1 /* 2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/systemDictionary.hpp" 27 #include "classfile/vmSymbols.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/scopeDesc.hpp" 30 #include "code/vtableStubs.hpp" 31 #include "compiler/abstractCompiler.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "compiler/compilerOracle.hpp" 34 #include "compiler/disassembler.hpp" 35 #include "interpreter/interpreter.hpp" 36 #include "interpreter/interpreterRuntime.hpp" 37 #include "memory/gcLocker.inline.hpp" 38 #include "memory/universe.inline.hpp" 39 #include "oops/oop.inline.hpp" 40 #include "prims/forte.hpp" 41 #include "prims/jvmtiExport.hpp" 42 #include "prims/jvmtiRedefineClassesTrace.hpp" 43 #include "prims/methodHandles.hpp" 44 #include "prims/nativeLookup.hpp" 45 #include "runtime/arguments.hpp" 46 #include "runtime/biasedLocking.hpp" 47 #include "runtime/handles.inline.hpp" 48 #include "runtime/init.hpp" 49 #include "runtime/interfaceSupport.hpp" 50 #include "runtime/javaCalls.hpp" 51 #include "runtime/sharedRuntime.hpp" 52 #include "runtime/stubRoutines.hpp" 53 #include "runtime/vframe.hpp" 54 #include "runtime/vframeArray.hpp" 55 #include "utilities/copy.hpp" 56 #include "utilities/dtrace.hpp" 57 #include "utilities/events.hpp" 58 #include "utilities/hashtable.inline.hpp" 59 #include "utilities/macros.hpp" 60 #include "utilities/xmlstream.hpp" 61 #ifdef TARGET_ARCH_x86 62 # include "nativeInst_x86.hpp" 63 # include "vmreg_x86.inline.hpp" 64 #endif 65 #ifdef TARGET_ARCH_sparc 66 # include "nativeInst_sparc.hpp" 67 # include "vmreg_sparc.inline.hpp" 68 #endif 69 #ifdef TARGET_ARCH_zero 70 # include "nativeInst_zero.hpp" 71 # include "vmreg_zero.inline.hpp" 72 #endif 73 #ifdef TARGET_ARCH_arm 74 # include "nativeInst_arm.hpp" 75 # include "vmreg_arm.inline.hpp" 76 #endif 77 #ifdef TARGET_ARCH_ppc 78 # include "nativeInst_ppc.hpp" 79 # include "vmreg_ppc.inline.hpp" 80 #endif 81 #ifdef COMPILER1 82 #include "c1/c1_Runtime1.hpp" 83 #endif 84 85 // Shared stub locations 86 RuntimeStub* SharedRuntime::_wrong_method_blob; 87 RuntimeStub* SharedRuntime::_wrong_method_abstract_blob; 88 RuntimeStub* SharedRuntime::_ic_miss_blob; 89 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob; 90 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob; 91 RuntimeStub* SharedRuntime::_resolve_static_call_blob; 92 93 DeoptimizationBlob* SharedRuntime::_deopt_blob; 94 SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob; 95 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob; 96 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob; 97 98 #ifdef COMPILER2 99 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob; 100 #endif // COMPILER2 101 102 103 //----------------------------generate_stubs----------------------------------- 104 void SharedRuntime::generate_stubs() { 105 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub"); 106 _wrong_method_abstract_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub"); 107 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub"); 108 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call"); 109 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call"); 110 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call"); 111 112 #ifdef COMPILER2 113 // Vectors are generated only by C2. 114 if (is_wide_vector(MaxVectorSize)) { 115 _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP); 116 } 117 #endif // COMPILER2 118 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP); 119 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN); 120 121 generate_deopt_blob(); 122 123 #ifdef COMPILER2 124 generate_uncommon_trap_blob(); 125 #endif // COMPILER2 126 } 127 128 #include <math.h> 129 130 // Implementation of SharedRuntime 131 132 #ifndef PRODUCT 133 // For statistics 134 int SharedRuntime::_ic_miss_ctr = 0; 135 int SharedRuntime::_wrong_method_ctr = 0; 136 int SharedRuntime::_resolve_static_ctr = 0; 137 int SharedRuntime::_resolve_virtual_ctr = 0; 138 int SharedRuntime::_resolve_opt_virtual_ctr = 0; 139 int SharedRuntime::_implicit_null_throws = 0; 140 int SharedRuntime::_implicit_div0_throws = 0; 141 int SharedRuntime::_throw_null_ctr = 0; 142 143 int SharedRuntime::_nof_normal_calls = 0; 144 int SharedRuntime::_nof_optimized_calls = 0; 145 int SharedRuntime::_nof_inlined_calls = 0; 146 int SharedRuntime::_nof_megamorphic_calls = 0; 147 int SharedRuntime::_nof_static_calls = 0; 148 int SharedRuntime::_nof_inlined_static_calls = 0; 149 int SharedRuntime::_nof_interface_calls = 0; 150 int SharedRuntime::_nof_optimized_interface_calls = 0; 151 int SharedRuntime::_nof_inlined_interface_calls = 0; 152 int SharedRuntime::_nof_megamorphic_interface_calls = 0; 153 int SharedRuntime::_nof_removable_exceptions = 0; 154 155 int SharedRuntime::_new_instance_ctr=0; 156 int SharedRuntime::_new_array_ctr=0; 157 int SharedRuntime::_multi1_ctr=0; 158 int SharedRuntime::_multi2_ctr=0; 159 int SharedRuntime::_multi3_ctr=0; 160 int SharedRuntime::_multi4_ctr=0; 161 int SharedRuntime::_multi5_ctr=0; 162 int SharedRuntime::_mon_enter_stub_ctr=0; 163 int SharedRuntime::_mon_exit_stub_ctr=0; 164 int SharedRuntime::_mon_enter_ctr=0; 165 int SharedRuntime::_mon_exit_ctr=0; 166 int SharedRuntime::_partial_subtype_ctr=0; 167 int SharedRuntime::_jbyte_array_copy_ctr=0; 168 int SharedRuntime::_jshort_array_copy_ctr=0; 169 int SharedRuntime::_jint_array_copy_ctr=0; 170 int SharedRuntime::_jlong_array_copy_ctr=0; 171 int SharedRuntime::_oop_array_copy_ctr=0; 172 int SharedRuntime::_checkcast_array_copy_ctr=0; 173 int SharedRuntime::_unsafe_array_copy_ctr=0; 174 int SharedRuntime::_generic_array_copy_ctr=0; 175 int SharedRuntime::_slow_array_copy_ctr=0; 176 int SharedRuntime::_find_handler_ctr=0; 177 int SharedRuntime::_rethrow_ctr=0; 178 179 int SharedRuntime::_ICmiss_index = 0; 180 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 181 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 182 183 184 void SharedRuntime::trace_ic_miss(address at) { 185 for (int i = 0; i < _ICmiss_index; i++) { 186 if (_ICmiss_at[i] == at) { 187 _ICmiss_count[i]++; 188 return; 189 } 190 } 191 int index = _ICmiss_index++; 192 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 193 _ICmiss_at[index] = at; 194 _ICmiss_count[index] = 1; 195 } 196 197 void SharedRuntime::print_ic_miss_histogram() { 198 if (ICMissHistogram) { 199 tty->print_cr ("IC Miss Histogram:"); 200 int tot_misses = 0; 201 for (int i = 0; i < _ICmiss_index; i++) { 202 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", _ICmiss_at[i], _ICmiss_count[i]); 203 tot_misses += _ICmiss_count[i]; 204 } 205 tty->print_cr ("Total IC misses: %7d", tot_misses); 206 } 207 } 208 #endif // PRODUCT 209 210 #if INCLUDE_ALL_GCS 211 212 // G1 write-barrier pre: executed before a pointer store. 213 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread)) 214 if (orig == NULL) { 215 assert(false, "should be optimized out"); 216 return; 217 } 218 assert(orig->is_oop(true /* ignore mark word */), "Error"); 219 // store the original value that was in the field reference 220 thread->satb_mark_queue().enqueue(orig); 221 JRT_END 222 223 // G1 write-barrier post: executed after a pointer store. 224 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread)) 225 thread->dirty_card_queue().enqueue(card_addr); 226 JRT_END 227 228 #endif // INCLUDE_ALL_GCS 229 230 231 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 232 return x * y; 233 JRT_END 234 235 236 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 237 if (x == min_jlong && y == CONST64(-1)) { 238 return x; 239 } else { 240 return x / y; 241 } 242 JRT_END 243 244 245 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 246 if (x == min_jlong && y == CONST64(-1)) { 247 return 0; 248 } else { 249 return x % y; 250 } 251 JRT_END 252 253 254 const juint float_sign_mask = 0x7FFFFFFF; 255 const juint float_infinity = 0x7F800000; 256 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 257 const julong double_infinity = CONST64(0x7FF0000000000000); 258 259 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 260 #ifdef _WIN64 261 // 64-bit Windows on amd64 returns the wrong values for 262 // infinity operands. 263 union { jfloat f; juint i; } xbits, ybits; 264 xbits.f = x; 265 ybits.f = y; 266 // x Mod Infinity == x unless x is infinity 267 if ( ((xbits.i & float_sign_mask) != float_infinity) && 268 ((ybits.i & float_sign_mask) == float_infinity) ) { 269 return x; 270 } 271 #endif 272 return ((jfloat)fmod((double)x,(double)y)); 273 JRT_END 274 275 276 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 277 #ifdef _WIN64 278 union { jdouble d; julong l; } xbits, ybits; 279 xbits.d = x; 280 ybits.d = y; 281 // x Mod Infinity == x unless x is infinity 282 if ( ((xbits.l & double_sign_mask) != double_infinity) && 283 ((ybits.l & double_sign_mask) == double_infinity) ) { 284 return x; 285 } 286 #endif 287 return ((jdouble)fmod((double)x,(double)y)); 288 JRT_END 289 290 #ifdef __SOFTFP__ 291 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 292 return x + y; 293 JRT_END 294 295 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 296 return x - y; 297 JRT_END 298 299 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 300 return x * y; 301 JRT_END 302 303 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 304 return x / y; 305 JRT_END 306 307 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 308 return x + y; 309 JRT_END 310 311 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 312 return x - y; 313 JRT_END 314 315 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 316 return x * y; 317 JRT_END 318 319 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 320 return x / y; 321 JRT_END 322 323 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 324 return (jfloat)x; 325 JRT_END 326 327 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 328 return (jdouble)x; 329 JRT_END 330 331 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 332 return (jdouble)x; 333 JRT_END 334 335 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 336 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 337 JRT_END 338 339 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 340 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 341 JRT_END 342 343 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 344 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 345 JRT_END 346 347 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 348 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 349 JRT_END 350 351 // Functions to return the opposite of the aeabi functions for nan. 352 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 353 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 354 JRT_END 355 356 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 357 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 358 JRT_END 359 360 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 361 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 362 JRT_END 363 364 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 365 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 366 JRT_END 367 368 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 369 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 370 JRT_END 371 372 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 373 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 374 JRT_END 375 376 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 377 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 378 JRT_END 379 380 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 381 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 382 JRT_END 383 384 // Intrinsics make gcc generate code for these. 385 float SharedRuntime::fneg(float f) { 386 return -f; 387 } 388 389 double SharedRuntime::dneg(double f) { 390 return -f; 391 } 392 393 #endif // __SOFTFP__ 394 395 #if defined(__SOFTFP__) || defined(E500V2) 396 // Intrinsics make gcc generate code for these. 397 double SharedRuntime::dabs(double f) { 398 return (f <= (double)0.0) ? (double)0.0 - f : f; 399 } 400 401 #endif 402 403 #if defined(__SOFTFP__) || defined(PPC32) 404 double SharedRuntime::dsqrt(double f) { 405 return sqrt(f); 406 } 407 #endif 408 409 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 410 if (g_isnan(x)) 411 return 0; 412 if (x >= (jfloat) max_jint) 413 return max_jint; 414 if (x <= (jfloat) min_jint) 415 return min_jint; 416 return (jint) x; 417 JRT_END 418 419 420 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 421 if (g_isnan(x)) 422 return 0; 423 if (x >= (jfloat) max_jlong) 424 return max_jlong; 425 if (x <= (jfloat) min_jlong) 426 return min_jlong; 427 return (jlong) x; 428 JRT_END 429 430 431 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 432 if (g_isnan(x)) 433 return 0; 434 if (x >= (jdouble) max_jint) 435 return max_jint; 436 if (x <= (jdouble) min_jint) 437 return min_jint; 438 return (jint) x; 439 JRT_END 440 441 442 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 443 if (g_isnan(x)) 444 return 0; 445 if (x >= (jdouble) max_jlong) 446 return max_jlong; 447 if (x <= (jdouble) min_jlong) 448 return min_jlong; 449 return (jlong) x; 450 JRT_END 451 452 453 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 454 return (jfloat)x; 455 JRT_END 456 457 458 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 459 return (jfloat)x; 460 JRT_END 461 462 463 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 464 return (jdouble)x; 465 JRT_END 466 467 // Exception handling across interpreter/compiler boundaries 468 // 469 // exception_handler_for_return_address(...) returns the continuation address. 