1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableModRefBS.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  58 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  59   // -----------------Table 4.5 -------------------- //
  60   16, 32, 64,  // EVEX_FV(0)
  61   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  62   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  63   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  64   8,  16, 32,  // EVEX_HV(0)
  65   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  66   // -----------------Table 4.6 -------------------- //
  67   16, 32, 64,  // EVEX_FVM(0)
  68   1,  1,  1,   // EVEX_T1S(0)
  69   2,  2,  2,   // EVEX_T1S(1)
  70   4,  4,  4,   // EVEX_T1S(2)
  71   8,  8,  8,   // EVEX_T1S(3)
  72   4,  4,  4,   // EVEX_T1F(0)
  73   8,  8,  8,   // EVEX_T1F(1)
  74   8,  8,  8,   // EVEX_T2(0)
  75   0,  16, 16,  // EVEX_T2(1)
  76   0,  16, 16,  // EVEX_T4(0)
  77   0,  0,  32,  // EVEX_T4(1)
  78   0,  0,  32,  // EVEX_T8(0)
  79   8,  16, 32,  // EVEX_HVM(0)
  80   4,  8,  16,  // EVEX_QVM(0)
  81   2,  4,  8,   // EVEX_OVM(0)
  82   16, 16, 16,  // EVEX_M128(0)
  83   8,  32, 64,  // EVEX_DUP(0)
  84   0,  0,  0    // EVEX_NTUP
  85 };
  86 
  87 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  88   _is_lval = false;
  89   _target = target;
  90   switch (rtype) {
  91   case relocInfo::oop_type:
  92   case relocInfo::metadata_type:
  93     // Oops are a special case. Normally they would be their own section
  94     // but in cases like icBuffer they are literals in the code stream that
  95     // we don't have a section for. We use none so that we get a literal address
  96     // which is always patchable.
  97     break;
  98   case relocInfo::external_word_type:
  99     _rspec = external_word_Relocation::spec(target);
 100     break;
 101   case relocInfo::internal_word_type:
 102     _rspec = internal_word_Relocation::spec(target);
 103     break;
 104   case relocInfo::opt_virtual_call_type:
 105     _rspec = opt_virtual_call_Relocation::spec();
 106     break;
 107   case relocInfo::static_call_type:
 108     _rspec = static_call_Relocation::spec();
 109     break;
 110   case relocInfo::runtime_call_type:
 111     _rspec = runtime_call_Relocation::spec();
 112     break;
 113   case relocInfo::poll_type:
 114   case relocInfo::poll_return_type:
 115     _rspec = Relocation::spec_simple(rtype);
 116     break;
 117   case relocInfo::none:
 118     break;
 119   default:
 120     ShouldNotReachHere();
 121     break;
 122   }
 123 }
 124 
 125 // Implementation of Address
 126 
 127 #ifdef _LP64
 128 
 129 Address Address::make_array(ArrayAddress adr) {
 130   // Not implementable on 64bit machines
 131   // Should have been handled higher up the call chain.
 132   ShouldNotReachHere();
 133   return Address();
 134 }
 135 
 136 // exceedingly dangerous constructor
 137 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 138   _base  = noreg;
 139   _index = noreg;
 140   _scale = no_scale;
 141   _disp  = disp;
 142   switch (rtype) {
 143     case relocInfo::external_word_type:
 144       _rspec = external_word_Relocation::spec(loc);
 145       break;
 146     case relocInfo::internal_word_type:
 147       _rspec = internal_word_Relocation::spec(loc);
 148       break;
 149     case relocInfo::runtime_call_type:
 150       // HMM
 151       _rspec = runtime_call_Relocation::spec();
 152       break;
 153     case relocInfo::poll_type:
 154     case relocInfo::poll_return_type:
 155       _rspec = Relocation::spec_simple(rtype);
 156       break;
 157     case relocInfo::none:
 158       break;
 159     default:
 160       ShouldNotReachHere();
 161   }
 162 }
 163 #else // LP64
 164 
 165 Address Address::make_array(ArrayAddress adr) {
 166   AddressLiteral base = adr.base();
 167   Address index = adr.index();
 168   assert(index._disp == 0, "must not have disp"); // maybe it can?
 169   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 170   array._rspec = base._rspec;
 171   return array;
 172 }
 173 
 174 // exceedingly dangerous constructor
 175 Address::Address(address loc, RelocationHolder spec) {
 176   _base  = noreg;
 177   _index = noreg;
 178   _scale = no_scale;
 179   _disp  = (intptr_t) loc;
 180   _rspec = spec;
 181 }
 182 
 183 #endif // _LP64
 184 
 185 
 186 
 187 // Convert the raw encoding form into the form expected by the constructor for
 188 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 189 // that to noreg for the Address constructor.
 190 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 191   RelocationHolder rspec;
 192   if (disp_reloc != relocInfo::none) {
 193     rspec = Relocation::spec_simple(disp_reloc);
 194   }
 195   bool valid_index = index != rsp->encoding();
 196   if (valid_index) {
 197     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 198     madr._rspec = rspec;
 199     return madr;
 200   } else {
 201     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 202     madr._rspec = rspec;
 203     return madr;
 204   }
 205 }
 206 
 207 // Implementation of Assembler
 208 
 209 int AbstractAssembler::code_fill_byte() {
 210   return (u_char)'\xF4'; // hlt
 211 }
 212 
 213 // make this go away someday
 214 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 215   if (rtype == relocInfo::none)
 216     emit_int32(data);
 217   else
 218     emit_data(data, Relocation::spec_simple(rtype), format);
 219 }
 220 
 221 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 222   assert(imm_operand == 0, "default format must be immediate in this file");
 223   assert(inst_mark() != NULL, "must be inside InstructionMark");
 224   if (rspec.type() !=  relocInfo::none) {
 225     #ifdef ASSERT
 226       check_relocation(rspec, format);
 227     #endif
 228     // Do not use AbstractAssembler::relocate, which is not intended for
 229     // embedded words.  Instead, relocate to the enclosing instruction.
 230 
 231     // hack. call32 is too wide for mask so use disp32
 232     if (format == call32_operand)
 233       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 234     else
 235       code_section()->relocate(inst_mark(), rspec, format);
 236   }
 237   emit_int32(data);
 238 }
 239 
 240 static int encode(Register r) {
 241   int enc = r->encoding();
 242   if (enc >= 8) {
 243     enc -= 8;
 244   }
 245   return enc;
 246 }
 247 
 248 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 249   assert(dst->has_byte_register(), "must have byte register");
 250   assert(isByte(op1) && isByte(op2), "wrong opcode");
 251   assert(isByte(imm8), "not a byte");
 252   assert((op1 & 0x01) == 0, "should be 8bit operation");
 253   emit_int8(op1);
 254   emit_int8(op2 | encode(dst));
 255   emit_int8(imm8);
 256 }
 257 
 258 
 259 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 260   assert(isByte(op1) && isByte(op2), "wrong opcode");
 261   assert((op1 & 0x01) == 1, "should be 32bit operation");
 262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 263   if (is8bit(imm32)) {
 264     emit_int8(op1 | 0x02); // set sign bit
 265     emit_int8(op2 | encode(dst));
 266     emit_int8(imm32 & 0xFF);
 267   } else {
 268     emit_int8(op1);
 269     emit_int8(op2 | encode(dst));
 270     emit_int32(imm32);
 271   }
 272 }
 273 
 274 // Force generation of a 4 byte immediate value even if it fits into 8bit
 275 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 276   assert(isByte(op1) && isByte(op2), "wrong opcode");
 277   assert((op1 & 0x01) == 1, "should be 32bit operation");
 278   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 279   emit_int8(op1);
 280   emit_int8(op2 | encode(dst));
 281   emit_int32(imm32);
 282 }
 283 
 284 // immediate-to-memory forms
 285 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 286   assert((op1 & 0x01) == 1, "should be 32bit operation");
 287   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 288   if (is8bit(imm32)) {
 289     emit_int8(op1 | 0x02); // set sign bit
 290     emit_operand(rm, adr, 1);
 291     emit_int8(imm32 & 0xFF);
 292   } else {
 293     emit_int8(op1);
 294     emit_operand(rm, adr, 4);
 295     emit_int32(imm32);
 296   }
 297 }
 298 
 299 
 300 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 301   assert(isByte(op1) && isByte(op2), "wrong opcode");
 302   emit_int8(op1);
 303   emit_int8(op2 | encode(dst) << 3 | encode(src));
 304 }
 305 
 306 
 307 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 308                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 309   int mod_idx = 0;
 310   // We will test if the displacement fits the compressed format and if so
 311   // apply the compression to the displacment iff the result is8bit.
 312   if (VM_Version::supports_evex() && is_evex_inst) {
 313     switch (cur_tuple_type) {
 314     case EVEX_FV:
 315       if ((cur_encoding & VEX_W) == VEX_W) {
 316         mod_idx += 2 + ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 317       } else {
 318         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 319       }
 320       break;
 321 
 322     case EVEX_HV:
 323       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 324       break;
 325 
 326     case EVEX_FVM:
 327       break;
 328 
 329     case EVEX_T1S:
 330       switch (in_size_in_bits) {
 331       case EVEX_8bit:
 332         break;
 333 
 334       case EVEX_16bit:
 335         mod_idx = 1;
 336         break;
 337 
 338       case EVEX_32bit:
 339         mod_idx = 2;
 340         break;
 341 
 342       case EVEX_64bit:
 343         mod_idx = 3;
 344         break;
 345       }
 346       break;
 347 
 348     case EVEX_T1F:
 349     case EVEX_T2:
 350     case EVEX_T4:
 351       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 352       break;
 353 
 354     case EVEX_T8:
 355       break;
 356 
 357     case EVEX_HVM:
 358       break;
 359 
 360     case EVEX_QVM:
 361       break;
 362 
 363     case EVEX_OVM:
 364       break;
 365 
 366     case EVEX_M128:
 367       break;
 368 
 369     case EVEX_DUP:
 370       break;
 371 
 372     default:
 373       assert(0, "no valid evex tuple_table entry");
 374       break;
 375     }
 376 
 377     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 378       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 379       if ((disp % disp_factor) == 0) {
 380         int new_disp = disp / disp_factor;
 381         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 382           disp = new_disp;
 383         }
 384       } else {
 385         return false;
 386       }
 387     }
 388   }
 389   return (-0x80 <= disp && disp < 0x80);
 390 }
 391 
 392 
 393 bool Assembler::emit_compressed_disp_byte(int &disp) {
 394   int mod_idx = 0;
 395   // We will test if the displacement fits the compressed format and if so
 396   // apply the compression to the displacment iff the result is8bit.
 397   if (VM_Version::supports_evex() && is_evex_instruction) {
 398     switch (tuple_type) {
 399     case EVEX_FV:
 400       if ((evex_encoding & VEX_W) == VEX_W) {
 401         mod_idx += 2 + ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 402       } else {
 403         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 404       }
 405       break;
 406 
 407     case EVEX_HV:
 408       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 409       break;
 410 
 411     case EVEX_FVM:
 412       break;
 413 
 414     case EVEX_T1S:
 415       switch (input_size_in_bits) {
 416       case EVEX_8bit:
 417         break;
 418 
 419       case EVEX_16bit:
 420         mod_idx = 1;
 421         break;
 422 
 423       case EVEX_32bit:
 424         mod_idx = 2;
 425         break;
 426 
 427       case EVEX_64bit:
 428         mod_idx = 3;
 429         break;
 430       }
 431       break;
 432 
 433     case EVEX_T1F:
 434     case EVEX_T2:
 435     case EVEX_T4:
 436       mod_idx = (input_size_in_bits == EVEX_64bit) ? 1 : 0;
 437       break;
 438 
 439     case EVEX_T8:
 440       break;
 441 
 442     case EVEX_HVM:
 443       break;
 444 
 445     case EVEX_QVM:
 446       break;
 447 
 448     case EVEX_OVM:
 449       break;
 450 
 451     case EVEX_M128:
 452       break;
 453 
 454     case EVEX_DUP:
 455       break;
 456 
 457     default:
 458       assert(0, "no valid evex tuple_table entry");
 459       break;
 460     }
 461 
 462     if (avx_vector_len >= AVX_128bit && avx_vector_len <= AVX_512bit) {
 463       int disp_factor = tuple_table[tuple_type + mod_idx][avx_vector_len];
 464       if ((disp % disp_factor) == 0) {
 465         int new_disp = disp / disp_factor;
 466         if (is8bit(new_disp)) {
 467           disp = new_disp;
 468         }
 469       } else {
 470         return false;
 471       }
 472     }
 473   }
 474   return is8bit(disp);
 475 }
 476 
 477 
 478 void Assembler::emit_operand(Register reg, Register base, Register index,
 479                              Address::ScaleFactor scale, int disp,
 480                              RelocationHolder const& rspec,
 481                              int rip_relative_correction) {
 482   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 483 
 484   // Encode the registers as needed in the fields they are used in
 485 
 486   int regenc = encode(reg) << 3;
 487   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 488   int baseenc = base->is_valid() ? encode(base) : 0;
 489 
 490   if (base->is_valid()) {
 491     if (index->is_valid()) {
 492       assert(scale != Address::no_scale, "inconsistent address");
 493       // [base + index*scale + disp]
 494       if (disp == 0 && rtype == relocInfo::none  &&
 495           base != rbp LP64_ONLY(&& base != r13)) {
 496         // [base + index*scale]
 497         // [00 reg 100][ss index base]
 498         assert(index != rsp, "illegal addressing mode");
 499         emit_int8(0x04 | regenc);
 500         emit_int8(scale << 6 | indexenc | baseenc);
 501       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 502         // [base + index*scale + imm8]
 503         // [01 reg 100][ss index base] imm8
 504         assert(index != rsp, "illegal addressing mode");
 505         emit_int8(0x44 | regenc);
 506         emit_int8(scale << 6 | indexenc | baseenc);
 507         emit_int8(disp & 0xFF);
 508       } else {
 509         // [base + index*scale + disp32]
 510         // [10 reg 100][ss index base] disp32
 511         assert(index != rsp, "illegal addressing mode");
 512         emit_int8(0x84 | regenc);
 513         emit_int8(scale << 6 | indexenc | baseenc);
 514         emit_data(disp, rspec, disp32_operand);
 515       }
 516     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 517       // [rsp + disp]
 518       if (disp == 0 && rtype == relocInfo::none) {
 519         // [rsp]
 520         // [00 reg 100][00 100 100]
 521         emit_int8(0x04 | regenc);
 522         emit_int8(0x24);
 523       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 524         // [rsp + imm8]
 525         // [01 reg 100][00 100 100] disp8
 526         emit_int8(0x44 | regenc);
 527         emit_int8(0x24);
 528         emit_int8(disp & 0xFF);
 529       } else {
 530         // [rsp + imm32]
 531         // [10 reg 100][00 100 100] disp32
 532         emit_int8(0x84 | regenc);
 533         emit_int8(0x24);
 534         emit_data(disp, rspec, disp32_operand);
 535       }
 536     } else {
 537       // [base + disp]
 538       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 539       if (disp == 0 && rtype == relocInfo::none &&
 540           base != rbp LP64_ONLY(&& base != r13)) {
 541         // [base]
 542         // [00 reg base]
 543         emit_int8(0x00 | regenc | baseenc);
 544       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 545         // [base + disp8]
 546         // [01 reg base] disp8
 547         emit_int8(0x40 | regenc | baseenc);
 548         emit_int8(disp & 0xFF);
 549       } else {
 550         // [base + disp32]
 551         // [10 reg base] disp32
 552         emit_int8(0x80 | regenc | baseenc);
 553         emit_data(disp, rspec, disp32_operand);
 554       }
 555     }
 556   } else {
 557     if (index->is_valid()) {
 558       assert(scale != Address::no_scale, "inconsistent address");
 559       // [index*scale + disp]
 560       // [00 reg 100][ss index 101] disp32
 561       assert(index != rsp, "illegal addressing mode");
 562       emit_int8(0x04 | regenc);
 563       emit_int8(scale << 6 | indexenc | 0x05);
 564       emit_data(disp, rspec, disp32_operand);
 565     } else if (rtype != relocInfo::none ) {
 566       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 567       // [00 000 101] disp32
 568 
 569       emit_int8(0x05 | regenc);
 570       // Note that the RIP-rel. correction applies to the generated
 571       // disp field, but _not_ to the target address in the rspec.
 572 
 573       // disp was created by converting the target address minus the pc
 574       // at the start of the instruction. That needs more correction here.
 575       // intptr_t disp = target - next_ip;
 576       assert(inst_mark() != NULL, "must be inside InstructionMark");
 577       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 578       int64_t adjusted = disp;
 579       // Do rip-rel adjustment for 64bit
 580       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 581       assert(is_simm32(adjusted),
 582              "must be 32bit offset (RIP relative address)");
 583       emit_data((int32_t) adjusted, rspec, disp32_operand);
 584 
 585     } else {
 586       // 32bit never did this, did everything as the rip-rel/disp code above
 587       // [disp] ABSOLUTE
 588       // [00 reg 100][00 100 101] disp32
 589       emit_int8(0x04 | regenc);
 590       emit_int8(0x25);
 591       emit_data(disp, rspec, disp32_operand);
 592     }
 593   }
 594   is_evex_instruction = false;
 595 }
 596 
 597 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 598                              Address::ScaleFactor scale, int disp,
 599                              RelocationHolder const& rspec) {
 600   if (UseAVX > 2) {
 601     int xreg_enc = reg->encoding();
 602     if (xreg_enc > 15) {
 603       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 604       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 605       return;
 606     }
 607   }
 608   emit_operand((Register)reg, base, index, scale, disp, rspec);
 609 }
 610 
 611 // Secret local extension to Assembler::WhichOperand:
 612 #define end_pc_operand (_WhichOperand_limit)
 613 
 614 address Assembler::locate_operand(address inst, WhichOperand which) {
 615   // Decode the given instruction, and return the address of
 616   // an embedded 32-bit operand word.
 617 
 618   // If "which" is disp32_operand, selects the displacement portion
 619   // of an effective address specifier.
 620   // If "which" is imm64_operand, selects the trailing immediate constant.
 621   // If "which" is call32_operand, selects the displacement of a call or jump.
 622   // Caller is responsible for ensuring that there is such an operand,
 623   // and that it is 32/64 bits wide.
 624 
 625   // If "which" is end_pc_operand, find the end of the instruction.
 626 
 627   address ip = inst;
 628   bool is_64bit = false;
 629 
 630   debug_only(bool has_disp32 = false);
 631   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 632 
 633   again_after_prefix:
 634   switch (0xFF & *ip++) {
 635 
 636   // These convenience macros generate groups of "case" labels for the switch.
 637 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 638 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 639              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 640 #define REP16(x) REP8((x)+0): \
 641               case REP8((x)+8)
 642 
 643   case CS_segment:
 644   case SS_segment:
 645   case DS_segment:
 646   case ES_segment:
 647   case FS_segment:
 648   case GS_segment:
 649     // Seems dubious
 650     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 651     assert(ip == inst+1, "only one prefix allowed");
 652     goto again_after_prefix;
 653 
 654   case 0x67:
 655   case REX:
 656   case REX_B:
 657   case REX_X:
 658   case REX_XB:
 659   case REX_R:
 660   case REX_RB:
 661   case REX_RX:
 662   case REX_RXB:
 663     NOT_LP64(assert(false, "64bit prefixes"));
 664     goto again_after_prefix;
 665 
 666   case REX_W:
 667   case REX_WB:
 668   case REX_WX:
 669   case REX_WXB:
 670   case REX_WR:
 671   case REX_WRB:
 672   case REX_WRX:
 673   case REX_WRXB:
 674     NOT_LP64(assert(false, "64bit prefixes"));
 675     is_64bit = true;
 676     goto again_after_prefix;
 677 
 678   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 679   case 0x88: // movb a, r
 680   case 0x89: // movl a, r
 681   case 0x8A: // movb r, a
 682   case 0x8B: // movl r, a
 683   case 0x8F: // popl a
 684     debug_only(has_disp32 = true);
 685     break;
 686 
 687   case 0x68: // pushq #32
 688     if (which == end_pc_operand) {
 689       return ip + 4;
 690     }
 691     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 692     return ip;                  // not produced by emit_operand
 693 
 694   case 0x66: // movw ... (size prefix)
 695     again_after_size_prefix2:
 696     switch (0xFF & *ip++) {
 697     case REX:
 698     case REX_B:
 699     case REX_X:
 700     case REX_XB:
 701     case REX_R:
 702     case REX_RB:
 703     case REX_RX:
 704     case REX_RXB:
 705     case REX_W:
 706     case REX_WB:
 707     case REX_WX:
 708     case REX_WXB:
 709     case REX_WR:
 710     case REX_WRB:
 711     case REX_WRX:
 712     case REX_WRXB:
 713       NOT_LP64(assert(false, "64bit prefix found"));
 714       goto again_after_size_prefix2;
 715     case 0x8B: // movw r, a
 716     case 0x89: // movw a, r
 717       debug_only(has_disp32 = true);
 718       break;
 719     case 0xC7: // movw a, #16
 720       debug_only(has_disp32 = true);
 721       tail_size = 2;  // the imm16
 722       break;
 723     case 0x0F: // several SSE/SSE2 variants
 724       ip--;    // reparse the 0x0F
 725       goto again_after_prefix;
 726     default:
 727       ShouldNotReachHere();
 728     }
 729     break;
 730 
 731   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 732     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 733     // these asserts are somewhat nonsensical
 734 #ifndef _LP64
 735     assert(which == imm_operand || which == disp32_operand,
 736            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 737 #else
 738     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 739            which == narrow_oop_operand && !is_64bit,
 740            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 741 #endif // _LP64
 742     return ip;
 743 
 744   case 0x69: // imul r, a, #32
 745   case 0xC7: // movl a, #32(oop?)
 746     tail_size = 4;
 747     debug_only(has_disp32 = true); // has both kinds of operands!
 748     break;
 749 
 750   case 0x0F: // movx..., etc.
 751     switch (0xFF & *ip++) {
 752     case 0x3A: // pcmpestri
 753       tail_size = 1;
 754     case 0x38: // ptest, pmovzxbw
 755       ip++; // skip opcode
 756       debug_only(has_disp32 = true); // has both kinds of operands!
 757       break;
 758 
 759     case 0x70: // pshufd r, r/a, #8
 760       debug_only(has_disp32 = true); // has both kinds of operands!
 761     case 0x73: // psrldq r, #8
 762       tail_size = 1;
 763       break;
 764 
 765     case 0x12: // movlps
 766     case 0x28: // movaps
 767     case 0x2E: // ucomiss
 768     case 0x2F: // comiss
 769     case 0x54: // andps
 770     case 0x55: // andnps
 771     case 0x56: // orps
 772     case 0x57: // xorps
 773     case 0x6E: // movd
 774     case 0x7E: // movd
 775     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 776       debug_only(has_disp32 = true);
 777       break;
 778 
 779     case 0xAD: // shrd r, a, %cl
 780     case 0xAF: // imul r, a
 781     case 0xBE: // movsbl r, a (movsxb)
 782     case 0xBF: // movswl r, a (movsxw)
 783     case 0xB6: // movzbl r, a (movzxb)
 784     case 0xB7: // movzwl r, a (movzxw)
 785     case REP16(0x40): // cmovl cc, r, a
 786     case 0xB0: // cmpxchgb
 787     case 0xB1: // cmpxchg
 788     case 0xC1: // xaddl
 789     case 0xC7: // cmpxchg8
 790     case REP16(0x90): // setcc a
 791       debug_only(has_disp32 = true);
 792       // fall out of the switch to decode the address
 793       break;
 794 
 795     case 0xC4: // pinsrw r, a, #8
 796       debug_only(has_disp32 = true);
 797     case 0xC5: // pextrw r, r, #8
 798       tail_size = 1;  // the imm8
 799       break;
 800 
 801     case 0xAC: // shrd r, a, #8
 802       debug_only(has_disp32 = true);
 803       tail_size = 1;  // the imm8
 804       break;
 805 
 806     case REP16(0x80): // jcc rdisp32
 807       if (which == end_pc_operand)  return ip + 4;
 808       assert(which == call32_operand, "jcc has no disp32 or imm");
 809       return ip;
 810     default:
 811       ShouldNotReachHere();
 812     }
 813     break;
 814 
 815   case 0x81: // addl a, #32; addl r, #32
 816     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 817     // on 32bit in the case of cmpl, the imm might be an oop
 818     tail_size = 4;
 819     debug_only(has_disp32 = true); // has both kinds of operands!
 820     break;
 821 
 822   case 0x83: // addl a, #8; addl r, #8
 823     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 824     debug_only(has_disp32 = true); // has both kinds of operands!
 825     tail_size = 1;
 826     break;
 827 
 828   case 0x9B:
 829     switch (0xFF & *ip++) {
 830     case 0xD9: // fnstcw a
 831       debug_only(has_disp32 = true);
 832       break;
 833     default:
 834       ShouldNotReachHere();
 835     }
 836     break;
 837 
 838   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 839   case REP4(0x10): // adc...
 840   case REP4(0x20): // and...
 841   case REP4(0x30): // xor...
 842   case REP4(0x08): // or...
 843   case REP4(0x18): // sbb...
 844   case REP4(0x28): // sub...
 845   case 0xF7: // mull a
 846   case 0x8D: // lea r, a
 847   case 0x87: // xchg r, a
 848   case REP4(0x38): // cmp...
 849   case 0x85: // test r, a
 850     debug_only(has_disp32 = true); // has both kinds of operands!
 851     break;
 852 
 853   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 854   case 0xC6: // movb a, #8
 855   case 0x80: // cmpb a, #8
 856   case 0x6B: // imul r, a, #8
 857     debug_only(has_disp32 = true); // has both kinds of operands!
 858     tail_size = 1; // the imm8
 859     break;
 860 
 861   case 0xC4: // VEX_3bytes
 862   case 0xC5: // VEX_2bytes
 863     assert((UseAVX > 0), "shouldn't have VEX prefix");
 864     assert(ip == inst+1, "no prefixes allowed");
 865     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 866     // but they have prefix 0x0F and processed when 0x0F processed above.
 867     //
 868     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 869     // instructions (these instructions are not supported in 64-bit mode).
 870     // To distinguish them bits [7:6] are set in the VEX second byte since
 871     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 872     // those VEX bits REX and vvvv bits are inverted.
 873     //
 874     // Fortunately C2 doesn't generate these instructions so we don't need
 875     // to check for them in product version.
 876 
 877     // Check second byte
 878     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 879 
 880     // First byte
 881     if ((0xFF & *inst) == VEX_3bytes) {
 882       ip++; // third byte
 883       is_64bit = ((VEX_W & *ip) == VEX_W);
 884     }
 885     ip++; // opcode
 886     // To find the end of instruction (which == end_pc_operand).
 887     switch (0xFF & *ip) {
 888     case 0x61: // pcmpestri r, r/a, #8
 889     case 0x70: // pshufd r, r/a, #8
 890     case 0x73: // psrldq r, #8
 891       tail_size = 1;  // the imm8
 892       break;
 893     default:
 894       break;
 895     }
 896     ip++; // skip opcode
 897     debug_only(has_disp32 = true); // has both kinds of operands!
 898     break;
 899 
 900   case 0x62: // EVEX_4bytes
 901     assert((UseAVX > 0), "shouldn't have EVEX prefix");
 902     assert(ip == inst+1, "no prefixes allowed");
 903     // no EVEX collisions, all instructions that have 0x62 opcodes
 904     // have EVEX versions and are subopcodes of 0x66
 905     ip++; // skip P0 and exmaine W in P1
 906     is_64bit = ((VEX_W & *ip) == VEX_W);
 907     ip++; // move to P2
 908     ip++; // skip P2, move to opcode
 909     // To find the end of instruction (which == end_pc_operand).
 910     switch (0xFF & *ip) {
 911     case 0x61: // pcmpestri r, r/a, #8
 912     case 0x70: // pshufd r, r/a, #8
 913     case 0x73: // psrldq r, #8
 914       tail_size = 1;  // the imm8
 915       break;
 916     default:
 917       break;
 918     }
 919     ip++; // skip opcode
 920     debug_only(has_disp32 = true); // has both kinds of operands!
