1 /* 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "libadt/vectset.hpp" 27 #include "memory/allocation.inline.hpp" 28 #include "opto/block.hpp" 29 #include "opto/c2compiler.hpp" 30 #include "opto/callnode.hpp" 31 #include "opto/cfgnode.hpp" 32 #include "opto/machnode.hpp" 33 #include "opto/opcodes.hpp" 34 #include "opto/phaseX.hpp" 35 #include "opto/rootnode.hpp" 36 #include "opto/runtime.hpp" 37 #include "runtime/deoptimization.hpp" 38 #ifdef TARGET_ARCH_MODEL_x86_32 39 # include "adfiles/ad_x86_32.hpp" 40 #endif 41 #ifdef TARGET_ARCH_MODEL_x86_64 42 # include "adfiles/ad_x86_64.hpp" 43 #endif 44 #ifdef TARGET_ARCH_MODEL_sparc 45 # include "adfiles/ad_sparc.hpp" 46 #endif 47 #ifdef TARGET_ARCH_MODEL_zero 48 # include "adfiles/ad_zero.hpp" 49 #endif 50 #ifdef TARGET_ARCH_MODEL_arm 51 # include "adfiles/ad_arm.hpp" 52 #endif 53 #ifdef TARGET_ARCH_MODEL_ppc 54 # include "adfiles/ad_ppc.hpp" 55 #endif 56 57 // Portions of code courtesy of Clifford Click 58 59 // Optimization - Graph Style 60 61 // To avoid float value underflow 62 #define MIN_BLOCK_FREQUENCY 1.e-35f 63 64 //----------------------------schedule_node_into_block------------------------- 65 // Insert node n into block b. Look for projections of n and make sure they 66 // are in b also. 67 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) { 68 // Set basic block of n, Add n to b, 69 _bbs.map(n->_idx, b); 70 b->add_inst(n); 71 72 // After Matching, nearly any old Node may have projections trailing it. 73 // These are usually machine-dependent flags. In any case, they might 74 // float to another block below this one. Move them up. 75 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 76 Node* use = n->fast_out(i); 77 if (use->is_Proj()) { 78 Block* buse = _bbs[use->_idx]; 79 if (buse != b) { // In wrong block? 80 if (buse != NULL) 81 buse->find_remove(use); // Remove from wrong block 82 _bbs.map(use->_idx, b); // Re-insert in this block 83 b->add_inst(use); 84 } 85 } 86 } 87 } 88 89 //----------------------------replace_block_proj_ctrl------------------------- 90 // Nodes that have is_block_proj() nodes as their control need to use 91 // the appropriate Region for their actual block as their control since 92 // the projection will be in a predecessor block. 93 void PhaseCFG::replace_block_proj_ctrl( Node *n ) { 94 const Node *in0 = n->in(0); 95 assert(in0 != NULL, "Only control-dependent"); 96 const Node *p = in0->is_block_proj(); 97 if (p != NULL && p != n) { // Control from a block projection? 98 assert(!n->pinned() || n->is_MachConstantBase(), "only pinned MachConstantBase node is expected here"); 99 // Find trailing Region 100 Block *pb = _bbs[in0->_idx]; // Block-projection already has basic block 101 uint j = 0; 102 if (pb->_num_succs != 1) { // More then 1 successor? 103 // Search for successor 104 uint max = pb->_nodes.size(); 105 assert( max > 1, "" ); 106 uint start = max - pb->_num_succs; 107 // Find which output path belongs to projection 108 for (j = start; j < max; j++) { 109 if( pb->_nodes[j] == in0 ) 110 break; 111 } 112 assert( j < max, "must find" ); 113 // Change control to match head of successor basic block 114 j -= start; 115 } 116 n->set_req(0, pb->_succs[j]->head()); 117 } 118 } 119 120 121 //------------------------------schedule_pinned_nodes-------------------------- 122 // Set the basic block for Nodes pinned into blocks 123 void PhaseCFG::schedule_pinned_nodes( VectorSet &visited ) { 124 // Allocate node stack of size C->unique()+8 to avoid frequent realloc 125 GrowableArray <Node *> spstack(C->unique()+8); 126 spstack.push(_root); 127 while ( spstack.is_nonempty() ) { 128 Node *n = spstack.pop(); 129 if( !visited.test_set(n->_idx) ) { // Test node and flag it as visited 130 if( n->pinned() && !_bbs.lookup(n->_idx) ) { // Pinned? Nail it down! 131 assert( n->in(0), "pinned Node must have Control" ); 132 // Before setting block replace block_proj control edge 133 replace_block_proj_ctrl(n); 134 Node *input = n->in(0); 135 while( !input->is_block_start() ) 136 input = input->in(0); 137 Block *b = _bbs[input->_idx]; // Basic block of controlling input 138 schedule_node_into_block(n, b); 139 } 140 for( int i = n->req() - 1; i >= 0; --i ) { // For all inputs 141 if( n->in(i) != NULL ) 142 spstack.push(n->in(i)); 143 } 144 } 145 } 146 } 147 148 #ifdef ASSERT 149 // Assert that new input b2 is dominated by all previous inputs. 150 // Check this by by seeing that it is dominated by b1, the deepest 151 // input observed until b2. 152 static void assert_dom(Block* b1, Block* b2, Node* n, Block_Array &bbs) { 153 if (b1 == NULL) return; 154 assert(b1->_dom_depth < b2->_dom_depth, "sanity"); 155 Block* tmp = b2; 156 while (tmp != b1 && tmp != NULL) { 157 tmp = tmp->_idom; 158 } 159 if (tmp != b1) { 160 // Detected an unschedulable graph. Print some nice stuff and die. 161 tty->print_cr("!!! Unschedulable graph !!!"); 162 for (uint j=0; j<n->len(); j++) { // For all inputs 163 Node* inn = n->in(j); // Get input 164 if (inn == NULL) continue; // Ignore NULL, missing inputs 165 Block* inb = bbs[inn->_idx]; 166 tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order, 167 inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth); 168 inn->dump(); 169 } 170 tty->print("Failing node: "); 171 n->dump(); 172 assert(false, "unscheduable graph"); 173 } 174 } 175 #endif 176 177 static Block* find_deepest_input(Node* n, Block_Array &bbs) { 178 // Find the last input dominated by all other inputs. 179 Block* deepb = NULL; // Deepest block so far 180 int deepb_dom_depth = 0; 181 for (uint k = 0; k < n->len(); k++) { // For all inputs 182 Node* inn = n->in(k); // Get input 183 if (inn == NULL) continue; // Ignore NULL, missing inputs 184 Block* inb = bbs[inn->_idx]; 185 assert(inb != NULL, "must already have scheduled this input"); 186 if (deepb_dom_depth < (int) inb->_dom_depth) { 187 // The new inb must be dominated by the previous deepb. 188 // The various inputs must be linearly ordered in the dom 189 // tree, or else there will not be a unique deepest block. 190 DEBUG_ONLY(assert_dom(deepb, inb, n, bbs)); 191 deepb = inb; // Save deepest block 192 deepb_dom_depth = deepb->_dom_depth; 193 } 194 } 195 assert(deepb != NULL, "must be at least one input to n"); 196 return deepb; 197 } 198 199 200 //------------------------------schedule_early--------------------------------- 201 // Find the earliest Block any instruction can be placed in. Some instructions 202 // are pinned into Blocks. Unpinned instructions can appear in last block in 203 // which all their inputs occur. 204 bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) { 205 // Allocate stack with enough space to avoid frequent realloc 206 Node_Stack nstack(roots.Size() + 8); // (unique >> 1) + 24 from Java2D stats 207 // roots.push(_root); _root will be processed among C->top() inputs 208 roots.push(C->top()); 209 visited.set(C->top()->_idx); 210 211 while (roots.size() != 0) { 212 // Use local variables nstack_top_n & nstack_top_i to cache values 213 // on stack's top. 214 Node *nstack_top_n = roots.pop(); 215 uint nstack_top_i = 0; 216 //while_nstack_nonempty: 217 while (true) { 218 // Get parent node and next input's index from stack's top. 219 Node *n = nstack_top_n; 220 uint i = nstack_top_i; 221 222 if (i == 0) { 223 // Fixup some control. Constants without control get attached 224 // to root and nodes that use is_block_proj() nodes should be attached 225 // to the region that starts their block. 226 const Node *in0 = n->in(0); 227 if (in0 != NULL) { // Control-dependent? 228 replace_block_proj_ctrl(n); 229 } else { // n->in(0) == NULL 230 if (n->req() == 1) { // This guy is a constant with NO inputs? 231 n->set_req(0, _root); 232 } 233 } 234 } 235 236 // First, visit all inputs and force them to get a block. If an 237 // input is already in a block we quit following inputs (to avoid 238 // cycles). Instead we put that Node on a worklist to be handled 239 // later (since IT'S inputs may not have a block yet). 240 bool done = true; // Assume all n's inputs will be processed 241 while (i < n->len()) { // For all inputs 242 Node *in = n->in(i); // Get input 243 ++i; 244 if (in == NULL) continue; // Ignore NULL, missing inputs 245 int is_visited = visited.test_set(in->_idx); 246 if (!_bbs.lookup(in->_idx)) { // Missing block selection? 247 if (is_visited) { 248 // assert( !visited.test(in->_idx), "did not schedule early" ); 249 return false; 250 } 251 nstack.push(n, i); // Save parent node and next input's index. 252 nstack_top_n = in; // Process current input now. 253 nstack_top_i = 0; 254 done = false; // Not all n's inputs processed. 255 break; // continue while_nstack_nonempty; 256 } else if (!is_visited) { // Input not yet visited? 257 roots.push(in); // Visit this guy later, using worklist 258 } 259 } 260 if (done) { 261 // All of n's inputs have been processed, complete post-processing. 262 263 // Some instructions are pinned into a block. These include Region, 264 // Phi, Start, Return, and other control-dependent instructions and 265 // any projections which depend on them. 266 if (!n->pinned()) { 267 // Set earliest legal block. 