470 // The continuation address is the entry point of the exception handler of the 471 // previous frame depending on the return address. 472 473 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) { 474 assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address)); 475 476 // Reset method handle flag. 477 thread->set_is_method_handle_return(false); 478 479 // The fastest case first 480 CodeBlob* blob = CodeCache::find_blob(return_address); 481 nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL; 482 if (nm != NULL) { 483 // Set flag if return address is a method handle call site. 484 thread->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 485 // native nmethods don't have exception handlers 486 assert(!nm->is_native_method(), "no exception handler"); 487 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 488 if (nm->is_deopt_pc(return_address)) { 489 // If we come here because of a stack overflow, the stack may be 490 // unguarded. Reguard the stack otherwise if we return to the 491 // deopt blob and the stack bang causes a stack overflow we 492 // crash. 493 bool guard_pages_enabled = thread->stack_yellow_zone_enabled(); 494 if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack(); 495 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 496 return SharedRuntime::deopt_blob()->unpack_with_exception(); 497 } else { 498 return nm->exception_begin(); 499 } 500 } 501 502 // Entry code 503 if (StubRoutines::returns_to_call_stub(return_address)) { 504 return StubRoutines::catch_exception_entry(); 505 } 506 // Interpreted code 507 if (Interpreter::contains(return_address)) { 508 return Interpreter::rethrow_exception_entry(); 509 } 510 511 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub"); 512 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!"); 513 514 #ifndef PRODUCT 515 { ResourceMark rm; 516 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address); 517 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 518 tty->print_cr("b) other problem"); 519 } 520 #endif // PRODUCT 521 522 ShouldNotReachHere(); 523 return NULL; 524 } 525 526 527 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address)) 528 return raw_exception_handler_for_return_address(thread, return_address); 529 JRT_END 530 531 532 address SharedRuntime::get_poll_stub(address pc) { 533 address stub; 534 // Look up the code blob 535 CodeBlob *cb = CodeCache::find_blob(pc); 536 537 // Should be an nmethod 538 assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" ); 539 540 // Look up the relocation information 541 assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc), 542 "safepoint polling: type must be poll" ); 543 544 assert( ((NativeInstruction*)pc)->is_safepoint_poll(), 545 "Only polling locations are used for safepoint"); 546 547 bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc); 548 bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors(); 549 if (at_poll_return) { 550 assert(SharedRuntime::polling_page_return_handler_blob() != NULL, 551 "polling page return stub not created yet"); 552 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 553 } else if (has_wide_vectors) { 554 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL, 555 "polling page vectors safepoint stub not created yet"); 556 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 557 } else { 558 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL, 559 "polling page safepoint stub not created yet"); 560 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 561 } 562 #ifndef PRODUCT 563 if( TraceSafepoint ) { 564 char buf[256]; 565 jio_snprintf(buf, sizeof(buf), 566 "... found polling page %s exception at pc = " 567 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 568 at_poll_return ? "return" : "loop", 569 (intptr_t)pc, (intptr_t)stub); 570 tty->print_raw_cr(buf); 571 } 572 #endif // PRODUCT 573 return stub; 574 } 575 576 577 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) { 578 assert(caller.is_interpreted_frame(), ""); 579 int args_size = ArgumentSizeComputer(sig).size() + 1; 580 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack"); 581 oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1)); 582 assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop"); 583 return result; 584 } 585 586 587 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) { 588 if (JvmtiExport::can_post_on_exceptions()) { 589 vframeStream vfst(thread, true); 590 methodHandle method = methodHandle(thread, vfst.method()); 591 address bcp = method()->bcp_from(vfst.bci()); 592 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception()); 593 } 594 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception); 595 } 596 597 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) { 598 Handle h_exception = Exceptions::new_exception(thread, name, message); 599 throw_and_post_jvmti_exception(thread, h_exception); 600 } 601 602 // The interpreter code to call this tracing function is only 603 // called/generated when TraceRedefineClasses has the right bits 604 // set. Since obsolete methods are never compiled, we don't have 605 // to modify the compilers to generate calls to this function. 606 // 607 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 608 JavaThread* thread, Method* method)) 609 assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call"); 610 611 if (method->is_obsolete()) { 612 // We are calling an obsolete method, but this is not necessarily 613 // an error. Our method could have been redefined just after we 614 // fetched the Method* from the constant pool. 615 616 // RC_TRACE macro has an embedded ResourceMark 617 RC_TRACE_WITH_THREAD(0x00001000, thread, 618 ("calling obsolete method '%s'", 619 method->name_and_sig_as_C_string())); 620 if (RC_TRACE_ENABLED(0x00002000)) { 621 // this option is provided to debug calls to obsolete methods 622 guarantee(false, "faulting at call to an obsolete method."); 623 } 624 } 625 return 0; 626 JRT_END 627 628 // ret_pc points into caller; we are returning caller's exception handler 629 // for given exception 630 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 631 bool force_unwind, bool top_frame_only) { 632 assert(nm != NULL, "must exist"); 633 ResourceMark rm; 634 635 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 636 // determine handler bci, if any 637 EXCEPTION_MARK; 638 639 int handler_bci = -1; 640 int scope_depth = 0; 641 if (!force_unwind) { 642 int bci = sd->bci(); 643 bool recursive_exception = false; 644 do { 645 bool skip_scope_increment = false; 646 // exception handler lookup 647 KlassHandle ek (THREAD, exception->klass()); 648 methodHandle mh(THREAD, sd->method()); 649 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 650 if (HAS_PENDING_EXCEPTION) { 651 recursive_exception = true; 652 // We threw an exception while trying to find the exception handler. 653 // Transfer the new exception to the exception handle which will 654 // be set into thread local storage, and do another lookup for an 655 // exception handler for this exception, this time starting at the 656 // BCI of the exception handler which caused the exception to be 657 // thrown (bugs 4307310 and 4546590). Set "exception" reference 658 // argument to ensure that the correct exception is thrown (4870175). 659 exception = Handle(THREAD, PENDING_EXCEPTION); 660 CLEAR_PENDING_EXCEPTION; 661 if (handler_bci >= 0) { 662 bci = handler_bci; 663 handler_bci = -1; 664 skip_scope_increment = true; 665 } 666 } 667 else { 668 recursive_exception = false; 669 } 670 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 671 sd = sd->sender(); 672 if (sd != NULL) { 673 bci = sd->bci(); 674 } 675 ++scope_depth; 676 } 677 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL)); 678 } 679 680 // found handling method => lookup exception handler 681 int catch_pco = ret_pc - nm->code_begin(); 682 683 ExceptionHandlerTable table(nm); 684 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 685 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) { 686 // Allow abbreviated catch tables. The idea is to allow a method 687 // to materialize its exceptions without committing to the exact 688 // routing of exceptions. In particular this is needed for adding 689 // a synthetic handler to unlock monitors when inlining 690 // synchronized methods since the unlock path isn't represented in 691 // the bytecodes. 692 t = table.entry_for(catch_pco, -1, 0); 693 } 694 695 #ifdef COMPILER1 696 if (t == NULL && nm->is_compiled_by_c1()) { 697 assert(nm->unwind_handler_begin() != NULL, ""); 698 return nm->unwind_handler_begin(); 699 } 700 #endif 701 702 if (t == NULL) { 703 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci); 704 tty->print_cr(" Exception:"); 705 exception->print(); 706 tty->cr(); 707 tty->print_cr(" Compiled exception table :"); 708 table.print(); 709 nm->print_code(); 710 guarantee(false, "missing exception handler"); 711 return NULL; 712 } 713 714 return nm->code_begin() + t->pco(); 715 } 716 717 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread)) 718 // These errors occur only at call sites 719 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError()); 720 JRT_END 721 722 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread)) 723 // These errors occur only at call sites 724 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 725 JRT_END 726 727 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread)) 728 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 729 JRT_END 730 731 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread)) 732 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); 733 JRT_END 734 735 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread)) 736 // This entry point is effectively only used for NullPointerExceptions which occur at inline 737 // cache sites (when the callee activation is not yet set up) so we are at a call site 738 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); 739 JRT_END 740 741 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread)) 742 // We avoid using the normal exception construction in this case because 743 // it performs an upcall to Java, and we're already out of stack space. 744 Klass* k = SystemDictionary::StackOverflowError_klass(); 745 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 746 Handle exception (thread, exception_oop); 747 if (StackTraceInThrowable) { 748 java_lang_Throwable::fill_in_stack_trace(exception); 749 } 750 throw_and_post_jvmti_exception(thread, exception); 751 JRT_END 752 753 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread, 754 address pc, 755 SharedRuntime::ImplicitExceptionKind exception_kind) 756 { 757 address target_pc = NULL; 758 759 if (Interpreter::contains(pc)) { 760 #ifdef CC_INTERP 761 // C++ interpreter doesn't throw implicit exceptions 762 ShouldNotReachHere(); 763 #else 764 switch (exception_kind) { 765 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 766 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 767 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 768 default: ShouldNotReachHere(); 769 } 770 #endif // !CC_INTERP 771 } else { 772 switch (exception_kind) { 773 case STACK_OVERFLOW: { 774 // Stack overflow only occurs upon frame setup; the callee is 775 // going to be unwound. Dispatch to a shared runtime stub 776 // which will cause the StackOverflowError to be fabricated 777 // and processed. 778 // For stack overflow in deoptimization blob, cleanup thread. 779 if (thread->deopt_mark() != NULL) { 780 Deoptimization::cleanup_deopt_info(thread, NULL); 781 } 782 Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc); 783 return StubRoutines::throw_StackOverflowError_entry(); 784 } 785 786 case IMPLICIT_NULL: { 787 if (VtableStubs::contains(pc)) { 788 // We haven't yet entered the callee frame. Fabricate an 789 // exception and begin dispatching it in the caller. Since 790 // the caller was at a call site, it's safe to destroy all 791 // caller-saved registers, as these entry points do. 792 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 793 794 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error. 795 if (vt_stub == NULL) return NULL; 796 797 if (vt_stub->is_abstract_method_error(pc)) { 798 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 799 Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc); 800 return StubRoutines::throw_AbstractMethodError_entry(); 801 } else { 802 Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc); 803 return StubRoutines::throw_NullPointerException_at_call_entry(); 804 } 805 } else { 806 CodeBlob* cb = CodeCache::find_blob(pc); 807 808 // If code blob is NULL, then return NULL to signal handler to report the SEGV error. 809 if (cb == NULL) return NULL; 810 811 // Exception happened in CodeCache. Must be either: 812 // 1. Inline-cache check in C2I handler blob, 813 // 2. Inline-cache check in nmethod, or 814 // 3. Implicit null exception in nmethod 815 816 if (!cb->is_nmethod()) { 817 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 818 if (!is_in_blob) { 819 cb->print(); 820 fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc)); 821 } 822 Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc); 823 // There is no handler here, so we will simply unwind. 