rev 7347 : 8078113: 8011102 changes may cause incorrect results Summary: replace Vzeroupper instruction in stubs with zeroing only used ymm registers. Reviewed-by: kvn Contributed-by: sandhya.viswanathan@intel.com
1 /* 2 * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "interpreter/interpreter.hpp" 29 #include "nativeInst_x86.hpp" 30 #include "oops/instanceOop.hpp" 31 #include "oops/method.hpp" 32 #include "oops/objArrayKlass.hpp" 33 #include "oops/oop.inline.hpp" 34 #include "prims/methodHandles.hpp" 35 #include "runtime/frame.inline.hpp" 36 #include "runtime/handles.inline.hpp" 37 #include "runtime/sharedRuntime.hpp" 38 #include "runtime/stubCodeGenerator.hpp" 39 #include "runtime/stubRoutines.hpp" 40 #include "runtime/thread.inline.hpp" 41 #include "utilities/top.hpp" 42 #ifdef COMPILER2 43 #include "opto/runtime.hpp" 44 #endif 45 46 // Declaration and definition of StubGenerator (no .hpp file). 47 // For a more detailed description of the stub routine structure 48 // see the comment in stubRoutines.hpp 49 50 #define __ _masm-> 51 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8) 52 #define a__ ((Assembler*)_masm)-> 53 54 #ifdef PRODUCT 55 #define BLOCK_COMMENT(str) /* nothing */ 56 #else 57 #define BLOCK_COMMENT(str) __ block_comment(str) 58 #endif 59 60 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 61 const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions 62 63 // Stub Code definitions 64 65 static address handle_unsafe_access() { 66 JavaThread* thread = JavaThread::current(); 67 address pc = thread->saved_exception_pc(); 68 // pc is the instruction which we must emulate 69 // doing a no-op is fine: return garbage from the load 70 // therefore, compute npc 71 address npc = Assembler::locate_next_instruction(pc); 72 73 // request an async exception 74 thread->set_pending_unsafe_access_error(); 75 76 // return address of next instruction to execute 77 return npc; 78 } 79 80 class StubGenerator: public StubCodeGenerator { 81 private: 82 83 #ifdef PRODUCT 84 #define inc_counter_np(counter) ((void)0) 85 #else 86 void inc_counter_np_(int& counter) { 87 // This can destroy rscratch1 if counter is far from the code cache 88 __ incrementl(ExternalAddress((address)&counter)); 89 } 90 #define inc_counter_np(counter) \ 91 BLOCK_COMMENT("inc_counter " #counter); \ 92 inc_counter_np_(counter); 93 #endif 94 95 // Call stubs are used to call Java from C 96 // 97 // Linux Arguments: 98 // c_rarg0: call wrapper address address 99 // c_rarg1: result address 100 // c_rarg2: result type BasicType 101 // c_rarg3: method Method* 102 // c_rarg4: (interpreter) entry point address 103 // c_rarg5: parameters intptr_t* 104 // 16(rbp): parameter size (in words) int 105 // 24(rbp): thread Thread* 106 // 107 // [ return_from_Java ] <--- rsp 108 // [ argument word n ] 109 // ... 110 // -12 [ argument word 1 ] 111 // -11 [ saved r15 ] <--- rsp_after_call 112 // -10 [ saved r14 ] 113 // -9 [ saved r13 ] 114 // -8 [ saved r12 ] 115 // -7 [ saved rbx ] 116 // -6 [ call wrapper ] 117 // -5 [ result ] 118 // -4 [ result type ] 119 // -3 [ method ] 120 // -2 [ entry point ] 121 // -1 [ parameters ] 122 // 0 [ saved rbp ] <--- rbp 123 // 1 [ return address ] 124 // 2 [ parameter size ] 125 // 3 [ thread ] 126 // 127 // Windows Arguments: 128 // c_rarg0: call wrapper address address 129 // c_rarg1: result address 130 // c_rarg2: result type BasicType 131 // c_rarg3: method Method* 132 // 48(rbp): (interpreter) entry point address 133 // 56(rbp): parameters intptr_t* 134 // 64(rbp): parameter size (in words) int 135 // 72(rbp): thread Thread* 136 // 137 // [ return_from_Java ] <--- rsp 138 // [ argument word n ] 139 // ... 140 // -28 [ argument word 1 ] 141 // -27 [ saved xmm15 ] <--- rsp_after_call 142 // [ saved xmm7-xmm14 ] 143 // -9 [ saved xmm6 ] (each xmm register takes 2 slots) 144 // -7 [ saved r15 ] 145 // -6 [ saved r14 ] 146 // -5 [ saved r13 ] 147 // -4 [ saved r12 ] 148 // -3 [ saved rdi ] 149 // -2 [ saved rsi ] 150 // -1 [ saved rbx ] 151 // 0 [ saved rbp ] <--- rbp 152 // 1 [ return address ] 153 // 2 [ call wrapper ] 154 // 3 [ result ] 155 // 4 [ result type ] 156 // 5 [ method ] 157 // 6 [ entry point ] 158 // 7 [ parameters ] 159 // 8 [ parameter size ] 160 // 9 [ thread ] 161 // 162 // Windows reserves the callers stack space for arguments 1-4. 163 // We spill c_rarg0-c_rarg3 to this space. 164 165 // Call stub stack layout word offsets from rbp 166 enum call_stub_layout { 167 #ifdef _WIN64 168 xmm_save_first = 6, // save from xmm6 169 xmm_save_last = 15, // to xmm15 170 xmm_save_base = -9, 171 rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27 172 r15_off = -7, 173 r14_off = -6, 174 r13_off = -5, 175 r12_off = -4, 176 rdi_off = -3, 177 rsi_off = -2, 178 rbx_off = -1, 179 rbp_off = 0, 180 retaddr_off = 1, 181 call_wrapper_off = 2, 182 result_off = 3, 183 result_type_off = 4, 184 method_off = 5, 185 entry_point_off = 6, 186 parameters_off = 7, 187 parameter_size_off = 8, 188 thread_off = 9 189 #else 190 rsp_after_call_off = -12, 191 mxcsr_off = rsp_after_call_off, 192 r15_off = -11, 193 r14_off = -10, 194 r13_off = -9, 195 r12_off = -8, 196 rbx_off = -7, 197 call_wrapper_off = -6, 198 result_off = -5, 199 result_type_off = -4, 200 method_off = -3, 201 entry_point_off = -2, 202 parameters_off = -1, 203 rbp_off = 0, 204 retaddr_off = 1, 205 parameter_size_off = 2, 206 thread_off = 3 207 #endif 208 }; 209 210 #ifdef _WIN64 211 Address xmm_save(int reg) { 212 assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range"); 213 return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize); 214 } 215 #endif 216 217 address generate_call_stub(address& return_address) { 218 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 && 219 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off, 220 "adjust this code"); 221 StubCodeMark mark(this, "StubRoutines", "call_stub"); 222 address start = __ pc(); 223 224 // same as in generate_catch_exception()! 225 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); 226 227 const Address call_wrapper (rbp, call_wrapper_off * wordSize); 228 const Address result (rbp, result_off * wordSize); 229 const Address result_type (rbp, result_type_off * wordSize); 230 const Address method (rbp, method_off * wordSize); 231 const Address entry_point (rbp, entry_point_off * wordSize); 232 const Address parameters (rbp, parameters_off * wordSize); 233 const Address parameter_size(rbp, parameter_size_off * wordSize); 234 235 // same as in generate_catch_exception()! 236 const Address thread (rbp, thread_off * wordSize); 237 238 const Address r15_save(rbp, r15_off * wordSize); 239 const Address r14_save(rbp, r14_off * wordSize); 240 const Address r13_save(rbp, r13_off * wordSize); 241 const Address r12_save(rbp, r12_off * wordSize); 242 const Address rbx_save(rbp, rbx_off * wordSize); 243 244 // stub code 245 __ enter(); 246 __ subptr(rsp, -rsp_after_call_off * wordSize); 247 248 // save register parameters 249 #ifndef _WIN64 250 __ movptr(parameters, c_rarg5); // parameters 251 __ movptr(entry_point, c_rarg4); // entry_point 252 #endif 253 254 __ movptr(method, c_rarg3); // method 255 __ movl(result_type, c_rarg2); // result type 256 __ movptr(result, c_rarg1); // result 257 __ movptr(call_wrapper, c_rarg0); // call wrapper 258 259 // save regs belonging to calling function 260 __ movptr(rbx_save, rbx); 261 __ movptr(r12_save, r12); 262 __ movptr(r13_save, r13); 263 __ movptr(r14_save, r14); 264 __ movptr(r15_save, r15); 265 #ifdef _WIN64 266 for (int i = 6; i <= 15; i++) { 267 __ movdqu(xmm_save(i), as_XMMRegister(i)); 268 } 269 270 const Address rdi_save(rbp, rdi_off * wordSize); 271 const Address rsi_save(rbp, rsi_off * wordSize); 272 273 __ movptr(rsi_save, rsi); 274 __ movptr(rdi_save, rdi); 275 #else 276 const Address mxcsr_save(rbp, mxcsr_off * wordSize); 277 { 278 Label skip_ldmx; 279 __ stmxcsr(mxcsr_save); 280 __ movl(rax, mxcsr_save); 281 __ andl(rax, MXCSR_MASK); // Only check control and mask bits 282 ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std()); 283 __ cmp32(rax, mxcsr_std); 284 __ jcc(Assembler::equal, skip_ldmx); 285 __ ldmxcsr(mxcsr_std); 286 __ bind(skip_ldmx); 287 } 288 #endif 289 290 // Load up thread register 291 __ movptr(r15_thread, thread); 292 __ reinit_heapbase(); 293 294 #ifdef ASSERT 295 // make sure we have no pending exceptions 296 { 297 Label L; 298 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); 299 __ jcc(Assembler::equal, L); 300 __ stop("StubRoutines::call_stub: entered with pending exception"); 301 __ bind(L); 302 } 303 #endif 304 305 // pass parameters if any 306 BLOCK_COMMENT("pass parameters if any"); 307 Label parameters_done; 308 __ movl(c_rarg3, parameter_size); 309 __ testl(c_rarg3, c_rarg3); 310 __ jcc(Assembler::zero, parameters_done); 311 312 Label loop; 313 __ movptr(c_rarg2, parameters); // parameter pointer 314 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1 315 __ BIND(loop); 316 __ movptr(rax, Address(c_rarg2, 0));// get parameter 317 __ addptr(c_rarg2, wordSize); // advance to next parameter 318 __ decrementl(c_rarg1); // decrement counter 319 __ push(rax); // pass parameter 320 __ jcc(Assembler::notZero, loop); 321 322 // call Java function 323 __ BIND(parameters_done); 324 __ movptr(rbx, method); // get Method* 325 __ movptr(c_rarg1, entry_point); // get entry_point 326 __ mov(r13, rsp); // set sender sp 327 BLOCK_COMMENT("call Java function"); 328 __ call(c_rarg1); 329 330 BLOCK_COMMENT("call_stub_return_address:"); 331 return_address = __ pc(); 332 333 // store result depending on type (everything that is not 334 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT) 335 __ movptr(c_rarg0, result); 336 Label is_long, is_float, is_double, exit; 337 __ movl(c_rarg1, result_type); 338 __ cmpl(c_rarg1, T_OBJECT); 339 __ jcc(Assembler::equal, is_long); 340 __ cmpl(c_rarg1, T_LONG); 341 __ jcc(Assembler::equal, is_long); 342 __ cmpl(c_rarg1, T_FLOAT); 343 __ jcc(Assembler::equal, is_float); 344 __ cmpl(c_rarg1, T_DOUBLE); 345 __ jcc(Assembler::equal, is_double); 346 347 // handle T_INT case 348 __ movl(Address(c_rarg0, 0), rax); 349 350 __ BIND(exit); 351 352 // pop parameters 353 __ lea(rsp, rsp_after_call); 354 355 #ifdef ASSERT 356 // verify that threads correspond 357 { 358 Label L, S; 359 __ cmpptr(r15_thread, thread); 360 __ jcc(Assembler::notEqual, S); 361 __ get_thread(rbx); 362 __ cmpptr(r15_thread, rbx); 363 __ jcc(Assembler::equal, L); 364 __ bind(S); 365 __ jcc(Assembler::equal, L); 366 __ stop("StubRoutines::call_stub: threads must correspond"); 367 __ bind(L); 368 } 369 #endif 370 371 // restore regs belonging to calling function 372 #ifdef _WIN64 373 for (int i = 15; i >= 6; i--) { 374 __ movdqu(as_XMMRegister(i), xmm_save(i)); 375 } 376 #endif 377 __ movptr(r15, r15_save); 378 __ movptr(r14, r14_save); 379 __ movptr(r13, r13_save); 380 __ movptr(r12, r12_save); 381 __ movptr(rbx, rbx_save); 382 383 #ifdef _WIN64 384 __ movptr(rdi, rdi_save); 385 __ movptr(rsi, rsi_save); 386 #else 387 __ ldmxcsr(mxcsr_save); 388 #endif 389 390 // restore rsp 391 __ addptr(rsp, -rsp_after_call_off * wordSize); 392 393 // return 394 __ pop(rbp); 395 __ ret(0); 396 397 // handle return types different from T_INT 398 __ BIND(is_long); 399 __ movq(Address(c_rarg0, 0), rax); 400 __ jmp(exit); 401 402 __ BIND(is_float); 403 __ movflt(Address(c_rarg0, 0), xmm0); 404 __ jmp(exit); 405 406 __ BIND(is_double); 407 __ movdbl(Address(c_rarg0, 0), xmm0); 408 __ jmp(exit); 409 410 return start; 411 } 412 413 // Return point for a Java call if there's an exception thrown in 414 // Java code. The exception is caught and transformed into a 415 // pending exception stored in JavaThread that can be tested from 416 // within the VM. 417 // 418 // Note: Usually the parameters are removed by the callee. In case 419 // of an exception crossing an activation frame boundary, that is 420 // not the case if the callee is compiled code => need to setup the 421 // rsp. 422 // 423 // rax: exception oop 424 425 address generate_catch_exception() { 426 StubCodeMark mark(this, "StubRoutines", "catch_exception"); 427 address start = __ pc(); 428 429 // same as in generate_call_stub(): 430 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); 431 const Address thread (rbp, thread_off * wordSize); 432 433 #ifdef ASSERT 434 // verify that threads correspond 435 { 436 Label L, S; 437 __ cmpptr(r15_thread, thread); 438 __ jcc(Assembler::notEqual, S); 439 __ get_thread(rbx); 440 __ cmpptr(r15_thread, rbx); 441 __ jcc(Assembler::equal, L); 442 __ bind(S); 443 __ stop("StubRoutines::catch_exception: threads must correspond"); 444 __ bind(L); 445 } 446 #endif 447 448 // set pending exception 449 __ verify_oop(rax); 450 451 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax); 452 __ lea(rscratch1, ExternalAddress((address)__FILE__)); 453 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1); 454 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__); 455 456 // complete return to VM 457 assert(StubRoutines::_call_stub_return_address != NULL, 458 "_call_stub_return_address must have been generated before"); 459 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address)); 460 461 return start; 462 } 463 464 // Continuation point for runtime calls returning with a pending 465 // exception. The pending exception check happened in the runtime 466 // or native call stub. The pending exception in Thread is 467 // converted into a Java-level exception. 468 // 469 // Contract with Java-level exception handlers: 470 // rax: exception 471 // rdx: throwing pc 472 // 473 // NOTE: At entry of this stub, exception-pc must be on stack !! 474 475 address generate_forward_exception() { 476 StubCodeMark mark(this, "StubRoutines", "forward exception"); 477 address start = __ pc(); 478 479 // Upon entry, the sp points to the return address returning into 480 // Java (interpreted or compiled) code; i.e., the return address 481 // becomes the throwing pc. 482 // 483 // Arguments pushed before the runtime call are still on the stack 484 // but the exception handler will reset the stack pointer -> 485 // ignore them. A potential result in registers can be ignored as 486 // well. 487 488 #ifdef ASSERT 489 // make sure this code is only executed if there is a pending exception 490 { 491 Label L; 492 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL); 493 __ jcc(Assembler::notEqual, L); 494 __ stop("StubRoutines::forward exception: no pending exception (1)"); 495 __ bind(L); 496 } 497 #endif 498 499 // compute exception handler into rbx 500 __ movptr(c_rarg0, Address(rsp, 0)); 501 BLOCK_COMMENT("call exception_handler_for_return_address"); 502 __ call_VM_leaf(CAST_FROM_FN_PTR(address, 503 SharedRuntime::exception_handler_for_return_address), 504 r15_thread, c_rarg0); 505 __ mov(rbx, rax); 506 507 // setup rax & rdx, remove return address & clear pending exception 508 __ pop(rdx); 509 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); 510 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); 511 512 #ifdef ASSERT 513 // make sure exception is set 514 { 515 Label L; 516 __ testptr(rax, rax); 517 __ jcc(Assembler::notEqual, L); 518 __ stop("StubRoutines::forward exception: no pending exception (2)"); 519 __ bind(L); 520 } 521 #endif 522 523 // continue at exception handler (return address removed) 524 // rax: exception 525 // rbx: exception handler 526 // rdx: throwing pc 527 __ verify_oop(rax); 528 __ jmp(rbx); 529 530 return start; 531 } 532 533 // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest) 534 // 535 // Arguments : 536 // c_rarg0: exchange_value 537 // c_rarg0: dest 538 // 539 // Result: 540 // *dest <- ex, return (orig *dest) 541 address generate_atomic_xchg() { 542 StubCodeMark mark(this, "StubRoutines", "atomic_xchg"); 543 address start = __ pc(); 544 545 __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow 546 __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK 547 __ ret(0); 548 549 return start; 550 } 551 552 // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest) 553 // 554 // Arguments : 555 // c_rarg0: exchange_value 556 // c_rarg1: dest 557 // 558 // Result: 559 // *dest <- ex, return (orig *dest) 560 address generate_atomic_xchg_ptr() { 561 StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr"); 562 address start = __ pc(); 563 564 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow 565 __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK 566 __ ret(0); 567 568 return start; 569 } 570 571 // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest, 572 // jint compare_value) 573 // 574 // Arguments : 575 // c_rarg0: exchange_value 576 // c_rarg1: dest 577 // c_rarg2: compare_value 578 // 579 // Result: 580 // if ( compare_value == *dest ) { 581 // *dest = exchange_value 582 // return compare_value; 583 // else 584 // return *dest; 585 address generate_atomic_cmpxchg() { 586 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg"); 587 address start = __ pc(); 588 589 __ movl(rax, c_rarg2); 590 if ( os::is_MP() ) __ lock(); 591 __ cmpxchgl(c_rarg0, Address(c_rarg1, 0)); 592 __ ret(0); 593 594 return start; 595 } 596 597 // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value, 598 // volatile jlong* dest, 599 // jlong compare_value) 600 // Arguments : 601 // c_rarg0: exchange_value 602 // c_rarg1: dest 603 // c_rarg2: compare_value 604 // 605 // Result: 606 // if ( compare_value == *dest ) { 607 // *dest = exchange_value 608 // return compare_value; 609 // else 610 // return *dest; 611 address generate_atomic_cmpxchg_long() { 612 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long"); 613 address start = __ pc(); 614 615 __ movq(rax, c_rarg2); 616 if ( os::is_MP() ) __ lock(); 617 __ cmpxchgq(c_rarg0, Address(c_rarg1, 0)); 618 __ ret(0); 619 620 return start; 621 } 622 623 // Support for jint atomic::add(jint add_value, volatile jint* dest) 624 // 625 // Arguments : 626 // c_rarg0: add_value 627 // c_rarg1: dest 628 // 629 // Result: 630 // *dest += add_value 631 // return *dest; 632 address generate_atomic_add() { 633 StubCodeMark mark(this, "StubRoutines", "atomic_add"); 634 address start = __ pc(); 635 636 __ movl(rax, c_rarg0); 637 if ( os::is_MP() ) __ lock(); 638 __ xaddl(Address(c_rarg1, 0), c_rarg0); 639 __ addl(rax, c_rarg0); 640 __ ret(0); 641 642 return start; 643 } 644 645 // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest) 646 // 647 // Arguments : 648 // c_rarg0: add_value 649 // c_rarg1: dest 650 // 651 // Result: 652 // *dest += add_value 653 // return *dest; 654 address generate_atomic_add_ptr() { 655 StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr"); 656 address start = __ pc(); 657 658 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow 659 if ( os::is_MP() ) __ lock(); 660 __ xaddptr(Address(c_rarg1, 0), c_rarg0); 661 __ addptr(rax, c_rarg0); 662 __ ret(0); 663 664 return start; 665 } 666 667 // Support for intptr_t OrderAccess::fence() 668 // 669 // Arguments : 670 // 671 // Result: 672 address generate_orderaccess_fence() { 673 StubCodeMark mark(this, "StubRoutines", "orderaccess_fence"); 674 address start = __ pc(); 675 __ membar(Assembler::StoreLoad); 676 __ ret(0); 677 678 return start; 679 } 680 681 // Support for intptr_t get_previous_fp() 682 // 683 // This routine is used to find the previous frame pointer for the 684 // caller (current_frame_guess). This is used as part of debugging 685 // ps() is seemingly lost trying to find frames. 