;
5592   emit_int8(byte3);
5593 
5594   // P2: byte 4 as zL'Lbv'aaa
5595   int byte4 = (no_mask_reg) ? 0 : 1; // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
5596   // EVEX.v` for extending EVEX.vvvv or VIDX
5597   byte4 |= (evex_v ? 0: EVEX_V);
5598   // third EXEC.b for broadcast actions
5599   byte4 |= (is_extended_context ? EVEX_Rb : 0);
5600   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
5601   byte4 |= ((vector_len) & 0x3) << 5;
5602   // last is EVEX.z for zero/merge actions
5603   byte4 |= (is_merge_context ? EVEX_Z : 0);
5604   emit_int8(byte4);
5605 }
5606 
5607 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre,
5608                            VexOpcode opc, bool vex_w, int vector_len, bool legacy_mode, bool no_mask_reg) {
5609   bool vex_r = (xreg_enc >= 8);
5610   bool vex_b = adr.base_needs_rex();
5611   bool vex_x = adr.index_needs_rex();
5612   avx_vector_len = vector_len;
5613 
5614   // if vector length is turned off, revert to AVX for vectors smaller than AVX_512bit
5615   if (VM_Version::supports_avx512vl() == false) {
5616     switch (vector_len) {
5617     case AVX_128bit:
5618     case AVX_256bit:
5619       legacy_mode = true;
5620       break;
5621     }
5622   }
5623 
5624   if ((UseAVX > 2) && (legacy_mode == false))
5625   {
5626     bool evex_r = (xreg_enc >= 16);
5627     bool evex_v = (nds_enc >= 16);
5628     is_evex_instruction = true;
5629     evex_prefix(vex_r, vex_b, vex_x, vex_w, evex_r, evex_v, nds_enc, pre, opc, false, false, vector_len, no_mask_reg);
5630   } else {
5631     vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector_len);
5632   }
5633 }
5634 
5635 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc,
5636                                      bool vex_w, int vector_len, bool legacy_mode, bool no_mask_reg ) {
5637   bool vex_r = (dst_enc >= 8);
5638   bool vex_b = (src_enc >= 8);
5639   bool vex_x = false;
5640   avx_vector_len = vector_len;
5641 
5642   // if vector length is turned off, revert to AVX for vectors smaller than AVX_512bit
5643   if (VM_Version::supports_avx512vl() == false) {
5644     switch (vector_len) {
5645     case AVX_128bit:
5646     case AVX_256bit:
5647       legacy_mode = true;
5648       break;
5649     }
5650   }
5651 
5652   if ((UseAVX > 2) && (legacy_mode == false))
5653   {
5654     bool evex_r = (dst_enc >= 16);
5655     bool evex_v = (nds_enc >= 16);
5656     // can use vex_x as bank extender on rm encoding
5657     vex_x = (src_enc >= 16);
5658     evex_prefix(vex_r, vex_b, vex_x, vex_w, evex_r, evex_v, nds_enc, pre, opc, false, false, vector_len, no_mask_reg);
5659   } else {
5660     vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector_len);
5661   }
5662 
5663   // return modrm byte components for operands
5664   return (((dst_enc & 7) << 3) | (src_enc & 7));
5665 }
5666 
5667 
5668 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
5669                             bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len, bool legacy_mode) {
5670   if (UseAVX > 0) {
5671     int xreg_enc = xreg->encoding();
5672     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
5673     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector_len, legacy_mode, no_mask_reg);
5674   } else {
5675     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
5676     rex_prefix(adr, xreg, pre, opc, rex_w);
5677   }
5678 }
5679 
5680 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
5681                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len, bool legacy_mode) {
5682   int dst_enc = dst->encoding();
5683   int src_enc = src->encoding();
5684   if (UseAVX > 0) {
5685     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5686     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, legacy_mode, no_mask_reg);
5687   } else {
5688     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
5689     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
5690   }
5691 }
5692 
5693 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, KRegister src, VexSimdPrefix pre,
5694                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len) {
5695   int dst_enc = dst->encoding();
5696   int src_enc = src->encoding();
5697   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5698   return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, true, no_mask_reg);
5699 }
5700 
5701 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, Register src, VexSimdPrefix pre,
5702                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len) {
5703   int dst_enc = dst->encoding();
5704   int src_enc = src->encoding();
5705   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5706   return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, true, no_mask_reg);
5707 }
5708 
5709 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5710   InstructionMark im(this);
5711   simd_prefix(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, false, AVX_128bit, legacy_mode);
5712   emit_int8(opcode);
5713   emit_operand(dst, src);
5714 }
5715 
5716 void Assembler::emit_simd_arith_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg) {
5717   InstructionMark im(this);
5718   simd_prefix_q(dst, dst, src, pre, no_mask_reg);
5719   emit_int8(opcode);
5720   emit_operand(dst, src);
5721 }
5722 
5723 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5724   int encode = simd_prefix_and_encode(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, false, AVX_128bit, legacy_mode);
5725   emit_int8(opcode);
5726   emit_int8((unsigned char)(0xC0 | encode));
5727 }
5728 
5729 void Assembler::emit_simd_arith_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg) {
5730   int encode = simd_prefix_and_encode(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, true, AVX_128bit);
5731   emit_int8(opcode);
5732   emit_int8((unsigned char)(0xC0 | encode));
5733 }
5734 
5735 // Versions with no second source register (non-destructive source).
5736 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool opNoRegMask) {
5737   InstructionMark im(this);
5738   simd_prefix(dst, xnoreg, src, pre, opNoRegMask);
5739   emit_int8(opcode);
5740   emit_operand(dst, src);
5741 }
5742 
5743 void Assembler::emit_simd_arith_nonds_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool opNoRegMask) {
5744   InstructionMark im(this);
5745   simd_prefix_q(dst, xnoreg, src, pre, opNoRegMask);
5746   emit_int8(opcode);
5747   emit_operand(dst, src);
5748 }
5749 
5750 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5751   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, legacy_mode, AVX_128bit);
5752   emit_int8(opcode);
5753   emit_int8((unsigned char)(0xC0 | encode));
5754 }
5755 
5756 void Assembler::emit_simd_arith_nonds_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg) {
5757   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, true, AVX_128bit);
5758   emit_int8(opcode);
5759   emit_int8((unsigned char)(0xC0 | encode));
5760 }
5761 
5762 // 3-operands AVX instructions
5763 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, Address src,
5764                                VexSimdPrefix pre, int vector_len, bool no_mask_reg, bool legacy_mode) {
5765   InstructionMark im(this);
5766   vex_prefix(dst, nds, src, pre, vector_len, no_mask_reg, legacy_mode);
5767   emit_int8(opcode);
5768   emit_operand(dst, src);
5769 }
5770 
5771 void Assembler::emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds,
5772                                  Address src, VexSimdPrefix pre, int vector_len, bool no_mask_reg) {
5773   InstructionMark im(this);
5774   vex_prefix_q(dst, nds, src, pre, vector_len, no_mask_reg);
5775   emit_int8(opcode);
5776   emit_operand(dst, src);
5777 }
5778 
5779 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src,
5780                                VexSimdPrefix pre, int vector_len, bool no_mask_reg, bool legacy_mode) {
5781   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector_len, VEX_OPCODE_0F, false, no_mask_reg);
5782   emit_int8(opcode);
5783   emit_int8((unsigned char)(0xC0 | encode));
5784 }
5785 
5786 void Assembler::emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src,
5787                                  VexSimdPrefix pre, int vector_len, bool no_mask_reg) {
5788   int src_enc = src->encoding();
5789   int dst_enc = dst->encoding();
5790   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5791   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, VEX_OPCODE_0F, true, vector_len, false, no_mask_reg);
5792   emit_int8(opcode);
5793   emit_int8((unsigned char)(0xC0 | encode));
5794 }
5795 
5796 #ifndef _LP64
5797 
5798 void Assembler::incl(Register dst) {
5799   // Don't use it directly. Use MacroAssembler::incrementl() instead.
