1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/g1/concurrentMark.hpp"
  29 #include "gc_implementation/g1/g1AllocRegion.hpp"
  30 #include "gc_implementation/g1/g1HRPrinter.hpp"
  31 #include "gc_implementation/g1/g1RemSet.hpp"
  32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
  33 #include "gc_implementation/g1/heapRegionSeq.hpp"
  34 #include "gc_implementation/g1/heapRegionSets.hpp"
  35 #include "gc_implementation/shared/hSpaceCounters.hpp"
  36 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
  37 #include "memory/barrierSet.hpp"
  38 #include "memory/memRegion.hpp"
  39 #include "memory/sharedHeap.hpp"
  40 
  41 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  42 // It uses the "Garbage First" heap organization and algorithm, which
  43 // may combine concurrent marking with parallel, incremental compaction of
  44 // heap subsets that will yield large amounts of garbage.
  45 
  46 class HeapRegion;
  47 class HRRSCleanupTask;
  48 class PermanentGenerationSpec;
  49 class GenerationSpec;
  50 class OopsInHeapRegionClosure;
  51 class G1ScanHeapEvacClosure;
  52 class ObjectClosure;
  53 class SpaceClosure;
  54 class CompactibleSpaceClosure;
  55 class Space;
  56 class G1CollectorPolicy;
  57 class GenRemSet;
  58 class G1RemSet;
  59 class HeapRegionRemSetIterator;
  60 class ConcurrentMark;
  61 class ConcurrentMarkThread;
  62 class ConcurrentG1Refine;
  63 class GenerationCounters;
  64 
  65 typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
  66 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
  67 
  68 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  69 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  70 
  71 enum GCAllocPurpose {
  72   GCAllocForTenured,
  73   GCAllocForSurvived,
  74   GCAllocPurposeCount
  75 };
  76 
  77 class YoungList : public CHeapObj {
  78 private:
  79   G1CollectedHeap* _g1h;
  80 
  81   HeapRegion* _head;
  82 
  83   HeapRegion* _survivor_head;
  84   HeapRegion* _survivor_tail;
  85 
  86   HeapRegion* _curr;
  87 
  88   size_t      _length;
  89   size_t      _survivor_length;
  90 
  91   size_t      _last_sampled_rs_lengths;
  92   size_t      _sampled_rs_lengths;
  93 
  94   void         empty_list(HeapRegion* list);
  95 
  96 public:
  97   YoungList(G1CollectedHeap* g1h);
  98 
  99   void         push_region(HeapRegion* hr);
 100   void         add_survivor_region(HeapRegion* hr);
 101 
 102   void         empty_list();
 103   bool         is_empty() { return _length == 0; }
 104   size_t       length() { return _length; }
 105   size_t       survivor_length() { return _survivor_length; }
 106 
 107   // Currently we do not keep track of the used byte sum for the
 108   // young list and the survivors and it'd be quite a lot of work to
 109   // do so. When we'll eventually replace the young list with
 110   // instances of HeapRegionLinkedList we'll get that for free. So,
 111   // we'll report the more accurate information then.
 112   size_t       eden_used_bytes() {
 113     assert(length() >= survivor_length(), "invariant");
 114     return (length() - survivor_length()) * HeapRegion::GrainBytes;
 115   }
 116   size_t       survivor_used_bytes() {
 117     return survivor_length() * HeapRegion::GrainBytes;
 118   }
 119 
 120   void rs_length_sampling_init();
 121   bool rs_length_sampling_more();
 122   void rs_length_sampling_next();
 123 
 124   void reset_sampled_info() {
 125     _last_sampled_rs_lengths =   0;
 126   }
 127   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
 128 
 129   // for development purposes
 130   void reset_auxilary_lists();
 131   void clear() { _head = NULL; _length = 0; }
 132 
 133   void clear_survivors() {
 134     _survivor_head    = NULL;
 135     _survivor_tail    = NULL;
 136     _survivor_length  = 0;
 137   }
 138 
 139   HeapRegion* first_region() { return _head; }
 140   HeapRegion* first_survivor_region() { return _survivor_head; }
 141   HeapRegion* last_survivor_region() { return _survivor_tail; }
 142 
 143   // debugging
 144   bool          check_list_well_formed();
 145   bool          check_list_empty(bool check_sample = true);
 146   void          print();
 147 };
 148 
 149 class MutatorAllocRegion : public G1AllocRegion {
 150 protected:
 151   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 152   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 153 public:
 154   MutatorAllocRegion()
 155     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
 156 };
 157 
 158 // The G1 STW is alive closure.
 159 // An instance is embedded into the G1CH and used as the
 160 // (optional) _is_alive_non_header closure in the STW
 161 // reference processor. It is also extensively used during
 162 // refence processing during STW evacuation pauses.
 163 class G1STWIsAliveClosure: public BoolObjectClosure {
 164   G1CollectedHeap* _g1;
 165 public:
 166   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 167   void do_object(oop p) { assert(false, "Do not call."); }
 168   bool do_object_b(oop p);
 169 };
 170 
 171 class SurvivorGCAllocRegion : public G1AllocRegion {
 172 protected:
 173   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 174   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 175 public:
 176   SurvivorGCAllocRegion()
 177   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
 178 };
 179 
 180 class OldGCAllocRegion : public G1AllocRegion {
 181 protected:
 182   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 183   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 184 public:
 185   OldGCAllocRegion()
 186   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
 187 };
 188 
 189 class RefineCardTableEntryClosure;
 190 
 191 class G1CollectedHeap : public SharedHeap {
 192   friend class VM_G1CollectForAllocation;
 193   friend class VM_GenCollectForPermanentAllocation;
 194   friend class VM_G1CollectFull;
 195   friend class VM_G1IncCollectionPause;
 196   friend class VMStructs;
 197   friend class MutatorAllocRegion;
 198   friend class SurvivorGCAllocRegion;
 199   friend class OldGCAllocRegion;
 200 
 201   // Closures used in implementation.
 202   friend class G1ParCopyHelper;
 203   friend class G1IsAliveClosure;
 204   friend class G1EvacuateFollowersClosure;
 205   friend class G1ParScanThreadState;
 206   friend class G1ParScanClosureSuper;
 207   friend class G1ParEvacuateFollowersClosure;
 208   friend class G1ParTask;
 209   friend class G1FreeGarbageRegionClosure;
 210   friend class RefineCardTableEntryClosure;
 211   friend class G1PrepareCompactClosure;
 212   friend class RegionSorter;
 213   friend class RegionResetter;
 214   friend class CountRCClosure;
 215   friend class EvacPopObjClosure;
 216   friend class G1ParCleanupCTTask;
 217 
 218   // Other related classes.
 219   friend class G1MarkSweep;
 220 
 221 private:
 222   // The one and only G1CollectedHeap, so static functions can find it.
 223   static G1CollectedHeap* _g1h;
 224 
 225   static size_t _humongous_object_threshold_in_words;
 226 
 227   // Storage for the G1 heap (excludes the permanent generation).
 228   VirtualSpace _g1_storage;
 229   MemRegion    _g1_reserved;
 230 
 231   // The part of _g1_storage that is currently committed.
 232   MemRegion _g1_committed;
 233 
 234   // The master free list. It will satisfy all new region allocations.
 235   MasterFreeRegionList      _free_list;
 236 
 237   // The secondary free list which contains regions that have been
 238   // freed up during the cleanup process. This will be appended to the
 239   // master free list when appropriate.
 240   SecondaryFreeRegionList   _secondary_free_list;
 241 
 242   // It keeps track of the old regions.
 243   MasterOldRegionSet        _old_set;
 244 
 245   // It keeps track of the humongous regions.
 246   MasterHumongousRegionSet  _humongous_set;
 247 
 248   // The number of regions we could create by expansion.
 249   size_t _expansion_regions;
 250 
 251   // The block offset table for the G1 heap.
 252   G1BlockOffsetSharedArray* _bot_shared;
 253 
 254   // Tears down the region sets / lists so that they are empty and the
 255   // regions on the heap do not belong to a region set / list. The
 256   // only exception is the humongous set which we leave unaltered. If
 257   // free_list_only is true, it will only tear down the master free
 258   // list. It is called before a Full GC (free_list_only == false) or
 259   // before heap shrinking (free_list_only == true).
 260   void tear_down_region_sets(bool free_list_only);
 261 
 262   // Rebuilds the region sets / lists so that they are repopulated to
 263   // reflect the contents of the heap. The only exception is the
 264   // humongous set which was not torn down in the first place. If
 265   // free_list_only is true, it will only rebuild the master free
 266   // list. It is called after a Full GC (free_list_only == false) or
 267   // after heap shrinking (free_list_only == true).
 268   void rebuild_region_sets(bool free_list_only);
 269 
 270   // The sequence of all heap regions in the heap.
 271   HeapRegionSeq _hrs;
 272 
 273   // Alloc region used to satisfy mutator allocation requests.
 274   MutatorAllocRegion _mutator_alloc_region;
 275 
 276   // Alloc region used to satisfy allocation requests by the GC for
 277   // survivor objects.
 278   SurvivorGCAllocRegion _survivor_gc_alloc_region;
 279 
 280   // Alloc region used to satisfy allocation requests by the GC for
 281   // old objects.
 282   OldGCAllocRegion _old_gc_alloc_region;
 283 
 284   // The last old region we allocated to during the last GC.
 285   // Typically, it is not full so we should re-use it during the next GC.
 286   HeapRegion* _retained_old_gc_alloc_region;
 287 
 288   // It specifies whether we should attempt to expand the heap after a
 289   // region allocation failure. If heap expansion fails we set this to
 290   // false so that we don't re-attempt the heap expansion (it's likely
 291   // that subsequent expansion attempts will also fail if one fails).
 292   // Currently, it is only consulted during GC and it's reset at the
 293   // start of each GC.