686 // This code assumes that caller current_frame_guess) has a frame. 687 address generate_get_previous_fp() { 688 StubCodeMark mark(this, "StubRoutines", "get_previous_fp"); 689 const Address old_fp(rbp, 0); 690 const Address older_fp(rax, 0); 691 address start = __ pc(); 692 693 __ enter(); 694 __ movptr(rax, old_fp); // callers fp 695 __ movptr(rax, older_fp); // the frame for ps() 696 __ pop(rbp); 697 __ ret(0); 698 699 return start; 700 } 701 702 // Support for intptr_t get_previous_sp() 703 // 704 // This routine is used to find the previous stack pointer for the 705 // caller. 706 address generate_get_previous_sp() { 707 StubCodeMark mark(this, "StubRoutines", "get_previous_sp"); 708 address start = __ pc(); 709 710 __ movptr(rax, rsp); 711 __ addptr(rax, 8); // return address is at the top of the stack. 712 __ ret(0); 713 714 return start; 715 } 716 717 //---------------------------------------------------------------------------------------------------- 718 // Support for void verify_mxcsr() 719 // 720 // This routine is used with -Xcheck:jni to verify that native 721 // JNI code does not return to Java code without restoring the 722 // MXCSR register to our expected state. 723 724 address generate_verify_mxcsr() { 725 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr"); 726 address start = __ pc(); 727 728 const Address mxcsr_save(rsp, 0); 729 730 if (CheckJNICalls) { 731 Label ok_ret; 732 ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std()); 733 __ push(rax); 734 __ subptr(rsp, wordSize); // allocate a temp location 735 __ stmxcsr(mxcsr_save); 736 __ movl(rax, mxcsr_save); 737 __ andl(rax, MXCSR_MASK); // Only check control and mask bits 738 __ cmp32(rax, mxcsr_std); 739 __ jcc(Assembler::equal, ok_ret); 740 741 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall"); 742 743 __ ldmxcsr(mxcsr_std); 744 745 __ bind(ok_ret); 746 __ addptr(rsp, wordSize); 747 __ pop(rax); 748 } 749 750 __ ret(0); 751 752 return start; 753 } 754 755 address generate_f2i_fixup() { 756 StubCodeMark mark(this, "StubRoutines", "f2i_fixup"); 757 Address inout(rsp, 5 * wordSize); // return address + 4 saves 758 759 address start = __ pc(); 760 761 Label L; 762 763 __ push(rax); 764 __ push(c_rarg3); 765 __ push(c_rarg2); 766 __ push(c_rarg1); 767 768 __ movl(rax, 0x7f800000); 769 __ xorl(c_rarg3, c_rarg3); 770 __ movl(c_rarg2, inout); 771 __ movl(c_rarg1, c_rarg2); 772 __ andl(c_rarg1, 0x7fffffff); 773 __ cmpl(rax, c_rarg1); // NaN? -> 0 774 __ jcc(Assembler::negative, L); 775 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint 776 __ movl(c_rarg3, 0x80000000); 777 __ movl(rax, 0x7fffffff); 778 __ cmovl(Assembler::positive, c_rarg3, rax); 779 780 __ bind(L); 781 __ movptr(inout, c_rarg3); 782 783 __ pop(c_rarg1); 784 __ pop(c_rarg2); 785 __ pop(c_rarg3); 786 __ pop(rax); 787 788 __ ret(0); 789 790 return start; 791 } 792 793 address generate_f2l_fixup() { 794 StubCodeMark mark(this, "StubRoutines", "f2l_fixup"); 795 Address inout(rsp, 5 * wordSize); // return address + 4 saves 796 address start = __ pc(); 797 798 Label L; 799 800 __ push(rax); 801 __ push(c_rarg3); 802 __ push(c_rarg2); 803 __ push(c_rarg1); 804 805 __ movl(rax, 0x7f800000); 806 __ xorl(c_rarg3, c_rarg3); 807 __ movl(c_rarg2, inout); 808 __ movl(c_rarg1, c_rarg2); 809 __ andl(c_rarg1, 0x7fffffff); 810 __ cmpl(rax, c_rarg1); // NaN? -> 0 811 __ jcc(Assembler::negative, L); 812 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong 813 __ mov64(c_rarg3, 0x8000000000000000); 814 __ mov64(rax, 0x7fffffffffffffff); 815 __ cmov(Assembler::positive, c_rarg3, rax); 816 817 __ bind(L); 818 __ movptr(inout, c_rarg3); 819 820 __ pop(c_rarg1); 821 __ pop(c_rarg2); 822 __ pop(c_rarg3); 823 __ pop(rax); 824 825 __ ret(0); 826 827 return start; 828 } 829 830 address generate_d2i_fixup() { 831 StubCodeMark mark(this, "StubRoutines", "d2i_fixup"); 832 Address inout(rsp, 6 * wordSize); // return address + 5 saves 833 834 address start = __ pc(); 835 836 Label L; 837 838 __ push(rax); 839 __ push(c_rarg3); 840 __ push(c_rarg2); 841 __ push(c_rarg1); 842 __ push(c_rarg0); 843 844 __ movl(rax, 0x7ff00000); 845 __ movq(c_rarg2, inout); 846 __ movl(c_rarg3, c_rarg2); 847 __ mov(c_rarg1, c_rarg2); 848 __ mov(c_rarg0, c_rarg2); 849 __ negl(c_rarg3); 850 __ shrptr(c_rarg1, 0x20); 851 __ orl(c_rarg3, c_rarg2); 852 __ andl(c_rarg1, 0x7fffffff); 853 __ xorl(c_rarg2, c_rarg2); 854 __ shrl(c_rarg3, 0x1f); 855 __ orl(c_rarg1, c_rarg3); 856 __ cmpl(rax, c_rarg1); 857 __ jcc(Assembler::negative, L); // NaN -> 0 858 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint 859 __ movl(c_rarg2, 0x80000000); 860 __ movl(rax, 0x7fffffff); 861 __ cmov(Assembler::positive, c_rarg2, rax); 862 863 __ bind(L); 864 __ movptr(inout, c_rarg2); 865 866 __ pop(c_rarg0); 867 __ pop(c_rarg1); 868 __ pop(c_rarg2); 869 __ pop(c_rarg3); 870 __ pop(rax); 871 872 __ ret(0); 873 874 return start; 875 } 876 877 address generate_d2l_fixup() { 878 StubCodeMark mark(this, "StubRoutines", "d2l_fixup"); 879 Address inout(rsp, 6 * wordSize); // return address + 5 saves 880 881 address start = __ pc(); 882 883 Label L; 884 885 __ push(rax); 886 __ push(c_rarg3); 887 __ push(c_rarg2); 888 __ push(c_rarg1); 889 __ push(c_rarg0); 890 891 __ movl(rax, 0x7ff00000); 892 __ movq(c_rarg2, inout); 893 __ movl(c_rarg3, c_rarg2); 894 __ mov(c_rarg1, c_rarg2); 895 __ mov(c_rarg0, c_rarg2); 896 __ negl(c_rarg3); 897 __ shrptr(c_rarg1, 0x20); 898 __ orl(c_rarg3, c_rarg2); 899 __ andl(c_rarg1, 0x7fffffff); 900 __ xorl(c_rarg2, c_rarg2); 901 __ shrl(c_rarg3, 0x1f); 902 __ orl(c_rarg1, c_rarg3); 903 __ cmpl(rax, c_rarg1); 904 __ jcc(Assembler::negative, L); // NaN -> 0 905 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong 906 __ mov64(c_rarg2, 0x8000000000000000); 907 __ mov64(rax, 0x7fffffffffffffff); 908 __ cmovq(Assembler::positive, c_rarg2, rax); 909 910 __ bind(L); 911 __ movq(inout, c_rarg2); 912 913 __ pop(c_rarg0); 914 __ pop(c_rarg1); 915 __ pop(c_rarg2); 916 __ pop(c_rarg3); 917 __ pop(rax); 918 919 __ ret(0); 920 921 return start; 922 } 923 924 address generate_fp_mask(const char *stub_name, int64_t mask) { 925 __ align(CodeEntryAlignment); 926 StubCodeMark mark(this, "StubRoutines", stub_name); 927 address start = __ pc(); 928 929 __ emit_data64( mask, relocInfo::none ); 930 __ emit_data64( mask, relocInfo::none ); 931 932 return start; 933 } 934 935 // The following routine generates a subroutine to throw an 936 // asynchronous UnknownError when an unsafe access gets a fault that 937 // could not be reasonably prevented by the programmer. (Example: 938 // SIGBUS/OBJERR.) 939 address generate_handler_for_unsafe_access() { 940 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access"); 941 address start = __ pc(); 942 943 __ push(0); // hole for return address-to-be 944 __ pusha(); // push registers 945 Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord); 946 947 // FIXME: this probably needs alignment logic 948 949 __ subptr(rsp, frame::arg_reg_save_area_bytes); 950 BLOCK_COMMENT("call handle_unsafe_access"); 951 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access))); 952 __ addptr(rsp, frame::arg_reg_save_area_bytes); 953 954 __ movptr(next_pc, rax); // stuff next address 955 __ popa(); 956 __ ret(0); // jump to next address 957 958 return start; 959 } 960 961 // Non-destructive plausibility checks for oops 962 // 963 // Arguments: 964 // all args on stack! 965 // 966 // Stack after saving c_rarg3: 967 // [tos + 0]: saved c_rarg3 968 // [tos + 1]: saved c_rarg2 969 // [tos + 2]: saved r12 (several TemplateTable methods use it) 970 // [tos + 3]: saved flags 971 // [tos + 4]: return address 972 // * [tos + 5]: error message (char*) 973 // * [tos + 6]: object to verify (oop) 974 // * [tos + 7]: saved rax - saved by caller and bashed 975 // * [tos + 8]: saved r10 (rscratch1) - saved by caller 976 // * = popped on exit 977 address generate_verify_oop() { 978 StubCodeMark mark(this, "StubRoutines", "verify_oop"); 979 address start = __ pc(); 980 981 Label exit, error; 982 983 __ pushf(); 984 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr())); 985 986 __ push(r12); 987 988 // save c_rarg2 and c_rarg3 989 __ push(c_rarg2); 990 __ push(c_rarg3); 991 992 enum { 993 // After previous pushes. 994 oop_to_verify = 6 * wordSize, 995 saved_rax = 7 * wordSize, 996 saved_r10 = 8 * wordSize, 997 998 // Before the call to MacroAssembler::debug(), see below. 999 return_addr = 16 * wordSize, 1000 error_msg = 17 * wordSize 1001 }; 1002 1003 // get object 1004 __ movptr(rax, Address(rsp, oop_to_verify)); 1005 1006 // make sure object is 'reasonable' 1007 __ testptr(rax, rax); 1008 __ jcc(Assembler::zero, exit); // if obj is NULL it is OK 1009 // Check if the oop is in the right area of memory 1010 __ movptr(c_rarg2, rax); 1011 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask()); 1012 __ andptr(c_rarg2, c_rarg3); 1013 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits()); 1014 __ cmpptr(c_rarg2, c_rarg3); 1015 __ jcc(Assembler::notZero, error); 1016 1017 // set r12 to heapbase for load_klass() 1018 __ reinit_heapbase(); 1019 1020 // make sure klass is 'reasonable', which is not zero. 1021 __ load_klass(rax, rax); // get klass 1022 __ testptr(rax, rax); 1023 __ jcc(Assembler::zero, error); // if klass is NULL it is broken 1024 1025 // return if everything seems ok 1026 __ bind(exit); 1027 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back 1028 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back 1029 __ pop(c_rarg3); // restore c_rarg3 1030 __ pop(c_rarg2); // restore c_rarg2 1031 __ pop(r12); // restore r12 1032 __ popf(); // restore flags 1033 __ ret(4 * wordSize); // pop caller saved stuff 1034 1035 // handle errors 1036 __ bind(error); 1037 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back 1038 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back 1039 __ pop(c_rarg3); // get saved c_rarg3 back 1040 __ pop(c_rarg2); // get saved c_rarg2 back 1041 __ pop(r12); // get saved r12 back 1042 __ popf(); // get saved flags off stack -- 1043 // will be ignored 1044 1045 __ pusha(); // push registers 1046 // (rip is already 1047 // already pushed) 1048 // debug(char* msg, int64_t pc, int64_t regs[]) 1049 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and 1050 // pushed all the registers, so now the stack looks like: 1051 // [tos + 0] 16 saved registers 1052 // [tos + 16] return address 1053 // * [tos + 17] error message (char*) 1054 // * [tos + 18] object to verify (oop) 1055 // * [tos + 19] saved rax - saved by caller and bashed 1056 // * [tos + 20] saved r10 (rscratch1) - saved by caller 1057 // * = popped on exit 1058 1059 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message 1060 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address 1061 __ movq(c_rarg2, rsp); // pass address of regs on stack 1062 __ mov(r12, rsp); // remember rsp 1063 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 1064 __ andptr(rsp, -16); // align stack as required by ABI 1065 BLOCK_COMMENT("call MacroAssembler::debug"); 1066 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 1067 __ mov(rsp, r12); // restore rsp 1068 __ popa(); // pop registers (includes r12) 1069 __ ret(4 * wordSize); // pop caller saved stuff 1070 1071 return start; 1072 } 1073 1074 // 1075 // Verify that a register contains clean 32-bits positive value 1076 // (high 32-bits are 0) so it could be used in 64-bits shifts. 1077 // 1078 // Input: 1079 // Rint - 32-bits value 1080 // Rtmp - scratch 1081 // 1082 void assert_clean_int(Register Rint, Register Rtmp) { 1083 #ifdef ASSERT 1084 Label L; 1085 assert_different_registers(Rtmp, Rint); 1086 __ movslq(Rtmp, Rint); 1087 __ cmpq(Rtmp, Rint); 1088 __ jcc(Assembler::equal, L); 1089 __ stop("high 32-bits of int value are not 0"); 1090 __ bind(L); 1091 #endif 1092 } 1093 1094 // Generate overlap test for array copy stubs 1095 // 1096 // Input: 1097 // c_rarg0 - from 1098 // c_rarg1 - to 1099 // c_rarg2 - element count 1100 // 1101 // Output: 1102 // rax - &from[element count - 1] 1103 // 1104 void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) { 1105 assert(no_overlap_target != NULL, "must be generated"); 1106 array_overlap_test(no_overlap_target, NULL, sf); 1107 } 1108 void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) { 1109 array_overlap_test(NULL, &L_no_overlap, sf); 1110 } 1111 void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) { 1112 const Register from = c_rarg0; 1113 const Register to = c_rarg1; 1114 const Register count = c_rarg2; 1115 const Register end_from = rax; 1116 1117 __ cmpptr(to, from); 1118 __ lea(end_from, Address(from, count, sf, 0)); 1119 if (NOLp == NULL) { 1120 ExternalAddress no_overlap(no_overlap_target); 1121 __ jump_cc(Assembler::belowEqual, no_overlap); 1122 __ cmpptr(to, end_from); 1123 __ jump_cc(Assembler::aboveEqual, no_overlap); 1124 } else { 1125 __ jcc(Assembler::belowEqual, (*NOLp)); 1126 __ cmpptr(to, end_from); 1127 __ jcc(Assembler::aboveEqual, (*NOLp)); 1128 } 1129 } 1130 1131 // Shuffle first three arg regs on Windows into Linux/Solaris locations. 1132 // 1133 // Outputs: 1134 // rdi - rcx 1135 // rsi - rdx 1136 // rdx - r8 1137 // rcx - r9 1138 // 1139 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter 1140 // are non-volatile. r9 and r10 should not be used by the caller. 1141 // 1142 void setup_arg_regs(int nargs = 3) { 1143 const Register saved_rdi = r9; 1144 const Register saved_rsi = r10; 1145 assert(nargs == 3 || nargs == 4, "else fix"); 1146 #ifdef _WIN64 1147 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, 1148 "unexpected argument registers"); 1149 if (nargs >= 4) 1150 __ mov(rax, r9); // r9 is also saved_rdi 1151 __ movptr(saved_rdi, rdi); 1152 __ movptr(saved_rsi, rsi); 1153 __ mov(rdi, rcx); // c_rarg0 1154 __ mov(rsi, rdx); // c_rarg1 1155 __ mov(rdx, r8); // c_rarg2 1156 if (nargs >= 4) 1157 __ mov(rcx, rax); // c_rarg3 (via rax) 1158 #else 1159 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, 1160 "unexpected argument registers"); 1161 #endif 1162 } 1163 1164 void restore_arg_regs() { 1165 const Register saved_rdi = r9; 1166 const Register saved_rsi = r10; 1167 #ifdef _WIN64 1168 __ movptr(rdi, saved_rdi); 1169 __ movptr(rsi, saved_rsi); 1170 #endif 1171 } 1172 1173 // Generate code for an array write pre barrier 1174 // 1175 // addr - starting address 1176 // count - element count 1177 // tmp - scratch register 1178 // 1179 // Destroy no registers! 1180 // 1181 void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) { 1182 BarrierSet* bs = Universe::heap()->barrier_set(); 1183 switch (bs->kind()) { 1184 case BarrierSet::G1SATBCT: 1185 case BarrierSet::G1SATBCTLogging: 1186 // With G1, don't generate the call if we statically know that the target in uninitialized 1187 if (!dest_uninitialized) { 1188 __ pusha(); // push registers 1189 if (count == c_rarg0) { 1190 if (addr == c_rarg1) { 1191 // exactly backwards!! 1192 __ xchgptr(c_rarg1, c_rarg0); 1193 } else { 1194 __ movptr(c_rarg1, count); 1195 __ movptr(c_rarg0, addr); 1196 } 1197 } else { 1198 __ movptr(c_rarg0, addr); 1199 __ movptr(c_rarg1, count); 1200 } 1201 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2); 1202 __ popa(); 1203 } 1204 break; 1205 case BarrierSet::CardTableModRef: 1206 case BarrierSet::CardTableExtension: 1207 case BarrierSet::ModRef: 1208 break; 1209 default: 1210 ShouldNotReachHere(); 1211 1212 } 1213 } 1214 1215 // 1216 // Generate code for an array write post barrier 1217 // 1218 // Input: 1219 // start - register containing starting address of destination array 1220 // count - elements count 1221 // scratch - scratch register 1222 // 1223 // The input registers are overwritten. 