5800   emit_int8(0x40 | dst->encoding());
5801 }
5802 
5803 void Assembler::lea(Register dst, Address src) {
5804   leal(dst, src);
5805 }
5806 
5807 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
5808   InstructionMark im(this);
5809   emit_int8((unsigned char)0xC7);
5810   emit_operand(rax, dst);
5811   emit_data((int)imm32, rspec, 0);
5812 }
5813 
5814 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
5815   InstructionMark im(this);
5816   int encode = prefix_and_encode(dst->encoding());
5817   emit_int8((unsigned char)(0xB8 | encode));
5818   emit_data((int)imm32, rspec, 0);
5819 }
5820 
5821 void Assembler::popa() { // 32bit
5822   emit_int8(0x61);
5823 }
5824 
5825 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
5826   InstructionMark im(this);
5827   emit_int8(0x68);
5828   emit_data(imm32, rspec, 0);
5829 }
5830 
5831 void Assembler::pusha() { // 32bit
5832   emit_int8(0x60);
5833 }
5834 
5835 void Assembler::set_byte_if_not_zero(Register dst) {
5836   emit_int8(0x0F);
5837   emit_int8((unsigned char)0x95);
5838   emit_int8((unsigned char)(0xE0 | dst->encoding()));
5839 }
5840 
5841 void Assembler::shldl(Register dst, Register src) {
5842   emit_int8(0x0F);
5843   emit_int8((unsigned char)0xA5);
5844   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
5845 }
5846 
5847 void Assembler::shrdl(Register dst, Register src) {
5848   emit_int8(0x0F);
5849   emit_int8((unsigned char)0xAD);
5850   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
5851 }
5852 
5853 #else // LP64
5854 
5855 void Assembler::set_byte_if_not_zero(Register dst) {
5856   int enc = prefix_and_encode(dst->encoding(), true);
5857   emit_int8(0x0F);
5858   emit_int8((unsigned char)0x95);
5859   emit_int8((unsigned char)(0xE0 | enc));
5860 }
5861 
5862 // 64bit only pieces of the assembler
5863 // This should only be used by 64bit instructions that can use rip-relative
5864 // it cannot be used by instructions that want an immediate value.
5865 
5866 bool Assembler::reachable(AddressLiteral adr) {
5867   int64_t disp;
5868   // None will force a 64bit literal to the code stream. Likely a placeholder
5869   // for something that will be patched later and we need to certain it will
5870   // always be reachable.
5871   if (adr.reloc() == relocInfo::none) {
5872     return false;
5873   }
5874   if (adr.reloc() == relocInfo::internal_word_type) {
5875     // This should be rip relative and easily reachable.
5876     return true;
5877   }
5878   if (adr.reloc() == relocInfo::virtual_call_type ||
5879       adr.reloc() == relocInfo::opt_virtual_call_type ||
5880       adr.reloc() == relocInfo::static_call_type ||
5881       adr.reloc() == relocInfo::static_stub_type ) {
5882     // This should be rip relative within the code cache and easily
5883     // reachable until we get huge code caches. (At which point
5884     // ic code is going to have issues).
5885     return true;
5886   }
5887   if (adr.reloc() != relocInfo::external_word_type &&
5888       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
5889       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
5890       adr.reloc() != relocInfo::runtime_call_type ) {
5891     return false;
5892   }
5893 
5894   // Stress the correction code
5895   if (ForceUnreachable) {
5896     // Must be runtimecall reloc, see if it is in the codecache
5897     // Flipping stuff in the codecache to be unreachable causes issues
5898     // with things like inline caches where the additional instructions
5899     // are not handled.
5900     if (CodeCache::find_blob(adr._target) == NULL) {
5901       return false;
5902     }
5903   }
5904   // For external_word_type/runtime_call_type if it is reachable from where we
5905   // are now (possibly a temp buffer) and where we might end up
5906   // anywhere in the codeCache then we are always reachable.
5907   // This would have to change if we ever save/restore shared code
5908   // to be more pessimistic.
5909   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
5910   if (!is_simm32(disp)) return false;
5911   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
5912   if (!is_simm32(disp)) return false;
5913 
5914   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
5915 
5916   // Because rip relative is a disp + address_of_next_instruction and we
5917   // don't know the value of address_of_next_instruction we apply a fudge factor
5918   // to make sure we will be ok no matter the size of the instruction we get placed into.
5919   // We don't have to fudge the checks above here because they are already worst case.
5920 
5921   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
5922   // + 4 because better safe than sorry.
5923   const int fudge = 12 + 4;
5924   if (disp < 0) {
5925     disp -= fudge;
5926   } else {
5927     disp += fudge;
5928   }
5929   return is_simm32(disp);
5930 }
5931 
5932 // Check if the polling page is not reachable from the code cache using rip-relative
5933 // addressing.
5934 bool Assembler::is_polling_page_far() {
5935   intptr_t addr = (intptr_t)os::get_polling_page();
5936   return ForceUnreachable ||
5937          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
5938          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
5939 }
5940 
5941 void Assembler::emit_data64(jlong data,
5942                             relocInfo::relocType rtype,
5943                             int format) {
5944   if (rtype == relocInfo::none) {
5945     emit_int64(data);
5946   } else {
5947     emit_data64(data, Relocation::spec_simple(rtype), format);
5948   }
5949 }
5950 
5951 void Assembler::emit_data64(jlong data,
5952                             RelocationHolder const& rspec,
5953                             int format) {
5954   assert(imm_operand == 0, "default format must be immediate in this file");
5955   assert(imm_operand == format, "must be immediate");
5956   assert(inst_mark() != NULL, "must be inside InstructionMark");
5957   // Do not use AbstractAssembler::relocate, which is not intended for
5958   // embedded words.  Instead, relocate to the enclosing instruction.