 294   bool _expand_heap_after_alloc_failure;
 295 
 296   // It resets the mutator alloc region before new allocations can take place.
 297   void init_mutator_alloc_region();
 298 
 299   // It releases the mutator alloc region.
 300   void release_mutator_alloc_region();
 301 
 302   // It initializes the GC alloc regions at the start of a GC.
 303   void init_gc_alloc_regions();
 304 
 305   // It releases the GC alloc regions at the end of a GC.
 306   void release_gc_alloc_regions();
 307 
 308   // It does any cleanup that needs to be done on the GC alloc regions
 309   // before a Full GC.
 310   void abandon_gc_alloc_regions();
 311 
 312   // Helper for monitoring and management support.
 313   G1MonitoringSupport* _g1mm;
 314 
 315   // Determines PLAB size for a particular allocation purpose.
 316   static size_t desired_plab_sz(GCAllocPurpose purpose);
 317 
 318   // Outside of GC pauses, the number of bytes used in all regions other
 319   // than the current allocation region.
 320   size_t _summary_bytes_used;
 321 
 322   // This is used for a quick test on whether a reference points into
 323   // the collection set or not. Basically, we have an array, with one
 324   // byte per region, and that byte denotes whether the corresponding
 325   // region is in the collection set or not. The entry corresponding
 326   // the bottom of the heap, i.e., region 0, is pointed to by
 327   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
 328   // biased so that it actually points to address 0 of the address
 329   // space, to make the test as fast as possible (we can simply shift
 330   // the address to address into it, instead of having to subtract the
 331   // bottom of the heap from the address before shifting it; basically
 332   // it works in the same way the card table works).
 333   bool* _in_cset_fast_test;
 334 
 335   // The allocated array used for the fast test on whether a reference
 336   // points into the collection set or not. This field is also used to
 337   // free the array.
 338   bool* _in_cset_fast_test_base;
 339 
 340   // The length of the _in_cset_fast_test_base array.
 341   size_t _in_cset_fast_test_length;
 342 
 343   volatile unsigned _gc_time_stamp;
 344 
 345   size_t* _surviving_young_words;
 346 
 347   G1HRPrinter _hr_printer;
 348 
 349   void setup_surviving_young_words();
 350   void update_surviving_young_words(size_t* surv_young_words);
 351   void cleanup_surviving_young_words();
 352 
 353   // It decides whether an explicit GC should start a concurrent cycle
 354   // instead of doing a STW GC. Currently, a concurrent cycle is
 355   // explicitly started if:
 356   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 357   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 358   // (c) cause == _g1_humongous_allocation
 359   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 360 
 361   // Keeps track of how many "full collections" (i.e., Full GCs or
 362   // concurrent cycles) we have completed. The number of them we have
 363   // started is maintained in _total_full_collections in CollectedHeap.
 364   volatile unsigned int _full_collections_completed;
 365 
 366   // This is a non-product method that is helpful for testing. It is
 367   // called at the end of a GC and artificially expands the heap by
 368   // allocating a number of dead regions. This way we can induce very
 369   // frequent marking cycles and stress the cleanup / concurrent
 370   // cleanup code more (as all the regions that will be allocated by
 371   // this method will be found dead by the marking cycle).
 372   void allocate_dummy_regions() PRODUCT_RETURN;
 373 
 374   // These are macros so that, if the assert fires, we get the correct
 375   // line number, file, etc.
 376 
 377 #define heap_locking_asserts_err_msg(_extra_message_)                         \
 378   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
 379           (_extra_message_),                                                  \
 380           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
 381           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
 382           BOOL_TO_STR(Thread::current()->is_VM_thread()))
 383 
 384 #define assert_heap_locked()                                                  \
 385   do {                                                                        \
 386     assert(Heap_lock->owned_by_self(),                                        \
 387            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
 388   } while (0)
 389 
 390 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 391   do {                                                                        \
 392     assert(Heap_lock->owned_by_self() ||                                      \
 393            (SafepointSynchronize::is_at_safepoint() &&                        \
 394              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 395            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
 396                                         "should be at a safepoint"));         \
 397   } while (0)
 398 
 399 #define assert_heap_locked_and_not_at_safepoint()                             \
 400   do {                                                                        \
 401     assert(Heap_lock->owned_by_self() &&                                      \
 402                                     !SafepointSynchronize::is_at_safepoint(), \
 403           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
 404                                        "should not be at a safepoint"));      \
 405   } while (0)
 406 
 407 #define assert_heap_not_locked()                                              \
 408   do {                                                                        \
 409     assert(!Heap_lock->owned_by_self(),                                       \
 410         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
 411   } while (0)
 412 
 413 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 414   do {                                                                        \
 415     assert(!Heap_lock->owned_by_self() &&                                     \
 416                                     !SafepointSynchronize::is_at_safepoint(), \
 417       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
 418                                    "should not be at a safepoint"));          \
 419   } while (0)
 420 
 421 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 422   do {                                                                        \
 423     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 424               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 425            heap_locking_asserts_err_msg("should be at a safepoint"));         \
 426   } while (0)
 427 
 428 #define assert_not_at_safepoint()                                             \
 429   do {                                                                        \
 430     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 431            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
 432   } while (0)
 433 
 434 protected:
 435 
 436   // The young region list.
 437   YoungList*  _young_list;
 438 
 439   // The current policy object for the collector.
 440   G1CollectorPolicy* _g1_policy;
 441 
 442   // This is the second level of trying to allocate a new region. If
 443   // new_region() didn't find a region on the free_list, this call will
 444   // check whether there's anything available on the
 445   // secondary_free_list and/or wait for more regions to appear on
 446   // that list, if _free_regions_coming is set.
 447   HeapRegion* new_region_try_secondary_free_list();
 448 
 449   // Try to allocate a single non-humongous HeapRegion sufficient for
 450   // an allocation of the given word_size. If do_expand is true,
 451   // attempt to expand the heap if necessary to satisfy the allocation
 452   // request.
 453   HeapRegion* new_region(size_t word_size, bool do_expand);
 454 
 455   // Attempt to satisfy a humongous allocation request of the given
 456   // size by finding a contiguous set of free regions of num_regions
 457   // length and remove them from the master free list. Return the
 458   // index of the first region or G1_NULL_HRS_INDEX if the search
 459   // was unsuccessful.
 460   size_t humongous_obj_allocate_find_first(size_t num_regions,
 461                                            size_t word_size);
 462 
 463   // Initialize a contiguous set of free regions of length num_regions
 464   // and starting at index first so that they appear as a single
 465   // humongous region.
 466   HeapWord* humongous_obj_allocate_initialize_regions(size_t first,
 467                                                       size_t num_regions,
 468                                                       size_t word_size);
 469 
 470   // Attempt to allocate a humongous object of the given size. Return
 471   // NULL if unsuccessful.
 472   HeapWord* humongous_obj_allocate(size_t word_size);
 473 
 474   // The following two methods, allocate_new_tlab() and
 475   // mem_allocate(), are the two main entry points from the runtime
 476   // into the G1's allocation routines. They have the following
 477   // assumptions:
 478   //
 479   // * They should both be called outside safepoints.
 480   //
 481   // * They should both be called without holding the Heap_lock.
 482   //
 483   // * All allocation requests for new TLABs should go to
 484   //   allocate_new_tlab().
 485   //
 486   // * All non-TLAB allocation requests should go to mem_allocate().
 487   //
 488   // * If either call cannot satisfy the allocation request using the
 489   //   current allocating region, they will try to get a new one. If
 490   //   this fails, they will attempt to do an evacuation pause and
 491   //   retry the allocation.
 492   //
 493   // * If all allocation attempts fail, even after trying to schedule
 494   //   an evacuation pause, allocate_new_tlab() will return NULL,
 495   //   whereas mem_allocate() will attempt a heap expansion and/or
 496   //   schedule a Full GC.
 497   //
 498   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 499   //   should never be called with word_size being humongous. All
 500   //   humongous allocation requests should go to mem_allocate() which
 501   //   will satisfy them with a special path.
 502 
 503   virtual HeapWord* allocate_new_tlab(size_t word_size);
 504 
 505   virtual HeapWord* mem_allocate(size_t word_size,
 506                                  bool*  gc_overhead_limit_was_exceeded);
 507 
 508   // The following three methods take a gc_count_before_ret
 509   // parameter which is used to return the GC count if the method
 510   // returns NULL. Given that we are required to read the GC count
 511   // while holding the Heap_lock, and these paths will take the
 512   // Heap_lock at some point, it's easier to get them to read the GC
 513   // count while holding the Heap_lock before they return NULL instead
 514   // of the caller (namely: mem_allocate()) having to also take the
 515   // Heap_lock just to read the GC count.
 516 
 517   // First-level mutator allocation attempt: try to allocate out of
 518   // the mutator alloc region without taking the Heap_lock. This
 519   // should only be used for non-humongous allocations.
 520   inline HeapWord* attempt_allocation(size_t word_size,
 521                                       unsigned int* gc_count_before_ret);
 522 
 523   // Second-level mutator allocation attempt: take the Heap_lock and
 524   // retry the allocation attempt, potentially scheduling a GC
 525   // pause. This should only be used for non-humongous allocations.
 526   HeapWord* attempt_allocation_slow(size_t word_size,
 527                                     unsigned int* gc_count_before_ret);
 528 
 529   // Takes the Heap_lock and attempts a humongous allocation. It can
 530   // potentially schedule a GC pause.
 531   HeapWord* attempt_allocation_humongous(size_t word_size,
 532                                          unsigned int* gc_count_before_ret);
 533 
 534   // Allocation attempt that should be called during safepoints (e.g.,
 535   // at the end of a successful GC). expect_null_mutator_alloc_region
 536   // specifies whether the mutator alloc region is expected to be NULL
 537   // or not.