824 return StubRoutines::throw_NullPointerException_at_call_entry(); 825 } 826 827 // Otherwise, it's an nmethod. Consult its exception handlers. 828 nmethod* nm = (nmethod*)cb; 829 if (nm->inlinecache_check_contains(pc)) { 830 // exception happened inside inline-cache check code 831 // => the nmethod is not yet active (i.e., the frame 832 // is not set up yet) => use return address pushed by 833 // caller => don't push another return address 834 Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc); 835 return StubRoutines::throw_NullPointerException_at_call_entry(); 836 } 837 838 if (nm->method()->is_method_handle_intrinsic()) { 839 // exception happened inside MH dispatch code, similar to a vtable stub 840 Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc); 841 return StubRoutines::throw_NullPointerException_at_call_entry(); 842 } 843 844 #ifndef PRODUCT 845 _implicit_null_throws++; 846 #endif 847 target_pc = nm->continuation_for_implicit_exception(pc); 848 // If there's an unexpected fault, target_pc might be NULL, 849 // in which case we want to fall through into the normal 850 // error handling code. 851 } 852 853 break; // fall through 854 } 855 856 857 case IMPLICIT_DIVIDE_BY_ZERO: { 858 nmethod* nm = CodeCache::find_nmethod(pc); 859 guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions"); 860 #ifndef PRODUCT 861 _implicit_div0_throws++; 862 #endif 863 target_pc = nm->continuation_for_implicit_exception(pc); 864 // If there's an unexpected fault, target_pc might be NULL, 865 // in which case we want to fall through into the normal 866 // error handling code. 867 break; // fall through 868 } 869 870 default: ShouldNotReachHere(); 871 } 872 873 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 874 875 // for AbortVMOnException flag 876 NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException")); 877 if (exception_kind == IMPLICIT_NULL) { 878 Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc); 879 } else { 880 Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc); 881 } 882 return target_pc; 883 } 884 885 ShouldNotReachHere(); 886 return NULL; 887 } 888 889 890 /** 891 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 892 * installed in the native function entry of all native Java methods before 893 * they get linked to their actual native methods. 894 * 895 * \note 896 * This method actually never gets called! The reason is because 897 * the interpreter's native entries call NativeLookup::lookup() which 898 * throws the exception when the lookup fails. The exception is then 899 * caught and forwarded on the return from NativeLookup::lookup() call 900 * before the call to the native function. This might change in the future. 901 */ 902 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 903 { 904 // We return a bad value here to make sure that the exception is 905 // forwarded before we look at the return value. 906 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle); 907 } 908 JNI_END 909 910 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 911 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 912 } 913 914 915 #ifndef PRODUCT 916 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2)) 917 const frame f = thread->last_frame(); 918 assert(f.is_interpreted_frame(), "must be an interpreted frame"); 919 #ifndef PRODUCT 920 methodHandle mh(THREAD, f.interpreter_frame_method()); 921 BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2); 922 #endif // !PRODUCT 923 return preserve_this_value; 924 JRT_END 925 #endif // !PRODUCT 926 927 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj)) 928 assert(obj->is_oop(), "must be a valid oop"); 929 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 930 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 931 JRT_END 932 933 934 jlong SharedRuntime::get_java_tid(Thread* thread) { 935 if (thread != NULL) { 936 if (thread->is_Java_thread()) { 937 oop obj = ((JavaThread*)thread)->threadObj(); 938 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj); 939 } 940 } 941 return 0; 942 } 943 944 /** 945 * This function ought to be a void function, but cannot be because 946 * it gets turned into a tail-call on sparc, which runs into dtrace bug 947 * 6254741. Once that is fixed we can remove the dummy return value. 948 */ 949 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 950 return dtrace_object_alloc_base(Thread::current(), o); 951 } 952 953 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) { 954 assert(DTraceAllocProbes, "wrong call"); 955 Klass* klass = o->klass(); 956 int size = o->size(); 957 Symbol* name = klass->name(); 958 HOTSPOT_OBJECT_ALLOC( 959 get_java_tid(thread), 960 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 961 return 0; 962 } 963 964 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 965 JavaThread* thread, Method* method)) 966 assert(DTraceMethodProbes, "wrong call"); 967 Symbol* kname = method->klass_name(); 968 Symbol* name = method->name(); 969 Symbol* sig = method->signature(); 970 HOTSPOT_METHOD_ENTRY( 971 get_java_tid(thread), 972 (char *) kname->bytes(), kname->utf8_length(), 973 (char *) name->bytes(), name->utf8_length(), 974 (char *) sig->bytes(), sig->utf8_length()); 975 return 0; 976 JRT_END 977 978 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 979 JavaThread* thread, Method* method)) 980 assert(DTraceMethodProbes, "wrong call"); 981 Symbol* kname = method->klass_name(); 982 Symbol* name = method->name(); 983 Symbol* sig = method->signature(); 984 HOTSPOT_METHOD_RETURN( 985 get_java_tid(thread), 986 (char *) kname->bytes(), kname->utf8_length(), 987 (char *) name->bytes(), name->utf8_length(), 988 (char *) sig->bytes(), sig->utf8_length()); 989 return 0; 990 JRT_END 991 992 993 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 994 // for a call current in progress, i.e., arguments has been pushed on stack 995 // put callee has not been invoked yet. Used by: resolve virtual/static, 996 // vtable updates, etc. Caller frame must be compiled. 997 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 998 ResourceMark rm(THREAD); 999 1000 // last java frame on stack (which includes native call frames) 1001 vframeStream vfst(thread, true); // Do not skip and javaCalls 1002 1003 return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle())); 1004 } 1005 1006 1007 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1008 // for a call current in progress, i.e., arguments has been pushed on stack 1009 // but callee has not been invoked yet. Caller frame must be compiled. 1010 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread, 1011 vframeStream& vfst, 1012 Bytecodes::Code& bc, 1013 CallInfo& callinfo, TRAPS) { 1014 Handle receiver; 1015 Handle nullHandle; //create a handy null handle for exception returns 1016 1017 assert(!vfst.at_end(), "Java frame must exist"); 1018 1019 // Find caller and bci from vframe 1020 methodHandle caller(THREAD, vfst.method()); 1021 int bci = vfst.bci(); 1022 1023 // Find bytecode 1024 Bytecode_invoke bytecode(caller, bci); 1025 bc = bytecode.invoke_code(); 1026 int bytecode_index = bytecode.index(); 1027 1028 // Find receiver for non-static call 1029 if (bc != Bytecodes::_invokestatic && 1030 bc != Bytecodes::_invokedynamic && 1031 bc != Bytecodes::_invokehandle) { 1032 // This register map must be update since we need to find the receiver for 1033 // compiled frames. The receiver might be in a register. 1034 RegisterMap reg_map2(thread); 1035 frame stubFrame = thread->last_frame(); 1036 // Caller-frame is a compiled frame 1037 frame callerFrame = stubFrame.sender(®_map2); 1038 1039 methodHandle callee = bytecode.static_target(CHECK_(nullHandle)); 1040 if (callee.is_null()) { 1041 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1042 } 1043 // Retrieve from a compiled argument list 1044 receiver = Handle(THREAD, callerFrame.retrieve_receiver(®_map2)); 1045 1046 if (receiver.is_null()) { 1047 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1048 } 1049 } 1050 1051 // Resolve method. This is parameterized by bytecode. 1052 constantPoolHandle constants(THREAD, caller->constants()); 1053 assert(receiver.is_null() || receiver->is_oop(), "wrong receiver"); 1054 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle)); 1055 1056 #ifdef ASSERT 1057 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1058 if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) { 1059 assert(receiver.not_null(), "should have thrown exception"); 1060 KlassHandle receiver_klass(THREAD, receiver->klass()); 1061 Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle)); 1062 // klass is already loaded 1063 KlassHandle static_receiver_klass(THREAD, rk); 1064 // Method handle invokes might have been optimized to a direct call 1065 // so don't check for the receiver class. 1066 // FIXME this weakens the assert too much 1067 methodHandle callee = callinfo.selected_method(); 1068 assert(receiver_klass->is_subtype_of(static_receiver_klass()) || 1069 callee->is_method_handle_intrinsic() || 1070 callee->is_compiled_lambda_form(), 1071 "actual receiver must be subclass of static receiver klass"); 1072 if (receiver_klass->oop_is_instance()) { 1073 if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) { 1074 tty->print_cr("ERROR: Klass not yet initialized!!"); 1075 receiver_klass()->print(); 1076 } 1077 assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized"); 1078 } 1079 } 1080 #endif 1081 1082 return receiver; 1083 } 1084 1085 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) { 1086 ResourceMark rm(THREAD); 1087 // We need first to check if any Java activations (compiled, interpreted) 1088 // exist on the stack since last JavaCall. If not, we need 1089 // to get the target method from the JavaCall wrapper. 1090 vframeStream vfst(thread, true); // Do not skip any javaCalls 1091 methodHandle callee_method; 1092 if (vfst.at_end()) { 1093 // No Java frames were found on stack since we did the JavaCall. 1094 // Hence the stack can only contain an entry_frame. We need to 1095 // find the target method from the stub frame. 1096 RegisterMap reg_map(thread, false); 1097 frame fr = thread->last_frame(); 1098 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1099 fr = fr.sender(®_map); 1100 assert(fr.is_entry_frame(), "must be"); 1101 // fr is now pointing to the entry frame. 1102 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method()); 1103 assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??"); 1104 } else { 1105 Bytecodes::Code bc; 1106 CallInfo callinfo; 1107 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle())); 1108 callee_method = callinfo.selected_method(); 1109 } 1110 assert(callee_method()->is_method(), "must be"); 1111 return callee_method; 1112 } 1113 1114 // Resolves a call. 1115 methodHandle SharedRuntime::resolve_helper(JavaThread *thread, 1116 bool is_virtual, 1117 bool is_optimized, TRAPS) { 1118 methodHandle callee_method; 1119 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD); 1120 if (JvmtiExport::can_hotswap_or_post_breakpoint()) { 1121 int retry_count = 0; 1122 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() && 1123 callee_method->method_holder() != SystemDictionary::Object_klass()) { 1124 // If has a pending exception then there is no need to re-try to 1125 // resolve this method. 1126 // If the method has been redefined, we need to try again. 1127 // Hack: we have no way to update the vtables of arrays, so don't 1128 // require that java.lang.Object has been updated. 1129 1130 // It is very unlikely that method is redefined more than 100 times 1131 // in the middle of resolve. If it is looping here more than 100 times 1132 // means then there could be a bug here. 1133 guarantee((retry_count++ < 100), 1134 "Could not resolve to latest version of redefined method"); 1135 // method is redefined in the middle of resolve so re-try. 1136 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD); 1137 } 1138 } 1139 return callee_method; 1140 } 1141 1142 // Resolves a call. The compilers generate code for calls that go here 1143 // and are patched with the real destination of the call. 1144 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread, 1145 bool is_virtual, 1146 bool is_optimized, TRAPS) { 1147 1148 ResourceMark rm(thread); 1149 RegisterMap cbl_map(thread, false); 1150 frame caller_frame = thread->last_frame().sender(&cbl_map); 1151 1152 CodeBlob* caller_cb = caller_frame.cb(); 1153 guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod"); 1154 nmethod* caller_nm = caller_cb->as_nmethod_or_null(); 1155 1156 // make sure caller is not getting deoptimized 1157 // and removed before we are done with it. 1158 // CLEANUP - with lazy deopt shouldn't need this lock 1159 nmethodLocker caller_lock(caller_nm); 1160 1161 // determine call info & receiver 1162 // note: a) receiver is NULL for static calls 1163 // b) an exception is thrown if receiver is NULL for non-static calls 1164 CallInfo call_info; 1165 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1166 Handle receiver = find_callee_info(thread, invoke_code, 1167 call_info, CHECK_(methodHandle())); 1168 methodHandle callee_method = call_info.selected_method(); 1169 1170 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1171 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1172 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1173 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1174 1175 // We do not patch the call site if the caller nmethod has been made non-entrant. 