5959   code_section()->relocate(inst_mark(), rspec, format);
5960 #ifdef ASSERT
5961   check_relocation(rspec, format);
5962 #endif
5963   emit_int64(data);
5964 }
5965 
5966 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
5967   if (reg_enc >= 8) {
5968     prefix(REX_B);
5969     reg_enc -= 8;
5970   } else if (byteinst && reg_enc >= 4) {
5971     prefix(REX);
5972   }
5973   return reg_enc;
5974 }
5975 
5976 int Assembler::prefixq_and_encode(int reg_enc) {
5977   if (reg_enc < 8) {
5978     prefix(REX_W);
5979   } else {
5980     prefix(REX_WB);
5981     reg_enc -= 8;
5982   }
5983   return reg_enc;
5984 }
5985 
5986 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
5987   if (dst_enc < 8) {
5988     if (src_enc >= 8) {
5989       prefix(REX_B);
5990       src_enc -= 8;
5991     } else if (byteinst && src_enc >= 4) {
5992       prefix(REX);
5993     }
5994   } else {
5995     if (src_enc < 8) {
5996       prefix(REX_R);
5997     } else {
5998       prefix(REX_RB);
5999       src_enc -= 8;
6000     }
6001     dst_enc -= 8;
6002   }
6003   return dst_enc << 3 | src_enc;
6004 }
6005 
6006 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
6007   if (dst_enc < 8) {
6008     if (src_enc < 8) {
6009       prefix(REX_W);
6010     } else {
6011       prefix(REX_WB);
6012       src_enc -= 8;
6013     }
6014   } else {
6015     if (src_enc < 8) {
6016       prefix(REX_WR);
6017     } else {
6018       prefix(REX_WRB);
6019       src_enc -= 8;
6020     }
6021     dst_enc -= 8;
6022   }
6023   return dst_enc << 3 | src_enc;
6024 }
6025 
6026 void Assembler::prefix(Register reg) {
6027   if (reg->encoding() >= 8) {
6028     prefix(REX_B);
6029   }
6030 }
6031 
6032 void Assembler::prefix(Address adr) {
6033   if (adr.base_needs_rex()) {
6034     if (adr.index_needs_rex()) {
6035       prefix(REX_XB);
6036     } else {
6037       prefix(REX_B);
6038     }
6039   } else {
6040     if (adr.index_needs_rex()) {
6041       prefix(REX_X);
6042     }
6043   }
6044 }
6045 
6046 void Assembler::prefixq(Address adr) {
6047   if (adr.base_needs_rex()) {
6048     if (adr.index_needs_rex()) {
6049       prefix(REX_WXB);
6050     } else {
6051       prefix(REX_WB);
6052     }
6053   } else {
6054     if (adr.index_needs_rex()) {
6055       prefix(REX_WX);
6056     } else {
6057       prefix(REX_W);
6058     }
6059   }
6060 }
6061 
6062 
6063 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
6064   if (reg->encoding() < 8) {
6065     if (adr.base_needs_rex()) {
6066       if (adr.index_needs_rex()) {
6067         prefix(REX_XB);
6068       } else {
6069         prefix(REX_B);
6070       }
6071     } else {
6072       if (adr.index_needs_rex()) {
6073         prefix(REX_X);
6074       } else if (byteinst && reg->encoding() >= 4 ) {
6075         prefix(REX);
6076       }
6077     }
6078   } else {
6079     if (adr.base_needs_rex()) {
6080       if (adr.index_needs_rex()) {
6081         prefix(REX_RXB);
6082       } else {
6083         prefix(REX_RB);
6084       }
6085     } else {
6086       if (adr.index_needs_rex()) {
6087         prefix(REX_RX);
6088       } else {
6089         prefix(REX_R);
6090       }
6091     }
6092   }
6093 }
6094 
6095 void Assembler::prefixq(Address adr, Register src) {
6096   if (src->encoding() < 8) {
6097     if (adr.base_needs_rex()) {
6098       if (adr.index_needs_rex()) {
6099         prefix(REX_WXB);
6100       } else {
6101         prefix(REX_WB);
6102       }
6103     } else {
6104       if (adr.index_needs_rex()) {
6105         prefix(REX_WX);
6106       } else {
6107         prefix(REX_W);
6108       }
6109     }
6110   } else {
6111     if (adr.base_needs_rex()) {
6112       if (adr.index_needs_rex()) {
6113         prefix(REX_WRXB);
6114       } else {
6115         prefix(REX_WRB);
6116       }
6117     } else {
6118       if (adr.index_needs_rex()) {
6119         prefix(REX_WRX);
6120       } else {
6121         prefix(REX_WR);
6122       }
6123     }
6124   }
6125 }
6126 
6127 void Assembler::prefix(Address adr, XMMRegister reg) {
6128   if (reg->encoding() < 8) {
6129     if (adr.base_needs_rex()) {
6130       if (adr.index_needs_rex()) {
6131         prefix(REX_XB);
6132       } else {
6133         prefix(REX_B);
6134       }
6135     } else {
6136       if (adr.index_needs_rex()) {
6137         prefix(REX_X);
6138       }
6139     }
6140   } else {
6141     if (adr.base_needs_rex()) {
6142       if (adr.index_needs_rex()) {
6143         prefix(REX_RXB);
6144       } else {
6145         prefix(REX_RB);
6146       }
6147     } else {
6148       if (adr.index_needs_rex()) {
6149         prefix(REX_RX);
6150       } else {
6151         prefix(REX_R);
6152       }
6153     }
6154   }
6155 }
6156 
6157 void Assembler::prefixq(Address adr, XMMRegister src) {
6158   if (src->encoding() < 8) {
6159     if (adr.base_needs_rex()) {
6160       if (adr.index_needs_rex()) {
6161         prefix(REX_WXB);
6162       } else {
6163         prefix(REX_WB);
6164       }
6165     } else {
6166       if (adr.index_needs_rex()) {
6167         prefix(REX_WX);
6168       } else {
6169         prefix(REX_W);
6170       }
6171     }
6172   } else {
6173     if (adr.base_needs_rex()) {
6174       if (adr.index_needs_rex()) {
6175         prefix(REX_WRXB);
6176       } else {
6177         prefix(REX_WRB);
6178       }
6179     } else {
6180       if (adr.index_needs_rex()) {
6181         prefix(REX_WRX);
6182       } else {
6183         prefix(REX_WR);
6184       }
6185     }
6186   }
6187 }
6188 
6189 void Assembler::adcq(Register dst, int32_t imm32) {
6190   (void) prefixq_and_encode(dst->encoding());
6191   emit_arith(0x81, 0xD0, dst, imm32);
6192 }
6193 
6194 void Assembler::adcq(Register dst, Address src) {
6195   InstructionMark im(this);
6196   prefixq(src, dst);
6197   emit_int8(0x13);
6198   emit_operand(dst, src);
6199 }
6200 
6201 void Assembler::adcq(Register dst, Register src) {
6202   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6203   emit_arith(0x13, 0xC0, dst, src);
6204 }
6205 
6206 void Assembler::addq(Address dst, int32_t imm32) {
6207   InstructionMark im(this);