268 _bbs.map(n->_idx, find_deepest_input(n, _bbs)); 269 } else { 270 assert(_bbs[n->_idx] == _bbs[n->in(0)->_idx], "Pinned Node should be at the same block as its control edge"); 271 } 272 273 if (nstack.is_empty()) { 274 // Finished all nodes on stack. 275 // Process next node on the worklist 'roots'. 276 break; 277 } 278 // Get saved parent node and next input's index. 279 nstack_top_n = nstack.node(); 280 nstack_top_i = nstack.index(); 281 nstack.pop(); 282 } // if (done) 283 } // while (true) 284 } // while (roots.size() != 0) 285 return true; 286 } 287 288 //------------------------------dom_lca---------------------------------------- 289 // Find least common ancestor in dominator tree 290 // LCA is a current notion of LCA, to be raised above 'this'. 291 // As a convenient boundary condition, return 'this' if LCA is NULL. 292 // Find the LCA of those two nodes. 293 Block* Block::dom_lca(Block* LCA) { 294 if (LCA == NULL || LCA == this) return this; 295 296 Block* anc = this; 297 while (anc->_dom_depth > LCA->_dom_depth) 298 anc = anc->_idom; // Walk up till anc is as high as LCA 299 300 while (LCA->_dom_depth > anc->_dom_depth) 301 LCA = LCA->_idom; // Walk up till LCA is as high as anc 302 303 while (LCA != anc) { // Walk both up till they are the same 304 LCA = LCA->_idom; 305 anc = anc->_idom; 306 } 307 308 return LCA; 309 } 310 311 //--------------------------raise_LCA_above_use-------------------------------- 312 // We are placing a definition, and have been given a def->use edge. 313 // The definition must dominate the use, so move the LCA upward in the 314 // dominator tree to dominate the use. If the use is a phi, adjust 315 // the LCA only with the phi input paths which actually use this def. 316 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, Block_Array &bbs) { 317 Block* buse = bbs[use->_idx]; 318 if (buse == NULL) return LCA; // Unused killing Projs have no use block 319 if (!use->is_Phi()) return buse->dom_lca(LCA); 320 uint pmax = use->req(); // Number of Phi inputs 321 // Why does not this loop just break after finding the matching input to 322 // the Phi? Well...it's like this. I do not have true def-use/use-def 323 // chains. Means I cannot distinguish, from the def-use direction, which 324 // of many use-defs lead from the same use to the same def. That is, this 325 // Phi might have several uses of the same def. Each use appears in a 326 // different predecessor block. But when I enter here, I cannot distinguish 327 // which use-def edge I should find the predecessor block for. So I find 328 // them all. Means I do a little extra work if a Phi uses the same value 329 // more than once. 330 for (uint j=1; j<pmax; j++) { // For all inputs 331 if (use->in(j) == def) { // Found matching input? 332 Block* pred = bbs[buse->pred(j)->_idx]; 333 LCA = pred->dom_lca(LCA); 334 } 335 } 336 return LCA; 337 } 338 339 //----------------------------raise_LCA_above_marks---------------------------- 340 // Return a new LCA that dominates LCA and any of its marked predecessors. 341 // Search all my parents up to 'early' (exclusive), looking for predecessors 342 // which are marked with the given index. Return the LCA (in the dom tree) 343 // of all marked blocks. If there are none marked, return the original 344 // LCA. 345 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark, 346 Block* early, Block_Array &bbs) { 347 Block_List worklist; 348 worklist.push(LCA); 349 while (worklist.size() > 0) { 350 Block* mid = worklist.pop(); 351 if (mid == early) continue; // stop searching here 352 353 // Test and set the visited bit. 354 if (mid->raise_LCA_visited() == mark) continue; // already visited 355 356 // Don't process the current LCA, otherwise the search may terminate early 357 if (mid != LCA && mid->raise_LCA_mark() == mark) { 358 // Raise the LCA. 359 LCA = mid->dom_lca(LCA); 360 if (LCA == early) break; // stop searching everywhere 361 assert(early->dominates(LCA), "early is high enough"); 362 // Resume searching at that point, skipping intermediate levels. 363 worklist.push(LCA); 364 if (LCA == mid) 365 continue; // Don't mark as visited to avoid early termination. 366 } else { 367 // Keep searching through this block's predecessors. 368 for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) { 369 Block* mid_parent = bbs[ mid->pred(j)->_idx ]; 370 worklist.push(mid_parent); 371 } 372 } 373 mid->set_raise_LCA_visited(mark); 374 } 375 return LCA; 376 } 377 378 //--------------------------memory_early_block-------------------------------- 379 // This is a variation of find_deepest_input, the heart of schedule_early. 380 // Find the "early" block for a load, if we considered only memory and 381 // address inputs, that is, if other data inputs were ignored. 382 // 383 // Because a subset of edges are considered, the resulting block will 384 // be earlier (at a shallower dom_depth) than the true schedule_early 385 // point of the node. We compute this earlier block as a more permissive 386 // site for anti-dependency insertion, but only if subsume_loads is enabled. 387 static Block* memory_early_block(Node* load, Block* early, Block_Array &bbs) { 388 Node* base; 389 Node* index; 390 Node* store = load->in(MemNode::Memory); 391 load->as_Mach()->memory_inputs(base, index); 392 393 assert(base != NodeSentinel && index != NodeSentinel, 394 "unexpected base/index inputs"); 395 396 Node* mem_inputs[4]; 397 int mem_inputs_length = 0; 398 if (base != NULL) mem_inputs[mem_inputs_length++] = base; 399 if (index != NULL) mem_inputs[mem_inputs_length++] = index; 400 if (store != NULL) mem_inputs[mem_inputs_length++] = store; 401 402 // In the comparision below, add one to account for the control input, 403 // which may be null, but always takes up a spot in the in array. 404 if (mem_inputs_length + 1 < (int) load->req()) { 405 // This "load" has more inputs than just the memory, base and index inputs. 406 // For purposes of checking anti-dependences, we need to start 407 // from the early block of only the address portion of the instruction, 408 // and ignore other blocks that may have factored into the wider 409 // schedule_early calculation. 410 if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0); 411 412 Block* deepb = NULL; // Deepest block so far 413 int deepb_dom_depth = 0; 414 for (int i = 0; i < mem_inputs_length; i++) { 415 Block* inb = bbs[mem_inputs[i]->_idx]; 416 if (deepb_dom_depth < (int) inb->_dom_depth) { 417 // The new inb must be dominated by the previous deepb. 418 // The various inputs must be linearly ordered in the dom 419 // tree, or else there will not be a unique deepest block. 420 DEBUG_ONLY(assert_dom(deepb, inb, load, bbs)); 421 deepb = inb; // Save deepest block 422 deepb_dom_depth = deepb->_dom_depth; 423 } 424 } 425 early = deepb; 426 } 427 428 return early; 429 } 430 431 //--------------------------insert_anti_dependences--------------------------- 432 // A load may need to witness memory that nearby stores can overwrite. 433 // For each nearby store, either insert an "anti-dependence" edge 434 // from the load to the store, or else move LCA upward to force the 435 // load to (eventually) be scheduled in a block above the store. 436 // 437 // Do not add edges to stores on distinct control-flow paths; 438 // only add edges to stores which might interfere. 439 // 440 // Return the (updated) LCA. There will not be any possibly interfering 441 // store between the load's "early block" and the updated LCA. 442 // Any stores in the updated LCA will have new precedence edges 443 // back to the load. The caller is expected to schedule the load 444 // in the LCA, in which case the precedence edges will make LCM 445 // preserve anti-dependences. The caller may also hoist the load 446 // above the LCA, if it is not the early block. 447 Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) { 448 assert(load->needs_anti_dependence_check(), "must be a load of some sort"); 449 assert(LCA != NULL, ""); 450 DEBUG_ONLY(Block* LCA_orig = LCA); 451 452 // Compute the alias index. Loads and stores with different alias indices 453 // do not need anti-dependence edges. 454 uint load_alias_idx = C->get_alias_index(load->adr_type()); 455 #ifdef ASSERT 456 if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 && 457 (PrintOpto || VerifyAliases || 458 PrintMiscellaneous && (WizardMode || Verbose))) { 459 // Load nodes should not consume all of memory. 