1176 if (!caller_nm->is_in_use()) { 1177 return callee_method; 1178 } 1179 1180 #ifndef PRODUCT 1181 // tracing/debugging/statistics 1182 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1183 (is_virtual) ? (&_resolve_virtual_ctr) : 1184 (&_resolve_static_ctr); 1185 Atomic::inc(addr); 1186 1187 if (TraceCallFixup) { 1188 ResourceMark rm(thread); 1189 tty->print("resolving %s%s (%s) call to", 1190 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1191 Bytecodes::name(invoke_code)); 1192 callee_method->print_short_name(tty); 1193 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code()); 1194 } 1195 #endif 1196 1197 // JSR 292 key invariant: 1198 // If the resolved method is a MethodHandle invoke target the call 1199 // site must be a MethodHandle call site, because the lambda form might tail-call 1200 // leaving the stack in a state unknown to either caller or callee 1201 // TODO detune for now but we might need it again 1202 // assert(!callee_method->is_compiled_lambda_form() || 1203 // caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site"); 1204 1205 // Compute entry points. This might require generation of C2I converter 1206 // frames, so we cannot be holding any locks here. Furthermore, the 1207 // computation of the entry points is independent of patching the call. We 1208 // always return the entry-point, but we only patch the stub if the call has 1209 // not been deoptimized. Return values: For a virtual call this is an 1210 // (cached_oop, destination address) pair. For a static call/optimized 1211 // virtual this is just a destination address. 1212 1213 StaticCallInfo static_call_info; 1214 CompiledICInfo virtual_call_info; 1215 1216 // Make sure the callee nmethod does not get deoptimized and removed before 1217 // we are done patching the code. 1218 nmethod* callee_nm = callee_method->code(); 1219 if (callee_nm != NULL && !callee_nm->is_in_use()) { 1220 // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded. 1221 callee_nm = NULL; 1222 } 1223 nmethodLocker nl_callee(callee_nm); 1224 #ifdef ASSERT 1225 address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below 1226 #endif 1227 1228 if (is_virtual) { 1229 assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check"); 1230 bool static_bound = call_info.resolved_method()->can_be_statically_bound(); 1231 KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass()); 1232 CompiledIC::compute_monomorphic_entry(callee_method, h_klass, 1233 is_optimized, static_bound, virtual_call_info, 1234 CHECK_(methodHandle())); 1235 } else { 1236 // static call 1237 CompiledStaticCall::compute_entry(callee_method, static_call_info); 1238 } 1239 1240 // grab lock, check for deoptimization and potentially patch caller 1241 { 1242 MutexLocker ml_patch(CompiledIC_lock); 1243 1244 // Lock blocks for safepoint during which both nmethods can change state. 1245 1246 // Now that we are ready to patch if the Method* was redefined then 1247 // don't update call site and let the caller retry. 1248 // Don't update call site if caller nmethod has been made non-entrant 1249 // as it is a waste of time. 1250 // Don't update call site if callee nmethod was unloaded or deoptimized. 1251 // Don't update call site if callee nmethod was replaced by an other nmethod 1252 // which may happen when multiply alive nmethod (tiered compilation) 1253 // will be supported. 1254 if (!callee_method->is_old() && caller_nm->is_in_use() && 1255 (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) { 1256 #ifdef ASSERT 1257 // We must not try to patch to jump to an already unloaded method. 1258 if (dest_entry_point != 0) { 1259 CodeBlob* cb = CodeCache::find_blob(dest_entry_point); 1260 assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm), 1261 "should not call unloaded nmethod"); 1262 } 1263 #endif 1264 if (is_virtual) { 1265 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1266 if (inline_cache->is_clean()) { 1267 inline_cache->set_to_monomorphic(virtual_call_info); 1268 } 1269 } else { 1270 CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc()); 1271 if (ssc->is_clean()) ssc->set(static_call_info); 1272 } 1273 } 1274 1275 } // unlock CompiledIC_lock 1276 1277 return callee_method; 1278 } 1279 1280 1281 // Inline caches exist only in compiled code 1282 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread)) 1283 #ifdef ASSERT 1284 RegisterMap reg_map(thread, false); 1285 frame stub_frame = thread->last_frame(); 1286 assert(stub_frame.is_runtime_frame(), "sanity check"); 1287 frame caller_frame = stub_frame.sender(®_map); 1288 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame"); 1289 #endif /* ASSERT */ 1290 1291 methodHandle callee_method; 1292 JRT_BLOCK 1293 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL); 1294 // Return Method* through TLS 1295 thread->set_vm_result_2(callee_method()); 1296 JRT_BLOCK_END 1297 // return compiled code entry point after potential safepoints 1298 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1299 return callee_method->verified_code_entry(); 1300 JRT_END 1301 1302 1303 // Handle call site that has been made non-entrant 1304 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread)) 1305 // 6243940 We might end up in here if the callee is deoptimized 1306 // as we race to call it. We don't want to take a safepoint if 1307 // the caller was interpreted because the caller frame will look 1308 // interpreted to the stack walkers and arguments are now 1309 // "compiled" so it is much better to make this transition 1310 // invisible to the stack walking code. The i2c path will 1311 // place the callee method in the callee_target. It is stashed 1312 // there because if we try and find the callee by normal means a 1313 // safepoint is possible and have trouble gc'ing the compiled args. 1314 RegisterMap reg_map(thread, false); 1315 frame stub_frame = thread->last_frame(); 1316 assert(stub_frame.is_runtime_frame(), "sanity check"); 1317 frame caller_frame = stub_frame.sender(®_map); 1318 1319 if (caller_frame.is_interpreted_frame() || 1320 caller_frame.is_entry_frame()) { 1321 Method* callee = thread->callee_target(); 1322 guarantee(callee != NULL && callee->is_method(), "bad handshake"); 1323 thread->set_vm_result_2(callee); 1324 thread->set_callee_target(NULL); 1325 return callee->get_c2i_entry(); 1326 } 1327 1328 // Must be compiled to compiled path which is safe to stackwalk 1329 methodHandle callee_method; 1330 JRT_BLOCK 1331 // Force resolving of caller (if we called from compiled frame) 1332 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL); 1333 thread->set_vm_result_2(callee_method()); 1334 JRT_BLOCK_END 1335 // return compiled code entry point after potential safepoints 1336 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1337 return callee_method->verified_code_entry(); 1338 JRT_END 1339 1340 // Handle abstract method call 1341 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread)) 1342 return StubRoutines::throw_AbstractMethodError_entry(); 1343 JRT_END 1344 1345 1346 // resolve a static call and patch code 1347 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread )) 1348 methodHandle callee_method; 1349 JRT_BLOCK 1350 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL); 1351 thread->set_vm_result_2(callee_method()); 1352 JRT_BLOCK_END 1353 // return compiled code entry point after potential safepoints 1354 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1355 return callee_method->verified_code_entry(); 1356 JRT_END 1357 1358 1359 // resolve virtual call and update inline cache to monomorphic 1360 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread )) 1361 methodHandle callee_method; 1362 JRT_BLOCK 1363 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL); 1364 thread->set_vm_result_2(callee_method()); 1365 JRT_BLOCK_END 1366 // return compiled code entry point after potential safepoints 1367 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1368 return callee_method->verified_code_entry(); 1369 JRT_END 1370 1371 1372 // Resolve a virtual call that can be statically bound (e.g., always 1373 // monomorphic, so it has no inline cache). Patch code to resolved target. 1374 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread)) 1375 methodHandle callee_method; 1376 JRT_BLOCK 1377 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL); 1378 thread->set_vm_result_2(callee_method()); 1379 JRT_BLOCK_END 1380 // return compiled code entry point after potential safepoints 1381 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1382 return callee_method->verified_code_entry(); 1383 JRT_END 1384 1385 1386 1387 1388 1389 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) { 1390 ResourceMark rm(thread); 1391 CallInfo call_info; 1392 Bytecodes::Code bc; 1393 1394 // receiver is NULL for static calls. An exception is thrown for NULL 1395 // receivers for non-static calls 1396 Handle receiver = find_callee_info(thread, bc, call_info, 1397 CHECK_(methodHandle())); 1398 // Compiler1 can produce virtual call sites that can actually be statically bound 1399 // If we fell thru to below we would think that the site was going megamorphic 1400 // when in fact the site can never miss. Worse because we'd think it was megamorphic 1401 // we'd try and do a vtable dispatch however methods that can be statically bound 1402 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a 1403 // reresolution of the call site (as if we did a handle_wrong_method and not an 1404 // plain ic_miss) and the site will be converted to an optimized virtual call site 1405 // never to miss again. I don't believe C2 will produce code like this but if it 1406 // did this would still be the correct thing to do for it too, hence no ifdef. 1407 // 1408 if (call_info.resolved_method()->can_be_statically_bound()) { 1409 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle())); 1410 if (TraceCallFixup) { 1411 RegisterMap reg_map(thread, false); 1412 frame caller_frame = thread->last_frame().sender(®_map); 1413 ResourceMark rm(thread); 1414 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc)); 1415 callee_method->print_short_name(tty); 1416 tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc()); 1417 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1418 } 1419 return callee_method; 1420 } 1421 1422 methodHandle callee_method = call_info.selected_method(); 1423 1424 bool should_be_mono = false; 1425 1426 #ifndef PRODUCT 1427 Atomic::inc(&_ic_miss_ctr); 1428 1429 // Statistics & Tracing 1430 if (TraceCallFixup) { 1431 ResourceMark rm(thread); 1432 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1433 callee_method->print_short_name(tty); 1434 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1435 } 1436 1437 if (ICMissHistogram) { 1438 MutexLocker m(VMStatistic_lock); 1439 RegisterMap reg_map(thread, false); 1440 frame f = thread->last_frame().real_sender(®_map);// skip runtime stub 1441 // produce statistics under the lock 1442 trace_ic_miss(f.pc()); 1443 } 1444 #endif 1445 1446 // install an event collector so that when a vtable stub is created the 1447 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1448 // event can't be posted when the stub is created as locks are held 1449 // - instead the event will be deferred until the event collector goes 1450 // out of scope. 1451 JvmtiDynamicCodeEventCollector event_collector; 1452 1453 // Update inline cache to megamorphic. Skip update if caller has been 1454 // made non-entrant or we are called from interpreted. 1455 { MutexLocker ml_patch (CompiledIC_lock); 1456 RegisterMap reg_map(thread, false); 1457 frame caller_frame = thread->last_frame().sender(®_map); 1458 CodeBlob* cb = caller_frame.cb(); 1459 if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) { 1460 // Not a non-entrant nmethod, so find inline_cache 1461 CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc()); 1462 bool should_be_mono = false; 1463 if (inline_cache->is_optimized()) { 1464 if (TraceCallFixup) { 1465 ResourceMark rm(thread); 1466 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc)); 1467 callee_method->print_short_name(tty); 1468 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1469 } 1470 should_be_mono = true; 1471 } else if (inline_cache->is_icholder_call()) { 1472 CompiledICHolder* ic_oop = inline_cache->cached_icholder(); 1473 if ( ic_oop != NULL) { 1474 1475 if (receiver()->klass() == ic_oop->holder_klass()) { 1476 // This isn't a real miss. We must have seen that compiled code 1477 // is now available and we want the call site converted to a 1478 // monomorphic compiled call site. 1479 // We can't assert for callee_method->code() != NULL because it 1480 // could have been deoptimized in the meantime 1481 if (TraceCallFixup) { 1482 ResourceMark rm(thread); 1483 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc)); 1484 callee_method->print_short_name(tty); 1485 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1486 } 1487 should_be_mono = true; 1488 } 1489 } 1490 } 1491 1492 if (should_be_mono) { 1493 1494 // We have a path that was monomorphic but was going interpreted 1495 // and now we have (or had) a compiled entry. We correct the IC 1496 // by using a new icBuffer. 