6208   prefixq(dst);
6209   emit_arith_operand(0x81, rax, dst,imm32);
6210 }
6211 
6212 void Assembler::addq(Address dst, Register src) {
6213   InstructionMark im(this);
6214   prefixq(dst, src);
6215   emit_int8(0x01);
6216   emit_operand(src, dst);
6217 }
6218 
6219 void Assembler::addq(Register dst, int32_t imm32) {
6220   (void) prefixq_and_encode(dst->encoding());
6221   emit_arith(0x81, 0xC0, dst, imm32);
6222 }
6223 
6224 void Assembler::addq(Register dst, Address src) {
6225   InstructionMark im(this);
6226   prefixq(src, dst);
6227   emit_int8(0x03);
6228   emit_operand(dst, src);
6229 }
6230 
6231 void Assembler::addq(Register dst, Register src) {
6232   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6233   emit_arith(0x03, 0xC0, dst, src);
6234 }
6235 
6236 void Assembler::adcxq(Register dst, Register src) {
6237   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6238   emit_int8((unsigned char)0x66);
6239   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6240   emit_int8(0x0F);
6241   emit_int8(0x38);
6242   emit_int8((unsigned char)0xF6);
6243   emit_int8((unsigned char)(0xC0 | encode));
6244 }
6245 
6246 void Assembler::adoxq(Register dst, Register src) {
6247   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6248   emit_int8((unsigned char)0xF3);
6249   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6250   emit_int8(0x0F);
6251   emit_int8(0x38);
6252   emit_int8((unsigned char)0xF6);
6253   emit_int8((unsigned char)(0xC0 | encode));
6254 }
6255 
6256 void Assembler::andq(Address dst, int32_t imm32) {
6257   InstructionMark im(this);
6258   prefixq(dst);
6259   emit_int8((unsigned char)0x81);
6260   emit_operand(rsp, dst, 4);
6261   emit_int32(imm32);
6262 }
6263 
6264 void Assembler::andq(Register dst, int32_t imm32) {
6265   (void) prefixq_and_encode(dst->encoding());
6266   emit_arith(0x81, 0xE0, dst, imm32);
6267 }
6268 
6269 void Assembler::andq(Register dst, Address src) {
6270   InstructionMark im(this);
6271   prefixq(src, dst);
6272   emit_int8(0x23);
6273   emit_operand(dst, src);
6274 }
6275 
6276 void Assembler::andq(Register dst, Register src) {
6277   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6278   emit_arith(0x23, 0xC0, dst, src);
6279 }
6280 
6281 void Assembler::andnq(Register dst, Register src1, Register src2) {
6282   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6283   int encode = vex_prefix_0F38_and_encode_q(dst, src1, src2);
6284   emit_int8((unsigned char)0xF2);
6285   emit_int8((unsigned char)(0xC0 | encode));
6286 }
6287 
6288 void Assembler::andnq(Register dst, Register src1, Address src2) {
6289   if (VM_Version::supports_evex()) {
6290     tuple_type = EVEX_T1S;
6291     input_size_in_bits = EVEX_64bit;
6292   }
6293   InstructionMark im(this);
6294   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6295   vex_prefix_0F38_q(dst, src1, src2);
6296   emit_int8((unsigned char)0xF2);
6297   emit_operand(dst, src2);
6298 }
6299 
6300 void Assembler::bsfq(Register dst, Register src) {
6301   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6302   emit_int8(0x0F);
6303   emit_int8((unsigned char)0xBC);
6304   emit_int8((unsigned char)(0xC0 | encode));
6305 }
6306 
6307 void Assembler::bsrq(Register dst, Register src) {
6308   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6309   emit_int8(0x0F);
6310   emit_int8((unsigned char)0xBD);
6311   emit_int8((unsigned char)(0xC0 | encode));
6312 }
6313 
6314 void Assembler::bswapq(Register reg) {
6315   int encode = prefixq_and_encode(reg->encoding());
6316   emit_int8(0x0F);
6317   emit_int8((unsigned char)(0xC8 | encode));
6318 }
6319 
6320 void Assembler::blsiq(Register dst, Register src) {
6321   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6322   int encode = vex_prefix_0F38_and_encode_q(rbx, dst, src);
6323   emit_int8((unsigned char)0xF3);
6324   emit_int8((unsigned char)(0xC0 | encode));
6325 }
6326 
6327 void Assembler::blsiq(Register dst, Address src) {
6328   InstructionMark im(this);
6329   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6330   vex_prefix_0F38_q(rbx, dst, src);
6331   emit_int8((unsigned char)0xF3);
6332   emit_operand(rbx, src);
6333 }
6334 
6335 void Assembler::blsmskq(Register dst, Register src) {
6336   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6337   int encode = vex_prefix_0F38_and_encode_q(rdx, dst, src);
6338   emit_int8((unsigned char)0xF3);
6339   emit_int8((unsigned char)(0xC0 | encode));
6340 }
6341 
6342 void Assembler::blsmskq(Register dst, Address src) {
6343   InstructionMark im(this);
6344   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6345   vex_prefix_0F38_q(rdx, dst, src);
6346   emit_int8((unsigned char)0xF3);
6347   emit_operand(rdx, src);
6348 }
6349 
6350 void Assembler::blsrq(Register dst, Register src) {
6351   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6352   int encode = vex_prefix_0F38_and_encode_q(rcx, dst, src);
6353   emit_int8((unsigned char)0xF3);
6354   emit_int8((unsigned char)(0xC0 | encode));
6355 }
6356 
6357 void Assembler::blsrq(Register dst, Address src) {
6358   InstructionMark im(this);
6359   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6360   vex_prefix_0F38_q(rcx, dst, src);
6361   emit_int8((unsigned char)0xF3);
6362   emit_operand(rcx, src);
6363 }
6364 
6365 void Assembler::cdqq() {
6366   prefix(REX_W);
6367   emit_int8((unsigned char)0x99);
6368 }
6369 
6370 void Assembler::clflush(Address adr) {
6371   prefix(adr);
6372   emit_int8(0x0F);
6373   emit_int8((unsigned char)0xAE);
6374   emit_operand(rdi, adr);
6375 }
6376 
6377 void Assembler::cmovq(Condition cc, Register dst, Register src) {
6378   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6379   emit_int8(0x0F);
6380   emit_int8(0x40 | cc);
6381   emit_int8((unsigned char)(0xC0 | encode));
6382 }
6383 
6384 void Assembler::cmovq(Condition cc, Register dst, Address src) {
6385   InstructionMark im(this);
6386   prefixq(src, dst);
6387   emit_int8(0x0F);
6388   emit_int8(0x40 | cc);
6389   emit_operand(dst, src);
6390 }
6391 
6392 void Assembler::cmpq(Address dst, int32_t imm32) {