460 // Reporting a bottom type indicates a bug in adlc. 461 // If some particular type of node validly consumes all of memory, 462 // sharpen the preceding "if" to exclude it, so we can catch bugs here. 463 tty->print_cr("*** Possible Anti-Dependence Bug: Load consumes all of memory."); 464 load->dump(2); 465 if (VerifyAliases) assert(load_alias_idx != Compile::AliasIdxBot, ""); 466 } 467 #endif 468 assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp), 469 "String compare is only known 'load' that does not conflict with any stores"); 470 assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrEquals), 471 "String equals is a 'load' that does not conflict with any stores"); 472 assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOf), 473 "String indexOf is a 'load' that does not conflict with any stores"); 474 assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_AryEq), 475 "Arrays equals is a 'load' that do not conflict with any stores"); 476 477 if (!C->alias_type(load_alias_idx)->is_rewritable()) { 478 // It is impossible to spoil this load by putting stores before it, 479 // because we know that the stores will never update the value 480 // which 'load' must witness. 481 return LCA; 482 } 483 484 node_idx_t load_index = load->_idx; 485 486 // Note the earliest legal placement of 'load', as determined by 487 // by the unique point in the dom tree where all memory effects 488 // and other inputs are first available. (Computed by schedule_early.) 489 // For normal loads, 'early' is the shallowest place (dom graph wise) 490 // to look for anti-deps between this load and any store. 491 Block* early = _bbs[load_index]; 492 493 // If we are subsuming loads, compute an "early" block that only considers 494 // memory or address inputs. This block may be different than the 495 // schedule_early block in that it could be at an even shallower depth in the 496 // dominator tree, and allow for a broader discovery of anti-dependences. 497 if (C->subsume_loads()) { 498 early = memory_early_block(load, early, _bbs); 499 } 500 501 ResourceArea *area = Thread::current()->resource_area(); 502 Node_List worklist_mem(area); // prior memory state to store 503 Node_List worklist_store(area); // possible-def to explore 504 Node_List worklist_visited(area); // visited mergemem nodes 505 Node_List non_early_stores(area); // all relevant stores outside of early 506 bool must_raise_LCA = false; 507 508 #ifdef TRACK_PHI_INPUTS 509 // %%% This extra checking fails because MergeMem nodes are not GVNed. 510 // Provide "phi_inputs" to check if every input to a PhiNode is from the 511 // original memory state. This indicates a PhiNode for which should not 512 // prevent the load from sinking. For such a block, set_raise_LCA_mark 513 // may be overly conservative. 514 // Mechanism: count inputs seen for each Phi encountered in worklist_store. 515 DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0)); 516 #endif 517 518 // 'load' uses some memory state; look for users of the same state. 519 // Recurse through MergeMem nodes to the stores that use them. 520 521 // Each of these stores is a possible definition of memory 522 // that 'load' needs to use. We need to force 'load' 523 // to occur before each such store. When the store is in 524 // the same block as 'load', we insert an anti-dependence 525 // edge load->store. 526 527 // The relevant stores "nearby" the load consist of a tree rooted 528 // at initial_mem, with internal nodes of type MergeMem. 529 // Therefore, the branches visited by the worklist are of this form: 530 // initial_mem -> (MergeMem ->)* store 531 // The anti-dependence constraints apply only to the fringe of this tree. 532 533 Node* initial_mem = load->in(MemNode::Memory); 534 worklist_store.push(initial_mem); 535 worklist_visited.push(initial_mem); 536 worklist_mem.push(NULL); 537 while (worklist_store.size() > 0) { 538 // Examine a nearby store to see if it might interfere with our load. 539 Node* mem = worklist_mem.pop(); 540 Node* store = worklist_store.pop(); 541 uint op = store->Opcode(); 542 543 // MergeMems do not directly have anti-deps. 544 // Treat them as internal nodes in a forward tree of memory states, 545 // the leaves of which are each a 'possible-def'. 546 if (store == initial_mem // root (exclusive) of tree we are searching 547 || op == Op_MergeMem // internal node of tree we are searching 548 ) { 549 mem = store; // It's not a possibly interfering store. 550 if (store == initial_mem) 551 initial_mem = NULL; // only process initial memory once 552 553 for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) { 554 store = mem->fast_out(i); 555 if (store->is_MergeMem()) { 556 // Be sure we don't get into combinatorial problems. 557 // (Allow phis to be repeated; they can merge two relevant states.) 558 uint j = worklist_visited.size(); 559 for (; j > 0; j--) { 560 if (worklist_visited.at(j-1) == store) break; 561 } 562 if (j > 0) continue; // already on work list; do not repeat 563 worklist_visited.push(store); 564 } 565 worklist_mem.push(mem); 566 worklist_store.push(store); 567 } 568 continue; 569 } 570 571 if (op == Op_MachProj || op == Op_Catch) continue; 572 if (store->needs_anti_dependence_check()) continue; // not really a store 573 574 // Compute the alias index. Loads and stores with different alias 575 // indices do not need anti-dependence edges. Wide MemBar's are 576 // anti-dependent on everything (except immutable memories). 577 const TypePtr* adr_type = store->adr_type(); 578 if (!C->can_alias(adr_type, load_alias_idx)) continue; 579 580 // Most slow-path runtime calls do NOT modify Java memory, but 581 // they can block and so write Raw memory. 582 if (store->is_Mach()) { 583 MachNode* mstore = store->as_Mach(); 584 if (load_alias_idx != Compile::AliasIdxRaw) { 585 // Check for call into the runtime using the Java calling 586 // convention (and from there into a wrapper); it has no 587 // _method. Can't do this optimization for Native calls because 588 // they CAN write to Java memory. 589 if (mstore->ideal_Opcode() == Op_CallStaticJava) { 590 assert(mstore->is_MachSafePoint(), ""); 591 MachSafePointNode* ms = (MachSafePointNode*) mstore; 592 assert(ms->is_MachCallJava(), ""); 593 MachCallJavaNode* mcj = (MachCallJavaNode*) ms; 594 if (mcj->_method == NULL) { 595 // These runtime calls do not write to Java visible memory 596 // (other than Raw) and so do not require anti-dependence edges. 597 continue; 598 } 599 } 600 // Same for SafePoints: they read/write Raw but only read otherwise. 601 // This is basically a workaround for SafePoints only defining control 602 // instead of control + memory. 603 if (mstore->ideal_Opcode() == Op_SafePoint) 604 continue; 605 } else { 606 // Some raw memory, such as the load of "top" at an allocation, 607 // can be control dependent on the previous safepoint. See 608 // comments in GraphKit::allocate_heap() about control input. 609 // Inserting an anti-dep between such a safepoint and a use 610 // creates a cycle, and will cause a subsequent failure in 611 // local scheduling. (BugId 4919904) 612 // (%%% How can a control input be a safepoint and not a projection??) 613 if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore) 614 continue; 615 } 616 } 617 618 // Identify a block that the current load must be above, 619 // or else observe that 'store' is all the way up in the 620 // earliest legal block for 'load'. In the latter case, 621 // immediately insert an anti-dependence edge. 622 Block* store_block = _bbs[store->_idx]; 623 assert(store_block != NULL, "unused killing projections skipped above"); 624 625 if (store->is_Phi()) { 626 // 'load' uses memory which is one (or more) of the Phi's inputs. 627 // It must be scheduled not before the Phi, but rather before 628 // each of the relevant Phi inputs. 629 // 630 // Instead of finding the LCA of all inputs to a Phi that match 'mem', 631 // we mark each corresponding predecessor block and do a combined 632 // hoisting operation later (raise_LCA_above_marks). 633 // 634 // Do not assert(store_block != early, "Phi merging memory after access") 635 // PhiNode may be at start of block 'early' with backedge to 'early' 636 DEBUG_ONLY(bool found_match = false); 637 for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) { 638 if (store->in(j) == mem) { // Found matching input? 639 DEBUG_ONLY(found_match = true); 640 Block* pred_block = _bbs[store_block->pred(j)->_idx]; 641 if (pred_block != early) { 642 // If any predecessor of the Phi matches the load's "early block", 643 // we do not need a precedence edge between the Phi and 'load' 644 // since the load will be forced into a block preceding the Phi. 645 pred_block->set_raise_LCA_mark(load_index); 646 assert(!LCA_orig->dominates(pred_block) || 647 early->dominates(pred_block), "early is high enough"); 648 must_raise_LCA = true; 649 } else { 650 // anti-dependent upon PHI pinned below 'early', no edge needed 651 LCA = early; // but can not schedule below 'early' 652 } 653 } 654 } 655 assert(found_match, "no worklist bug"); 656 #ifdef TRACK_PHI_INPUTS 657 #ifdef ASSERT 658 // This assert asks about correct handling of PhiNodes, which may not 659 // have all input edges directly from 'mem'. See BugId 4621264 660 int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1; 661 // Increment by exactly one even if there are multiple copies of 'mem' 662 // coming into the phi, because we will run this block several times 663 // if there are several copies of 'mem'. (That's how DU iterators work.) 664 phi_inputs.at_put(store->_idx, num_mem_inputs); 665 assert(PhiNode::Input + num_mem_inputs < store->req(), 666 "Expect at least one phi input will not be from original memory state"); 667 #endif //ASSERT 668 #endif //TRACK_PHI_INPUTS 669 } else if (store_block != early) { 670 // 'store' is between the current LCA and earliest possible block. 