1497 CompiledICInfo info; 1498 KlassHandle receiver_klass(THREAD, receiver()->klass()); 1499 inline_cache->compute_monomorphic_entry(callee_method, 1500 receiver_klass, 1501 inline_cache->is_optimized(), 1502 false, 1503 info, CHECK_(methodHandle())); 1504 inline_cache->set_to_monomorphic(info); 1505 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) { 1506 // Potential change to megamorphic 1507 bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle())); 1508 if (!successful) { 1509 inline_cache->set_to_clean(); 1510 } 1511 } else { 1512 // Either clean or megamorphic 1513 } 1514 } 1515 } // Release CompiledIC_lock 1516 1517 return callee_method; 1518 } 1519 1520 // 1521 // Resets a call-site in compiled code so it will get resolved again. 1522 // This routines handles both virtual call sites, optimized virtual call 1523 // sites, and static call sites. Typically used to change a call sites 1524 // destination from compiled to interpreted. 1525 // 1526 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) { 1527 ResourceMark rm(thread); 1528 RegisterMap reg_map(thread, false); 1529 frame stub_frame = thread->last_frame(); 1530 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1531 frame caller = stub_frame.sender(®_map); 1532 1533 // Do nothing if the frame isn't a live compiled frame. 1534 // nmethod could be deoptimized by the time we get here 1535 // so no update to the caller is needed. 1536 1537 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) { 1538 1539 address pc = caller.pc(); 1540 1541 // Default call_addr is the location of the "basic" call. 1542 // Determine the address of the call we a reresolving. With 1543 // Inline Caches we will always find a recognizable call. 1544 // With Inline Caches disabled we may or may not find a 1545 // recognizable call. We will always find a call for static 1546 // calls and for optimized virtual calls. For vanilla virtual 1547 // calls it depends on the state of the UseInlineCaches switch. 1548 // 1549 // With Inline Caches disabled we can get here for a virtual call 1550 // for two reasons: 1551 // 1 - calling an abstract method. The vtable for abstract methods 1552 // will run us thru handle_wrong_method and we will eventually 1553 // end up in the interpreter to throw the ame. 1554 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1555 // call and between the time we fetch the entry address and 1556 // we jump to it the target gets deoptimized. Similar to 1 1557 // we will wind up in the interprter (thru a c2i with c2). 1558 // 1559 address call_addr = NULL; 1560 { 1561 // Get call instruction under lock because another thread may be 1562 // busy patching it. 1563 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag); 1564 // Location of call instruction 1565 if (NativeCall::is_call_before(pc)) { 1566 NativeCall *ncall = nativeCall_before(pc); 1567 call_addr = ncall->instruction_address(); 1568 } 1569 } 1570 1571 // Check for static or virtual call 1572 bool is_static_call = false; 1573 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1574 // Make sure nmethod doesn't get deoptimized and removed until 1575 // this is done with it. 1576 // CLEANUP - with lazy deopt shouldn't need this lock 1577 nmethodLocker nmlock(caller_nm); 1578 1579 if (call_addr != NULL) { 1580 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1581 int ret = iter.next(); // Get item 1582 if (ret) { 1583 assert(iter.addr() == call_addr, "must find call"); 1584 if (iter.type() == relocInfo::static_call_type) { 1585 is_static_call = true; 1586 } else { 1587 assert(iter.type() == relocInfo::virtual_call_type || 1588 iter.type() == relocInfo::opt_virtual_call_type 1589 , "unexpected relocInfo. type"); 1590 } 1591 } else { 1592 assert(!UseInlineCaches, "relocation info. must exist for this address"); 1593 } 1594 1595 // Cleaning the inline cache will force a new resolve. This is more robust 1596 // than directly setting it to the new destination, since resolving of calls 1597 // is always done through the same code path. (experience shows that it 1598 // leads to very hard to track down bugs, if an inline cache gets updated 1599 // to a wrong method). It should not be performance critical, since the 1600 // resolve is only done once. 1601 1602 MutexLocker ml(CompiledIC_lock); 1603 // 1604 // We do not patch the call site if the nmethod has been made non-entrant 1605 // as it is a waste of time 1606 // 1607 if (caller_nm->is_in_use()) { 1608 if (is_static_call) { 1609 CompiledStaticCall* ssc= compiledStaticCall_at(call_addr); 1610 ssc->set_to_clean(); 1611 } else { 1612 // compiled, dispatched call (which used to call an interpreted method) 1613 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1614 inline_cache->set_to_clean(); 1615 } 1616 } 1617 } 1618 1619 } 1620 1621 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle())); 1622 1623 1624 #ifndef PRODUCT 1625 Atomic::inc(&_wrong_method_ctr); 1626 1627 if (TraceCallFixup) { 1628 ResourceMark rm(thread); 1629 tty->print("handle_wrong_method reresolving call to"); 1630 callee_method->print_short_name(tty); 1631 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1632 } 1633 #endif 1634 1635 return callee_method; 1636 } 1637 1638 #ifdef ASSERT 1639 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method, 1640 const BasicType* sig_bt, 1641 const VMRegPair* regs) { 1642 ResourceMark rm; 1643 const int total_args_passed = method->size_of_parameters(); 1644 const VMRegPair* regs_with_member_name = regs; 1645 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1646 1647 const int member_arg_pos = total_args_passed - 1; 1648 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1649 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1650 1651 const bool is_outgoing = method->is_method_handle_intrinsic(); 1652 int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing); 1653 1654 for (int i = 0; i < member_arg_pos; i++) { 1655 VMReg a = regs_with_member_name[i].first(); 1656 VMReg b = regs_without_member_name[i].first(); 1657 assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value())); 1658 } 1659 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1660 } 1661 #endif 1662 1663 // --------------------------------------------------------------------------- 1664 // We are calling the interpreter via a c2i. Normally this would mean that 1665 // we were called by a compiled method. However we could have lost a race 1666 // where we went int -> i2c -> c2i and so the caller could in fact be 1667 // interpreted. If the caller is compiled we attempt to patch the caller 1668 // so he no longer calls into the interpreter. 1669 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1670 Method* moop(method); 1671 1672 address entry_point = moop->from_compiled_entry(); 1673 1674 // It's possible that deoptimization can occur at a call site which hasn't 1675 // been resolved yet, in which case this function will be called from 1676 // an nmethod that has been patched for deopt and we can ignore the 1677 // request for a fixup. 1678 // Also it is possible that we lost a race in that from_compiled_entry 1679 // is now back to the i2c in that case we don't need to patch and if 1680 // we did we'd leap into space because the callsite needs to use 1681 // "to interpreter" stub in order to load up the Method*. Don't 1682 // ask me how I know this... 1683 1684 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1685 if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) { 1686 return; 1687 } 1688 1689 // The check above makes sure this is a nmethod. 1690 nmethod* nm = cb->as_nmethod_or_null(); 1691 assert(nm, "must be"); 1692 1693 // Get the return PC for the passed caller PC. 1694 address return_pc = caller_pc + frame::pc_return_offset; 1695 1696 // There is a benign race here. We could be attempting to patch to a compiled 1697 // entry point at the same time the callee is being deoptimized. If that is 1698 // the case then entry_point may in fact point to a c2i and we'd patch the 1699 // call site with the same old data. clear_code will set code() to NULL 1700 // at the end of it. If we happen to see that NULL then we can skip trying 1701 // to patch. If we hit the window where the callee has a c2i in the 1702 // from_compiled_entry and the NULL isn't present yet then we lose the race 1703 // and patch the code with the same old data. Asi es la vida. 1704 1705 if (moop->code() == NULL) return; 1706 1707 if (nm->is_in_use()) { 1708 1709 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1710 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag); 1711 if (NativeCall::is_call_before(return_pc)) { 1712 NativeCall *call = nativeCall_before(return_pc); 1713 // 1714 // bug 6281185. We might get here after resolving a call site to a vanilla 1715 // virtual call. Because the resolvee uses the verified entry it may then 1716 // see compiled code and attempt to patch the site by calling us. This would 1717 // then incorrectly convert the call site to optimized and its downhill from 1718 // there. If you're lucky you'll get the assert in the bugid, if not you've 1719 // just made a call site that could be megamorphic into a monomorphic site 1720 // for the rest of its life! Just another racing bug in the life of 1721 // fixup_callers_callsite ... 1722 // 1723 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address()); 1724 iter.next(); 1725 assert(iter.has_current(), "must have a reloc at java call site"); 1726 relocInfo::relocType typ = iter.reloc()->type(); 1727 if ( typ != relocInfo::static_call_type && 1728 typ != relocInfo::opt_virtual_call_type && 1729 typ != relocInfo::static_stub_type) { 1730 return; 1731 } 1732 address destination = call->destination(); 1733 if (destination != entry_point) { 1734 CodeBlob* callee = CodeCache::find_blob(destination); 1735 // callee == cb seems weird. It means calling interpreter thru stub. 1736 if (callee == cb || callee->is_adapter_blob()) { 1737 // static call or optimized virtual 1738 if (TraceCallFixup) { 1739 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc); 1740 moop->print_short_name(tty); 1741 tty->print_cr(" to " INTPTR_FORMAT, entry_point); 1742 } 1743 call->set_destination_mt_safe(entry_point); 1744 } else { 1745 if (TraceCallFixup) { 1746 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc); 1747 moop->print_short_name(tty); 1748 tty->print_cr(" to " INTPTR_FORMAT, entry_point); 1749 } 1750 // assert is too strong could also be resolve destinations. 1751 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be"); 1752 } 1753 } else { 1754 if (TraceCallFixup) { 1755 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc); 1756 moop->print_short_name(tty); 1757 tty->print_cr(" to " INTPTR_FORMAT, entry_point); 1758 } 1759 } 1760 } 1761 } 1762 IRT_END 1763 1764 1765 // same as JVM_Arraycopy, but called directly from compiled code 1766 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1767 oopDesc* dest, jint dest_pos, 1768 jint length, 1769 JavaThread* thread)) { 1770 #ifndef PRODUCT 1771 _slow_array_copy_ctr++; 1772 #endif 1773 // Check if we have null pointers 1774 if (src == NULL || dest == NULL) { 1775 THROW(vmSymbols::java_lang_NullPointerException()); 1776 } 1777 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1778 // even though the copy_array API also performs dynamic checks to ensure 1779 // that src and dest are truly arrays (and are conformable). 1780 // The copy_array mechanism is awkward and could be removed, but 1781 // the compilers don't call this function except as a last resort, 1782 // so it probably doesn't matter. 1783 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1784 (arrayOopDesc*)dest, dest_pos, 1785 length, thread); 1786 } 1787 JRT_END 1788 1789 char* SharedRuntime::generate_class_cast_message( 1790 JavaThread* thread, const char* objName) { 1791 1792 // Get target class name from the checkcast instruction 1793 vframeStream vfst(thread, true); 1794 assert(!vfst.at_end(), "Java frame must exist"); 1795 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1796 Klass* targetKlass = vfst.method()->constants()->klass_at( 1797 cc.index(), thread); 1798 return generate_class_cast_message(objName, targetKlass->external_name()); 1799 } 1800 1801 char* SharedRuntime::generate_class_cast_message( 1802 const char* objName, const char* targetKlassName, const char* desc) { 1803 size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1; 1804 1805 char* message = NEW_RESOURCE_ARRAY(char, msglen); 1806 if (NULL == message) { 1807 // Shouldn't happen, but don't cause even more problems if it does 1808 message = const_cast<char*>(objName); 1809 } else { 1810 jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName); 1811 } 1812 return message; 1813 } 1814 1815 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 1816 (void) JavaThread::current()->reguard_stack(); 1817 JRT_END 1818 1819 1820 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 1821 #ifndef PRODUCT 1822 int SharedRuntime::_monitor_enter_ctr=0; 1823 #endif 1824 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread)) 1825 oop obj(_obj); 1826 #ifndef PRODUCT 1827 _monitor_enter_ctr++; // monitor enter slow 1828 #endif 1829 if (PrintBiasedLockingStatistics) { 1830 Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); 1831 } 1832 Handle h_obj(THREAD, obj); 1833 if (UseBiasedLocking) { 1834 // Retry fast entry if bias is revoked to avoid unnecessary inflation 1835 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK); 1836 } else { 1837 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK); 1838 } 1839 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 1840 JRT_END 1841 1842 #ifndef PRODUCT 1843 int SharedRuntime::_monitor_exit_ctr=0; 1844 #endif 1845 // Handles the uncommon cases of monitor unlocking in compiled code 1846 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock)) 1847 oop obj(_obj); 1848 #ifndef PRODUCT 1849 _monitor_exit_ctr++; // monitor exit slow 1850 #endif 1851 Thread* THREAD = JavaThread::current(); 1852 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore 1853 // testing was unable to ever fire the assert that guarded it so I have removed it. 1854 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?"); 1855 #undef MIGHT_HAVE_PENDING 1856 #ifdef MIGHT_HAVE_PENDING 1857 // Save and restore any pending_exception around the exception mark. 1858 // While the slow_exit must not throw an exception, we could come into 1859 // this routine with one set. 1860 oop pending_excep = NULL; 1861 const char* pending_file; 1862 int pending_line; 1863 if (HAS_PENDING_EXCEPTION) { 1864 pending_excep = PENDING_EXCEPTION; 1865 pending_file = THREAD->exception_file(); 1866 pending_line = THREAD->exception_line(); 1867 CLEAR_PENDING_EXCEPTION; 1868 } 1869 #endif /* MIGHT_HAVE_PENDING */ 1870 1871 { 1872 // Exit must be non-blocking, and therefore no exceptions can be thrown. 