6393   InstructionMark im(this);
6394   prefixq(dst);
6395   emit_int8((unsigned char)0x81);
6396   emit_operand(rdi, dst, 4);
6397   emit_int32(imm32);
6398 }
6399 
6400 void Assembler::cmpq(Register dst, int32_t imm32) {
6401   (void) prefixq_and_encode(dst->encoding());
6402   emit_arith(0x81, 0xF8, dst, imm32);
6403 }
6404 
6405 void Assembler::cmpq(Address dst, Register src) {
6406   InstructionMark im(this);
6407   prefixq(dst, src);
6408   emit_int8(0x3B);
6409   emit_operand(src, dst);
6410 }
6411 
6412 void Assembler::cmpq(Register dst, Register src) {
6413   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6414   emit_arith(0x3B, 0xC0, dst, src);
6415 }
6416 
6417 void Assembler::cmpq(Register dst, Address  src) {
6418   InstructionMark im(this);
6419   prefixq(src, dst);
6420   emit_int8(0x3B);
6421   emit_operand(dst, src);
6422 }
6423 
6424 void Assembler::cmpxchgq(Register reg, Address adr) {
6425   InstructionMark im(this);
6426   prefixq(adr, reg);
6427   emit_int8(0x0F);
6428   emit_int8((unsigned char)0xB1);
6429   emit_operand(reg, adr);
6430 }
6431 
6432 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
6433   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6434   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2, true);
6435   emit_int8(0x2A);
6436   emit_int8((unsigned char)(0xC0 | encode));
6437 }
6438 
6439 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
6440   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6441   if (VM_Version::supports_evex()) {
6442     tuple_type = EVEX_T1S;
6443     input_size_in_bits = EVEX_32bit;
6444   }
6445   InstructionMark im(this);
6446   simd_prefix_q(dst, dst, src, VEX_SIMD_F2, true);
6447   emit_int8(0x2A);
6448   emit_operand(dst, src);
6449 }
6450 
6451 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
6452   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6453   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3, true);
6454   emit_int8(0x2A);
6455   emit_int8((unsigned char)(0xC0 | encode));
6456 }
6457 
6458 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
6459   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6460   if (VM_Version::supports_evex()) {
6461     tuple_type = EVEX_T1S;
6462     input_size_in_bits = EVEX_32bit;
6463   }
6464   InstructionMark im(this);
6465   simd_prefix_q(dst, dst, src, VEX_SIMD_F3, true);
6466   emit_int8(0x2A);
6467   emit_operand(dst, src);
6468 }
6469 
6470 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
6471   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6472   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, true);
6473   emit_int8(0x2C);
6474   emit_int8((unsigned char)(0xC0 | encode));
6475 }
6476 
6477 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
6478   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6479   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, true);
6480   emit_int8(0x2C);
6481   emit_int8((unsigned char)(0xC0 | encode));
6482 }
6483 
6484 void Assembler::decl(Register dst) {
6485   // Don't use it directly. Use MacroAssembler::decrementl() instead.
6486   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
6487   int encode = prefix_and_encode(dst->encoding());
6488   emit_int8((unsigned char)0xFF);
6489   emit_int8((unsigned char)(0xC8 | encode));
6490 }
6491 
6492 void Assembler::decq(Register dst) {
6493   // Don't use it directly. Use MacroAssembler::decrementq() instead.
6494   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6495   int encode = prefixq_and_encode(dst->encoding());
6496   emit_int8((unsigned char)0xFF);
6497   emit_int8(0xC8 | encode);
6498 }
6499 
6500 void Assembler::decq(Address dst) {
6501   // Don't use it directly. Use MacroAssembler::decrementq() instead.
6502   InstructionMark im(this);
6503   prefixq(dst);
6504   emit_int8((unsigned char)0xFF);
6505   emit_operand(rcx, dst);
6506 }
6507 
6508 void Assembler::fxrstor(Address src) {
6509   prefixq(src);
6510   emit_int8(0x0F);
6511   emit_int8((unsigned char)0xAE);
6512   emit_operand(as_Register(1), src);
6513 }
6514 
6515 void Assembler::fxsave(Address dst) {
6516   prefixq(dst);
6517   emit_int8(0x0F);
6518   emit_int8((unsigned char)0xAE);
6519   emit_operand(as_Register(0), dst);
6520 }
6521 
6522 void Assembler::idivq(Register src) {
6523   int encode = prefixq_and_encode(src->encoding());
6524   emit_int8((unsigned char)0xF7);
6525   emit_int8((unsigned char)(0xF8 | encode));
6526 }
6527 
6528 void Assembler::imulq(Register dst, Register src) {
6529   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6530   emit_int8(0x0F);
6531   emit_int8((unsigned char)0xAF);
6532   emit_int8((unsigned char)(0xC0 | encode));
6533 }
6534 
6535 void Assembler::imulq(Register dst, Register src, int value) {
6536   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6537   if (is8bit(value)) {
6538     emit_int8(0x6B);
6539     emit_int8((unsigned char)(0xC0 | encode));
6540     emit_int8(value & 0xFF);
6541   } else {
6542     emit_int8(0x69);
6543     emit_int8((unsigned char)(0xC0 | encode));
6544     emit_int32(value);
6545   }
6546 }
6547 
6548 void Assembler::imulq(Register dst, Address src) {
6549   InstructionMark im(this);
6550   prefixq(src, dst);
6551   emit_int8(0x0F);
6552   emit_int8((unsigned char) 0xAF);
6553   emit_operand(dst, src);
6554 }
6555 
6556 void Assembler::incl(Register dst) {
6557   // Don't use it directly. Use MacroAssembler::incrementl() instead.
6558   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6559   int encode = prefix_and_encode(dst->encoding());
6560   emit_int8((unsigned char)0xFF);
6561   emit_int8((unsigned char)(0xC0 | encode));
6562 }
6563 
6564 void Assembler::incq(Register dst) {
6565   // Don't use it directly. Use MacroAssembler::incrementq() instead.
6566   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6567   int encode = prefixq_and_encode(dst->encoding());
6568   emit_int8((unsigned char)0xFF);
6569   emit_int8((unsigned char)(0xC0 | encode));
6570 }
6571 
6572 void Assembler::incq(Address dst) {
6573   // Don't use it directly. Use MacroAssembler::incrementq() instead.
6574   InstructionMark im(this);
6575   prefixq(dst);
6576   emit_int8((unsigned char)0xFF);
6577   emit_operand(rax, dst);
6578 }
6579 
6580 void Assembler::lea(Register dst, Address src) {
6581   leaq(dst, src);
6582 }
6583 
6584 void Assembler::leaq(Register dst, Address src) {
6585   InstructionMark im(this);
6586   prefixq(src, dst);
6587   emit_int8((unsigned char)0x8D);
6588   emit_operand(dst, src);
6589 }
6590 
6591 void Assembler::mov64(Register dst, int64_t imm64) {
6592   InstructionMark im(this);
6593   int encode = prefixq_and_encode(dst->encoding());
6594   emit_int8((unsigned char)(0xB8 | encode));
6595   emit_int64(imm64);
6596 }
6597 
6598 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
6599   InstructionMark im(this);
6600   int encode = prefixq_and_encode(dst->encoding());
6601   emit_int8(0xB8 | encode);
6602   emit_data64(imm64, rspec);
6603 }
6604 
6605 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
6606   InstructionMark im(this);
6607   int encode = prefix_and_encode(dst->encoding());
6608   emit_int8((unsigned char)(0xB8 | encode));
6609   emit_data((int)imm32, rspec, narrow_oop_operand);
6610 }
6611 
6612 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
6613   InstructionMark im(this);
6614   prefix(dst);
6615   emit_int8((unsigned char)0xC7);
6616   emit_operand(rax, dst, 4);
6617   emit_data((int)imm32, rspec, narrow_oop_operand);
6618 }
6619 
6620 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
6621   InstructionMark im(this);
6622   int encode = prefix_and_encode(src1->encoding());
6623   emit_int8((unsigned char)0x81);
6624   emit_int8((unsigned char)(0xF8 | encode));
6625   emit_data((int)imm32, rspec, narrow_oop_operand);
6626 }
6627 
6628 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
6629   InstructionMark im(this);
6630   prefix(src1);
6631   emit_int8((unsigned char)0x81);
6632   emit_operand(rax, src1, 4);
6633   emit_data((int)imm32, rspec, narrow_oop_operand);
6634 }
6635 
6636 void Assembler::lzcntq(Register dst, Register src) {
6637   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
6638   emit_int8((unsigned char)0xF3);
6639   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6640   emit_int8(0x0F);
6641   emit_int8((unsigned char)0xBD);
6642   emit_int8((unsigned char)(0xC0 | encode));
6643 }
6644 
6645 void Assembler::movdq(XMMRegister dst, Register src) {
6646   // table D-1 says MMX/SSE2
6647   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6648   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66, true);
6649   emit_int8(0x6E);
6650   emit_int8((unsigned char)(0xC0 | encode));
6651 }
6652 
6653 void Assembler::movdq(Register dst, XMMRegister src) {
6654   // table D-1 says MMX/SSE2
6655   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6656   // swap src/dst to get correct prefix
6657   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66, true);
6658   emit_int8(0x7E);
6659   emit_int8((unsigned char)(0xC0 | encode));
6660 }
6661 
6662 void Assembler::movq(Register dst, Register src) {
6663   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6664   emit_int8((unsigned char)0x8B);
6665   emit_int8((unsigned char)(0xC0 | encode));
6666 }
6667 
6668 void Assembler::movq(Register dst, Address src) {
6669   InstructionMark im(this);
6670   prefixq(src, dst);
6671   emit_int8((unsigned char)0x8B);
6672   emit_operand(dst, src);
6673 }
6674 
6675 void Assembler::movq(Address dst, Register src) {
6676   InstructionMark im(this);
6677   prefixq(dst, src);
6678   emit_int8((unsigned char)0x89);
6679   emit_operand(src, dst);
6680 }
6681 
6682 void Assembler::movsbq(Register dst, Address src) {
6683   InstructionMark im(this);
6684   prefixq(src, dst);
6685   emit_int8(0x0F);
6686   emit_int8((unsigned char)0xBE);
6687   emit_operand(dst, src);
6688 }
6689 
6690 void Assembler::movsbq(Register dst, Register src) {
6691   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6692   emit_int8(0x0F);
6693   emit_int8((unsigned char)0xBE);
6694   emit_int8((unsigned char)(0xC0 | encode));
6695 }
6696 
6697 void Assembler::movslq(Register dst, int32_t imm32) {
6698   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
6699   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
6700   // as a result we shouldn't use until tested at runtime...
6701   ShouldNotReachHere();
6702   InstructionMark im(this);
6703   int encode = prefixq_and_encode(dst->encoding());
6704   emit_int8((unsigned char)(0xC7 | encode));
6705   emit_int32(imm32);
6706 }
6707 
6708 void Assembler::movslq(Address dst, int32_t imm32) {
6709   assert(is_simm32(imm32), "lost bits");
6710   InstructionMark im(this);
6711   prefixq(dst);
6712   emit_int8((unsigned char)0xC7);
6713   emit_operand(rax, dst, 4);
6714   emit_int32(imm32);
6715 }
6716 
6717 void Assembler::movslq(Register dst, Address src) {
6718   InstructionMark im(this);
6719   prefixq(src, dst);
6720   emit_int8(0x63);
6721   emit_operand(dst, src);
6722 }
6723 
6724 void Assembler::movslq(Register dst, Register src) {
6725   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6726   emit_int8(0x63);
6727   emit_int8((unsigned char)(0xC0 | encode));
6728 }
6729 
6730 void Assembler::movswq(Register dst, Address src) {
6731   InstructionMark im(this);
6732   prefixq(src, dst);
6733   emit_int8(0x0F);
6734   emit_int8((unsigned char)0xBF);
6735   emit_operand(dst, src);
6736 }
6737 
6738 void Assembler::movswq(Register dst, Register src) {
6739   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6740   emit_int8((unsigned char)0x0F);
6741   emit_int8((unsigned char)0xBF);
6742   emit_int8((unsigned char)(0xC0 | encode));
6743 }
6744 
6745 void Assembler::movzbq(Register dst, Address src) {
6746   InstructionMark im(this);
6747   prefixq(src, dst);
6748   emit_int8((unsigned char)0x0F);
6749   emit_int8((unsigned char)0xB6);
6750   emit_operand(dst, src);
6751 }
6752 
6753 void Assembler::movzbq(Register dst, Register src) {
6754   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6755   emit_int8(0x0F);
6756   emit_int8((unsigned char)0xB6);
6757   emit_int8(0xC0 | encode);
6758 }
6759 
6760 void Assembler::movzwq(Register dst, Address src) {
6761   InstructionMark im(this);
6762   prefixq(src, dst);
6763   emit_int8((unsigned char)0x0F);
6764   emit_int8((unsigned char)0xB7);
6765   emit_operand(dst, src);
6766 }
6767 
6768 void Assembler::movzwq(Register dst, Register src) {
6769   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6770   emit_int8((unsigned char)0x0F);
6771   emit_int8((unsigned char)0xB7);
6772   emit_int8((unsigned char)(0xC0 | encode));
6773 }
6774 
6775 void Assembler::mulq(Address src) {
6776   InstructionMark im(this);
6777   prefixq(src);
6778   emit_int8((unsigned char)0xF7);
6779   emit_operand(rsp, src);
6780 }
6781 
6782 void Assembler::mulq(Register src) {
6783   int encode = prefixq_and_encode(src->encoding());
6784   emit_int8((unsigned char)0xF7);
6785   emit_int8((unsigned char)(0xE0 | encode));
6786 }
6787 
6788 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
6789   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
6790   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(),
6791                                      VEX_SIMD_F2, VEX_OPCODE_0F_38, true, AVX_128bit, true, false);
6792   emit_int8((unsigned char)0xF6);
6793   emit_int8((unsigned char)(0xC0 | encode));
6794 }
6795 
6796 void Assembler::negq(Register dst) {
6797   int encode = prefixq_and_encode(dst->encoding());
6798   emit_int8((unsigned char)0xF7);
6799   emit_int8((unsigned char)(0xD8 | encode));
6800 }
6801 
6802 void Assembler::notq(Register dst) {
6803   int encode = prefixq_and_encode(dst->encoding());
6804   emit_int8((unsigned char)0xF7);
6805   emit_int8((unsigned char)(0xD0 | encode));
6806 }
6807 
6808 void Assembler::orq(Address dst, int32_t imm32) {
6809   InstructionMark im(this);
6810   prefixq(dst);
6811   emit_int8((unsigned char)0x81);
6812   emit_operand(rcx, dst, 4);
6813   emit_int32(imm32);
6814 }
6815 
6816 void Assembler::orq(Register dst, int32_t imm32) {
6817   (void) prefixq_and_encode(dst->encoding());
6818   emit_arith(0x81, 0xC8, dst, imm32);
6819 }
6820 
6821 void Assembler::orq(Register dst, Address src) {
6822   InstructionMark im(this);
6823   prefixq(src, dst);
6824   emit_int8(0x0B);
6825   emit_operand(dst, src);
6826 }
6827 
6828 void Assembler::orq(Register dst, Register src) {
6829   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6830   emit_arith(0x0B, 0xC0, dst, src);
6831 }
6832 
6833 void Assembler::popa() { // 64bit
6834   movq(r15, Address(rsp, 0));
6835   movq(r14, Address(rsp, wordSize));
6836   movq(r13, Address(rsp, 2 * wordSize));
6837   movq(r12, Address(rsp, 3 * wordSize));
6838   movq(r11, Address(rsp, 4 * wordSize));
6839   movq(r10, Address(rsp, 5 * wordSize));
6840   movq(r9,  Address(rsp, 6 * wordSize));
6841   movq(r8,  Address(rsp, 7 * wordSize));
6842   movq(rdi, Address(rsp, 8 * wordSize));
6843   movq(rsi, Address(rsp, 9 * wordSize));
6844   movq(rbp, Address(rsp, 10 * wordSize));
6845   // skip rsp
6846   movq(rbx, Address(rsp, 12 * wordSize));
6847   movq(rdx, Address(rsp, 13 * wordSize));
6848   movq(rcx, Address(rsp, 14 * wordSize));
6849   movq(rax, Address(rsp, 15 * wordSize));
6850 
6851   addq(rsp, 16 * wordSize);
6852 }
6853 
6854 void Assembler::popcntq(Register dst, Address src) {
6855   assert(VM_Version::supports_popcnt(), "must support");
6856   InstructionMark im(this);
6857   emit_int8((unsigned char)0xF3);
6858   prefixq(src, dst);
6859   emit_int8((unsigned char)0x0F);
6860   emit_int8((unsigned char)0xB8);
6861   emit_operand(dst, src);
6862 }
6863 
6864 void Assembler::popcntq(Register dst, Register src) {
6865   assert(VM_Version::supports_popcnt(), "must support");
6866   emit_int8((unsigned char)0xF3);
6867   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6868   emit_int8((unsigned char)0x0F);
6869   emit_int8((unsigned char)0xB8);
6870   emit_int8((unsigned char)(0xC0 | encode));
6871 }
6872 
6873 void Assembler::popq(Address dst) {
6874   InstructionMark im(this);
6875   prefixq(dst);
6876   emit_int8((unsigned char)0x8F);
6877   emit_operand(rax, dst);
6878 }
6879 
6880 void Assembler::pusha() { // 64bit
6881   // we have to store original rsp.  ABI says that 128 bytes
6882   // below rsp are local scratch.
6883   movq(Address(rsp, -5 * wordSize), rsp);
6884 
6885   subq(rsp, 16 * wordSize);
6886 
6887   movq(Address(rsp, 15 * wordSize), rax);
6888   movq(Address(rsp, 14 * wordSize), rcx);
6889   movq(Address(rsp, 13 * wordSize), rdx);
6890   movq(Address(rsp, 12 * wordSize), rbx);
6891   // skip rsp
6892   movq(Address(rsp, 10 * wordSize), rbp);
6893   movq(Address(rsp, 9 * wordSize), rsi);
6894   movq(Address(rsp, 8 * wordSize), rdi);
6895   movq(Address(rsp, 7 * wordSize), r8);
6896   movq(Address(rsp, 6 * wordSize), r9);
6897   movq(Address(rsp, 5 * wordSize), r10);
6898   movq(Address(rsp, 4 * wordSize), r11);
6899   movq(Address(rsp, 3 * wordSize), r12);
6900   movq(Address(rsp, 2 * wordSize), r13);
6901   movq(Address(rsp, wordSize), r14);
6902   movq(Address(rsp, 0), r15);
6903 }
6904 
6905 void Assembler::pushq(Address src) {
6906   InstructionMark im(this);
6907   prefixq(src);
6908   emit_int8((unsigned char)0xFF);
6909   emit_operand(rsi, src);
6910 }
6911 
6912 void Assembler::rclq(Register dst, int imm8) {
6913   assert(isShiftCount(imm8 >> 1), "illegal shift count");
6914   int encode = prefixq_and_encode(dst->encoding());
6915   if (imm8 == 1) {
6916     emit_int8((unsigned char)0xD1);
6917     emit_int8((unsigned char)(0xD0 | encode));
6918   } else {
6919     emit_int8((unsigned char)0xC1);
6920     emit_int8((unsigned char)(0xD0 | encode));
6921     emit_int8(imm8);
6922   }
6923 }
6924 
6925 void Assembler::rcrq(Register dst, int imm8) {
6926   assert(isShiftCount(imm8 >> 1), "illegal shift count");
6927   int encode = prefixq_and_encode(dst->encoding());
6928   if (imm8 == 1) {
6929     emit_int8((unsigned char)0xD1);
6930     emit_int8((unsigned char)(0xD8 | encode));
6931   } else {
6932     emit_int8((unsigned char)0xC1);
6933     emit_int8((unsigned char)(0xD8 | encode));
6934     emit_int8(imm8);
6935   }
6936 }
6937 
6938 void Assembler::rorq(Register dst, int imm8) {
6939   assert(isShiftCount(imm8 >> 1), "illegal shift count");
6940   int encode = prefixq_and_encode(dst->encoding());
6941   if (imm8 == 1) {
6942     emit_int8((unsigned char)0xD1);
6943     emit_int8((unsigned char)(0xC8 | encode));
6944   } else {
6945     emit_int8((unsigned char)0xC1);
6946     emit_int8((unsigned char)(0xc8 | encode));
6947     emit_int8(imm8);
6948   }
6949 }
6950 
6951 void Assembler::rorxq(Register dst, Register src, int imm8) {
6952   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
6953   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2,
6954                                      VEX_OPCODE_0F_3A, true, AVX_128bit, true, false);
6955   emit_int8((unsigned char)0xF0);
6956   emit_int8((unsigned char)(0xC0 | encode));
6957   emit_int8(imm8);
6958 }
6959 
6960 void Assembler::sarq(Register dst, int imm8) {
6961   assert(isShiftCount(imm8 >> 1), "illegal shift count");
6962   int encode = prefixq_and_encode(dst->encoding());
6963   if (imm8 == 1) {
6964     emit_int8((unsigned char)0xD1);
6965     emit_int8((unsigned char)(0xF8 | encode));
6966   } else {
6967     emit_int8((unsigned char)0xC1);
6968     emit_int8((unsigned char)(0xF8 | encode));
6969     emit_int8(imm8);
6970   }
6971 }
6972 
6973 void Assembler::sarq(Register dst) {
6974   int encode = prefixq_and_encode(dst->encoding());
6975   emit_int8((unsigned char)0xD3);
6976   emit_int8((unsigned char)(0xF8 | encode));
6977 }
6978 
6979 void Assembler::sbbq(Address dst, int32_t imm32) {
6980   InstructionMark im(this);
6981   prefixq(dst);
6982   emit_arith_operand(0x81, rbx, dst, imm32);
6983 }
6984 
6985 void Assembler::sbbq(Register dst, int32_t imm32) {
6986   (void) prefixq_and_encode(dst->encoding());
6987   emit_arith(0x81, 0xD8, dst, imm32);
6988 }
6989 
6990 void Assembler::sbbq(Register dst, Address src) {
6991   InstructionMark im(this);
6992   prefixq(src, dst);
6993   emit_int8(0x1B);
6994   emit_operand(dst, src);
6995 }
6996 
6997 void Assembler::sbbq(Register dst, Register src) {
6998   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6999   emit_arith(0x1B, 0xC0, dst, src);
7000 }
7001 
7002 void Assembler::shlq(Register dst, int imm8) {
7003   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7004   int encode = prefixq_and_encode(dst->encoding());
7005   if (imm8 == 1) {
7006     emit_int8((unsigned char)0xD1);
7007     emit_int8((unsigned char)(0xE0 | encode));
7008   } else {
7009     emit_int8((unsigned char)0xC1);
7010     emit_int8((unsigned char)(0xE0 | encode));
7011     emit_int8(imm8);
7012   }
7013 }
7014 
7015 void Assembler::shlq(Register dst) {
7016   int encode = prefixq_and_encode(dst->encoding());
7017   emit_int8((unsigned char)0xD3);
7018   emit_int8((unsigned char)(0xE0 | encode));
7019 }
7020 
7021 void Assembler::shrq(Register dst, int imm8) {
7022   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7023   int encode = prefixq_and_encode(dst->encoding());
7024   emit_int8((unsigned char)0xC1);
7025   emit_int8((unsigned char)(0xE8 | encode));
7026   emit_int8(imm8);
7027 }
7028 
7029 void Assembler::shrq(Register dst) {
7030   int encode = prefixq_and_encode(dst->encoding());
7031   emit_int8((unsigned char)0xD3);
7032   emit_int8(0xE8 | encode);
7033 }
7034 
7035 void Assembler::subq(Address dst, int32_t imm32) {
7036   InstructionMark im(this);
7037   prefixq(dst);
7038   emit_arith_operand(0x81, rbp, dst, imm32);
7039 }
7040 
7041 void Assembler::subq(Address dst, Register src) {
7042   InstructionMark im(this);
7043   prefixq(dst, src);
7044   emit_int8(0x29);
7045   emit_operand(src, dst);
7046 }
7047 
7048 void Assembler::subq(Register dst, int32_t imm32) {
7049   (void) prefixq_and_encode(dst->encoding());
7050   emit_arith(0x81, 0xE8, dst, imm32);
7051 }
7052 
7053 // Force generation of a 4 byte immediate value even if it fits into 8bit
7054 void Assembler::subq_imm32(Register dst, int32_t imm32) {
7055   (void) prefixq_and_encode(dst->encoding());
7056   emit_arith_imm32(0x81, 0xE8, dst, imm32);
7057 }
7058 
7059 void Assembler::subq(Register dst, Address src) {
7060   InstructionMark im(this);
7061   prefixq(src, dst);
7062   emit_int8(0x2B);
7063   emit_operand(dst, src);
7064 }
7065 
7066 void Assembler::subq(Register dst, Register src) {
7067   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7068   emit_arith(0x2B, 0xC0, dst, src);
7069 }
7070 
7071 void Assembler::testq(Register dst, int32_t imm32) {
7072   // not using emit_arith because test
7073   // doesn't support sign-extension of
7074   // 8bit operands
7075   int encode = dst->encoding();
7076   if (encode == 0) {
7077     prefix(REX_W);
7078     emit_int8((unsigned char)0xA9);
7079   } else {
7080     encode = prefixq_and_encode(encode);
7081     emit_int8((unsigned char)0xF7);
7082     emit_int8((unsigned char)(0xC0 | encode));
7083   }
7084   emit_int32(imm32);
7085 }
7086 
7087 void Assembler::testq(Register dst, Register src) {
7088   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7089   emit_arith(0x85, 0xC0, dst, src);
7090 }
7091 
7092 void Assembler::xaddq(Address dst, Register src) {
7093   InstructionMark im(this);
7094   prefixq(dst, src);
7095   emit_int8(0x0F);
7096   emit_int8((unsigned char)0xC1);
7097   emit_operand(src, dst);
7098 }
7099 
7100 void Assembler::xchgq(Register dst, Address src) {
7101   InstructionMark im(this);
7102   prefixq(src, dst);
7103   emit_int8((unsigned char)0x87);
7104   emit_operand(dst, src);
7105 }
7106 
7107 void Assembler::xchgq(Register dst, Register src) {
7108   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7109   emit_int8((unsigned char)0x87);
7110   emit_int8((unsigned char)(0xc0 | encode));
7111 }
7112 
7113 void Assembler::xorq(Register dst, Register src) {
7114   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7115   emit_arith(0x33, 0xC0, dst, src);
7116 }
7117 
7118 void Assembler::xorq(Register dst, Address src) {
7119   InstructionMark im(this);
7120   prefixq(src, dst);
7121   emit_int8(0x33);
7122   emit_operand(dst, src);
7123 }
7124 
7125 #endif // !LP64