 921     break;
 922 
 923   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 924   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 925   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 926   case 0xDD: // fld_d a; fst_d a; fstp_d a
 927   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 928   case 0xDF: // fild_d a; fistp_d a
 929   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 930   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 931   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 932     debug_only(has_disp32 = true);
 933     break;
 934 
 935   case 0xE8: // call rdisp32
 936   case 0xE9: // jmp  rdisp32
 937     if (which == end_pc_operand)  return ip + 4;
 938     assert(which == call32_operand, "call has no disp32 or imm");
 939     return ip;
 940 
 941   case 0xF0:                    // Lock
 942     assert(os::is_MP(), "only on MP");
 943     goto again_after_prefix;
 944 
 945   case 0xF3:                    // For SSE
 946   case 0xF2:                    // For SSE2
 947     switch (0xFF & *ip++) {
 948     case REX:
 949     case REX_B:
 950     case REX_X:
 951     case REX_XB:
 952     case REX_R:
 953     case REX_RB:
 954     case REX_RX:
 955     case REX_RXB:
 956     case REX_W:
 957     case REX_WB:
 958     case REX_WX:
 959     case REX_WXB:
 960     case REX_WR:
 961     case REX_WRB:
 962     case REX_WRX:
 963     case REX_WRXB:
 964       NOT_LP64(assert(false, "found 64bit prefix"));
 965       ip++;
 966     default:
 967       ip++;
 968     }
 969     debug_only(has_disp32 = true); // has both kinds of operands!
 970     break;
 971 
 972   default:
 973     ShouldNotReachHere();
 974 
 975 #undef REP8
 976 #undef REP16
 977   }
 978 
 979   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 980 #ifdef _LP64
 981   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 982 #else
 983   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
 984   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
 985 #endif // LP64
 986   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
 987 
 988   // parse the output of emit_operand
 989   int op2 = 0xFF & *ip++;
 990   int base = op2 & 0x07;
 991   int op3 = -1;
 992   const int b100 = 4;
 993   const int b101 = 5;
 994   if (base == b100 && (op2 >> 6) != 3) {
 995     op3 = 0xFF & *ip++;
 996     base = op3 & 0x07;   // refetch the base
 997   }
 998   // now ip points at the disp (if any)
 999 
1000   switch (op2 >> 6) {
1001   case 0:
1002     // [00 reg  100][ss index base]
1003     // [00 reg  100][00   100  esp]
1004     // [00 reg base]
1005     // [00 reg  100][ss index  101][disp32]
1006     // [00 reg  101]               [disp32]
1007 
1008     if (base == b101) {
1009       if (which == disp32_operand)
1010         return ip;              // caller wants the disp32
1011       ip += 4;                  // skip the disp32
1012     }
1013     break;
1014 
1015   case 1:
1016     // [01 reg  100][ss index base][disp8]
1017     // [01 reg  100][00   100  esp][disp8]
1018     // [01 reg base]               [disp8]
1019     ip += 1;                    // skip the disp8
1020     break;
1021 
1022   case 2:
1023     // [10 reg  100][ss index base][disp32]
1024     // [10 reg  100][00   100  esp][disp32]
1025     // [10 reg base]               [disp32]
1026     if (which == disp32_operand)
1027       return ip;                // caller wants the disp32
1028     ip += 4;                    // skip the disp32
1029     break;
1030 
1031   case 3:
1032     // [11 reg base]  (not a memory addressing mode)
1033     break;
1034   }
1035 
1036   if (which == end_pc_operand) {
1037     return ip + tail_size;
1038   }
1039 
1040 #ifdef _LP64
1041   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1042 #else
1043   assert(which == imm_operand, "instruction has only an imm field");
1044 #endif // LP64
1045   return ip;
1046 }
1047 
1048 address Assembler::locate_next_instruction(address inst) {
1049   // Secretly share code with locate_operand:
1050   return locate_operand(inst, end_pc_operand);
1051 }
1052 
1053 
1054 #ifdef ASSERT
1055 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1056   address inst = inst_mark();
1057   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1058   address opnd;
1059 
1060   Relocation* r = rspec.reloc();
1061   if (r->type() == relocInfo::none) {
1062     return;
1063   } else if (r->is_call() || format == call32_operand) {
1064     // assert(format == imm32_operand, "cannot specify a nonzero format");
1065     opnd = locate_operand(inst, call32_operand);
1066   } else if (r->is_data()) {
1067     assert(format == imm_operand || format == disp32_operand
1068            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1069     opnd = locate_operand(inst, (WhichOperand)format);
1070   } else {
1071     assert(format == imm_operand, "cannot specify a format");
1072     return;
1073   }
1074   assert(opnd == pc(), "must put operand where relocs can find it");
1075 }
1076 #endif // ASSERT
1077 
1078 void Assembler::emit_operand32(Register reg, Address adr) {
1079   assert(reg->encoding() < 8, "no extended registers");
1080   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1081   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1082                adr._rspec);
1083 }
1084 
1085 void Assembler::emit_operand(Register reg, Address adr,
1086                              int rip_relative_correction) {
1087   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1088                adr._rspec,
1089                rip_relative_correction);
1090 }
1091 
1092 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1093   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1094                adr._rspec);
1095 }
1096 
1097 // MMX operations
1098 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1099   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1100   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1101 }
1102 
1103 // work around gcc (3.2.1-7a) bug
1104 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1105   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1106   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1107 }
1108 
1109 
1110 void Assembler::emit_farith(int b1, int b2, int i) {
1111   assert(isByte(b1) && isByte(b2), "wrong opcode");
1112   assert(0 <= i &&  i < 8, "illegal stack offset");
1113   emit_int8(b1);
1114   emit_int8(b2 + i);
1115 }
1116 
1117 
1118 // Now the Assembler instructions (identical for 32/64 bits)
1119 
1120 void Assembler::adcl(Address dst, int32_t imm32) {
1121   InstructionMark im(this);
1122   prefix(dst);
1123   emit_arith_operand(0x81, rdx, dst, imm32);
1124 }
1125 
1126 void Assembler::adcl(Address dst, Register src) {
1127   InstructionMark im(this);
1128   prefix(dst, src);
1129   emit_int8(0x11);
1130   emit_operand(src, dst);
1131 }
1132 
1133 void Assembler::adcl(Register dst, int32_t imm32) {
1134   prefix(dst);
1135   emit_arith(0x81, 0xD0, dst, imm32);
1136 }
1137 
1138 void Assembler::adcl(Register dst, Address src) {
1139   InstructionMark im(this);
1140   prefix(src, dst);
1141   emit_int8(0x13);
1142   emit_operand(dst, src);
1143 }
1144 
1145 void Assembler::adcl(Register dst, Register src) {
1146   (void) prefix_and_encode(dst->encoding(), src->encoding());
1147   emit_arith(0x13, 0xC0, dst, src);
1148 }
1149 
1150 void Assembler::addl(Address dst, int32_t imm32) {
1151   InstructionMark im(this);
1152   prefix(dst);
1153   emit_arith_operand(0x81, rax, dst, imm32);
1154 }
1155 
1156 void Assembler::addl(Address dst, Register src) {
1157   InstructionMark im(this);
1158   prefix(dst, src);
1159   emit_int8(0x01);
1160   emit_operand(src, dst);
1161 }
1162 
1163 void Assembler::addl(Register dst, int32_t imm32) {
1164   prefix(dst);
1165   emit_arith(0x81, 0xC0, dst, imm32);
1166 }
1167 
1168 void Assembler::addl(Register dst, Address src) {
1169   InstructionMark im(this);
1170   prefix(src, dst);
1171   emit_int8(0x03);
1172   emit_operand(dst, src);
1173 }
1174 
1175 void Assembler::addl(Register dst, Register src) {
1176   (void) prefix_and_encode(dst->encoding(), src->encoding());
1177   emit_arith(0x03, 0xC0, dst, src);
1178 }
1179 
1180 void Assembler::addr_nop_4() {
1181   assert(UseAddressNop, "no CPU support");
1182   // 4 bytes: NOP DWORD PTR [EAX+0]
1183   emit_int8(0x0F);
1184   emit_int8(0x1F);
1185   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1186   emit_int8(0);    // 8-bits offset (1 byte)
1187 }
1188 
1189 void Assembler::addr_nop_5() {
1190   assert(UseAddressNop, "no CPU support");
1191   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1192   emit_int8(0x0F);
1193   emit_int8(0x1F);
1194   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1195   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1196   emit_int8(0);    // 8-bits offset (1 byte)
1197 }
1198 
1199 void Assembler::addr_nop_7() {
1200   assert(UseAddressNop, "no CPU support");
1201   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1202   emit_int8(0x0F);
1203   emit_int8(0x1F);
1204   emit_int8((unsigned char)0x80);
1205                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1206   emit_int32(0);   // 32-bits offset (4 bytes)
1207 }
1208 
1209 void Assembler::addr_nop_8() {
1210   assert(UseAddressNop, "no CPU support");
1211   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1212   emit_int8(0x0F);
1213   emit_int8(0x1F);
1214   emit_int8((unsigned char)0x84);
1215                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1216   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1217   emit_int32(0);   // 32-bits offset (4 bytes)
1218 }
1219 
1220 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1221   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1222   if (VM_Version::supports_evex()) {
1223     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_F2);
1224   } else {
1225     emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
1226   }
1227 }
1228 
1229 void Assembler::addsd(XMMRegister dst, Address src) {
1230   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1231   if (VM_Version::supports_evex()) {
1232     tuple_type = EVEX_T1S;
1233     input_size_in_bits = EVEX_64bit;
1234     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_F2);
1235   } else {
1236     emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
1237   }
1238 }
1239 
1240 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1241   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1242   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1243 }
1244 
1245 void Assembler::addss(XMMRegister dst, Address src) {
1246   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1247   if (VM_Version::supports_evex()) {
1248     tuple_type = EVEX_T1S;
1249     input_size_in_bits = EVEX_32bit;
1250   }
1251   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1252 }
1253 
1254 void Assembler::aesdec(XMMRegister dst, Address src) {
1255   assert(VM_Version::supports_aes(), "");
1256   InstructionMark im(this);
1257   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1258               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1259   emit_int8((unsigned char)0xDE);
1260   emit_operand(dst, src);
1261 }
1262 
1263 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1264   assert(VM_Version::supports_aes(), "");
1265   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1266                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1267   emit_int8((unsigned char)0xDE);
1268   emit_int8(0xC0 | encode);
1269 }
1270 
1271 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1272   assert(VM_Version::supports_aes(), "");
1273   InstructionMark im(this);
1274   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1275               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1276   emit_int8((unsigned char)0xDF);
1277   emit_operand(dst, src);
1278 }
1279 
1280 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1281   assert(VM_Version::supports_aes(), "");
1282   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1283                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1284   emit_int8((unsigned char)0xDF);
1285   emit_int8((unsigned char)(0xC0 | encode));
1286 }
1287 
1288 void Assembler::aesenc(XMMRegister dst, Address src) {
1289   assert(VM_Version::supports_aes(), "");
1290   InstructionMark im(this);
1291   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1292               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1293   emit_int8((unsigned char)0xDC);
1294   emit_operand(dst, src);
1295 }
1296 
1297 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1298   assert(VM_Version::supports_aes(), "");
1299   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1300                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1301   emit_int8((unsigned char)0xDC);
1302   emit_int8(0xC0 | encode);
1303 }
1304 
1305 void Assembler::aesenclast(XMMRegister dst, Address src) {
1306   assert(VM_Version::supports_aes(), "");
1307   InstructionMark im(this);
1308   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1309               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1310   emit_int8((unsigned char)0xDD);
1311   emit_operand(dst, src);
1312 }
1313 
1314 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1315   assert(VM_Version::supports_aes(), "");
1316   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1317                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1318   emit_int8((unsigned char)0xDD);
1319   emit_int8((unsigned char)(0xC0 | encode));
1320 }
1321 
1322 
1323 void Assembler::andl(Address dst, int32_t imm32) {
1324   InstructionMark im(this);
1325   prefix(dst);
1326   emit_int8((unsigned char)0x81);
1327   emit_operand(rsp, dst, 4);
1328   emit_int32(imm32);
1329 }
1330 
1331 void Assembler::andl(Register dst, int32_t imm32) {
1332   prefix(dst);
1333   emit_arith(0x81, 0xE0, dst, imm32);
1334 }
1335 
1336 void Assembler::andl(Register dst, Address src) {
1337   InstructionMark im(this);
1338   prefix(src, dst);
1339   emit_int8(0x23);
1340   emit_operand(dst, src);
1341 }
1342 
1343 void Assembler::andl(Register dst, Register src) {
1344   (void) prefix_and_encode(dst->encoding(), src->encoding());
1345   emit_arith(0x23, 0xC0, dst, src);
1346 }
1347 
1348 void Assembler::andnl(Register dst, Register src1, Register src2) {
1349   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1350   int encode = vex_prefix_0F38_and_encode(dst, src1, src2, false);
1351   emit_int8((unsigned char)0xF2);
1352   emit_int8((unsigned char)(0xC0 | encode));
1353 }
1354 
1355 void Assembler::andnl(Register dst, Register src1, Address src2) {
1356   InstructionMark im(this);
1357   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1358   vex_prefix_0F38(dst, src1, src2, false);
1359   emit_int8((unsigned char)0xF2);
1360   emit_operand(dst, src2);
1361 }
1362 
1363 void Assembler::bsfl(Register dst, Register src) {
1364   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1365   emit_int8(0x0F);
1366   emit_int8((unsigned char)0xBC);
1367   emit_int8((unsigned char)(0xC0 | encode));
1368 }
1369 
1370 void Assembler::bsrl(Register dst, Register src) {
1371   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1372   emit_int8(0x0F);
1373   emit_int8((unsigned char)0xBD);
1374   emit_int8((unsigned char)(0xC0 | encode));
1375 }
1376 
1377 void Assembler::bswapl(Register reg) { // bswap
1378   int encode = prefix_and_encode(reg->encoding());
1379   emit_int8(0x0F);
1380   emit_int8((unsigned char)(0xC8 | encode));
1381 }
1382 
1383 void Assembler::blsil(Register dst, Register src) {
1384   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1385   int encode = vex_prefix_0F38_and_encode(rbx, dst, src, false);
1386   emit_int8((unsigned char)0xF3);
1387   emit_int8((unsigned char)(0xC0 | encode));
1388 }
1389 
1390 void Assembler::blsil(Register dst, Address src) {
1391   InstructionMark im(this);
1392   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1393   vex_prefix_0F38(rbx, dst, src, false);
1394   emit_int8((unsigned char)0xF3);
1395   emit_operand(rbx, src);
1396 }
1397 
1398 void Assembler::blsmskl(Register dst, Register src) {
1399   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1400   int encode = vex_prefix_0F38_and_encode(rdx, dst, src, false);
1401   emit_int8((unsigned char)0xF3);
1402   emit_int8((unsigned char)(0xC0 | encode));
1403 }
1404 
1405 void Assembler::blsmskl(Register dst, Address src) {
1406   InstructionMark im(this);
1407   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1408   vex_prefix_0F38(rdx, dst, src, false);
1409   emit_int8((unsigned char)0xF3);
1410   emit_operand(rdx, src);
1411 }
1412 
1413 void Assembler::blsrl(Register dst, Register src) {
1414   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1415   int encode = vex_prefix_0F38_and_encode(rcx, dst, src, false);
1416   emit_int8((unsigned char)0xF3);
1417   emit_int8((unsigned char)(0xC0 | encode));
1418 }
1419 
1420 void Assembler::blsrl(Register dst, Address src) {
1421   InstructionMark im(this);
1422   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1423   vex_prefix_0F38(rcx, dst, src, false);
1424   emit_int8((unsigned char)0xF3);
1425   emit_operand(rcx, src);
1426 }
1427 
1428 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1429   // suspect disp32 is always good
1430   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1431 
1432   if (L.is_bound()) {
1433     const int long_size = 5;
1434     int offs = (int)( target(L) - pc() );
1435     assert(offs <= 0, "assembler error");
1436     InstructionMark im(this);
1437     // 1110 1000 #32-bit disp
1438     emit_int8((unsigned char)0xE8);
1439     emit_data(offs - long_size, rtype, operand);
1440   } else {
1441     InstructionMark im(this);
1442     // 1110 1000 #32-bit disp
1443     L.add_patch_at(code(), locator());
1444 
1445     emit_int8((unsigned char)0xE8);
1446     emit_data(int(0), rtype, operand);
1447   }
1448 }
1449 
1450 void Assembler::call(Register dst) {
1451   int encode = prefix_and_encode(dst->encoding());
1452   emit_int8((unsigned char)0xFF);
1453   emit_int8((unsigned char)(0xD0 | encode));
1454 }
1455 
1456 
1457 void Assembler::call(Address adr) {
1458   InstructionMark im(this);
1459   prefix(adr);
1460   emit_int8((unsigned char)0xFF);
1461   emit_operand(rdx, adr);
1462 }
1463 
1464 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1465   assert(entry != NULL, "call most probably wrong");
1466   InstructionMark im(this);
1467   emit_int8((unsigned char)0xE8);
1468   intptr_t disp = entry - (pc() + sizeof(int32_t));
1469   assert(is_simm32(disp), "must be 32bit offset (call2)");
1470   // Technically, should use call32_operand, but this format is
1471   // implied by the fact that we're emitting a call instruction.
1472 
1473   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1474   emit_data((int) disp, rspec, operand);
1475 }
1476 
1477 void Assembler::cdql() {
1478   emit_int8((unsigned char)0x99);
1479 }
1480 
1481 void Assembler::cld() {
1482   emit_int8((unsigned char)0xFC);
1483 }
1484 
1485 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1486   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1487   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1488   emit_int8(0x0F);
1489   emit_int8(0x40 | cc);
1490   emit_int8((unsigned char)(0xC0 | encode));
1491 }
1492 
1493 
1494 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1495   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1496   prefix(src, dst);
1497   emit_int8(0x0F);
1498   emit_int8(0x40 | cc);
1499   emit_operand(dst, src);
1500 }
1501 
1502 void Assembler::cmpb(Address dst, int imm8) {
1503   InstructionMark im(this);
1504   prefix(dst);
1505   emit_int8((unsigned char)0x80);
1506   emit_operand(rdi, dst, 1);
1507   emit_int8(imm8);
1508 }
1509 
1510 void Assembler::cmpl(Address dst, int32_t imm32) {
1511   InstructionMark im(this);
1512   prefix(dst);
1513   emit_int8((unsigned char)0x81);
1514   emit_operand(rdi, dst, 4);
1515   emit_int32(imm32);
1516 }
1517 
1518 void Assembler::cmpl(Register dst, int32_t imm32) {
1519   prefix(dst);
1520   emit_arith(0x81, 0xF8, dst, imm32);
1521 }
1522 
1523 void Assembler::cmpl(Register dst, Register src) {
1524   (void) prefix_and_encode(dst->encoding(), src->encoding());
1525   emit_arith(0x3B, 0xC0, dst, src);
1526 }
1527 
1528 
1529 void Assembler::cmpl(Register dst, Address  src) {
1530   InstructionMark im(this);
1531   prefix(src, dst);
1532   emit_int8((unsigned char)0x3B);
1533   emit_operand(dst, src);
1534 }
1535 
1536 void Assembler::cmpw(Address dst, int imm16) {
1537   InstructionMark im(this);
1538   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1539   emit_int8(0x66);
1540   emit_int8((unsigned char)0x81);
1541   emit_operand(rdi, dst, 2);
1542   emit_int16(imm16);
1543 }
1544 
1545 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1546 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1547 // The ZF is set if the compared values were equal, and cleared otherwise.
1548 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1549   InstructionMark im(this);
1550   prefix(adr, reg);
1551   emit_int8(0x0F);
1552   emit_int8((unsigned char)0xB1);
1553   emit_operand(reg, adr);
1554 }
1555 
1556 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1557 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1558 // The ZF is set if the compared values were equal, and cleared otherwise.
1559 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1560   InstructionMark im(this);
1561   prefix(adr, reg, true);
1562   emit_int8(0x0F);
1563   emit_int8((unsigned char)0xB0);
1564   emit_operand(reg, adr);
1565 }
1566 
1567 void Assembler::comisd(XMMRegister dst, Address src) {
1568   // NOTE: dbx seems to decode this as comiss even though the
1569   // 0x66 is there. Strangly ucomisd comes out correct
1570   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1571   if (VM_Version::supports_evex()) {
1572     tuple_type = EVEX_T1S;
1573     input_size_in_bits = EVEX_64bit;
1574     emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, true);
1575   } else {
1576     emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1577   }
1578 }
1579 
1580 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1581   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1582   if (VM_Version::supports_evex()) {
1583     emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, true);
1584   } else {
1585     emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1586   }
1587 }
1588 
1589 void Assembler::comiss(XMMRegister dst, Address src) {
1590   if (VM_Version::supports_evex()) {
1591     tuple_type = EVEX_T1S;
1592     input_size_in_bits = EVEX_32bit;
1593   }
1594   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1595   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, true);
1596 }
1597 
1598 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1599   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1600   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, true);
1601 }
1602 
1603 void Assembler::cpuid() {
1604   emit_int8(0x0F);
1605   emit_int8((unsigned char)0xA2);
1606 }
1607 
1608 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1609   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1610   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
1611 }
1612 
1613 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1614   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1615   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
1616 }
1617 
1618 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1619   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1620   if (VM_Version::supports_evex()) {
1621     emit_simd_arith_q(0x5A, dst, src, VEX_SIMD_F2);
1622   } else {
1623     emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1624   }
1625 }
1626 
1627 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1628   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1629   if (VM_Version::supports_evex()) {
1630     tuple_type = EVEX_T1F;
1631     input_size_in_bits = EVEX_64bit;
1632     emit_simd_arith_q(0x5A, dst, src, VEX_SIMD_F2);
1633   } else {
1634     emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1635   }
1636 }
1637 
1638 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1639   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1640   int encode = 0;
1641   if (VM_Version::supports_evex()) {
1642     encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2, true);
1643   } else {
1644     encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, false);
1645   }
1646   emit_int8(0x2A);
1647   emit_int8((unsigned char)(0xC0 | encode));
1648 }
1649 
1650 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1651   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1652   if (VM_Version::supports_evex()) {
1653     tuple_type = EVEX_T1S;
1654     input_size_in_bits = EVEX_32bit;
1655     emit_simd_arith_q(0x2A, dst, src, VEX_SIMD_F2, true);
1656   } else {
1657     emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
1658   }
1659 }
1660 
1661 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1662   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1663   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, true);
1664   emit_int8(0x2A);
1665   emit_int8((unsigned char)(0xC0 | encode));
1666 }
1667 
1668 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1669   if (VM_Version::supports_evex()) {
1670     tuple_type = EVEX_T1S;
1671     input_size_in_bits = EVEX_32bit;
1672   }
1673   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1674   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3, true);
1675 }
1676 
1677 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1678   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1679   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1680 }
1681 
1682 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1683   if (VM_Version::supports_evex()) {
1684     tuple_type = EVEX_T1S;
1685     input_size_in_bits = EVEX_32bit;
1686   }
1687   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1688   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1689 }
1690 
1691 
1692 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1693   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1694   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, true);
1695   emit_int8(0x2C);
1696   emit_int8((unsigned char)(0xC0 | encode));
1697 }
1698 
1699 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1700   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1701   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, true);
1702   emit_int8(0x2C);
1703   emit_int8((unsigned char)(0xC0 | encode));
1704 }
1705 
1706 void Assembler::decl(Address dst) {
1707   // Don't use it directly. Use MacroAssembler::decrement() instead.
1708   InstructionMark im(this);
1709   prefix(dst);
1710   emit_int8((unsigned char)0xFF);
1711   emit_operand(rcx, dst);
1712 }
1713 
1714 void Assembler::divsd(XMMRegister dst, Address src) {
1715   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1716   if (VM_Version::supports_evex()) {
1717     tuple_type = EVEX_T1S;
1718     input_size_in_bits = EVEX_64bit;
1719     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_F2);
1720   } else {
1721     emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1722   }
1723 }
1724 
1725 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1726   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1727   if (VM_Version::supports_evex()) {
1728     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_F2);
1729   } else {
1730     emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1731   }
1732 }
1733 
1734 void Assembler::divss(XMMRegister dst, Address src) {
1735   if (VM_Version::supports_evex()) {
1736     tuple_type = EVEX_T1S;
1737     input_size_in_bits = EVEX_32bit;
1738   }
1739   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1740   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1741 }
1742 
1743 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1744   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1745   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1746 }
1747 
1748 void Assembler::emms() {
1749   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1750   emit_int8(0x0F);
1751   emit_int8(0x77);
1752 }
1753 
1754 void Assembler::hlt() {
1755   emit_int8((unsigned char)0xF4);
1756 }
1757 
1758 void Assembler::idivl(Register src) {
1759   int encode = prefix_and_encode(src->encoding());
1760   emit_int8((unsigned char)0xF7);
1761   emit_int8((unsigned char)(0xF8 | encode));
1762 }
1763 
1764 void Assembler::divl(Register src) { // Unsigned
1765   int encode = prefix_and_encode(src->encoding());
1766   emit_int8((unsigned char)0xF7);
1767   emit_int8((unsigned char)(0xF0 | encode));
1768 }
1769 
1770 void Assembler::imull(Register dst, Register src) {
1771   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1772   emit_int8(0x0F);
1773   emit_int8((unsigned char)0xAF);
1774   emit_int8((unsigned char)(0xC0 | encode));
1775 }
1776 
1777 
1778 void Assembler::imull(Register dst, Register src, int value) {
1779   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1780   if (is8bit(value)) {
1781     emit_int8(0x6B);
1782     emit_int8((unsigned char)(0xC0 | encode));
1783     emit_int8(value & 0xFF);
1784   } else {
1785     emit_int8(0x69);
1786     emit_int8((unsigned char)(0xC0 | encode));
1787     emit_int32(value);
1788   }
1789 }
1790 
1791 void Assembler::imull(Register dst, Address src) {
1792   InstructionMark im(this);
1793   prefix(src, dst);
1794   emit_int8(0x0F);
1795   emit_int8((unsigned char) 0xAF);
1796   emit_operand(dst, src);
1797 }
1798 
1799 
1800 void Assembler::incl(Address dst) {
1801   // Don't use it directly. Use MacroAssembler::increment() instead.
1802   InstructionMark im(this);
1803   prefix(dst);
1804   emit_int8((unsigned char)0xFF);
1805   emit_operand(rax, dst);
1806 }
1807 
1808 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1809   InstructionMark im(this);
1810   assert((0 <= cc) && (cc < 16), "illegal cc");
1811   if (L.is_bound()) {
1812     address dst = target(L);
1813     assert(dst != NULL, "jcc most probably wrong");
1814 
1815     const int short_size = 2;
1816     const int long_size = 6;
1817     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1818     if (maybe_short && is8bit(offs - short_size)) {
1819       // 0111 tttn #8-bit disp
1820       emit_int8(0x70 | cc);
1821       emit_int8((offs - short_size) & 0xFF);
1822     } else {
1823       // 0000 1111 1000 tttn #32-bit disp
1824       assert(is_simm32(offs - long_size),
1825              "must be 32bit offset (call4)");
1826       emit_int8(0x0F);
1827       emit_int8((unsigned char)(0x80 | cc));
1828       emit_int32(offs - long_size);
1829     }
1830   } else {
1831     // Note: could eliminate cond. jumps to this jump if condition
1832     //       is the same however, seems to be rather unlikely case.