 538   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 539                                        bool expect_null_mutator_alloc_region);
 540 
 541   // It dirties the cards that cover the block so that so that the post
 542   // write barrier never queues anything when updating objects on this
 543   // block. It is assumed (and in fact we assert) that the block
 544   // belongs to a young region.
 545   inline void dirty_young_block(HeapWord* start, size_t word_size);
 546 
 547   // Allocate blocks during garbage collection. Will ensure an
 548   // allocation region, either by picking one or expanding the
 549   // heap, and then allocate a block of the given size. The block
 550   // may not be a humongous - it must fit into a single heap region.
 551   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
 552 
 553   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
 554                                     HeapRegion*    alloc_region,
 555                                     bool           par,
 556                                     size_t         word_size);
 557 
 558   // Ensure that no further allocations can happen in "r", bearing in mind
 559   // that parallel threads might be attempting allocations.
 560   void par_allocate_remaining_space(HeapRegion* r);
 561 
 562   // Allocation attempt during GC for a survivor object / PLAB.
 563   inline HeapWord* survivor_attempt_allocation(size_t word_size);
 564 
 565   // Allocation attempt during GC for an old object / PLAB.
 566   inline HeapWord* old_attempt_allocation(size_t word_size);
 567 
 568   // These methods are the "callbacks" from the G1AllocRegion class.
 569 
 570   // For mutator alloc regions.
 571   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 572   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 573                                    size_t allocated_bytes);
 574 
 575   // For GC alloc regions.
 576   HeapRegion* new_gc_alloc_region(size_t word_size, size_t count,
 577                                   GCAllocPurpose ap);
 578   void retire_gc_alloc_region(HeapRegion* alloc_region,
 579                               size_t allocated_bytes, GCAllocPurpose ap);
 580 
 581   // - if explicit_gc is true, the GC is for a System.gc() or a heap
 582   //   inspection request and should collect the entire heap
 583   // - if clear_all_soft_refs is true, all soft references should be
 584   //   cleared during the GC
 585   // - if explicit_gc is false, word_size describes the allocation that
 586   //   the GC should attempt (at least) to satisfy
 587   // - it returns false if it is unable to do the collection due to the
 588   //   GC locker being active, true otherwise
 589   bool do_collection(bool explicit_gc,
 590                      bool clear_all_soft_refs,
 591                      size_t word_size);
 592 
 593   // Callback from VM_G1CollectFull operation.
 594   // Perform a full collection.
 595   void do_full_collection(bool clear_all_soft_refs);
 596 
 597   // Resize the heap if necessary after a full collection.  If this is
 598   // after a collect-for allocation, "word_size" is the allocation size,
 599   // and will be considered part of the used portion of the heap.
 600   void resize_if_necessary_after_full_collection(size_t word_size);
 601 
 602   // Callback from VM_G1CollectForAllocation operation.
 603   // This function does everything necessary/possible to satisfy a
 604   // failed allocation request (including collection, expansion, etc.)
 605   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
 606 
 607   // Attempting to expand the heap sufficiently
 608   // to support an allocation of the given "word_size".  If
 609   // successful, perform the allocation and return the address of the
 610   // allocated block, or else "NULL".
 611   HeapWord* expand_and_allocate(size_t word_size);
 612 
 613   // Process any reference objects discovered during
 614   // an incremental evacuation pause.
 615   void process_discovered_references();
 616 
 617   // Enqueue any remaining discovered references
 618   // after processing.
 619   void enqueue_discovered_references();
 620 
 621 public:
 622 
 623   G1MonitoringSupport* g1mm() {
 624     assert(_g1mm != NULL, "should have been initialized");
 625     return _g1mm;
 626   }
 627 
 628   // Expand the garbage-first heap by at least the given size (in bytes!).
 629   // Returns true if the heap was expanded by the requested amount;
 630   // false otherwise.
 631   // (Rounds up to a HeapRegion boundary.)
 632   bool expand(size_t expand_bytes);
 633 
 634   // Do anything common to GC's.
 635   virtual void gc_prologue(bool full);
 636   virtual void gc_epilogue(bool full);
 637 
 638   // We register a region with the fast "in collection set" test. We
 639   // simply set to true the array slot corresponding to this region.
 640   void register_region_with_in_cset_fast_test(HeapRegion* r) {
 641     assert(_in_cset_fast_test_base != NULL, "sanity");
 642     assert(r->in_collection_set(), "invariant");
 643     size_t index = r->hrs_index();
 644     assert(index < _in_cset_fast_test_length, "invariant");
 645     assert(!_in_cset_fast_test_base[index], "invariant");
 646     _in_cset_fast_test_base[index] = true;
 647   }
 648 
 649   // This is a fast test on whether a reference points into the
 650   // collection set or not. It does not assume that the reference
 651   // points into the heap; if it doesn't, it will return false.
 652   bool in_cset_fast_test(oop obj) {
 653     assert(_in_cset_fast_test != NULL, "sanity");
 654     if (_g1_committed.contains((HeapWord*) obj)) {
 655       // no need to subtract the bottom of the heap from obj,
 656       // _in_cset_fast_test is biased
 657       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
 658       bool ret = _in_cset_fast_test[index];
 659       // let's make sure the result is consistent with what the slower
 660       // test returns
 661       assert( ret || !obj_in_cs(obj), "sanity");
 662       assert(!ret ||  obj_in_cs(obj), "sanity");
 663       return ret;
 664     } else {
 665       return false;
 666     }
 667   }
 668 
 669   void clear_cset_fast_test() {
 670     assert(_in_cset_fast_test_base != NULL, "sanity");
 671     memset(_in_cset_fast_test_base, false,
 672         _in_cset_fast_test_length * sizeof(bool));
 673   }
 674 
 675   // This is called at the end of either a concurrent cycle or a Full
 676   // GC to update the number of full collections completed. Those two
 677   // can happen in a nested fashion, i.e., we start a concurrent
 678   // cycle, a Full GC happens half-way through it which ends first,
 679   // and then the cycle notices that a Full GC happened and ends
 680   // too. The concurrent parameter is a boolean to help us do a bit
 681   // tighter consistency checking in the method. If concurrent is
 682   // false, the caller is the inner caller in the nesting (i.e., the
 683   // Full GC). If concurrent is true, the caller is the outer caller
 684   // in this nesting (i.e., the concurrent cycle). Further nesting is
 685   // not currently supported. The end of the this call also notifies
 686   // the FullGCCount_lock in case a Java thread is waiting for a full
 687   // GC to happen (e.g., it called System.gc() with
 688   // +ExplicitGCInvokesConcurrent).
 689   void increment_full_collections_completed(bool concurrent);
 690 
 691   unsigned int full_collections_completed() {
 692     return _full_collections_completed;
 693   }
 694 
 695   G1HRPrinter* hr_printer() { return &_hr_printer; }
 696 
 697 protected:
 698 
 699   // Shrink the garbage-first heap by at most the given size (in bytes!).
 700   // (Rounds down to a HeapRegion boundary.)
 701   virtual void shrink(size_t expand_bytes);
 702   void shrink_helper(size_t expand_bytes);
 703 
 704   #if TASKQUEUE_STATS
 705   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 706   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 707   void reset_taskqueue_stats();
 708   #endif // TASKQUEUE_STATS
 709 
 710   // Schedule the VM operation that will do an evacuation pause to
 711   // satisfy an allocation request of word_size. *succeeded will
 712   // return whether the VM operation was successful (it did do an
 713   // evacuation pause) or not (another thread beat us to it or the GC
 714   // locker was active). Given that we should not be holding the
 715   // Heap_lock when we enter this method, we will pass the
 716   // gc_count_before (i.e., total_collections()) as a parameter since
 717   // it has to be read while holding the Heap_lock. Currently, both
 718   // methods that call do_collection_pause() release the Heap_lock
 719   // before the call, so it's easy to read gc_count_before just before.
 720   HeapWord* do_collection_pause(size_t       word_size,
 721                                 unsigned int gc_count_before,
 722                                 bool*        succeeded);
 723 
 724   // The guts of the incremental collection pause, executed by the vm
 725   // thread. It returns false if it is unable to do the collection due
 726   // to the GC locker being active, true otherwise
 727   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 728 
 729   // Actually do the work of evacuating the collection set.
 730   void evacuate_collection_set();
 731 
 732   // The g1 remembered set of the heap.
 733   G1RemSet* _g1_rem_set;
 734   // And it's mod ref barrier set, used to track updates for the above.
 735   ModRefBarrierSet* _mr_bs;
 736 
 737   // A set of cards that cover the objects for which the Rsets should be updated
 738   // concurrently after the collection.
 739   DirtyCardQueueSet _dirty_card_queue_set;
 740 
 741   // The Heap Region Rem Set Iterator.
 742   HeapRegionRemSetIterator** _rem_set_iterator;
 743 
 744   // The closure used to refine a single card.
 745   RefineCardTableEntryClosure* _refine_cte_cl;
 746 
 747   // A function to check the consistency of dirty card logs.
 748   void check_ct_logs_at_safepoint();
 749 
 750   // A DirtyCardQueueSet that is used to hold cards that contain
 751   // references into the current collection set. This is used to
 752   // update the remembered sets of the regions in the collection
 753   // set in the event of an evacuation failure.
 754   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
 755 
 756   // After a collection pause, make the regions in the CS into free
 757   // regions.
 758   void free_collection_set(HeapRegion* cs_head);
 759 
 760   // Abandon the current collection set without recording policy
 761   // statistics or updating free lists.
 762   void abandon_collection_set(HeapRegion* cs_head);
 763 
 764   // Applies "scan_non_heap_roots" to roots outside the heap,
 765   // "scan_rs" to roots inside the heap (having done "set_region" to
 766   // indicate the region in which the root resides), and does "scan_perm"
 767   // (setting the generation to the perm generation.)  If "scan_rs" is
 768   // NULL, then this step is skipped.  The "worker_i"
 769   // param is for use with parallel roots processing, and should be
 770   // the "i" of the calling parallel worker thread's work(i) function.