1873 EXCEPTION_MARK; 1874 ObjectSynchronizer::slow_exit(obj, lock, THREAD); 1875 } 1876 1877 #ifdef MIGHT_HAVE_PENDING 1878 if (pending_excep != NULL) { 1879 THREAD->set_pending_exception(pending_excep, pending_file, pending_line); 1880 } 1881 #endif /* MIGHT_HAVE_PENDING */ 1882 JRT_END 1883 1884 #ifndef PRODUCT 1885 1886 void SharedRuntime::print_statistics() { 1887 ttyLocker ttyl; 1888 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'"); 1889 1890 if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow", _monitor_enter_ctr); 1891 if (_monitor_exit_ctr ) tty->print_cr("%5d monitor exit slow", _monitor_exit_ctr); 1892 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr); 1893 1894 SharedRuntime::print_ic_miss_histogram(); 1895 1896 if (CountRemovableExceptions) { 1897 if (_nof_removable_exceptions > 0) { 1898 Unimplemented(); // this counter is not yet incremented 1899 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions); 1900 } 1901 } 1902 1903 // Dump the JRT_ENTRY counters 1904 if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr); 1905 if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr); 1906 if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr); 1907 if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr); 1908 if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr); 1909 if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr); 1910 if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr); 1911 1912 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr ); 1913 tty->print_cr("%5d wrong method", _wrong_method_ctr ); 1914 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr ); 1915 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr ); 1916 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr ); 1917 1918 if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr ); 1919 if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr ); 1920 if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr ); 1921 if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr ); 1922 if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr ); 1923 if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr ); 1924 if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr ); 1925 if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr ); 1926 if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr ); 1927 if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr ); 1928 if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr ); 1929 if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr ); 1930 if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr ); 1931 if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr ); 1932 if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr ); 1933 if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr ); 1934 1935 AdapterHandlerLibrary::print_statistics(); 1936 1937 if (xtty != NULL) xtty->tail("statistics"); 1938 } 1939 1940 inline double percent(int x, int y) { 1941 return 100.0 * x / MAX2(y, 1); 1942 } 1943 1944 class MethodArityHistogram { 1945 public: 1946 enum { MAX_ARITY = 256 }; 1947 private: 1948 static int _arity_histogram[MAX_ARITY]; // histogram of #args 1949 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words 1950 static int _max_arity; // max. arity seen 1951 static int _max_size; // max. arg size seen 1952 1953 static void add_method_to_histogram(nmethod* nm) { 1954 Method* m = nm->method(); 1955 ArgumentCount args(m->signature()); 1956 int arity = args.size() + (m->is_static() ? 0 : 1); 1957 int argsize = m->size_of_parameters(); 1958 arity = MIN2(arity, MAX_ARITY-1); 1959 argsize = MIN2(argsize, MAX_ARITY-1); 1960 int count = nm->method()->compiled_invocation_count(); 1961 _arity_histogram[arity] += count; 1962 _size_histogram[argsize] += count; 1963 _max_arity = MAX2(_max_arity, arity); 1964 _max_size = MAX2(_max_size, argsize); 1965 } 1966 1967 void print_histogram_helper(int n, int* histo, const char* name) { 1968 const int N = MIN2(5, n); 1969 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 1970 double sum = 0; 1971 double weighted_sum = 0; 1972 int i; 1973 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; } 1974 double rest = sum; 1975 double percent = sum / 100; 1976 for (i = 0; i <= N; i++) { 1977 rest -= histo[i]; 1978 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent); 1979 } 1980 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent); 1981 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 1982 } 1983 1984 void print_histogram() { 1985 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 1986 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 1987 tty->print_cr("\nSame for parameter size (in words):"); 1988 print_histogram_helper(_max_size, _size_histogram, "size"); 1989 tty->cr(); 1990 } 1991 1992 public: 1993 MethodArityHistogram() { 1994 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 1995 _max_arity = _max_size = 0; 1996 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0; 1997 CodeCache::nmethods_do(add_method_to_histogram); 1998 print_histogram(); 1999 } 2000 }; 2001 2002 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2003 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2004 int MethodArityHistogram::_max_arity; 2005 int MethodArityHistogram::_max_size; 2006 2007 void SharedRuntime::print_call_statistics(int comp_total) { 2008 tty->print_cr("Calls from compiled code:"); 2009 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2010 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls; 2011 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls; 2012 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total)); 2013 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2014 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2015 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls)); 2016 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2017 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2018 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2019 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2020 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls)); 2021 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2022 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls)); 2023 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2024 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2025 tty->cr(); 2026 tty->print_cr("Note 1: counter updates are not MT-safe."); 2027 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2028 tty->print_cr(" %% in nested categories are relative to their category"); 2029 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2030 tty->cr(); 2031 2032 MethodArityHistogram h; 2033 } 2034 #endif 2035 2036 2037 // A simple wrapper class around the calling convention information 2038 // that allows sharing of adapters for the same calling convention. 2039 class AdapterFingerPrint : public CHeapObj<mtCode> { 2040 private: 2041 enum { 2042 _basic_type_bits = 4, 2043 _basic_type_mask = right_n_bits(_basic_type_bits), 2044 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2045 _compact_int_count = 3 2046 }; 2047 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2048 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2049 2050 union { 2051 int _compact[_compact_int_count]; 2052 int* _fingerprint; 2053 } _value; 2054 int _length; // A negative length indicates the fingerprint is in the compact form, 2055 // Otherwise _value._fingerprint is the array. 2056 2057 // Remap BasicTypes that are handled equivalently by the adapters. 2058 // These are correct for the current system but someday it might be 2059 // necessary to make this mapping platform dependent. 2060 static int adapter_encoding(BasicType in) { 2061 switch(in) { 2062 case T_BOOLEAN: 2063 case T_BYTE: 2064 case T_SHORT: 2065 case T_CHAR: 2066 // There are all promoted to T_INT in the calling convention 2067 return T_INT; 2068 2069 case T_OBJECT: 2070 case T_ARRAY: 2071 // In other words, we assume that any register good enough for 2072 // an int or long is good enough for a managed pointer. 2073 #ifdef _LP64 2074 return T_LONG; 2075 #else 2076 return T_INT; 2077 #endif 2078 2079 case T_INT: 2080 case T_LONG: 2081 case T_FLOAT: 2082 case T_DOUBLE: 2083 case T_VOID: 2084 return in; 2085 2086 default: 2087 ShouldNotReachHere(); 2088 return T_CONFLICT; 2089 } 2090 } 2091 2092 public: 2093 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) { 2094 // The fingerprint is based on the BasicType signature encoded 2095 // into an array of ints with eight entries per int. 2096 int* ptr; 2097 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2098 if (len <= _compact_int_count) { 2099 assert(_compact_int_count == 3, "else change next line"); 2100 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; 2101 // Storing the signature encoded as signed chars hits about 98% 2102 // of the time. 2103 _length = -len; 2104 ptr = _value._compact; 2105 } else { 2106 _length = len; 2107 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode); 2108 ptr = _value._fingerprint; 2109 } 2110 2111 // Now pack the BasicTypes with 8 per int 2112 int sig_index = 0; 2113 for (int index = 0; index < len; index++) { 2114 int value = 0; 2115 for (int byte = 0; byte < _basic_types_per_int; byte++) { 2116 int bt = ((sig_index < total_args_passed) 2117 ? adapter_encoding(sig_bt[sig_index++]) 2118 : 0); 2119 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2120 value = (value << _basic_type_bits) | bt; 2121 } 2122 ptr[index] = value; 2123 } 2124 } 2125 2126 ~AdapterFingerPrint() { 2127 if (_length > 0) { 2128 FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode); 2129 } 2130 } 2131 2132 int value(int index) { 2133 if (_length < 0) { 2134 return _value._compact[index]; 2135 } 2136 return _value._fingerprint[index]; 2137 } 2138 int length() { 2139 if (_length < 0) return -_length; 2140 return _length; 2141 } 2142 2143 bool is_compact() { 2144 return _length <= 0; 2145 } 2146 2147 unsigned int compute_hash() { 2148 int hash = 0; 2149 for (int i = 0; i < length(); i++) { 2150 int v = value(i); 2151 hash = (hash << 8) ^ v ^ (hash >> 5); 2152 } 2153 return (unsigned int)hash; 2154 } 2155 2156 const char* as_string() { 2157 stringStream st; 2158 st.print("0x"); 2159 for (int i = 0; i < length(); i++) { 2160 st.print("%08x", value(i)); 2161 } 2162 return st.as_string(); 2163 } 2164 2165 bool equals(AdapterFingerPrint* other) { 2166 if (other->_length != _length) { 2167 return false; 2168 } 2169 if (_length < 0) { 2170 assert(_compact_int_count == 3, "else change next line"); 2171 return _value._compact[0] == other->_value._compact[0] && 2172 _value._compact[1] == other->_value._compact[1] && 2173 _value._compact[2] == other->_value._compact[2]; 2174 } else { 2175 for (int i = 0; i < _length; i++) { 2176 if (_value._fingerprint[i] != other->_value._fingerprint[i]) { 2177 return false; 2178 } 2179 } 2180 } 2181 return true; 2182 } 2183 }; 2184 2185 2186 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2187 class AdapterHandlerTable : public BasicHashtable<mtCode> { 2188 friend class AdapterHandlerTableIterator; 2189 2190 private: 2191 2192 #ifndef PRODUCT 2193 static int _lookups; // number of calls to lookup 2194 static int _buckets; // number of buckets checked 2195 static int _equals; // number of buckets checked with matching hash 2196 static int _hits; // number of successful lookups 2197 static int _compact; // number of equals calls with compact signature 2198 #endif 2199 2200 AdapterHandlerEntry* bucket(int i) { 2201 return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i); 2202 } 2203 2204 public: 2205 AdapterHandlerTable() 2206 : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { } 2207 2208 // Create a new entry suitable