1833     // Note: use jccb() if label to be bound is very close to get
1834     //       an 8-bit displacement
1835     L.add_patch_at(code(), locator());
1836     emit_int8(0x0F);
1837     emit_int8((unsigned char)(0x80 | cc));
1838     emit_int32(0);
1839   }
1840 }
1841 
1842 void Assembler::jccb(Condition cc, Label& L) {
1843   if (L.is_bound()) {
1844     const int short_size = 2;
1845     address entry = target(L);
1846 #ifdef ASSERT
1847     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1848     intptr_t delta = short_branch_delta();
1849     if (delta != 0) {
1850       dist += (dist < 0 ? (-delta) :delta);
1851     }
1852     assert(is8bit(dist), "Dispacement too large for a short jmp");
1853 #endif
1854     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1855     // 0111 tttn #8-bit disp
1856     emit_int8(0x70 | cc);
1857     emit_int8((offs - short_size) & 0xFF);
1858   } else {
1859     InstructionMark im(this);
1860     L.add_patch_at(code(), locator());
1861     emit_int8(0x70 | cc);
1862     emit_int8(0);
1863   }
1864 }
1865 
1866 void Assembler::jmp(Address adr) {
1867   InstructionMark im(this);
1868   prefix(adr);
1869   emit_int8((unsigned char)0xFF);
1870   emit_operand(rsp, adr);
1871 }
1872 
1873 void Assembler::jmp(Label& L, bool maybe_short) {
1874   if (L.is_bound()) {
1875     address entry = target(L);
1876     assert(entry != NULL, "jmp most probably wrong");
1877     InstructionMark im(this);
1878     const int short_size = 2;
1879     const int long_size = 5;
1880     intptr_t offs = entry - pc();
1881     if (maybe_short && is8bit(offs - short_size)) {
1882       emit_int8((unsigned char)0xEB);
1883       emit_int8((offs - short_size) & 0xFF);
1884     } else {
1885       emit_int8((unsigned char)0xE9);
1886       emit_int32(offs - long_size);
1887     }
1888   } else {
1889     // By default, forward jumps are always 32-bit displacements, since
1890     // we can't yet know where the label will be bound.  If you're sure that
1891     // the forward jump will not run beyond 256 bytes, use jmpb to
1892     // force an 8-bit displacement.
1893     InstructionMark im(this);
1894     L.add_patch_at(code(), locator());
1895     emit_int8((unsigned char)0xE9);
1896     emit_int32(0);
1897   }
1898 }
1899 
1900 void Assembler::jmp(Register entry) {
1901   int encode = prefix_and_encode(entry->encoding());
1902   emit_int8((unsigned char)0xFF);
1903   emit_int8((unsigned char)(0xE0 | encode));
1904 }
1905 
1906 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
1907   InstructionMark im(this);
1908   emit_int8((unsigned char)0xE9);
1909   assert(dest != NULL, "must have a target");
1910   intptr_t disp = dest - (pc() + sizeof(int32_t));
1911   assert(is_simm32(disp), "must be 32bit offset (jmp)");
1912   emit_data(disp, rspec.reloc(), call32_operand);
1913 }
1914 
1915 void Assembler::jmpb(Label& L) {
1916   if (L.is_bound()) {
1917     const int short_size = 2;
1918     address entry = target(L);
1919     assert(entry != NULL, "jmp most probably wrong");
1920 #ifdef ASSERT
1921     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1922     intptr_t delta = short_branch_delta();
1923     if (delta != 0) {
1924       dist += (dist < 0 ? (-delta) :delta);
1925     }
1926     assert(is8bit(dist), "Dispacement too large for a short jmp");
1927 #endif
1928     intptr_t offs = entry - pc();
1929     emit_int8((unsigned char)0xEB);
1930     emit_int8((offs - short_size) & 0xFF);
1931   } else {
1932     InstructionMark im(this);
1933     L.add_patch_at(code(), locator());
1934     emit_int8((unsigned char)0xEB);
1935     emit_int8(0);
1936   }
1937 }
1938 
1939 void Assembler::ldmxcsr( Address src) {
1940   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1941   InstructionMark im(this);
1942   prefix(src);
1943   emit_int8(0x0F);
1944   emit_int8((unsigned char)0xAE);
1945   emit_operand(as_Register(2), src);
1946 }
1947 
1948 void Assembler::leal(Register dst, Address src) {
1949   InstructionMark im(this);
1950 #ifdef _LP64
1951   emit_int8(0x67); // addr32
1952   prefix(src, dst);
1953 #endif // LP64
1954   emit_int8((unsigned char)0x8D);
1955   emit_operand(dst, src);
1956 }
1957 
1958 void Assembler::lfence() {
1959   emit_int8(0x0F);
1960   emit_int8((unsigned char)0xAE);
1961   emit_int8((unsigned char)0xE8);
1962 }
1963 
1964 void Assembler::lock() {
1965   emit_int8((unsigned char)0xF0);
1966 }
1967 
1968 void Assembler::lzcntl(Register dst, Register src) {
1969   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
1970   emit_int8((unsigned char)0xF3);
1971   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1972   emit_int8(0x0F);
1973   emit_int8((unsigned char)0xBD);
1974   emit_int8((unsigned char)(0xC0 | encode));
1975 }
1976 
1977 // Emit mfence instruction
1978 void Assembler::mfence() {
1979   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
1980   emit_int8(0x0F);
1981   emit_int8((unsigned char)0xAE);
1982   emit_int8((unsigned char)0xF0);
1983 }
1984 
1985 void Assembler::mov(Register dst, Register src) {
1986   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
1987 }
1988 
1989 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
1990   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1991   if (VM_Version::supports_evex()) {
1992     emit_simd_arith_nonds_q(0x28, dst, src, VEX_SIMD_66, true);
1993   } else {
1994     emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
1995   }
1996 }
1997 
1998 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
1999   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2000   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
2001 }
2002 
2003 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2004   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2005   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, true, VEX_OPCODE_0F,
2006                                       false, AVX_128bit);
2007   emit_int8(0x16);
2008   emit_int8((unsigned char)(0xC0 | encode));
2009 }
2010 
2011 void Assembler::movb(Register dst, Address src) {
2012   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2013   InstructionMark im(this);
2014   prefix(src, dst, true);
2015   emit_int8((unsigned char)0x8A);
2016   emit_operand(dst, src);
2017 }
2018 
2019 void Assembler::kmovq(KRegister dst, KRegister src) {
2020   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2021   int encode = kreg_prefix_and_encode(dst, knoreg, src, VEX_SIMD_NONE,
2022                                       true, VEX_OPCODE_0F, true);
2023   emit_int8((unsigned char)0x90);
2024   emit_int8((unsigned char)(0xC0 | encode));
2025 }
2026 
2027 void Assembler::kmovq(KRegister dst, Address src) {
2028   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2029   int dst_enc = dst->encoding();
2030   int nds_enc = 0;
2031   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_NONE,
2032              VEX_OPCODE_0F, true, AVX_128bit, true, true);
2033   emit_int8((unsigned char)0x90);
2034   emit_operand((Register)dst, src);
2035 }
2036 
2037 void Assembler::kmovq(Address dst, KRegister src) {
2038   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2039   int src_enc = src->encoding();
2040   int nds_enc = 0;
2041   vex_prefix(dst, nds_enc, src_enc, VEX_SIMD_NONE,
2042              VEX_OPCODE_0F, true, AVX_128bit, true, true);
2043   emit_int8((unsigned char)0x90);
2044   emit_operand((Register)src, dst);
2045 }
2046 
2047 void Assembler::kmovql(KRegister dst, Register src) {
2048   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2049   bool supports_bw = VM_Version::supports_avx512bw();
2050   VexSimdPrefix pre = supports_bw ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2051   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, true,
2052                                       VEX_OPCODE_0F, supports_bw);
2053   emit_int8((unsigned char)0x92);
2054   emit_int8((unsigned char)(0xC0 | encode));
2055 }
2056 
2057 void Assembler::kmovdl(KRegister dst, Register src) {
2058   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2059   VexSimdPrefix pre = VM_Version::supports_avx512bw() ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2060   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, true, VEX_OPCODE_0F, false);
2061   emit_int8((unsigned char)0x92);
2062   emit_int8((unsigned char)(0xC0 | encode));
2063 }
2064 
2065 void Assembler::movb(Address dst, int imm8) {
2066   InstructionMark im(this);
2067    prefix(dst);
2068   emit_int8((unsigned char)0xC6);
2069   emit_operand(rax, dst, 1);
2070   emit_int8(imm8);
2071 }
2072 
2073 
2074 void Assembler::movb(Address dst, Register src) {
2075   assert(src->has_byte_register(), "must have byte register");
2076   InstructionMark im(this);
2077   prefix(dst, src, true);
2078   emit_int8((unsigned char)0x88);
2079   emit_operand(src, dst);
2080 }
2081 
2082 void Assembler::movdl(XMMRegister dst, Register src) {
2083   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2084   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, true);
2085   emit_int8(0x6E);
2086   emit_int8((unsigned char)(0xC0 | encode));
2087 }
2088 
2089 void Assembler::movdl(Register dst, XMMRegister src) {
2090   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2091   // swap src/dst to get correct prefix
2092   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66, true);
2093   emit_int8(0x7E);
2094   emit_int8((unsigned char)(0xC0 | encode));
2095 }
2096 
2097 void Assembler::movdl(XMMRegister dst, Address src) {
2098   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2099   if (VM_Version::supports_evex()) {
2100     tuple_type = EVEX_T1S;
2101     input_size_in_bits = EVEX_32bit;
2102   }
2103   InstructionMark im(this);
2104   simd_prefix(dst, src, VEX_SIMD_66, true, VEX_OPCODE_0F);
2105   emit_int8(0x6E);
2106   emit_operand(dst, src);
2107 }
2108 
2109 void Assembler::movdl(Address dst, XMMRegister src) {
2110   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2111   if (VM_Version::supports_evex()) {
2112     tuple_type = EVEX_T1S;
2113     input_size_in_bits = EVEX_32bit;
2114   }
2115   InstructionMark im(this);
2116   simd_prefix(dst, src, VEX_SIMD_66, true);
2117   emit_int8(0x7E);
2118   emit_operand(src, dst);
2119 }
2120 
2121 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2122   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2123   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
2124 }
2125 
2126 void Assembler::movdqa(XMMRegister dst, Address src) {
2127   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2128   if (VM_Version::supports_evex()) {
2129     tuple_type = EVEX_FVM;
2130   }
2131   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
2132 }
2133 
2134 void Assembler::movdqu(XMMRegister dst, Address src) {
2135   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2136   if (VM_Version::supports_evex()) {
2137     tuple_type = EVEX_FVM;
2138   }
2139   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
2140 }
2141 
2142 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2143   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2144   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
2145 }
2146 
2147 void Assembler::movdqu(Address dst, XMMRegister src) {
2148   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2149   if (VM_Version::supports_evex()) {
2150     tuple_type = EVEX_FVM;
2151   }
2152   InstructionMark im(this);
2153   simd_prefix(dst, src, VEX_SIMD_F3, false);
2154   emit_int8(0x7F);
2155   emit_operand(src, dst);
2156 }
2157 
2158 // Move Unaligned 256bit Vector
2159 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2160   assert(UseAVX > 0, "");
2161   if (VM_Version::supports_evex()) {
2162     tuple_type = EVEX_FVM;
2163   }
2164   int vector_len = AVX_256bit;
2165   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector_len);
2166   emit_int8(0x6F);
2167   emit_int8((unsigned char)(0xC0 | encode));
2168 }
2169 
2170 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2171   assert(UseAVX > 0, "");
2172   if (VM_Version::supports_evex()) {
2173     tuple_type = EVEX_FVM;
2174   }
2175   InstructionMark im(this);
2176   int vector_len = AVX_256bit;
2177   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2178   emit_int8(0x6F);
2179   emit_operand(dst, src);
2180 }
2181 
2182 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2183   assert(UseAVX > 0, "");
2184   if (VM_Version::supports_evex()) {
2185     tuple_type = EVEX_FVM;
2186   }
2187   InstructionMark im(this);
2188   int vector_len = AVX_256bit;
2189   // swap src<->dst for encoding
2190   assert(src != xnoreg, "sanity");
2191   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2192   emit_int8(0x7F);
2193   emit_operand(src, dst);
2194 }
2195 
2196 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2197 void Assembler::evmovdqu(XMMRegister dst, XMMRegister src, int vector_len) {
2198   assert(UseAVX > 0, "");
2199   int src_enc = src->encoding();
2200   int dst_enc = dst->encoding();
2201   int encode = vex_prefix_and_encode(dst_enc, 0, src_enc, VEX_SIMD_F3, VEX_OPCODE_0F,
2202                                      true, vector_len, false, false);
2203   emit_int8(0x6F);
2204   emit_int8((unsigned char)(0xC0 | encode));
2205 }
2206 
2207 void Assembler::evmovdqu(XMMRegister dst, Address src, int vector_len) {
2208   assert(UseAVX > 0, "");
2209   InstructionMark im(this);
2210   if (VM_Version::supports_evex()) {
2211     tuple_type = EVEX_FVM;
2212     vex_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2213   } else {
2214     vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2215   }
2216   emit_int8(0x6F);
2217   emit_operand(dst, src);
2218 }
2219 
2220 void Assembler::evmovdqu(Address dst, XMMRegister src, int vector_len) {
2221   assert(UseAVX > 0, "");
2222   InstructionMark im(this);
2223   assert(src != xnoreg, "sanity");
2224   if (VM_Version::supports_evex()) {
2225     tuple_type = EVEX_FVM;
2226     // swap src<->dst for encoding
2227     vex_prefix_q(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2228   } else {
2229     // swap src<->dst for encoding
2230     vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2231   }
2232   emit_int8(0x7F);
2233   emit_operand(src, dst);
2234 }
2235 
2236 // Uses zero extension on 64bit
2237 
2238 void Assembler::movl(Register dst, int32_t imm32) {
2239   int encode = prefix_and_encode(dst->encoding());
2240   emit_int8((unsigned char)(0xB8 | encode));
2241   emit_int32(imm32);
2242 }
2243 
2244 void Assembler::movl(Register dst, Register src) {
2245   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2246   emit_int8((unsigned char)0x8B);
2247   emit_int8((unsigned char)(0xC0 | encode));
2248 }
2249 
2250 void Assembler::movl(Register dst, Address src) {
2251   InstructionMark im(this);
2252   prefix(src, dst);
2253   emit_int8((unsigned char)0x8B);
2254   emit_operand(dst, src);
2255 }
2256 
2257 void Assembler::movl(Address dst, int32_t imm32) {
2258   InstructionMark im(this);
2259   prefix(dst);
2260   emit_int8((unsigned char)0xC7);
2261   emit_operand(rax, dst, 4);
2262   emit_int32(imm32);
2263 }
2264 
2265 void Assembler::movl(Address dst, Register src) {
2266   InstructionMark im(this);
2267   prefix(dst, src);
2268   emit_int8((unsigned char)0x89);
2269   emit_operand(src, dst);
2270 }
2271 
2272 // New cpus require to use movsd and movss to avoid partial register stall
2273 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2274 // The selection is done in MacroAssembler::movdbl() and movflt().
2275 void Assembler::movlpd(XMMRegister dst, Address src) {
2276   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2277   if (VM_Version::supports_evex()) {
2278     tuple_type = EVEX_T1S;
2279     input_size_in_bits = EVEX_32bit;
2280   }
2281   emit_simd_arith(0x12, dst, src, VEX_SIMD_66, true);
2282 }
2283 
2284 void Assembler::movq( MMXRegister dst, Address src ) {
2285   assert( VM_Version::supports_mmx(), "" );
2286   emit_int8(0x0F);
2287   emit_int8(0x6F);
2288   emit_operand(dst, src);
2289 }
2290 
2291 void Assembler::movq( Address dst, MMXRegister src ) {
2292   assert( VM_Version::supports_mmx(), "" );
2293   emit_int8(0x0F);
2294   emit_int8(0x7F);
2295   // workaround gcc (3.2.1-7a) bug
2296   // In that version of gcc with only an emit_operand(MMX, Address)
2297   // gcc will tail jump and try and reverse the parameters completely
2298   // obliterating dst in the process. By having a version available
2299   // that doesn't need to swap the args at the tail jump the bug is
2300   // avoided.
2301   emit_operand(dst, src);
2302 }
2303 
2304 void Assembler::movq(XMMRegister dst, Address src) {
2305   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2306   InstructionMark im(this);
2307   if (VM_Version::supports_evex()) {
2308     tuple_type = EVEX_T1S;
2309     input_size_in_bits = EVEX_64bit;
2310     simd_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, true);
2311   } else {
2312     simd_prefix(dst, src, VEX_SIMD_F3, true, VEX_OPCODE_0F);
2313   }
2314   emit_int8(0x7E);
2315   emit_operand(dst, src);
2316 }
2317 
2318 void Assembler::movq(Address dst, XMMRegister src) {
2319   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2320   InstructionMark im(this);
2321   if (VM_Version::supports_evex()) {
2322     tuple_type = EVEX_T1S;
2323     input_size_in_bits = EVEX_64bit;
2324     simd_prefix(src, xnoreg, dst, VEX_SIMD_66, true,
2325                 VEX_OPCODE_0F, true, AVX_128bit);
2326   } else {
2327     simd_prefix(dst, src, VEX_SIMD_66, true);
2328   }
2329   emit_int8((unsigned char)0xD6);
2330   emit_operand(src, dst);
2331 }
2332 
2333 void Assembler::movsbl(Register dst, Address src) { // movsxb
2334   InstructionMark im(this);
2335   prefix(src, dst);
2336   emit_int8(0x0F);
2337   emit_int8((unsigned char)0xBE);
2338   emit_operand(dst, src);
2339 }
2340 
2341 void Assembler::movsbl(Register dst, Register src) { // movsxb
2342   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2343   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
2344   emit_int8(0x0F);
2345   emit_int8((unsigned char)0xBE);
2346   emit_int8((unsigned char)(0xC0 | encode));
2347 }
2348 
2349 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2350   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2351   if (VM_Version::supports_evex()) {
2352     emit_simd_arith_q(0x10, dst, src, VEX_SIMD_F2, true);
2353   } else {
2354     emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
2355   }
2356 }
2357 
2358 void Assembler::movsd(XMMRegister dst, Address src) {
2359   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2360   if (VM_Version::supports_evex()) {
2361     tuple_type = EVEX_T1S;
2362     input_size_in_bits = EVEX_64bit;
2363     emit_simd_arith_nonds_q(0x10, dst, src, VEX_SIMD_F2, true);
2364   } else {
2365     emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
2366   }
2367 }
2368 
2369 void Assembler::movsd(Address dst, XMMRegister src) {
2370   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2371   InstructionMark im(this);
2372   if (VM_Version::supports_evex()) {
2373     tuple_type = EVEX_T1S;
2374     input_size_in_bits = EVEX_64bit;
2375     simd_prefix_q(src, xnoreg, dst, VEX_SIMD_F2);
2376   } else {
2377     simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, false);
2378   }
2379   emit_int8(0x11);
2380   emit_operand(src, dst);
2381 }
2382 
2383 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2384   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2385   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3, true);
2386 }
2387 
2388 void Assembler::movss(XMMRegister dst, Address src) {
2389   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2390   if (VM_Version::supports_evex()) {
2391     tuple_type = EVEX_T1S;
2392     input_size_in_bits = EVEX_32bit;
2393   }
2394   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3, true);
2395 }
2396 
2397 void Assembler::movss(Address dst, XMMRegister src) {
2398   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2399   if (VM_Version::supports_evex()) {
2400     tuple_type = EVEX_T1S;
2401     input_size_in_bits = EVEX_32bit;
2402   }
2403   InstructionMark im(this);
2404   simd_prefix(dst, src, VEX_SIMD_F3, false);
2405   emit_int8(0x11);
2406   emit_operand(src, dst);
2407 }
2408 
2409 void Assembler::movswl(Register dst, Address src) { // movsxw
2410   InstructionMark im(this);
2411   prefix(src, dst);
2412   emit_int8(0x0F);
2413   emit_int8((unsigned char)0xBF);
2414   emit_operand(dst, src);
2415 }
2416 
2417 void Assembler::movswl(Register dst, Register src) { // movsxw
2418   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2419   emit_int8(0x0F);
2420   emit_int8((unsigned char)0xBF);
2421   emit_int8((unsigned char)(0xC0 | encode));
2422 }
2423 
2424 void Assembler::movw(Address dst, int imm16) {
2425   InstructionMark im(this);
2426 
2427   emit_int8(0x66); // switch to 16-bit mode
2428   prefix(dst);
2429   emit_int8((unsigned char)0xC7);
2430   emit_operand(rax, dst, 2);
2431   emit_int16(imm16);
2432 }
2433 
2434 void Assembler::movw(Register dst, Address src) {
2435   InstructionMark im(this);
2436   emit_int8(0x66);
2437   prefix(src, dst);
2438   emit_int8((unsigned char)0x8B);
2439   emit_operand(dst, src);
2440 }
2441 
2442 void Assembler::movw(Address dst, Register src) {
2443   InstructionMark im(this);
2444   emit_int8(0x66);
2445   prefix(dst, src);
2446   emit_int8((unsigned char)0x89);
2447   emit_operand(src, dst);
2448 }
2449 
2450 void Assembler::movzbl(Register dst, Address src) { // movzxb
2451   InstructionMark im(this);
2452   prefix(src, dst);
2453   emit_int8(0x0F);
2454   emit_int8((unsigned char)0xB6);
2455   emit_operand(dst, src);
2456 }
2457 
2458 void Assembler::movzbl(Register dst, Register src) { // movzxb
2459   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2460   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
2461   emit_int8(0x0F);
2462   emit_int8((unsigned char)0xB6);
2463   emit_int8(0xC0 | encode);
2464 }
2465 
2466 void Assembler::movzwl(Register dst, Address src) { // movzxw
2467   InstructionMark im(this);
2468   prefix(src, dst);
2469   emit_int8(0x0F);
2470   emit_int8((unsigned char)0xB7);
2471   emit_operand(dst, src);
2472 }
2473 
2474 void Assembler::movzwl(Register dst, Register src) { // movzxw
2475   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2476   emit_int8(0x0F);
2477   emit_int8((unsigned char)0xB7);
2478   emit_int8(0xC0 | encode);
2479 }
2480 
2481 void Assembler::mull(Address src) {
2482   InstructionMark im(this);
2483   prefix(src);
2484   emit_int8((unsigned char)0xF7);
2485   emit_operand(rsp, src);
2486 }
2487 
2488 void Assembler::mull(Register src) {
2489   int encode = prefix_and_encode(src->encoding());
2490   emit_int8((unsigned char)0xF7);
2491   emit_int8((unsigned char)(0xE0 | encode));
2492 }
2493 
2494 void Assembler::mulsd(XMMRegister dst, Address src) {
2495   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2496   if (VM_Version::supports_evex()) {
2497     tuple_type = EVEX_T1S;
2498     input_size_in_bits = EVEX_64bit;
2499     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_F2);
2500   } else {
2501     emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2502   }
2503 }
2504 
2505 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2506   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2507   if (VM_Version::supports_evex()) {
2508     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_F2);
2509   } else {
2510     emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2511   }
2512 }
2513 
2514 void Assembler::mulss(XMMRegister dst, Address src) {
2515   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2516   if (VM_Version::supports_evex()) {
2517     tuple_type = EVEX_T1S;
2518     input_size_in_bits = EVEX_32bit;
2519   }
2520   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2521 }
2522 
2523 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2524   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2525   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2526 }
2527 
2528 void Assembler::negl(Register dst) {
2529   int encode = prefix_and_encode(dst->encoding());
2530   emit_int8((unsigned char)0xF7);
2531   emit_int8((unsigned char)(0xD8 | encode));
2532 }
2533 
2534 void Assembler::nop(int i) {
2535 #ifdef ASSERT
2536   assert(i > 0, " ");
2537   // The fancy nops aren't currently recognized by debuggers making it a
2538   // pain to disassemble code while debugging. If asserts are on clearly
2539   // speed is not an issue so simply use the single byte traditional nop
2540   // to do alignment.
2541 
2542   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2543   return;
2544 
2545 #endif // ASSERT
2546 
2547   if (UseAddressNop && VM_Version::is_intel()) {
2548     //
2549     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2550     //  1: 0x90
2551     //  2: 0x66 0x90
2552     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2553     //  4: 0x0F 0x1F 0x40 0x00
2554     //  5: 0x0F 0x1F 0x44 0x00 0x00
2555     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2556     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2557     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2558     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2559     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2560     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2561 
2562     // The rest coding is Intel specific - don't use consecutive address nops
2563 
2564     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2565     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2566     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2567     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2568 
2569     while(i >= 15) {
2570       // For Intel don't generate consecutive addess nops (mix with regular nops)
2571       i -= 15;
2572       emit_int8(0x66);   // size prefix
2573       emit_int8(0x66);   // size prefix
2574       emit_int8(0x66);   // size prefix
2575       addr_nop_8();
2576       emit_int8(0x66);   // size prefix
2577       emit_int8(0x66);   // size prefix
2578       emit_int8(0x66);   // size prefix
2579       emit_int8((unsigned char)0x90);
2580                          // nop
2581     }
2582     switch (i) {
2583       case 14:
2584         emit_int8(0x66); // size prefix
2585       case 13:
2586         emit_int8(0x66); // size prefix
2587       case 12:
2588         addr_nop_8();
2589         emit_int8(0x66); // size prefix
2590         emit_int8(0x66); // size prefix
2591         emit_int8(0x66); // size prefix
2592         emit_int8((unsigned char)0x90);
2593                          // nop
2594         break;
2595       case 11:
2596         emit_int8(0x66); // size prefix
2597       case 10:
2598         emit_int8(0x66); // size prefix
2599       case 9:
2600         emit_int8(0x66); // size prefix
2601       case 8:
2602         addr_nop_8();
2603         break;
2604       case 7:
2605         addr_nop_7();
2606         break;
2607       case 6:
2608         emit_int8(0x66); // size prefix
2609       case 5:
2610         addr_nop_5();
2611         break;
2612       case 4:
2613         addr_nop_4();
2614         break;
2615       case 3:
2616         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2617         emit_int8(0x66); // size prefix
2618       case 2:
2619         emit_int8(0x66); // size prefix
2620       case 1:
2621         emit_int8((unsigned char)0x90);
2622                          // nop
2623         break;
2624       default:
2625         assert(i == 0, " ");
2626     }
2627     return;
2628   }
2629   if (UseAddressNop && VM_Version::is_amd()) {
2630     //
2631     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2632     //  1: 0x90
2633     //  2: 0x66 0x90
2634     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2635     //  4: 0x0F 0x1F 0x40 0x00
2636     //  5: 0x0F 0x1F 0x44 0x00 0x00
2637     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2638     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2639     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2640     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2641     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2642     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2643 
2644     // The rest coding is AMD specific - use consecutive address nops
2645 
2646     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2647     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2648     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2649     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2650     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2651     //     Size prefixes (0x66) are added for larger sizes
2652 
2653     while(i >= 22) {
2654       i -= 11;
2655       emit_int8(0x66); // size prefix
2656       emit_int8(0x66); // size prefix
2657       emit_int8(0x66); // size prefix
2658       addr_nop_8();
2659     }
2660     // Generate first nop for size between 21-12
2661     switch (i) {
2662       case 21:
2663         i -= 1;
2664         emit_int8(0x66); // size prefix
2665       case 20:
2666       case 19:
2667         i -= 1;
2668         emit_int8(0x66); // size prefix
2669       case 18:
2670       case 17:
2671         i -= 1;
2672         emit_int8(0x66); // size prefix
2673       case 16:
2674       case 15:
2675         i -= 8;
2676         addr_nop_8();
2677         break;
2678       case 14:
2679       case 13:
2680         i -= 7;
2681         addr_nop_7();
2682         break;
2683       case 12:
2684         i -= 6;
2685         emit_int8(0x66); // size prefix
2686         addr_nop_5();
2687         break;
2688       default:
2689         assert(i < 12, " ");
2690     }
2691 
2692     // Generate second nop for size between 11-1
2693     switch (i) {
2694       case 11:
2695         emit_int8(0x66); // size prefix
2696       case 10:
2697         emit_int8(0x66); // size prefix
2698       case 9:
2699         emit_int8(0x66); // size prefix
2700       case 8:
2701         addr_nop_8();
2702         break;
2703       case 7:
2704         addr_nop_7();
2705         break;
2706       case 6:
2707         emit_int8(0x66); // size prefix
2708       case 5:
2709         addr_nop_5();
2710         break;
2711       case 4:
2712         addr_nop_4();
2713         break;
2714       case 3:
2715         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2716         emit_int8(0x66); // size prefix
2717       case 2:
2718         emit_int8(0x66); // size prefix
2719       case 1:
2720         emit_int8((unsigned char)0x90);
2721                          // nop
2722         break;
2723       default:
2724         assert(i == 0, " ");
2725     }
2726     return;
2727   }
2728 
2729   // Using nops with size prefixes "0x66 0x90".