1224 // 1225 void gen_write_ref_array_post_barrier(Register start, Register count, Register scratch) { 1226 assert_different_registers(start, count, scratch); 1227 BarrierSet* bs = Universe::heap()->barrier_set(); 1228 switch (bs->kind()) { 1229 case BarrierSet::G1SATBCT: 1230 case BarrierSet::G1SATBCTLogging: 1231 { 1232 __ pusha(); // push registers (overkill) 1233 if (c_rarg0 == count) { // On win64 c_rarg0 == rcx 1234 assert_different_registers(c_rarg1, start); 1235 __ mov(c_rarg1, count); 1236 __ mov(c_rarg0, start); 1237 } else { 1238 assert_different_registers(c_rarg0, count); 1239 __ mov(c_rarg0, start); 1240 __ mov(c_rarg1, count); 1241 } 1242 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2); 1243 __ popa(); 1244 } 1245 break; 1246 case BarrierSet::CardTableModRef: 1247 case BarrierSet::CardTableExtension: 1248 { 1249 CardTableModRefBS* ct = (CardTableModRefBS*)bs; 1250 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); 1251 1252 Label L_loop; 1253 const Register end = count; 1254 1255 __ leaq(end, Address(start, count, TIMES_OOP, 0)); // end == start+count*oop_size 1256 __ subptr(end, BytesPerHeapOop); // end - 1 to make inclusive 1257 __ shrptr(start, CardTableModRefBS::card_shift); 1258 __ shrptr(end, CardTableModRefBS::card_shift); 1259 __ subptr(end, start); // end --> cards count 1260 1261 int64_t disp = (int64_t) ct->byte_map_base; 1262 __ mov64(scratch, disp); 1263 __ addptr(start, scratch); 1264 __ BIND(L_loop); 1265 __ movb(Address(start, count, Address::times_1), 0); 1266 __ decrement(count); 1267 __ jcc(Assembler::greaterEqual, L_loop); 1268 } 1269 break; 1270 default: 1271 ShouldNotReachHere(); 1272 1273 } 1274 } 1275 1276 1277 // Copy big chunks forward 1278 // 1279 // Inputs: 1280 // end_from - source arrays end address 1281 // end_to - destination array end address 1282 // qword_count - 64-bits element count, negative 1283 // to - scratch 1284 // L_copy_bytes - entry label 1285 // L_copy_8_bytes - exit label 1286 // 1287 void copy_bytes_forward(Register end_from, Register end_to, 1288 Register qword_count, Register to, 1289 Label& L_copy_bytes, Label& L_copy_8_bytes) { 1290 DEBUG_ONLY(__ stop("enter at entry label, not here")); 1291 Label L_loop; 1292 __ align(OptoLoopAlignment); 1293 if (UseUnalignedLoadStores) { 1294 Label L_end; 1295 // Copy 64-bytes per iteration 1296 __ BIND(L_loop); 1297 if (UseAVX >= 2) { 1298 __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56)); 1299 __ vmovdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0); 1300 __ vmovdqu(xmm1, Address(end_from, qword_count, Address::times_8, -24)); 1301 __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm1); 1302 } else { 1303 __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56)); 1304 __ movdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0); 1305 __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, -40)); 1306 __ movdqu(Address(end_to, qword_count, Address::times_8, -40), xmm1); 1307 __ movdqu(xmm2, Address(end_from, qword_count, Address::times_8, -24)); 1308 __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm2); 1309 __ movdqu(xmm3, Address(end_from, qword_count, Address::times_8, - 8)); 1310 __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm3); 1311 } 1312 __ BIND(L_copy_bytes); 1313 __ addptr(qword_count, 8); 1314 __ jcc(Assembler::lessEqual, L_loop); 1315 __ subptr(qword_count, 4); // sub(8) and add(4) 1316 __ jccb(Assembler::greater, L_end); 1317 // Copy trailing 32 bytes 1318 if (UseAVX >= 2) { 1319 __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24)); 1320 __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0); 1321 } else { 1322 __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24)); 1323 __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0); 1324 __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8)); 1325 __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1); 1326 } 1327 __ addptr(qword_count, 4); 1328 __ BIND(L_end); 1329 if (UseAVX >= 2) { 1330 // clean upper bits of YMM registers 1331 __ vzeroupper(); 1332 } 1333 } else { 1334 // Copy 32-bytes per iteration 1335 __ BIND(L_loop); 1336 __ movq(to, Address(end_from, qword_count, Address::times_8, -24)); 1337 __ movq(Address(end_to, qword_count, Address::times_8, -24), to); 1338 __ movq(to, Address(end_from, qword_count, Address::times_8, -16)); 1339 __ movq(Address(end_to, qword_count, Address::times_8, -16), to); 1340 __ movq(to, Address(end_from, qword_count, Address::times_8, - 8)); 1341 __ movq(Address(end_to, qword_count, Address::times_8, - 8), to); 1342 __ movq(to, Address(end_from, qword_count, Address::times_8, - 0)); 1343 __ movq(Address(end_to, qword_count, Address::times_8, - 0), to); 1344 1345 __ BIND(L_copy_bytes); 1346 __ addptr(qword_count, 4); 1347 __ jcc(Assembler::lessEqual, L_loop); 1348 } 1349 __ subptr(qword_count, 4); 1350 __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords 1351 } 1352 1353 // Copy big chunks backward 1354 // 1355 // Inputs: 1356 // from - source arrays address 1357 // dest - destination array address 1358 // qword_count - 64-bits element count 1359 // to - scratch 1360 // L_copy_bytes - entry label 1361 // L_copy_8_bytes - exit label 1362 // 1363 void copy_bytes_backward(Register from, Register dest, 1364 Register qword_count, Register to, 1365 Label& L_copy_bytes, Label& L_copy_8_bytes) { 1366 DEBUG_ONLY(__ stop("enter at entry label, not here")); 1367 Label L_loop; 1368 __ align(OptoLoopAlignment); 1369 if (UseUnalignedLoadStores) { 1370 Label L_end; 1371 // Copy 64-bytes per iteration 1372 __ BIND(L_loop); 1373 if (UseAVX >= 2) { 1374 __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 32)); 1375 __ vmovdqu(Address(dest, qword_count, Address::times_8, 32), xmm0); 1376 __ vmovdqu(xmm1, Address(from, qword_count, Address::times_8, 0)); 1377 __ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm1); 1378 } else { 1379 __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 48)); 1380 __ movdqu(Address(dest, qword_count, Address::times_8, 48), xmm0); 1381 __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 32)); 1382 __ movdqu(Address(dest, qword_count, Address::times_8, 32), xmm1); 1383 __ movdqu(xmm2, Address(from, qword_count, Address::times_8, 16)); 1384 __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm2); 1385 __ movdqu(xmm3, Address(from, qword_count, Address::times_8, 0)); 1386 __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm3); 1387 } 1388 __ BIND(L_copy_bytes); 1389 __ subptr(qword_count, 8); 1390 __ jcc(Assembler::greaterEqual, L_loop); 1391 1392 __ addptr(qword_count, 4); // add(8) and sub(4) 1393 __ jccb(Assembler::less, L_end); 1394 // Copy trailing 32 bytes 1395 if (UseAVX >= 2) { 1396 __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 0)); 1397 __ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm0); 1398 } else { 1399 __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16)); 1400 __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0); 1401 __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 0)); 1402 __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm1); 1403 } 1404 __ subptr(qword_count, 4); 1405 __ BIND(L_end); 1406 if (UseAVX >= 2) { 1407 // clean upper bits of YMM registers 1408 __ vzeroupper(); 1409 } 1410 } else { 1411 // Copy 32-bytes per iteration 1412 __ BIND(L_loop); 1413 __ movq(to, Address(from, qword_count, Address::times_8, 24)); 1414 __ movq(Address(dest, qword_count, Address::times_8, 24), to); 1415 __ movq(to, Address(from, qword_count, Address::times_8, 16)); 1416 __ movq(Address(dest, qword_count, Address::times_8, 16), to); 1417 __ movq(to, Address(from, qword_count, Address::times_8, 8)); 1418 __ movq(Address(dest, qword_count, Address::times_8, 8), to); 1419 __ movq(to, Address(from, qword_count, Address::times_8, 0)); 1420 __ movq(Address(dest, qword_count, Address::times_8, 0), to); 1421 1422 __ BIND(L_copy_bytes); 1423 __ subptr(qword_count, 4); 1424 __ jcc(Assembler::greaterEqual, L_loop); 1425 } 1426 __ addptr(qword_count, 4); 1427 __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords 1428 } 1429 1430 1431 // Arguments: 1432 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary 1433 // ignored 1434 // name - stub name string 1435 // 1436 // Inputs: 1437 // c_rarg0 - source array address 1438 // c_rarg1 - destination array address 1439 // c_rarg2 - element count, treated as ssize_t, can be zero 1440 // 1441 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries, 1442 // we let the hardware handle it. The one to eight bytes within words, 1443 // dwords or qwords that span cache line boundaries will still be loaded 1444 // and stored atomically. 1445 // 1446 // Side Effects: 1447 // disjoint_byte_copy_entry is set to the no-overlap entry point 1448 // used by generate_conjoint_byte_copy(). 1449 // 1450 address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) { 1451 __ align(CodeEntryAlignment); 1452 StubCodeMark mark(this, "StubRoutines", name); 1453 address start = __ pc(); 1454 1455 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes; 1456 Label L_copy_byte, L_exit; 1457 const Register from = rdi; // source array address 1458 const Register to = rsi; // destination array address 1459 const Register count = rdx; // elements count 1460 const Register byte_count = rcx; 1461 const Register qword_count = count; 1462 const Register end_from = from; // source array end address 1463 const Register end_to = to; // destination array end address 1464 // End pointers are inclusive, and if count is not zero they point 1465 // to the last unit copied: end_to[0] := end_from[0] 1466 1467 __ enter(); // required for proper stackwalking of RuntimeStub frame 1468 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. 1469 1470 if (entry != NULL) { 1471 *entry = __ pc(); 1472 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) 1473 BLOCK_COMMENT("Entry:"); 1474 } 1475 1476 setup_arg_regs(); // from => rdi, to => rsi, count => rdx 1477 // r9 and r10 may be used to save non-volatile registers 1478 1479 // 'from', 'to' and 'count' are now valid 1480 __ movptr(byte_count, count); 1481 __ shrptr(count, 3); // count => qword_count 1482 1483 // Copy from low to high addresses. Use 'to' as scratch. 1484 __ lea(end_from, Address(from, qword_count, Address::times_8, -8)); 1485 __ lea(end_to, Address(to, qword_count, Address::times_8, -8)); 1486 __ negptr(qword_count); // make the count negative 1487 __ jmp(L_copy_bytes); 1488 1489 // Copy trailing qwords 1490 __ BIND(L_copy_8_bytes); 1491 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8)); 1492 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax); 1493 __ increment(qword_count); 1494 __ jcc(Assembler::notZero, L_copy_8_bytes); 1495 1496 // Check for and copy trailing dword 1497 __ BIND(L_copy_4_bytes); 1498 __ testl(byte_count, 4); 1499 __ jccb(Assembler::zero, L_copy_2_bytes); 1500 __ movl(rax, Address(end_from, 8)); 1501 __ movl(Address(end_to, 8), rax); 1502 1503 __ addptr(end_from, 4); 1504 __ addptr(end_to, 4); 1505 1506 // Check for and copy trailing word 1507 __ BIND(L_copy_2_bytes); 1508 __ testl(byte_count, 2); 1509 __ jccb(Assembler::zero, L_copy_byte); 1510 __ movw(rax, Address(end_from, 8)); 1511 __ movw(Address(end_to, 8), rax); 1512 1513 __ addptr(end_from, 2); 1514 __ addptr(end_to, 2); 1515 1516 // Check for and copy trailing byte 1517 __ BIND(L_copy_byte); 1518 __ testl(byte_count, 1); 1519 __ jccb(Assembler::zero, L_exit); 1520 __ movb(rax, Address(end_from, 8)); 1521 __ movb(Address(end_to, 8), rax); 1522 1523 __ BIND(L_exit); 1524 restore_arg_regs(); 1525 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free 1526 __ xorptr(rax, rax); // return 0 1527 __ leave(); // required for proper stackwalking of RuntimeStub frame 1528 __ ret(0); 1529 1530 // Copy in multi-bytes chunks 1531 copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); 1532 __ jmp(L_copy_4_bytes); 1533 1534 return start; 1535 } 1536 1537 // Arguments: 1538 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary 1539 // ignored 1540 // name - stub name string 1541 // 1542 // Inputs: 1543 // c_rarg0 - source array address 1544 // c_rarg1 - destination array address 1545 // c_rarg2 - element count, treated as ssize_t, can be zero 1546 // 1547 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries, 1548 // we let the hardware handle it. The one to eight bytes within words, 1549 // dwords or qwords that span cache line boundaries will still be loaded 1550 // and stored atomically. 1551 // 1552 address generate_conjoint_byte_copy(bool aligned, address nooverlap_target, 1553 address* entry, const char *name) { 1554 __ align(CodeEntryAlignment); 1555 StubCodeMark mark(this, "StubRoutines", name); 1556 address start = __ pc(); 1557 1558 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes; 1559 const Register from = rdi; // source array address 1560 const Register to = rsi; // destination array address 1561 const Register count = rdx; // elements count 1562 const Register byte_count = rcx; 1563 const Register qword_count = count; 1564 1565 __ enter(); // required for proper stackwalking of RuntimeStub frame 1566 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. 1567 1568 if (entry != NULL) { 1569 *entry = __ pc(); 1570 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) 1571 BLOCK_COMMENT("Entry:"); 1572 } 1573 1574 array_overlap_test(nooverlap_target, Address::times_1); 1575 setup_arg_regs(); // from => rdi, to => rsi, count => rdx 1576 // r9 and r10 may be used to save non-volatile registers 1577 1578 // 'from', 'to' and 'count' are now valid 1579 __ movptr(byte_count, count); 1580 __ shrptr(count, 3); // count => qword_count 1581 1582 // Copy from high to low addresses. 1583 1584 // Check for and copy trailing byte 1585 __ testl(byte_count, 1); 1586 __ jcc(Assembler::zero, L_copy_2_bytes); 1587 __ movb(rax, Address(from, byte_count, Address::times_1, -1)); 1588 __ movb(Address(to, byte_count, Address::times_1, -1), rax); 1589 __ decrement(byte_count); // Adjust for possible trailing word 1590 1591 // Check for and copy trailing word 1592 __ BIND(L_copy_2_bytes); 1593 __ testl(byte_count, 2); 1594 __ jcc(Assembler::zero, L_copy_4_bytes); 1595 __ movw(rax, Address(from, byte_count, Address::times_1, -2)); 1596 __ movw(Address(to, byte_count, Address::times_1, -2), rax); 1597 1598 // Check for and copy trailing dword 1599 __ BIND(L_copy_4_bytes); 1600 __ testl(byte_count, 4); 1601 __ jcc(Assembler::zero, L_copy_bytes); 1602 __ movl(rax, Address(from, qword_count, Address::times_8)); 1603 __ movl(Address(to, qword_count, Address::times_8), rax); 1604 __ jmp(L_copy_bytes); 1605 1606 // Copy trailing qwords 1607 __ BIND(L_copy_8_bytes); 1608 __ movq(rax, Address(from, qword_count, Address::times_8, -8)); 1609 __ movq(Address(to, qword_count, Address::times_8, -8), rax); 1610 __ decrement(qword_count); 1611 __ jcc(Assembler::notZero, L_copy_8_bytes); 1612 1613 restore_arg_regs(); 1614 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free 1615 __ xorptr(rax, rax); // return 0 1616 __ leave(); // required for proper stackwalking of RuntimeStub frame 1617 __ ret(0); 1618 1619 // Copy in multi-bytes chunks 1620 copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); 1621 1622 restore_arg_regs(); 1623 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free 1624 __ xorptr(rax, rax); // return 0 1625 __ leave(); // required for proper stackwalking of RuntimeStub frame 1626 __ ret(0); 1627 1628 return start; 1629 } 1630 1631 // Arguments: 1632 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary 1633 // ignored 1634 // name - stub name string 1635 // 1636 // Inputs: 1637 // c_rarg0 - source array address 1638 // c_rarg1 - destination array address 1639 // c_rarg2 - element count, treated as ssize_t, can be zero 1640 // 1641 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we 1642 // let the hardware handle it. The two or four words within dwords 1643 // or qwords that span cache line boundaries will still be loaded 1644 // and stored atomically. 1645 // 1646 // Side Effects: 1647 // disjoint_short_copy_entry is set to the no-overlap entry point 1648 // used by generate_conjoint_short_copy(). 1649 // 1650 address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) { 1651 __ align(CodeEntryAlignment); 1652 StubCodeMark mark(this, "StubRoutines", name); 1653 address start = __ pc(); 1654 1655 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit; 1656 const Register from = rdi; // source array address 1657 const Register to = rsi; // destination array address 1658 const Register count = rdx; // elements count 1659 const Register word_count = rcx; 1660 const Register qword_count = count; 1661 const Register end_from = from; // source array end address 1662 const Register end_to = to; // destination array end address 1663 // End pointers are inclusive, and if count is not zero they point 1664 // to the last unit copied: end_to[0] := end_from[0] 1665 1666 __ enter(); // required for proper stackwalking of RuntimeStub frame 1667 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. 1668 1669 if (entry != NULL) { 1670 *entry = __ pc(); 1671 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) 1672 BLOCK_COMMENT("Entry:"); 1673 } 1674 1675 setup_arg_regs(); // from => rdi, to => rsi, count => rdx 1676 // r9 and r10 may be used to save non-volatile registers 1677 1678 // 'from', 'to' and 'count' are now valid 1679 __ movptr(word_count, count); 1680 __ shrptr(count, 2); // count => qword_count 1681 1682 // Copy from low to high addresses. Use 'to' as scratch. 1683 __ lea(end_from, Address(from, qword_count, Address::times_8, -8)); 1684 __ lea(end_to, Address(to, qword_count, Address::times_8, -8)); 1685 __ negptr(qword_count); 1686 __ jmp(L_copy_bytes); 1687 1688 // Copy trailing qwords 1689 __ BIND(L_copy_8_bytes); 1690 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8)); 1691 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax); 1692 __ increment(qword_count); 1693 __ jcc(Assembler::notZero, L_copy_8_bytes); 1694 1695 // Original 'dest' is trashed, so we can't use it as a 1696 // base register for a possible trailing word copy 1697 1698 // Check for and copy trailing dword 1699 __ BIND(L_copy_4_bytes); 1700 __ testl(word_count, 2); 1701 __ jccb(Assembler::zero, L_copy_2_bytes); 1702 __ movl(rax, Address(end_from, 8)); 1703 __ movl(Address(end_to, 8), rax); 1704 1705 __ addptr(end_from, 4); 1706 __ addptr(end_to, 4); 1707 1708 // Check for and copy trailing word 1709 __ BIND(L_copy_2_bytes); 1710 __ testl(word_count, 1); 1711 __ jccb(Assembler::zero, L_exit); 1712 __ movw(rax, Address(end_from, 8)); 1713 __ movw(Address(end_to, 8), rax); 1714 1715 __ BIND(L_exit); 1716 restore_arg_regs(); 1717 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free 1718 __ xorptr(rax, rax); // return 0 1719 __ leave(); // required for proper stackwalking of RuntimeStub frame 1720 __ ret(0); 1721 1722 // Copy in multi-bytes chunks 1723 copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); 1724 __ jmp(L_copy_4_bytes); 1725 1726 return start; 1727 } 1728 1729 address generate_fill(BasicType t, bool aligned, const char *name) { 1730 __ align(CodeEntryAlignment); 1731 StubCodeMark mark(this, "StubRoutines", name); 1732 address start = __ pc(); 1733 1734 BLOCK_COMMENT("Entry:"); 1735 1736 const Register to = c_rarg0; // source array address 1737 const Register value = c_rarg1; // value 1738 const Register count = c_rarg2; // elements count 1739 1740 __ enter(); // required for proper stackwalking of RuntimeStub frame 1741 1742 __ generate_fill(t, aligned, to, value, count, rax, xmm0); 1743 1744 __ leave(); // required for proper stackwalking of RuntimeStub frame 1745 __ ret(0); 1746 return start; 1747 } 1748 1749 // Arguments: 1750 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary 1751 // ignored 1752 // name - stub name string 1753 // 1754 // Inputs: 1755 // c_rarg0 - source array address 1756 // c_rarg1 - destination array address 1757 // c_rarg2 - element count, treated as ssize_t, can be zero 1758 // 1759 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we 1760 // let the hardware handle it. The two or four words within dwords 1761 // or qwords that span cache line boundaries will still be loaded 1762 // and stored atomically. 1763 // 1764 address generate_conjoint_short_copy(bool aligned, address nooverlap_target, 1765 address *entry, const char *name) { 1766 __ align(CodeEntryAlignment); 1767 StubCodeMark mark(this, "StubRoutines", name); 1768 address start = __ pc(); 1769 1770 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes; 1771 const Register from = rdi; // source array address 1772 const Register to = rsi; // destination array address 1773 const Register count = rdx; // elements count 1774 const Register word_count = rcx; 1775 const Register qword_count = count; 1776 1777 __ enter(); // required for proper stackwalking of RuntimeStub frame 1778 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. 1779 1780 if (entry != NULL) { 1781 *entry = __ pc(); 1782 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) 1783 BLOCK_COMMENT("Entry:"); 1784 } 1785 1786 array_overlap_test(nooverlap_target, Address::times_2); 1787 setup_arg_regs(); // from => rdi, to => rsi, count => rdx 1788 // r9 and r10 may be used to save non-volatile registers 1789 1790 // 'from', 'to' and 'count' are now valid 1791 __ movptr(word_count, count); 1792 __ shrptr(count, 2); // count => qword_count 1793 1794 // Copy from high to low addresses. Use 'to' as scratch. 1795 1796 // Check for and copy trailing word 1797 __ testl(word_count, 1); 1798 __ jccb(Assembler::zero, L_copy_4_bytes); 1799 __ movw(rax, Address(from, word_count, Address::times_2, -2)); 1800 __ movw(Address(to, word_count, Address::times_2, -2), rax); 1801 1802 // Check for and copy trailing dword 1803 __ BIND(L_copy_4_bytes); 1804 __ testl(word_count, 2); 1805 __ jcc(Assembler::zero, L_copy_bytes); 1806 __ movl(rax, Address(from, qword_count, Address::times_8)); 1807 __ movl(Address(to, qword_count, Address::times_8), rax); 1808 __ jmp(L_copy_bytes); 1809 1810 // Copy trailing qwords 1811 __ BIND(L_copy_8_bytes); 1812 __ movq(rax, Address(from, qword_count, Address::times_8, -8)); 1813 __ movq(Address(to, qword_count, Address::times_8, -8), rax); 1814 __ decrement(qword_count); 1815 __ jcc(Assembler::notZero, L_copy_8_bytes); 1816 1817 restore_arg_regs(); 1818 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free 1819 __ xorptr(rax, rax); // return 0 1820 __ leave(); // required for proper stackwalking of RuntimeStub frame 1821 __ ret(0); 1822 1823 // Copy in multi-bytes chunks 1824 copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); 1825 1826 restore_arg_regs(); 1827 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free 1828 __ xorptr(rax, rax); // return 0 1829 __ leave(); // required for proper stackwalking of RuntimeStub frame 1830 __ ret(0); 1831 1832 return start; 1833 } 1834 1835 // Arguments: 1836 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary 1837 // ignored 1838 // is_oop - true => oop array, so generate store check code 1839 // name - stub name string 1840 // 1841 // Inputs: 1842 // c_rarg0 - source array address 1843 // c_rarg1 - destination array address 1844 // c_rarg2 - element count, treated as ssize_t, can be zero 1845 // 1846 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let 1847 // the hardware handle it. The two dwords within qwords that span 1848 // cache line boundaries will still be loaded and stored atomicly. 1849 // 1850 // Side Effects: 1851 // disjoint_int_copy_entry is set to the no-overlap entry point 1852 // used by generate_conjoint_int_oop_copy(). 1853 // 1854 address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry, 1855 const char *name, bool dest_uninitialized = false) { 1856 __ align(CodeEntryAlignment); 1857 StubCodeMark mark(this, "StubRoutines", name); 1858 address start = __ pc(); 1859 1860 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit; 1861 const Register from = rdi; // source array address 1862 const Register to = rsi; // destination array address 1863 const Register count = rdx; // elements count 1864 const Register dword_count = rcx; 1865 const Register qword_count = count; 1866 const Register end_from = from; // source array end address 1867 const Register end_to = to; // destination array end address 1868 const Register saved_to = r11; // saved destination array address 1869 // End pointers are inclusive, and if count is not zero they point 1870 // to the last unit copied: end_to[0] := end_from[0] 1871 1872 __ enter(); // required for proper stackwalking of RuntimeStub frame 1873 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. 1874 1875 if (entry != NULL) { 1876 *entry = __ pc(); 1877 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) 1878 BLOCK_COMMENT("Entry:"); 1879 } 1880 1881 setup_arg_regs(); // from => rdi, to => rsi, count => rdx 1882 // r9 and r10 may be used to save non-volatile registers 1883 if (is_oop) { 1884 __ movq(saved_to, to); 1885 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized); 1886 } 1887 1888 // 'from', 'to' and 'count' are now valid 1889 __ movptr(dword_count, count); 1890 __ shrptr(count, 1); // count => qword_count 1891 1892 // Copy from low to high addresses. Use 'to' as scratch. 1893 __ lea(end_from, Address(from, qword_count, Address::times_8, -8)); 1894 __ lea(end_to, Address(to, qword_count, Address::times_8, -8)); 1895 __ negptr(qword_count); 1896 __ jmp(L_copy_bytes); 1897 1898 // Copy trailing qwords 1899 __ BIND(L_copy_8_bytes); 1900 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8)); 1901 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax); 1902 __ increment(qword_count); 1903 __ jcc(Assembler::notZero, L_copy_8_bytes); 1904 1905 // Check for and copy trailing dword 1906 __ BIND(L_copy_4_bytes); 1907 __ testl(dword_count, 1); // Only byte test since the value is 0 or 1 1908 __ jccb(Assembler::zero, L_exit); 1909 __ movl(rax, Address(end_from, 8)); 1910 __ movl(Address(end_to, 8), rax); 1911 1912 __ BIND(L_exit); 1913 if (is_oop) { 1914 gen_write_ref_array_post_barrier(saved_to, dword_count, rax); 1915 } 1916 restore_arg_regs(); 1917 inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free 1918 __ xorptr(rax, rax); // return 0 1919 __ leave(); // required for proper stackwalking of RuntimeStub frame 1920 __ ret(0); 1921 1922 // Copy in multi-bytes chunks 1923 copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); 1924 __ jmp(L_copy_4_bytes); 1925 1926 return start; 1927 } 1928 1929 // Arguments: 1930 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary 1931 // ignored 1932 // is_oop - true => oop array, so generate store check code 1933 // name - stub name string 1934 // 1935 // Inputs: 1936 // c_rarg0 - source array address 1937 // c_rarg1 - destination array address 1938 // c_rarg2 - element count, treated as ssize_t, can be zero 1939 // 1940 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let 1941 // the hardware handle it. The two dwords within qwords that span 1942 // cache line boundaries will still be loaded and stored atomicly. 1943 // 1944 address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target, 1945 address *entry, const char *name, 1946 bool dest_uninitialized = false) { 1947 __ align(CodeEntryAlignment); 1948 StubCodeMark mark(this, "StubRoutines", name); 1949 address start = __ pc(); 1950 1951 Label L_copy_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit; 1952 const Register from = rdi; // source array address 1953 const Register to = rsi; // destination array address 1954 const Register count = rdx; // elements count 1955 const Register dword_count = rcx; 1956 const Register qword_count = count; 1957 1958 __ enter(); // required for proper stackwalking of RuntimeStub frame 1959 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. 1960 1961 if (entry != NULL) { 1962 *entry = __ pc(); 1963 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) 1964 BLOCK_COMMENT("Entry:"); 1965 } 1966 1967 array_overlap_test(nooverlap_target, Address::times_4); 1968 setup_arg_regs(); // from => rdi, to => rsi, count => rdx 1969 // r9 and r10 may be used to save non-volatile registers 1970 1971 if (is_oop) { 1972 // no registers are destroyed by this call 1973 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized); 1974 } 1975 1976 assert_clean_int(count, rax); // Make sure 'count' is clean int. 1977 // 'from', 'to' and 'count' are now valid 1978 __ movptr(dword_count, count); 1979 __ shrptr(count, 1); // count => qword_count 1980 1981 // Copy from high to low addresses. Use 'to' as scratch. 1982 1983 // Check for and copy trailing dword 1984 __ testl(dword_count, 1); 1985 __ jcc(Assembler::zero, L_copy_bytes); 1986 __ movl(rax, Address(from, dword_count, Address::times_4, -4)); 1987 __ movl(Address(to, dword_count, Address::times_4, -4), rax); 1988 __ jmp(L_copy_bytes); 1989 1990 // Copy trailing qwords 1991 __ BIND(L_copy_8_bytes); 1992 __ movq(rax, Address(from, qword_count, Address::times_8, -8)); 1993 __ movq(Address(to, qword_count, Address::times_8, -8), rax); 1994 __ decrement(qword_count); 1995 __ jcc(Assembler::notZero, L_copy_8_bytes); 1996 1997 if (is_oop) { 1998 __ jmp(L_exit); 1999 } 2000 restore_arg_regs(); 2001 inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free 2002 __ xorptr(rax, rax); // return 0 2003 __ leave(); // required for proper stackwalking of RuntimeStub frame 2004 __ ret(0); 2005 2006 // Copy in multi-bytes chunks 2007 copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); 2008 2009 __ BIND(L_exit); 2010 if (is_oop) { 2011 gen_write_ref_array_post_barrier(to, dword_count, rax); 2012 } 2013 restore_arg_regs(); 2014 inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free 2015 __ xorptr(rax, rax); // return 0 2016 __ leave(); // required for proper stackwalking of RuntimeStub frame 2017 __ ret(0); 2018 2019 return start; 2020 } 2021 2022 // Arguments: 2023 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes 2024 // ignored 2025 // is_oop - true => oop array, so generate store check code 2026 // name - stub name string 2027 // 2028 // Inputs: 2029 // c_rarg0 - source array address 2030 // c_rarg1 - destination array address 2031 // c_rarg2 - element count, treated as ssize_t, can be zero 2032 // 2033 // Side Effects: 2034 // disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the 2035 // no-overlap entry point used by generate_conjoint_long_oop_copy(). 2036 // 2037 address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry, 2038 const char *name, bool dest_uninitialized = false) { 2039 __ align(CodeEntryAlignment); 2040 StubCodeMark mark(this, "StubRoutines", name); 2041 address start = __ pc(); 2042 2043 Label L_copy_bytes, L_copy_8_bytes, L_exit; 2044 const Register from = rdi; // source array address 2045 const Register to = rsi; // destination array address 2046 const Register qword_count = rdx; // elements count 2047 const Register end_from = from; // source array end address 2048 const Register end_to = rcx; // destination array end address 2049 const Register saved_to = to; 2050 const Register saved_count = r11; 2051 // End pointers are inclusive, and if count is not zero they point 2052 // to the last unit copied: end_to[0] := end_from[0] 2053 2054 __ enter(); // required for proper stackwalking of RuntimeStub frame 2055 // Save no-overlap entry point for generate_conjoint_long_oop_copy() 2056 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. 2057 2058 if (entry != NULL) { 2059 *entry = __ pc(); 2060 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) 2061 BLOCK_COMMENT("Entry:"); 2062 } 2063 2064 setup_arg_regs(); // from => rdi, to => rsi, count => rdx 2065 // r9 and r10 may be used to save non-volatile registers 2066 // 'from', 'to' and 'qword_count' are now valid 2067 if (is_oop) { 2068 // Save to and count for store barrier 2069 __ movptr(saved_count, qword_count); 2070 // no registers are destroyed by this call 2071 gen_write_ref_array_pre_barrier(to, qword_count, dest_uninitialized); 2072 } 2073 2074 // Copy from low to high addresses. Use 'to' as scratch. 2075 __ lea(end_from, Address(from, qword_count, Address::times_8, -8)); 2076 __ lea(end_to, Address(to, qword_count, Address::times_8, -8)); 2077 __ negptr(qword_count); 2078 __ jmp(L_copy_bytes); 2079 2080 // Copy trailing qwords 2081 __ BIND(L_copy_8_bytes); 2082 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8)); 2083 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax); 2084 __ increment(qword_count); 2085 __ jcc(Assembler::notZero, L_copy_8_bytes); 2086 2087 if (is_oop) { 2088 __ jmp(L_exit); 2089 } else { 2090 restore_arg_regs(); 2091 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free 2092 __ xorptr(rax, rax); // return 0 2093 __ leave(); // required for proper stackwalking of RuntimeStub frame 2094 __ ret(0); 2095 } 2096 2097 // Copy in multi-bytes chunks 2098 copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); 2099 2100 if (is_oop) { 2101 __ BIND(L_exit); 2102 gen_write_ref_array_post_barrier(saved_to, saved_count, rax); 2103 } 2104 restore_arg_regs(); 2105 if (is_oop) { 2106 inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free 2107 } else { 2108 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free 2109 } 2110 __ xorptr(rax, rax); // return 0 2111 __ leave(); // required for proper stackwalking of RuntimeStub frame 2112 __ ret(0); 2113 2114 return start; 2115 } 2116 2117 // Arguments: 2118 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes 2119 // ignored 2120 // is_oop - true => oop array, so generate store check code 2121 // name - stub name string 2122 // 2123 // Inputs: 2124 // c_rarg0 - source array address 2125 // c_rarg1 - destination array address 2126 // c_rarg2 - element count, treated as ssize_t, can be zero 2127 // 2128 address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, 2129 address nooverlap_target, address *entry, 2130 const char *name, bool dest_uninitialized = false) { 2131 __ align(CodeEntryAlignment); 2132 StubCodeMark mark(this, "StubRoutines", name); 2133 address start = __ pc(); 2134 2135 Label L_copy_bytes, L_copy_8_bytes, L_exit; 2136 const Register from = rdi; // source array address 2137 const Register to = rsi; // destination array address 2138 const Register qword_count = rdx; // elements count 2139 const Register saved_count = rcx; 2140 2141 __ enter(); // required for proper stackwalking of RuntimeStub frame 2142 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. 2143 2144 if (entry != NULL) { 2145 *entry = __ pc(); 2146 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) 2147 BLOCK_COMMENT("Entry:"); 2148 } 2149 2150 array_overlap_test(nooverlap_target, Address::times_8); 2151 setup_arg_regs(); // from => rdi, to => rsi, count => rdx 2152 // r9 and r10 may be used to save non-volatile registers 2153 // 'from', 'to' and 'qword_count' are now valid 2154 if (is_oop) { 2155 // Save to and count for store barrier 2156 __ movptr(saved_count, qword_count); 2157 // No registers are destroyed by this call 2158 gen_write_ref_array_pre_barrier(to, saved_count, dest_uninitialized); 2159 } 2160 2161 __ jmp(L_copy_bytes); 2162 2163 // Copy trailing qwords 2164 __ BIND(L_copy_8_bytes); 2165 __ movq(rax, Address(from, qword_count, Address::times_8, -8)); 2166 __ movq(Address(to, qword_count, Address::times_8, -8), rax); 2167 __ decrement(qword_count); 2168 __ jcc(Assembler::notZero, L_copy_8_bytes); 2169 2170 if (is_oop) { 2171 __ jmp(L_exit); 2172 } else { 2173 restore_arg_regs(); 2174 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free 2175 __ xorptr(rax, rax); // return 0 2176 __ leave(); // required for proper stackwalking of RuntimeStub frame 2177 __ ret(0); 2178 } 2179 2180 // Copy in multi-bytes chunks 2181 copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); 2182 2183 if (is_oop) { 2184 __ BIND(L_exit); 2185 gen_write_ref_array_post_barrier(to, saved_count, rax); 2186 } 2187 restore_arg_regs(); 2188 if (is_oop) { 2189 inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free 2190 } else { 2191 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free 2192 } 2193 __ xorptr(rax, rax); // return 0 2194 __ leave(); // required for proper stackwalking of RuntimeStub frame 2195 __ ret(0); 2196 2197 return start; 2198 } 2199 2200 2201 // Helper for generating a dynamic type check. 2202 // Smashes no registers. 2203 void generate_type_check(Register sub_klass, 2204 Register super_check_offset, 2205 Register super_klass, 2206 Label& L_success) { 2207 assert_different_registers(sub_klass, super_check_offset, super_klass); 2208 2209 BLOCK_COMMENT("type_check:"); 2210 2211 Label L_miss; 2212 2213 __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, NULL, 2214 super_check_offset); 2215 __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL); 2216 2217 // Fall through on failure! 2218 __ BIND(L_miss); 2219 } 2220 2221 // 2222 // Generate checkcasting array copy stub 2223 // 2224 // Input: 2225 // c_rarg0 - source array address 2226 // c_rarg1 - destination array address 2227 // c_rarg2 - element count, treated as ssize_t, can be zero 2228 // c_rarg3 - size_t ckoff (super_check_offset) 2229 // not Win64 2230 // c_rarg4 - oop ckval (super_klass) 2231 // Win64 2232 // rsp+40 - oop ckval (super_klass) 2233 // 2234 // Output: 2235 // rax == 0 - success 2236 // rax == -1^K - failure, where K is partial transfer count 2237 // 2238 address generate_checkcast_copy(const char *name, address *entry, 2239 bool dest_uninitialized = false) { 2240 2241 Label L_load_element, L_store_element, L_do_card_marks, L_done; 2242 2243 // Input registers (after setup_arg_regs) 2244 const Register from = rdi; // source array address 2245 const Register to = rsi; // destination array address 2246 const Register length = rdx; // elements count 2247 const Register ckoff = rcx; // super_check_offset 2248 const Register ckval = r8; // super_klass 2249 2250 // Registers used as temps (r13, r14 are save-on-entry) 2251 const Register end_from = from; // source array end address 2252 const Register end_to = r13; // destination array end address 2253 const Register count = rdx; // -(count_remaining) 2254 const Register r14_length = r14; // saved copy of length 2255 // End pointers are inclusive, and if length is not zero they point 2256 // to the last unit copied: end_to[0] := end_from[0] 2257 2258 const Register rax_oop = rax; // actual oop copied 2259 const Register r11_klass = r11; // oop._klass 2260 2261 //--------------------------------------------------------------- 2262 // Assembler stub will be used for this call to arraycopy 2263 // if the two arrays are subtypes of Object[] but the 2264 // destination array type is not equal to or a supertype 2265 // of the source type. Each element must be separately 2266 // checked. 2267 2268 __ align(CodeEntryAlignment); 2269 StubCodeMark mark(this, "StubRoutines", name); 2270 address start = __ pc(); 2271 2272 __ enter(); // required for proper stackwalking of RuntimeStub frame 2273 2274 #ifdef ASSERT 2275 // caller guarantees that the arrays really are different 2276 // otherwise, we would have to make conjoint checks 2277 { Label L; 2278 array_overlap_test(L, TIMES_OOP); 2279 __ stop("checkcast_copy within a single array"); 2280 __ bind(L); 2281 } 2282 #endif //ASSERT 2283 2284 setup_arg_regs(4); // from => rdi, to => rsi, length => rdx 2285 // ckoff => rcx, ckval => r8 2286 // r9 and r10 may be used to save non-volatile registers 2287 #ifdef _WIN64 2288 // last argument (#4) is on stack on Win64 2289 __ movptr(ckval, Address(rsp, 6 * wordSize)); 2290 #endif 2291 2292 // Caller of this entry point must set up the argument registers. 2293 if (entry != NULL) { 2294 *entry = __ pc(); 2295 BLOCK_COMMENT("Entry:"); 2296 } 2297 2298 // allocate spill slots for r13, r14 2299 enum { 2300 saved_r13_offset, 2301 saved_r14_offset, 2302 saved_rbp_offset 2303 }; 2304 __ subptr(rsp, saved_rbp_offset * wordSize); 2305 __ movptr(Address(rsp, saved_r13_offset * wordSize), r13); 2306 __ movptr(Address(rsp, saved_r14_offset * wordSize), r14); 2307 2308 // check that int operands are properly extended to size_t 2309 assert_clean_int(length, rax); 2310 assert_clean_int(ckoff, rax); 2311 2312 #ifdef ASSERT 2313 BLOCK_COMMENT("assert consistent ckoff/ckval"); 2314 // The ckoff and ckval must be mutually consistent, 2315 // even though caller generates both. 2316 { Label L; 2317 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 2318 __ cmpl(ckoff, Address(ckval, sco_offset)); 2319 __ jcc(Assembler::equal, L); 2320 __ stop("super_check_offset inconsistent"); 2321 __ bind(L); 2322 } 2323 #endif //ASSERT 2324 2325 // Loop-invariant addresses. They are exclusive end pointers. 2326 Address end_from_addr(from, length, TIMES_OOP, 0); 2327 Address end_to_addr(to, length, TIMES_OOP, 0); 2328 // Loop-variant addresses. They assume post-incremented count < 0. 2329 Address from_element_addr(end_from, count, TIMES_OOP, 0); 2330 Address to_element_addr(end_to, count, TIMES_OOP, 0); 2331 2332 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized); 2333 2334 // Copy from low to high addresses, indexed from the end of each array. 2335 __ lea(end_from, end_from_addr); 2336 __ lea(end_to, end_to_addr); 2337 __ movptr(r14_length, length); // save a copy of the length 2338 assert(length == count, ""); // else fix next line: 2339 __ negptr(count); // negate and test the length 2340 __ jcc(Assembler::notZero, L_load_element); 2341 2342 // Empty array: Nothing to do. 2343 __ xorptr(rax, rax); // return 0 on (trivial) success 2344 __ jmp(L_done); 2345 2346 // ======== begin loop ======== 2347 // (Loop is rotated; its entry is L_load_element.) 2348 // Loop control: 2349 // for (count = -count; count != 0; count++) 2350 // Base pointers src, dst are biased by 8*(count-1),to last element. 2351 __ align(OptoLoopAlignment); 2352 2353 __ BIND(L_store_element); 2354 __ store_heap_oop(to_element_addr, rax_oop); // store the oop 2355 __ increment(count); // increment the count toward zero 2356 __ jcc(Assembler::zero, L_do_card_marks); 2357 2358 // ======== loop entry is here ======== 2359 __ BIND(L_load_element); 2360 __ load_heap_oop(rax_oop, from_element_addr); // load the oop 2361 __ testptr(rax_oop, rax_oop); 2362 __ jcc(Assembler::zero, L_store_element); 2363 2364 __ load_klass(r11_klass, rax_oop);// query the object klass 2365 generate_type_check(r11_klass, ckoff, ckval, L_store_element); 2366 // ======== end loop ======== 2367 2368 // It was a real error; we must depend on the caller to finish the job. 2369 // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops. 2370 // Emit GC store barriers for the oops we have copied (r14 + rdx), 2371 // and report their number to the caller. 2372 assert_different_registers(rax, r14_length, count, to, end_to, rcx, rscratch1); 2373 Label L_post_barrier; 2374 __ addptr(r14_length, count); // K = (original - remaining) oops 2375 __ movptr(rax, r14_length); // save the value 2376 __ notptr(rax); // report (-1^K) to caller (does not affect flags) 2377 __ jccb(Assembler::notZero, L_post_barrier); 2378 __ jmp(L_done); // K == 0, nothing was copied, skip post barrier 2379 2380 // Come here on success only. 2381 __ BIND(L_do_card_marks); 2382 __ xorptr(rax, rax); // return 0 on success 2383 2384 __ BIND(L_post_barrier); 2385 gen_write_ref_array_post_barrier(to, r14_length, rscratch1); 2386 2387 // Common exit point (success or failure). 2388 __ BIND(L_done); 2389 __ movptr(r13, Address(rsp, saved_r13_offset * wordSize)); 2390 __ movptr(r14, Address(rsp, saved_r14_offset * wordSize)); 2391 restore_arg_regs(); 2392 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr); // Update counter after rscratch1 is free 2393 __ leave(); // required for proper stackwalking of RuntimeStub frame 2394 __ ret(0); 2395 2396 return start; 2397 } 2398 2399 // 2400 // Generate 'unsafe' array copy stub 2401 // Though just as safe as the other stubs, it takes an unscaled 2402 // size_t argument instead of an element count. 2403 // 2404 // Input: 2405 // c_rarg0 - source array address 2406 // c_rarg1 - destination array address 2407 // c_rarg2 - byte count, treated as ssize_t, can be zero 2408 // 2409 // Examines the alignment of the operands and dispatches 2410 // to a long, int, short, or byte copy loop. 2411 // 2412 address generate_unsafe_copy(const char *name, 2413 address byte_copy_entry, address short_copy_entry, 2414 address int_copy_entry, address long_copy_entry) { 2415 2416 Label L_long_aligned, L_int_aligned, L_short_aligned; 2417 2418 // Input registers (before setup_arg_regs) 2419 const Register from = c_rarg0; // source array address 2420 const Register to = c_rarg1; // destination array address 2421 const Register size = c_rarg2; // byte count (size_t) 2422 2423 // Register used as a temp 2424 const Register bits = rax; // test copy of low bits 2425 2426 __ align(CodeEntryAlignment); 2427 StubCodeMark mark(this, "StubRoutines", name); 2428 address start = __ pc(); 2429 2430 __ enter(); // required for proper stackwalking of RuntimeStub frame 2431 2432 // bump this on entry, not on exit: 2433 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr); 2434 2435 __ mov(bits, from); 2436 __ orptr(bits, to); 2437 __ orptr(bits, size); 2438 2439 __ testb(bits, BytesPerLong-1); 2440 __ jccb(Assembler::zero, L_long_aligned); 2441 2442 __ testb(bits, BytesPerInt-1); 2443 __ jccb(Assembler::zero, L_int_aligned); 2444 2445 __ testb(bits, BytesPerShort-1); 2446 __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry)); 2447 2448 __ BIND(L_short_aligned); 2449 __ shrptr(size, LogBytesPerShort); // size => short_count 2450 __ jump(RuntimeAddress(short_copy_entry)); 2451 2452 __ BIND(L_int_aligned); 2453 __ shrptr(size, LogBytesPerInt); // size => int_count 2454 __ jump(RuntimeAddress(int_copy_entry)); 2455 2456 __ BIND(L_long_aligned); 2457 __ shrptr(size, LogBytesPerLong); // size => qword_count 2458 __ jump(RuntimeAddress(long_copy_entry)); 2459 2460 return start; 2461 } 2462 2463 // Perform range checks on the proposed arraycopy. 2464 // Kills temp, but nothing else. 2465 // Also, clean the sign bits of src_pos and dst_pos. 2466 void arraycopy_range_checks(Register src, // source array oop (c_rarg0) 2467 Register src_pos, // source position (c_rarg1) 2468 Register dst, // destination array oo (c_rarg2) 2469 Register dst_pos, // destination position (c_rarg3) 2470 Register length, 2471 Register temp, 2472 Label& L_failed) { 2473 BLOCK_COMMENT("arraycopy_range_checks:"); 2474 2475 // if (src_pos + length > arrayOop(src)->length()) FAIL; 2476 __ movl(temp, length); 2477 __ addl(temp, src_pos); // src_pos + length 2478 __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes())); 2479 __ jcc(Assembler::above, L_failed); 2480 2481 // if (dst_pos + length > arrayOop(dst)->length()) FAIL; 2482 __ movl(temp, length); 2483 __ addl(temp, dst_pos); // dst_pos + length 2484 __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes())); 2485 __ jcc(Assembler::above, L_failed); 2486 2487 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'. 2488 // Move with sign extension can be used since they are positive. 2489 __ movslq(src_pos, src_pos); 2490 __ movslq(dst_pos, dst_pos); 2491 2492 BLOCK_COMMENT("arraycopy_range_checks done"); 2493 } 2494 2495 // 2496 // Generate generic array copy stubs 2497 // 2498 // Input: 2499 // c_rarg0 - src oop 2500 // c_rarg1 - src_pos (32-bits) 2501 // c_rarg2 - dst oop 2502 // c_rarg3 - dst_pos (32-bits) 2503 // not Win64 2504 // c_rarg4 - element count (32-bits) 2505 // Win64 2506 // rsp+40 - element count (32-bits) 2507 // 2508 // Output: 2509 // rax == 0 - success 2510 // rax == -1^K - failure, where K is partial transfer count 2511 // 2512 address generate_generic_copy(const char *name, 2513 address byte_copy_entry, address short_copy_entry, 2514 address int_copy_entry, address oop_copy_entry, 2515 address long_copy_entry, address checkcast_copy_entry) { 2516 2517 Label L_failed, L_failed_0, L_objArray; 2518 Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs; 2519 2520 // Input registers 2521 const Register src = c_rarg0; // source array oop 2522 const Register src_pos = c_rarg1; // source position 2523 const Register dst = c_rarg2; // destination array oop 2524 const Register dst_pos = c_rarg3; // destination position 2525 #ifndef _WIN64 2526 const Register length = c_rarg4; 2527 #else 2528 const Address length(rsp, 6 * wordSize); // elements count is on stack on Win64 2529 #endif 2530 2531 { int modulus = CodeEntryAlignment; 2532 int target = modulus - 5; // 5 = sizeof jmp(L_failed) 2533 int advance = target - (__ offset() % modulus); 2534 if (advance < 0) advance += modulus; 2535 if (advance > 0) __ nop(advance); 2536 } 2537 StubCodeMark mark(this, "StubRoutines", name); 2538 2539 // Short-hop target to L_failed. Makes for denser prologue code. 2540 __ BIND(L_failed_0); 2541 __ jmp(L_failed); 2542 assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed"); 2543 2544 __ align(CodeEntryAlignment); 2545 address start = __ pc(); 2546 2547 __ enter(); // required for proper stackwalking of RuntimeStub frame 2548 2549 // bump this on entry, not on exit: 2550 inc_counter_np(SharedRuntime::_generic_array_copy_ctr); 2551 2552 //----------------------------------------------------------------------- 2553 // Assembler stub will be used for this call to arraycopy 2554 // if the following conditions are met: 2555 // 2556 // (1) src and dst must not be null. 2557 // (2) src_pos must not be negative. 2558 // (3) dst_pos must not be negative. 2559 // (4) length must not be negative. 2560 // (5) src klass and dst klass should be the same and not NULL. 2561 // (6) src and dst should be arrays. 2562 // (7) src_pos + length must not exceed length of src. 2563 // (8) dst_pos + length must not exceed length of dst. 2564 // 2565 2566 // if (src == NULL) return -1; 2567 __ testptr(src, src); // src oop 2568 size_t j1off = __ offset(); 2569 __ jccb(Assembler::zero, L_failed_0); 2570 2571 // if (src_pos < 0) return -1; 2572 __ testl(src_pos, src_pos); // src_pos (32-bits) 2573 __ jccb(Assembler::negative, L_failed_0); 2574 2575 // if (dst == NULL) return -1; 2576 __ testptr(dst, dst); // dst oop 2577 __ jccb(Assembler::zero, L_failed_0); 2578 2579 // if (dst_pos < 0) return -1; 2580 __ testl(dst_pos, dst_pos); // dst_pos (32-bits) 2581 size_t j4off = __ offset(); 2582 __ jccb(Assembler::negative, L_failed_0); 2583 2584 // The first four tests are very dense code, 2585 // but not quite dense enough to put four 2586 // jumps in a 16-byte instruction fetch buffer. 2587 // That's good, because some branch predicters 2588 // do not like jumps so close together. 2589 // Make sure of this. 2590 guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps"); 2591 2592 // registers used as temp 2593 const Register r11_length = r11; // elements count to copy 2594 const Register r10_src_klass = r10; // array klass 2595 2596 // if (length < 0) return -1; 2597 __ movl(r11_length, length); // length (elements count, 32-bits value) 2598 __ testl(r11_length, r11_length); 2599 __ jccb(Assembler::negative, L_failed_0); 2600 2601 __ load_klass(r10_src_klass, src); 2602 #ifdef ASSERT 2603 // assert(src->klass() != NULL); 2604 { 2605 BLOCK_COMMENT("assert klasses not null {"); 2606 Label L1, L2; 2607 __ testptr(r10_src_klass, r10_src_klass); 2608 __ jcc(Assembler::notZero, L2); // it is broken if klass is NULL 2609 __ bind(L1); 2610 __ stop("broken null klass"); 2611 __ bind(L2); 2612 __ load_klass(rax, dst); 2613 __ cmpq(rax, 0); 2614 __ jcc(Assembler::equal, L1); // this would be broken also 2615 BLOCK_COMMENT("} assert klasses not null done"); 2616 } 2617 #endif 2618 2619 // Load layout helper (32-bits) 2620 // 2621 // |array_tag| | header_size | element_type | |log2_element_size| 2622 // 32 30 24 16 8 2 0 2623 // 2624 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0 2625 // 2626 2627 const int lh_offset = in_bytes(Klass::layout_helper_offset()); 2628 2629 // Handle objArrays completely differently... 2630 const jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2631 __ cmpl(Address(r10_src_klass, lh_offset), objArray_lh); 2632 __ jcc(Assembler::equal, L_objArray); 2633 2634 // if (src->klass() != dst->klass()) return -1; 2635 __ load_klass(rax, dst); 2636 __ cmpq(r10_src_klass, rax); 2637 __ jcc(Assembler::notEqual, L_failed); 2638 2639 const Register rax_lh = rax; // layout helper 2640 __ movl(rax_lh, Address(r10_src_klass, lh_offset)); 2641 2642 // if (!src->is_Array()) return -1; 2643 __ cmpl(rax_lh, Klass::_lh_neutral_value); 2644 __ jcc(Assembler::greaterEqual, L_failed); 2645 2646 // At this point, it is known to be a typeArray (array_tag 0x3). 2647 #ifdef ASSERT 2648 { 2649 BLOCK_COMMENT("assert primitive array {"); 2650 Label L; 2651 __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift)); 2652 __ jcc(Assembler::greaterEqual, L); 2653 __ stop("must be a primitive array"); 2654 __ bind(L); 2655 BLOCK_COMMENT("} assert primitive array done"); 2656 } 2657 #endif 2658 2659 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length, 2660 r10, L_failed); 2661 2662 // TypeArrayKlass 2663 // 2664 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize); 2665 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize); 2666 // 2667 2668 const Register r10_offset = r10; // array offset 2669 const Register rax_elsize = rax_lh; // element size 2670 2671 __ movl(r10_offset, rax_lh); 2672 __ shrl(r10_offset, Klass::_lh_header_size_shift); 2673 __ andptr(r10_offset, Klass::_lh_header_size_mask); // array_offset 2674 __ addptr(src, r10_offset); // src array offset 2675 __ addptr(dst, r10_offset); // dst array offset 2676 BLOCK_COMMENT("choose copy loop based on element size"); 2677 __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize 2678 2679 // next registers should be set before the jump to corresponding stub 2680 const Register from = c_rarg0; // source array address 2681 const Register to = c_rarg1; // destination array address 2682 const Register count = c_rarg2; // elements count 2683 2684 // 'from', 'to', 'count' registers should be set in such order 2685 // since they are the same as 'src', 'src_pos', 'dst'. 2686 2687 __ BIND(L_copy_bytes); 2688 __ cmpl(rax_elsize, 0); 2689 __ jccb(Assembler::notEqual, L_copy_shorts); 2690 __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr 2691 __ lea(to, Address(dst, dst_pos, Address::times_1, 0));// dst_addr 2692 __ movl2ptr(count, r11_length); // length 2693 __ jump(RuntimeAddress(byte_copy_entry)); 2694 2695 __ BIND(L_copy_shorts); 2696 __ cmpl(rax_elsize, LogBytesPerShort); 2697 __ jccb(Assembler::notEqual, L_copy_ints); 2698 __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr 2699 __ lea(to, Address(dst, dst_pos, Address::times_2, 0));// dst_addr 2700 __ movl2ptr(count, r11_length); // length 2701 __ jump(RuntimeAddress(short_copy_entry)); 2702 2703 __ BIND(L_copy_ints); 2704 __ cmpl(rax_elsize, LogBytesPerInt); 2705 __ jccb(Assembler::notEqual, L_copy_longs); 2706 __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr 2707 __ lea(to, Address(dst, dst_pos, Address::times_4, 0));// dst_addr 2708 __ movl2ptr(count, r11_length); // length 2709 __ jump(RuntimeAddress(int_copy_entry)); 2710 2711 __ BIND(L_copy_longs); 2712 #ifdef ASSERT 2713 { 2714 BLOCK_COMMENT("assert long copy {"); 2715 Label L; 2716 __ cmpl(rax_elsize, LogBytesPerLong); 2717 __ jcc(Assembler::equal, L); 2718 __ stop("must be long copy, but elsize is wrong"); 2719 __ bind(L); 2720 BLOCK_COMMENT("} assert long copy done"); 2721 } 2722 #endif 2723 __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr 2724 __ lea(to, Address(dst, dst_pos, Address::times_8, 0));// dst_addr 2725 __ movl2ptr(count, r11_length); // length 2726 __ jump(RuntimeAddress(long_copy_entry)); 2727 2728 // ObjArrayKlass 2729 __ BIND(L_objArray); 2730 // live at this point: r10_src_klass, r11_length, src[_pos], dst[_pos] 2731 2732 Label L_plain_copy, L_checkcast_copy; 2733 // test array classes for subtyping 2734 __ load_klass(rax, dst); 2735 __ cmpq(r10_src_klass, rax); // usual case is exact equality 2736 __ jcc(Assembler::notEqual, L_checkcast_copy); 2737 2738 // Identically typed arrays can be copied without element-wise checks. 2739 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length, 2740 r10, L_failed); 2741 2742 __ lea(from, Address(src, src_pos, TIMES_OOP, 2743 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr 2744 __ lea(to, Address(dst, dst_pos, TIMES_OOP, 2745 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr 2746 __ movl2ptr(count, r11_length); // length 2747 __ BIND(L_plain_copy); 2748 __ jump(RuntimeAddress(oop_copy_entry)); 2749 2750 __ BIND(L_checkcast_copy); 2751 // live at this point: r10_src_klass, r11_length, rax (dst_klass) 2752 { 2753 // Before looking at dst.length, make sure dst is also an objArray. 2754 __ cmpl(Address(rax, lh_offset), objArray_lh); 2755 __ jcc(Assembler::notEqual, L_failed); 2756 2757 // It is safe to examine both src.length and dst.length. 2758 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length, 2759 rax, L_failed); 2760 2761 const Register r11_dst_klass = r11; 2762 __ load_klass(r11_dst_klass, dst); // reload 2763 2764 // Marshal the base address arguments now, freeing registers. 2765 __ lea(from, Address(src, src_pos, TIMES_OOP, 2766 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); 2767 __ lea(to, Address(dst, dst_pos, TIMES_OOP, 2768 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); 2769 __ movl(count, length); // length (reloaded) 2770 Register sco_temp = c_rarg3; // this register is free now 2771 assert_different_registers(from, to, count, sco_temp, 2772 r11_dst_klass, r10_src_klass); 2773 assert_clean_int(count, sco_temp); 2774 2775 // Generate the type check. 2776 const int sco_offset = in_bytes(Klass::super_check_offset_offset()); 2777 __ movl(sco_temp, Address(r11_dst_klass, sco_offset)); 2778 assert_clean_int(sco_temp, rax); 2779 generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy); 2780 2781 // Fetch destination element klass from the ObjArrayKlass header. 2782 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset()); 2783 __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset)); 2784 __ movl( sco_temp, Address(r11_dst_klass, sco_offset)); 2785 assert_clean_int(sco_temp, rax); 2786 2787 // the checkcast_copy loop needs two extra arguments: 2788 assert(c_rarg3 == sco_temp, "#3 already in place"); 2789 // Set up arguments for checkcast_copy_entry. 2790 setup_arg_regs(4); 2791 __ movptr(r8, r11_dst_klass); // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris 2792 __ jump(RuntimeAddress(checkcast_copy_entry)); 2793 } 2794 2795 __ BIND(L_failed); 2796 __ xorptr(rax, rax); 2797 __ notptr(rax); // return -1 2798 __ leave(); // required for proper stackwalking of RuntimeStub frame 2799 __ ret(0); 2800 2801 return start; 2802 } 2803 2804 void generate_arraycopy_stubs() { 2805 address entry; 2806 address entry_jbyte_arraycopy; 2807 address entry_jshort_arraycopy; 2808 address entry_jint_arraycopy; 2809 address entry_oop_arraycopy; 2810 address entry_jlong_arraycopy; 2811 address entry_checkcast_arraycopy; 2812 2813 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry, 2814 "jbyte_disjoint_arraycopy"); 2815 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy, 2816 "jbyte_arraycopy"); 2817 2818 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry, 2819 "jshort_disjoint_arraycopy"); 2820 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy, 2821 "jshort_arraycopy"); 2822 2823 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, false, &entry, 2824 "jint_disjoint_arraycopy"); 2825 StubRoutines::_jint_arraycopy = generate_conjoint_int_oop_copy(false, false, entry, 2826 &entry_jint_arraycopy, "jint_arraycopy"); 2827 2828 StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, false, &entry, 2829 "jlong_disjoint_arraycopy"); 2830 StubRoutines::_jlong_arraycopy = generate_conjoint_long_oop_copy(false, false, entry, 2831 &entry_jlong_arraycopy, "jlong_arraycopy"); 2832 2833 2834 if (UseCompressedOops) { 2835 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, true, &entry, 2836 "oop_disjoint_arraycopy"); 2837 StubRoutines::_oop_arraycopy = generate_conjoint_int_oop_copy(false, true, entry, 2838 &entry_oop_arraycopy, "oop_arraycopy"); 2839 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_int_oop_copy(false, true, &entry, 2840 "oop_disjoint_arraycopy_uninit", 2841 /*dest_uninitialized*/true); 2842 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_int_oop_copy(false, true, entry, 2843 NULL, "oop_arraycopy_uninit", 2844 /*dest_uninitialized*/true); 2845 } else { 2846 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, true, &entry, 2847 "oop_disjoint_arraycopy"); 2848 StubRoutines::_oop_arraycopy = generate_conjoint_long_oop_copy(false, true, entry, 2849 &entry_oop_arraycopy, "oop_arraycopy"); 2850 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_long_oop_copy(false, true, &entry, 2851 "oop_disjoint_arraycopy_uninit", 2852 /*dest_uninitialized*/true); 2853 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_long_oop_copy(false, true, entry, 2854 NULL, "oop_arraycopy_uninit", 2855 /*dest_uninitialized*/true); 2856 } 2857 2858 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy); 2859 StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, 2860 /*dest_uninitialized*/true); 2861 2862 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy", 2863 entry_jbyte_arraycopy, 2864 entry_jshort_arraycopy, 2865 entry_jint_arraycopy, 2866 entry_jlong_arraycopy); 2867 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy", 2868 entry_jbyte_arraycopy, 2869 entry_jshort_arraycopy, 2870 entry_jint_arraycopy, 2871 entry_oop_arraycopy, 2872 entry_jlong_arraycopy, 2873 entry_checkcast_arraycopy); 2874 2875 StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill"); 2876 StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill"); 2877 StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill"); 2878 StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill"); 2879 StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill"); 2880 StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill"); 2881 2882 // We don't generate specialized code for HeapWord-aligned source 2883 // arrays, so just use the code we've already generated 2884 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = StubRoutines::_jbyte_disjoint_arraycopy; 2885 StubRoutines::_arrayof_jbyte_arraycopy = StubRoutines::_jbyte_arraycopy; 2886 2887 StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy; 2888 StubRoutines::_arrayof_jshort_arraycopy = StubRoutines::_jshort_arraycopy; 2889 2890 StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy; 2891 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy; 2892 2893 StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy; 2894 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy; 2895 2896 StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy; 2897 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy; 2898 2899 StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit; 2900 StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit; 2901 } 2902 2903 void generate_math_stubs() { 2904 { 2905 StubCodeMark mark(this, "StubRoutines", "log"); 2906 StubRoutines::_intrinsic_log = (double (*)(double)) __ pc(); 2907 2908 __ subq(rsp, 8); 2909 __ movdbl(Address(rsp, 0), xmm0); 2910 __ fld_d(Address(rsp, 0)); 2911 __ flog(); 2912 __ fstp_d(Address(rsp, 0)); 2913 __ movdbl(xmm0, Address(rsp, 0)); 2914 __ addq(rsp, 8); 2915 __ ret(0); 2916 } 2917 { 2918 StubCodeMark mark(this, "StubRoutines", "log10"); 2919 StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc(); 2920 2921 __ subq(rsp, 8); 2922 __ movdbl(Address(rsp, 0), xmm0); 2923 __ fld_d(Address(rsp, 0)); 2924 __ flog10(); 2925 __ fstp_d(Address(rsp, 0)); 2926 __ movdbl(xmm0, Address(rsp, 0)); 2927 __ addq(rsp, 8); 2928 __ ret(0); 2929 } 2930 { 2931 StubCodeMark mark(this, "StubRoutines", "sin"); 2932 StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc(); 2933 2934 __ subq(rsp, 8); 2935 __ movdbl(Address(rsp, 0), xmm0); 2936 __ fld_d(Address(rsp, 0)); 2937 __ trigfunc('s'); 2938 __ fstp_d(Address(rsp, 0)); 2939 __ movdbl(xmm0, Address(rsp, 0)); 2940 __ addq(rsp, 8); 2941 __ ret(0); 2942 } 2943 { 2944 StubCodeMark mark(this, "StubRoutines", "cos"); 2945 StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc(); 2946 2947 __ subq(rsp, 8); 2948 __ movdbl(Address(rsp, 0), xmm0); 2949 __ fld_d(Address(rsp, 0)); 2950 __ trigfunc('c'); 2951 __ fstp_d(Address(rsp, 0)); 2952 __ movdbl(xmm0, Address(rsp, 0)); 2953 __ addq(rsp, 8); 2954 __ ret(0); 2955 } 2956 { 2957 StubCodeMark mark(this, "StubRoutines", "tan"); 2958 StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc(); 2959 2960 __ subq(rsp, 8); 2961 __ movdbl(Address(rsp, 0), xmm0); 2962 __ fld_d(Address(rsp, 0)); 2963 __ trigfunc('t'); 2964 __ fstp_d(Address(rsp, 0)); 2965 __ movdbl(xmm0, Address(rsp, 0)); 2966 __ addq(rsp, 8); 2967 __ ret(0); 2968 } 2969 { 2970 StubCodeMark mark(this, "StubRoutines", "exp"); 2971 StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc(); 2972 2973 __ subq(rsp, 8); 2974 __ movdbl(Address(rsp, 0), xmm0); 2975 __ fld_d(Address(rsp, 0)); 2976 __ exp_with_fallback(0); 2977 __ fstp_d(Address(rsp, 0)); 2978 __ movdbl(xmm0, Address(rsp, 0)); 2979 __ addq(rsp, 8); 2980 __ ret(0); 2981 } 2982 { 2983 StubCodeMark mark(this, "StubRoutines", "pow"); 2984 StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc(); 2985 2986 __ subq(rsp, 8); 2987 __ movdbl(Address(rsp, 0), xmm1); 2988 __ fld_d(Address(rsp, 0)); 2989 __ movdbl(Address(rsp, 0), xmm0); 2990 __ fld_d(Address(rsp, 0)); 2991 __ pow_with_fallback(0); 2992 __ fstp_d(Address(rsp, 0)); 2993 __ movdbl(xmm0, Address(rsp, 0)); 2994 __ addq(rsp, 8); 2995 __ ret(0); 2996 } 2997 } 2998 2999 // AES intrinsic stubs 3000 enum {AESBlockSize = 16}; 3001 3002 address generate_key_shuffle_mask() { 3003 __ align(16); 3004 StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask"); 3005 address start = __ pc(); 3006 __ emit_data64( 0x0405060700010203, relocInfo::none ); 3007 __ emit_data64( 0x0c0d0e0f08090a0b, relocInfo::none ); 3008 return start; 3009 } 3010 3011 // Utility routine for loading a 128-bit key word in little endian format 3012 // can optionally specify that the shuffle mask is already in an xmmregister 3013 void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) { 3014 __ movdqu(xmmdst, Address(key, offset)); 3015 if (xmm_shuf_mask != NULL) { 3016 __ pshufb(xmmdst, xmm_shuf_mask); 3017 } else { 3018 __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); 3019 } 3020 } 3021 3022 // Arguments: 3023 // 3024 // Inputs: 3025 // c_rarg0 - source byte array address 3026 // c_rarg1 - destination byte array address 3027 // c_rarg2 - K (key) in little endian int array 3028 // 3029 address generate_aescrypt_encryptBlock() { 3030 assert(UseAES, "need AES instructions and misaligned SSE support"); 3031 __ align(CodeEntryAlignment); 3032 StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock"); 3033 Label L_doLast; 3034 address start = __ pc(); 3035 3036 const Register from = c_rarg0; // source array address 3037 const Register to = c_rarg1; // destination array address 3038 const Register key = c_rarg2; // key array address 3039 const Register keylen = rax; 3040 3041 const XMMRegister xmm_result = xmm0; 3042 const XMMRegister xmm_key_shuf_mask = xmm1; 3043 // On win64 xmm6-xmm15 must be preserved so don't use them. 3044 const XMMRegister xmm_temp1 = xmm2; 3045 const XMMRegister xmm_temp2 = xmm3; 3046 const XMMRegister xmm_temp3 = xmm4; 3047 const XMMRegister xmm_temp4 = xmm5; 3048 3049 __ enter(); // required for proper stackwalking of RuntimeStub frame 3050 3051 // keylen could be only {11, 13, 15} * 4 = {44, 52, 60} 3052 __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); 3053 3054 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); 3055 __ movdqu(xmm_result, Address(from, 0)); // get 16 bytes of input 3056 3057 // For encryption, the java expanded key ordering is just what we need 3058 // we don't know if the key is aligned, hence not using load-execute form 3059 3060 load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask); 3061 __ pxor(xmm_result, xmm_temp1); 3062 3063 load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask); 3064 load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask); 3065 load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask); 3066 load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask); 3067 3068 __ aesenc(xmm_result, xmm_temp1); 3069 __ aesenc(xmm_result, xmm_temp2); 3070 __ aesenc(xmm_result, xmm_temp3); 3071 __ aesenc(xmm_result, xmm_temp4); 3072 3073 load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask); 3074 load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask); 3075 load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask); 3076 load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask); 3077 3078 __ aesenc(xmm_result, xmm_temp1); 3079 __ aesenc(xmm_result, xmm_temp2); 3080 __ aesenc(xmm_result, xmm_temp3); 3081 __ aesenc(xmm_result, xmm_temp4); 3082 3083 load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask); 3084 load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask); 3085 3086 __ cmpl(keylen, 44); 3087 __ jccb(Assembler::equal, L_doLast); 3088 3089 __ aesenc(xmm_result, xmm_temp1); 3090 __ aesenc(xmm_result, xmm_temp2); 3091 3092 load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask); 3093 load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask); 3094 3095 __ cmpl(keylen, 52); 3096 __ jccb(Assembler::equal, L_doLast); 3097 3098 __ aesenc(xmm_result, xmm_temp1); 3099 __ aesenc(xmm_result, xmm_temp2); 3100 3101 load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask); 3102 load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask); 3103 3104 __ BIND(L_doLast); 3105 __ aesenc(xmm_result, xmm_temp1); 3106 __ aesenclast(xmm_result, xmm_temp2); 3107 __ movdqu(Address(to, 0), xmm_result); // store the result 3108 __ xorptr(rax, rax); // return 0 3109 __ leave(); // required for proper stackwalking of RuntimeStub frame 3110 __ ret(0); 3111 3112 return start; 3113 } 3114 3115 3116 // Arguments: 3117 // 3118 // Inputs: 3119 // c_rarg0 - source byte array address 3120 // c_rarg1 - destination byte array address 3121 // c_rarg2 - K (key) in little endian int array 3122 // 3123 address generate_aescrypt_decryptBlock() { 3124 assert(UseAES, "need AES instructions and misaligned SSE support"); 3125 __ align(CodeEntryAlignment); 3126 StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock"); 3127 Label L_doLast; 3128 address start = __ pc(); 3129 3130 const Register from = c_rarg0; // source array address 3131 const Register to = c_rarg1; // destination array address 3132 const Register key = c_rarg2; // key array address 3133 const Register keylen = rax; 3134 3135 const XMMRegister xmm_result = xmm0; 3136 const XMMRegister xmm_key_shuf_mask = xmm1; 3137 // On win64 xmm6-xmm15 must be preserved so don't use them. 3138 const XMMRegister xmm_temp1 = xmm2; 3139 const XMMRegister xmm_temp2 = xmm3; 3140 const XMMRegister xmm_temp3 = xmm4; 3141 const XMMRegister xmm_temp4 = xmm5; 3142 3143 __ enter(); // required for proper stackwalking of RuntimeStub frame 3144 3145 // keylen could be only {11, 13, 15} * 4 = {44, 52, 60} 3146 __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); 3147 3148 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); 3149 __ movdqu(xmm_result, Address(from, 0)); 3150 3151 // for decryption java expanded key ordering is rotated one position from what we want 3152 // so we start from 0x10 here and hit 0x00 last 3153 // we don't know if the key is aligned, hence not using load-execute form 3154 load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask); 3155 load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask); 3156 load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask); 3157 load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask); 3158 3159 __ pxor (xmm_result, xmm_temp1); 3160 __ aesdec(xmm_result, xmm_temp2); 3161 __ aesdec(xmm_result, xmm_temp3); 3162 __ aesdec(xmm_result, xmm_temp4); 3163 3164 load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask); 3165 load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask); 3166 load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask); 3167 load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask); 3168 3169 __ aesdec(xmm_result, xmm_temp1); 3170 __ aesdec(xmm_result, xmm_temp2); 3171 __ aesdec(xmm_result, xmm_temp3); 3172 __ aesdec(xmm_result, xmm_temp4); 3173 3174 load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask); 3175 load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask); 3176 load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask); 3177 3178 __ cmpl(keylen, 44); 3179 __ jccb(Assembler::equal, L_doLast); 3180 3181 __ aesdec(xmm_result, xmm_temp1); 3182 __ aesdec(xmm_result, xmm_temp2); 3183 3184 load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask); 3185 load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask); 3186 3187 __ cmpl(keylen, 52); 3188 __ jccb(Assembler::equal, L_doLast); 3189 3190 __ aesdec(xmm_result, xmm_temp1); 3191 __ aesdec(xmm_result, xmm_temp2); 3192 3193 load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask); 3194 load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask); 3195 3196 __ BIND(L_doLast); 3197 __ aesdec(xmm_result, xmm_temp1); 3198 __ aesdec(xmm_result, xmm_temp2); 3199 3200 // for decryption the aesdeclast operation is always on key+0x00 3201 __ aesdeclast(xmm_result, xmm_temp3); 3202 __ movdqu(Address(to, 0), xmm_result); // store the result 3203 __ xorptr(rax, rax); // return 0 3204 __ leave(); // required for proper stackwalking of RuntimeStub frame 3205 __ ret(0); 3206 3207 return start; 3208 } 3209 3210 3211 // Arguments: 3212 // 3213 // Inputs: 3214 // c_rarg0 - source byte array address 3215 // c_rarg1 - destination byte array address 3216 // c_rarg2 - K (key) in little endian int array 3217 // c_rarg3 - r vector byte array address 3218 // c_rarg4 - input length 3219 // 3220 // Output: 3221 // rax - input length 3222 // 3223 address generate_cipherBlockChaining_encryptAESCrypt() { 3224 assert(UseAES, "need AES instructions and misaligned SSE support"); 3225 __ align(CodeEntryAlignment); 3226 StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt"); 3227 address start = __ pc(); 3228 3229 Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256; 3230 const Register from = c_rarg0; // source array address 3231 const Register to = c_rarg1; // destination array address 3232 const Register key = c_rarg2; // key array address 3233 const Register rvec = c_rarg3; // r byte array initialized from initvector array address 3234 // and left with the results of the last encryption block 3235 #ifndef _WIN64 3236 const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16) 3237 #else 3238 const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64 3239 const Register len_reg = r10; // pick the first volatile windows register 3240 #endif 3241 const Register pos = rax; 3242 3243 // xmm register assignments for the loops below 3244 const XMMRegister xmm_result = xmm0; 3245 const XMMRegister xmm_temp = xmm1; 3246 // keys 0-10 preloaded into xmm2-xmm12 3247 const int XMM_REG_NUM_KEY_FIRST = 2; 3248 const int XMM_REG_NUM_KEY_LAST = 15; 3249 const XMMRegister xmm_key0 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST); 3250 const XMMRegister xmm_key10 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+10); 3251 const XMMRegister xmm_key11 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+11); 3252 const XMMRegister xmm_key12 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+12); 3253 const XMMRegister xmm_key13 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+13); 3254 3255 __ enter(); // required for proper stackwalking of RuntimeStub frame 3256 3257 #ifdef _WIN64 3258 // on win64, fill len_reg from stack position 3259 __ movl(len_reg, len_mem); 3260 // save the xmm registers which must be preserved 6-15 3261 __ subptr(rsp, -rsp_after_call_off * wordSize); 3262 for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) { 3263 __ movdqu(xmm_save(i), as_XMMRegister(i)); 3264 } 3265 #else 3266 __ push(len_reg); // Save 3267 #endif 3268 3269 const XMMRegister xmm_key_shuf_mask = xmm_temp; // used temporarily to swap key bytes up front 3270 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); 3271 // load up xmm regs xmm2 thru xmm12 with key 0x00 - 0xa0 3272 for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum <= XMM_REG_NUM_KEY_FIRST+10; rnum++) { 3273 load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask); 3274 offset += 0x10; 3275 } 3276 __ movdqu(xmm_result, Address(rvec, 0x00)); // initialize xmm_result with r vec 3277 3278 // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256)) 3279 __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); 3280 __ cmpl(rax, 44); 3281 __ jcc(Assembler::notEqual, L_key_192_256); 3282 3283 // 128 bit code follows here 3284 __ movptr(pos, 0); 3285 __ align(OptoLoopAlignment); 3286 3287 __ BIND(L_loopTop_128); 3288 __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input 3289 __ pxor (xmm_result, xmm_temp); // xor with the current r vector 3290 __ pxor (xmm_result, xmm_key0); // do the aes rounds 3291 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 9; rnum++) { 3292 __ aesenc(xmm_result, as_XMMRegister(rnum)); 3293 } 3294 __ aesenclast(xmm_result, xmm_key10); 3295 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output 3296 // no need to store r to memory until we exit 3297 __ addptr(pos, AESBlockSize); 3298 __ subptr(len_reg, AESBlockSize); 3299 __ jcc(Assembler::notEqual, L_loopTop_128); 3300 3301 __ BIND(L_exit); 3302 __ movdqu(Address(rvec, 0), xmm_result); // final value of r stored in rvec of CipherBlockChaining object 3303 3304 #ifdef _WIN64 3305 // restore xmm regs belonging to calling function 3306 for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) { 3307 __ movdqu(as_XMMRegister(i), xmm_save(i)); 3308 } 3309 __ movl(rax, len_mem); 3310 #else 3311 __ pop(rax); // return length 3312 #endif 3313 __ leave(); // required for proper stackwalking of RuntimeStub frame 3314 __ ret(0); 3315 3316 __ BIND(L_key_192_256); 3317 // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256) 3318 load_key(xmm_key11, key, 0xb0, xmm_key_shuf_mask); 3319 load_key(xmm_key12, key, 0xc0, xmm_key_shuf_mask); 3320 __ cmpl(rax, 52); 3321 __ jcc(Assembler::notEqual, L_key_256); 3322 3323 // 192-bit code follows here (could be changed to use more xmm registers) 3324 __ movptr(pos, 0); 3325 __ align(OptoLoopAlignment); 3326 3327 __ BIND(L_loopTop_192); 3328 __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input 3329 __ pxor (xmm_result, xmm_temp); // xor with the current r vector 3330 __ pxor (xmm_result, xmm_key0); // do the aes rounds 3331 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 11; rnum++) { 3332 __ aesenc(xmm_result, as_XMMRegister(rnum)); 3333 } 3334 __ aesenclast(xmm_result, xmm_key12); 3335 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output 3336 // no need to store r to memory until we exit 3337 __ addptr(pos, AESBlockSize); 3338 __ subptr(len_reg, AESBlockSize); 3339 __ jcc(Assembler::notEqual, L_loopTop_192); 3340 __ jmp(L_exit); 3341 3342 __ BIND(L_key_256); 3343 // 256-bit code follows here (could be changed to use more xmm registers) 3344 load_key(xmm_key13, key, 0xd0, xmm_key_shuf_mask); 3345 __ movptr(pos, 0); 3346 __ align(OptoLoopAlignment); 3347 3348 __ BIND(L_loopTop_256); 3349 __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input 3350 __ pxor (xmm_result, xmm_temp); // xor with the current r vector 3351 __ pxor (xmm_result, xmm_key0); // do the aes rounds 3352 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 13; rnum++) { 3353 __ aesenc(xmm_result, as_XMMRegister(rnum)); 3354 } 3355 load_key(xmm_temp, key, 0xe0); 3356 __ aesenclast(xmm_result, xmm_temp); 3357 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output 3358 // no need to store r to memory until we exit 3359 __ addptr(pos, AESBlockSize); 3360 __ subptr(len_reg, AESBlockSize); 3361 __ jcc(Assembler::notEqual, L_loopTop_256); 3362 __ jmp(L_exit); 3363 3364 return start; 3365 } 3366 3367 // Safefetch stubs. 3368 void generate_safefetch(const char* name, int size, address* entry, 3369 address* fault_pc, address* continuation_pc) { 3370 // safefetch signatures: 3371 // int SafeFetch32(int* adr, int errValue); 3372 // intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue); 3373 // 3374 // arguments: 3375 // c_rarg0 = adr 3376 // c_rarg1 = errValue 3377 // 3378 // result: 3379 // PPC_RET = *adr or errValue 3380 3381 StubCodeMark mark(this, "StubRoutines", name); 3382 3383 // Entry point, pc or function descriptor. 3384 *entry = __ pc(); 3385 3386 // Load *adr into c_rarg1, may fault. 3387 *fault_pc = __ pc(); 3388 switch (size) { 3389 case 4: 3390 // int32_t 3391 __ movl(c_rarg1, Address(c_rarg0, 0)); 3392 break; 3393 case 8: 3394 // int64_t 3395 __ movq(c_rarg1, Address(c_rarg0, 0)); 3396 break; 3397 default: 3398 ShouldNotReachHere(); 3399 } 3400 3401 // return errValue or *adr 3402 *continuation_pc = __ pc(); 3403 __ movq(rax, c_rarg1); 3404 __ ret(0); 3405 } 3406 3407 // This is a version of CBC/AES Decrypt which does 4 blocks in a loop at a time 3408 // to hide instruction latency 3409 // 3410 // Arguments: 3411 // 3412 // Inputs: 3413 // c_rarg0 - source byte array address 3414 // c_rarg1 - destination byte array address 3415 // c_rarg2 - K (key) in little endian int array 3416 // c_rarg3 - r vector byte array address 3417 // c_rarg4 - input length 3418 // 3419 // Output: 3420 // rax - input length 3421 // 3422 3423 address generate_cipherBlockChaining_decryptAESCrypt_Parallel() { 3424 assert(UseAES, "need AES instructions and misaligned SSE support"); 3425 __ align(CodeEntryAlignment); 3426 StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt"); 3427 address start = __ pc(); 3428 3429 Label L_exit, L_key_192_256, L_key_256; 3430 Label L_singleBlock_loopTop_128, L_multiBlock_loopTop_128; 3431 Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256; 3432 const Register from = c_rarg0; // source array address 3433 const Register to = c_rarg1; // destination array address 3434 const Register key = c_rarg2; // key array address 3435 const Register rvec = c_rarg3; // r byte array initialized from initvector array address 3436 // and left with the results of the last encryption block 3437 #ifndef _WIN64 3438 const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16) 3439 #else 3440 const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64 3441 const Register len_reg = r10; // pick the first volatile windows register 3442 #endif 3443 const Register pos = rax; 3444 3445 // keys 0-10 preloaded into xmm2-xmm12 3446 const int XMM_REG_NUM_KEY_FIRST = 5; 3447 const int XMM_REG_NUM_KEY_LAST = 15; 3448 const XMMRegister xmm_key_first = as_XMMRegister(XMM_REG_NUM_KEY_FIRST); 3449 const XMMRegister xmm_key_last = as_XMMRegister(XMM_REG_NUM_KEY_LAST); 3450 3451 __ enter(); // required for proper stackwalking of RuntimeStub frame 3452 3453 #ifdef _WIN64 3454 // on win64, fill len_reg from stack position 3455 __ movl(len_reg, len_mem); 3456 // save the xmm registers which must be preserved 6-15 3457 __ subptr(rsp, -rsp_after_call_off * wordSize); 3458 for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) { 3459 __ movdqu(xmm_save(i), as_XMMRegister(i)); 3460 } 3461 #else 3462 __ push(len_reg); // Save 3463 #endif 3464 3465 // the java expanded key ordering is rotated one position from what we want 3466 // so we start from 0x10 here and hit 0x00 last 3467 const XMMRegister xmm_key_shuf_mask = xmm1; // used temporarily to swap key bytes up front 3468 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); 3469 // load up xmm regs 5 thru 15 with key 0x10 - 0xa0 - 0x00 3470 for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum < XMM_REG_NUM_KEY_LAST; rnum++) { 3471 load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask); 3472 offset += 0x10; 3473 } 3474 load_key(xmm_key_last, key, 0x00, xmm_key_shuf_mask); 3475 3476 const XMMRegister xmm_prev_block_cipher = xmm1; // holds cipher of previous block 3477 3478 // registers holding the four results in the parallelized loop 3479 const XMMRegister xmm_result0 = xmm0; 3480 const XMMRegister xmm_result1 = xmm2; 3481 const XMMRegister xmm_result2 = xmm3; 3482 const XMMRegister xmm_result3 = xmm4; 3483 3484 __ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00)); // initialize with initial rvec 3485 3486 // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256)) 3487 __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); 3488 __ cmpl(rax, 44); 3489 __ jcc(Assembler::notEqual, L_key_192_256); 3490 3491 3492 // 128-bit code follows here, parallelized 3493 __ movptr(pos, 0); 3494 __ align(OptoLoopAlignment); 3495 __ BIND(L_multiBlock_loopTop_128); 3496 __ cmpptr(len_reg, 4*AESBlockSize); // see if at least 4 blocks left 3497 __ jcc(Assembler::less, L_singleBlock_loopTop_128); 3498 3499 __ movdqu(xmm_result0, Address(from, pos, Address::times_1, 0*AESBlockSize)); // get next 4 blocks into xmmresult registers 3500 __ movdqu(xmm_result1, Address(from, pos, Address::times_1, 1*AESBlockSize)); 3501 __ movdqu(xmm_result2, Address(from, pos, Address::times_1, 2*AESBlockSize)); 3502 __ movdqu(xmm_result3, Address(from, pos, Address::times_1, 3*AESBlockSize)); 3503 3504 #define DoFour(opc, src_reg) \ 3505 __ opc(xmm_result0, src_reg); \ 3506 __ opc(xmm_result1, src_reg); \ 3507 __ opc(xmm_result2, src_reg); \ 3508 __ opc(xmm_result3, src_reg); 3509 3510 DoFour(pxor, xmm_key_first); 3511 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) { 3512 DoFour(aesdec, as_XMMRegister(rnum)); 3513 } 3514 DoFour(aesdeclast, xmm_key_last); 3515 // for each result, xor with the r vector of previous cipher block 3516 __ pxor(xmm_result0, xmm_prev_block_cipher); 3517 __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 0*AESBlockSize)); 3518 __ pxor(xmm_result1, xmm_prev_block_cipher); 3519 __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 1*AESBlockSize)); 3520 __ pxor(xmm_result2, xmm_prev_block_cipher); 3521 __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 2*AESBlockSize)); 3522 __ pxor(xmm_result3, xmm_prev_block_cipher); 3523 __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 3*AESBlockSize)); // this will carry over to next set of blocks 3524 3525 __ movdqu(Address(to, pos, Address::times_1, 0*AESBlockSize), xmm_result0); // store 4 results into the next 64 bytes of output 3526 __ movdqu(Address(to, pos, Address::times_1, 1*AESBlockSize), xmm_result1); 3527 __ movdqu(Address(to, pos, Address::times_1, 2*AESBlockSize), xmm_result2); 3528 __ movdqu(Address(to, pos, Address::times_1, 3*AESBlockSize), xmm_result3); 3529 3530 __ addptr(pos, 4*AESBlockSize); 3531 __ subptr(len_reg, 4*AESBlockSize); 3532 __ jmp(L_multiBlock_loopTop_128); 3533 3534 // registers used in the non-parallelized loops 3535 // xmm register assignments for the loops below 3536 const XMMRegister xmm_result = xmm0; 3537 const XMMRegister xmm_prev_block_cipher_save = xmm2; 3538 const XMMRegister xmm_key11 = xmm3; 3539 const XMMRegister xmm_key12 = xmm4; 3540 const XMMRegister xmm_temp = xmm4; 3541 3542 __ align(OptoLoopAlignment); 3543 __ BIND(L_singleBlock_loopTop_128); 3544 __ cmpptr(len_reg, 0); // any blocks left?? 3545 __ jcc(Assembler::equal, L_exit); 3546 __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input 3547 __ movdqa(xmm_prev_block_cipher_save, xmm_result); // save for next r vector 3548 __ pxor (xmm_result, xmm_key_first); // do the aes dec rounds 3549 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) { 3550 __ aesdec(xmm_result, as_XMMRegister(rnum)); 3551 } 3552 __ aesdeclast(xmm_result, xmm_key_last); 3553 __ pxor (xmm_result, xmm_prev_block_cipher); // xor with the current r vector 3554 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output 3555 // no need to store r to memory until we exit 3556 __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save); // set up next r vector with cipher input from this block 3557 3558 __ addptr(pos, AESBlockSize); 3559 __ subptr(len_reg, AESBlockSize); 3560 __ jmp(L_singleBlock_loopTop_128); 3561 3562 3563 __ BIND(L_exit); 3564 __ movdqu(Address(rvec, 0), xmm_prev_block_cipher); // final value of r stored in rvec of CipherBlockChaining object 3565 #ifdef _WIN64 3566 // restore regs belonging to calling function 3567 for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) { 3568 __ movdqu(as_XMMRegister(i), xmm_save(i)); 3569 } 3570 __ movl(rax, len_mem); 3571 #else 3572 __ pop(rax); // return length 3573 #endif 3574 __ leave(); // required for proper stackwalking of RuntimeStub frame 3575 __ ret(0); 3576 3577 3578 __ BIND(L_key_192_256); 3579 // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256) 3580 load_key(xmm_key11, key, 0xb0); 3581 __ cmpl(rax, 52); 3582 __ jcc(Assembler::notEqual, L_key_256); 3583 3584 // 192-bit code follows here (could be optimized to use parallelism) 3585 load_key(xmm_key12, key, 0xc0); // 192-bit key goes up to c0 3586 __ movptr(pos, 0); 3587 __ align(OptoLoopAlignment); 3588 3589 __ BIND(L_singleBlock_loopTop_192); 3590 __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input 3591 __ movdqa(xmm_prev_block_cipher_save, xmm_result); // save for next r vector 3592 __ pxor (xmm_result, xmm_key_first); // do the aes dec rounds 3593 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) { 3594 __ aesdec(xmm_result, as_XMMRegister(rnum)); 3595 } 3596 __ aesdec(xmm_result, xmm_key11); 3597 __ aesdec(xmm_result, xmm_key12); 3598 __ aesdeclast(xmm_result, xmm_key_last); // xmm15 always came from key+0 3599 __ pxor (xmm_result, xmm_prev_block_cipher); // xor with the current r vector 3600 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output 3601 // no need to store r to memory until we exit 3602 __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save); // set up next r vector with cipher input from this block 3603 __ addptr(pos, AESBlockSize); 3604 __ subptr(len_reg, AESBlockSize); 3605 __ jcc(Assembler::notEqual,L_singleBlock_loopTop_192); 3606 __ jmp(L_exit); 3607 3608 __ BIND(L_key_256); 3609 // 256-bit code follows here (could be optimized to use parallelism) 3610 __ movptr(pos, 0); 3611 __ align(OptoLoopAlignment); 3612 3613 __ BIND(L_singleBlock_loopTop_256); 3614 __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input 3615 __ movdqa(xmm_prev_block_cipher_save, xmm_result); // save for next r vector 3616 __ pxor (xmm_result, xmm_key_first); // do the aes dec rounds 3617 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) { 3618 __ aesdec(xmm_result, as_XMMRegister(rnum)); 3619 } 3620 __ aesdec(xmm_result, xmm_key11); 3621 load_key(xmm_temp, key, 0xc0); 3622 __ aesdec(xmm_result, xmm_temp); 3623 load_key(xmm_temp, key, 0xd0); 3624 __ aesdec(xmm_result, xmm_temp); 3625 load_key(xmm_temp, key, 0xe0); // 256-bit key goes up to e0 3626 __ aesdec(xmm_result, xmm_temp); 3627 __ aesdeclast(xmm_result, xmm_key_last); // xmm15 came from key+0 3628 __ pxor (xmm_result, xmm_prev_block_cipher); // xor with the current r vector 3629 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output 3630 // no need to store r to memory until we exit 3631 __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save); // set up next r vector with cipher input from this block 3632 __ addptr(pos, AESBlockSize); 3633 __ subptr(len_reg, AESBlockSize); 3634 __ jcc(Assembler::notEqual,L_singleBlock_loopTop_256); 3635 __ jmp(L_exit); 3636 3637 return start; 3638 } 3639 3640 /** 3641 * Arguments: 3642 * 3643 * Inputs: 3644 * c_rarg0 - int crc 3645 * c_rarg1 - byte* buf 3646 * c_rarg2 - int length 3647 * 3648 * Ouput: 3649 * rax - int crc result 3650 */ 3651 address generate_updateBytesCRC32() { 3652 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions"); 3653 3654 __ align(CodeEntryAlignment); 3655 StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32"); 3656 3657 address start = __ pc(); 3658 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3659 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3660 // rscratch1: r10 3661 const Register crc = c_rarg0; // crc 3662 const Register buf = c_rarg1; // source java byte array address 3663 const Register len = c_rarg2; // length 3664 const Register table = c_rarg3; // crc_table address (reuse register) 3665 const Register tmp = r11; 3666 assert_different_registers(crc, buf, len, table, tmp, rax); 3667 3668 BLOCK_COMMENT("Entry:"); 3669 __ enter(); // required for proper stackwalking of RuntimeStub frame 3670 3671 __ kernel_crc32(crc, buf, len, table, tmp); 3672 3673 __ movl(rax, crc); 3674 __ leave(); // required for proper stackwalking of RuntimeStub frame 3675 __ ret(0); 3676 3677 return start; 3678 } 3679 3680 3681 /** 3682 * Arguments: 3683 * 3684 * Input: 3685 * c_rarg0 - x address 3686 * c_rarg1 - x length 3687 * c_rarg2 - y address 3688 * c_rarg3 - y lenth 3689 * not Win64 3690 * c_rarg4 - z address 3691 * c_rarg5 - z length 3692 * Win64 3693 * rsp+40 - z address 3694 * rsp+48 - z length 3695 */ 3696 address generate_multiplyToLen() { 3697 __ align(CodeEntryAlignment); 3698 StubCodeMark mark(this, "StubRoutines", "multiplyToLen"); 3699 3700 address start = __ pc(); 3701 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 3702 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 3703 const Register x = rdi; 3704 const Register xlen = rax; 3705 const Register y = rsi; 3706 const Register ylen = rcx; 3707 const Register z = r8; 3708 const Register zlen = r11; 3709 3710 // Next registers will be saved on stack in multiply_to_len(). 3711 const Register tmp1 = r12; 3712 const Register tmp2 = r13; 3713 const Register tmp3 = r14; 3714 const Register tmp4 = r15; 3715 const Register tmp5 = rbx; 3716 3717 BLOCK_COMMENT("Entry:"); 3718 __ enter(); // required for proper stackwalking of RuntimeStub frame 3719 3720 #ifndef _WIN64 3721 __ movptr(zlen, r9); // Save r9 in r11 - zlen 3722 #endif 3723 setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx 3724 // ylen => rcx, z => r8, zlen => r11 3725 // r9 and r10 may be used to save non-volatile registers 3726 #ifdef _WIN64 3727 // last 2 arguments (#4, #5) are on stack on Win64 3728 __ movptr(z, Address(rsp, 6 * wordSize)); 3729 __ movptr(zlen, Address(rsp, 7 * wordSize)); 3730 #endif 3731 3732 __ movptr(xlen, rsi); 3733 __ movptr(y, rdx); 3734 __ multiply_to_len(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5); 3735 3736 restore_arg_regs(); 3737 3738 __ leave(); // required for proper stackwalking of RuntimeStub frame 3739 __ ret(0); 3740 3741 return start; 3742 } 3743 3744 #undef __ 3745 #define __ masm-> 3746 3747 // Continuation point for throwing of implicit exceptions that are 3748 // not handled in the current activation. Fabricates an exception 3749 // oop and initiates normal exception dispatching in this 3750 // frame. Since we need to preserve callee-saved values (currently 3751 // only for C2, but done for C1 as well) we need a callee-saved oop 3752 // map and therefore have to make these stubs into RuntimeStubs 3753 // rather than BufferBlobs. If the compiler needs all registers to 3754 // be preserved between the fault point and the exception handler 3755 // then it must assume responsibility for that in 3756 // AbstractCompiler::continuation_for_implicit_null_exception or 3757 // continuation_for_implicit_division_by_zero_exception. All other 3758 // implicit exceptions (e.g., NullPointerException or 3759 // AbstractMethodError on entry) are either at call sites or 3760 // otherwise assume that stack unwinding will be initiated, so 3761 // caller saved registers were assumed volatile in the compiler. 3762 address generate_throw_exception(const char* name, 3763 address runtime_entry, 3764 Register arg1 = noreg, 3765 Register arg2 = noreg) { 3766 // Information about frame layout at time of blocking runtime call. 3767 // Note that we only have to preserve callee-saved registers since 3768 // the compilers are responsible for supplying a continuation point 3769 // if they expect all registers to be preserved. 3770 enum layout { 3771 rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt, 3772 rbp_off2, 3773 return_off, 3774 return_off2, 3775 framesize // inclusive of return address 3776 }; 3777 3778 int insts_size = 512; 3779 int locs_size = 64; 3780 3781 CodeBuffer code(name, insts_size, locs_size); 3782 OopMapSet* oop_maps = new OopMapSet(); 3783 MacroAssembler* masm = new MacroAssembler(&code); 3784 3785 address start = __ pc(); 3786 3787 // This is an inlined and slightly modified version of call_VM 3788 // which has the ability to fetch the return PC out of 3789 // thread-local storage and also sets up last_Java_sp slightly 3790 // differently than the real call_VM 3791 3792 __ enter(); // required for proper stackwalking of RuntimeStub frame 3793 3794 assert(is_even(framesize/2), "sp not 16-byte aligned"); 3795 3796 // return address and rbp are already in place 3797 __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog 3798 3799 int frame_complete = __ pc() - start; 3800 3801 // Set up last_Java_sp and last_Java_fp 3802 address the_pc = __ pc(); 3803 __ set_last_Java_frame(rsp, rbp, the_pc); 3804 __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack 3805 3806 // Call runtime 3807 if (arg1 != noreg) { 3808 assert(arg2 != c_rarg1, "clobbered"); 3809 __ movptr(c_rarg1, arg1); 3810 } 3811 if (arg2 != noreg) { 3812 __ movptr(c_rarg2, arg2); 3813 } 3814 __ movptr(c_rarg0, r15_thread); 3815 BLOCK_COMMENT("call runtime_entry"); 3816 __ call(RuntimeAddress(runtime_entry)); 3817 3818 // Generate oop map 3819 OopMap* map = new OopMap(framesize, 0); 3820 3821 oop_maps->add_gc_map(the_pc - start, map); 3822 3823 __ reset_last_Java_frame(true, true); 3824 3825 __ leave(); // required for proper stackwalking of RuntimeStub frame 3826 3827 // check for pending exceptions 3828 #ifdef ASSERT 3829 Label L; 3830 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), 3831 (int32_t) NULL_WORD); 3832 __ jcc(Assembler::notEqual, L); 3833 __ should_not_reach_here(); 3834 __ bind(L); 3835 #endif // ASSERT 3836 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 3837 3838 3839 // codeBlob framesize is in words (not VMRegImpl::slot_size) 3840 RuntimeStub* stub = 3841 RuntimeStub::new_runtime_stub(name, 3842 &code, 3843 frame_complete, 3844 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 3845 oop_maps, false); 3846 return stub->entry_point(); 3847 } 3848 3849 void create_control_words() { 3850 // Round to nearest, 53-bit mode, exceptions masked 3851 StubRoutines::_fpu_cntrl_wrd_std = 0x027F; 3852 // Round to zero, 53-bit mode, exception mased 3853 StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F; 3854 // Round to nearest, 24-bit mode, exceptions masked 3855 StubRoutines::_fpu_cntrl_wrd_24 = 0x007F; 3856 // Round to nearest, 64-bit mode, exceptions masked 3857 StubRoutines::_fpu_cntrl_wrd_64 = 0x037F; 3858 // Round to nearest, 64-bit mode, exceptions masked 3859 StubRoutines::_mxcsr_std = 0x1F80; 3860 // Note: the following two constants are 80-bit values 3861 // layout is critical for correct loading by FPU. 3862 // Bias for strict fp multiply/divide 3863 StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000 3864 StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000; 3865 StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff; 3866 // Un-Bias for strict fp multiply/divide 3867 StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000 3868 StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000; 3869 StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff; 3870 } 3871 3872 // Initialization 3873 void generate_initial() { 3874 // Generates all stubs and initializes the entry points 3875 3876 // This platform-specific settings are needed by generate_call_stub() 3877 create_control_words(); 3878 3879 // entry points that exist in all platforms Note: This is code 3880 // that could be shared among different platforms - however the 3881 // benefit seems to be smaller than the disadvantage of having a 3882 // much more complicated generator structure. See also comment in 3883 // stubRoutines.hpp. 3884 3885 StubRoutines::_forward_exception_entry = generate_forward_exception(); 3886 3887 StubRoutines::_call_stub_entry = 3888 generate_call_stub(StubRoutines::_call_stub_return_address); 3889 3890 // is referenced by megamorphic call 3891 StubRoutines::_catch_exception_entry = generate_catch_exception(); 3892 3893 // atomic calls 3894 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg(); 3895 StubRoutines::_atomic_xchg_ptr_entry = generate_atomic_xchg_ptr(); 3896 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg(); 3897 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long(); 3898 StubRoutines::_atomic_add_entry = generate_atomic_add(); 3899 StubRoutines::_atomic_add_ptr_entry = generate_atomic_add_ptr(); 3900 StubRoutines::_fence_entry = generate_orderaccess_fence(); 3901 3902 StubRoutines::_handler_for_unsafe_access_entry = 3903 generate_handler_for_unsafe_access(); 3904 3905 // platform dependent 3906 StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp(); 3907 StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp(); 3908 3909 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr(); 3910 3911 // Build this early so it's available for the interpreter. 3912 StubRoutines::_throw_StackOverflowError_entry = 3913 generate_throw_exception("StackOverflowError throw_exception", 3914 CAST_FROM_FN_PTR(address, 3915 SharedRuntime:: 3916 throw_StackOverflowError)); 3917 if (UseCRC32Intrinsics) { 3918 // set table address before stub generation which use it 3919 StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table; 3920 StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32(); 3921 } 3922 } 3923 3924 void generate_all() { 3925 // Generates all stubs and initializes the entry points 3926 3927 // These entry points require SharedInfo::stack0 to be set up in 3928 // non-core builds and need to be relocatable, so they each 3929 // fabricate a RuntimeStub internally. 3930 StubRoutines::_throw_AbstractMethodError_entry = 3931 generate_throw_exception("AbstractMethodError throw_exception", 3932 CAST_FROM_FN_PTR(address, 3933 SharedRuntime:: 3934 throw_AbstractMethodError)); 3935 3936 StubRoutines::_throw_IncompatibleClassChangeError_entry = 3937 generate_throw_exception("IncompatibleClassChangeError throw_exception", 3938 CAST_FROM_FN_PTR(address, 3939 SharedRuntime:: 3940 throw_IncompatibleClassChangeError)); 3941 3942 StubRoutines::_throw_NullPointerException_at_call_entry = 3943 generate_throw_exception("NullPointerException at call throw_exception", 3944 CAST_FROM_FN_PTR(address, 3945 SharedRuntime:: 3946 throw_NullPointerException_at_call)); 3947 3948 // entry points that are platform specific 3949 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup(); 3950 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup(); 3951 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup(); 3952 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup(); 3953 3954 StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF); 3955 StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000); 3956 StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF); 3957 StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000); 3958 3959 // support for verify_oop (must happen after universe_init) 3960 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop(); 3961 3962 // arraycopy stubs used by compilers 3963 generate_arraycopy_stubs(); 3964 3965 generate_math_stubs(); 3966 3967 // don't bother generating these AES intrinsic stubs unless global flag is set 3968 if (UseAESIntrinsics) { 3969 StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask(); // needed by the others 3970 3971 StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock(); 3972 StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock(); 3973 StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt(); 3974 StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel(); 3975 } 3976 3977 // Safefetch stubs. 3978 generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry, 3979 &StubRoutines::_safefetch32_fault_pc, 3980 &StubRoutines::_safefetch32_continuation_pc); 3981 generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry, 3982 &StubRoutines::_safefetchN_fault_pc, 3983 &StubRoutines::_safefetchN_continuation_pc); 3984 #ifdef COMPILER2 3985 if (UseMultiplyToLenIntrinsic) { 3986 StubRoutines::_multiplyToLen = generate_multiplyToLen(); 3987 } 3988 #endif 3989 } 3990 3991 public: 3992 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) { 3993 if (all) { 3994 generate_all(); 3995 } else { 3996 generate_initial(); 3997 } 3998 } 3999 }; // end class declaration 4000 4001 void StubGenerator_generate(CodeBuffer* code, bool all) { 4002 StubGenerator g(code, all); 4003 } --- EOF ---