671 // Label its block, and decide later on how to raise the LCA 672 // to include the effect on LCA of this store. 673 // If this store's block gets chosen as the raised LCA, we 674 // will find him on the non_early_stores list and stick him 675 // with a precedence edge. 676 // (But, don't bother if LCA is already raised all the way.) 677 if (LCA != early) { 678 store_block->set_raise_LCA_mark(load_index); 679 must_raise_LCA = true; 680 non_early_stores.push(store); 681 } 682 } else { 683 // Found a possibly-interfering store in the load's 'early' block. 684 // This means 'load' cannot sink at all in the dominator tree. 685 // Add an anti-dep edge, and squeeze 'load' into the highest block. 686 assert(store != load->in(0), "dependence cycle found"); 687 if (verify) { 688 assert(store->find_edge(load) != -1, "missing precedence edge"); 689 } else { 690 store->add_prec(load); 691 } 692 LCA = early; 693 // This turns off the process of gathering non_early_stores. 694 } 695 } 696 // (Worklist is now empty; all nearby stores have been visited.) 697 698 // Finished if 'load' must be scheduled in its 'early' block. 699 // If we found any stores there, they have already been given 700 // precedence edges. 701 if (LCA == early) return LCA; 702 703 // We get here only if there are no possibly-interfering stores 704 // in the load's 'early' block. Move LCA up above all predecessors 705 // which contain stores we have noted. 706 // 707 // The raised LCA block can be a home to such interfering stores, 708 // but its predecessors must not contain any such stores. 709 // 710 // The raised LCA will be a lower bound for placing the load, 711 // preventing the load from sinking past any block containing 712 // a store that may invalidate the memory state required by 'load'. 713 if (must_raise_LCA) 714 LCA = raise_LCA_above_marks(LCA, load->_idx, early, _bbs); 715 if (LCA == early) return LCA; 716 717 // Insert anti-dependence edges from 'load' to each store 718 // in the non-early LCA block. 719 // Mine the non_early_stores list for such stores. 720 if (LCA->raise_LCA_mark() == load_index) { 721 while (non_early_stores.size() > 0) { 722 Node* store = non_early_stores.pop(); 723 Block* store_block = _bbs[store->_idx]; 724 if (store_block == LCA) { 725 // add anti_dependence from store to load in its own block 726 assert(store != load->in(0), "dependence cycle found"); 727 if (verify) { 728 assert(store->find_edge(load) != -1, "missing precedence edge"); 729 } else { 730 store->add_prec(load); 731 } 732 } else { 733 assert(store_block->raise_LCA_mark() == load_index, "block was marked"); 734 // Any other stores we found must be either inside the new LCA 735 // or else outside the original LCA. In the latter case, they 736 // did not interfere with any use of 'load'. 737 assert(LCA->dominates(store_block) 738 || !LCA_orig->dominates(store_block), "no stray stores"); 739 } 740 } 741 } 742 743 // Return the highest block containing stores; any stores 744 // within that block have been given anti-dependence edges. 745 return LCA; 746 } 747 748 // This class is used to iterate backwards over the nodes in the graph. 749 750 class Node_Backward_Iterator { 751 752 private: 753 Node_Backward_Iterator(); 754 755 public: 756 // Constructor for the iterator 757 Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs); 758 759 // Postincrement operator to iterate over the nodes 760 Node *next(); 761 762 private: 763 VectorSet &_visited; 764 Node_List &_stack; 765 Block_Array &_bbs; 766 }; 767 768 // Constructor for the Node_Backward_Iterator 769 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs ) 770 : _visited(visited), _stack(stack), _bbs(bbs) { 771 // The stack should contain exactly the root 772 stack.clear(); 773 stack.push(root); 774 775 // Clear the visited bits 776 visited.Clear(); 777 } 778 779 // Iterator for the Node_Backward_Iterator 780 Node *Node_Backward_Iterator::next() { 781 782 // If the _stack is empty, then just return NULL: finished. 783 if ( !_stack.size() ) 784 return NULL; 785 786 // '_stack' is emulating a real _stack. The 'visit-all-users' loop has been 787 // made stateless, so I do not need to record the index 'i' on my _stack. 788 // Instead I visit all users each time, scanning for unvisited users. 789 // I visit unvisited not-anti-dependence users first, then anti-dependent 790 // children next. 791 Node *self = _stack.pop(); 792 793 // I cycle here when I am entering a deeper level of recursion. 794 // The key variable 'self' was set prior to jumping here. 795 while( 1 ) { 796 797 _visited.set(self->_idx); 798 799 // Now schedule all uses as late as possible. 800 uint src = self->is_Proj() ? self->in(0)->_idx : self->_idx; 801 uint src_rpo = _bbs[src]->_rpo; 802 803 // Schedule all nodes in a post-order visit 804 Node *unvisited = NULL; // Unvisited anti-dependent Node, if any 805 806 // Scan for unvisited nodes 807 for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) { 808 // For all uses, schedule late 809 Node* n = self->fast_out(i); // Use 810 811 // Skip already visited children 812 if ( _visited.test(n->_idx) ) 813 continue; 814 815 // do not traverse backward control edges 816 Node *use = n->is_Proj() ? n->in(0) : n; 817 uint use_rpo = _bbs[use->_idx]->_rpo; 818 819 if ( use_rpo < src_rpo ) 820 continue; 821 822 // Phi nodes always precede uses in a basic block 823 if ( use_rpo == src_rpo && use->is_Phi() ) 824 continue; 825 826 unvisited = n; // Found unvisited 827 828 // Check for possible-anti-dependent 829 if( !n->needs_anti_dependence_check() ) 830 break; // Not visited, not anti-dep; schedule it NOW 831 } 832 833 // Did I find an unvisited not-anti-dependent Node? 834 if ( !unvisited ) 835 break; // All done with children; post-visit 'self' 836 837 // Visit the unvisited Node. Contains the obvious push to 838 // indicate I'm entering a deeper level of recursion. I push the 839 // old state onto the _stack and set a new state and loop (recurse). 840 _stack.push(self); 841 self = unvisited; 842 } // End recursion loop 843 844 return self; 845 } 846 847 //------------------------------ComputeLatenciesBackwards---------------------- 848 // Compute the latency of all the instructions. 849 void PhaseCFG::ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack) { 850 #ifndef PRODUCT 851 if (trace_opto_pipelining()) 852 tty->print("\n#---- ComputeLatenciesBackwards ----\n"); 853 #endif 854 855 Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs); 856 Node *n; 857 858 // Walk over all the nodes from last to first 859 while (n = iter.next()) { 860 // Set the latency for the definitions of this instruction 861 partial_latency_of_defs(n); 862 } 863 } // end ComputeLatenciesBackwards 864 865 //------------------------------partial_latency_of_defs------------------------ 866 // Compute the latency impact of this node on all defs. This computes 867 // a number that increases as we approach the beginning of the routine. 868 void PhaseCFG::partial_latency_of_defs(Node *n) { 869 // Set the latency for this instruction 870 #ifndef PRODUCT 871 if (trace_opto_pipelining()) { 872 tty->print("# latency_to_inputs: node_latency[%d] = %d for node", 873 n->_idx, _node_latency->at_grow(n->_idx)); 874 dump(); 875 } 876 #endif 877 878 if (n->is_Proj()) 879 n = n->in(0); 880 881 if (n->is_Root()) 882 return; 883 884 uint nlen = n->len(); 885 uint use_latency = _node_latency->at_grow(n->_idx); 886 uint use_pre_order = _bbs[n->_idx]->_pre_order; 887 888 for ( uint j=0; j<nlen; j++ ) { 889 Node *def = n->in(j); 890 891 if (!def || def == n) 892 continue; 893 894 // Walk backwards thru projections 895 if (def->is_Proj()) 896 def = def->in(0); 897 898 #ifndef PRODUCT 899 if (trace_opto_pipelining()) { 900 tty->print("# in(%2d): ", j); 901 def->dump(); 902 } 903 #endif 904 905 // If the defining block is not known, assume it is ok 906 Block *def_block = _bbs[def->_idx]; 907 uint def_pre_order = def_block ? def_block->_pre_order : 0; 908 909 if ( (use_pre_order < def_pre_order) || 910 (use_pre_order == def_pre_order && n->is_Phi()) ) 911 continue; 912 913 uint delta_latency = n->latency(j); 914 uint current_latency = delta_latency + use_latency; 915 916 if (_node_latency->at_grow(def->_idx) < current_latency) { 917 _node_latency->at_put_grow(def->_idx, current_latency); 918 } 919 920 #ifndef PRODUCT 921 if (trace_opto_pipelining()) { 922 tty->print_cr("# %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d", 923 use_latency, j, delta_latency, current_latency, def->_idx, 924 _node_latency->at_grow(def->_idx)); 925 } 926 #endif 927 } 928 } 929 930 //------------------------------latency_from_use------------------------------- 931 // Compute the latency of a specific use 932 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) { 933 // If self-reference, return no latency 934 if (use == n || use->is_Root()) 935 return 0; 936 937 uint def_pre_order = _bbs[def->_idx]->_pre_order; 938 uint latency = 0; 939 940 // If the use is not a projection, then it is simple... 