 771   // In the sequential case this param will be ignored.
 772   void g1_process_strong_roots(bool collecting_perm_gen,
 773                                SharedHeap::ScanningOption so,
 774                                OopClosure* scan_non_heap_roots,
 775                                OopsInHeapRegionClosure* scan_rs,
 776                                OopsInGenClosure* scan_perm,
 777                                int worker_i);
 778 
 779   // Apply "blk" to all the weak roots of the system.  These include
 780   // JNI weak roots, the code cache, system dictionary, symbol table,
 781   // string table, and referents of reachable weak refs.
 782   void g1_process_weak_roots(OopClosure* root_closure,
 783                              OopClosure* non_root_closure);
 784 
 785   // Frees a non-humongous region by initializing its contents and
 786   // adding it to the free list that's passed as a parameter (this is
 787   // usually a local list which will be appended to the master free
 788   // list later). The used bytes of freed regions are accumulated in
 789   // pre_used. If par is true, the region's RSet will not be freed
 790   // up. The assumption is that this will be done later.
 791   void free_region(HeapRegion* hr,
 792                    size_t* pre_used,
 793                    FreeRegionList* free_list,
 794                    bool par);
 795 
 796   // Frees a humongous region by collapsing it into individual regions
 797   // and calling free_region() for each of them. The freed regions
 798   // will be added to the free list that's passed as a parameter (this
 799   // is usually a local list which will be appended to the master free
 800   // list later). The used bytes of freed regions are accumulated in
 801   // pre_used. If par is true, the region's RSet will not be freed
 802   // up. The assumption is that this will be done later.
 803   void free_humongous_region(HeapRegion* hr,
 804                              size_t* pre_used,
 805                              FreeRegionList* free_list,
 806                              HumongousRegionSet* humongous_proxy_set,
 807                              bool par);
 808 
 809   // Notifies all the necessary spaces that the committed space has
 810   // been updated (either expanded or shrunk). It should be called
 811   // after _g1_storage is updated.
 812   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
 813 
 814   // The concurrent marker (and the thread it runs in.)
 815   ConcurrentMark* _cm;
 816   ConcurrentMarkThread* _cmThread;
 817   bool _mark_in_progress;
 818 
 819   // The concurrent refiner.
 820   ConcurrentG1Refine* _cg1r;
 821 
 822   // The parallel task queues
 823   RefToScanQueueSet *_task_queues;
 824 
 825   // True iff a evacuation has failed in the current collection.
 826   bool _evacuation_failed;
 827 
 828   // Set the attribute indicating whether evacuation has failed in the
 829   // current collection.
 830   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
 831 
 832   // Failed evacuations cause some logical from-space objects to have
 833   // forwarding pointers to themselves.  Reset them.
 834   void remove_self_forwarding_pointers();
 835 
 836   // When one is non-null, so is the other.  Together, they each pair is
 837   // an object with a preserved mark, and its mark value.
 838   GrowableArray<oop>*     _objs_with_preserved_marks;
 839   GrowableArray<markOop>* _preserved_marks_of_objs;
 840 
 841   // Preserve the mark of "obj", if necessary, in preparation for its mark
 842   // word being overwritten with a self-forwarding-pointer.
 843   void preserve_mark_if_necessary(oop obj, markOop m);
 844 
 845   // The stack of evac-failure objects left to be scanned.
 846   GrowableArray<oop>*    _evac_failure_scan_stack;
 847   // The closure to apply to evac-failure objects.
 848 
 849   OopsInHeapRegionClosure* _evac_failure_closure;
 850   // Set the field above.
 851   void
 852   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
 853     _evac_failure_closure = evac_failure_closure;
 854   }
 855 
 856   // Push "obj" on the scan stack.
 857   void push_on_evac_failure_scan_stack(oop obj);
 858   // Process scan stack entries until the stack is empty.
 859   void drain_evac_failure_scan_stack();
 860   // True iff an invocation of "drain_scan_stack" is in progress; to
 861   // prevent unnecessary recursion.
 862   bool _drain_in_progress;
 863 
 864   // Do any necessary initialization for evacuation-failure handling.
 865   // "cl" is the closure that will be used to process evac-failure
 866   // objects.
 867   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
 868   // Do any necessary cleanup for evacuation-failure handling data
 869   // structures.
 870   void finalize_for_evac_failure();
 871 
 872   // An attempt to evacuate "obj" has failed; take necessary steps.
 873   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
 874   void handle_evacuation_failure_common(oop obj, markOop m);
 875 
 876   // ("Weak") Reference processing support.
 877   //
 878   // G1 has 2 instances of the referece processor class. One
 879   // (_ref_processor_cm) handles reference object discovery
 880   // and subsequent processing during concurrent marking cycles.
 881   //
 882   // The other (_ref_processor_stw) handles reference object
 883   // discovery and processing during full GCs and incremental
 884   // evacuation pauses.
 885   //
 886   // During an incremental pause, reference discovery will be
 887   // temporarily disabled for _ref_processor_cm and will be
 888   // enabled for _ref_processor_stw. At the end of the evacuation
 889   // pause references discovered by _ref_processor_stw will be
 890   // processed and discovery will be disabled. The previous
 891   // setting for reference object discovery for _ref_processor_cm
 892   // will be re-instated.
 893   //
 894   // At the start of marking:
 895   //  * Discovery by the CM ref processor is verified to be inactive
 896   //    and it's discovered lists are empty.
 897   //  * Discovery by the CM ref processor is then enabled.
 898   //
 899   // At the end of marking:
 900   //  * Any references on the CM ref processor's discovered
 901   //    lists are processed (possibly MT).
 902   //
 903   // At the start of full GC we:
 904   //  * Disable discovery by the CM ref processor and
 905   //    empty CM ref processor's discovered lists
 906   //    (without processing any entries).
 907   //  * Verify that the STW ref processor is inactive and it's
 908   //    discovered lists are empty.
 909   //  * Temporarily set STW ref processor discovery as single threaded.
 910   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 911   //    field.
 912   //  * Finally enable discovery by the STW ref processor.
 913   //
 914   // The STW ref processor is used to record any discovered
 915   // references during the full GC.
 916   //
 917   // At the end of a full GC we:
 918   //  * Enqueue any reference objects discovered by the STW ref processor
 919   //    that have non-live referents. This has the side-effect of
 920   //    making the STW ref processor inactive by disabling discovery.
 921   //  * Verify that the CM ref processor is still inactive
 922   //    and no references have been placed on it's discovered
 923   //    lists (also checked as a precondition during initial marking).
 924 
 925   // The (stw) reference processor...
 926   ReferenceProcessor* _ref_processor_stw;
 927 
 928   // During reference object discovery, the _is_alive_non_header
 929   // closure (if non-null) is applied to the referent object to
 930   // determine whether the referent is live. If so then the
 931   // reference object does not need to be 'discovered' and can
 932   // be treated as a regular oop. This has the benefit of reducing
 933   // the number of 'discovered' reference objects that need to
 934   // be processed.
 935   //
 936   // Instance of the is_alive closure for embedding into the
 937   // STW reference processor as the _is_alive_non_header field.
 938   // Supplying a value for the _is_alive_non_header field is
 939   // optional but doing so prevents unnecessary additions to
 940   // the discovered lists during reference discovery.
 941   G1STWIsAliveClosure _is_alive_closure_stw;
 942 
 943   // The (concurrent marking) reference processor...
 944   ReferenceProcessor* _ref_processor_cm;
 945 
 946   // Instance of the concurrent mark is_alive closure for embedding
 947   // into the Concurrent Marking reference processor as the
 948   // _is_alive_non_header field. Supplying a value for the
 949   // _is_alive_non_header field is optional but doing so prevents
 950   // unnecessary additions to the discovered lists during reference
 951   // discovery.
 952   G1CMIsAliveClosure _is_alive_closure_cm;
 953 
 954   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
 955   HeapRegion** _worker_cset_start_region;
 956 
 957   // Time stamp to validate the regions recorded in the cache
 958   // used by G1CollectedHeap::start_cset_region_for_worker().
 959   // The heap region entry for a given worker is valid iff
 960   // the associated time stamp value matches the current value
 961   // of G1CollectedHeap::_gc_time_stamp.
 962   unsigned int* _worker_cset_start_region_time_stamp;
 963 
 964   enum G1H_process_strong_roots_tasks {
 965     G1H_PS_filter_satb_buffers,
 966     G1H_PS_refProcessor_oops_do,
 967     // Leave this one last.
 968     G1H_PS_NumElements
 969   };
 970 
 971   SubTasksDone* _process_strong_tasks;
 972 
 973   volatile bool _free_regions_coming;
 974 
 975 public:
 976 
 977   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
 978 
 979   void set_refine_cte_cl_concurrency(bool concurrent);
 980 
 981   RefToScanQueue *task_queue(int i) const;
 982 
 983   // A set of cards where updates happened during the GC
 984   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 985 
 986   // A DirtyCardQueueSet that is used to hold cards that contain
 987   // references into the current collection set. This is used to
 988   // update the remembered sets of the regions in the collection
 989   // set in the event of an evacuation failure.
 990   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
 991         { return _into_cset_dirty_card_queue_set; }
 992 
 993   // Create a G1CollectedHeap with the specified policy.
 994   // Must call the initialize method afterwards.
 995   // May not return if something goes wrong.
 996   G1CollectedHeap(G1CollectorPolicy* policy);
 997 
 998   // Initialize the G1CollectedHeap to have the initial and
 999   // maximum sizes, permanent generation, and remembered and barrier sets
1000   // specified by the policy object.
1001   jint initialize();
1002 
1003   // Initialize weak reference processing.