for insertion in the table 2209 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) { 2210 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash()); 2211 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); 2212 return entry; 2213 } 2214 2215 // Insert an entry into the table 2216 void add(AdapterHandlerEntry* entry) { 2217 int index = hash_to_index(entry->hash()); 2218 add_entry(index, entry); 2219 } 2220 2221 void free_entry(AdapterHandlerEntry* entry) { 2222 entry->deallocate(); 2223 BasicHashtable<mtCode>::free_entry(entry); 2224 } 2225 2226 // Find a entry with the same fingerprint if it exists 2227 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) { 2228 NOT_PRODUCT(_lookups++); 2229 AdapterFingerPrint fp(total_args_passed, sig_bt); 2230 unsigned int hash = fp.compute_hash(); 2231 int index = hash_to_index(hash); 2232 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { 2233 NOT_PRODUCT(_buckets++); 2234 if (e->hash() == hash) { 2235 NOT_PRODUCT(_equals++); 2236 if (fp.equals(e->fingerprint())) { 2237 #ifndef PRODUCT 2238 if (fp.is_compact()) _compact++; 2239 _hits++; 2240 #endif 2241 return e; 2242 } 2243 } 2244 } 2245 return NULL; 2246 } 2247 2248 #ifndef PRODUCT 2249 void print_statistics() { 2250 ResourceMark rm; 2251 int longest = 0; 2252 int empty = 0; 2253 int total = 0; 2254 int nonempty = 0; 2255 for (int index = 0; index < table_size(); index++) { 2256 int count = 0; 2257 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { 2258 count++; 2259 } 2260 if (count != 0) nonempty++; 2261 if (count == 0) empty++; 2262 if (count > longest) longest = count; 2263 total += count; 2264 } 2265 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f", 2266 empty, longest, total, total / (double)nonempty); 2267 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d", 2268 _lookups, _buckets, _equals, _hits, _compact); 2269 } 2270 #endif 2271 }; 2272 2273 2274 #ifndef PRODUCT 2275 2276 int AdapterHandlerTable::_lookups; 2277 int AdapterHandlerTable::_buckets; 2278 int AdapterHandlerTable::_equals; 2279 int AdapterHandlerTable::_hits; 2280 int AdapterHandlerTable::_compact; 2281 2282 #endif 2283 2284 class AdapterHandlerTableIterator : public StackObj { 2285 private: 2286 AdapterHandlerTable* _table; 2287 int _index; 2288 AdapterHandlerEntry* _current; 2289 2290 void scan() { 2291 while (_index < _table->table_size()) { 2292 AdapterHandlerEntry* a = _table->bucket(_index); 2293 _index++; 2294 if (a != NULL) { 2295 _current = a; 2296 return; 2297 } 2298 } 2299 } 2300 2301 public: 2302 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) { 2303 scan(); 2304 } 2305 bool has_next() { 2306 return _current != NULL; 2307 } 2308 AdapterHandlerEntry* next() { 2309 if (_current != NULL) { 2310 AdapterHandlerEntry* result = _current; 2311 _current = _current->next(); 2312 if (_current == NULL) scan(); 2313 return result; 2314 } else { 2315 return NULL; 2316 } 2317 } 2318 }; 2319 2320 2321 // --------------------------------------------------------------------------- 2322 // Implementation of AdapterHandlerLibrary 2323 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL; 2324 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL; 2325 const int AdapterHandlerLibrary_size = 16*K; 2326 BufferBlob* AdapterHandlerLibrary::_buffer = NULL; 2327 2328 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2329 // Should be called only when AdapterHandlerLibrary_lock is active. 2330 if (_buffer == NULL) // Initialize lazily 2331 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2332 return _buffer; 2333 } 2334 2335 void AdapterHandlerLibrary::initialize() { 2336 if (_adapters != NULL) return; 2337 _adapters = new AdapterHandlerTable(); 2338 2339 // Create a special handler for abstract methods. Abstract methods 2340 // are never compiled so an i2c entry is somewhat meaningless, but 2341 // throw AbstractMethodError just in case. 2342 // Pass wrong_method_abstract for the c2i transitions to return 2343 // AbstractMethodError for invalid invocations. 2344 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2345 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL), 2346 StubRoutines::throw_AbstractMethodError_entry(), 2347 wrong_method_abstract, wrong_method_abstract); 2348 } 2349 2350 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, 2351 address i2c_entry, 2352 address c2i_entry, 2353 address c2i_unverified_entry) { 2354 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); 2355 } 2356 2357 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) { 2358 // Use customized signature handler. Need to lock around updates to 2359 // the AdapterHandlerTable (it is not safe for concurrent readers 2360 // and a single writer: this could be fixed if it becomes a 2361 // problem). 2362 2363 // Get the address of the ic_miss handlers before we grab the 2364 // AdapterHandlerLibrary_lock. This fixes bug 6236259 which 2365 // was caused by the initialization of the stubs happening 2366 // while we held the lock and then notifying jvmti while 2367 // holding it. This just forces the initialization to be a little 2368 // earlier. 2369 address ic_miss = SharedRuntime::get_ic_miss_stub(); 2370 assert(ic_miss != NULL, "must have handler"); 2371 2372 ResourceMark rm; 2373 2374 NOT_PRODUCT(int insts_size); 2375 AdapterBlob* new_adapter = NULL; 2376 AdapterHandlerEntry* entry = NULL; 2377 AdapterFingerPrint* fingerprint = NULL; 2378 { 2379 MutexLocker mu(AdapterHandlerLibrary_lock); 2380 // make sure data structure is initialized 2381 initialize(); 2382 2383 if (method->is_abstract()) { 2384 return _abstract_method_handler; 2385 } 2386 2387 // Fill in the signature array, for the calling-convention call. 2388 int total_args_passed = method->size_of_parameters(); // All args on stack 2389 2390 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2391 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2392 int i = 0; 2393 if (!method->is_static()) // Pass in receiver first 2394 sig_bt[i++] = T_OBJECT; 2395 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) { 2396 sig_bt[i++] = ss.type(); // Collect remaining bits of signature 2397 if (ss.type() == T_LONG || ss.type() == T_DOUBLE) 2398 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots 2399 } 2400 assert(i == total_args_passed, ""); 2401 2402 // Lookup method signature's fingerprint 2403 entry = _adapters->lookup(total_args_passed, sig_bt); 2404 2405 #ifdef ASSERT 2406 AdapterHandlerEntry* shared_entry = NULL; 2407 // Start adapter sharing verification only after the VM is booted. 2408 if (VerifyAdapterSharing && (entry != NULL)) { 2409 shared_entry = entry; 2410 entry = NULL; 2411 } 2412 #endif 2413 2414 if (entry != NULL) { 2415 return entry; 2416 } 2417 2418 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2419 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false); 2420 2421 // Make a C heap allocated version of the fingerprint to store in the adapter 2422 fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt); 2423 2424 // StubRoutines::code2() is initialized after this function can be called. As a result, 2425 // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated 2426 // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C 2427 // stub that ensure that an I2C stub is called from an interpreter frame. 2428 bool contains_all_checks = StubRoutines::code2() != NULL; 2429 2430 // Create I2C & C2I handlers 2431 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2432 if (buf != NULL) { 2433 CodeBuffer buffer(buf); 2434 short buffer_locs[20]; 2435 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2436 sizeof(buffer_locs)/sizeof(relocInfo)); 2437 2438 MacroAssembler _masm(&buffer); 2439 entry = SharedRuntime::generate_i2c2i_adapters(&_masm, 2440 total_args_passed, 2441 comp_args_on_stack, 2442 sig_bt, 2443 regs, 2444 fingerprint); 2445 #ifdef ASSERT 2446 if (VerifyAdapterSharing) { 2447 if (shared_entry != NULL) { 2448 assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match"); 2449 // Release the one just created and return the original 2450 _adapters->free_entry(entry); 2451 return shared_entry; 2452 } else { 2453 entry->save_code(buf->code_begin(), buffer.insts_size()); 2454 } 2455 } 2456 #endif 2457 2458 new_adapter = AdapterBlob::create(&buffer); 2459 NOT_PRODUCT(insts_size = buffer.insts_size()); 2460 } 2461 if (new_adapter == NULL) { 2462 // CodeCache is full, disable compilation 2463 // Ought to log this but compile log is only per compile thread 2464 // and we're some non descript Java thread. 2465 MutexUnlocker mu(AdapterHandlerLibrary_lock); 2466 CompileBroker::handle_full_code_cache(); 2467 return NULL; // Out of CodeCache space 2468 } 2469 entry->relocate(new_adapter->content_begin()); 2470 #ifndef PRODUCT 2471 // debugging suppport 2472 if (PrintAdapterHandlers || PrintStubCode) { 2473 ttyLocker ttyl; 2474 entry->print_adapter_on(tty); 2475 tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)", 2476 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"), 2477 method->signature()->as_C_string(), insts_size); 2478 tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry()); 2479 if (Verbose || PrintStubCode) { 2480 address first_pc = entry->base_address(); 2481 if (first_pc != NULL) { 2482 Disassembler::decode(first_pc, first_pc + insts_size); 2483 tty->cr(); 2484 } 2485 } 2486 } 2487 #endif 2488 // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp) 2489 // The checks are inserted only if -XX:+VerifyAdapterCalls is specified. 2490 if (contains_all_checks || !VerifyAdapterCalls) { 2491 _adapters->add(entry); 2492 } 2493 } 2494 // Outside of the lock 2495 if (new_adapter != NULL) { 2496 char blob_id[256]; 2497 jio_snprintf(blob_id, 2498 sizeof(blob_id), 2499 "%s(%s)@" PTR_FORMAT, 2500 new_adapter->name(), 2501 fingerprint->as_string(), 2502 new_adapter->content_begin()); 2503 Forte::register_stub(blob_id, new_adapter->content_begin(),new_adapter->content_end()); 2504 2505 if (JvmtiExport::should_post_dynamic_code_generated()) { 2506 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2507 } 2508 } 2509 return entry; 2510 } 2511 2512 address AdapterHandlerEntry::base_address() { 2513 address base = _i2c_entry; 2514 if (base == NULL) base = _c2i_entry; 2515 assert(base <= _c2i_entry || _c2i_entry == NULL, ""); 2516 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, ""); 2517 return base; 2518 } 2519 2520 void AdapterHandlerEntry::relocate(address new_base) { 2521 address old_base = base_address(); 2522 assert(old_base != NULL, ""); 2523 ptrdiff_t delta = new_base - old_base; 2524 if (_i2c_entry != NULL) 2525 _i2c_entry += delta; 2526 if (_c2i_entry != NULL) 2527 _c2i_entry += delta; 2528 if (_c2i_unverified_entry != NULL) 2529 _c2i_unverified_entry += delta; 2530 assert(base_address() == new_base, ""); 2531 } 2532 2533 2534 void AdapterHandlerEntry::deallocate() { 2535 delete _fingerprint; 2536 #ifdef ASSERT 2537 if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode); 2538 #endif 2539 } 2540 2541 2542 #ifdef ASSERT 2543 // Capture the code before relocation so that it can be compared 2544 // against other versions. If the code is captured after relocation 2545 // then relative instructions won't be equivalent. 2546 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 2547 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 2548 _saved_code_length = length; 2549 memcpy(_saved_code, buffer, length); 2550 } 2551 2552 2553 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) { 2554 if (length != _saved_code_length) { 2555 return false; 2556 } 2557 2558 return (memcmp(buffer, _saved_code, length) == 0) ? true : false; 2559 } 2560 #endif 2561 2562 2563 /** 2564 * Create a native wrapper for this native method. The wrapper converts the 2565 * Java-compiled calling convention to the native convention, handles 2566 * arguments, and transitions to native. On return from the native we transition 2567 * back to java blocking if a safepoint is in progress. 2568 */ 2569 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) { 2570 ResourceMark rm; 2571 nmethod* nm = NULL; 2572 2573 assert(method->is_native(), "must be native"); 2574 assert(method->is_method_handle_intrinsic() || 2575 method->has_native_function(), "must have something valid to call!"); 2576 2577 { 2578 // Perform the work while holding the lock, but perform any printing outside the lock 2579 MutexLocker mu(AdapterHandlerLibrary_lock); 2580 // See if somebody beat us to it 2581 nm = method->code(); 2582 if (nm != NULL) { 2583 return; 2584 } 2585 2586 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 2587 assert(compile_id > 0, "Must generate native wrapper"); 2588 2589 2590 ResourceMark rm; 2591 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2592 if (buf != NULL) { 2593 CodeBuffer buffer(buf); 2594 double locs_buf[20]; 2595 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 2596 MacroAssembler _masm(&buffer); 2597 2598 // Fill in the signature array, for the calling-convention call. 2599 const int total_args_passed = method->size_of_parameters(); 2600 2601 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2602 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2603 int i=0; 2604 if( !method->is_static() ) // Pass in receiver first 2605 sig_bt[i++] = T_OBJECT; 2606 SignatureStream ss(method->signature()); 2607 for( ; !ss.at_return_type(); ss.next()) { 2608 sig_bt[i++] = ss.type(); // Collect remaining bits of signature 2609 if( ss.type() == T_LONG || ss.type() == T_DOUBLE ) 2610 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots 2611 } 2612 assert(i == total_args_passed, ""); 2613 BasicType ret_type = ss.type(); 2614 2615 // Now get the compiled-Java layout as input (or output) arguments. 