2730   // From AMD Optimization Guide:
2731   //  1: 0x90
2732   //  2: 0x66 0x90
2733   //  3: 0x66 0x66 0x90
2734   //  4: 0x66 0x66 0x66 0x90
2735   //  5: 0x66 0x66 0x90 0x66 0x90
2736   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2737   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2738   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2739   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2740   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2741   //
2742   while(i > 12) {
2743     i -= 4;
2744     emit_int8(0x66); // size prefix
2745     emit_int8(0x66);
2746     emit_int8(0x66);
2747     emit_int8((unsigned char)0x90);
2748                      // nop
2749   }
2750   // 1 - 12 nops
2751   if(i > 8) {
2752     if(i > 9) {
2753       i -= 1;
2754       emit_int8(0x66);
2755     }
2756     i -= 3;
2757     emit_int8(0x66);
2758     emit_int8(0x66);
2759     emit_int8((unsigned char)0x90);
2760   }
2761   // 1 - 8 nops
2762   if(i > 4) {
2763     if(i > 6) {
2764       i -= 1;
2765       emit_int8(0x66);
2766     }
2767     i -= 3;
2768     emit_int8(0x66);
2769     emit_int8(0x66);
2770     emit_int8((unsigned char)0x90);
2771   }
2772   switch (i) {
2773     case 4:
2774       emit_int8(0x66);
2775     case 3:
2776       emit_int8(0x66);
2777     case 2:
2778       emit_int8(0x66);
2779     case 1:
2780       emit_int8((unsigned char)0x90);
2781       break;
2782     default:
2783       assert(i == 0, " ");
2784   }
2785 }
2786 
2787 void Assembler::notl(Register dst) {
2788   int encode = prefix_and_encode(dst->encoding());
2789   emit_int8((unsigned char)0xF7);
2790   emit_int8((unsigned char)(0xD0 | encode));
2791 }
2792 
2793 void Assembler::orl(Address dst, int32_t imm32) {
2794   InstructionMark im(this);
2795   prefix(dst);
2796   emit_arith_operand(0x81, rcx, dst, imm32);
2797 }
2798 
2799 void Assembler::orl(Register dst, int32_t imm32) {
2800   prefix(dst);
2801   emit_arith(0x81, 0xC8, dst, imm32);
2802 }
2803 
2804 void Assembler::orl(Register dst, Address src) {
2805   InstructionMark im(this);
2806   prefix(src, dst);
2807   emit_int8(0x0B);
2808   emit_operand(dst, src);
2809 }
2810 
2811 void Assembler::orl(Register dst, Register src) {
2812   (void) prefix_and_encode(dst->encoding(), src->encoding());
2813   emit_arith(0x0B, 0xC0, dst, src);
2814 }
2815 
2816 void Assembler::orl(Address dst, Register src) {
2817   InstructionMark im(this);
2818   prefix(dst, src);
2819   emit_int8(0x09);
2820   emit_operand(src, dst);
2821 }
2822 
2823 void Assembler::packuswb(XMMRegister dst, Address src) {
2824   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2825   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2826   if (VM_Version::supports_evex()) {
2827     tuple_type = EVEX_FV;
2828     input_size_in_bits = EVEX_32bit;
2829   }
2830   emit_simd_arith(0x67, dst, src, VEX_SIMD_66,
2831                   false, (VM_Version::supports_avx512dq() == false));
2832 }
2833 
2834 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
2835   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2836   emit_simd_arith(0x67, dst, src, VEX_SIMD_66,
2837                   false, (VM_Version::supports_avx512dq() == false));
2838 }
2839 
2840 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
2841   assert(UseAVX > 0, "some form of AVX must be enabled");
2842   emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector_len,
2843                  false, (VM_Version::supports_avx512dq() == false));
2844 }
2845 
2846 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
2847   assert(VM_Version::supports_avx2(), "");
2848   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false,
2849                                       VEX_OPCODE_0F_3A, true, vector_len);
2850   emit_int8(0x00);
2851   emit_int8(0xC0 | encode);
2852   emit_int8(imm8);
2853 }
2854 
2855 void Assembler::pause() {
2856   emit_int8((unsigned char)0xF3);
2857   emit_int8((unsigned char)0x90);
2858 }
2859 
2860 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
2861   assert(VM_Version::supports_sse4_2(), "");
2862   InstructionMark im(this);
2863   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, false, VEX_OPCODE_0F_3A,
2864               false, AVX_128bit, true);
2865   emit_int8(0x61);
2866   emit_operand(dst, src);
2867   emit_int8(imm8);
2868 }
2869 
2870 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
2871   assert(VM_Version::supports_sse4_2(), "");
2872   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false,
2873                                       VEX_OPCODE_0F_3A, false, AVX_128bit, true);
2874   emit_int8(0x61);
2875   emit_int8((unsigned char)(0xC0 | encode));
2876   emit_int8(imm8);
2877 }
2878 
2879 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
2880   assert(VM_Version::supports_sse4_1(), "");
2881   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2882                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2883   emit_int8(0x16);
2884   emit_int8((unsigned char)(0xC0 | encode));
2885   emit_int8(imm8);
2886 }
2887 
2888 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
2889   assert(VM_Version::supports_sse4_1(), "");
2890   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2891                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2892   emit_int8(0x16);
2893   emit_int8((unsigned char)(0xC0 | encode));
2894   emit_int8(imm8);
2895 }
2896 
2897 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
2898   assert(VM_Version::supports_sse4_1(), "");
2899   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2900                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2901   emit_int8(0x22);
2902   emit_int8((unsigned char)(0xC0 | encode));
2903   emit_int8(imm8);
2904 }
2905 
2906 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
2907   assert(VM_Version::supports_sse4_1(), "");
2908   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2909                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2910   emit_int8(0x22);
2911   emit_int8((unsigned char)(0xC0 | encode));
2912   emit_int8(imm8);
2913 }
2914 
2915 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
2916   assert(VM_Version::supports_sse4_1(), "");
2917   if (VM_Version::supports_evex()) {
2918     tuple_type = EVEX_HVM;
2919   }
2920   InstructionMark im(this);
2921   simd_prefix(dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38);
2922   emit_int8(0x30);
2923   emit_operand(dst, src);
2924 }
2925 
2926 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
2927   assert(VM_Version::supports_sse4_1(), "");
2928   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38);
2929   emit_int8(0x30);
2930   emit_int8((unsigned char)(0xC0 | encode));
2931 }
2932 
2933 // generic
2934 void Assembler::pop(Register dst) {
2935   int encode = prefix_and_encode(dst->encoding());
2936   emit_int8(0x58 | encode);
2937 }
2938 
2939 void Assembler::popcntl(Register dst, Address src) {
2940   assert(VM_Version::supports_popcnt(), "must support");
2941   InstructionMark im(this);
2942   emit_int8((unsigned char)0xF3);
2943   prefix(src, dst);
2944   emit_int8(0x0F);
2945   emit_int8((unsigned char)0xB8);
2946   emit_operand(dst, src);
2947 }
2948 
2949 void Assembler::popcntl(Register dst, Register src) {
2950   assert(VM_Version::supports_popcnt(), "must support");
2951   emit_int8((unsigned char)0xF3);
2952   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2953   emit_int8(0x0F);
2954   emit_int8((unsigned char)0xB8);
2955   emit_int8((unsigned char)(0xC0 | encode));
2956 }
2957 
2958 void Assembler::popf() {
2959   emit_int8((unsigned char)0x9D);
2960 }
2961 
2962 #ifndef _LP64 // no 32bit push/pop on amd64
2963 void Assembler::popl(Address dst) {
2964   // NOTE: this will adjust stack by 8byte on 64bits
2965   InstructionMark im(this);
2966   prefix(dst);
2967   emit_int8((unsigned char)0x8F);
2968   emit_operand(rax, dst);
2969 }
2970 #endif
2971 
2972 void Assembler::prefetch_prefix(Address src) {
2973   prefix(src);
2974   emit_int8(0x0F);
2975 }
2976 
2977 void Assembler::prefetchnta(Address src) {
2978   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2979   InstructionMark im(this);
2980   prefetch_prefix(src);
2981   emit_int8(0x18);
2982   emit_operand(rax, src); // 0, src
2983 }
2984 
2985 void Assembler::prefetchr(Address src) {
2986   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2987   InstructionMark im(this);
2988   prefetch_prefix(src);
2989   emit_int8(0x0D);
2990   emit_operand(rax, src); // 0, src
2991 }
2992 
2993 void Assembler::prefetcht0(Address src) {
2994   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2995   InstructionMark im(this);
2996   prefetch_prefix(src);
2997   emit_int8(0x18);
2998   emit_operand(rcx, src); // 1, src
2999 }
3000 
3001 void Assembler::prefetcht1(Address src) {
3002   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3003   InstructionMark im(this);
3004   prefetch_prefix(src);
3005   emit_int8(0x18);
3006   emit_operand(rdx, src); // 2, src
3007 }
3008 
3009 void Assembler::prefetcht2(Address src) {
3010   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3011   InstructionMark im(this);
3012   prefetch_prefix(src);
3013   emit_int8(0x18);
3014   emit_operand(rbx, src); // 3, src
3015 }
3016 
3017 void Assembler::prefetchw(Address src) {
3018   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3019   InstructionMark im(this);
3020   prefetch_prefix(src);
3021   emit_int8(0x0D);
3022   emit_operand(rcx, src); // 1, src
3023 }
3024 
3025 void Assembler::prefix(Prefix p) {
3026   emit_int8(p);
3027 }
3028 
3029 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3030   assert(VM_Version::supports_ssse3(), "");
3031   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38,
3032                                       false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3033   emit_int8(0x00);
3034   emit_int8((unsigned char)(0xC0 | encode));
3035 }
3036 
3037 void Assembler::pshufb(XMMRegister dst, Address src) {
3038   assert(VM_Version::supports_ssse3(), "");
3039   if (VM_Version::supports_evex()) {
3040     tuple_type = EVEX_FVM;
3041   }
3042   InstructionMark im(this);
3043   simd_prefix(dst, dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38,
3044               false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3045   emit_int8(0x00);
3046   emit_operand(dst, src);
3047 }
3048 
3049 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
3050   assert(isByte(mode), "invalid value");
3051   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3052   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
3053   emit_int8(mode & 0xFF);
3054 
3055 }
3056 
3057 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
3058   assert(isByte(mode), "invalid value");
3059   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3060   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3061   if (VM_Version::supports_evex()) {
3062     tuple_type = EVEX_FV;
3063     input_size_in_bits = EVEX_32bit;
3064   }
3065   InstructionMark im(this);
3066   simd_prefix(dst, src, VEX_SIMD_66, false);
3067   emit_int8(0x70);
3068   emit_operand(dst, src);
3069   emit_int8(mode & 0xFF);
3070 }
3071 
3072 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3073   assert(isByte(mode), "invalid value");
3074   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3075   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2, false,
3076                         (VM_Version::supports_avx512bw() == false));
3077   emit_int8(mode & 0xFF);
3078 }
3079 
3080 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
3081   assert(isByte(mode), "invalid value");
3082   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3083   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3084   if (VM_Version::supports_evex()) {
3085     tuple_type = EVEX_FVM;
3086   }
3087   InstructionMark im(this);
3088   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, false, VEX_OPCODE_0F,
3089               false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3090   emit_int8(0x70);
3091   emit_operand(dst, src);
3092   emit_int8(mode & 0xFF);
3093 }
3094 
3095 void Assembler::psrldq(XMMRegister dst, int shift) {
3096   // Shift 128 bit value in xmm register by number of bytes.
3097   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3098   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F,
3099                                       false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3100   emit_int8(0x73);
3101   emit_int8((unsigned char)(0xC0 | encode));
3102   emit_int8(shift);
3103 }
3104 
3105 void Assembler::ptest(XMMRegister dst, Address src) {
3106   assert(VM_Version::supports_sse4_1(), "");
3107   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3108   InstructionMark im(this);
3109   simd_prefix(dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38);
3110   emit_int8(0x17);
3111   emit_operand(dst, src);
3112 }
3113 
3114 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
3115   assert(VM_Version::supports_sse4_1(), "");
3116   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
3117                                       false, VEX_OPCODE_0F_38);
3118   emit_int8(0x17);
3119   emit_int8((unsigned char)(0xC0 | encode));
3120 }
3121 
3122 void Assembler::vptest(XMMRegister dst, Address src) {
3123   assert(VM_Version::supports_avx(), "");
3124   InstructionMark im(this);
3125   int vector_len = AVX_256bit;
3126   assert(dst != xnoreg, "sanity");
3127   int dst_enc = dst->encoding();
3128   // swap src<->dst for encoding
3129   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
3130   emit_int8(0x17);
3131   emit_operand(dst, src);
3132 }
3133 
3134 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
3135   assert(VM_Version::supports_avx(), "");
3136   int vector_len = AVX_256bit;
3137   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
3138                                      vector_len, VEX_OPCODE_0F_38);
3139   emit_int8(0x17);
3140   emit_int8((unsigned char)(0xC0 | encode));
3141 }
3142 
3143 void Assembler::punpcklbw(XMMRegister dst, Address src) {
3144   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3145   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3146   if (VM_Version::supports_evex()) {
3147     tuple_type = EVEX_FVM;
3148   }
3149   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
3150 }
3151 
3152 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3153   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3154   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
3155 }
3156 
3157 void Assembler::punpckldq(XMMRegister dst, Address src) {
3158   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3159   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3160   if (VM_Version::supports_evex()) {
3161     tuple_type = EVEX_FV;
3162     input_size_in_bits = EVEX_32bit;
3163   }
3164   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
3165 }
3166 
3167 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
3168   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3169   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
3170 }
3171 
3172 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
3173   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3174   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
3175 }
3176 
3177 void Assembler::push(int32_t imm32) {
3178   // in 64bits we push 64bits onto the stack but only
3179   // take a 32bit immediate
3180   emit_int8(0x68);
3181   emit_int32(imm32);
3182 }
3183 
3184 void Assembler::push(Register src) {
3185   int encode = prefix_and_encode(src->encoding());
3186 
3187   emit_int8(0x50 | encode);
3188 }
3189 
3190 void Assembler::pushf() {
3191   emit_int8((unsigned char)0x9C);
3192 }
3193 
3194 #ifndef _LP64 // no 32bit push/pop on amd64
3195 void Assembler::pushl(Address src) {
3196   // Note this will push 64bit on 64bit
3197   InstructionMark im(this);
3198   prefix(src);
3199   emit_int8((unsigned char)0xFF);
3200   emit_operand(rsi, src);
3201 }
3202 #endif
3203 
3204 void Assembler::rcll(Register dst, int imm8) {
3205   assert(isShiftCount(imm8), "illegal shift count");
3206   int encode = prefix_and_encode(dst->encoding());
3207   if (imm8 == 1) {
3208     emit_int8((unsigned char)0xD1);
3209     emit_int8((unsigned char)(0xD0 | encode));
3210   } else {
3211     emit_int8((unsigned char)0xC1);
3212     emit_int8((unsigned char)0xD0 | encode);
3213     emit_int8(imm8);
3214   }
3215 }
3216 
3217 void Assembler::rdtsc() {
3218   emit_int8((unsigned char)0x0F);
3219   emit_int8((unsigned char)0x31);
3220 }
3221 
3222 // copies data from [esi] to [edi] using rcx pointer sized words
3223 // generic
3224 void Assembler::rep_mov() {
3225   emit_int8((unsigned char)0xF3);
3226   // MOVSQ
3227   LP64_ONLY(prefix(REX_W));
3228   emit_int8((unsigned char)0xA5);
3229 }
3230 
3231 // sets rcx bytes with rax, value at [edi]
3232 void Assembler::rep_stosb() {
3233   emit_int8((unsigned char)0xF3); // REP
3234   LP64_ONLY(prefix(REX_W));
3235   emit_int8((unsigned char)0xAA); // STOSB
3236 }
3237 
3238 // sets rcx pointer sized words with rax, value at [edi]
3239 // generic
3240 void Assembler::rep_stos() {
3241   emit_int8((unsigned char)0xF3); // REP
3242   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
3243   emit_int8((unsigned char)0xAB);
3244 }
3245 
3246 // scans rcx pointer sized words at [edi] for occurance of rax,
3247 // generic
3248 void Assembler::repne_scan() { // repne_scan
3249   emit_int8((unsigned char)0xF2);
3250   // SCASQ
3251   LP64_ONLY(prefix(REX_W));
3252   emit_int8((unsigned char)0xAF);
3253 }
3254 
3255 #ifdef _LP64
3256 // scans rcx 4 byte words at [edi] for occurance of rax,
3257 // generic
3258 void Assembler::repne_scanl() { // repne_scan
3259   emit_int8((unsigned char)0xF2);
3260   // SCASL
3261   emit_int8((unsigned char)0xAF);
3262 }
3263 #endif
3264 
3265 void Assembler::ret(int imm16) {
3266   if (imm16 == 0) {
3267     emit_int8((unsigned char)0xC3);
3268   } else {
3269     emit_int8((unsigned char)0xC2);
3270     emit_int16(imm16);
3271   }
3272 }
3273 
3274 void Assembler::sahf() {
3275 #ifdef _LP64
3276   // Not supported in 64bit mode
3277   ShouldNotReachHere();
3278 #endif
3279   emit_int8((unsigned char)0x9E);
3280 }
3281 
3282 void Assembler::sarl(Register dst, int imm8) {
3283   int encode = prefix_and_encode(dst->encoding());
3284   assert(isShiftCount(imm8), "illegal shift count");
3285   if (imm8 == 1) {
3286     emit_int8((unsigned char)0xD1);
3287     emit_int8((unsigned char)(0xF8 | encode));
3288   } else {
3289     emit_int8((unsigned char)0xC1);
3290     emit_int8((unsigned char)(0xF8 | encode));
3291     emit_int8(imm8);
3292   }
3293 }
3294 
3295 void Assembler::sarl(Register dst) {
3296   int encode = prefix_and_encode(dst->encoding());
3297   emit_int8((unsigned char)0xD3);
3298   emit_int8((unsigned char)(0xF8 | encode));
3299 }
3300 
3301 void Assembler::sbbl(Address dst, int32_t imm32) {
3302   InstructionMark im(this);
3303   prefix(dst);
3304   emit_arith_operand(0x81, rbx, dst, imm32);
3305 }
3306 
3307 void Assembler::sbbl(Register dst, int32_t imm32) {
3308   prefix(dst);
3309   emit_arith(0x81, 0xD8, dst, imm32);
3310 }
3311 
3312 
3313 void Assembler::sbbl(Register dst, Address src) {
3314   InstructionMark im(this);
3315   prefix(src, dst);
3316   emit_int8(0x1B);
3317   emit_operand(dst, src);
3318 }
3319 
3320 void Assembler::sbbl(Register dst, Register src) {
3321   (void) prefix_and_encode(dst->encoding(), src->encoding());
3322   emit_arith(0x1B, 0xC0, dst, src);
3323 }
3324 
3325 void Assembler::setb(Condition cc, Register dst) {
3326   assert(0 <= cc && cc < 16, "illegal cc");
3327   int encode = prefix_and_encode(dst->encoding(), true);
3328   emit_int8(0x0F);
3329   emit_int8((unsigned char)0x90 | cc);
3330   emit_int8((unsigned char)(0xC0 | encode));
3331 }
3332 
3333 void Assembler::shll(Register dst, int imm8) {
3334   assert(isShiftCount(imm8), "illegal shift count");
3335   int encode = prefix_and_encode(dst->encoding());
3336   if (imm8 == 1 ) {
3337     emit_int8((unsigned char)0xD1);
3338     emit_int8((unsigned char)(0xE0 | encode));
3339   } else {
3340     emit_int8((unsigned char)0xC1);
3341     emit_int8((unsigned char)(0xE0 | encode));
3342     emit_int8(imm8);
3343   }
3344 }
3345 
3346 void Assembler::shll(Register dst) {
3347   int encode = prefix_and_encode(dst->encoding());
3348   emit_int8((unsigned char)0xD3);
3349   emit_int8((unsigned char)(0xE0 | encode));
3350 }
3351 
3352 void Assembler::shrl(Register dst, int imm8) {
3353   assert(isShiftCount(imm8), "illegal shift count");
3354   int encode = prefix_and_encode(dst->encoding());
3355   emit_int8((unsigned char)0xC1);
3356   emit_int8((unsigned char)(0xE8 | encode));
3357   emit_int8(imm8);
3358 }
3359 
3360 void Assembler::shrl(Register dst) {
3361   int encode = prefix_and_encode(dst->encoding());
3362   emit_int8((unsigned char)0xD3);
3363   emit_int8((unsigned char)(0xE8 | encode));
3364 }
3365 
3366 // copies a single word from [esi] to [edi]
3367 void Assembler::smovl() {
3368   emit_int8((unsigned char)0xA5);
3369 }
3370 
3371 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
3372   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3373   if (VM_Version::supports_evex()) {
3374     emit_simd_arith_q(0x51, dst, src, VEX_SIMD_F2);
3375   } else {
3376     emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
3377   }
3378 }
3379 
3380 void Assembler::sqrtsd(XMMRegister dst, Address src) {
3381   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3382   if (VM_Version::supports_evex()) {
3383     tuple_type = EVEX_T1S;
3384     input_size_in_bits = EVEX_64bit;
3385     emit_simd_arith_q(0x51, dst, src, VEX_SIMD_F2);
3386   } else {
3387     emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
3388   }
3389 }
3390 
3391 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
3392   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3393   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
3394 }
3395 
3396 void Assembler::std() {
3397   emit_int8((unsigned char)0xFD);
3398 }
3399 
3400 void Assembler::sqrtss(XMMRegister dst, Address src) {
3401   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3402   if (VM_Version::supports_evex()) {
3403     tuple_type = EVEX_T1S;
3404     input_size_in_bits = EVEX_32bit;
3405   }
3406   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
3407 }
3408 
3409 void Assembler::stmxcsr( Address dst) {
3410   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3411   InstructionMark im(this);
3412   prefix(dst);
3413   emit_int8(0x0F);
3414   emit_int8((unsigned char)0xAE);
3415   emit_operand(as_Register(3), dst);
3416 }
3417 
3418 void Assembler::subl(Address dst, int32_t imm32) {
3419   InstructionMark im(this);
3420   prefix(dst);
3421   emit_arith_operand(0x81, rbp, dst, imm32);
3422 }
3423 
3424 void Assembler::subl(Address dst, Register src) {
3425   InstructionMark im(this);
3426   prefix(dst, src);
3427   emit_int8(0x29);
3428   emit_operand(src, dst);
3429 }
3430 
3431 void Assembler::subl(Register dst, int32_t imm32) {
3432   prefix(dst);
3433   emit_arith(0x81, 0xE8, dst, imm32);
3434 }
3435 
3436 // Force generation of a 4 byte immediate value even if it fits into 8bit
3437 void Assembler::subl_imm32(Register dst, int32_t imm32) {
3438   prefix(dst);
3439   emit_arith_imm32(0x81, 0xE8, dst, imm32);
3440 }
3441 
3442 void Assembler::subl(Register dst, Address src) {
3443   InstructionMark im(this);
3444   prefix(src, dst);
3445   emit_int8(0x2B);
3446   emit_operand(dst, src);
3447 }
3448 
3449 void Assembler::subl(Register dst, Register src) {
3450   (void) prefix_and_encode(dst->encoding(), src->encoding());
3451   emit_arith(0x2B, 0xC0, dst, src);
3452 }
3453 
3454 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
3455   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3456   if (VM_Version::supports_evex()) {
3457     emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_F2);
3458   } else {
3459     emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
3460   }
3461 }
3462 
3463 void Assembler::subsd(XMMRegister dst, Address src) {
3464   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3465   if (VM_Version::supports_evex()) {
3466     tuple_type = EVEX_T1S;
3467     input_size_in_bits = EVEX_64bit;
3468   }
3469   emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_F2);
3470 }
3471 
3472 void Assembler::subss(XMMRegister dst, XMMRegister src) {
3473   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3474   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
3475 }
3476 
3477 void Assembler::subss(XMMRegister dst, Address src) {
3478   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3479   if (VM_Version::supports_evex()) {
3480     tuple_type = EVEX_T1S;
3481     input_size_in_bits = EVEX_32bit;
3482   }
3483   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
3484 }
3485 
3486 void Assembler::testb(Register dst, int imm8) {
3487   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
3488   (void) prefix_and_encode(dst->encoding(), true);
3489   emit_arith_b(0xF6, 0xC0, dst, imm8);
3490 }
3491 
3492 void Assembler::testl(Register dst, int32_t imm32) {
3493   // not using emit_arith because test
3494   // doesn't support sign-extension of
3495   // 8bit operands
3496   int encode = dst->encoding();
3497   if (encode == 0) {
3498     emit_int8((unsigned char)0xA9);
3499   } else {
3500     encode = prefix_and_encode(encode);
3501     emit_int8((unsigned char)0xF7);
3502     emit_int8((unsigned char)(0xC0 | encode));
3503   }
3504   emit_int32(imm32);
3505 }
3506 
3507 void Assembler::testl(Register dst, Register src) {
3508   (void) prefix_and_encode(dst->encoding(), src->encoding());
3509   emit_arith(0x85, 0xC0, dst, src);
3510 }
3511 
3512 void Assembler::testl(Register dst, Address  src) {
3513   InstructionMark im(this);
3514   prefix(src, dst);
3515   emit_int8((unsigned char)0x85);
3516   emit_operand(dst, src);
3517 }
3518 
3519 void Assembler::tzcntl(Register dst, Register src) {
3520   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3521   emit_int8((unsigned char)0xF3);
3522   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3523   emit_int8(0x0F);
3524   emit_int8((unsigned char)0xBC);
3525   emit_int8((unsigned char)0xC0 | encode);
3526 }
3527 
3528 void Assembler::tzcntq(Register dst, Register src) {
3529   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3530   emit_int8((unsigned char)0xF3);
3531   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3532   emit_int8(0x0F);
3533   emit_int8((unsigned char)0xBC);
3534   emit_int8((unsigned char)(0xC0 | encode));
3535 }
3536 
3537 void Assembler::ucomisd(XMMRegister dst, Address src) {
3538   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3539   if (VM_Version::supports_evex()) {
3540     tuple_type = EVEX_T1S;
3541     input_size_in_bits = EVEX_64bit;
3542     emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, true);
3543   } else {
3544     emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
3545   }
3546 }
3547 
3548 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
3549   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3550   if (VM_Version::supports_evex()) {
3551     emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, true);
3552   } else {
3553     emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
3554   }
3555 }
3556 
3557 void Assembler::ucomiss(XMMRegister dst, Address src) {
3558   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3559   if (VM_Version::supports_evex()) {
3560     tuple_type = EVEX_T1S;
3561     input_size_in_bits = EVEX_32bit;
3562   }
3563   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, true);
3564 }
3565 
3566 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
3567   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3568   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, true);
3569 }
3570 
3571 void Assembler::xabort(int8_t imm8) {
3572   emit_int8((unsigned char)0xC6);
3573   emit_int8((unsigned char)0xF8);
3574   emit_int8((unsigned char)(imm8 & 0xFF));
3575 }
3576 
3577 void Assembler::xaddl(Address dst, Register src) {
3578   InstructionMark im(this);
3579   prefix(dst, src);
3580   emit_int8(0x0F);
3581   emit_int8((unsigned char)0xC1);
3582   emit_operand(src, dst);
3583 }
3584 
3585 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
3586   InstructionMark im(this);
3587   relocate(rtype);
3588   if (abort.is_bound()) {
3589     address entry = target(abort);
3590     assert(entry != NULL, "abort entry NULL");
3591     intptr_t offset = entry - pc();
3592     emit_int8((unsigned char)0xC7);
3593     emit_int8((unsigned char)0xF8);
3594     emit_int32(offset - 6); // 2 opcode + 4 address
3595   } else {
3596     abort.add_patch_at(code(), locator());
3597     emit_int8((unsigned char)0xC7);
3598     emit_int8((unsigned char)0xF8);
3599     emit_int32(0);
3600   }
3601 }
3602 
3603 void Assembler::xchgl(Register dst, Address src) { // xchg
3604   InstructionMark im(this);
3605   prefix(src, dst);
3606   emit_int8((unsigned char)0x87);
3607   emit_operand(dst, src);
3608 }
3609 
3610 void Assembler::xchgl(Register dst, Register src) {
3611   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3612   emit_int8((unsigned char)0x87);
3613   emit_int8((unsigned char)(0xC0 | encode));
3614 }
3615 
3616 void Assembler::xend() {
3617   emit_int8((unsigned char)0x0F);
3618   emit_int8((unsigned char)0x01);
3619   emit_int8((unsigned char)0xD5);
3620 }
3621 
3622 void Assembler::xgetbv() {
3623   emit_int8(0x0F);
3624   emit_int8(0x01);
3625   emit_int8((unsigned char)0xD0);
3626 }
3627 
3628 void Assembler::xorl(Register dst, int32_t imm32) {
3629   prefix(dst);
3630   emit_arith(0x81, 0xF0, dst, imm32);
3631 }
3632 
3633 void Assembler::xorl(Register dst, Address src) {
3634   InstructionMark im(this);
3635   prefix(src, dst);
3636   emit_int8(0x33);
3637   emit_operand(dst, src);
3638 }
3639 
3640 void Assembler::xorl(Register dst, Register src) {
3641   (void) prefix_and_encode(dst->encoding(), src->encoding());
3642   emit_arith(0x33, 0xC0, dst, src);
3643 }
3644 
3645 
3646 // AVX 3-operands scalar float-point arithmetic instructions
3647 
3648 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
3649   assert(VM_Version::supports_avx(), "");
3650   if (VM_Version::supports_evex()) {
3651     tuple_type = EVEX_T1S;
3652     input_size_in_bits = EVEX_64bit;
3653     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3654   } else {
3655     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3656   }
3657 }
3658 
3659 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3660   assert(VM_Version::supports_avx(), "");
3661   if (VM_Version::supports_evex()) {
3662     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3663   } else {
3664     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3665   }
3666 }
3667 
3668 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
3669   assert(VM_Version::supports_avx(), "");
3670   if (VM_Version::supports_evex()) {
3671     tuple_type = EVEX_T1S;
3672     input_size_in_bits = EVEX_32bit;
3673   }
3674   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3675 }
3676 
3677 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3678   assert(VM_Version::supports_avx(), "");
3679   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3680 }
3681 
3682 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
3683   assert(VM_Version::supports_avx(), "");
3684   if (VM_Version::supports_evex()) {
3685     tuple_type = EVEX_T1S;
3686     input_size_in_bits = EVEX_64bit;
3687     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3688   } else {
3689     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3690   }
3691 }
3692 
3693 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3694   assert(VM_Version::supports_avx(), "");
3695   if (VM_Version::supports_evex()) {
3696     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3697   } else {
3698     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3699   }
3700 }
3701 
3702 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
3703   assert(VM_Version::supports_avx(), "");
3704   if (VM_Version::supports_evex()) {
3705     tuple_type = EVEX_T1S;
3706     input_size_in_bits = EVEX_32bit;
3707   }
3708   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3709 }
3710 
3711 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3712   assert(VM_Version::supports_avx(), "");
3713   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3714 }
3715 
3716 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
3717   assert(VM_Version::supports_avx(), "");
3718   if (VM_Version::supports_evex()) {
3719     tuple_type = EVEX_T1S;
3720     input_size_in_bits = EVEX_64bit;
3721     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3722   } else {
3723     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3724   }
3725 }
3726 
3727 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3728   assert(VM_Version::supports_avx(), "");
3729   if (VM_Version::supports_evex()) {
3730     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3731   } else {
3732     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3733   }
3734 }
3735 
3736 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
3737   assert(VM_Version::supports_avx(), "");
3738   if (VM_Version::supports_evex()) {