941 if (!use->is_Proj()) { 942 #ifndef PRODUCT 943 if (trace_opto_pipelining()) { 944 tty->print("# out(): "); 945 use->dump(); 946 } 947 #endif 948 949 uint use_pre_order = _bbs[use->_idx]->_pre_order; 950 951 if (use_pre_order < def_pre_order) 952 return 0; 953 954 if (use_pre_order == def_pre_order && use->is_Phi()) 955 return 0; 956 957 uint nlen = use->len(); 958 uint nl = _node_latency->at_grow(use->_idx); 959 960 for ( uint j=0; j<nlen; j++ ) { 961 if (use->in(j) == n) { 962 // Change this if we want local latencies 963 uint ul = use->latency(j); 964 uint l = ul + nl; 965 if (latency < l) latency = l; 966 #ifndef PRODUCT 967 if (trace_opto_pipelining()) { 968 tty->print_cr("# %d + edge_latency(%d) == %d -> %d, latency = %d", 969 nl, j, ul, l, latency); 970 } 971 #endif 972 } 973 } 974 } else { 975 // This is a projection, just grab the latency of the use(s) 976 for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) { 977 uint l = latency_from_use(use, def, use->fast_out(j)); 978 if (latency < l) latency = l; 979 } 980 } 981 982 return latency; 983 } 984 985 //------------------------------latency_from_uses------------------------------ 986 // Compute the latency of this instruction relative to all of it's uses. 987 // This computes a number that increases as we approach the beginning of the 988 // routine. 989 void PhaseCFG::latency_from_uses(Node *n) { 990 // Set the latency for this instruction 991 #ifndef PRODUCT 992 if (trace_opto_pipelining()) { 993 tty->print("# latency_from_outputs: node_latency[%d] = %d for node", 994 n->_idx, _node_latency->at_grow(n->_idx)); 995 dump(); 996 } 997 #endif 998 uint latency=0; 999 const Node *def = n->is_Proj() ? n->in(0): n; 1000 1001 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1002 uint l = latency_from_use(n, def, n->fast_out(i)); 1003 1004 if (latency < l) latency = l; 1005 } 1006 1007 _node_latency->at_put_grow(n->_idx, latency); 1008 } 1009 1010 //------------------------------hoist_to_cheaper_block------------------------- 1011 // Pick a block for node self, between early and LCA, that is a cheaper 1012 // alternative to LCA. 1013 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) { 1014 const double delta = 1+PROB_UNLIKELY_MAG(4); 1015 Block* least = LCA; 1016 double least_freq = least->_freq; 1017 uint target = _node_latency->at_grow(self->_idx); 1018 uint start_latency = _node_latency->at_grow(LCA->_nodes[0]->_idx); 1019 uint end_latency = _node_latency->at_grow(LCA->_nodes[LCA->end_idx()]->_idx); 1020 bool in_latency = (target <= start_latency); 1021 const Block* root_block = _bbs[_root->_idx]; 1022 1023 // Turn off latency scheduling if scheduling is just plain off 1024 if (!C->do_scheduling()) 1025 in_latency = true; 1026 1027 // Do not hoist (to cover latency) instructions which target a 1028 // single register. Hoisting stretches the live range of the 1029 // single register and may force spilling. 1030 MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL; 1031 if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty()) 1032 in_latency = true; 1033 1034 #ifndef PRODUCT 1035 if (trace_opto_pipelining()) { 1036 tty->print("# Find cheaper block for latency %d: ", 1037 _node_latency->at_grow(self->_idx)); 1038 self->dump(); 1039 tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g", 1040 LCA->_pre_order, 1041 LCA->_nodes[0]->_idx, 1042 start_latency, 1043 LCA->_nodes[LCA->end_idx()]->_idx, 1044 end_latency, 1045 least_freq); 1046 } 1047 #endif 1048 1049 // Walk up the dominator tree from LCA (Lowest common ancestor) to 1050 // the earliest legal location. Capture the least execution frequency. 1051 while (LCA != early) { 1052 LCA = LCA->_idom; // Follow up the dominator tree 1053 1054 if (LCA == NULL) { 1055 // Bailout without retry 1056 C->record_method_not_compilable("late schedule failed: LCA == NULL"); 1057 return least; 1058 } 1059 1060 // Don't hoist machine instructions to the root basic block 1061 if (mach && LCA == root_block) 1062 break; 1063 1064 uint start_lat = _node_latency->at_grow(LCA->_nodes[0]->_idx); 1065 uint end_idx = LCA->end_idx(); 1066 uint end_lat = _node_latency->at_grow(LCA->_nodes[end_idx]->_idx); 1067 double LCA_freq = LCA->_freq; 1068 #ifndef PRODUCT 1069 if (trace_opto_pipelining()) { 1070 tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g", 1071 LCA->_pre_order, LCA->_nodes[0]->_idx, start_lat, end_idx, end_lat, LCA_freq); 1072 } 1073 #endif 1074 if (LCA_freq < least_freq || // Better Frequency 1075 ( !in_latency && // No block containing latency 1076 LCA_freq < least_freq * delta && // No worse frequency 1077 target >= end_lat && // within latency range 1078 !self->is_iteratively_computed() ) // But don't hoist IV increments 1079 // because they may end up above other uses of their phi forcing 1080 // their result register to be different from their input. 1081 ) { 1082 least = LCA; // Found cheaper block 1083 least_freq = LCA_freq; 1084 start_latency = start_lat; 1085 end_latency = end_lat; 1086 if (target <= start_lat) 1087 in_latency = true; 1088 } 1089 } 1090 1091 #ifndef PRODUCT 1092 if (trace_opto_pipelining()) { 1093 tty->print_cr("# Choose block B%d with start latency=%d and freq=%g", 1094 least->_pre_order, start_latency, least_freq); 1095 } 1096 #endif 1097 1098 // See if the latency needs to be updated 1099 if (target < end_latency) { 1100 #ifndef PRODUCT 1101 if (trace_opto_pipelining()) { 1102 tty->print_cr("# Change latency for [%4d] from %d to %d", self->_idx, target, end_latency); 1103 } 1104 #endif 1105 _node_latency->at_put_grow(self->_idx, end_latency); 1106 partial_latency_of_defs(self); 1107 } 1108 1109 return least; 1110 } 1111 1112 1113 //------------------------------schedule_late----------------------------------- 1114 // Now schedule all codes as LATE as possible. This is the LCA in the 1115 // dominator tree of all USES of a value. Pick the block with the least 1116 // loop nesting depth that is lowest in the dominator tree. 1117 extern const char must_clone[]; 1118 void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) { 1119 #ifndef PRODUCT 1120 if (trace_opto_pipelining()) 1121 tty->print("\n#---- schedule_late ----\n"); 1122 #endif 1123 1124 Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs); 1125 Node *self; 1126 1127 // Walk over all the nodes from last to first 1128 while (self = iter.next()) { 1129 Block* early = _bbs[self->_idx]; // Earliest legal placement 1130 1131 if (self->is_top()) { 1132 // Top node goes in bb #2 with other constants. 1133 // It must be special-cased, because it has no out edges. 1134 early->add_inst(self); 1135 continue; 1136 } 1137 1138 // No uses, just terminate 1139 if (self->outcnt() == 0) { 1140 assert(self->is_MachProj(), "sanity"); 1141 continue; // Must be a dead machine projection 1142 } 1143 1144 // If node is pinned in the block, then no scheduling can be done. 1145 if( self->pinned() ) // Pinned in block? 1146 continue; 1147 1148 MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL; 1149 if (mach) { 1150 switch (mach->ideal_Opcode()) { 1151 case Op_CreateEx: 1152 // Don't move exception creation 1153 early->add_inst(self); 1154 continue; 1155 break; 1156 case Op_CheckCastPP: 1157 // Don't move CheckCastPP nodes away from their input, if the input 1158 // is a rawptr (5071820). 1159 Node *def = self->in(1); 1160 if (def != NULL && def->bottom_type()->base() == Type::RawPtr) { 1161 early->add_inst(self); 1162 #ifdef ASSERT 1163 _raw_oops.push(def); 1164 #endif 1165 continue; 1166 } 1167 break; 1168 } 1169 } 1170 1171 // Gather LCA of all uses 1172 Block *LCA = NULL; 1173 { 1174 for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) { 1175 // For all uses, find LCA 1176 Node* use = self->fast_out(i); 1177 LCA = raise_LCA_above_use(LCA, use, self, _bbs); 1178 } 1179 } // (Hide defs of imax, i from rest of block.) 1180 1181 // Place temps in the block of their use. This isn't a 1182 // requirement for correctness but it reduces useless 1183 // interference between temps and other nodes. 1184 if (mach != NULL && mach->is_MachTemp()) { 1185 _bbs.map(self->_idx, LCA); 1186 LCA->add_inst(self); 1187 continue; 1188 } 1189 1190 // Check if 'self' could be anti-dependent on memory 1191 if (self->needs_anti_dependence_check()) { 1192 // Hoist LCA above possible-defs and insert anti-dependences to 1193 // defs in new LCA block. 1194 LCA = insert_anti_dependences(LCA, self); 1195 } 1196 1197 if (early->_dom_depth > LCA->_dom_depth) { 1198 // Somehow the LCA has moved above the earliest legal point. 1199 // (One way this can happen is via memory_early_block.) 1200 if (C->subsume_loads() == true && !C->failing()) { 1201 // Retry with subsume_loads == false 1202 // If this is the first failure, the sentinel string will "stick" 1203 // to the Compile object, and the C2Compiler will see it and retry. 