1004   virtual void ref_processing_init();
1005 
1006   void set_par_threads(uint t) {
1007     SharedHeap::set_par_threads(t);
1008     // Done in SharedHeap but oddly there are
1009     // two _process_strong_tasks's in a G1CollectedHeap
1010     // so do it here too.
1011     _process_strong_tasks->set_n_threads(t);
1012   }
1013 
1014   // Set _n_par_threads according to a policy TBD.
1015   void set_par_threads();
1016 
1017   void set_n_termination(int t) {
1018     _process_strong_tasks->set_n_threads(t);
1019   }
1020 
1021   virtual CollectedHeap::Name kind() const {
1022     return CollectedHeap::G1CollectedHeap;
1023   }
1024 
1025   // The current policy object for the collector.
1026   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
1027 
1028   // Adaptive size policy.  No such thing for g1.
1029   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1030 
1031   // The rem set and barrier set.
1032   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1033   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
1034 
1035   // The rem set iterator.
1036   HeapRegionRemSetIterator* rem_set_iterator(int i) {
1037     return _rem_set_iterator[i];
1038   }
1039 
1040   HeapRegionRemSetIterator* rem_set_iterator() {
1041     return _rem_set_iterator[0];
1042   }
1043 
1044   unsigned get_gc_time_stamp() {
1045     return _gc_time_stamp;
1046   }
1047 
1048   void reset_gc_time_stamp() {
1049     _gc_time_stamp = 0;
1050     OrderAccess::fence();
1051     // Clear the cached CSet starting regions and time stamps.
1052     // Their validity is dependent on the GC timestamp.
1053     clear_cset_start_regions();
1054   }
1055 
1056   void increment_gc_time_stamp() {
1057     ++_gc_time_stamp;
1058     OrderAccess::fence();
1059   }
1060 
1061   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
1062                                   DirtyCardQueue* into_cset_dcq,
1063                                   bool concurrent, int worker_i);
1064 
1065   // The shared block offset table array.
1066   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
1067 
1068   // Reference Processing accessors
1069 
1070   // The STW reference processor....
1071   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1072 
1073   // The Concurent Marking reference processor...
1074   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1075 
1076   virtual size_t capacity() const;
1077   virtual size_t used() const;
1078   // This should be called when we're not holding the heap lock. The
1079   // result might be a bit inaccurate.
1080   size_t used_unlocked() const;
1081   size_t recalculate_used() const;
1082 
1083   // These virtual functions do the actual allocation.
1084   // Some heaps may offer a contiguous region for shared non-blocking
1085   // allocation, via inlined code (by exporting the address of the top and
1086   // end fields defining the extent of the contiguous allocation region.)
1087   // But G1CollectedHeap doesn't yet support this.
1088 
1089   // Return an estimate of the maximum allocation that could be performed
1090   // without triggering any collection or expansion activity.  In a
1091   // generational collector, for example, this is probably the largest
1092   // allocation that could be supported (without expansion) in the youngest
1093   // generation.  It is "unsafe" because no locks are taken; the result
1094   // should be treated as an approximation, not a guarantee, for use in
1095   // heuristic resizing decisions.
1096   virtual size_t unsafe_max_alloc();
1097 
1098   virtual bool is_maximal_no_gc() const {
1099     return _g1_storage.uncommitted_size() == 0;
1100   }
1101 
1102   // The total number of regions in the heap.
1103   size_t n_regions() { return _hrs.length(); }
1104 
1105   // The max number of regions in the heap.
1106   size_t max_regions() { return _hrs.max_length(); }
1107 
1108   // The number of regions that are completely free.
1109   size_t free_regions() { return _free_list.length(); }
1110 
1111   // The number of regions that are not completely free.
1112   size_t used_regions() { return n_regions() - free_regions(); }
1113 
1114   // The number of regions available for "regular" expansion.
1115   size_t expansion_regions() { return _expansion_regions; }
1116 
1117   // Factory method for HeapRegion instances. It will return NULL if
1118   // the allocation fails.
1119   HeapRegion* new_heap_region(size_t hrs_index, HeapWord* bottom);
1120 
1121   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1122   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1123   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
1124   void verify_dirty_young_regions() PRODUCT_RETURN;
1125 
1126   // verify_region_sets() performs verification over the region
1127   // lists. It will be compiled in the product code to be used when
1128   // necessary (i.e., during heap verification).
1129   void verify_region_sets();
1130 
1131   // verify_region_sets_optional() is planted in the code for
1132   // list verification in non-product builds (and it can be enabled in
1133   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
1134 #if HEAP_REGION_SET_FORCE_VERIFY
1135   void verify_region_sets_optional() {
1136     verify_region_sets();
1137   }
1138 #else // HEAP_REGION_SET_FORCE_VERIFY
1139   void verify_region_sets_optional() { }
1140 #endif // HEAP_REGION_SET_FORCE_VERIFY
1141 
1142 #ifdef ASSERT
1143   bool is_on_master_free_list(HeapRegion* hr) {
1144     return hr->containing_set() == &_free_list;
1145   }
1146 
1147   bool is_in_humongous_set(HeapRegion* hr) {
1148     return hr->containing_set() == &_humongous_set;
1149   }
1150 #endif // ASSERT
1151 
1152   // Wrapper for the region list operations that can be called from
1153   // methods outside this class.
1154 
1155   void secondary_free_list_add_as_tail(FreeRegionList* list) {
1156     _secondary_free_list.add_as_tail(list);
1157   }
1158 
1159   void append_secondary_free_list() {
1160     _free_list.add_as_head(&_secondary_free_list);
1161   }
1162 
1163   void append_secondary_free_list_if_not_empty_with_lock() {
1164     // If the secondary free list looks empty there's no reason to
1165     // take the lock and then try to append it.
1166     if (!_secondary_free_list.is_empty()) {
1167       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1168       append_secondary_free_list();
1169     }
1170   }
1171 
1172   void old_set_remove(HeapRegion* hr) {
1173     _old_set.remove(hr);
1174   }
1175 
1176   size_t non_young_capacity_bytes() {
1177     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
1178   }
1179 
1180   void set_free_regions_coming();
1181   void reset_free_regions_coming();
1182   bool free_regions_coming() { return _free_regions_coming; }
1183   void wait_while_free_regions_coming();
1184 
1185   // Perform a collection of the heap; intended for use in implementing
1186   // "System.gc".  This probably implies as full a collection as the
1187   // "CollectedHeap" supports.
1188   virtual void collect(GCCause::Cause cause);
1189 
1190   // The same as above but assume that the caller holds the Heap_lock.
1191   void collect_locked(GCCause::Cause cause);
1192 
1193   // This interface assumes that it's being called by the
1194   // vm thread. It collects the heap assuming that the
1195   // heap lock is already held and that we are executing in
1196   // the context of the vm thread.
1197   virtual void collect_as_vm_thread(GCCause::Cause cause);
1198 
1199   // True iff a evacuation has failed in the most-recent collection.
1200   bool evacuation_failed() { return _evacuation_failed; }
1201 
1202   // It will free a region if it has allocated objects in it that are
1203   // all dead. It calls either free_region() or
1204   // free_humongous_region() depending on the type of the region that
1205   // is passed to it.
1206   void free_region_if_empty(HeapRegion* hr,
1207                             size_t* pre_used,
1208                             FreeRegionList* free_list,
1209                             OldRegionSet* old_proxy_set,
1210                             HumongousRegionSet* humongous_proxy_set,
1211                             HRRSCleanupTask* hrrs_cleanup_task,
1212                             bool par);
1213 
1214   // It appends the free list to the master free list and updates the
1215   // master humongous list according to the contents of the proxy
1216   // list. It also adjusts the total used bytes according to pre_used
1217   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
1218   void update_sets_after_freeing_regions(size_t pre_used,
1219                                        FreeRegionList* free_list,
1220                                        OldRegionSet* old_proxy_set,
1221                                        HumongousRegionSet* humongous_proxy_set,
1222                                        bool par);
1223 
1224   // Returns "TRUE" iff "p" points into the committed areas of the heap.
1225   virtual bool is_in(const void* p) const;
1226 
1227   // Return "TRUE" iff the given object address is within the collection
1228   // set.
1229   inline bool obj_in_cs(oop obj);
1230 
1231   // Return "TRUE" iff the given object address is in the reserved
1232   // region of g1 (excluding the permanent generation).
1233   bool is_in_g1_reserved(const void* p) const {
1234     return _g1_reserved.contains(p);
1235   }
1236 
1237   // Returns a MemRegion that corresponds to the space that has been
1238   // reserved for the heap
1239   MemRegion g1_reserved() {
1240     return _g1_reserved;
1241   }
1242 
1243   // Returns a MemRegion that corresponds to the space that has been
1244   // committed in the heap
1245   MemRegion g1_committed() {
1246     return _g1_committed;
1247   }
1248 
1249   virtual bool is_in_closed_subset(const void* p) const;
1250 
1251   // This resets the card table to all zeros.  It is used after
1252   // a collection pause which used the card table to claim cards.
1253   void cleanUpCardTable();
1254 
1255   // Iteration functions.
1256 
1257   // Iterate over all the ref-containing fields of all objects, calling
1258   // "cl.do_oop" on each.
1259   virtual void oop_iterate(OopClosure* cl) {
1260     oop_iterate(cl, true);
1261   }
1262   void oop_iterate(OopClosure* cl, bool do_perm);
1263 
1264   // Same as above, restricted to a memory region.
1265   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
1266     oop_iterate(mr, cl, true);
1267   }
1268   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
1269 
1270   // Iterate over all objects, calling "cl.do_object" on each.