2616 // NOTE: Stubs for compiled entry points of method handle intrinsics 2617 // are just trampolines so the argument registers must be outgoing ones. 2618 const bool is_outgoing = method->is_method_handle_intrinsic(); 2619 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing); 2620 2621 // Generate the compiled-to-native wrapper code 2622 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 2623 2624 if (nm != NULL) { 2625 method->set_code(method, nm); 2626 } 2627 } 2628 } // Unlock AdapterHandlerLibrary_lock 2629 2630 2631 // Install the generated code. 2632 if (nm != NULL) { 2633 if (PrintCompilation) { 2634 ttyLocker ttyl; 2635 CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : ""); 2636 } 2637 nm->post_compiled_method_load_event(); 2638 } else { 2639 // CodeCache is full, disable compilation 2640 CompileBroker::handle_full_code_cache(); 2641 } 2642 } 2643 2644 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread)) 2645 assert(thread == JavaThread::current(), "must be"); 2646 // The code is about to enter a JNI lazy critical native method and 2647 // _needs_gc is true, so if this thread is already in a critical 2648 // section then just return, otherwise this thread should block 2649 // until needs_gc has been cleared. 2650 if (thread->in_critical()) { 2651 return; 2652 } 2653 // Lock and unlock a critical section to give the system a chance to block 2654 GC_locker::lock_critical(thread); 2655 GC_locker::unlock_critical(thread); 2656 JRT_END 2657 2658 #ifdef HAVE_DTRACE_H 2659 // Create a dtrace nmethod for this method. The wrapper converts the 2660 // java compiled calling convention to the native convention, makes a dummy call 2661 // (actually nops for the size of the call instruction, which become a trap if 2662 // probe is enabled). The returns to the caller. Since this all looks like a 2663 // leaf no thread transition is needed. 2664 2665 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) { 2666 ResourceMark rm; 2667 nmethod* nm = NULL; 2668 2669 if (PrintCompilation) { 2670 ttyLocker ttyl; 2671 tty->print("--- n%s "); 2672 method->print_short_name(tty); 2673 if (method->is_static()) { 2674 tty->print(" (static)"); 2675 } 2676 tty->cr(); 2677 } 2678 2679 { 2680 // perform the work while holding the lock, but perform any printing 2681 // outside the lock 2682 MutexLocker mu(AdapterHandlerLibrary_lock); 2683 // See if somebody beat us to it 2684 nm = method->code(); 2685 if (nm) { 2686 return nm; 2687 } 2688 2689 ResourceMark rm; 2690 2691 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2692 if (buf != NULL) { 2693 CodeBuffer buffer(buf); 2694 // Need a few relocation entries 2695 double locs_buf[20]; 2696 buffer.insts()->initialize_shared_locs( 2697 (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 2698 MacroAssembler _masm(&buffer); 2699 2700 // Generate the compiled-to-native wrapper code 2701 nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method); 2702 } 2703 } 2704 return nm; 2705 } 2706 2707 // the dtrace method needs to convert java lang string to utf8 string. 2708 void SharedRuntime::get_utf(oopDesc* src, address dst) { 2709 typeArrayOop jlsValue = java_lang_String::value(src); 2710 int jlsOffset = java_lang_String::offset(src); 2711 int jlsLen = java_lang_String::length(src); 2712 jchar* jlsPos = (jlsLen == 0) ? NULL : 2713 jlsValue->char_at_addr(jlsOffset); 2714 assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string"); 2715 (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size); 2716 } 2717 #endif // ndef HAVE_DTRACE_H 2718 2719 int SharedRuntime::convert_ints_to_longints_argcnt(int in_args_count, BasicType* in_sig_bt) { 2720 int argcnt = in_args_count; 2721 if (CCallingConventionRequiresIntsAsLongs) { 2722 for (int in = 0; in < in_args_count; in++) { 2723 BasicType bt = in_sig_bt[in]; 2724 switch (bt) { 2725 case T_BOOLEAN: 2726 case T_CHAR: 2727 case T_BYTE: 2728 case T_SHORT: 2729 case T_INT: 2730 argcnt++; 2731 break; 2732 default: 2733 break; 2734 } 2735 } 2736 } else { 2737 assert(0, "This should not be needed on this platform"); 2738 } 2739 2740 return argcnt; 2741 } 2742 2743 void SharedRuntime::convert_ints_to_longints(int i2l_argcnt, int& in_args_count, 2744 BasicType*& in_sig_bt, VMRegPair*& in_regs) { 2745 if (CCallingConventionRequiresIntsAsLongs) { 2746 VMRegPair *new_in_regs = NEW_RESOURCE_ARRAY(VMRegPair, i2l_argcnt); 2747 BasicType *new_in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt); 2748 2749 int argcnt = 0; 2750 for (int in = 0; in < in_args_count; in++, argcnt++) { 2751 BasicType bt = in_sig_bt[in]; 2752 VMRegPair reg = in_regs[in]; 2753 switch (bt) { 2754 case T_BOOLEAN: 2755 case T_CHAR: 2756 case T_BYTE: 2757 case T_SHORT: 2758 case T_INT: 2759 // Convert (bt) to (T_LONG,bt). 2760 new_in_sig_bt[argcnt ] = T_LONG; 2761 new_in_sig_bt[argcnt+1] = bt; 2762 assert(reg.first()->is_valid() && !reg.second()->is_valid(), ""); 2763 new_in_regs[argcnt ].set2(reg.first()); 2764 new_in_regs[argcnt+1].set_bad(); 2765 argcnt++; 2766 break; 2767 default: 2768 // No conversion needed. 2769 new_in_sig_bt[argcnt] = bt; 2770 new_in_regs[argcnt] = reg; 2771 break; 2772 } 2773 } 2774 assert(argcnt == i2l_argcnt, "must match"); 2775 2776 in_regs = new_in_regs; 2777 in_sig_bt = new_in_sig_bt; 2778 in_args_count = i2l_argcnt; 2779 } else { 2780 assert(0, "This should not be needed on this platform"); 2781 } 2782 } 2783 2784 // ------------------------------------------------------------------------- 2785 // Java-Java calling convention 2786 // (what you use when Java calls Java) 2787 2788 //------------------------------name_for_receiver---------------------------------- 2789 // For a given signature, return the VMReg for parameter 0. 2790 VMReg SharedRuntime::name_for_receiver() { 2791 VMRegPair regs; 2792 BasicType sig_bt = T_OBJECT; 2793 (void) java_calling_convention(&sig_bt, ®s, 1, true); 2794 // Return argument 0 register. In the LP64 build pointers 2795 // take 2 registers, but the VM wants only the 'main' name. 2796 return regs.first(); 2797 } 2798 2799 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 2800 // This method is returning a data structure allocating as a 2801 // ResourceObject, so do not put any ResourceMarks in here. 2802 char *s = sig->as_C_string(); 2803 int len = (int)strlen(s); 2804 s++; len--; // Skip opening paren 2805 char *t = s+len; 2806 while( *(--t) != ')' ) ; // Find close paren 2807 2808 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 ); 2809 VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 ); 2810 int cnt = 0; 2811 if (has_receiver) { 2812 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 2813 } 2814 2815 while( s < t ) { 2816 switch( *s++ ) { // Switch on signature character 2817 case 'B': sig_bt[cnt++] = T_BYTE; break; 2818 case 'C': sig_bt[cnt++] = T_CHAR; break; 2819 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break; 2820 case 'F': sig_bt[cnt++] = T_FLOAT; break; 2821 case 'I': sig_bt[cnt++] = T_INT; break; 2822 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break; 2823 case 'S': sig_bt[cnt++] = T_SHORT; break; 2824 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break; 2825 case 'V': sig_bt[cnt++] = T_VOID; break; 2826 case 'L': // Oop 2827 while( *s++ != ';' ) ; // Skip signature 2828 sig_bt[cnt++] = T_OBJECT; 2829 break; 2830 case '[': { // Array 2831 do { // Skip optional size 2832 while( *s >= '0' && *s <= '9' ) s++; 2833 } while( *s++ == '[' ); // Nested arrays? 2834 // Skip element type 2835 if( s[-1] == 'L' ) 2836 while( *s++ != ';' ) ; // Skip signature 2837 sig_bt[cnt++] = T_ARRAY; 2838 break; 2839 } 2840 default : ShouldNotReachHere(); 2841 } 2842 } 2843 2844 if (has_appendix) { 2845 sig_bt[cnt++] = T_OBJECT; 2846 } 2847 2848 assert( cnt < 256, "grow table size" ); 2849 2850 int comp_args_on_stack; 2851 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true); 2852 2853 // the calling convention doesn't count out_preserve_stack_slots so 2854 // we must add that in to get "true" stack offsets. 2855 2856 if (comp_args_on_stack) { 2857 for (int i = 0; i < cnt; i++) { 2858 VMReg reg1 = regs[i].first(); 2859 if( reg1->is_stack()) { 2860 // Yuck 2861 reg1 = reg1->bias(out_preserve_stack_slots()); 2862 } 2863 VMReg reg2 = regs[i].second(); 2864 if( reg2->is_stack()) { 2865 // Yuck 2866 reg2 = reg2->bias(out_preserve_stack_slots()); 2867 } 2868 regs[i].set_pair(reg2, reg1); 2869 } 2870 } 2871 2872 // results 2873 *arg_size = cnt; 2874 return regs; 2875 } 2876 2877 // OSR Migration Code 2878 // 2879 // This code is used convert interpreter frames into compiled frames. It is 2880 // called from very start of a compiled OSR nmethod. A temp array is 2881 // allocated to hold the interesting bits of the interpreter frame. All 2882 // active locks are inflated to allow them to move. The displaced headers and 2883 // active interpreter locals are copied into the temp buffer. Then we return 2884 // back to the compiled code. The compiled code then pops the current 2885 // interpreter frame off the stack and pushes a new compiled frame. Then it 2886 // copies the interpreter locals and displaced headers where it wants. 2887 // Finally it calls back to free the temp buffer. 2888 // 2889 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 2890 2891 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) ) 2892 2893 // 2894 // This code is dependent on the memory layout of the interpreter local 2895 // array and the monitors. On all of our platforms the layout is identical 2896 // so this code is shared. If some platform lays the their arrays out 2897 // differently then this code could move to platform specific code or 2898 // the code here could be modified to copy items one at a time using 2899 // frame accessor methods and be platform independent. 2900 2901 frame fr = thread->last_frame(); 2902 assert( fr.is_interpreted_frame(), "" ); 2903 assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" ); 2904 2905 // Figure out how many monitors are active. 2906 int active_monitor_count = 0; 2907 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 2908 kptr < fr.interpreter_frame_monitor_begin(); 2909 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 2910 if( kptr->obj() != NULL ) active_monitor_count++; 2911 } 2912 2913 // QQQ we could place number of active monitors in the array so that compiled code 2914 // could double check it. 2915 2916 Method* moop = fr.interpreter_frame_method(); 2917 int max_locals = moop->max_locals(); 2918 // Allocate temp buffer, 1 word per local & 2 per active monitor 2919 int buf_size_words = max_locals + active_monitor_count*2; 2920 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 2921 2922 // Copy the locals. Order is preserved so that loading of longs works. 2923 // Since there's no GC I can copy the oops blindly. 2924 assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 2925 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 2926 (HeapWord*)&buf[0], 2927 max_locals); 2928 2929 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 2930 int i = max_locals; 2931 for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 2932 kptr2 < fr.interpreter_frame_monitor_begin(); 2933 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 2934 if( kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array 2935 BasicLock *lock = kptr2->lock(); 2936 // Inflate so the displaced header becomes position-independent 2937 if (lock->displaced_header()->is_unlocked()) 2938 ObjectSynchronizer::inflate_helper(kptr2->obj()); 2939 // Now the displaced header is free to move 2940 buf[i++] = (intptr_t)lock->displaced_header(); 2941 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 2942 } 2943 } 2944 assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" ); 2945 2946 return buf; 2947 JRT_END 2948 2949 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 2950 FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode); 2951 JRT_END 2952 2953 bool AdapterHandlerLibrary::contains(CodeBlob* b) { 2954 AdapterHandlerTableIterator iter(_adapters); 2955 while (iter.has_next()) { 2956 AdapterHandlerEntry* a = iter.next(); 2957 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true; 2958 } 2959 return false; 2960 } 2961 2962 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) { 2963 AdapterHandlerTableIterator iter(_adapters); 2964 while (iter.has_next()) { 2965 AdapterHandlerEntry* a = iter.next(); 2966 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 2967 st->print("Adapter for signature: "); 2968 a->print_adapter_on(tty); 2969 return; 2970 } 2971 } 2972 assert(false, "Should have found handler"); 2973 } 2974 2975 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 2976 st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT, 2977 (intptr_t) this, fingerprint()->as_string(), 2978 get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry()); 2979 2980 } 2981 2982 #ifndef PRODUCT 2983 2984 void AdapterHandlerLibrary::print_statistics() { 2985 _adapters->print_statistics(); 2986 } 2987 2988 #endif /* PRODUCT */