1204 C->record_failure(C2Compiler::retry_no_subsuming_loads()); 1205 } else { 1206 // Bailout without retry when (early->_dom_depth > LCA->_dom_depth) 1207 C->record_method_not_compilable("late schedule failed: incorrect graph"); 1208 } 1209 return; 1210 } 1211 1212 // If there is no opportunity to hoist, then we're done. 1213 bool try_to_hoist = (LCA != early); 1214 1215 // Must clone guys stay next to use; no hoisting allowed. 1216 // Also cannot hoist guys that alter memory or are otherwise not 1217 // allocatable (hoisting can make a value live longer, leading to 1218 // anti and output dependency problems which are normally resolved 1219 // by the register allocator giving everyone a different register). 1220 if (mach != NULL && must_clone[mach->ideal_Opcode()]) 1221 try_to_hoist = false; 1222 1223 Block* late = NULL; 1224 if (try_to_hoist) { 1225 // Now find the block with the least execution frequency. 1226 // Start at the latest schedule and work up to the earliest schedule 1227 // in the dominator tree. Thus the Node will dominate all its uses. 1228 late = hoist_to_cheaper_block(LCA, early, self); 1229 } else { 1230 // Just use the LCA of the uses. 1231 late = LCA; 1232 } 1233 1234 // Put the node into target block 1235 schedule_node_into_block(self, late); 1236 1237 #ifdef ASSERT 1238 if (self->needs_anti_dependence_check()) { 1239 // since precedence edges are only inserted when we're sure they 1240 // are needed make sure that after placement in a block we don't 1241 // need any new precedence edges. 1242 verify_anti_dependences(late, self); 1243 } 1244 #endif 1245 } // Loop until all nodes have been visited 1246 1247 } // end ScheduleLate 1248 1249 //------------------------------GlobalCodeMotion------------------------------- 1250 void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_list ) { 1251 ResourceMark rm; 1252 1253 #ifndef PRODUCT 1254 if (trace_opto_pipelining()) { 1255 tty->print("\n---- Start GlobalCodeMotion ----\n"); 1256 } 1257 #endif 1258 1259 // Initialize the bbs.map for things on the proj_list 1260 uint i; 1261 for( i=0; i < proj_list.size(); i++ ) 1262 _bbs.map(proj_list[i]->_idx, NULL); 1263 1264 // Set the basic block for Nodes pinned into blocks 1265 Arena *a = Thread::current()->resource_area(); 1266 VectorSet visited(a); 1267 schedule_pinned_nodes( visited ); 1268 1269 // Find the earliest Block any instruction can be placed in. Some 1270 // instructions are pinned into Blocks. Unpinned instructions can 1271 // appear in last block in which all their inputs occur. 1272 visited.Clear(); 1273 Node_List stack(a); 1274 stack.map( (unique >> 1) + 16, NULL); // Pre-grow the list 1275 if (!schedule_early(visited, stack)) { 1276 // Bailout without retry 1277 C->record_method_not_compilable("early schedule failed"); 1278 return; 1279 } 1280 1281 // Build Def-Use edges. 1282 proj_list.push(_root); // Add real root as another root 1283 proj_list.pop(); 1284 1285 // Compute the latency information (via backwards walk) for all the 1286 // instructions in the graph 1287 _node_latency = new GrowableArray<uint>(); // resource_area allocation 1288 1289 if( C->do_scheduling() ) 1290 ComputeLatenciesBackwards(visited, stack); 1291 1292 // Now schedule all codes as LATE as possible. This is the LCA in the 1293 // dominator tree of all USES of a value. Pick the block with the least 1294 // loop nesting depth that is lowest in the dominator tree. 1295 // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() ) 1296 schedule_late(visited, stack); 1297 if( C->failing() ) { 1298 // schedule_late fails only when graph is incorrect. 1299 assert(!VerifyGraphEdges, "verification should have failed"); 1300 return; 1301 } 1302 1303 unique = C->unique(); 1304 1305 #ifndef PRODUCT 1306 if (trace_opto_pipelining()) { 1307 tty->print("\n---- Detect implicit null checks ----\n"); 1308 } 1309 #endif 1310 1311 // Detect implicit-null-check opportunities. Basically, find NULL checks 1312 // with suitable memory ops nearby. Use the memory op to do the NULL check. 1313 // I can generate a memory op if there is not one nearby. 1314 if (C->is_method_compilation()) { 1315 // Don't do it for natives, adapters, or runtime stubs 1316 int allowed_reasons = 0; 1317 // ...and don't do it when there have been too many traps, globally. 1318 for (int reason = (int)Deoptimization::Reason_none+1; 1319 reason < Compile::trapHistLength; reason++) { 1320 assert(reason < BitsPerInt, "recode bit map"); 1321 if (!C->too_many_traps((Deoptimization::DeoptReason) reason)) 1322 allowed_reasons |= nth_bit(reason); 1323 } 1324 // By reversing the loop direction we get a very minor gain on mpegaudio. 1325 // Feel free to revert to a forward loop for clarity. 1326 // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) { 1327 for( int i= matcher._null_check_tests.size()-2; i>=0; i-=2 ) { 1328 Node *proj = matcher._null_check_tests[i ]; 1329 Node *val = matcher._null_check_tests[i+1]; 1330 _bbs[proj->_idx]->implicit_null_check(this, proj, val, allowed_reasons); 1331 // The implicit_null_check will only perform the transformation 1332 // if the null branch is truly uncommon, *and* it leads to an 1333 // uncommon trap. Combined with the too_many_traps guards 1334 // above, this prevents SEGV storms reported in 6366351, 1335 // by recompiling offending methods without this optimization. 1336 } 1337 } 1338 1339 #ifndef PRODUCT 1340 if (trace_opto_pipelining()) { 1341 tty->print("\n---- Start Local Scheduling ----\n"); 1342 } 1343 #endif 1344 1345 // Schedule locally. Right now a simple topological sort. 1346 // Later, do a real latency aware scheduler. 1347 uint max_idx = C->unique(); 1348 GrowableArray<int> ready_cnt(max_idx, max_idx, -1); 1349 visited.Clear(); 1350 for (i = 0; i < _num_blocks; i++) { 1351 if (!_blocks[i]->schedule_local(this, matcher, ready_cnt, visited)) { 1352 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 1353 C->record_method_not_compilable("local schedule failed"); 1354 } 1355 return; 1356 } 1357 } 1358 1359 // If we inserted any instructions between a Call and his CatchNode, 1360 // clone the instructions on all paths below the Catch. 1361 for( i=0; i < _num_blocks; i++ ) 1362 _blocks[i]->call_catch_cleanup(_bbs); 1363 1364 #ifndef PRODUCT 1365 if (trace_opto_pipelining()) { 1366 tty->print("\n---- After GlobalCodeMotion ----\n"); 1367 for (uint i = 0; i < _num_blocks; i++) { 1368 _blocks[i]->dump(); 1369 } 1370 } 1371 #endif 1372 // Dead. 1373 _node_latency = (GrowableArray<uint> *)0xdeadbeef; 1374 } 1375 1376 1377 //------------------------------Estimate_Block_Frequency----------------------- 1378 // Estimate block frequencies based on IfNode probabilities. 1379 void PhaseCFG::Estimate_Block_Frequency() { 1380 1381 // Force conditional branches leading to uncommon traps to be unlikely, 1382 // not because we get to the uncommon_trap with less relative frequency, 1383 // but because an uncommon_trap typically causes a deopt, so we only get 1384 // there once. 1385 if (C->do_freq_based_layout()) { 1386 Block_List worklist; 1387 Block* root_blk = _blocks[0]; 1388 for (uint i = 1; i < root_blk->num_preds(); i++) { 1389 Block *pb = _bbs[root_blk->pred(i)->_idx]; 1390 if (pb->has_uncommon_code()) { 1391 worklist.push(pb); 1392 } 1393 } 1394 while (worklist.size() > 0) { 1395 Block* uct = worklist.pop(); 1396 if (uct == _broot) continue; 1397 for (uint i = 1; i < uct->num_preds(); i++) { 1398 Block *pb = _bbs[uct->pred(i)->_idx]; 1399 if (pb->_num_succs == 1) { 1400 worklist.push(pb); 1401 } else if (pb->num_fall_throughs() == 2) { 1402 pb->update_uncommon_branch(uct); 1403 } 1404 } 1405 } 1406 } 1407 1408 // Create the loop tree and calculate loop depth. 1409 _root_loop = create_loop_tree(); 1410 _root_loop->compute_loop_depth(0); 1411 1412 // Compute block frequency of each block, relative to a single loop entry. 1413 _root_loop->compute_freq(); 1414 1415 // Adjust all frequencies to be relative to a single method entry 1416 _root_loop->_freq = 1.0; 1417 _root_loop->scale_freq(); 1418 1419 // Save outmost loop frequency for LRG frequency threshold 1420 _outer_loop_freq = _root_loop->outer_loop_freq(); 1421 1422 // force paths ending at uncommon traps to be infrequent 1423 if (!C->do_freq_based_layout()) { 1424 Block_List worklist; 1425 Block* root_blk = _blocks[0]; 1426 for (uint i = 1; i < root_blk->num_preds(); i++) { 1427 Block *pb = _bbs[root_blk->pred(i)->_idx]; 1428 if (pb->has_uncommon_code()) { 1429 worklist.push(pb); 1430 } 1431 } 1432 while (worklist.size() > 0) { 1433 Block* uct = worklist.pop(); 1434 uct->_freq = PROB_MIN; 1435 for (uint i = 1; i < uct->num_preds(); i++) { 1436 Block *pb = _bbs[uct->pred(i)->_idx]; 1437 if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) { 1438 worklist.push(pb); 1439 } 1440 } 1441 } 1442 } 1443 1444 #ifdef ASSERT 1445 for (uint i = 0; i < _num_blocks; i++ ) { 1446 Block *b = _blocks[i]; 1447 assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency"); 1448 } 1449 #endif 1450 1451 #ifndef PRODUCT 1452 if (PrintCFGBlockFreq) { 1453 tty->print_cr("CFG Block Frequencies"); 1454 _root_loop->dump_tree(); 1455 if (Verbose) { 1456 tty->print_cr("PhaseCFG dump"); 1457 dump(); 1458 tty->print_cr("Node dump"); 1459 _root->dump(99999); 1460 } 1461 } 1462 #endif 1463 } 1464 1465 //----------------------------create_loop_tree-------------------------------- 1466 // Create a loop tree from the CFG 1467 CFGLoop* PhaseCFG::create_loop_tree() { 1468 1469 #ifdef ASSERT 1470 assert( _blocks[0] == _broot, "" ); 1471 for (uint i = 0; i < _num_blocks; i++ ) { 1472 Block *b = _blocks[i]; 1473 // Check that _loop field are clear...we could clear them if not. 1474 assert(b->_loop == NULL, "clear _loop expected"); 1475 // Sanity check that the RPO numbering is reflected in the _blocks array. 