1271   virtual void object_iterate(ObjectClosure* cl) {
1272     object_iterate(cl, true);
1273   }
1274   virtual void safe_object_iterate(ObjectClosure* cl) {
1275     object_iterate(cl, true);
1276   }
1277   void object_iterate(ObjectClosure* cl, bool do_perm);
1278 
1279   // Iterate over all objects allocated since the last collection, calling
1280   // "cl.do_object" on each.  The heap must have been initialized properly
1281   // to support this function, or else this call will fail.
1282   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
1283 
1284   // Iterate over all spaces in use in the heap, in ascending address order.
1285   virtual void space_iterate(SpaceClosure* cl);
1286 
1287   // Iterate over heap regions, in address order, terminating the
1288   // iteration early if the "doHeapRegion" method returns "true".
1289   void heap_region_iterate(HeapRegionClosure* blk) const;
1290 
1291   // Iterate over heap regions starting with r (or the first region if "r"
1292   // is NULL), in address order, terminating early if the "doHeapRegion"
1293   // method returns "true".
1294   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk) const;
1295 
1296   // Return the region with the given index. It assumes the index is valid.
1297   HeapRegion* region_at(size_t index) const { return _hrs.at(index); }
1298 
1299   // Divide the heap region sequence into "chunks" of some size (the number
1300   // of regions divided by the number of parallel threads times some
1301   // overpartition factor, currently 4).  Assumes that this will be called
1302   // in parallel by ParallelGCThreads worker threads with discinct worker
1303   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
1304   // calls will use the same "claim_value", and that that claim value is
1305   // different from the claim_value of any heap region before the start of
1306   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
1307   // attempting to claim the first region in each chunk, and, if
1308   // successful, applying the closure to each region in the chunk (and
1309   // setting the claim value of the second and subsequent regions of the
1310   // chunk.)  For now requires that "doHeapRegion" always returns "false",
1311   // i.e., that a closure never attempt to abort a traversal.
1312   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
1313                                        uint worker,
1314                                        uint no_of_par_workers,
1315                                        jint claim_value);
1316 
1317   // It resets all the region claim values to the default.
1318   void reset_heap_region_claim_values();
1319 
1320   // Resets the claim values of regions in the current
1321   // collection set to the default.
1322   void reset_cset_heap_region_claim_values();
1323 
1324 #ifdef ASSERT
1325   bool check_heap_region_claim_values(jint claim_value);
1326 
1327   // Same as the routine above but only checks regions in the
1328   // current collection set.
1329   bool check_cset_heap_region_claim_values(jint claim_value);
1330 #endif // ASSERT
1331 
1332   // Clear the cached cset start regions and (more importantly)
1333   // the time stamps. Called when we reset the GC time stamp.
1334   void clear_cset_start_regions();
1335 
1336   // Given the id of a worker, obtain or calculate a suitable
1337   // starting region for iterating over the current collection set.
1338   HeapRegion* start_cset_region_for_worker(int worker_i);
1339 
1340   // Iterate over the regions (if any) in the current collection set.
1341   void collection_set_iterate(HeapRegionClosure* blk);
1342 
1343   // As above but starting from region r
1344   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1345 
1346   // Returns the first (lowest address) compactible space in the heap.
1347   virtual CompactibleSpace* first_compactible_space();
1348 
1349   // A CollectedHeap will contain some number of spaces.  This finds the
1350   // space containing a given address, or else returns NULL.
1351   virtual Space* space_containing(const void* addr) const;
1352 
1353   // A G1CollectedHeap will contain some number of heap regions.  This
1354   // finds the region containing a given address, or else returns NULL.
1355   template <class T>
1356   inline HeapRegion* heap_region_containing(const T addr) const;
1357 
1358   // Like the above, but requires "addr" to be in the heap (to avoid a
1359   // null-check), and unlike the above, may return an continuing humongous
1360   // region.
1361   template <class T>
1362   inline HeapRegion* heap_region_containing_raw(const T addr) const;
1363 
1364   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1365   // each address in the (reserved) heap is a member of exactly
1366   // one block.  The defining characteristic of a block is that it is
1367   // possible to find its size, and thus to progress forward to the next
1368   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1369   // represent Java objects, or they might be free blocks in a
1370   // free-list-based heap (or subheap), as long as the two kinds are
1371   // distinguishable and the size of each is determinable.
1372 
1373   // Returns the address of the start of the "block" that contains the
1374   // address "addr".  We say "blocks" instead of "object" since some heaps
1375   // may not pack objects densely; a chunk may either be an object or a
1376   // non-object.
1377   virtual HeapWord* block_start(const void* addr) const;
1378 
1379   // Requires "addr" to be the start of a chunk, and returns its size.
1380   // "addr + size" is required to be the start of a new chunk, or the end
1381   // of the active area of the heap.
1382   virtual size_t block_size(const HeapWord* addr) const;
1383 
1384   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1385   // the block is an object.
1386   virtual bool block_is_obj(const HeapWord* addr) const;
1387 
1388   // Does this heap support heap inspection? (+PrintClassHistogram)
1389   virtual bool supports_heap_inspection() const { return true; }
1390 
1391   // Section on thread-local allocation buffers (TLABs)
1392   // See CollectedHeap for semantics.
1393 
1394   virtual bool supports_tlab_allocation() const;
1395   virtual size_t tlab_capacity(Thread* thr) const;
1396   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
1397 
1398   // Can a compiler initialize a new object without store barriers?
1399   // This permission only extends from the creation of a new object
1400   // via a TLAB up to the first subsequent safepoint. If such permission
1401   // is granted for this heap type, the compiler promises to call
1402   // defer_store_barrier() below on any slow path allocation of
1403   // a new object for which such initializing store barriers will
1404   // have been elided. G1, like CMS, allows this, but should be
1405   // ready to provide a compensating write barrier as necessary
1406   // if that storage came out of a non-young region. The efficiency
1407   // of this implementation depends crucially on being able to
1408   // answer very efficiently in constant time whether a piece of
1409   // storage in the heap comes from a young region or not.
1410   // See ReduceInitialCardMarks.
1411   virtual bool can_elide_tlab_store_barriers() const {
1412     return true;
1413   }
1414 
1415   virtual bool card_mark_must_follow_store() const {
1416     return true;
1417   }
1418 
1419   bool is_in_young(const oop obj) {
1420     HeapRegion* hr = heap_region_containing(obj);
1421     return hr != NULL && hr->is_young();
1422   }
1423 
1424 #ifdef ASSERT
1425   virtual bool is_in_partial_collection(const void* p);
1426 #endif
1427 
1428   virtual bool is_scavengable(const void* addr);
1429 
1430   // We don't need barriers for initializing stores to objects
1431   // in the young gen: for the SATB pre-barrier, there is no
1432   // pre-value that needs to be remembered; for the remembered-set
1433   // update logging post-barrier, we don't maintain remembered set
1434   // information for young gen objects.
1435   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
1436     return is_in_young(new_obj);
1437   }
1438 
1439   // Can a compiler elide a store barrier when it writes
1440   // a permanent oop into the heap?  Applies when the compiler
1441   // is storing x to the heap, where x->is_perm() is true.
1442   virtual bool can_elide_permanent_oop_store_barriers() const {
1443     // At least until perm gen collection is also G1-ified, at
1444     // which point this should return false.
1445     return true;
1446   }
1447 
1448   // Returns "true" iff the given word_size is "very large".
1449   static bool isHumongous(size_t word_size) {
1450     // Note this has to be strictly greater-than as the TLABs
1451     // are capped at the humongous thresold and we want to
1452     // ensure that we don't try to allocate a TLAB as
1453     // humongous and that we don't allocate a humongous
1454     // object in a TLAB.
1455     return word_size > _humongous_object_threshold_in_words;
1456   }
1457 
1458   // Update mod union table with the set of dirty cards.
1459   void updateModUnion();
1460 
1461   // Set the mod union bits corresponding to the given memRegion.  Note
1462   // that this is always a safe operation, since it doesn't clear any
1463   // bits.
1464   void markModUnionRange(MemRegion mr);
1465 
1466   // Records the fact that a marking phase is no longer in progress.
1467   void set_marking_complete() {
1468     _mark_in_progress = false;
1469   }
1470   void set_marking_started() {
1471     _mark_in_progress = true;
1472   }
1473   bool mark_in_progress() {
1474     return _mark_in_progress;
1475   }
1476 
1477   // Print the maximum heap capacity.
1478   virtual size_t max_capacity() const;
1479 
1480   virtual jlong millis_since_last_gc();
1481 
1482   // Perform any cleanup actions necessary before allowing a verification.
1483   virtual void prepare_for_verify();
1484 
1485   // Perform verification.
1486 
1487   // vo == UsePrevMarking  -> use "prev" marking information,
1488   // vo == UseNextMarking -> use "next" marking information
1489   // vo == UseMarkWord    -> use the mark word in the object header
1490   //
1491   // NOTE: Only the "prev" marking information is guaranteed to be
1492   // consistent most of the time, so most calls to this should use
1493   // vo == UsePrevMarking.
1494   // Currently, there is only one case where this is called with
1495   // vo == UseNextMarking, which is to verify the "next" marking
1496   // information at the end of remark.
1497   // Currently there is only one place where this is called with
1498   // vo == UseMarkWord, which is to verify the marking during a
1499   // full GC.
1500   void verify(bool allow_dirty, bool silent, VerifyOption vo);
1501 
1502   // Override; it uses the "prev" marking information
1503   virtual void verify(bool allow_dirty, bool silent);
1504   virtual void print_on(outputStream* st) const;
1505   virtual void print_extended_on(outputStream* st) const;
1506 
1507   virtual void print_gc_threads_on(outputStream* st) const;
1508   virtual void gc_threads_do(ThreadClosure* tc) const;
1509 
1510   // Override
1511   void print_tracing_info() const;
1512 
1513   // The following two methods are helpful for debugging RSet issues.