3739     tuple_type = EVEX_T1S;
3740     input_size_in_bits = EVEX_32bit;
3741   }
3742   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3743 }
3744 
3745 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3746   assert(VM_Version::supports_avx(), "");
3747   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3748 }
3749 
3750 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
3751   assert(VM_Version::supports_avx(), "");
3752   if (VM_Version::supports_evex()) {
3753     tuple_type = EVEX_T1S;
3754     input_size_in_bits = EVEX_64bit;
3755     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3756   } else {
3757     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3758   }
3759 }
3760 
3761 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3762   assert(VM_Version::supports_avx(), "");
3763   if (VM_Version::supports_evex()) {
3764     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3765   } else {
3766     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3767   }
3768 }
3769 
3770 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
3771   assert(VM_Version::supports_avx(), "");
3772   if (VM_Version::supports_evex()) {
3773     tuple_type = EVEX_T1S;
3774     input_size_in_bits = EVEX_32bit;
3775   }
3776   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3777 }
3778 
3779 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3780   assert(VM_Version::supports_avx(), "");
3781   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3782 }
3783 
3784 //====================VECTOR ARITHMETIC=====================================
3785 
3786 // Float-point vector arithmetic
3787 
3788 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
3789   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3790   if (VM_Version::supports_evex()) {
3791     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_66);
3792   } else {
3793     emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
3794   }
3795 }
3796 
3797 void Assembler::addps(XMMRegister dst, XMMRegister src) {
3798   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3799   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
3800 }
3801 
3802 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3803   assert(VM_Version::supports_avx(), "");
3804   if (VM_Version::supports_evex()) {
3805     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3806   } else {
3807     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3808   }
3809 }
3810 
3811 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3812   assert(VM_Version::supports_avx(), "");
3813   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector_len);
3814 }
3815 
3816 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3817   assert(VM_Version::supports_avx(), "");
3818   if (VM_Version::supports_evex()) {
3819     tuple_type = EVEX_FV;
3820     input_size_in_bits = EVEX_64bit;
3821     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3822   } else {
3823     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3824   }
3825 }
3826 
3827 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3828   assert(VM_Version::supports_avx(), "");
3829   if (VM_Version::supports_evex()) {
3830     tuple_type = EVEX_FV;
3831     input_size_in_bits = EVEX_32bit;
3832   }
3833   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector_len);
3834 }
3835 
3836 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
3837   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3838   if (VM_Version::supports_evex()) {
3839     emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_66);
3840   } else {
3841     emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
3842   }
3843 }
3844 
3845 void Assembler::subps(XMMRegister dst, XMMRegister src) {
3846   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3847   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
3848 }
3849 
3850 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3851   assert(VM_Version::supports_avx(), "");
3852   if (VM_Version::supports_evex()) {
3853     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3854   } else {
3855     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3856   }
3857 }
3858 
3859 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3860   assert(VM_Version::supports_avx(), "");
3861   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector_len);
3862 }
3863 
3864 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3865   assert(VM_Version::supports_avx(), "");
3866   if (VM_Version::supports_evex()) {
3867     tuple_type = EVEX_FV;
3868     input_size_in_bits = EVEX_64bit;
3869     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3870   } else {
3871     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3872   }
3873 }
3874 
3875 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3876   assert(VM_Version::supports_avx(), "");
3877   if (VM_Version::supports_evex()) {
3878     tuple_type = EVEX_FV;
3879     input_size_in_bits = EVEX_32bit;
3880   }
3881   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector_len);
3882 }
3883 
3884 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
3885   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3886   if (VM_Version::supports_evex()) {
3887     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_66);
3888   } else {
3889     emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
3890   }
3891 }
3892 
3893 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
3894   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3895   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
3896 }
3897 
3898 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3899   assert(VM_Version::supports_avx(), "");
3900   if (VM_Version::supports_evex()) {
3901     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3902   } else {
3903     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3904   }
3905 }
3906 
3907 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3908   assert(VM_Version::supports_avx(), "");
3909   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector_len);
3910 }
3911 
3912 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3913   assert(VM_Version::supports_avx(), "");
3914   if (VM_Version::supports_evex()) {
3915     tuple_type = EVEX_FV;
3916     input_size_in_bits = EVEX_64bit;
3917     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3918   } else {
3919     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3920   }
3921 }
3922 
3923 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3924   assert(VM_Version::supports_avx(), "");
3925   if (VM_Version::supports_evex()) {
3926     tuple_type = EVEX_FV;
3927     input_size_in_bits = EVEX_32bit;
3928   }
3929   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector_len);
3930 }
3931 
3932 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
3933   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3934   if (VM_Version::supports_evex()) {
3935     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_66);
3936   } else {
3937     emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
3938   }
3939 }
3940 
3941 void Assembler::divps(XMMRegister dst, XMMRegister src) {
3942   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3943   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
3944 }
3945 
3946 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3947   assert(VM_Version::supports_avx(), "");
3948   if (VM_Version::supports_evex()) {
3949     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3950   } else {
3951     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3952   }
3953 }
3954 
3955 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3956   assert(VM_Version::supports_avx(), "");
3957   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector_len);
3958 }
3959 
3960 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3961   assert(VM_Version::supports_avx(), "");
3962   if (VM_Version::supports_evex()) {
3963     tuple_type = EVEX_FV;
3964     input_size_in_bits = EVEX_64bit;
3965     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3966   } else {
3967     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3968   }
3969 }
3970 
3971 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3972   assert(VM_Version::supports_avx(), "");
3973   if (VM_Version::supports_evex()) {
3974     tuple_type = EVEX_FV;
3975     input_size_in_bits = EVEX_32bit;
3976   }
3977   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector_len);
3978 }
3979 
3980 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
3981   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3982   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
3983     emit_simd_arith_q(0x54, dst, src, VEX_SIMD_66);
3984   } else {
3985     emit_simd_arith(0x54, dst, src, VEX_SIMD_66, false, true);
3986   }
3987 }
3988 
3989 void Assembler::andps(XMMRegister dst, XMMRegister src) {
3990   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3991   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE, false,
3992                   (VM_Version::supports_avx512dq() == false));
3993 }
3994 
3995 void Assembler::andps(XMMRegister dst, Address src) {
3996   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3997   if (VM_Version::supports_evex()) {
3998     tuple_type = EVEX_FV;
3999     input_size_in_bits = EVEX_32bit;
4000   }
4001   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE,
4002                   false, (VM_Version::supports_avx512dq() == false));
4003 }
4004 
4005 void Assembler::andpd(XMMRegister dst, Address src) {
4006   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4007   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4008     tuple_type = EVEX_FV;
4009     input_size_in_bits = EVEX_64bit;
4010     emit_simd_arith_q(0x54, dst, src, VEX_SIMD_66);
4011   } else {
4012     emit_simd_arith(0x54, dst, src, VEX_SIMD_66, false, true);
4013   }
4014 }
4015 
4016 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4017   assert(VM_Version::supports_avx(), "");
4018   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4019     emit_vex_arith_q(0x54, dst, nds, src, VEX_SIMD_66, vector_len);
4020   } else {
4021     emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, true);
4022   }
4023 }
4024 
4025 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4026   assert(VM_Version::supports_avx(), "");
4027   bool legacy_mode = (VM_Version::supports_avx512dq() == false);
4028   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len, legacy_mode);
4029 }
4030 
4031 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4032   assert(VM_Version::supports_avx(), "");
4033   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4034     tuple_type = EVEX_FV;
4035     input_size_in_bits = EVEX_64bit;
4036     emit_vex_arith_q(0x54, dst, nds, src, VEX_SIMD_66, vector_len);
4037   } else {
4038     emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, true);
4039   }
4040 }
4041 
4042 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4043   assert(VM_Version::supports_avx(), "");
4044   if (VM_Version::supports_evex()) {
4045     tuple_type = EVEX_FV;
4046     input_size_in_bits = EVEX_32bit;
4047   }
4048   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len,
4049                  (VM_Version::supports_avx512dq() == false));
4050 }
4051 
4052 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
4053   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4054   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4055     emit_simd_arith_q(0x57, dst, src, VEX_SIMD_66);
4056   } else {
4057     emit_simd_arith(0x57, dst, src, VEX_SIMD_66, false, true);
4058   }
4059 }
4060 
4061 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
4062   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4063   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE,
4064                   false, (VM_Version::supports_avx512dq() == false));
4065 }
4066 
4067 void Assembler::xorpd(XMMRegister dst, Address src) {
4068   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4069   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4070     tuple_type = EVEX_FV;
4071     input_size_in_bits = EVEX_64bit;
4072     emit_simd_arith_q(0x57, dst, src, VEX_SIMD_66);
4073   } else {
4074     emit_simd_arith(0x57, dst, src, VEX_SIMD_66, false, true);
4075   }
4076 }
4077 
4078 void Assembler::xorps(XMMRegister dst, Address src) {
4079   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4080   if (VM_Version::supports_evex()) {
4081     tuple_type = EVEX_FV;
4082     input_size_in_bits = EVEX_32bit;
4083   }
4084   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE, false,
4085                   (VM_Version::supports_avx512dq() == false));
4086 }
4087 
4088 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4089   assert(VM_Version::supports_avx(), "");
4090   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4091     emit_vex_arith_q(0x57, dst, nds, src, VEX_SIMD_66, vector_len);
4092   } else {
4093     emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, true);
4094   }
4095 }
4096 
4097 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4098   assert(VM_Version::supports_avx(), "");
4099   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len,
4100                  (VM_Version::supports_avx512dq() == false));
4101 }
4102 
4103 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4104   assert(VM_Version::supports_avx(), "");
4105   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4106     tuple_type = EVEX_FV;
4107     input_size_in_bits = EVEX_64bit;
4108     emit_vex_arith_q(0x57, dst, nds, src, VEX_SIMD_66, vector_len);
4109   } else {
4110     emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, true);
4111   }
4112 }
4113 
4114 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4115   assert(VM_Version::supports_avx(), "");
4116   if (VM_Version::supports_evex()) {
4117     tuple_type = EVEX_FV;
4118     input_size_in_bits = EVEX_32bit;
4119   }
4120   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len,
4121                  (VM_Version::supports_avx512dq() == false));
4122 }
4123 
4124 // Integer vector arithmetic
4125 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4126   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4127          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4128   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len,
4129                                      VEX_OPCODE_0F_38, true, false);
4130   emit_int8(0x01);
4131   emit_int8((unsigned char)(0xC0 | encode));
4132 }
4133 
4134 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4135   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4136          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4137   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len,
4138                                      VEX_OPCODE_0F_38, true, false);
4139   emit_int8(0x02);
4140   emit_int8((unsigned char)(0xC0 | encode));
4141 }
4142 
4143 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
4144   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4145   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
4146 }
4147 
4148 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
4149   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4150   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
4151 }
4152 
4153 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
4154   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4155   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
4156 }
4157 
4158 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
4159   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4160   if (VM_Version::supports_evex()) {
4161     emit_simd_arith_q(0xD4, dst, src, VEX_SIMD_66);
4162   } else {
4163     emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
4164   }
4165 }
4166 
4167 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
4168   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4169   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
4170                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
4171   emit_int8(0x01);
4172   emit_int8((unsigned char)(0xC0 | encode));
4173 }
4174 
4175 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
4176   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4177   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
4178                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
4179   emit_int8(0x02);
4180   emit_int8((unsigned char)(0xC0 | encode));
4181 }
4182 
4183 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4184   assert(UseAVX > 0, "requires some form of AVX");
4185   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len,
4186                  (VM_Version::supports_avx512bw() == false));
4187 }
4188 
4189 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4190   assert(UseAVX > 0, "requires some form of AVX");
4191   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len,
4192                  (VM_Version::supports_avx512bw() == false));
4193 }
4194 
4195 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4196   assert(UseAVX > 0, "requires some form of AVX");
4197   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector_len);
4198 }
4199 
4200 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4201   assert(UseAVX > 0, "requires some form of AVX");
4202   if (VM_Version::supports_evex()) {
4203     emit_vex_arith_q(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4204   } else {
4205     emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4206   }
4207 }
4208 
4209 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4210   assert(UseAVX > 0, "requires some form of AVX");
4211   if (VM_Version::supports_evex()) {
4212     tuple_type = EVEX_FVM;
4213   }
4214   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len);
4215 }
4216 
4217 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4218   assert(UseAVX > 0, "requires some form of AVX");
4219   if (VM_Version::supports_evex()) {
4220     tuple_type = EVEX_FVM;
4221   }
4222   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len);
4223 }
4224 
4225 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4226   assert(UseAVX > 0, "requires some form of AVX");
4227   if (VM_Version::supports_evex()) {
4228     tuple_type = EVEX_FV;
4229     input_size_in_bits = EVEX_32bit;
4230   }
4231   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector_len);
4232 }
4233 
4234 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4235   assert(UseAVX > 0, "requires some form of AVX");
4236   if (VM_Version::supports_evex()) {
4237     tuple_type = EVEX_FV;
4238     input_size_in_bits = EVEX_64bit;
4239     emit_vex_arith_q(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4240   } else {
4241     emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4242   }
4243 }
4244 
4245 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
4246   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4247   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
4248 }
4249 
4250 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
4251   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4252   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
4253 }
4254 
4255 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
4256   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4257   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
4258 }
4259 
4260 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
4261   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4262   if (VM_Version::supports_evex()) {
4263     emit_simd_arith_q(0xFB, dst, src, VEX_SIMD_66);
4264   } else {
4265     emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
4266   }
4267 }
4268 
4269 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4270   assert(UseAVX > 0, "requires some form of AVX");
4271   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len,
4272                  (VM_Version::supports_avx512bw() == false));
4273 }
4274 
4275 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4276   assert(UseAVX > 0, "requires some form of AVX");
4277   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len,
4278                  (VM_Version::supports_avx512bw() == false));
4279 }
4280 
4281 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4282   assert(UseAVX > 0, "requires some form of AVX");
4283   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector_len);
4284 }
4285 
4286 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4287   assert(UseAVX > 0, "requires some form of AVX");
4288   if (VM_Version::supports_evex()) {
4289     emit_vex_arith_q(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4290   } else {
4291     emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4292   }
4293 }
4294 
4295 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4296   assert(UseAVX > 0, "requires some form of AVX");
4297   if (VM_Version::supports_evex()) {
4298     tuple_type = EVEX_FVM;
4299   }
4300   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len,
4301                  (VM_Version::supports_avx512bw() == false));
4302 }
4303 
4304 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4305   assert(UseAVX > 0, "requires some form of AVX");
4306   if (VM_Version::supports_evex()) {
4307     tuple_type = EVEX_FVM;
4308   }
4309   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len,
4310                  (VM_Version::supports_avx512bw() == false));
4311 }
4312 
4313 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4314   assert(UseAVX > 0, "requires some form of AVX");
4315   if (VM_Version::supports_evex()) {
4316     tuple_type = EVEX_FV;
4317     input_size_in_bits = EVEX_32bit;
4318   }
4319   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector_len);
4320 }
4321 
4322 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4323   assert(UseAVX > 0, "requires some form of AVX");
4324   if (VM_Version::supports_evex()) {
4325     tuple_type = EVEX_FV;
4326     input_size_in_bits = EVEX_64bit;
4327     emit_vex_arith_q(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4328   } else {
4329     emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4330   }
4331 }
4332 
4333 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
4334   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4335   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66,
4336                   (VM_Version::supports_avx512bw() == false));
4337 }
4338 
4339 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
4340   assert(VM_Version::supports_sse4_1(), "");
4341   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66,
4342                                       false, VEX_OPCODE_0F_38);
4343   emit_int8(0x40);
4344   emit_int8((unsigned char)(0xC0 | encode));
4345 }
4346 
4347 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4348   assert(UseAVX > 0, "requires some form of AVX");
4349   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len,
4350                  (VM_Version::supports_avx512bw() == false));
4351 }
4352 
4353 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4354   assert(UseAVX > 0, "requires some form of AVX");
4355   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66,
4356                                      vector_len, VEX_OPCODE_0F_38);
4357   emit_int8(0x40);
4358   emit_int8((unsigned char)(0xC0 | encode));
4359 }
4360 
4361 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4362   assert(UseAVX > 2, "requires some form of AVX");
4363   int src_enc = src->encoding();
4364   int dst_enc = dst->encoding();
4365   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4366   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66,
4367                                      VEX_OPCODE_0F_38, true, vector_len, false, false);
4368   emit_int8(0x40);
4369   emit_int8((unsigned char)(0xC0 | encode));
4370 }
4371 
4372 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4373   assert(UseAVX > 0, "requires some form of AVX");
4374   if (VM_Version::supports_evex()) {
4375     tuple_type = EVEX_FVM;
4376   }
4377   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len);
4378 }
4379 
4380 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4381   assert(UseAVX > 0, "requires some form of AVX");
4382   if (VM_Version::supports_evex()) {
4383     tuple_type = EVEX_FV;
4384     input_size_in_bits = EVEX_32bit;
4385   }
4386   InstructionMark im(this);
4387   int dst_enc = dst->encoding();
4388   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4389   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66,
4390              VEX_OPCODE_0F_38, false, vector_len);
4391   emit_int8(0x40);
4392   emit_operand(dst, src);
4393 }
4394 
4395 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4396   assert(UseAVX > 0, "requires some form of AVX");
4397   if (VM_Version::supports_evex()) {
4398     tuple_type = EVEX_FV;
4399     input_size_in_bits = EVEX_64bit;
4400   }
4401   InstructionMark im(this);
4402   int dst_enc = dst->encoding();
4403   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4404   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, true, vector_len);
4405   emit_int8(0x40);
4406   emit_operand(dst, src);
4407 }
4408 
4409 // Shift packed integers left by specified number of bits.
4410 void Assembler::psllw(XMMRegister dst, int shift) {
4411   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4412   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4413   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4414                                       false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
4415   emit_int8(0x71);
4416   emit_int8((unsigned char)(0xC0 | encode));
4417   emit_int8(shift & 0xFF);
4418 }
4419 
4420 void Assembler::pslld(XMMRegister dst, int shift) {
4421   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4422   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4423   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false);
4424   emit_int8(0x72);
4425   emit_int8((unsigned char)(0xC0 | encode));
4426   emit_int8(shift & 0xFF);
4427 }
4428 
4429 void Assembler::psllq(XMMRegister dst, int shift) {
4430   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4431   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4432   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F, true);
4433   emit_int8(0x73);
4434   emit_int8((unsigned char)(0xC0 | encode));
4435   emit_int8(shift & 0xFF);
4436 }
4437 
4438 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
4439   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4440   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66, false,
4441                   (VM_Version::supports_avx512bw() == false));
4442 }
4443 
4444 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
4445   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4446   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
4447 }
4448 
4449 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
4450   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4451   if (VM_Version::supports_evex()) {
4452     emit_simd_arith_q(0xF3, dst, shift, VEX_SIMD_66);
4453   } else {
4454     emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
4455   }
4456 }
4457 
4458 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4459   assert(UseAVX > 0, "requires some form of AVX");
4460   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4461   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector_len,
4462                  (VM_Version::supports_avx512bw() == false));
4463   emit_int8(shift & 0xFF);
4464 }
4465 
4466 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4467   assert(UseAVX > 0, "requires some form of AVX");
4468   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4469   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector_len);
4470   emit_int8(shift & 0xFF);
4471 }
4472 
4473 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4474   assert(UseAVX > 0, "requires some form of AVX");
4475   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4476   if (VM_Version::supports_evex()) {
4477     emit_vex_arith_q(0x73, xmm6, dst, src, VEX_SIMD_66, vector_len);
4478   } else {
4479     emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector_len);
4480   }
4481   emit_int8(shift & 0xFF);
4482 }
4483 
4484 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4485   assert(UseAVX > 0, "requires some form of AVX");
4486   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector_len,
4487                  (VM_Version::supports_avx512bw() == false));
4488 }
4489 
4490 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4491   assert(UseAVX > 0, "requires some form of AVX");
4492   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector_len);
4493 }
4494 
4495 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4496   assert(UseAVX > 0, "requires some form of AVX");
4497   if (VM_Version::supports_evex()) {
4498     emit_vex_arith_q(0xF3, dst, src, shift, VEX_SIMD_66, vector_len);
4499   } else {
4500     emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector_len);
4501   }
4502 }
4503 
4504 // Shift packed integers logically right by specified number of bits.
4505 void Assembler::psrlw(XMMRegister dst, int shift) {
4506   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4507   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
4508   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4509                                       (VM_Version::supports_avx512bw() == false));
4510   emit_int8(0x71);
4511   emit_int8((unsigned char)(0xC0 | encode));
4512   emit_int8(shift & 0xFF);
4513 }
4514 
4515 void Assembler::psrld(XMMRegister dst, int shift) {
4516   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4517   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
4518   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false);
4519   emit_int8(0x72);
4520   emit_int8((unsigned char)(0xC0 | encode));
4521   emit_int8(shift & 0xFF);
4522 }
4523 
4524 void Assembler::psrlq(XMMRegister dst, int shift) {
4525   // Do not confuse it with psrldq SSE2 instruction which
4526   // shifts 128 bit value in xmm register by number of bytes.
4527   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4528   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4529   int encode = 0;
4530   if (VM_Version::supports_evex() && VM_Version::supports_avx512bw()) {
4531     encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, false);
4532   } else {
4533     encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F, true);
4534   }
4535   emit_int8(0x73);
4536   emit_int8((unsigned char)(0xC0 | encode));
4537   emit_int8(shift & 0xFF);
4538 }
4539 
4540 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
4541   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4542   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66, false,
4543                   (VM_Version::supports_avx512bw() == false));
4544 }
4545 
4546 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
4547   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4548   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
4549 }
4550 
4551 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
4552   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4553   if (VM_Version::supports_evex()) {
4554     emit_simd_arith_q(0xD3, dst, shift, VEX_SIMD_66);
4555   } else {
4556     emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
4557   }
4558 }
4559 
4560 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4561   assert(UseAVX > 0, "requires some form of AVX");
4562   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4563   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector_len,
4564                  (VM_Version::supports_avx512bw() == false));
4565   emit_int8(shift & 0xFF);
4566 }
4567 
4568 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4569   assert(UseAVX > 0, "requires some form of AVX");
4570   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4571   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector_len);
4572   emit_int8(shift & 0xFF);
4573 }
4574 
4575 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4576   assert(UseAVX > 0, "requires some form of AVX");
4577   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4578   if (VM_Version::supports_evex()) {
4579     emit_vex_arith_q(0x73, xmm2, dst, src, VEX_SIMD_66, vector_len);
4580   } else {
4581     emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector_len);
4582   }
4583   emit_int8(shift & 0xFF);
4584 }
4585 
4586 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4587   assert(UseAVX > 0, "requires some form of AVX");
4588   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector_len,
4589                  (VM_Version::supports_avx512bw() == false));
4590 }
4591 
4592 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4593   assert(UseAVX > 0, "requires some form of AVX");
4594   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector_len);
4595 }
4596 
4597 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4598   assert(UseAVX > 0, "requires some form of AVX");
4599   if (VM_Version::supports_evex()) {
4600     emit_vex_arith_q(0xD3, dst, src, shift, VEX_SIMD_66, vector_len);
4601   } else {
4602     emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector_len);
4603   }
4604 }
4605 
4606 // Shift packed integers arithmetically right by specified number of bits.