1476 // It doesn't have to be for the loop tree to be built, but if it is not, 1477 // then the blocks have been reordered since dom graph building...which 1478 // may question the RPO numbering 1479 assert(b->_rpo == i, "unexpected reverse post order number"); 1480 } 1481 #endif 1482 1483 int idct = 0; 1484 CFGLoop* root_loop = new CFGLoop(idct++); 1485 1486 Block_List worklist; 1487 1488 // Assign blocks to loops 1489 for(uint i = _num_blocks - 1; i > 0; i-- ) { // skip Root block 1490 Block *b = _blocks[i]; 1491 1492 if (b->head()->is_Loop()) { 1493 Block* loop_head = b; 1494 assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors"); 1495 Node* tail_n = loop_head->pred(LoopNode::LoopBackControl); 1496 Block* tail = _bbs[tail_n->_idx]; 1497 1498 // Defensively filter out Loop nodes for non-single-entry loops. 1499 // For all reasonable loops, the head occurs before the tail in RPO. 1500 if (i <= tail->_rpo) { 1501 1502 // The tail and (recursive) predecessors of the tail 1503 // are made members of a new loop. 1504 1505 assert(worklist.size() == 0, "nonempty worklist"); 1506 CFGLoop* nloop = new CFGLoop(idct++); 1507 assert(loop_head->_loop == NULL, "just checking"); 1508 loop_head->_loop = nloop; 1509 // Add to nloop so push_pred() will skip over inner loops 1510 nloop->add_member(loop_head); 1511 nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, _bbs); 1512 1513 while (worklist.size() > 0) { 1514 Block* member = worklist.pop(); 1515 if (member != loop_head) { 1516 for (uint j = 1; j < member->num_preds(); j++) { 1517 nloop->push_pred(member, j, worklist, _bbs); 1518 } 1519 } 1520 } 1521 } 1522 } 1523 } 1524 1525 // Create a member list for each loop consisting 1526 // of both blocks and (immediate child) loops. 1527 for (uint i = 0; i < _num_blocks; i++) { 1528 Block *b = _blocks[i]; 1529 CFGLoop* lp = b->_loop; 1530 if (lp == NULL) { 1531 // Not assigned to a loop. Add it to the method's pseudo loop. 1532 b->_loop = root_loop; 1533 lp = root_loop; 1534 } 1535 if (lp == root_loop || b != lp->head()) { // loop heads are already members 1536 lp->add_member(b); 1537 } 1538 if (lp != root_loop) { 1539 if (lp->parent() == NULL) { 1540 // Not a nested loop. Make it a child of the method's pseudo loop. 1541 root_loop->add_nested_loop(lp); 1542 } 1543 if (b == lp->head()) { 1544 // Add nested loop to member list of parent loop. 1545 lp->parent()->add_member(lp); 1546 } 1547 } 1548 } 1549 1550 return root_loop; 1551 } 1552 1553 //------------------------------push_pred-------------------------------------- 1554 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk) { 1555 Node* pred_n = blk->pred(i); 1556 Block* pred = node_to_blk[pred_n->_idx]; 1557 CFGLoop *pred_loop = pred->_loop; 1558 if (pred_loop == NULL) { 1559 // Filter out blocks for non-single-entry loops. 1560 // For all reasonable loops, the head occurs before the tail in RPO. 1561 if (pred->_rpo > head()->_rpo) { 1562 pred->_loop = this; 1563 worklist.push(pred); 1564 } 1565 } else if (pred_loop != this) { 1566 // Nested loop. 1567 while (pred_loop->_parent != NULL && pred_loop->_parent != this) { 1568 pred_loop = pred_loop->_parent; 1569 } 1570 // Make pred's loop be a child 1571 if (pred_loop->_parent == NULL) { 1572 add_nested_loop(pred_loop); 1573 // Continue with loop entry predecessor. 1574 Block* pred_head = pred_loop->head(); 1575 assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors"); 1576 assert(pred_head != head(), "loop head in only one loop"); 1577 push_pred(pred_head, LoopNode::EntryControl, worklist, node_to_blk); 1578 } else { 1579 assert(pred_loop->_parent == this && _parent == NULL, "just checking"); 1580 } 1581 } 1582 } 1583 1584 //------------------------------add_nested_loop-------------------------------- 1585 // Make cl a child of the current loop in the loop tree. 1586 void CFGLoop::add_nested_loop(CFGLoop* cl) { 1587 assert(_parent == NULL, "no parent yet"); 1588 assert(cl != this, "not my own parent"); 1589 cl->_parent = this; 1590 CFGLoop* ch = _child; 1591 if (ch == NULL) { 1592 _child = cl; 1593 } else { 1594 while (ch->_sibling != NULL) { ch = ch->_sibling; } 1595 ch->_sibling = cl; 1596 } 1597 } 1598 1599 //------------------------------compute_loop_depth----------------------------- 1600 // Store the loop depth in each CFGLoop object. 1601 // Recursively walk the children to do the same for them. 1602 void CFGLoop::compute_loop_depth(int depth) { 1603 _depth = depth; 1604 CFGLoop* ch = _child; 1605 while (ch != NULL) { 1606 ch->compute_loop_depth(depth + 1); 1607 ch = ch->_sibling; 1608 } 1609 } 1610 1611 //------------------------------compute_freq----------------------------------- 1612 // Compute the frequency of each block and loop, relative to a single entry 1613 // into the dominating loop head. 1614 void CFGLoop::compute_freq() { 1615 // Bottom up traversal of loop tree (visit inner loops first.) 1616 // Set loop head frequency to 1.0, then transitively 1617 // compute frequency for all successors in the loop, 1618 // as well as for each exit edge. Inner loops are 1619 // treated as single blocks with loop exit targets 1620 // as the successor blocks. 1621 1622 // Nested loops first 1623 CFGLoop* ch = _child; 1624 while (ch != NULL) { 1625 ch->compute_freq(); 1626 ch = ch->_sibling; 1627 } 1628 assert (_members.length() > 0, "no empty loops"); 1629 Block* hd = head(); 1630 hd->_freq = 1.0f; 1631 for (int i = 0; i < _members.length(); i++) { 1632 CFGElement* s = _members.at(i); 1633 float freq = s->_freq; 1634 if (s->is_block()) { 1635 Block* b = s->as_Block(); 1636 for (uint j = 0; j < b->_num_succs; j++) { 1637 Block* sb = b->_succs[j]; 1638 update_succ_freq(sb, freq * b->succ_prob(j)); 1639 } 1640 } else { 1641 CFGLoop* lp = s->as_CFGLoop(); 1642 assert(lp->_parent == this, "immediate child"); 1643 for (int k = 0; k < lp->_exits.length(); k++) { 1644 Block* eb = lp->_exits.at(k).get_target(); 1645 float prob = lp->_exits.at(k).get_prob(); 1646 update_succ_freq(eb, freq * prob); 1647 } 1648 } 1649 } 1650 1651 // For all loops other than the outer, "method" loop, 1652 // sum and normalize the exit probability. The "method" loop 1653 // should keep the initial exit probability of 1, so that 1654 // inner blocks do not get erroneously scaled. 1655 if (_depth != 0) { 1656 // Total the exit probabilities for this loop. 1657 float exits_sum = 0.0f; 1658 for (int i = 0; i < _exits.length(); i++) { 1659 exits_sum += _exits.at(i).get_prob(); 1660 } 1661 1662 // Normalize the exit probabilities. Until now, the 1663 // probabilities estimate the possibility of exit per 1664 // a single loop iteration; afterward, they estimate 1665 // the probability of exit per loop entry. 1666 for (int i = 0; i < _exits.length(); i++) { 1667 Block* et = _exits.at(i).get_target(); 1668 float new_prob = 0.0f; 1669 if (_exits.at(i).get_prob() > 0.0f) { 1670 new_prob = _exits.at(i).get_prob() / exits_sum; 1671 } 1672 BlockProbPair bpp(et, new_prob); 1673 _exits.at_put(i, bpp); 1674 } 1675 1676 // Save the total, but guard against unreasonable probability, 1677 // as the value is used to estimate the loop trip count. 1678 // An infinite trip count would blur relative block 1679 // frequencies. 1680 if (exits_sum > 1.0f) exits_sum = 1.0; 1681 if (exits_sum < PROB_MIN) exits_sum = PROB_MIN; 1682 _exit_prob = exits_sum; 1683 } 1684 } 1685 1686 //------------------------------succ_prob------------------------------------- 1687 // Determine the probability of reaching successor 'i' from the receiver block. 1688 float Block::succ_prob(uint i) { 1689 int eidx = end_idx(); 1690 Node *n = _nodes[eidx]; // Get ending Node 1691 1692 int op = n->Opcode(); 1693 if (n->is_Mach()) { 1694 if (n->is_MachNullCheck()) { 1695 // Can only reach here if called after lcm. The original Op_If is gone, 1696 // so we attempt to infer the probability from one or both of the 1697 // successor blocks. 1698 assert(_num_succs == 2, "expecting 2 successors of a null check"); 1699 // If either successor has only one predecessor, then the 1700 // probability estimate can be derived using the 1701 // relative frequency of the successor and this block. 