1514   void print_cset_rsets() PRODUCT_RETURN;
1515   void print_all_rsets() PRODUCT_RETURN;
1516 
1517   // Convenience function to be used in situations where the heap type can be
1518   // asserted to be this type.
1519   static G1CollectedHeap* heap();
1520 
1521   void set_region_short_lived_locked(HeapRegion* hr);
1522   // add appropriate methods for any other surv rate groups
1523 
1524   YoungList* young_list() { return _young_list; }
1525 
1526   // debugging
1527   bool check_young_list_well_formed() {
1528     return _young_list->check_list_well_formed();
1529   }
1530 
1531   bool check_young_list_empty(bool check_heap,
1532                               bool check_sample = true);
1533 
1534   // *** Stuff related to concurrent marking.  It's not clear to me that so
1535   // many of these need to be public.
1536 
1537   // The functions below are helper functions that a subclass of
1538   // "CollectedHeap" can use in the implementation of its virtual
1539   // functions.
1540   // This performs a concurrent marking of the live objects in a
1541   // bitmap off to the side.
1542   void doConcurrentMark();
1543 
1544   bool isMarkedPrev(oop obj) const;
1545   bool isMarkedNext(oop obj) const;
1546 
1547   // vo == UsePrevMarking -> use "prev" marking information,
1548   // vo == UseNextMarking -> use "next" marking information,
1549   // vo == UseMarkWord    -> use mark word from object header
1550   bool is_obj_dead_cond(const oop obj,
1551                         const HeapRegion* hr,
1552                         const VerifyOption vo) const {
1553 
1554     switch (vo) {
1555       case VerifyOption_G1UsePrevMarking:
1556         return is_obj_dead(obj, hr);
1557       case VerifyOption_G1UseNextMarking:
1558         return is_obj_ill(obj, hr);
1559       default:
1560         assert(vo == VerifyOption_G1UseMarkWord, "must be");
1561         return !obj->is_gc_marked();
1562     }
1563   }
1564 
1565   // Determine if an object is dead, given the object and also
1566   // the region to which the object belongs. An object is dead
1567   // iff a) it was not allocated since the last mark and b) it
1568   // is not marked.
1569 
1570   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1571     return
1572       !hr->obj_allocated_since_prev_marking(obj) &&
1573       !isMarkedPrev(obj);
1574   }
1575 
1576   // This is used when copying an object to survivor space.
1577   // If the object is marked live, then we mark the copy live.
1578   // If the object is allocated since the start of this mark
1579   // cycle, then we mark the copy live.
1580   // If the object has been around since the previous mark
1581   // phase, and hasn't been marked yet during this phase,
1582   // then we don't mark it, we just wait for the
1583   // current marking cycle to get to it.
1584 
1585   // This function returns true when an object has been
1586   // around since the previous marking and hasn't yet
1587   // been marked during this marking.
1588 
1589   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1590     return
1591       !hr->obj_allocated_since_next_marking(obj) &&
1592       !isMarkedNext(obj);
1593   }
1594 
1595   // Determine if an object is dead, given only the object itself.
1596   // This will find the region to which the object belongs and
1597   // then call the region version of the same function.
1598 
1599   // Added if it is in permanent gen it isn't dead.
1600   // Added if it is NULL it isn't dead.
1601 
1602   // vo == UsePrevMarking -> use "prev" marking information,
1603   // vo == UseNextMarking -> use "next" marking information,
1604   // vo == UseMarkWord    -> use mark word from object header
1605   bool is_obj_dead_cond(const oop obj,
1606                         const VerifyOption vo) const {
1607 
1608     switch (vo) {
1609       case VerifyOption_G1UsePrevMarking:
1610         return is_obj_dead(obj);
1611       case VerifyOption_G1UseNextMarking:
1612         return is_obj_ill(obj);
1613       default:
1614         assert(vo == VerifyOption_G1UseMarkWord, "must be");
1615         return !obj->is_gc_marked();
1616     }
1617   }
1618 
1619   bool is_obj_dead(const oop obj) const {
1620     const HeapRegion* hr = heap_region_containing(obj);
1621     if (hr == NULL) {
1622       if (Universe::heap()->is_in_permanent(obj))
1623         return false;
1624       else if (obj == NULL) return false;
1625       else return true;
1626     }
1627     else return is_obj_dead(obj, hr);
1628   }
1629 
1630   bool is_obj_ill(const oop obj) const {
1631     const HeapRegion* hr = heap_region_containing(obj);
1632     if (hr == NULL) {
1633       if (Universe::heap()->is_in_permanent(obj))
1634         return false;
1635       else if (obj == NULL) return false;
1636       else return true;
1637     }
1638     else return is_obj_ill(obj, hr);
1639   }
1640 
1641   // The following is just to alert the verification code
1642   // that a full collection has occurred and that the
1643   // remembered sets are no longer up to date.
1644   bool _full_collection;
1645   void set_full_collection() { _full_collection = true;}
1646   void clear_full_collection() {_full_collection = false;}
1647   bool full_collection() {return _full_collection;}
1648 
1649   ConcurrentMark* concurrent_mark() const { return _cm; }
1650   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1651 
1652   // The dirty cards region list is used to record a subset of regions
1653   // whose cards need clearing. The list if populated during the
1654   // remembered set scanning and drained during the card table
1655   // cleanup. Although the methods are reentrant, population/draining
1656   // phases must not overlap. For synchronization purposes the last
1657   // element on the list points to itself.
1658   HeapRegion* _dirty_cards_region_list;
1659   void push_dirty_cards_region(HeapRegion* hr);
1660   HeapRegion* pop_dirty_cards_region();
1661 
1662 public:
1663   void stop_conc_gc_threads();
1664 
1665   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
1666   void check_if_region_is_too_expensive(double predicted_time_ms);
1667   size_t pending_card_num();
1668   size_t max_pending_card_num();
1669   size_t cards_scanned();
1670 
1671 protected:
1672   size_t _max_heap_capacity;
1673 };
1674 
1675 #define use_local_bitmaps         1
1676 #define verify_local_bitmaps      0
1677 #define oop_buffer_length       256
1678 
1679 #ifndef PRODUCT
1680 class GCLabBitMap;
1681 class GCLabBitMapClosure: public BitMapClosure {
1682 private:
1683   ConcurrentMark* _cm;
1684   GCLabBitMap*    _bitmap;
1685 
1686 public:
1687   GCLabBitMapClosure(ConcurrentMark* cm,
1688                      GCLabBitMap* bitmap) {
1689     _cm     = cm;
1690     _bitmap = bitmap;
1691   }
1692 
1693   virtual bool do_bit(size_t offset);
1694 };
1695 #endif // !PRODUCT
1696 
1697 class GCLabBitMap: public BitMap {
1698 private:
1699   ConcurrentMark* _cm;
1700 
1701   int       _shifter;
1702   size_t    _bitmap_word_covers_words;
1703 
1704   // beginning of the heap
1705   HeapWord* _heap_start;
1706 
1707   // this is the actual start of the GCLab
1708   HeapWord* _real_start_word;
1709 
1710   // this is the actual end of the GCLab
1711   HeapWord* _real_end_word;
1712 
1713   // this is the first word, possibly located before the actual start
1714   // of the GCLab, that corresponds to the first bit of the bitmap
1715   HeapWord* _start_word;
1716 
1717   // size of a GCLab in words
1718   size_t _gclab_word_size;
1719 
1720   static int shifter() {
1721     return MinObjAlignment - 1;
1722   }
1723 
1724   // how many heap words does a single bitmap word corresponds to?
1725   static size_t bitmap_word_covers_words() {
1726     return BitsPerWord << shifter();
1727   }
1728 
1729   size_t gclab_word_size() const {
1730     return _gclab_word_size;
1731   }
1732 
1733   // Calculates actual GCLab size in words
1734   size_t gclab_real_word_size() const {
1735     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
1736            / BitsPerWord;
1737   }
1738 
1739   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
1740     size_t bits_in_bitmap = gclab_word_size >> shifter();
1741     // We are going to ensure that the beginning of a word in this
1742     // bitmap also corresponds to the beginning of a word in the
1743     // global marking bitmap. To handle the case where a GCLab
1744     // starts from the middle of the bitmap, we need to add enough
1745     // space (i.e. up to a bitmap word) to ensure that we have
1746     // enough bits in the bitmap.