4607 void Assembler::psraw(XMMRegister dst, int shift) {
4608   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4609   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4610   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4611                                       (VM_Version::supports_avx512bw() == false));
4612   emit_int8(0x71);
4613   emit_int8((unsigned char)(0xC0 | encode));
4614   emit_int8(shift & 0xFF);
4615 }
4616 
4617 void Assembler::psrad(XMMRegister dst, int shift) {
4618   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4619   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
4620   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, false);
4621   emit_int8(0x72);
4622   emit_int8((unsigned char)(0xC0 | encode));
4623   emit_int8(shift & 0xFF);
4624 }
4625 
4626 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
4627   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4628   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66,
4629                   (VM_Version::supports_avx512bw() == false));
4630 }
4631 
4632 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
4633   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4634   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
4635 }
4636 
4637 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4638   assert(UseAVX > 0, "requires some form of AVX");
4639   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4640   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector_len,
4641                  (VM_Version::supports_avx512bw() == false));
4642   emit_int8(shift & 0xFF);
4643 }
4644 
4645 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4646   assert(UseAVX > 0, "requires some form of AVX");
4647   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4648   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector_len);
4649   emit_int8(shift & 0xFF);
4650 }
4651 
4652 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4653   assert(UseAVX > 0, "requires some form of AVX");
4654   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector_len,
4655                  (VM_Version::supports_avx512bw() == false));
4656 }
4657 
4658 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4659   assert(UseAVX > 0, "requires some form of AVX");
4660   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector_len);
4661 }
4662 
4663 
4664 // AND packed integers
4665 void Assembler::pand(XMMRegister dst, XMMRegister src) {
4666   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4667   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
4668 }
4669 
4670 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4671   assert(UseAVX > 0, "requires some form of AVX");
4672   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector_len);
4673 }
4674 
4675 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4676   assert(UseAVX > 0, "requires some form of AVX");
4677   if (VM_Version::supports_evex()) {
4678     tuple_type = EVEX_FV;
4679     input_size_in_bits = EVEX_32bit;
4680   }
4681   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector_len);
4682 }
4683 
4684 void Assembler::por(XMMRegister dst, XMMRegister src) {
4685   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4686   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
4687 }
4688 
4689 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4690   assert(UseAVX > 0, "requires some form of AVX");
4691   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector_len);
4692 }
4693 
4694 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4695   assert(UseAVX > 0, "requires some form of AVX");
4696   if (VM_Version::supports_evex()) {
4697     tuple_type = EVEX_FV;
4698     input_size_in_bits = EVEX_32bit;
4699   }
4700   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector_len);
4701 }
4702 
4703 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
4704   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4705   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
4706 }
4707 
4708 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4709   assert(UseAVX > 0, "requires some form of AVX");
4710   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector_len);
4711 }
4712 
4713 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4714   assert(UseAVX > 0, "requires some form of AVX");
4715   if (VM_Version::supports_evex()) {
4716     tuple_type = EVEX_FV;
4717     input_size_in_bits = EVEX_32bit;
4718   }
4719   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector_len);
4720 }
4721 
4722 
4723 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4724   assert(VM_Version::supports_avx(), "");
4725   int vector_len = AVX_256bit;
4726   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4727   emit_int8(0x18);
4728   emit_int8((unsigned char)(0xC0 | encode));
4729   // 0x00 - insert into lower 128 bits
4730   // 0x01 - insert into upper 128 bits
4731   emit_int8(0x01);
4732 }
4733 
4734 void Assembler::vinsertf64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4735   assert(VM_Version::supports_evex(), "");
4736   int vector_len = AVX_512bit;
4737   int src_enc = src->encoding();
4738   int dst_enc = dst->encoding();
4739   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4740   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66,
4741                                      VEX_OPCODE_0F_3A, true, vector_len, false, false);
4742   emit_int8(0x1A);
4743   emit_int8((unsigned char)(0xC0 | encode));
4744   // 0x00 - insert into lower 256 bits
4745   // 0x01 - insert into upper 256 bits
4746   emit_int8(0x01);
4747 }
4748 
4749 void Assembler::vinsertf64x4h(XMMRegister dst, Address src) {
4750   assert(VM_Version::supports_avx(), "");
4751   if (VM_Version::supports_evex()) {
4752     tuple_type = EVEX_T4;
4753     input_size_in_bits = EVEX_64bit;
4754   }
4755   InstructionMark im(this);
4756   int vector_len = AVX_512bit;
4757   assert(dst != xnoreg, "sanity");
4758   int dst_enc = dst->encoding();
4759   // swap src<->dst for encoding
4760   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector_len);
4761   emit_int8(0x1A);
4762   emit_operand(dst, src);
4763   // 0x01 - insert into upper 128 bits
4764   emit_int8(0x01);
4765 }
4766 
4767 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
4768   assert(VM_Version::supports_avx(), "");
4769   if (VM_Version::supports_evex()) {
4770     tuple_type = EVEX_T4;
4771     input_size_in_bits = EVEX_32bit;
4772   }
4773   InstructionMark im(this);
4774   int vector_len = AVX_256bit;
4775   assert(dst != xnoreg, "sanity");
4776   int dst_enc = dst->encoding();
4777   // swap src<->dst for encoding
4778   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4779   emit_int8(0x18);
4780   emit_operand(dst, src);
4781   // 0x01 - insert into upper 128 bits
4782   emit_int8(0x01);
4783 }
4784 
4785 void Assembler::vextractf128h(XMMRegister dst, XMMRegister src) {
4786   assert(VM_Version::supports_avx(), "");
4787   int vector_len = AVX_256bit;
4788   int encode = vex_prefix_and_encode(src, xnoreg, dst, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4789   emit_int8(0x19);
4790   emit_int8((unsigned char)(0xC0 | encode));
4791   // 0x00 - insert into lower 128 bits
4792   // 0x01 - insert into upper 128 bits
4793   emit_int8(0x01);
4794 }
4795 
4796 void Assembler::vextractf128h(Address dst, XMMRegister src) {
4797   assert(VM_Version::supports_avx(), "");
4798   if (VM_Version::supports_evex()) {
4799     tuple_type = EVEX_T4;
4800     input_size_in_bits = EVEX_32bit;
4801   }
4802   InstructionMark im(this);
4803   int vector_len = AVX_256bit;
4804   assert(src != xnoreg, "sanity");
4805   int src_enc = src->encoding();
4806   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4807   emit_int8(0x19);
4808   emit_operand(src, dst);
4809   // 0x01 - extract from upper 128 bits
4810   emit_int8(0x01);
4811 }
4812 
4813 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4814   assert(VM_Version::supports_avx2(), "");
4815   int vector_len = AVX_256bit;
4816   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4817   emit_int8(0x38);
4818   emit_int8((unsigned char)(0xC0 | encode));
4819   // 0x00 - insert into lower 128 bits
4820   // 0x01 - insert into upper 128 bits
4821   emit_int8(0x01);
4822 }
4823 
4824 void Assembler::vinserti64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4825   assert(VM_Version::supports_evex(), "");
4826   int vector_len = AVX_512bit;
4827   int src_enc = src->encoding();
4828   int dst_enc = dst->encoding();
4829   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4830   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4831                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4832   emit_int8(0x38);
4833   emit_int8((unsigned char)(0xC0 | encode));
4834   // 0x00 - insert into lower 256 bits
4835   // 0x01 - insert into upper 256 bits
4836   emit_int8(0x01);
4837 }
4838 
4839 void Assembler::vinserti128h(XMMRegister dst, Address src) {
4840   assert(VM_Version::supports_avx2(), "");
4841   if (VM_Version::supports_evex()) {
4842     tuple_type = EVEX_T4;
4843     input_size_in_bits = EVEX_32bit;
4844   }
4845   InstructionMark im(this);
4846   int vector_len = AVX_256bit;
4847   assert(dst != xnoreg, "sanity");
4848   int dst_enc = dst->encoding();
4849   // swap src<->dst for encoding
4850   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4851   emit_int8(0x38);
4852   emit_operand(dst, src);
4853   // 0x01 - insert into upper 128 bits
4854   emit_int8(0x01);
4855 }
4856 
4857 void Assembler::vextracti128h(XMMRegister dst, XMMRegister src) {
4858   assert(VM_Version::supports_avx(), "");
4859   int vector_len = AVX_256bit;
4860   int encode = vex_prefix_and_encode(src, xnoreg, dst, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4861   emit_int8(0x39);
4862   emit_int8((unsigned char)(0xC0 | encode));
4863   // 0x00 - insert into lower 128 bits
4864   // 0x01 - insert into upper 128 bits
4865   emit_int8(0x01);
4866 }
4867 
4868 void Assembler::vextracti128h(Address dst, XMMRegister src) {
4869   assert(VM_Version::supports_avx2(), "");
4870   if (VM_Version::supports_evex()) {
4871     tuple_type = EVEX_T4;
4872     input_size_in_bits = EVEX_32bit;
4873   }
4874   InstructionMark im(this);
4875   int vector_len = AVX_256bit;
4876   assert(src != xnoreg, "sanity");
4877   int src_enc = src->encoding();
4878   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4879   emit_int8(0x39);
4880   emit_operand(src, dst);
4881   // 0x01 - extract from upper 128 bits
4882   emit_int8(0x01);
4883 }
4884 
4885 void Assembler::vextracti64x4h(XMMRegister dst, XMMRegister src) {
4886   assert(VM_Version::supports_evex(), "");
4887   int vector_len = AVX_512bit;
4888   int src_enc = src->encoding();
4889   int dst_enc = dst->encoding();
4890   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4891                                      true, vector_len, false, false);
4892   emit_int8(0x3B);
4893   emit_int8((unsigned char)(0xC0 | encode));
4894   // 0x01 - extract from upper 256 bits
4895   emit_int8(0x01);
4896 }
4897 
4898 void Assembler::vextracti64x2h(XMMRegister dst, XMMRegister src, int value) {
4899   assert(VM_Version::supports_evex(), "");
4900   int vector_len = AVX_512bit;
4901   int src_enc = src->encoding();
4902   int dst_enc = dst->encoding();
4903   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4904                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4905   emit_int8(0x39);
4906   emit_int8((unsigned char)(0xC0 | encode));
4907   // 0x01 - extract from bits 255:128
4908   // 0x02 - extract from bits 383:256
4909   // 0x03 - extract from bits 511:384
4910   emit_int8(value & 0x3);
4911 }
4912 
4913 void Assembler::vextractf64x4h(XMMRegister dst, XMMRegister src) {
4914   assert(VM_Version::supports_evex(), "");
4915   int vector_len = AVX_512bit;
4916   int src_enc = src->encoding();
4917   int dst_enc = dst->encoding();
4918   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4919                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4920   emit_int8(0x1B);
4921   emit_int8((unsigned char)(0xC0 | encode));
4922   // 0x01 - extract from upper 256 bits
4923   emit_int8(0x01);
4924 }
4925 
4926 void Assembler::vextractf64x4h(Address dst, XMMRegister src) {
4927   assert(VM_Version::supports_avx2(), "");
4928   tuple_type = EVEX_T4;
4929   input_size_in_bits = EVEX_64bit;
4930   InstructionMark im(this);
4931   int vector_len = AVX_512bit;
4932   assert(src != xnoreg, "sanity");
4933   int src_enc = src->encoding();
4934   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4935              VM_Version::supports_avx512dq(), vector_len);
4936   emit_int8(0x1B);
4937   emit_operand(src, dst);
4938   // 0x01 - extract from upper 128 bits
4939   emit_int8(0x01);
4940 }
4941 
4942 void Assembler::vextractf32x4h(XMMRegister dst, XMMRegister src, int value) {
4943   assert(VM_Version::supports_evex(), "");
4944   int vector_len = AVX_512bit;
4945   int src_enc = src->encoding();
4946   int dst_enc = dst->encoding();
4947   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66,
4948                                      VEX_OPCODE_0F_3A, false, vector_len, false, false);
4949   emit_int8(0x19);
4950   emit_int8((unsigned char)(0xC0 | encode));
4951   // 0x01 - extract from bits 255:128
4952   // 0x02 - extract from bits 383:256
4953   // 0x03 - extract from bits 511:384
4954   emit_int8(value & 0x3);
4955 }
4956 
4957 void Assembler::vextractf64x2h(XMMRegister dst, XMMRegister src, int value) {
4958   assert(VM_Version::supports_evex(), "");
4959   int vector_len = AVX_512bit;
4960   int src_enc = src->encoding();
4961   int dst_enc = dst->encoding();
4962   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4963                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4964   emit_int8(0x19);
4965   emit_int8((unsigned char)(0xC0 | encode));
4966   // 0x01 - extract from bits 255:128
4967   // 0x02 - extract from bits 383:256
4968   // 0x03 - extract from bits 511:384
4969   emit_int8(value & 0x3);
4970 }
4971 
4972 // duplicate 4-bytes integer data from src into 8 locations in dest
4973 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
4974   assert(VM_Version::supports_avx2(), "");
4975   int vector_len = AVX_256bit;
4976   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
4977                                      vector_len, VEX_OPCODE_0F_38, false);
4978   emit_int8(0x58);
4979   emit_int8((unsigned char)(0xC0 | encode));
4980 }
4981 
4982 // duplicate 4-bytes integer data from src into 8 locations in dest
4983 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
4984   assert(VM_Version::supports_evex(), "");
4985   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
4986                                      vector_len, VEX_OPCODE_0F_38, false);
4987   emit_int8(0x58);
4988   emit_int8((unsigned char)(0xC0 | encode));
4989 }
4990 
4991 // Carry-Less Multiplication Quadword
4992 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
4993   assert(VM_Version::supports_clmul(), "");
4994   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
4995                                       VEX_OPCODE_0F_3A, false, AVX_128bit, true);
4996   emit_int8(0x44);
4997   emit_int8((unsigned char)(0xC0 | encode));
4998   emit_int8((unsigned char)mask);
4999 }
5000 
5001 // Carry-Less Multiplication Quadword
5002 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
5003   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
5004   int vector_len = AVX_128bit;
5005   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66,
5006                                      vector_len, VEX_OPCODE_0F_3A, true);
5007   emit_int8(0x44);
5008   emit_int8((unsigned char)(0xC0 | encode));
5009   emit_int8((unsigned char)mask);
5010 }
5011 
5012 void Assembler::vzeroupper() {
5013   assert(VM_Version::supports_avx(), "");
5014   if (UseAVX < 3)
5015   {
5016     (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
5017     emit_int8(0x77);
5018   }
5019 }
5020 
5021 
5022 #ifndef _LP64
5023 // 32bit only pieces of the assembler
5024 
5025 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
5026   // NO PREFIX AS NEVER 64BIT
5027   InstructionMark im(this);
5028   emit_int8((unsigned char)0x81);
5029   emit_int8((unsigned char)(0xF8 | src1->encoding()));
5030   emit_data(imm32, rspec, 0);
5031 }
5032 
5033 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
5034   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
5035   InstructionMark im(this);
5036   emit_int8((unsigned char)0x81);
5037   emit_operand(rdi, src1);
5038   emit_data(imm32, rspec, 0);
5039 }
5040 
5041 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
5042 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
5043 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
5044 void Assembler::cmpxchg8(Address adr) {
5045   InstructionMark im(this);
5046   emit_int8(0x0F);
5047   emit_int8((unsigned char)0xC7);
5048   emit_operand(rcx, adr);
5049 }
5050 
5051 void Assembler::decl(Register dst) {
5052   // Don't use it directly. Use MacroAssembler::decrementl() instead.
5053  emit_int8(0x48 | dst->encoding());
5054 }
5055 
5056 #endif // _LP64
5057 
5058 // 64bit typically doesn't use the x87 but needs to for the trig funcs
5059 
5060 void Assembler::fabs() {
5061   emit_int8((unsigned char)0xD9);
5062   emit_int8((unsigned char)0xE1);
5063 }
5064 
5065 void Assembler::fadd(int i) {
5066   emit_farith(0xD8, 0xC0, i);
5067 }
5068 
5069 void Assembler::fadd_d(Address src) {
5070   InstructionMark im(this);
5071   emit_int8((unsigned char)0xDC);
5072   emit_operand32(rax, src);
5073 }
5074 
5075 void Assembler::fadd_s(Address src) {
5076   InstructionMark im(this);
5077   emit_int8((unsigned char)0xD8);
5078   emit_operand32(rax, src);
5079 }
5080 
5081 void Assembler::fadda(int i) {
5082   emit_farith(0xDC, 0xC0, i);
5083 }
5084 
5085 void Assembler::faddp(int i) {
5086   emit_farith(0xDE, 0xC0, i);
5087 }
5088 
5089 void Assembler::fchs() {
5090   emit_int8((unsigned char)0xD9);
5091   emit_int8((unsigned char)0xE0);
5092 }
5093 
5094 void Assembler::fcom(int i) {
5095   emit_farith(0xD8, 0xD0, i);
5096 }
5097 
5098 void Assembler::fcomp(int i) {
5099   emit_farith(0xD8, 0xD8, i);
5100 }
5101 
5102 void Assembler::fcomp_d(Address src) {
5103   InstructionMark im(this);
5104   emit_int8((unsigned char)0xDC);
5105   emit_operand32(rbx, src);
5106 }
5107 
5108 void Assembler::fcomp_s(Address src) {
5109   InstructionMark im(this);
5110   emit_int8((unsigned char)0xD8);
5111   emit_operand32(rbx, src);
5112 }
5113 
5114 void Assembler::fcompp() {
5115   emit_int8((unsigned char)0xDE);
5116   emit_int8((unsigned char)0xD9);
5117 }
5118 
5119 void Assembler::fcos() {
5120   emit_int8((unsigned char)0xD9);
5121   emit_int8((unsigned char)0xFF);
5122 }
5123 
5124 void Assembler::fdecstp() {
5125   emit_int8((unsigned char)0xD9);
5126   emit_int8((unsigned char)0xF6);
5127 }
5128 
5129 void Assembler::fdiv(int i) {
5130   emit_farith(0xD8, 0xF0, i);
5131 }
5132 
5133 void Assembler::fdiv_d(Address src) {
5134   InstructionMark im(this);
5135   emit_int8((unsigned char)0xDC);
5136   emit_operand32(rsi, src);
5137 }
5138 
5139 void Assembler::fdiv_s(Address src) {
5140   InstructionMark im(this);
5141   emit_int8((unsigned char)0xD8);
5142   emit_operand32(rsi, src);
5143 }
5144 
5145 void Assembler::fdiva(int i) {
5146   emit_farith(0xDC, 0xF8, i);
5147 }
5148 
5149 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
5150 //       is erroneous for some of the floating-point instructions below.
5151 
5152 void Assembler::fdivp(int i) {
5153   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
5154 }
5155 
5156 void Assembler::fdivr(int i) {
5157   emit_farith(0xD8, 0xF8, i);
5158 }
5159 
5160 void Assembler::fdivr_d(Address src) {
5161   InstructionMark im(this);
5162   emit_int8((unsigned char)0xDC);
5163   emit_operand32(rdi, src);
5164 }
5165 
5166 void Assembler::fdivr_s(Address src) {
5167   InstructionMark im(this);
5168   emit_int8((unsigned char)0xD8);
5169   emit_operand32(rdi, src);
5170 }
5171 
5172 void Assembler::fdivra(int i) {
5173   emit_farith(0xDC, 0xF0, i);
5174 }
5175 
5176 void Assembler::fdivrp(int i) {
5177   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
5178 }
5179 
5180 void Assembler::ffree(int i) {
5181   emit_farith(0xDD, 0xC0, i);
5182 }
5183 
5184 void Assembler::fild_d(Address adr) {
5185   InstructionMark im(this);
5186   emit_int8((unsigned char)0xDF);
5187   emit_operand32(rbp, adr);
5188 }
5189 
5190 void Assembler::fild_s(Address adr) {
5191   InstructionMark im(this);
5192   emit_int8((unsigned char)0xDB);
5193   emit_operand32(rax, adr);
5194 }
5195 
5196 void Assembler::fincstp() {
5197   emit_int8((unsigned char)0xD9);
5198   emit_int8((unsigned char)0xF7);
5199 }
5200 
5201 void Assembler::finit() {
5202   emit_int8((unsigned char)0x9B);
5203   emit_int8((unsigned char)0xDB);
5204   emit_int8((unsigned char)0xE3);
5205 }
5206 
5207 void Assembler::fist_s(Address adr) {
5208   InstructionMark im(this);
5209   emit_int8((unsigned char)0xDB);
5210   emit_operand32(rdx, adr);
5211 }
5212 
5213 void Assembler::fistp_d(Address adr) {
5214   InstructionMark im(this);
5215   emit_int8((unsigned char)0xDF);
5216   emit_operand32(rdi, adr);
5217 }
5218 
5219 void Assembler::fistp_s(Address adr) {
5220   InstructionMark im(this);
5221   emit_int8((unsigned char)0xDB);
5222   emit_operand32(rbx, adr);
5223 }
5224 
5225 void Assembler::fld1() {
5226   emit_int8((unsigned char)0xD9);
5227   emit_int8((unsigned char)0xE8);
5228 }
5229 
5230 void Assembler::fld_d(Address adr) {
5231   InstructionMark im(this);
5232   emit_int8((unsigned char)0xDD);
5233   emit_operand32(rax, adr);
5234 }
5235 
5236 void Assembler::fld_s(Address adr) {
5237   InstructionMark im(this);
5238   emit_int8((unsigned char)0xD9);
5239   emit_operand32(rax, adr);
5240 }
5241 
5242 
5243 void Assembler::fld_s(int index) {
5244   emit_farith(0xD9, 0xC0, index);
5245 }
5246 
5247 void Assembler::fld_x(Address adr) {
5248   InstructionMark im(this);
5249   emit_int8((unsigned char)0xDB);
5250   emit_operand32(rbp, adr);
5251 }
5252 
5253 void Assembler::fldcw(Address src) {
5254   InstructionMark im(this);
5255   emit_int8((unsigned char)0xD9);
5256   emit_operand32(rbp, src);
5257 }
5258 
5259 void Assembler::fldenv(Address src) {
5260   InstructionMark im(this);
5261   emit_int8((unsigned char)0xD9);
5262   emit_operand32(rsp, src);
5263 }
5264 
5265 void Assembler::fldlg2() {
5266   emit_int8((unsigned char)0xD9);
5267   emit_int8((unsigned char)0xEC);
5268 }
5269 
5270 void Assembler::fldln2() {
5271   emit_int8((unsigned char)0xD9);
5272   emit_int8((unsigned char)0xED);
5273 }
5274 
5275 void Assembler::fldz() {
5276   emit_int8((unsigned char)0xD9);
5277   emit_int8((unsigned char)0xEE);
5278 }
5279 
5280 void Assembler::flog() {
5281   fldln2();
5282   fxch();
5283   fyl2x();
5284 }
5285 
5286 void Assembler::flog10() {
5287   fldlg2();
5288   fxch();
5289   fyl2x();
5290 }
5291 
5292 void Assembler::fmul(int i) {
5293   emit_farith(0xD8, 0xC8, i);
5294 }
5295 
5296 void Assembler::fmul_d(Address src) {
5297   InstructionMark im(this);
5298   emit_int8((unsigned char)0xDC);
5299   emit_operand32(rcx, src);
5300 }
5301 
5302 void Assembler::fmul_s(Address src) {
5303   InstructionMark im(this);
5304   emit_int8((unsigned char)0xD8);
5305   emit_operand32(rcx, src);
5306 }
5307 
5308 void Assembler::fmula(int i) {
5309   emit_farith(0xDC, 0xC8, i);
5310 }
5311 
5312 void Assembler::fmulp(int i) {
5313   emit_farith(0xDE, 0xC8, i);
5314 }
5315 
5316 void Assembler::fnsave(Address dst) {
5317   InstructionMark im(this);
5318   emit_int8((unsigned char)0xDD);
5319   emit_operand32(rsi, dst);
5320 }
5321 
5322 void Assembler::fnstcw(Address src) {
5323   InstructionMark im(this);
5324   emit_int8((unsigned char)0x9B);
5325   emit_int8((unsigned char)0xD9);
5326   emit_operand32(rdi, src);
5327 }
5328 
5329 void Assembler::fnstsw_ax() {
5330   emit_int8((unsigned char)0xDF);
5331   emit_int8((unsigned char)0xE0);
5332 }
5333 
5334 void Assembler::fprem() {
5335   emit_int8((unsigned char)0xD9);
5336   emit_int8((unsigned char)0xF8);
5337 }
5338 
5339 void Assembler::fprem1() {
5340   emit_int8((unsigned char)0xD9);
5341   emit_int8((unsigned char)0xF5);
5342 }
5343 
5344 void Assembler::frstor(Address src) {
5345   InstructionMark im(this);
5346   emit_int8((unsigned char)0xDD);
5347   emit_operand32(rsp, src);
5348 }
5349 
5350 void Assembler::fsin() {
5351   emit_int8((unsigned char)0xD9);
5352   emit_int8((unsigned char)0xFE);
5353 }
5354 
5355 void Assembler::fsqrt() {
5356   emit_int8((unsigned char)0xD9);
5357   emit_int8((unsigned char)0xFA);
5358 }
5359 
5360 void Assembler::fst_d(Address adr) {
5361   InstructionMark im(this);
5362   emit_int8((unsigned char)0xDD);
5363   emit_operand32(rdx, adr);
5364 }
5365 
5366 void Assembler::fst_s(Address adr) {
5367   InstructionMark im(this);
5368   emit_int8((unsigned char)0xD9);
5369   emit_operand32(rdx, adr);
5370 }
5371 
5372 void Assembler::fstp_d(Address adr) {
5373   InstructionMark im(this);
5374   emit_int8((unsigned char)0xDD);
5375   emit_operand32(rbx, adr);
5376 }
5377 
5378 void Assembler::fstp_d(int index) {
5379   emit_farith(0xDD, 0xD8, index);
5380 }
5381 
5382 void Assembler::fstp_s(Address adr) {
5383   InstructionMark im(this);
5384   emit_int8((unsigned char)0xD9);
5385   emit_operand32(rbx, adr);
5386 }
5387 
5388 void Assembler::fstp_x(Address adr) {
5389   InstructionMark im(this);
5390   emit_int8((unsigned char)0xDB);
5391   emit_operand32(rdi, adr);
5392 }
5393 
5394 void Assembler::fsub(int i) {
5395   emit_farith(0xD8, 0xE0, i);
5396 }
5397 
5398 void Assembler::fsub_d(Address src) {
5399   InstructionMark im(this);
5400   emit_int8((unsigned char)0xDC);
5401   emit_operand32(rsp, src);
5402 }
5403 
5404 void Assembler::fsub_s(Address src) {
5405   InstructionMark im(this);
5406   emit_int8((unsigned char)0xD8);
5407   emit_operand32(rsp, src);
5408 }
5409 
5410 void Assembler::fsuba(int i) {
5411   emit_farith(0xDC, 0xE8, i);
5412 }
5413 
5414 void Assembler::fsubp(int i) {
5415   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
5416 }
5417 
5418 void Assembler::fsubr(int i) {
5419   emit_farith(0xD8, 0xE8, i);
5420 }
5421 
5422 void Assembler::fsubr_d(Address src) {
5423   InstructionMark im(this);
5424   emit_int8((unsigned char)0xDC);
5425   emit_operand32(rbp, src);
5426 }
5427 
5428 void Assembler::fsubr_s(Address src) {
5429   InstructionMark im(this);
5430   emit_int8((unsigned char)0xD8);
5431   emit_operand32(rbp, src);
5432 }
5433 
5434 void Assembler::fsubra(int i) {
5435   emit_farith(0xDC, 0xE0, i);
5436 }
5437 
5438 void Assembler::fsubrp(int i) {
5439   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
5440 }
5441 
5442 void Assembler::ftan() {
5443   emit_int8((unsigned char)0xD9);
5444   emit_int8((unsigned char)0xF2);
5445   emit_int8((unsigned char)0xDD);
5446   emit_int8((unsigned char)0xD8);
5447 }
5448 
5449 void Assembler::ftst() {
5450   emit_int8((unsigned char)0xD9);
5451   emit_int8((unsigned char)0xE4);
5452 }
5453 
5454 void Assembler::fucomi(int i) {
5455   // make sure the instruction is supported (introduced for P6, together with cmov)
5456   guarantee(VM_Version::supports_cmov(), "illegal instruction");
5457   emit_farith(0xDB, 0xE8, i);
5458 }
5459 
5460 void Assembler::fucomip(int i) {
5461   // make sure the instruction is supported (introduced for P6, together with cmov)
5462   guarantee(VM_Version::supports_cmov(), "illegal instruction");
5463   emit_farith(0xDF, 0xE8, i);
5464 }
5465 
5466 void Assembler::fwait() {
5467   emit_int8((unsigned char)0x9B);
5468 }
5469 
5470 void Assembler::fxch(int i) {
5471   emit_farith(0xD9, 0xC8, i);
5472 }
5473 
5474 void Assembler::fyl2x() {
5475   emit_int8((unsigned char)0xD9);
5476   emit_int8((unsigned char)0xF1);
5477 }
5478 
5479 void Assembler::frndint() {
5480   emit_int8((unsigned char)0xD9);
5481   emit_int8((unsigned char)0xFC);
5482 }
5483 
5484 void Assembler::f2xm1() {
5485   emit_int8((unsigned char)0xD9);
5486   emit_int8((unsigned char)0xF0);
5487 }
5488 
5489 void Assembler::fldl2e() {
5490   emit_int8((unsigned char)0xD9);
5491   emit_int8((unsigned char)0xEA);
5492 }
5493 
5494 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
5495 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
5496 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
5497 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
5498 
5499 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
5500 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
5501   if (pre > 0) {
5502     emit_int8(simd_pre[pre]);
5503   }
5504   if (rex_w) {
5505     prefixq(adr, xreg);
5506   } else {
5507     prefix(adr, xreg);
5508   }
5509   if (opc > 0) {
5510     emit_int8(0x0F);
5511     int opc2 = simd_opc[opc];
5512     if (opc2 > 0) {
5513       emit_int8(opc2);
5514     }
5515   }
5516 }
5517 
5518 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
5519   if (pre > 0) {
5520     emit_int8(simd_pre[pre]);
5521   }
5522   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
5523                           prefix_and_encode(dst_enc, src_enc);
5524   if (opc > 0) {
5525     emit_int8(0x0F);
5526     int opc2 = simd_opc[opc];
5527     if (opc2 > 0) {
5528       emit_int8(opc2);
5529     }
5530   }
5531   return encode;
5532 }
5533 
5534 
5535 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, int vector_len) {
5536   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
5537     prefix(VEX_3bytes);
5538 
5539     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
5540     byte1 = (~byte1) & 0xE0;
5541     byte1 |= opc;
5542     emit_int8(byte1);
5543 
5544     int byte2 = ((~nds_enc) & 0xf) << 3;
5545     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
5546     emit_int8(byte2);
5547   } else {
5548     prefix(VEX_2bytes);
5549 
5550     int byte1 = vex_r ? VEX_R : 0;
5551     byte1 = (~byte1) & 0x80;
5552     byte1 |= ((~nds_enc) & 0xf) << 3;
5553     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
5554     emit_int8(byte1);
5555   }
5556 }
5557 
5558 // This is a 4 byte encoding
5559 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, bool evex_r, bool evex_v,
5560                             int nds_enc, VexSimdPrefix pre, VexOpcode opc,
5561                             bool is_extended_context, bool is_merge_context,
5562                             int vector_len, bool no_mask_reg ){
5563   // EVEX 0x62 prefix
5564   prefix(EVEX_4bytes);
5565   evex_encoding = (vex_w ? VEX_W : 0) | (evex_r ? EVEX_Rb : 0);
5566 
5567   // P0: byte 2, initialized to RXBR`00mm
5568   // instead of not'd
5569   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
5570   byte2 = (~byte2) & 0xF0;
5571   // confine opc opcode extensions in mm bits to lower two bits
5572   // of form {0F, 0F_38, 0F_3A}
5573   byte2 |= opc;
5574   emit_int8(byte2);
5575 
5576   // P1: byte 3 as Wvvvv1pp
5577   int byte3 = ((~nds_enc) & 0xf) << 3;
5578   // p[10] is always 1
5579   byte3 |= EVEX_F;
5580   byte3 |= (vex_w & 1) << 7;
5581   // confine pre opcode extensions in pp bits to lower two bits
5582   // of form {66, F3, F2}
5583   byte3 |= pre;
5584   emit_int8(byte3);
5585 
5586   // P2: byte 4 as zL'Lbv'aaa
5587   int byte4 = (no_mask_reg) ? 0 : 1; // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
5588   // EVEX.v` for extending EVEX.vvvv or VIDX
5589   byte4 |= (evex_v ? 0: EVEX_V);
5590   // third EXEC.b for broadcast actions
5591   byte4 |= (is_extended_context ? EVEX_Rb : 0);
5592   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
5593   byte4 |= ((vector_len) & 0x3) << 5;
5594   // last is EVEX.z for zero/merge actions
5595   byte4 |= (is_merge_context ? EVEX_Z : 0);
5596   emit_int8(byte4);
5597 }
5598 
5599 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre,
5600                            VexOpcode opc, bool vex_w, int vector_len, bool legacy_mode, bool no_mask_reg) {
5601   bool vex_r = (xreg_enc >= 8);
5602   bool vex_b = adr.base_needs_rex();
5603   bool vex_x = adr.index_needs_rex();
5604   avx_vector_len = vector_len;
5605 
5606   // if vector length is turned off, revert to AVX for vectors smaller than AVX_512bit
5607   if (VM_Version::supports_avx512vl() == false) {
5608     switch (vector_len) {
5609     case AVX_128bit:
5610     case AVX_256bit:
5611       legacy_mode = true;
5612       break;
5613     }
5614   }
5615 
5616   if ((UseAVX > 2) && (legacy_mode == false))
5617   {
5618     bool evex_r = (xreg_enc >= 16);
5619     bool evex_v = (nds_enc >= 16);
5620     is_evex_instruction = true;
5621     evex_prefix(vex_r, vex_b, vex_x, vex_w, evex_r, evex_v, nds_enc, pre, opc, false, false, vector_len, no_mask_reg);
5622   } else {
5623     vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector_len);
5624   }
5625 }
5626 
5627 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc,
5628                                      bool vex_w, int vector_len, bool legacy_mode, bool no_mask_reg ) {
5629   bool vex_r = (dst_enc >= 8);
5630   bool vex_b = (src_enc >= 8);
5631   bool vex_x = false;
5632   avx_vector_len = vector_len;
5633 
5634   // if vector length is turned off, revert to AVX for vectors smaller than AVX_512bit
5635   if (VM_Version::supports_avx512vl() == false) {
5636     switch (vector_len) {
5637     case AVX_128bit:
5638     case AVX_256bit:
5639       legacy_mode = true;
5640       break;
5641     }
5642   }
5643 
5644   if ((UseAVX > 2) && (legacy_mode == false))
5645   {
5646     bool evex_r = (dst_enc >= 16);
5647     bool evex_v = (nds_enc >= 16);
5648     // can use vex_x as bank extender on rm encoding
5649     vex_x = (src_enc >= 16);
5650     evex_prefix(vex_r, vex_b, vex_x, vex_w, evex_r, evex_v, nds_enc, pre, opc, false, false, vector_len, no_mask_reg);
5651   } else {
5652     vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector_len);
5653   }
5654 
5655   // return modrm byte components for operands
5656   return (((dst_enc & 7) << 3) | (src_enc & 7));
5657 }
5658 
5659 
5660 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
5661                             bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len, bool legacy_mode) {
5662   if (UseAVX > 0) {
5663     int xreg_enc = xreg->encoding();
5664     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
5665     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector_len, legacy_mode, no_mask_reg);
5666   } else {
5667     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
5668     rex_prefix(adr, xreg, pre, opc, rex_w);
5669   }
5670 }
5671 
5672 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
5673                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len, bool legacy_mode) {
5674   int dst_enc = dst->encoding();
5675   int src_enc = src->encoding();
5676   if (UseAVX > 0) {
5677     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5678     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, legacy_mode, no_mask_reg);
5679   } else {
5680     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
5681     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
5682   }
5683 }
5684 
5685 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, KRegister src, VexSimdPrefix pre,
5686                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len) {
5687   int dst_enc = dst->encoding();
5688   int src_enc = src->encoding();
5689   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5690   return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, true, no_mask_reg);
5691 }
5692 
5693 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, Register src, VexSimdPrefix pre,
5694                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len) {
5695   int dst_enc = dst->encoding();
5696   int src_enc = src->encoding();
5697   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5698   return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, true, no_mask_reg);
5699 }
5700 
5701 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5702   InstructionMark im(this);
5703   simd_prefix(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, false, AVX_128bit, legacy_mode);
5704   emit_int8(opcode);
5705   emit_operand(dst, src);
5706 }
5707 
5708 void Assembler::emit_simd_arith_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg) {
5709   InstructionMark im(this);
5710   simd_prefix_q(dst, dst, src, pre, no_mask_reg);
5711   emit_int8(opcode);
5712   emit_operand(dst, src);
5713 }
5714 
5715 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5716   int encode = simd_prefix_and_encode(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, false, AVX_128bit, legacy_mode);
5717   emit_int8(opcode);
5718   emit_int8((unsigned char)(0xC0 | encode));
5719 }
5720 
5721 void Assembler::emit_simd_arith_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg) {
5722   int encode = simd_prefix_and_encode(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, true, AVX_128bit);
5723   emit_int8(opcode);
5724   emit_int8((unsigned char)(0xC0 | encode));
5725 }
5726 
5727 // Versions with no second source register (non-destructive source).
5728 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool opNoRegMask) {
5729   InstructionMark im(this);
5730   simd_prefix(dst, xnoreg, src, pre, opNoRegMask);
5731   emit_int8(opcode);
5732   emit_operand(dst, src);
5733 }
5734 
5735 void Assembler::emit_simd_arith_nonds_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool opNoRegMask) {
5736   InstructionMark im(this);
5737   simd_prefix_q(dst, xnoreg, src, pre, opNoRegMask);
5738   emit_int8(opcode);
5739   emit_operand(dst, src);
5740 }
5741 
5742 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5743   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, legacy_mode, AVX_128bit);
5744   emit_int8(opcode);
5745   emit_int8((unsigned char)(0xC0 | encode));
5746 }
5747 
5748 void Assembler::emit_simd_arith_nonds_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg) {
5749   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, true, AVX_128bit);
5750   emit_int8(opcode);
5751   emit_int8((unsigned char)(0xC0 | encode));
5752 }
5753 
5754 // 3-operands AVX instructions
5755 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, Address src,
5756                                VexSimdPrefix pre, int vector_len, bool no_mask_reg, bool legacy_mode) {
5757   InstructionMark im(this);
5758   vex_prefix(dst, nds, src, pre, vector_len, no_mask_reg, legacy_mode);
5759   emit_int8(opcode);
5760   emit_operand(dst, src);
5761 }
5762 
5763 void Assembler::emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds,
5764                                  Address src, VexSimdPrefix pre, int vector_len, bool no_mask_reg) {
5765   InstructionMark im(this);
5766   vex_prefix_q(dst, nds, src, pre, vector_len, no_mask_reg);
5767   emit_int8(opcode);
5768   emit_operand(dst, src);
5769 }
5770 
5771 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src,
5772                                VexSimdPrefix pre, int vector_len, bool no_mask_reg, bool legacy_mode) {
5773   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector_len, VEX_OPCODE_0F, false, no_mask_reg);
5774   emit_int8(opcode);
5775   emit_int8((unsigned char)(0xC0 | encode));
5776 }
5777 
5778 void Assembler::emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src,
5779                                  VexSimdPrefix pre, int vector_len, bool no_mask_reg) {
5780   int src_enc = src->encoding();
5781   int dst_enc = dst->encoding();
5782   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5783   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, VEX_OPCODE_0F, true, vector_len, false, no_mask_reg);
5784   emit_int8(opcode);
5785   emit_int8((unsigned char)(0xC0 | encode));
5786 }
5787 
5788 #ifndef _LP64
5789 
5790 void Assembler::incl(Register dst) {
5791   // Don't use it directly. Use MacroAssembler::incrementl() instead.
5792   emit_int8(0x40 | dst->encoding());
5793 }
5794 
5795 void Assembler::lea(Register dst, Address src) {
5796   leal(dst, src);
5797 }
5798 
5799 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
5800   InstructionMark im(this);
5801   emit_int8((unsigned char)0xC7);
5802   emit_operand(rax, dst);
5803   emit_data((int)imm32, rspec, 0);
5804 }
5805 
5806 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
5807   InstructionMark im(this);
5808   int encode = prefix_and_encode(dst->encoding());
5809   emit_int8((unsigned char)(0xB8 | encode));
5810   emit_data((int)imm32, rspec, 0);
5811 }
5812 
5813 void Assembler::popa() { // 32bit
5814   emit_int8(0x61);
5815 }
5816 
5817 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
5818   InstructionMark im(this);
5819   emit_int8(0x68);
5820   emit_data(imm32, rspec, 0);
5821 }
5822 
5823 void Assembler::pusha() { // 32bit
5824   emit_int8(0x60);
5825 }
5826 
5827 void Assembler::set_byte_if_not_zero(Register dst) {
5828   emit_int8(0x0F);
5829   emit_int8((unsigned char)0x95);
5830   emit_int8((unsigned char)(0xE0 | dst->encoding()));
5831 }
5832 
5833 void Assembler::shldl(Register dst, Register src) {
5834   emit_int8(0x0F);
5835   emit_int8((unsigned char)0xA5);
5836   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
5837 }
5838 
5839 void Assembler::shrdl(Register dst, Register src) {
5840   emit_int8(0x0F);
5841   emit_int8((unsigned char)0xAD);
5842   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
5843 }
5844 
5845 #else // LP64
5846 
5847 void Assembler::set_byte_if_not_zero(Register dst) {
5848   int enc = prefix_and_encode(dst->encoding(), true);
5849   emit_int8(0x0F);
5850   emit_int8((unsigned char)0x95);
5851   emit_int8((unsigned char)(0xE0 | enc));
5852 }
5853 
5854 // 64bit only pieces of the assembler
5855 // This should only be used by 64bit instructions that can use rip-relative
5856 // it cannot be used by instructions that want an immediate value.
5857 
5858 bool Assembler::reachable(AddressLiteral adr) {
5859   int64_t disp;
5860   // None will force a 64bit literal to the code stream. Likely a placeholder
5861   // for something that will be patched later and we need to certain it will
5862   // always be reachable.
5863   if (adr.reloc() == relocInfo::none) {
5864     return false;
5865   }
5866   if (adr.reloc() == relocInfo::internal_word_type) {
5867     // This should be rip relative and easily reachable.
5868     return true;
5869   }
5870   if (adr.reloc() == relocInfo::virtual_call_type ||
5871       adr.reloc() == relocInfo::opt_virtual_call_type ||
5872       adr.reloc() == relocInfo::static_call_type ||
5873       adr.reloc() == relocInfo::static_stub_type ) {
5874     // This should be rip relative within the code cache and easily
5875     // reachable until we get huge code caches. (At which point
5876     // ic code is going to have issues).
5877     return true;
5878   }
5879   if (adr.reloc() != relocInfo::external_word_type &&
5880       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
5881       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
5882       adr.reloc() != relocInfo::runtime_call_type ) {
5883     return false;
5884   }
5885 
5886   // Stress the correction code
5887   if (ForceUnreachable) {
5888     // Must be runtimecall reloc, see if it is in the codecache
5889     // Flipping stuff in the codecache to be unreachable causes issues
5890     // with things like inline caches where the additional instructions
5891     // are not handled.
5892     if (CodeCache::find_blob(adr._target) == NULL) {
5893       return false;
5894     }
5895   }
5896   // For external_word_type/runtime_call_type if it is reachable from where we
5897   // are now (possibly a temp buffer) and where we might end up
5898   // anywhere in the codeCache then we are always reachable.
5899   // This would have to change if we ever save/restore shared code
5900   // to be more pessimistic.
5901   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
5902   if (!is_simm32(disp)) return false;
5903   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
5904   if (!is_simm32(disp)) return false;
5905 
5906   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
5907 
5908   // Because rip relative is a disp + address_of_next_instruction and we
5909   // don't know the value of address_of_next_instruction we apply a fudge factor
5910   // to make sure we will be ok no matter the size of the instruction we get placed into.
5911   // We don't have to fudge the checks above here because they are already worst case.
5912 
5913   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
5914   // + 4 because better safe than sorry.
5915   const int fudge = 12 + 4;
5916   if (disp < 0) {
5917     disp -= fudge;
5918   } else {
5919     disp += fudge;
5920   }
5921   return is_simm32(disp);
5922 }
5923 
5924 // Check if the polling page is not reachable from the code cache using rip-relative
5925 // addressing.
5926 bool Assembler::is_polling_page_far() {
5927   intptr_t addr = (intptr_t)os::get_polling_page();
5928   return ForceUnreachable ||
5929          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
5930          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
5931 }
5932 
5933 void Assembler::emit_data64(jlong data,
5934                             relocInfo::relocType rtype,
5935                             int format) {
5936   if (rtype == relocInfo::none) {
5937     emit_int64(data);
5938   } else {
5939     emit_data64(data, Relocation::spec_simple(rtype), format);
5940   }
5941 }
5942 
5943 void Assembler::emit_data64(jlong data,
5944                             RelocationHolder const& rspec,
5945                             int format) {
5946   assert(imm_operand == 0, "default format must be immediate in this file");
5947   assert(imm_operand == format, "must be immediate");
5948   assert(inst_mark() != NULL, "must be inside InstructionMark");
5949   // Do not use AbstractAssembler::relocate, which is not intended for
5950   // embedded words.  Instead, relocate to the enclosing instruction.
5951   code_section()->relocate(inst_mark(), rspec, format);
5952 #ifdef ASSERT
5953   check_relocation(rspec, format);
5954 #endif
5955   emit_int64(data);
5956 }
5957 
5958 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
5959   if (reg_enc >= 8) {
5960     prefix(REX_B);
5961     reg_enc -= 8;
5962   } else if (byteinst && reg_enc >= 4) {
5963     prefix(REX);
5964   }
5965   return reg_enc;
5966 }
5967 
5968 int Assembler::prefixq_and_encode(int reg_enc) {
5969   if (reg_enc < 8) {
5970     prefix(REX_W);
5971   } else {
5972     prefix(REX_WB);
5973     reg_enc -= 8;
5974   }
5975   return reg_enc;
5976 }
5977 
5978 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
5979   if (dst_enc < 8) {
5980     if (src_enc >= 8) {
5981       prefix(REX_B);
5982       src_enc -= 8;
5983     } else if (byteinst && src_enc >= 4) {
5984       prefix(REX);
5985     }
5986   } else {
5987     if (src_enc < 8) {
5988       prefix(REX_R);
5989     } else {
5990       prefix(REX_RB);
5991       src_enc -= 8;
5992     }
5993     dst_enc -= 8;
5994   }
5995   return dst_enc << 3 | src_enc;
5996 }
5997 
5998 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
5999   if (dst_enc < 8) {
6000     if (src_enc < 8) {
6001       prefix(REX_W);
6002     } else {
6003       prefix(REX_WB);
6004       src_enc -= 8;
6005     }
6006   } else {
6007     if (src_enc < 8) {
6008       prefix(REX_WR);
6009     } else {
6010       prefix(REX_WRB);
6011       src_enc -= 8;
6012     }
6013     dst_enc -= 8;
6014   }
6015   return dst_enc << 3 | src_enc;
6016 }
6017 
6018 void Assembler::prefix(Register reg) {
6019   if (reg->encoding() >= 8) {
6020     prefix(REX_B);
6021   }
6022 }
6023 
6024 void Assembler::prefix(Address adr) {
6025   if (adr.base_needs_rex()) {
6026     if (adr.index_needs_rex()) {
6027       prefix(REX_XB);
6028     } else {
6029       prefix(REX_B);
6030     }
6031   } else {
6032     if (adr.index_needs_rex()) {
6033       prefix(REX_X);
6034     }
6035   }
6036 }
6037 
6038 void Assembler::prefixq(Address adr) {
6039   if (adr.base_needs_rex()) {
6040     if (adr.index_needs_rex()) {
6041       prefix(REX_WXB);
6042     } else {
6043       prefix(REX_WB);
6044     }
6045   } else {
6046     if (adr.index_needs_rex()) {
6047       prefix(REX_WX);
6048     } else {
6049       prefix(REX_W);
6050     }
6051   }
6052 }
6053 
6054 
6055 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
6056   if (reg->encoding() < 8) {
6057     if (adr.base_needs_rex()) {
6058       if (adr.index_needs_rex()) {
6059         prefix(REX_XB);
6060       } else {
6061         prefix(REX_B);
6062       }
6063     } else {
6064       if (adr.index_needs_rex()) {
6065         prefix(REX_X);
6066       } else if (byteinst && reg->encoding() >= 4 ) {
6067         prefix(REX);
6068       }
6069     }
6070   } else {
6071     if (adr.base_needs_rex()) {
6072       if (adr.index_needs_rex()) {
6073         prefix(REX_RXB);
6074       } else {
6075         prefix(REX_RB);
6076       }
6077     } else {
6078       if (adr.index_needs_rex()) {
6079         prefix(REX_RX);
6080       } else {
6081         prefix(REX_R);
6082       }
6083     }
6084   }
6085 }
6086 
6087 void Assembler::prefixq(Address adr, Register src) {
6088   if (src->encoding() < 8) {
6089     if (adr.base_needs_rex()) {
6090       if (adr.index_needs_rex()) {
6091         prefix(REX_WXB);
6092       } else {
6093         prefix(REX_WB);
6094       }
6095     } else {
6096       if (adr.index_needs_rex()) {
6097         prefix(REX_WX);
6098       } else {
6099         prefix(REX_W);
6100       }
6101     }
6102   } else {
6103     if (adr.base_needs_rex()) {
6104       if (adr.index_needs_rex()) {
6105         prefix(REX_WRXB);
6106       } else {
6107         prefix(REX_WRB);
6108       }
6109     } else {
6110       if (adr.index_needs_rex()) {
6111         prefix(REX_WRX);
6112       } else {
6113         prefix(REX_WR);
6114       }
6115     }
6116   }
6117 }
6118 
6119 void Assembler::prefix(Address adr, XMMRegister reg) {
6120   if (reg->encoding() < 8) {
6121     if (adr.base_needs_rex()) {
6122       if (adr.index_needs_rex()) {
6123         prefix(REX_XB);
6124       } else {
6125         prefix(REX_B);
6126       }
6127     } else {
6128       if (adr.index_needs_rex()) {
6129         prefix(REX_X);
6130       }
6131     }
6132   } else {
6133     if (adr.base_needs_rex()) {
6134       if (adr.index_needs_rex()) {
6135         prefix(REX_RXB);
6136       } else {
6137         prefix(REX_RB);
6138       }
6139     } else {
6140       if (adr.index_needs_rex()) {
6141         prefix(REX_RX);
6142       } else {
6143         prefix(REX_R);
6144       }
6145     }
6146   }
6147 }
6148 
6149 void Assembler::prefixq(Address adr, XMMRegister src) {
6150   if (src->encoding() < 8) {
6151     if (adr.base_needs_rex()) {
6152       if (adr.index_needs_rex()) {
6153         prefix(REX_WXB);
6154       } else {
6155         prefix(REX_WB);
6156       }
6157     } else {
6158       if (adr.index_needs_rex()) {
6159         prefix(REX_WX);
6160       } else {
6161         prefix(REX_W);
6162       }
6163     }
6164   } else {
6165     if (adr.base_needs_rex()) {
6166       if (adr.index_needs_rex()) {
6167         prefix(REX_WRXB);
6168       } else {
6169         prefix(REX_WRB);
6170       }
6171     } else {
6172       if (adr.index_needs_rex()) {
6173         prefix(REX_WRX);
6174       } else {
6175         prefix(REX_WR);
6176       }
6177     }
6178   }
6179 }
6180 
6181 void Assembler::adcq(Register dst, int32_t imm32) {
6182   (void) prefixq_and_encode(dst->encoding());
6183   emit_arith(0x81, 0xD0, dst, imm32);
6184 }
6185 
6186 void Assembler::adcq(Register dst, Address src) {
6187   InstructionMark im(this);
6188   prefixq(src, dst);
6189   emit_int8(0x13);
6190   emit_operand(dst, src);
6191 }
6192 
6193 void Assembler::adcq(Register dst, Register src) {
6194   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6195   emit_arith(0x13, 0xC0, dst, src);
6196 }
6197 
6198 void Assembler::addq(Address dst, int32_t imm32) {
6199   InstructionMark im(this);
6200   prefixq(dst);
6201   emit_arith_operand(0x81, rax, dst,imm32);
6202 }
6203 
6204 void Assembler::addq(Address dst, Register src) {
6205   InstructionMark im(this);
6206   prefixq(dst, src);
6207   emit_int8(0x01);
6208   emit_operand(src, dst);
6209 }
6210 
6211 void Assembler::addq(Register dst, int32_t imm32) {
6212   (void) prefixq_and_encode(dst->encoding());
6213   emit_arith(0x81, 0xC0, dst, imm32);
6214 }
6215 
6216 void Assembler::addq(Register dst, Address src) {
6217   InstructionMark im(this);
6218   prefixq(src, dst);
6219   emit_int8(0x03);
6220   emit_operand(dst, src);
6221 }
6222 
6223 void Assembler::addq(Register dst, Register src) {
6224   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6225   emit_arith(0x03, 0xC0, dst, src);
6226 }
6227 
6228 void Assembler::adcxq(Register dst, Register src) {
6229   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6230   emit_int8((unsigned char)0x66);
6231   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6232   emit_int8(0x0F);
6233   emit_int8(0x38);
6234   emit_int8((unsigned char)0xF6);
6235   emit_int8((unsigned char)(0xC0 | encode));
6236 }
6237 
6238 void Assembler::adoxq(Register dst, Register src) {
6239   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6240   emit_int8((unsigned char)0xF3);
6241   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6242   emit_int8(0x0F);
6243   emit_int8(0x38);
6244   emit_int8((unsigned char)0xF6);
6245   emit_int8((unsigned char)(0xC0 | encode));
6246 }
6247 
6248 void Assembler::andq(Address dst, int32_t imm32) {
6249   InstructionMark im(this);
6250   prefixq(dst);
6251   emit_int8((unsigned char)0x81);
6252   emit_operand(rsp, dst, 4);
6253   emit_int32(imm32);
6254 }
6255 
6256 void Assembler::andq(Register dst, int32_t imm32) {
6257   (void) prefixq_and_encode(dst->encoding());
6258   emit_arith(0x81, 0xE0, dst, imm32);
6259 }
6260 
6261 void Assembler::andq(Register dst, Address src) {
6262   InstructionMark im(this);
6263   prefixq(src, dst);
6264   emit_int8(0x23);
6265   emit_operand(dst, src);
6266 }
6267 
6268 void Assembler::andq(Register dst, Register src) {
6269   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6270   emit_arith(0x23, 0xC0, dst, src);
6271 }
6272 
6273 void Assembler::andnq(Register dst, Register src1, Register src2) {
6274   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6275   int encode = vex_prefix_0F38_and_encode_q(dst, src1, src2);
6276   emit_int8((unsigned char)0xF2);
6277   emit_int8((unsigned char)(0xC0 | encode));
6278 }
6279 
6280 void Assembler::andnq(Register dst, Register src1, Address src2) {
6281   if (VM_Version::supports_evex()) {
6282     tuple_type = EVEX_T1S;
6283     input_size_in_bits = EVEX_64bit;
6284   }
6285   InstructionMark im(this);
6286   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6287   vex_prefix_0F38_q(dst, src1, src2);
6288   emit_int8((unsigned char)0xF2);
6289   emit_operand(dst, src2);
6290 }
6291 
6292 void Assembler::bsfq(Register dst, Register src) {
6293   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6294   emit_int8(0x0F);
6295   emit_int8((unsigned char)0xBC);
6296   emit_int8((unsigned char)(0xC0 | encode));
6297 }
6298 
6299 void Assembler::bsrq(Register dst, Register src) {
6300   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6301   emit_int8(0x0F);
6302   emit_int8((unsigned char)0xBD);
6303   emit_int8((unsigned char)(0xC0 | encode));
6304 }
6305 
6306 void Assembler::bswapq(Register reg) {
6307   int encode = prefixq_and_encode(reg->encoding());
6308   emit_int8(0x0F);
6309   emit_int8((unsigned char)(0xC8 | encode));
6310 }
6311 
6312 void Assembler::blsiq(Register dst, Register src) {
6313   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6314   int encode = vex_prefix_0F38_and_encode_q(rbx, dst, src);
6315   emit_int8((unsigned char)0xF3);
6316   emit_int8((unsigned char)(0xC0 | encode));
6317 }
6318 
6319 void Assembler::blsiq(Register dst, Address src) {
6320   InstructionMark im(this);
6321   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6322   vex_prefix_0F38_q(rbx, dst, src);
6323   emit_int8((unsigned char)0xF3);
6324   emit_operand(rbx, src);
6325 }
6326 
6327 void Assembler::blsmskq(Register dst, Register src) {
6328   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6329   int encode = vex_prefix_0F38_and_encode_q(rdx, dst, src);
6330   emit_int8((unsigned char)0xF3);
6331   emit_int8((unsigned char)(0xC0 | encode));
6332 }
6333 
6334 void Assembler::blsmskq(Register dst, Address src) {
6335   InstructionMark im(this);
6336   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6337   vex_prefix_0F38_q(rdx, dst, src);
6338   emit_int8((unsigned char)0xF3);
6339   emit_operand(rdx, src);
6340 }
6341 
6342 void Assembler::blsrq(Register dst, Register src) {
6343   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6344   int encode = vex_prefix_0F38_and_encode_q(rcx, dst, src);
6345   emit_int8((unsigned char)0xF3);
6346   emit_int8((unsigned char)(0xC0 | encode));
6347 }
6348 
6349 void Assembler::blsrq(Register dst, Address src) {
6350   InstructionMark im(this);
6351   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6352   vex_prefix_0F38_q(rcx, dst, src);
6353   emit_int8((unsigned char)0xF3);
6354   emit_operand(rcx, src);
6355 }
6356 
6357 void Assembler::cdqq() {
6358   prefix(REX_W);
6359   emit_int8((unsigned char)0x99);
6360 }
6361 
6362 void Assembler::clflush(Address adr) {
6363   prefix(adr);
6364   emit_int8(0x0F);
6365   emit_int8((unsigned char)0xAE);
6366   emit_operand(rdi, adr);
6367 }
6368 
6369 void Assembler::cmovq(Condition cc, Register dst, Register src) {
6370   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6371   emit_int8(0x0F);
6372   emit_int8(0x40 | cc);
6373   emit_int8((unsigned char)(0xC0 | encode));
6374 }
6375 
6376 void Assembler::cmovq(Condition cc, Register dst, Address src) {
6377   InstructionMark im(this);
6378   prefixq(src, dst);
6379   emit_int8(0x0F);
6380   emit_int8(0x40 | cc);
6381   emit_operand(dst, src);
6382 }
6383 
6384 void Assembler::cmpq(Address dst, int32_t imm32) {
6385   InstructionMark im(this);
6386   prefixq(dst);
6387   emit_int8((unsigned char)0x81);
6388   emit_operand(rdi, dst, 4);
6389   emit_int32(imm32);
6390 }
6391 
6392 void Assembler::cmpq(Register dst, int32_t imm32) {
6393   (void) prefixq_and_encode(dst->encoding());
6394   emit_arith(0x81, 0xF8, dst, imm32);
6395 }
6396 
6397 void Assembler::cmpq(Address dst, Register src) {
6398   InstructionMark im(this);
6399   prefixq(dst, src);
6400   emit_int8(0x3B);
6401   emit_operand(src, dst);
6402 }
6403 
6404 void Assembler::cmpq(Register dst, Register src) {
6405   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6406   emit_arith(0x3B, 0xC0, dst, src);
6407 }
6408 
6409 void Assembler::cmpq(Register dst, Address  src) {
6410   InstructionMark im(this);
6411   prefixq(src, dst);
6412   emit_int8(0x3B);
6413   emit_operand(dst, src);
6414 }
6415 
6416 void Assembler::cmpxchgq(Register reg, Address adr) {
6417   InstructionMark im(this);
6418   prefixq(adr, reg);
6419   emit_int8(0x0F);
6420   emit_int8((unsigned char)0xB1);
6421   emit_operand(reg, adr);
6422 }
6423 
6424 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
6425   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6426   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2, true);
6427   emit_int8(0x2A);
6428   emit_int8((unsigned char)(0xC0 | encode));
6429 }
6430 
6431 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
6432   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6433   if (VM_Version::supports_evex()) {
6434     tuple_type = EVEX_T1S;
6435     input_size_in_bits = EVEX_32bit;
6436   }
6437   InstructionMark im(this);
6438   simd_prefix_q(dst, dst, src, VEX_SIMD_F2, true);
6439   emit_int8(0x2A);
6440   emit_operand(dst, src);
6441 }
6442 
6443 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
6444   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6445   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3, true);
6446   emit_int8(0x2A);
6447   emit_int8((unsigned char)(0xC0 | encode));
6448 }
6449 
6450 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
6451   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6452   if (VM_Version::supports_evex()) {
6453     tuple_type = EVEX_T1S;
6454     input_size_in_bits = EVEX_32bit;
6455   }
6456   InstructionMark im(this);
6457   simd_prefix_q(dst, dst, src, VEX_SIMD_F3, true);
6458   emit_int8(0x2A);
6459   emit_operand(dst, src);
6460 }
6461 
6462 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
6463   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6464   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, true);
6465   emit_int8(0x2C);
6466   emit_int8((unsigned char)(0xC0 | encode));
6467 }
6468 
6469 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
6470   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6471   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, true);
6472   emit_int8(0x2C);
6473   emit_int8((unsigned char)(0xC0 | encode));
6474 }
6475 
6476 void Assembler::decl(Register dst) {
6477   // Don't use it directly. Use MacroAssembler::decrementl() instead.
6478   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
6479   int encode = prefix_and_encode(dst->encoding());
6480   emit_int8((unsigned char)0xFF);
6481   emit_int8((unsigned char)(0xC8 | encode));
6482 }
6483 
6484 void Assembler::decq(Register dst) {
6485   // Don't use it directly. Use MacroAssembler::decrementq() instead.
6486   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6487   int encode = prefixq_and_encode(dst->encoding());
6488   emit_int8((unsigned char)0xFF);
6489   emit_int8(0xC8 | encode);
6490 }
6491 
6492 void Assembler::decq(Address dst) {
6493   // Don't use it directly. Use MacroAssembler::decrementq() instead.
6494   InstructionMark im(this);
6495   prefixq(dst);
6496   emit_int8((unsigned char)0xFF);
6497   emit_operand(rcx, dst);
6498 }
6499 
6500 void Assembler::fxrstor(Address src) {
6501   prefixq(src);
6502   emit_int8(0x0F);
6503   emit_int8((unsigned char)0xAE);
6504   emit_operand(as_Register(1), src);
6505 }
6506 
6507 void Assembler::fxsave(Address dst) {
6508   prefixq(dst);
6509   emit_int8(0x0F);
6510   emit_int8((unsigned char)0xAE);
6511   emit_operand(as_Register(0), dst);
6512 }
6513 
6514 void Assembler::idivq(Register src) {
6515   int encode = prefixq_and_encode(src->encoding());
6516   emit_int8((unsigned char)0xF7);
6517   emit_int8((unsigned char)(0xF8 | encode));
6518 }
6519 
6520 void Assembler::imulq(Register dst, Register src) {
6521   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6522   emit_int8(0x0F);
6523   emit_int8((unsigned char)0xAF);
6524   emit_int8((unsigned char)(0xC0 | encode));
6525 }
6526 
6527 void Assembler::imulq(Register dst, Register src, int value) {
6528   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6529   if (is8bit(value)) {
6530     emit_int8(0x6B);
6531     emit_int8((unsigned char)(0xC0 | encode));
6532     emit_int8(value & 0xFF);
6533   } else {
6534     emit_int8(0x69);
6535     emit_int8((unsigned char)(0xC0 | encode));
6536     emit_int32(value);
6537   }
6538 }
6539 
6540 void Assembler::imulq(Register dst, Address src) {
6541   InstructionMark im(this);
6542   prefixq(src, dst);
6543   emit_int8(0x0F);
6544   emit_int8((unsigned char) 0xAF);
6545   emit_operand(dst, src);
6546 }
6547 
6548 void Assembler::incl(Register dst) {
6549   // Don't use it directly. Use MacroAssembler::incrementl() instead.
6550   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6551   int encode = prefix_and_encode(dst->encoding());
6552   emit_int8((unsigned char)0xFF);
6553   emit_int8((unsigned char)(0xC0 | encode));
6554 }
6555 
6556 void Assembler::incq(Register dst) {
6557   // Don't use it directly. Use MacroAssembler::incrementq() instead.
6558   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6559   int encode = prefixq_and_encode(dst->encoding());
6560   emit_int8((unsigned char)0xFF);
6561   emit_int8((unsigned char)(0xC0 | encode));
6562 }
6563 
6564 void Assembler::incq(Address dst) {
6565   // Don't use it directly. Use MacroAssembler::incrementq() instead.
6566   InstructionMark im(this);
6567   prefixq(dst);
6568   emit_int8((unsigned char)0xFF);
6569   emit_operand(rax, dst);
6570 }
6571 
6572 void Assembler::lea(Register dst, Address src) {
6573   leaq(dst, src);
6574 }
6575 
6576 void Assembler::leaq(Register dst, Address src) {
6577   InstructionMark im(this);
6578   prefixq(src, dst);
6579   emit_int8((unsigned char)0x8D);
6580   emit_operand(dst, src);
6581 }
6582 
6583 void Assembler::mov64(Register dst, int64_t imm64) {
6584   InstructionMark im(this);
6585   int encode = prefixq_and_encode(dst->encoding());
6586   emit_int8((unsigned char)(0xB8 | encode));
6587   emit_int64(imm64);
6588 }
6589 
6590 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
6591   InstructionMark im(this);
6592   int encode = prefixq_and_encode(dst->encoding());
6593   emit_int8(0xB8 | encode);
6594   emit_data64(imm64, rspec);
6595 }
6596 
6597 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
6598   InstructionMark im(this);
6599   int encode = prefix_and_encode(dst->encoding());
6600   emit_int8((unsigned char)(0xB8 | encode));
6601   emit_data((int)imm32, rspec, narrow_oop_operand);
6602 }
6603 
6604 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
6605   InstructionMark im(this);
6606   prefix(dst);
6607   emit_int8((unsigned char)0xC7);
6608   emit_operand(rax, dst, 4);
6609   emit_data((int)imm32, rspec, narrow_oop_operand);
6610 }
6611 
6612 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
6613   InstructionMark im(this);
6614   int encode = prefix_and_encode(src1->encoding());
6615   emit_int8((unsigned char)0x81);
6616   emit_int8((unsigned char)(0xF8 | encode));
6617   emit_data((int)imm32, rspec, narrow_oop_operand);
6618 }
6619 
6620 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
6621   InstructionMark im(this);
6622   prefix(src1);
6623   emit_int8((unsigned char)0x81);
6624   emit_operand(rax, src1, 4);
6625   emit_data((int)imm32, rspec, narrow_oop_operand);
6626 }
6627 
6628 void Assembler::lzcntq(Register dst, Register src) {
6629   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
6630   emit_int8((unsigned char)0xF3);
6631   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6632   emit_int8(0x0F);
6633   emit_int8((unsigned char)0xBD);
6634   emit_int8((unsigned char)(0xC0 | encode));
6635 }
6636 
6637 void Assembler::movdq(XMMRegister dst, Register src) {
6638   // table D-1 says MMX/SSE2
6639   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6640   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66, true);
6641   emit_int8(0x6E);
6642   emit_int8((unsigned char)(0xC0 | encode));
6643 }
6644 
6645 void Assembler::movdq(Register dst, XMMRegister src) {
6646   // table D-1 says MMX/SSE2
6647   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6648   // swap src/dst to get correct prefix
6649   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66, true);
6650   emit_int8(0x7E);
6651   emit_int8((unsigned char)(0xC0 | encode));
6652 }
6653 
6654 void Assembler::movq(Register dst, Register src) {
6655   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6656   emit_int8((unsigned char)0x8B);
6657   emit_int8((unsigned char)(0xC0 | encode));
6658 }
6659 
6660 void Assembler::movq(Register dst, Address src) {
6661   InstructionMark im(this);
6662   prefixq(src, dst);
6663   emit_int8((unsigned char)0x8B);
6664   emit_operand(dst, src);
6665 }
6666 
6667 void Assembler::movq(Address dst, Register src) {
6668   InstructionMark im(this);
6669   prefixq(dst, src);
6670   emit_int8((unsigned char)0x89);
6671   emit_operand(src, dst);
6672 }
6673 
6674 void Assembler::movsbq(Register dst, Address src) {
6675   InstructionMark im(this);
6676   prefixq(src, dst);
6677   emit_int8(0x0F);
6678   emit_int8((unsigned char)0xBE);
6679   emit_operand(dst, src);
6680 }
6681 
6682 void Assembler::movsbq(Register dst, Register src) {
6683   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6684   emit_int8(0x0F);
6685   emit_int8((unsigned char)0xBE);
6686   emit_int8((unsigned char)(0xC0 | encode));
6687 }
6688 
6689 void Assembler::movslq(Register dst, int32_t imm32) {
6690   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
6691   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
6692   // as a result we shouldn't use until tested at runtime...
6693   ShouldNotReachHere();
6694   InstructionMark im(this);
6695   int encode = prefixq_and_encode(dst->encoding());
6696   emit_int8((unsigned char)(0xC7 | encode));
6697   emit_int32(imm32);
6698 }
6699 
6700 void Assembler::movslq(Address dst, int32_t imm32) {
6701   assert(is_simm32(imm32), "lost bits");
6702   InstructionMark im(this);
6703   prefixq(dst);
6704   emit_int8((unsigned char)0xC7);
6705   emit_operand(rax, dst, 4);
6706   emit_int32(imm32);
6707 }
6708 
6709 void Assembler::movslq(Register dst, Address src) {
6710   InstructionMark im(this);
6711   prefixq(src, dst);
6712   emit_int8(0x63);
6713   emit_operand(dst, src);
6714 }
6715 
6716 void Assembler::movslq(Register dst, Register src) {
6717   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6718   emit_int8(0x63);
6719   emit_int8((unsigned char)(0xC0 | encode));
6720 }
6721 
6722 void Assembler::movswq(Register dst, Address src) {
6723   InstructionMark im(this);
6724   prefixq(src, dst);
6725   emit_int8(0x0F);
6726   emit_int8((unsigned char)0xBF);
6727   emit_operand(dst, src);
6728 }
6729 
6730 void Assembler::movswq(Register dst, Register src) {
6731   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6732   emit_int8((unsigned char)0x0F);
6733   emit_int8((unsigned char)0xBF);
6734   emit_int8((unsigned char)(0xC0 | encode));
6735 }
6736 
6737 void Assembler::movzbq(Register dst, Address src) {
6738   InstructionMark im(this);
6739   prefixq(src, dst);
6740   emit_int8((unsigned char)0x0F);
6741   emit_int8((unsigned char)0xB6);
6742   emit_operand(dst, src);
6743 }
6744 
6745 void Assembler::movzbq(Register dst, Register src) {
6746   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6747   emit_int8(0x0F);
6748   emit_int8((unsigned char)0xB6);
6749   emit_int8(0xC0 | encode);
6750 }
6751 
6752 void Assembler::movzwq(Register dst, Address src) {
6753   InstructionMark im(this);
6754   prefixq(src, dst);
6755   emit_int8((unsigned char)0x0F);
6756   emit_int8((unsigned char)0xB7);
6757   emit_operand(dst, src);
6758 }
6759 
6760 void Assembler::movzwq(Register dst, Register src) {
6761   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6762   emit_int8((unsigned char)0x0F);
6763   emit_int8((unsigned char)0xB7);
6764   emit_int8((unsigned char)(0xC0 | encode));
6765 }
6766 
6767 void Assembler::mulq(Address src) {
6768   InstructionMark im(this);
6769   prefixq(src);
6770   emit_int8((unsigned char)0xF7);
6771   emit_operand(rsp, src);
6772 }
6773 
6774 void Assembler::mulq(Register src) {
6775   int encode = prefixq_and_encode(src->encoding());
6776   emit_int8((unsigned char)0xF7);
6777   emit_int8((unsigned char)(0xE0 | encode));
6778 }
6779 
6780 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
6781   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
6782   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(),
6783                                      VEX_SIMD_F2, VEX_OPCODE_0F_38, true, AVX_128bit, true, false);
6784   emit_int8((unsigned char)0xF6);
6785   emit_int8((unsigned char)(0xC0 | encode));
6786 }
6787 
6788 void Assembler::negq(Register dst) {
6789   int encode = prefixq_and_encode(dst->encoding());
6790   emit_int8((unsigned char)0xF7);
6791   emit_int8((unsigned char)(0xD8 | encode));
6792 }
6793 
6794 void Assembler::notq(Register dst) {
6795   int encode = prefixq_and_encode(dst->encoding());
6796   emit_int8((unsigned char)0xF7);
6797   emit_int8((unsigned char)(0xD0 | encode));
6798 }
6799 
6800 void Assembler::orq(Address dst, int32_t imm32) {
6801   InstructionMark im(this);
6802   prefixq(dst);
6803   emit_int8((unsigned char)0x81);
6804   emit_operand(rcx, dst, 4);
6805   emit_int32(imm32);
6806 }
6807 
6808 void Assembler::orq(Register dst, int32_t imm32) {
6809   (void) prefixq_and_encode(dst->encoding());
6810   emit_arith(0x81, 0xC8, dst, imm32);
6811 }
6812 
6813 void Assembler::orq(Register dst, Address src) {
6814   InstructionMark im(this);
6815   prefixq(src, dst);
6816   emit_int8(0x0B);
6817   emit_operand(dst, src);
6818 }
6819 
6820 void Assembler::orq(Register dst, Register src) {
6821   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6822   emit_arith(0x0B, 0xC0, dst, src);
6823 }
6824 
6825 void Assembler::popa() { // 64bit
6826   movq(r15, Address(rsp, 0));
6827   movq(r14, Address(rsp, wordSize));
6828   movq(r13, Address(rsp, 2 * wordSize));
6829   movq(r12, Address(rsp, 3 * wordSize));
6830   movq(r11, Address(rsp, 4 * wordSize));
6831   movq(r10, Address(rsp, 5 * wordSize));
6832   movq(r9,  Address(rsp, 6 * wordSize));
6833   movq(r8,  Address(rsp, 7 * wordSize));
6834   movq(rdi, Address(rsp, 8 * wordSize));
6835   movq(rsi, Address(rsp, 9 * wordSize));
6836   movq(rbp, Address(rsp, 10 * wordSize));
6837   // skip rsp
6838   movq(rbx, Address(rsp, 12 * wordSize));
6839   movq(rdx, Address(rsp, 13 * wordSize));
6840   movq(rcx, Address(rsp, 14 * wordSize));
6841   movq(rax, Address(rsp, 15 * wordSize));
6842 
6843   addq(rsp, 16 * wordSize);
6844 }
6845 
6846 void Assembler::popcntq(Register dst, Address src) {
6847   assert(VM_Version::supports_popcnt(), "must support");
6848   InstructionMark im(this);
6849   emit_int8((unsigned char)0xF3);
6850   prefixq(src, dst);
6851   emit_int8((unsigned char)0x0F);
6852   emit_int8((unsigned char)0xB8);
6853   emit_operand(dst, src);
6854 }
6855 
6856 void Assembler::popcntq(Register dst, Register src) {
6857   assert(VM_Version::supports_popcnt(), "must support");
6858   emit_int8((unsigned char)0xF3);
6859   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6860   emit_int8((unsigned char)0x0F);
6861   emit_int8((unsigned char)0xB8);
6862   emit_int8((unsigned char)(0xC0 | encode));
6863 }
6864 
6865 void Assembler::popq(Address dst) {
6866   InstructionMark im(this);
6867   prefixq(dst);
6868   emit_int8((unsigned char)0x8F);
6869   emit_operand(rax, dst);
6870 }
6871 
6872 void Assembler::pusha() { // 64bit
6873   // we have to store original rsp.  ABI says that 128 bytes
6874   // below rsp are local scratch.
6875   movq(Address(rsp, -5 * wordSize), rsp);
6876 
6877   subq(rsp, 16 * wordSize);
6878 
6879   movq(Address(rsp, 15 * wordSize), rax);
6880   movq(Address(rsp, 14 * wordSize), rcx);
6881   movq(Address(rsp, 13 * wordSize), rdx);
6882   movq(Address(rsp, 12 * wordSize), rbx);
6883   // skip rsp
6884   movq(Address(rsp, 10 * wordSize), rbp);
6885   movq(Address(rsp, 9 * wordSize), rsi);
6886   movq(Address(rsp, 8 * wordSize), rdi);
6887   movq(Address(rsp, 7 * wordSize), r8);
6888   movq(Address(rsp, 6 * wordSize), r9);
6889   movq(Address(rsp, 5 * wordSize), r10);
6890   movq(Address(rsp, 4 * wordSize), r11);
6891   movq(Address(rsp, 3 * wordSize), r12);
6892   movq(Address(rsp, 2 * wordSize), r13);
6893   movq(Address(rsp, wordSize), r14);
6894   movq(Address(rsp, 0), r15);
6895 }
6896 
6897 void Assembler::pushq(Address src) {
6898   InstructionMark im(this);
6899   prefixq(src);
6900   emit_int8((unsigned char)0xFF);
6901   emit_operand(rsi, src);
6902 }
6903 
6904 void Assembler::rclq(Register dst, int imm8) {
6905   assert(isShiftCount(imm8 >> 1), "illegal shift count");
6906   int encode = prefixq_and_encode(dst->encoding());
6907   if (imm8 == 1) {
6908     emit_int8((unsigned char)0xD1);
6909     emit_int8((unsigned char)(0xD0 | encode));
6910   } else {
6911     emit_int8((unsigned char)0xC1);
6912     emit_int8((unsigned char)(0xD0 | encode));
6913     emit_int8(imm8);
6914   }
6915 }
6916 
6917 void Assembler::rcrq(Register dst, int imm8) {
6918   assert(isShiftCount(imm8 >> 1), "illegal shift count");
6919   int encode = prefixq_and_encode(dst->encoding());
6920   if (imm8 == 1) {
6921     emit_int8((unsigned char)0xD1);
6922     emit_int8((unsigned char)(0xD8 | encode));
6923   } else {
6924     emit_int8((unsigned char)0xC1);
6925     emit_int8((unsigned char)(0xD8 | encode));
6926     emit_int8(imm8);
6927   }
6928 }
6929 
6930 void Assembler::rorq(Register dst, int imm8) {
6931   assert(isShiftCount(imm8 >> 1), "illegal shift count");
6932   int encode = prefixq_and_encode(dst->encoding());
6933   if (imm8 == 1) {
6934     emit_int8((unsigned char)0xD1);
6935     emit_int8((unsigned char)(0xC8 | encode));
6936   } else {
6937     emit_int8((unsigned char)0xC1);
6938     emit_int8((unsigned char)(0xc8 | encode));
6939     emit_int8(imm8);
6940   }
6941 }
6942 
6943 void Assembler::rorxq(Register dst, Register src, int imm8) {
6944   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
6945   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2,
6946                                      VEX_OPCODE_0F_3A, true, AVX_128bit, true, false);
6947   emit_int8((unsigned char)0xF0);
6948   emit_int8((unsigned char)(0xC0 | encode));
6949   emit_int8(imm8);
6950 }
6951 
6952 void Assembler::sarq(Register dst, int imm8) {
6953   assert(isShiftCount(imm8 >> 1), "illegal shift count");
6954   int encode = prefixq_and_encode(dst->encoding());
6955   if (imm8 == 1) {
6956     emit_int8((unsigned char)0xD1);
6957     emit_int8((unsigned char)(0xF8 | encode));
6958   } else {
6959     emit_int8((unsigned char)0xC1);
6960     emit_int8((unsigned char)(0xF8 | encode));
6961     emit_int8(imm8);
6962   }
6963 }
6964 
6965 void Assembler::sarq(Register dst) {
6966   int encode = prefixq_and_encode(dst->encoding());
6967   emit_int8((unsigned char)0xD3);
6968   emit_int8((unsigned char)(0xF8 | encode));
6969 }
6970 
6971 void Assembler::sbbq(Address dst, int32_t imm32) {
6972   InstructionMark im(this);
6973   prefixq(dst);
6974   emit_arith_operand(0x81, rbx, dst, imm32);
6975 }
6976 
6977 void Assembler::sbbq(Register dst, int32_t imm32) {
6978   (void) prefixq_and_encode(dst->encoding());
6979   emit_arith(0x81, 0xD8, dst, imm32);
6980 }
6981 
6982 void Assembler::sbbq(Register dst, Address src) {
6983   InstructionMark im(this);
6984   prefixq(src, dst);
6985   emit_int8(0x1B);
6986   emit_operand(dst, src);
6987 }
6988 
6989 void Assembler::sbbq(Register dst, Register src) {
6990   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6991   emit_arith(0x1B, 0xC0, dst, src);
6992 }
6993 
6994 void Assembler::shlq(Register dst, int imm8) {
6995   assert(isShiftCount(imm8 >> 1), "illegal shift count");
6996   int encode = prefixq_and_encode(dst->encoding());
6997   if (imm8 == 1) {
6998     emit_int8((unsigned char)0xD1);
6999     emit_int8((unsigned char)(0xE0 | encode));
7000   } else {
7001     emit_int8((unsigned char)0xC1);
7002     emit_int8((unsigned char)(0xE0 | encode));
7003     emit_int8(imm8);
7004   }
7005 }
7006 
7007 void Assembler::shlq(Register dst) {
7008   int encode = prefixq_and_encode(dst->encoding());
7009   emit_int8((unsigned char)0xD3);
7010   emit_int8((unsigned char)(0xE0 | encode));
7011 }
7012 
7013 void Assembler::shrq(Register dst, int imm8) {
7014   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7015   int encode = prefixq_and_encode(dst->encoding());
7016   emit_int8((unsigned char)0xC1);
7017   emit_int8((unsigned char)(0xE8 | encode));
7018   emit_int8(imm8);
7019 }
7020 
7021 void Assembler::shrq(Register dst) {
7022   int encode = prefixq_and_encode(dst->encoding());
7023   emit_int8((unsigned char)0xD3);
7024   emit_int8(0xE8 | encode);
7025 }
7026 
7027 void Assembler::subq(Address dst, int32_t imm32) {
7028   InstructionMark im(this);
7029   prefixq(dst);
7030   emit_arith_operand(0x81, rbp, dst, imm32);
7031 }
7032 
7033 void Assembler::subq(Address dst, Register src) {
7034   InstructionMark im(this);
7035   prefixq(dst, src);
7036   emit_int8(0x29);
7037   emit_operand(src, dst);
7038 }
7039 
7040 void Assembler::subq(Register dst, int32_t imm32) {
7041   (void) prefixq_and_encode(dst->encoding());
7042   emit_arith(0x81, 0xE8, dst, imm32);
7043 }
7044 
7045 // Force generation of a 4 byte immediate value even if it fits into 8bit
7046 void Assembler::subq_imm32(Register dst, int32_t imm32) {
7047   (void) prefixq_and_encode(dst->encoding());
7048   emit_arith_imm32(0x81, 0xE8, dst, imm32);
7049 }
7050 
7051 void Assembler::subq(Register dst, Address src) {
7052   InstructionMark im(this);
7053   prefixq(src, dst);
7054   emit_int8(0x2B);
7055   emit_operand(dst, src);
7056 }
7057 
7058 void Assembler::subq(Register dst, Register src) {
7059   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7060   emit_arith(0x2B, 0xC0, dst, src);
7061 }
7062 
7063 void Assembler::testq(Register dst, int32_t imm32) {
7064   // not using emit_arith because test
7065   // doesn't support sign-extension of
7066   // 8bit operands
7067   int encode = dst->encoding();
7068   if (encode == 0) {
7069     prefix(REX_W);
7070     emit_int8((unsigned char)0xA9);
7071   } else {
7072     encode = prefixq_and_encode(encode);
7073     emit_int8((unsigned char)0xF7);
7074     emit_int8((unsigned char)(0xC0 | encode));
7075   }
7076   emit_int32(imm32);
7077 }
7078 
7079 void Assembler::testq(Register dst, Register src) {
7080   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7081   emit_arith(0x85, 0xC0, dst, src);
7082 }
7083 
7084 void Assembler::xaddq(Address dst, Register src) {
7085   InstructionMark im(this);
7086   prefixq(dst, src);
7087   emit_int8(0x0F);
7088   emit_int8((unsigned char)0xC1);
7089   emit_operand(src, dst);
7090 }
7091 
7092 void Assembler::xchgq(Register dst, Address src) {
7093   InstructionMark im(this);
7094   prefixq(src, dst);
7095   emit_int8((unsigned char)0x87);
7096   emit_operand(dst, src);
7097 }
7098 
7099 void Assembler::xchgq(Register dst, Register src) {
7100   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7101   emit_int8((unsigned char)0x87);
7102   emit_int8((unsigned char)(0xc0 | encode));
7103 }
7104 
7105 void Assembler::xorq(Register dst, Register src) {
7106   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7107   emit_arith(0x33, 0xC0, dst, src);
7108 }
7109 
7110 void Assembler::xorq(Register dst, Address src) {
7111   InstructionMark im(this);
7112   prefixq(src, dst);
7113   emit_int8(0x33);
7114   emit_operand(dst, src);
7115 }
7116 
7117 #endif // !LP64