1702 if (_succs[i]->num_preds() == 2) { 1703 return _succs[i]->_freq / _freq; 1704 } else if (_succs[1-i]->num_preds() == 2) { 1705 return 1 - (_succs[1-i]->_freq / _freq); 1706 } else { 1707 // Estimate using both successor frequencies 1708 float freq = _succs[i]->_freq; 1709 return freq / (freq + _succs[1-i]->_freq); 1710 } 1711 } 1712 op = n->as_Mach()->ideal_Opcode(); 1713 } 1714 1715 1716 // Switch on branch type 1717 switch( op ) { 1718 case Op_CountedLoopEnd: 1719 case Op_If: { 1720 assert (i < 2, "just checking"); 1721 // Conditionals pass on only part of their frequency 1722 float prob = n->as_MachIf()->_prob; 1723 assert(prob >= 0.0 && prob <= 1.0, "out of range probability"); 1724 // If succ[i] is the FALSE branch, invert path info 1725 if( _nodes[i + eidx + 1]->Opcode() == Op_IfFalse ) { 1726 return 1.0f - prob; // not taken 1727 } else { 1728 return prob; // taken 1729 } 1730 } 1731 1732 case Op_Jump: 1733 // Divide the frequency between all successors evenly 1734 return 1.0f/_num_succs; 1735 1736 case Op_Catch: { 1737 const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj(); 1738 if (ci->_con == CatchProjNode::fall_through_index) { 1739 // Fall-thru path gets the lion's share. 1740 return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs; 1741 } else { 1742 // Presume exceptional paths are equally unlikely 1743 return PROB_UNLIKELY_MAG(5); 1744 } 1745 } 1746 1747 case Op_Root: 1748 case Op_Goto: 1749 // Pass frequency straight thru to target 1750 return 1.0f; 1751 1752 case Op_NeverBranch: 1753 return 0.0f; 1754 1755 case Op_TailCall: 1756 case Op_TailJump: 1757 case Op_Return: 1758 case Op_Halt: 1759 case Op_Rethrow: 1760 // Do not push out freq to root block 1761 return 0.0f; 1762 1763 default: 1764 ShouldNotReachHere(); 1765 } 1766 1767 return 0.0f; 1768 } 1769 1770 //------------------------------num_fall_throughs----------------------------- 1771 // Return the number of fall-through candidates for a block 1772 int Block::num_fall_throughs() { 1773 int eidx = end_idx(); 1774 Node *n = _nodes[eidx]; // Get ending Node 1775 1776 int op = n->Opcode(); 1777 if (n->is_Mach()) { 1778 if (n->is_MachNullCheck()) { 1779 // In theory, either side can fall-thru, for simplicity sake, 1780 // let's say only the false branch can now. 1781 return 1; 1782 } 1783 op = n->as_Mach()->ideal_Opcode(); 1784 } 1785 1786 // Switch on branch type 1787 switch( op ) { 1788 case Op_CountedLoopEnd: 1789 case Op_If: 1790 return 2; 1791 1792 case Op_Root: 1793 case Op_Goto: 1794 return 1; 1795 1796 case Op_Catch: { 1797 for (uint i = 0; i < _num_succs; i++) { 1798 const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj(); 1799 if (ci->_con == CatchProjNode::fall_through_index) { 1800 return 1; 1801 } 1802 } 1803 return 0; 1804 } 1805 1806 case Op_Jump: 1807 case Op_NeverBranch: 1808 case Op_TailCall: 1809 case Op_TailJump: 1810 case Op_Return: 1811 case Op_Halt: 1812 case Op_Rethrow: 1813 return 0; 1814 1815 default: 1816 ShouldNotReachHere(); 1817 } 1818 1819 return 0; 1820 } 1821 1822 //------------------------------succ_fall_through----------------------------- 1823 // Return true if a specific successor could be fall-through target. 1824 bool Block::succ_fall_through(uint i) { 1825 int eidx = end_idx(); 1826 Node *n = _nodes[eidx]; // Get ending Node 1827 1828 int op = n->Opcode(); 1829 if (n->is_Mach()) { 1830 if (n->is_MachNullCheck()) { 1831 // In theory, either side can fall-thru, for simplicity sake, 1832 // let's say only the false branch can now. 1833 return _nodes[i + eidx + 1]->Opcode() == Op_IfFalse; 1834 } 1835 op = n->as_Mach()->ideal_Opcode(); 1836 } 1837 1838 // Switch on branch type 1839 switch( op ) { 1840 case Op_CountedLoopEnd: 1841 case Op_If: 1842 case Op_Root: 1843 case Op_Goto: 1844 return true; 1845 1846 case Op_Catch: { 1847 const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj(); 1848 return ci->_con == CatchProjNode::fall_through_index; 1849 } 1850 1851 case Op_Jump: 1852 case Op_NeverBranch: 1853 case Op_TailCall: 1854 case Op_TailJump: 1855 case Op_Return: 1856 case Op_Halt: 1857 case Op_Rethrow: 1858 return false; 1859 1860 default: 1861 ShouldNotReachHere(); 1862 } 1863 1864 return false; 1865 } 1866 1867 //------------------------------update_uncommon_branch------------------------ 1868 // Update the probability of a two-branch to be uncommon 1869 void Block::update_uncommon_branch(Block* ub) { 1870 int eidx = end_idx(); 1871 Node *n = _nodes[eidx]; // Get ending Node 1872 1873 int op = n->as_Mach()->ideal_Opcode(); 1874 1875 assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If"); 1876 assert(num_fall_throughs() == 2, "must be a two way branch block"); 1877 1878 // Which successor is ub? 1879 uint s; 1880 for (s = 0; s <_num_succs; s++) { 1881 if (_succs[s] == ub) break; 1882 } 1883 assert(s < 2, "uncommon successor must be found"); 1884 1885 // If ub is the true path, make the proability small, else 1886 // ub is the false path, and make the probability large 1887 bool invert = (_nodes[s + eidx + 1]->Opcode() == Op_IfFalse); 1888 1889 // Get existing probability 1890 float p = n->as_MachIf()->_prob; 1891 1892 if (invert) p = 1.0 - p; 1893 if (p > PROB_MIN) { 1894 p = PROB_MIN; 1895 } 1896 if (invert) p = 1.0 - p; 1897 1898 n->as_MachIf()->_prob = p; 1899 } 1900 1901 //------------------------------update_succ_freq------------------------------- 1902 // Update the appropriate frequency associated with block 'b', a successor of 1903 // a block in this loop. 1904 void CFGLoop::update_succ_freq(Block* b, float freq) { 1905 if (b->_loop == this) { 1906 if (b == head()) { 1907 // back branch within the loop 1908 // Do nothing now, the loop carried frequency will be 1909 // adjust later in scale_freq(). 1910 } else { 1911 // simple branch within the loop 1912 b->_freq += freq; 1913 } 1914 } else if (!in_loop_nest(b)) { 1915 // branch is exit from this loop 1916 BlockProbPair bpp(b, freq); 1917 _exits.append(bpp); 1918 } else { 1919 // branch into nested loop 1920 CFGLoop* ch = b->_loop; 1921 ch->_freq += freq; 1922 } 1923 } 1924 1925 //------------------------------in_loop_nest----------------------------------- 1926 // Determine if block b is in the receiver's loop nest. 1927 bool CFGLoop::in_loop_nest(Block* b) { 1928 int depth = _depth; 1929 CFGLoop* b_loop = b->_loop; 1930 int b_depth = b_loop->_depth; 1931 if (depth == b_depth) { 1932 return true; 1933 } 1934 while (b_depth > depth) { 1935 b_loop = b_loop->_parent; 1936 b_depth = b_loop->_depth; 1937 } 1938 return b_loop == this; 1939 } 1940 1941 //------------------------------scale_freq------------------------------------- 1942 // Scale frequency of loops and blocks by trip counts from outer loops 1943 // Do a top down traversal of loop tree (visit outer loops first.) 1944 void CFGLoop::scale_freq() { 1945 float loop_freq = _freq * trip_count(); 1946 _freq = loop_freq; 1947 for (int i = 0; i < _members.length(); i++) { 1948 CFGElement* s = _members.at(i); 1949 float block_freq = s->_freq * loop_freq; 1950 if (g_isnan(block_freq) || block_freq < MIN_BLOCK_FREQUENCY) 1951 block_freq = MIN_BLOCK_FREQUENCY; 1952 s->_freq = block_freq; 1953 } 1954 CFGLoop* ch = _child; 1955 while (ch != NULL) { 1956 ch->scale_freq(); 1957 ch = ch->_sibling; 1958 } 1959 } 1960 1961 // Frequency of outer loop 1962 float CFGLoop::outer_loop_freq() const { 1963 if (_child != NULL) { 1964 return _child->_freq; 1965 } 1966 return _freq; 1967 } 1968 1969 #ifndef PRODUCT 1970 //------------------------------dump_tree-------------------------------------- 1971 void CFGLoop::dump_tree() const { 1972 dump(); 1973 if (_child != NULL) _child->dump_tree(); 1974 if (_sibling != NULL) _sibling->dump_tree(); 1975 } 1976 1977 //------------------------------dump------------------------------------------- 1978 void CFGLoop::dump() const { 1979 for (int i = 0; i < _depth; i++) tty->print(" "); 1980 tty->print("%s: %d trip_count: %6.0f freq: %6.0f\n", 1981 _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq); 1982 for (int i = 0; i < _depth; i++) tty->print(" "); 1983 tty->print(" members:", _id); 1984 int k = 0; 1985 for (int i = 0; i < _members.length(); i++) { 1986 if (k++ >= 6) { 1987 tty->print("\n "); 1988 for (int j = 0; j < _depth+1; j++) tty->print(" "); 1989 k = 0; 1990 } 1991 CFGElement *s = _members.at(i); 1992 if (s->is_block()) { 1993 Block *b = s->as_Block(); 1994 tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq); 1995 } else { 1996 CFGLoop* lp = s->as_CFGLoop(); 1997 tty->print(" L%d(%6.3f)", lp->_id, lp->_freq); 1998 } 1999 } 2000 tty->print("\n"); 2001 for (int i = 0; i < _depth; i++) tty->print(" "); 2002 tty->print(" exits: "); 2003 k = 0; 2004 for (int i = 0; i < _exits.length(); i++) { 2005 if (k++ >= 7) { 2006 tty->print("\n "); 2007 for (int j = 0; j < _depth+1; j++) tty->print(" "); 2008 k = 0; 2009 } 2010 Block *blk = _exits.at(i).get_target(); 2011 float prob = _exits.at(i).get_prob(); 2012 tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100)); 2013 } 2014 tty->print("\n"); 2015 } 2016 #endif