1747     return bits_in_bitmap + BitsPerWord - 1;
1748   }
1749 public:
1750   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
1751     : BitMap(bitmap_size_in_bits(gclab_word_size)),
1752       _cm(G1CollectedHeap::heap()->concurrent_mark()),
1753       _shifter(shifter()),
1754       _bitmap_word_covers_words(bitmap_word_covers_words()),
1755       _heap_start(heap_start),
1756       _gclab_word_size(gclab_word_size),
1757       _real_start_word(NULL),
1758       _real_end_word(NULL),
1759       _start_word(NULL) {
1760     guarantee(false, "GCLabBitMap::GCLabBitmap(): don't call this any more");
1761   }
1762 
1763   inline unsigned heapWordToOffset(HeapWord* addr) {
1764     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
1765     assert(offset < size(), "offset should be within bounds");
1766     return offset;
1767   }
1768 
1769   inline HeapWord* offsetToHeapWord(size_t offset) {
1770     HeapWord* addr =  _start_word + (offset << _shifter);
1771     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
1772     return addr;
1773   }
1774 
1775   bool fields_well_formed() {
1776     bool ret1 = (_real_start_word == NULL) &&
1777                 (_real_end_word == NULL) &&
1778                 (_start_word == NULL);
1779     if (ret1)
1780       return true;
1781 
1782     bool ret2 = _real_start_word >= _start_word &&
1783       _start_word < _real_end_word &&
1784       (_real_start_word + _gclab_word_size) == _real_end_word &&
1785       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
1786                                                               > _real_end_word;
1787     return ret2;
1788   }
1789 
1790   inline bool mark(HeapWord* addr) {
1791     guarantee(use_local_bitmaps, "invariant");
1792     assert(fields_well_formed(), "invariant");
1793 
1794     if (addr >= _real_start_word && addr < _real_end_word) {
1795       assert(!isMarked(addr), "should not have already been marked");
1796 
1797       // first mark it on the bitmap
1798       at_put(heapWordToOffset(addr), true);
1799 
1800       return true;
1801     } else {
1802       return false;
1803     }
1804   }
1805 
1806   inline bool isMarked(HeapWord* addr) {
1807     guarantee(use_local_bitmaps, "invariant");
1808     assert(fields_well_formed(), "invariant");
1809 
1810     return at(heapWordToOffset(addr));
1811   }
1812 
1813   void set_buffer(HeapWord* start) {
1814     guarantee(false, "set_buffer(): don't call this any more");
1815 
1816     guarantee(use_local_bitmaps, "invariant");
1817     clear();
1818 
1819     assert(start != NULL, "invariant");
1820     _real_start_word = start;
1821     _real_end_word   = start + _gclab_word_size;
1822 
1823     size_t diff =
1824       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
1825     _start_word = start - diff;
1826 
1827     assert(fields_well_formed(), "invariant");
1828   }
1829 
1830 #ifndef PRODUCT
1831   void verify() {
1832     // verify that the marks have been propagated
1833     GCLabBitMapClosure cl(_cm, this);
1834     iterate(&cl);
1835   }
1836 #endif // PRODUCT
1837 
1838   void retire() {
1839     guarantee(false, "retire(): don't call this any more");
1840 
1841     guarantee(use_local_bitmaps, "invariant");
1842     assert(fields_well_formed(), "invariant");
1843 
1844     if (_start_word != NULL) {
1845       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
1846 
1847       // this means that the bitmap was set up for the GCLab
1848       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
1849 
1850       mark_bitmap->mostly_disjoint_range_union(this,
1851                                 0, // always start from the start of the bitmap
1852                                 _start_word,
1853                                 gclab_real_word_size());
1854       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
1855 
1856 #ifndef PRODUCT
1857       if (use_local_bitmaps && verify_local_bitmaps)
1858         verify();
1859 #endif // PRODUCT
1860     } else {
1861       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
1862     }
1863   }
1864 
1865   size_t bitmap_size_in_words() const {
1866     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
1867   }
1868 
1869 };
1870 
1871 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
1872 private:
1873   bool        _retired;
1874 
1875 public:
1876   G1ParGCAllocBuffer(size_t gclab_word_size);
1877 
1878   void set_buf(HeapWord* buf) {
1879     ParGCAllocBuffer::set_buf(buf);
1880     _retired = false;
1881   }
1882 
1883   void retire(bool end_of_gc, bool retain) {
1884     if (_retired)
1885       return;
1886     ParGCAllocBuffer::retire(end_of_gc, retain);
1887     _retired = true;
1888   }
1889 };
1890 
1891 class G1ParScanThreadState : public StackObj {
1892 protected:
1893   G1CollectedHeap* _g1h;
1894   RefToScanQueue*  _refs;
1895   DirtyCardQueue   _dcq;
1896   CardTableModRefBS* _ct_bs;
1897   G1RemSet* _g1_rem;
1898 
1899   G1ParGCAllocBuffer  _surviving_alloc_buffer;
1900   G1ParGCAllocBuffer  _tenured_alloc_buffer;
1901   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
1902   ageTable            _age_table;
1903 
1904   size_t           _alloc_buffer_waste;
1905   size_t           _undo_waste;
1906 
1907   OopsInHeapRegionClosure*      _evac_failure_cl;
1908   G1ParScanHeapEvacClosure*     _evac_cl;
1909   G1ParScanPartialArrayClosure* _partial_scan_cl;
1910 
1911   int _hash_seed;
1912   uint _queue_num;
1913 
1914   size_t _term_attempts;
1915 
1916   double _start;
1917   double _start_strong_roots;
1918   double _strong_roots_time;
1919   double _start_term;
1920   double _term_time;
1921 
1922   // Map from young-age-index (0 == not young, 1 is youngest) to
1923   // surviving words. base is what we get back from the malloc call
1924   size_t* _surviving_young_words_base;
1925   // this points into the array, as we use the first few entries for padding
1926   size_t* _surviving_young_words;
1927 
1928 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
1929 
1930   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
1931 
1932   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
1933 
1934   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
1935   CardTableModRefBS* ctbs()                      { return _ct_bs; }
1936 
1937   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
1938     if (!from->is_survivor()) {
1939       _g1_rem->par_write_ref(from, p, tid);
1940     }
1941   }
1942 
1943   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
1944     // If the new value of the field points to the same region or
1945     // is the to-space, we don't need to include it in the Rset updates.
1946     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
1947       size_t card_index = ctbs()->index_for(p);
1948       // If the card hasn't been added to the buffer, do it.
1949       if (ctbs()->mark_card_deferred(card_index)) {
1950         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
1951       }
1952     }
1953   }
1954 
1955 public:
1956   G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num);
1957 
1958   ~G1ParScanThreadState() {
1959     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
1960   }
1961 
1962   RefToScanQueue*   refs()            { return _refs;             }
1963   ageTable*         age_table()       { return &_age_table;       }
1964 
1965   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
1966     return _alloc_buffers[purpose];
1967   }
1968 
1969   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
1970   size_t undo_waste() const                      { return _undo_waste; }
1971 
1972 #ifdef ASSERT
1973   bool verify_ref(narrowOop* ref) const;
1974   bool verify_ref(oop* ref) const;
1975   bool verify_task(StarTask ref) const;
1976 #endif // ASSERT
1977 
1978   template <class T> void push_on_queue(T* ref) {
1979     assert(verify_ref(ref), "sanity");
1980     refs()->push(ref);
1981   }
1982 
1983   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
1984     if (G1DeferredRSUpdate) {
1985       deferred_rs_update(from, p, tid);
1986     } else {
1987       immediate_rs_update(from, p, tid);
1988     }
1989   }
1990 
1991   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
1992 
1993     HeapWord* obj = NULL;
1994     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
1995     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
1996       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
1997       assert(gclab_word_size == alloc_buf->word_sz(),
1998              "dynamic resizing is not supported");
1999       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
2000       alloc_buf->retire(false, false);
2001 
2002       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
2003       if (buf == NULL) return NULL; // Let caller handle allocation failure.
2004       // Otherwise.
2005       alloc_buf->set_buf(buf);
2006 
2007       obj = alloc_buf->allocate(word_sz);
2008       assert(obj != NULL, "buffer was definitely big enough...");
2009     } else {
2010       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
2011     }
2012     return obj;
2013   }
2014 
2015   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
2016     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
2017     if (obj != NULL) return obj;
2018     return allocate_slow(purpose, word_sz);
2019   }
2020 
2021   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
2022     if (alloc_buffer(purpose)->contains(obj)) {
2023       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
2024              "should contain whole object");
2025       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
2026     } else {
2027       CollectedHeap::fill_with_object(obj, word_sz);
2028       add_to_undo_waste(word_sz);
2029     }
2030   }
2031 
2032   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
2033     _evac_failure_cl = evac_failure_cl;
2034   }
2035   OopsInHeapRegionClosure* evac_failure_closure() {
2036     return _evac_failure_cl;
2037   }
2038 
2039   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
2040     _evac_cl = evac_cl;
2041   }
2042 
2043   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
2044     _partial_scan_cl = partial_scan_cl;
2045   }
2046 
2047   int* hash_seed() { return &_hash_seed; }
2048   uint queue_num() { return _queue_num; }
2049 
2050   size_t term_attempts() const  { return _term_attempts; }
2051   void note_term_attempt() { _term_attempts++; }
2052 
2053   void start_strong_roots() {
2054     _start_strong_roots = os::elapsedTime();
2055   }
2056   void end_strong_roots() {
2057     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
2058   }
2059   double strong_roots_time() const { return _strong_roots_time; }
2060 
2061   void start_term_time() {
2062     note_term_attempt();
2063     _start_term = os::elapsedTime();
2064   }
2065   void end_term_time() {
2066     _term_time += (os::elapsedTime() - _start_term);
2067   }
2068   double term_time() const { return _term_time; }
2069 
2070   double elapsed_time() const {
2071     return os::elapsedTime() - _start;
2072   }
2073 
2074   static void
2075     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
2076   void
2077     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
2078 
2079   size_t* surviving_young_words() {
2080     // We add on to hide entry 0 which accumulates surviving words for
2081     // age -1 regions (i.e. non-young ones)
2082     return _surviving_young_words;
2083   }
2084 
2085   void retire_alloc_buffers() {
2086     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
2087       size_t waste = _alloc_buffers[ap]->words_remaining();
2088       add_to_alloc_buffer_waste(waste);
2089       _alloc_buffers[ap]->retire(true, false);
2090     }
2091   }
2092 
2093   template <class T> void deal_with_reference(T* ref_to_scan) {
2094     if (has_partial_array_mask(ref_to_scan)) {
2095       _partial_scan_cl->do_oop_nv(ref_to_scan);
2096     } else {
2097       // Note: we can use "raw" versions of "region_containing" because
2098       // "obj_to_scan" is definitely in the heap, and is not in a
2099       // humongous region.
2100       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
2101       _evac_cl->set_region(r);
2102       _evac_cl->do_oop_nv(ref_to_scan);
2103     }
2104   }
2105 
2106   void deal_with_reference(StarTask ref) {
2107     assert(verify_task(ref), "sanity");
2108     if (ref.is_narrow()) {
2109       deal_with_reference((narrowOop*)ref);
2110     } else {
2111       deal_with_reference((oop*)ref);
2112     }
2113   }
2114 
2115 public:
2116   void trim_queue();
2117 };
2118 
2119 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP