1 /* 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP 27 28 #include "gc_implementation/g1/concurrentMark.hpp" 29 #include "gc_implementation/g1/g1AllocRegion.hpp" 30 #include "gc_implementation/g1/g1HRPrinter.hpp" 31 #include "gc_implementation/g1/g1RemSet.hpp" 32 #include "gc_implementation/g1/g1MonitoringSupport.hpp" 33 #include "gc_implementation/g1/heapRegionSeq.hpp" 34 #include "gc_implementation/g1/heapRegionSets.hpp" 35 #include "gc_implementation/shared/hSpaceCounters.hpp" 36 #include "gc_implementation/parNew/parGCAllocBuffer.hpp" 37 #include "memory/barrierSet.hpp" 38 #include "memory/memRegion.hpp" 39 #include "memory/sharedHeap.hpp" 40 41 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot. 42 // It uses the "Garbage First" heap organization and algorithm, which 43 // may combine concurrent marking with parallel, incremental compaction of 44 // heap subsets that will yield large amounts of garbage. 45 46 class HeapRegion; 47 class HRRSCleanupTask; 48 class PermanentGenerationSpec; 49 class GenerationSpec; 50 class OopsInHeapRegionClosure; 51 class G1ScanHeapEvacClosure; 52 class ObjectClosure; 53 class SpaceClosure; 54 class CompactibleSpaceClosure; 55 class Space; 56 class G1CollectorPolicy; 57 class GenRemSet; 58 class G1RemSet; 59 class HeapRegionRemSetIterator; 60 class ConcurrentMark; 61 class ConcurrentMarkThread; 62 class ConcurrentG1Refine; 63 class GenerationCounters; 64 65 typedef OverflowTaskQueue<StarTask> RefToScanQueue; 66 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet; 67 68 typedef int RegionIdx_t; // needs to hold [ 0..max_regions() ) 69 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion ) 70 71 enum GCAllocPurpose { 72 GCAllocForTenured, 73 GCAllocForSurvived, 74 GCAllocPurposeCount 75 }; 76 77 class YoungList : public CHeapObj { 78 private: 79 G1CollectedHeap* _g1h; 80 81 HeapRegion* _head; 82 83 HeapRegion* _survivor_head; 84 HeapRegion* _survivor_tail; 85 86 HeapRegion* _curr; 87 88 size_t _length; 89 size_t _survivor_length; 90 91 size_t _last_sampled_rs_lengths; 92 size_t _sampled_rs_lengths; 93 94 void empty_list(HeapRegion* list); 95 96 public: 97 YoungList(G1CollectedHeap* g1h); 98 99 void push_region(HeapRegion* hr); 100 void add_survivor_region(HeapRegion* hr); 101 102 void empty_list(); 103 bool is_empty() { return _length == 0; } 104 size_t length() { return _length; } 105 size_t survivor_length() { return _survivor_length; } 106 107 // Currently we do not keep track of the used byte sum for the 108 // young list and the survivors and it'd be quite a lot of work to 109 // do so. When we'll eventually replace the young list with 110 // instances of HeapRegionLinkedList we'll get that for free. So, 111 // we'll report the more accurate information then. 112 size_t eden_used_bytes() { 113 assert(length() >= survivor_length(), "invariant"); 114 return (length() - survivor_length()) * HeapRegion::GrainBytes; 115 } 116 size_t survivor_used_bytes() { 117 return survivor_length() * HeapRegion::GrainBytes; 118 } 119 120 void rs_length_sampling_init(); 121 bool rs_length_sampling_more(); 122 void rs_length_sampling_next(); 123 124 void reset_sampled_info() { 125 _last_sampled_rs_lengths = 0; 126 } 127 size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; } 128 129 // for development purposes 130 void reset_auxilary_lists(); 131 void clear() { _head = NULL; _length = 0; } 132 133 void clear_survivors() { 134 _survivor_head = NULL; 135 _survivor_tail = NULL; 136 _survivor_length = 0; 137 } 138 139 HeapRegion* first_region() { return _head; } 140 HeapRegion* first_survivor_region() { return _survivor_head; } 141 HeapRegion* last_survivor_region() { return _survivor_tail; } 142 143 // debugging 144 bool check_list_well_formed(); 145 bool check_list_empty(bool check_sample = true); 146 void print(); 147 }; 148 149 class MutatorAllocRegion : public G1AllocRegion { 150 protected: 151 virtual HeapRegion* allocate_new_region(size_t word_size, bool force); 152 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes); 153 public: 154 MutatorAllocRegion() 155 : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { } 156 }; 157 158 // The G1 STW is alive closure. 159 // An instance is embedded into the G1CH and used as the 160 // (optional) _is_alive_non_header closure in the STW 161 // reference processor. It is also extensively used during 162 // refence processing during STW evacuation pauses. 163 class G1STWIsAliveClosure: public BoolObjectClosure { 164 G1CollectedHeap* _g1; 165 public: 166 G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 167 void do_object(oop p) { assert(false, "Do not call."); } 168 bool do_object_b(oop p); 169 }; 170 171 class SurvivorGCAllocRegion : public G1AllocRegion { 172 protected: 173 virtual HeapRegion* allocate_new_region(size_t word_size, bool force); 174 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes); 175 public: 176 SurvivorGCAllocRegion() 177 : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { } 178 }; 179 180 class OldGCAllocRegion : public G1AllocRegion { 181 protected: 182 virtual HeapRegion* allocate_new_region(size_t word_size, bool force); 183 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes); 184 public: 185 OldGCAllocRegion() 186 : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { } 187 }; 188 189 class RefineCardTableEntryClosure; 190 191 class G1CollectedHeap : public SharedHeap { 192 friend class VM_G1CollectForAllocation; 193 friend class VM_GenCollectForPermanentAllocation; 194 friend class VM_G1CollectFull; 195 friend class VM_G1IncCollectionPause; 196 friend class VMStructs; 197 friend class MutatorAllocRegion; 198 friend class SurvivorGCAllocRegion; 199 friend class OldGCAllocRegion; 200 201 // Closures used in implementation. 202 friend class G1ParCopyHelper; 203 friend class G1IsAliveClosure; 204 friend class G1EvacuateFollowersClosure; 205 friend class G1ParScanThreadState; 206 friend class G1ParScanClosureSuper; 207 friend class G1ParEvacuateFollowersClosure; 208 friend class G1ParTask; 209 friend class G1FreeGarbageRegionClosure; 210 friend class RefineCardTableEntryClosure; 211 friend class G1PrepareCompactClosure; 212 friend class RegionSorter; 213 friend class RegionResetter; 214 friend class CountRCClosure; 215 friend class EvacPopObjClosure; 216 friend class G1ParCleanupCTTask; 217 218 // Other related classes. 219 friend class G1MarkSweep; 220 221 private: 222 // The one and only G1CollectedHeap, so static functions can find it. 223 static G1CollectedHeap* _g1h; 224 225 static size_t _humongous_object_threshold_in_words; 226 227 // Storage for the G1 heap (excludes the permanent generation). 228 VirtualSpace _g1_storage; 229 MemRegion _g1_reserved; 230 231 // The part of _g1_storage that is currently committed. 232 MemRegion _g1_committed; 233 234 // The master free list. It will satisfy all new region allocations. 235 MasterFreeRegionList _free_list; 236 237 // The secondary free list which contains regions that have been 238 // freed up during the cleanup process. This will be appended to the 239 // master free list when appropriate. 240 SecondaryFreeRegionList _secondary_free_list; 241 242 // It keeps track of the old regions. 243 MasterOldRegionSet _old_set; 244 245 // It keeps track of the humongous regions. 246 MasterHumongousRegionSet _humongous_set; 247 248 // The number of regions we could create by expansion. 249 size_t _expansion_regions; 250 251 // The block offset table for the G1 heap. 252 G1BlockOffsetSharedArray* _bot_shared; 253 254 // Tears down the region sets / lists so that they are empty and the 255 // regions on the heap do not belong to a region set / list. The 256 // only exception is the humongous set which we leave unaltered. If 257 // free_list_only is true, it will only tear down the master free 258 // list. It is called before a Full GC (free_list_only == false) or 259 // before heap shrinking (free_list_only == true). 260 void tear_down_region_sets(bool free_list_only); 261 262 // Rebuilds the region sets / lists so that they are repopulated to 263 // reflect the contents of the heap. The only exception is the 264 // humongous set which was not torn down in the first place. If 265 // free_list_only is true, it will only rebuild the master free 266 // list. It is called after a Full GC (free_list_only == false) or 267 // after heap shrinking (free_list_only == true). 268 void rebuild_region_sets(bool free_list_only); 269 270 // The sequence of all heap regions in the heap. 271 HeapRegionSeq _hrs; 272 273 // Alloc region used to satisfy mutator allocation requests. 274 MutatorAllocRegion _mutator_alloc_region; 275 276 // Alloc region used to satisfy allocation requests by the GC for 277 // survivor objects. 278 SurvivorGCAllocRegion _survivor_gc_alloc_region; 279 280 // Alloc region used to satisfy allocation requests by the GC for 281 // old objects. 282 OldGCAllocRegion _old_gc_alloc_region; 283 284 // The last old region we allocated to during the last GC. 285 // Typically, it is not full so we should re-use it during the next GC. 286 HeapRegion* _retained_old_gc_alloc_region; 287 288 // It specifies whether we should attempt to expand the heap after a 289 // region allocation failure. If heap expansion fails we set this to 290 // false so that we don't re-attempt the heap expansion (it's likely 291 // that subsequent expansion attempts will also fail if one fails). 292 // Currently, it is only consulted during GC and it's reset at the 293 // start of each GC. 294 bool _expand_heap_after_alloc_failure; 295 296 // It resets the mutator alloc region before new allocations can take place. 297 void init_mutator_alloc_region(); 298 299 // It releases the mutator alloc region. 300 void release_mutator_alloc_region(); 301 302 // It initializes the GC alloc regions at the start of a GC. 303 void init_gc_alloc_regions(); 304 305 // It releases the GC alloc regions at the end of a GC. 306 void release_gc_alloc_regions(); 307 308 // It does any cleanup that needs to be done on the GC alloc regions 309 // before a Full GC. 310 void abandon_gc_alloc_regions(); 311 312 // Helper for monitoring and management support. 313 G1MonitoringSupport* _g1mm; 314 315 // Determines PLAB size for a particular allocation purpose. 316 static size_t desired_plab_sz(GCAllocPurpose purpose); 317 318 // Outside of GC pauses, the number of bytes used in all regions other 319 // than the current allocation region. 320 size_t _summary_bytes_used; 321 322 // This is used for a quick test on whether a reference points into 323 // the collection set or not. Basically, we have an array, with one 324 // byte per region, and that byte denotes whether the corresponding 325 // region is in the collection set or not. The entry corresponding 326 // the bottom of the heap, i.e., region 0, is pointed to by 327 // _in_cset_fast_test_base. The _in_cset_fast_test field has been 328 // biased so that it actually points to address 0 of the address 329 // space, to make the test as fast as possible (we can simply shift 330 // the address to address into it, instead of having to subtract the 331 // bottom of the heap from the address before shifting it; basically 332 // it works in the same way the card table works). 333 bool* _in_cset_fast_test; 334 335 // The allocated array used for the fast test on whether a reference 336 // points into the collection set or not. This field is also used to 337 // free the array. 338 bool* _in_cset_fast_test_base; 339 340 // The length of the _in_cset_fast_test_base array. 341 size_t _in_cset_fast_test_length; 342 343 volatile unsigned _gc_time_stamp; 344 345 size_t* _surviving_young_words; 346 347 G1HRPrinter _hr_printer; 348 349 void setup_surviving_young_words(); 350 void update_surviving_young_words(size_t* surv_young_words); 351 void cleanup_surviving_young_words(); 352 353 // It decides whether an explicit GC should start a concurrent cycle 354 // instead of doing a STW GC. Currently, a concurrent cycle is 355 // explicitly started if: 356 // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or 357 // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent. 358 // (c) cause == _g1_humongous_allocation 359 bool should_do_concurrent_full_gc(GCCause::Cause cause); 360 361 // Keeps track of how many "full collections" (i.e., Full GCs or 362 // concurrent cycles) we have completed. The number of them we have 363 // started is maintained in _total_full_collections in CollectedHeap. 364 volatile unsigned int _full_collections_completed; 365 366 // This is a non-product method that is helpful for testing. It is 367 // called at the end of a GC and artificially expands the heap by 368 // allocating a number of dead regions. This way we can induce very 369 // frequent marking cycles and stress the cleanup / concurrent 370 // cleanup code more (as all the regions that will be allocated by 371 // this method will be found dead by the marking cycle). 372 void allocate_dummy_regions() PRODUCT_RETURN; 373 374 // These are macros so that, if the assert fires, we get the correct 375 // line number, file, etc. 376 377 #define heap_locking_asserts_err_msg(_extra_message_) \ 378 err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \ 379 (_extra_message_), \ 380 BOOL_TO_STR(Heap_lock->owned_by_self()), \ 381 BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \ 382 BOOL_TO_STR(Thread::current()->is_VM_thread())) 383 384 #define assert_heap_locked() \ 385 do { \ 386 assert(Heap_lock->owned_by_self(), \ 387 heap_locking_asserts_err_msg("should be holding the Heap_lock")); \ 388 } while (0) 389 390 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \ 391 do { \ 392 assert(Heap_lock->owned_by_self() || \ 393 (SafepointSynchronize::is_at_safepoint() && \ 394 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \ 395 heap_locking_asserts_err_msg("should be holding the Heap_lock or " \ 396 "should be at a safepoint")); \ 397 } while (0) 398 399 #define assert_heap_locked_and_not_at_safepoint() \ 400 do { \ 401 assert(Heap_lock->owned_by_self() && \ 402 !SafepointSynchronize::is_at_safepoint(), \ 403 heap_locking_asserts_err_msg("should be holding the Heap_lock and " \ 404 "should not be at a safepoint")); \ 405 } while (0) 406 407 #define assert_heap_not_locked() \ 408 do { \ 409 assert(!Heap_lock->owned_by_self(), \ 410 heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \ 411 } while (0) 412 413 #define assert_heap_not_locked_and_not_at_safepoint() \ 414 do { \ 415 assert(!Heap_lock->owned_by_self() && \ 416 !SafepointSynchronize::is_at_safepoint(), \ 417 heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \ 418 "should not be at a safepoint")); \ 419 } while (0) 420 421 #define assert_at_safepoint(_should_be_vm_thread_) \ 422 do { \ 423 assert(SafepointSynchronize::is_at_safepoint() && \ 424 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \ 425 heap_locking_asserts_err_msg("should be at a safepoint")); \ 426 } while (0) 427 428 #define assert_not_at_safepoint() \ 429 do { \ 430 assert(!SafepointSynchronize::is_at_safepoint(), \ 431 heap_locking_asserts_err_msg("should not be at a safepoint")); \ 432 } while (0) 433 434 protected: 435 436 // The young region list. 437 YoungList* _young_list; 438 439 // The current policy object for the collector. 440 G1CollectorPolicy* _g1_policy; 441 442 // This is the second level of trying to allocate a new region. If 443 // new_region() didn't find a region on the free_list, this call will 444 // check whether there's anything available on the 445 // secondary_free_list and/or wait for more regions to appear on 446 // that list, if _free_regions_coming is set. 447 HeapRegion* new_region_try_secondary_free_list(); 448 449 // Try to allocate a single non-humongous HeapRegion sufficient for 450 // an allocation of the given word_size. If do_expand is true, 451 // attempt to expand the heap if necessary to satisfy the allocation 452 // request. 453 HeapRegion* new_region(size_t word_size, bool do_expand); 454 455 // Attempt to satisfy a humongous allocation request of the given 456 // size by finding a contiguous set of free regions of num_regions 457 // length and remove them from the master free list. Return the 458 // index of the first region or G1_NULL_HRS_INDEX if the search 459 // was unsuccessful. 460 size_t humongous_obj_allocate_find_first(size_t num_regions, 461 size_t word_size); 462 463 // Initialize a contiguous set of free regions of length num_regions 464 // and starting at index first so that they appear as a single 465 // humongous region. 466 HeapWord* humongous_obj_allocate_initialize_regions(size_t first, 467 size_t num_regions, 468 size_t word_size); 469 470 // Attempt to allocate a humongous object of the given size. Return 471 // NULL if unsuccessful. 472 HeapWord* humongous_obj_allocate(size_t word_size); 473 474 // The following two methods, allocate_new_tlab() and 475 // mem_allocate(), are the two main entry points from the runtime 476 // into the G1's allocation routines. They have the following 477 // assumptions: 478 // 479 // * They should both be called outside safepoints. 480 // 481 // * They should both be called without holding the Heap_lock. 482 // 483 // * All allocation requests for new TLABs should go to 484 // allocate_new_tlab(). 485 // 486 // * All non-TLAB allocation requests should go to mem_allocate(). 487 // 488 // * If either call cannot satisfy the allocation request using the 489 // current allocating region, they will try to get a new one. If 490 // this fails, they will attempt to do an evacuation pause and 491 // retry the allocation. 492 // 493 // * If all allocation attempts fail, even after trying to schedule 494 // an evacuation pause, allocate_new_tlab() will return NULL, 495 // whereas mem_allocate() will attempt a heap expansion and/or 496 // schedule a Full GC. 497 // 498 // * We do not allow humongous-sized TLABs. So, allocate_new_tlab 499 // should never be called with word_size being humongous. All 500 // humongous allocation requests should go to mem_allocate() which 501 // will satisfy them with a special path. 502 503 virtual HeapWord* allocate_new_tlab(size_t word_size); 504 505 virtual HeapWord* mem_allocate(size_t word_size, 506 bool* gc_overhead_limit_was_exceeded); 507 508 // The following three methods take a gc_count_before_ret 509 // parameter which is used to return the GC count if the method 510 // returns NULL. Given that we are required to read the GC count 511 // while holding the Heap_lock, and these paths will take the 512 // Heap_lock at some point, it's easier to get them to read the GC 513 // count while holding the Heap_lock before they return NULL instead 514 // of the caller (namely: mem_allocate()) having to also take the 515 // Heap_lock just to read the GC count. 516 517 // First-level mutator allocation attempt: try to allocate out of 518 // the mutator alloc region without taking the Heap_lock. This 519 // should only be used for non-humongous allocations. 520 inline HeapWord* attempt_allocation(size_t word_size, 521 unsigned int* gc_count_before_ret); 522 523 // Second-level mutator allocation attempt: take the Heap_lock and 524 // retry the allocation attempt, potentially scheduling a GC 525 // pause. This should only be used for non-humongous allocations. 526 HeapWord* attempt_allocation_slow(size_t word_size, 527 unsigned int* gc_count_before_ret); 528 529 // Takes the Heap_lock and attempts a humongous allocation. It can 530 // potentially schedule a GC pause. 531 HeapWord* attempt_allocation_humongous(size_t word_size, 532 unsigned int* gc_count_before_ret); 533 534 // Allocation attempt that should be called during safepoints (e.g., 535 // at the end of a successful GC). expect_null_mutator_alloc_region 536 // specifies whether the mutator alloc region is expected to be NULL 537 // or not. 538 HeapWord* attempt_allocation_at_safepoint(size_t word_size, 539 bool expect_null_mutator_alloc_region); 540 541 // It dirties the cards that cover the block so that so that the post 542 // write barrier never queues anything when updating objects on this 543 // block. It is assumed (and in fact we assert) that the block 544 // belongs to a young region. 545 inline void dirty_young_block(HeapWord* start, size_t word_size); 546 547 // Allocate blocks during garbage collection. Will ensure an 548 // allocation region, either by picking one or expanding the 549 // heap, and then allocate a block of the given size. The block 550 // may not be a humongous - it must fit into a single heap region. 551 HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size); 552 553 HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose, 554 HeapRegion* alloc_region, 555 bool par, 556 size_t word_size); 557 558 // Ensure that no further allocations can happen in "r", bearing in mind 559 // that parallel threads might be attempting allocations. 560 void par_allocate_remaining_space(HeapRegion* r); 561 562 // Allocation attempt during GC for a survivor object / PLAB. 563 inline HeapWord* survivor_attempt_allocation(size_t word_size); 564 565 // Allocation attempt during GC for an old object / PLAB. 566 inline HeapWord* old_attempt_allocation(size_t word_size); 567 568 // These methods are the "callbacks" from the G1AllocRegion class. 569 570 // For mutator alloc regions. 571 HeapRegion* new_mutator_alloc_region(size_t word_size, bool force); 572 void retire_mutator_alloc_region(HeapRegion* alloc_region, 573 size_t allocated_bytes); 574 575 // For GC alloc regions. 576 HeapRegion* new_gc_alloc_region(size_t word_size, size_t count, 577 GCAllocPurpose ap); 578 void retire_gc_alloc_region(HeapRegion* alloc_region, 579 size_t allocated_bytes, GCAllocPurpose ap); 580 581 // - if explicit_gc is true, the GC is for a System.gc() or a heap 582 // inspection request and should collect the entire heap 583 // - if clear_all_soft_refs is true, all soft references should be 584 // cleared during the GC 585 // - if explicit_gc is false, word_size describes the allocation that 586 // the GC should attempt (at least) to satisfy 587 // - it returns false if it is unable to do the collection due to the 588 // GC locker being active, true otherwise 589 bool do_collection(bool explicit_gc, 590 bool clear_all_soft_refs, 591 size_t word_size); 592 593 // Callback from VM_G1CollectFull operation. 594 // Perform a full collection. 595 void do_full_collection(bool clear_all_soft_refs); 596 597 // Resize the heap if necessary after a full collection. If this is 598 // after a collect-for allocation, "word_size" is the allocation size, 599 // and will be considered part of the used portion of the heap. 600 void resize_if_necessary_after_full_collection(size_t word_size); 601 602 // Callback from VM_G1CollectForAllocation operation. 603 // This function does everything necessary/possible to satisfy a 604 // failed allocation request (including collection, expansion, etc.) 605 HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded); 606 607 // Attempting to expand the heap sufficiently 608 // to support an allocation of the given "word_size". If 609 // successful, perform the allocation and return the address of the 610 // allocated block, or else "NULL". 611 HeapWord* expand_and_allocate(size_t word_size); 612 613 // Process any reference objects discovered during 614 // an incremental evacuation pause. 615 void process_discovered_references(); 616 617 // Enqueue any remaining discovered references 618 // after processing. 619 void enqueue_discovered_references(); 620 621 public: 622 623 G1MonitoringSupport* g1mm() { 624 assert(_g1mm != NULL, "should have been initialized"); 625 return _g1mm; 626 } 627 628 // Expand the garbage-first heap by at least the given size (in bytes!). 629 // Returns true if the heap was expanded by the requested amount; 630 // false otherwise. 631 // (Rounds up to a HeapRegion boundary.) 632 bool expand(size_t expand_bytes); 633 634 // Do anything common to GC's. 635 virtual void gc_prologue(bool full); 636 virtual void gc_epilogue(bool full); 637 638 // We register a region with the fast "in collection set" test. We 639 // simply set to true the array slot corresponding to this region. 640 void register_region_with_in_cset_fast_test(HeapRegion* r) { 641 assert(_in_cset_fast_test_base != NULL, "sanity"); 642 assert(r->in_collection_set(), "invariant"); 643 size_t index = r->hrs_index(); 644 assert(index < _in_cset_fast_test_length, "invariant"); 645 assert(!_in_cset_fast_test_base[index], "invariant"); 646 _in_cset_fast_test_base[index] = true; 647 } 648 649 // This is a fast test on whether a reference points into the 650 // collection set or not. It does not assume that the reference 651 // points into the heap; if it doesn't, it will return false. 652 bool in_cset_fast_test(oop obj) { 653 assert(_in_cset_fast_test != NULL, "sanity"); 654 if (_g1_committed.contains((HeapWord*) obj)) { 655 // no need to subtract the bottom of the heap from obj, 656 // _in_cset_fast_test is biased 657 size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes; 658 bool ret = _in_cset_fast_test[index]; 659 // let's make sure the result is consistent with what the slower 660 // test returns 661 assert( ret || !obj_in_cs(obj), "sanity"); 662 assert(!ret || obj_in_cs(obj), "sanity"); 663 return ret; 664 } else { 665 return false; 666 } 667 } 668 669 void clear_cset_fast_test() { 670 assert(_in_cset_fast_test_base != NULL, "sanity"); 671 memset(_in_cset_fast_test_base, false, 672 _in_cset_fast_test_length * sizeof(bool)); 673 } 674 675 // This is called at the end of either a concurrent cycle or a Full 676 // GC to update the number of full collections completed. Those two 677 // can happen in a nested fashion, i.e., we start a concurrent 678 // cycle, a Full GC happens half-way through it which ends first, 679 // and then the cycle notices that a Full GC happened and ends 680 // too. The concurrent parameter is a boolean to help us do a bit 681 // tighter consistency checking in the method. If concurrent is 682 // false, the caller is the inner caller in the nesting (i.e., the 683 // Full GC). If concurrent is true, the caller is the outer caller 684 // in this nesting (i.e., the concurrent cycle). Further nesting is 685 // not currently supported. The end of the this call also notifies 686 // the FullGCCount_lock in case a Java thread is waiting for a full 687 // GC to happen (e.g., it called System.gc() with 688 // +ExplicitGCInvokesConcurrent). 689 void increment_full_collections_completed(bool concurrent); 690 691 unsigned int full_collections_completed() { 692 return _full_collections_completed; 693 } 694 695 G1HRPrinter* hr_printer() { return &_hr_printer; } 696 697 protected: 698 699 // Shrink the garbage-first heap by at most the given size (in bytes!). 700 // (Rounds down to a HeapRegion boundary.) 701 virtual void shrink(size_t expand_bytes); 702 void shrink_helper(size_t expand_bytes); 703 704 #if TASKQUEUE_STATS 705 static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty); 706 void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const; 707 void reset_taskqueue_stats(); 708 #endif // TASKQUEUE_STATS 709 710 // Schedule the VM operation that will do an evacuation pause to 711 // satisfy an allocation request of word_size. *succeeded will 712 // return whether the VM operation was successful (it did do an 713 // evacuation pause) or not (another thread beat us to it or the GC 714 // locker was active). Given that we should not be holding the 715 // Heap_lock when we enter this method, we will pass the 716 // gc_count_before (i.e., total_collections()) as a parameter since 717 // it has to be read while holding the Heap_lock. Currently, both 718 // methods that call do_collection_pause() release the Heap_lock 719 // before the call, so it's easy to read gc_count_before just before. 720 HeapWord* do_collection_pause(size_t word_size, 721 unsigned int gc_count_before, 722 bool* succeeded); 723 724 // The guts of the incremental collection pause, executed by the vm 725 // thread. It returns false if it is unable to do the collection due 726 // to the GC locker being active, true otherwise 727 bool do_collection_pause_at_safepoint(double target_pause_time_ms); 728 729 // Actually do the work of evacuating the collection set. 730 void evacuate_collection_set(); 731 732 // The g1 remembered set of the heap. 733 G1RemSet* _g1_rem_set; 734 // And it's mod ref barrier set, used to track updates for the above. 735 ModRefBarrierSet* _mr_bs; 736 737 // A set of cards that cover the objects for which the Rsets should be updated 738 // concurrently after the collection. 739 DirtyCardQueueSet _dirty_card_queue_set; 740 741 // The Heap Region Rem Set Iterator. 742 HeapRegionRemSetIterator** _rem_set_iterator; 743 744 // The closure used to refine a single card. 745 RefineCardTableEntryClosure* _refine_cte_cl; 746 747 // A function to check the consistency of dirty card logs. 748 void check_ct_logs_at_safepoint(); 749 750 // A DirtyCardQueueSet that is used to hold cards that contain 751 // references into the current collection set. This is used to 752 // update the remembered sets of the regions in the collection 753 // set in the event of an evacuation failure. 754 DirtyCardQueueSet _into_cset_dirty_card_queue_set; 755 756 // After a collection pause, make the regions in the CS into free 757 // regions. 758 void free_collection_set(HeapRegion* cs_head); 759 760 // Abandon the current collection set without recording policy 761 // statistics or updating free lists. 762 void abandon_collection_set(HeapRegion* cs_head); 763 764 // Applies "scan_non_heap_roots" to roots outside the heap, 765 // "scan_rs" to roots inside the heap (having done "set_region" to 766 // indicate the region in which the root resides), and does "scan_perm" 767 // (setting the generation to the perm generation.) If "scan_rs" is 768 // NULL, then this step is skipped. The "worker_i" 769 // param is for use with parallel roots processing, and should be 770 // the "i" of the calling parallel worker thread's work(i) function. 771 // In the sequential case this param will be ignored. 772 void g1_process_strong_roots(bool collecting_perm_gen, 773 SharedHeap::ScanningOption so, 774 OopClosure* scan_non_heap_roots, 775 OopsInHeapRegionClosure* scan_rs, 776 OopsInGenClosure* scan_perm, 777 int worker_i); 778 779 // Apply "blk" to all the weak roots of the system. These include 780 // JNI weak roots, the code cache, system dictionary, symbol table, 781 // string table, and referents of reachable weak refs. 782 void g1_process_weak_roots(OopClosure* root_closure, 783 OopClosure* non_root_closure); 784 785 // Frees a non-humongous region by initializing its contents and 786 // adding it to the free list that's passed as a parameter (this is 787 // usually a local list which will be appended to the master free 788 // list later). The used bytes of freed regions are accumulated in 789 // pre_used. If par is true, the region's RSet will not be freed 790 // up. The assumption is that this will be done later. 791 void free_region(HeapRegion* hr, 792 size_t* pre_used, 793 FreeRegionList* free_list, 794 bool par); 795 796 // Frees a humongous region by collapsing it into individual regions 797 // and calling free_region() for each of them. The freed regions 798 // will be added to the free list that's passed as a parameter (this 799 // is usually a local list which will be appended to the master free 800 // list later). The used bytes of freed regions are accumulated in 801 // pre_used. If par is true, the region's RSet will not be freed 802 // up. The assumption is that this will be done later. 803 void free_humongous_region(HeapRegion* hr, 804 size_t* pre_used, 805 FreeRegionList* free_list, 806 HumongousRegionSet* humongous_proxy_set, 807 bool par); 808 809 // Notifies all the necessary spaces that the committed space has 810 // been updated (either expanded or shrunk). It should be called 811 // after _g1_storage is updated. 812 void update_committed_space(HeapWord* old_end, HeapWord* new_end); 813 814 // The concurrent marker (and the thread it runs in.) 815 ConcurrentMark* _cm; 816 ConcurrentMarkThread* _cmThread; 817 bool _mark_in_progress; 818 819 // The concurrent refiner. 820 ConcurrentG1Refine* _cg1r; 821 822 // The parallel task queues 823 RefToScanQueueSet *_task_queues; 824 825 // True iff a evacuation has failed in the current collection. 826 bool _evacuation_failed; 827 828 // Set the attribute indicating whether evacuation has failed in the 829 // current collection. 830 void set_evacuation_failed(bool b) { _evacuation_failed = b; } 831 832 // Failed evacuations cause some logical from-space objects to have 833 // forwarding pointers to themselves. Reset them. 834 void remove_self_forwarding_pointers(); 835 836 // When one is non-null, so is the other. Together, they each pair is 837 // an object with a preserved mark, and its mark value. 838 GrowableArray<oop>* _objs_with_preserved_marks; 839 GrowableArray<markOop>* _preserved_marks_of_objs; 840 841 // Preserve the mark of "obj", if necessary, in preparation for its mark 842 // word being overwritten with a self-forwarding-pointer. 843 void preserve_mark_if_necessary(oop obj, markOop m); 844 845 // The stack of evac-failure objects left to be scanned. 846 GrowableArray<oop>* _evac_failure_scan_stack; 847 // The closure to apply to evac-failure objects. 848 849 OopsInHeapRegionClosure* _evac_failure_closure; 850 // Set the field above. 851 void 852 set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) { 853 _evac_failure_closure = evac_failure_closure; 854 } 855 856 // Push "obj" on the scan stack. 857 void push_on_evac_failure_scan_stack(oop obj); 858 // Process scan stack entries until the stack is empty. 859 void drain_evac_failure_scan_stack(); 860 // True iff an invocation of "drain_scan_stack" is in progress; to 861 // prevent unnecessary recursion. 862 bool _drain_in_progress; 863 864 // Do any necessary initialization for evacuation-failure handling. 865 // "cl" is the closure that will be used to process evac-failure 866 // objects. 867 void init_for_evac_failure(OopsInHeapRegionClosure* cl); 868 // Do any necessary cleanup for evacuation-failure handling data 869 // structures. 870 void finalize_for_evac_failure(); 871 872 // An attempt to evacuate "obj" has failed; take necessary steps. 873 oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj); 874 void handle_evacuation_failure_common(oop obj, markOop m); 875 876 // ("Weak") Reference processing support. 877 // 878 // G1 has 2 instances of the referece processor class. One 879 // (_ref_processor_cm) handles reference object discovery 880 // and subsequent processing during concurrent marking cycles. 881 // 882 // The other (_ref_processor_stw) handles reference object 883 // discovery and processing during full GCs and incremental 884 // evacuation pauses. 885 // 886 // During an incremental pause, reference discovery will be 887 // temporarily disabled for _ref_processor_cm and will be 888 // enabled for _ref_processor_stw. At the end of the evacuation 889 // pause references discovered by _ref_processor_stw will be 890 // processed and discovery will be disabled. The previous 891 // setting for reference object discovery for _ref_processor_cm 892 // will be re-instated. 893 // 894 // At the start of marking: 895 // * Discovery by the CM ref processor is verified to be inactive 896 // and it's discovered lists are empty. 897 // * Discovery by the CM ref processor is then enabled. 898 // 899 // At the end of marking: 900 // * Any references on the CM ref processor's discovered 901 // lists are processed (possibly MT). 902 // 903 // At the start of full GC we: 904 // * Disable discovery by the CM ref processor and 905 // empty CM ref processor's discovered lists 906 // (without processing any entries). 907 // * Verify that the STW ref processor is inactive and it's 908 // discovered lists are empty. 909 // * Temporarily set STW ref processor discovery as single threaded. 910 // * Temporarily clear the STW ref processor's _is_alive_non_header 911 // field. 912 // * Finally enable discovery by the STW ref processor. 913 // 914 // The STW ref processor is used to record any discovered 915 // references during the full GC. 916 // 917 // At the end of a full GC we: 918 // * Enqueue any reference objects discovered by the STW ref processor 919 // that have non-live referents. This has the side-effect of 920 // making the STW ref processor inactive by disabling discovery. 921 // * Verify that the CM ref processor is still inactive 922 // and no references have been placed on it's discovered 923 // lists (also checked as a precondition during initial marking). 924 925 // The (stw) reference processor... 926 ReferenceProcessor* _ref_processor_stw; 927 928 // During reference object discovery, the _is_alive_non_header 929 // closure (if non-null) is applied to the referent object to 930 // determine whether the referent is live. If so then the 931 // reference object does not need to be 'discovered' and can 932 // be treated as a regular oop. This has the benefit of reducing 933 // the number of 'discovered' reference objects that need to 934 // be processed. 935 // 936 // Instance of the is_alive closure for embedding into the 937 // STW reference processor as the _is_alive_non_header field. 938 // Supplying a value for the _is_alive_non_header field is 939 // optional but doing so prevents unnecessary additions to 940 // the discovered lists during reference discovery. 941 G1STWIsAliveClosure _is_alive_closure_stw; 942 943 // The (concurrent marking) reference processor... 944 ReferenceProcessor* _ref_processor_cm; 945 946 // Instance of the concurrent mark is_alive closure for embedding 947 // into the Concurrent Marking reference processor as the 948 // _is_alive_non_header field. Supplying a value for the 949 // _is_alive_non_header field is optional but doing so prevents 950 // unnecessary additions to the discovered lists during reference 951 // discovery. 952 G1CMIsAliveClosure _is_alive_closure_cm; 953 954 // Cache used by G1CollectedHeap::start_cset_region_for_worker(). 955 HeapRegion** _worker_cset_start_region; 956 957 // Time stamp to validate the regions recorded in the cache 958 // used by G1CollectedHeap::start_cset_region_for_worker(). 959 // The heap region entry for a given worker is valid iff 960 // the associated time stamp value matches the current value 961 // of G1CollectedHeap::_gc_time_stamp. 962 unsigned int* _worker_cset_start_region_time_stamp; 963 964 enum G1H_process_strong_roots_tasks { 965 G1H_PS_filter_satb_buffers, 966 G1H_PS_refProcessor_oops_do, 967 // Leave this one last. 968 G1H_PS_NumElements 969 }; 970 971 SubTasksDone* _process_strong_tasks; 972 973 volatile bool _free_regions_coming; 974 975 public: 976 977 SubTasksDone* process_strong_tasks() { return _process_strong_tasks; } 978 979 void set_refine_cte_cl_concurrency(bool concurrent); 980 981 RefToScanQueue *task_queue(int i) const; 982 983 // A set of cards where updates happened during the GC 984 DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; } 985 986 // A DirtyCardQueueSet that is used to hold cards that contain 987 // references into the current collection set. This is used to 988 // update the remembered sets of the regions in the collection 989 // set in the event of an evacuation failure. 990 DirtyCardQueueSet& into_cset_dirty_card_queue_set() 991 { return _into_cset_dirty_card_queue_set; } 992 993 // Create a G1CollectedHeap with the specified policy. 994 // Must call the initialize method afterwards. 995 // May not return if something goes wrong. 996 G1CollectedHeap(G1CollectorPolicy* policy); 997 998 // Initialize the G1CollectedHeap to have the initial and 999 // maximum sizes, permanent generation, and remembered and barrier sets 1000 // specified by the policy object. 1001 jint initialize(); 1002 1003 // Initialize weak reference processing. 1004 virtual void ref_processing_init(); 1005 1006 void set_par_threads(uint t) { 1007 SharedHeap::set_par_threads(t); 1008 // Done in SharedHeap but oddly there are 1009 // two _process_strong_tasks's in a G1CollectedHeap 1010 // so do it here too. 1011 _process_strong_tasks->set_n_threads(t); 1012 } 1013 1014 // Set _n_par_threads according to a policy TBD. 1015 void set_par_threads(); 1016 1017 void set_n_termination(int t) { 1018 _process_strong_tasks->set_n_threads(t); 1019 } 1020 1021 virtual CollectedHeap::Name kind() const { 1022 return CollectedHeap::G1CollectedHeap; 1023 } 1024 1025 // The current policy object for the collector. 1026 G1CollectorPolicy* g1_policy() const { return _g1_policy; } 1027 1028 // Adaptive size policy. No such thing for g1. 1029 virtual AdaptiveSizePolicy* size_policy() { return NULL; } 1030 1031 // The rem set and barrier set. 1032 G1RemSet* g1_rem_set() const { return _g1_rem_set; } 1033 ModRefBarrierSet* mr_bs() const { return _mr_bs; } 1034 1035 // The rem set iterator. 1036 HeapRegionRemSetIterator* rem_set_iterator(int i) { 1037 return _rem_set_iterator[i]; 1038 } 1039 1040 HeapRegionRemSetIterator* rem_set_iterator() { 1041 return _rem_set_iterator[0]; 1042 } 1043 1044 unsigned get_gc_time_stamp() { 1045 return _gc_time_stamp; 1046 } 1047 1048 void reset_gc_time_stamp() { 1049 _gc_time_stamp = 0; 1050 OrderAccess::fence(); 1051 // Clear the cached CSet starting regions and time stamps. 1052 // Their validity is dependent on the GC timestamp. 1053 clear_cset_start_regions(); 1054 } 1055 1056 void increment_gc_time_stamp() { 1057 ++_gc_time_stamp; 1058 OrderAccess::fence(); 1059 } 1060 1061 void iterate_dirty_card_closure(CardTableEntryClosure* cl, 1062 DirtyCardQueue* into_cset_dcq, 1063 bool concurrent, int worker_i); 1064 1065 // The shared block offset table array. 1066 G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; } 1067 1068 // Reference Processing accessors 1069 1070 // The STW reference processor.... 1071 ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; } 1072 1073 // The Concurent Marking reference processor... 1074 ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; } 1075 1076 virtual size_t capacity() const; 1077 virtual size_t used() const; 1078 // This should be called when we're not holding the heap lock. The 1079 // result might be a bit inaccurate. 1080 size_t used_unlocked() const; 1081 size_t recalculate_used() const; 1082 1083 // These virtual functions do the actual allocation. 1084 // Some heaps may offer a contiguous region for shared non-blocking 1085 // allocation, via inlined code (by exporting the address of the top and 1086 // end fields defining the extent of the contiguous allocation region.) 1087 // But G1CollectedHeap doesn't yet support this. 1088 1089 // Return an estimate of the maximum allocation that could be performed 1090 // without triggering any collection or expansion activity. In a 1091 // generational collector, for example, this is probably the largest 1092 // allocation that could be supported (without expansion) in the youngest 1093 // generation. It is "unsafe" because no locks are taken; the result 1094 // should be treated as an approximation, not a guarantee, for use in 1095 // heuristic resizing decisions. 1096 virtual size_t unsafe_max_alloc(); 1097 1098 virtual bool is_maximal_no_gc() const { 1099 return _g1_storage.uncommitted_size() == 0; 1100 } 1101 1102 // The total number of regions in the heap. 1103 size_t n_regions() { return _hrs.length(); } 1104 1105 // The max number of regions in the heap. 1106 size_t max_regions() { return _hrs.max_length(); } 1107 1108 // The number of regions that are completely free. 1109 size_t free_regions() { return _free_list.length(); } 1110 1111 // The number of regions that are not completely free. 1112 size_t used_regions() { return n_regions() - free_regions(); } 1113 1114 // The number of regions available for "regular" expansion. 1115 size_t expansion_regions() { return _expansion_regions; } 1116 1117 // Factory method for HeapRegion instances. It will return NULL if 1118 // the allocation fails. 1119 HeapRegion* new_heap_region(size_t hrs_index, HeapWord* bottom); 1120 1121 void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN; 1122 void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN; 1123 void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN; 1124 void verify_dirty_young_regions() PRODUCT_RETURN; 1125 1126 // verify_region_sets() performs verification over the region 1127 // lists. It will be compiled in the product code to be used when 1128 // necessary (i.e., during heap verification). 1129 void verify_region_sets(); 1130 1131 // verify_region_sets_optional() is planted in the code for 1132 // list verification in non-product builds (and it can be enabled in 1133 // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1). 1134 #if HEAP_REGION_SET_FORCE_VERIFY 1135 void verify_region_sets_optional() { 1136 verify_region_sets(); 1137 } 1138 #else // HEAP_REGION_SET_FORCE_VERIFY 1139 void verify_region_sets_optional() { } 1140 #endif // HEAP_REGION_SET_FORCE_VERIFY 1141 1142 #ifdef ASSERT 1143 bool is_on_master_free_list(HeapRegion* hr) { 1144 return hr->containing_set() == &_free_list; 1145 } 1146 1147 bool is_in_humongous_set(HeapRegion* hr) { 1148 return hr->containing_set() == &_humongous_set; 1149 } 1150 #endif // ASSERT 1151 1152 // Wrapper for the region list operations that can be called from 1153 // methods outside this class. 1154 1155 void secondary_free_list_add_as_tail(FreeRegionList* list) { 1156 _secondary_free_list.add_as_tail(list); 1157 } 1158 1159 void append_secondary_free_list() { 1160 _free_list.add_as_head(&_secondary_free_list); 1161 } 1162 1163 void append_secondary_free_list_if_not_empty_with_lock() { 1164 // If the secondary free list looks empty there's no reason to 1165 // take the lock and then try to append it. 1166 if (!_secondary_free_list.is_empty()) { 1167 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 1168 append_secondary_free_list(); 1169 } 1170 } 1171 1172 void old_set_remove(HeapRegion* hr) { 1173 _old_set.remove(hr); 1174 } 1175 1176 size_t non_young_capacity_bytes() { 1177 return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes(); 1178 } 1179 1180 void set_free_regions_coming(); 1181 void reset_free_regions_coming(); 1182 bool free_regions_coming() { return _free_regions_coming; } 1183 void wait_while_free_regions_coming(); 1184 1185 // Perform a collection of the heap; intended for use in implementing 1186 // "System.gc". This probably implies as full a collection as the 1187 // "CollectedHeap" supports. 1188 virtual void collect(GCCause::Cause cause); 1189 1190 // The same as above but assume that the caller holds the Heap_lock. 1191 void collect_locked(GCCause::Cause cause); 1192 1193 // This interface assumes that it's being called by the 1194 // vm thread. It collects the heap assuming that the 1195 // heap lock is already held and that we are executing in 1196 // the context of the vm thread. 1197 virtual void collect_as_vm_thread(GCCause::Cause cause); 1198 1199 // True iff a evacuation has failed in the most-recent collection. 1200 bool evacuation_failed() { return _evacuation_failed; } 1201 1202 // It will free a region if it has allocated objects in it that are 1203 // all dead. It calls either free_region() or 1204 // free_humongous_region() depending on the type of the region that 1205 // is passed to it. 1206 void free_region_if_empty(HeapRegion* hr, 1207 size_t* pre_used, 1208 FreeRegionList* free_list, 1209 OldRegionSet* old_proxy_set, 1210 HumongousRegionSet* humongous_proxy_set, 1211 HRRSCleanupTask* hrrs_cleanup_task, 1212 bool par); 1213 1214 // It appends the free list to the master free list and updates the 1215 // master humongous list according to the contents of the proxy 1216 // list. It also adjusts the total used bytes according to pre_used 1217 // (if par is true, it will do so by taking the ParGCRareEvent_lock). 1218 void update_sets_after_freeing_regions(size_t pre_used, 1219 FreeRegionList* free_list, 1220 OldRegionSet* old_proxy_set, 1221 HumongousRegionSet* humongous_proxy_set, 1222 bool par); 1223 1224 // Returns "TRUE" iff "p" points into the committed areas of the heap. 1225 virtual bool is_in(const void* p) const; 1226 1227 // Return "TRUE" iff the given object address is within the collection 1228 // set. 1229 inline bool obj_in_cs(oop obj); 1230 1231 // Return "TRUE" iff the given object address is in the reserved 1232 // region of g1 (excluding the permanent generation). 1233 bool is_in_g1_reserved(const void* p) const { 1234 return _g1_reserved.contains(p); 1235 } 1236 1237 // Returns a MemRegion that corresponds to the space that has been 1238 // reserved for the heap 1239 MemRegion g1_reserved() { 1240 return _g1_reserved; 1241 } 1242 1243 // Returns a MemRegion that corresponds to the space that has been 1244 // committed in the heap 1245 MemRegion g1_committed() { 1246 return _g1_committed; 1247 } 1248 1249 virtual bool is_in_closed_subset(const void* p) const; 1250 1251 // This resets the card table to all zeros. It is used after 1252 // a collection pause which used the card table to claim cards. 1253 void cleanUpCardTable(); 1254 1255 // Iteration functions. 1256 1257 // Iterate over all the ref-containing fields of all objects, calling 1258 // "cl.do_oop" on each. 1259 virtual void oop_iterate(OopClosure* cl) { 1260 oop_iterate(cl, true); 1261 } 1262 void oop_iterate(OopClosure* cl, bool do_perm); 1263 1264 // Same as above, restricted to a memory region. 1265 virtual void oop_iterate(MemRegion mr, OopClosure* cl) { 1266 oop_iterate(mr, cl, true); 1267 } 1268 void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm); 1269 1270 // Iterate over all objects, calling "cl.do_object" on each. 1271 virtual void object_iterate(ObjectClosure* cl) { 1272 object_iterate(cl, true); 1273 } 1274 virtual void safe_object_iterate(ObjectClosure* cl) { 1275 object_iterate(cl, true); 1276 } 1277 void object_iterate(ObjectClosure* cl, bool do_perm); 1278 1279 // Iterate over all objects allocated since the last collection, calling 1280 // "cl.do_object" on each. The heap must have been initialized properly 1281 // to support this function, or else this call will fail. 1282 virtual void object_iterate_since_last_GC(ObjectClosure* cl); 1283 1284 // Iterate over all spaces in use in the heap, in ascending address order. 1285 virtual void space_iterate(SpaceClosure* cl); 1286 1287 // Iterate over heap regions, in address order, terminating the 1288 // iteration early if the "doHeapRegion" method returns "true". 1289 void heap_region_iterate(HeapRegionClosure* blk) const; 1290 1291 // Iterate over heap regions starting with r (or the first region if "r" 1292 // is NULL), in address order, terminating early if the "doHeapRegion" 1293 // method returns "true". 1294 void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk) const; 1295 1296 // Return the region with the given index. It assumes the index is valid. 1297 HeapRegion* region_at(size_t index) const { return _hrs.at(index); } 1298 1299 // Divide the heap region sequence into "chunks" of some size (the number 1300 // of regions divided by the number of parallel threads times some 1301 // overpartition factor, currently 4). Assumes that this will be called 1302 // in parallel by ParallelGCThreads worker threads with discinct worker 1303 // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel 1304 // calls will use the same "claim_value", and that that claim value is 1305 // different from the claim_value of any heap region before the start of 1306 // the iteration. Applies "blk->doHeapRegion" to each of the regions, by 1307 // attempting to claim the first region in each chunk, and, if 1308 // successful, applying the closure to each region in the chunk (and 1309 // setting the claim value of the second and subsequent regions of the 1310 // chunk.) For now requires that "doHeapRegion" always returns "false", 1311 // i.e., that a closure never attempt to abort a traversal. 1312 void heap_region_par_iterate_chunked(HeapRegionClosure* blk, 1313 uint worker, 1314 uint no_of_par_workers, 1315 jint claim_value); 1316 1317 // It resets all the region claim values to the default. 1318 void reset_heap_region_claim_values(); 1319 1320 // Resets the claim values of regions in the current 1321 // collection set to the default. 1322 void reset_cset_heap_region_claim_values(); 1323 1324 #ifdef ASSERT 1325 bool check_heap_region_claim_values(jint claim_value); 1326 1327 // Same as the routine above but only checks regions in the 1328 // current collection set. 1329 bool check_cset_heap_region_claim_values(jint claim_value); 1330 #endif // ASSERT 1331 1332 // Clear the cached cset start regions and (more importantly) 1333 // the time stamps. Called when we reset the GC time stamp. 1334 void clear_cset_start_regions(); 1335 1336 // Given the id of a worker, obtain or calculate a suitable 1337 // starting region for iterating over the current collection set. 1338 HeapRegion* start_cset_region_for_worker(int worker_i); 1339 1340 // Iterate over the regions (if any) in the current collection set. 1341 void collection_set_iterate(HeapRegionClosure* blk); 1342 1343 // As above but starting from region r 1344 void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk); 1345 1346 // Returns the first (lowest address) compactible space in the heap. 1347 virtual CompactibleSpace* first_compactible_space(); 1348 1349 // A CollectedHeap will contain some number of spaces. This finds the 1350 // space containing a given address, or else returns NULL. 1351 virtual Space* space_containing(const void* addr) const; 1352 1353 // A G1CollectedHeap will contain some number of heap regions. This 1354 // finds the region containing a given address, or else returns NULL. 1355 template <class T> 1356 inline HeapRegion* heap_region_containing(const T addr) const; 1357 1358 // Like the above, but requires "addr" to be in the heap (to avoid a 1359 // null-check), and unlike the above, may return an continuing humongous 1360 // region. 1361 template <class T> 1362 inline HeapRegion* heap_region_containing_raw(const T addr) const; 1363 1364 // A CollectedHeap is divided into a dense sequence of "blocks"; that is, 1365 // each address in the (reserved) heap is a member of exactly 1366 // one block. The defining characteristic of a block is that it is 1367 // possible to find its size, and thus to progress forward to the next 1368 // block. (Blocks may be of different sizes.) Thus, blocks may 1369 // represent Java objects, or they might be free blocks in a 1370 // free-list-based heap (or subheap), as long as the two kinds are 1371 // distinguishable and the size of each is determinable. 1372 1373 // Returns the address of the start of the "block" that contains the 1374 // address "addr". We say "blocks" instead of "object" since some heaps 1375 // may not pack objects densely; a chunk may either be an object or a 1376 // non-object. 1377 virtual HeapWord* block_start(const void* addr) const; 1378 1379 // Requires "addr" to be the start of a chunk, and returns its size. 1380 // "addr + size" is required to be the start of a new chunk, or the end 1381 // of the active area of the heap. 1382 virtual size_t block_size(const HeapWord* addr) const; 1383 1384 // Requires "addr" to be the start of a block, and returns "TRUE" iff 1385 // the block is an object. 1386 virtual bool block_is_obj(const HeapWord* addr) const; 1387 1388 // Does this heap support heap inspection? (+PrintClassHistogram) 1389 virtual bool supports_heap_inspection() const { return true; } 1390 1391 // Section on thread-local allocation buffers (TLABs) 1392 // See CollectedHeap for semantics. 1393 1394 virtual bool supports_tlab_allocation() const; 1395 virtual size_t tlab_capacity(Thread* thr) const; 1396 virtual size_t unsafe_max_tlab_alloc(Thread* thr) const; 1397 1398 // Can a compiler initialize a new object without store barriers? 1399 // This permission only extends from the creation of a new object 1400 // via a TLAB up to the first subsequent safepoint. If such permission 1401 // is granted for this heap type, the compiler promises to call 1402 // defer_store_barrier() below on any slow path allocation of 1403 // a new object for which such initializing store barriers will 1404 // have been elided. G1, like CMS, allows this, but should be 1405 // ready to provide a compensating write barrier as necessary 1406 // if that storage came out of a non-young region. The efficiency 1407 // of this implementation depends crucially on being able to 1408 // answer very efficiently in constant time whether a piece of 1409 // storage in the heap comes from a young region or not. 1410 // See ReduceInitialCardMarks. 1411 virtual bool can_elide_tlab_store_barriers() const { 1412 return true; 1413 } 1414 1415 virtual bool card_mark_must_follow_store() const { 1416 return true; 1417 } 1418 1419 bool is_in_young(const oop obj) { 1420 HeapRegion* hr = heap_region_containing(obj); 1421 return hr != NULL && hr->is_young(); 1422 } 1423 1424 #ifdef ASSERT 1425 virtual bool is_in_partial_collection(const void* p); 1426 #endif 1427 1428 virtual bool is_scavengable(const void* addr); 1429 1430 // We don't need barriers for initializing stores to objects 1431 // in the young gen: for the SATB pre-barrier, there is no 1432 // pre-value that needs to be remembered; for the remembered-set 1433 // update logging post-barrier, we don't maintain remembered set 1434 // information for young gen objects. 1435 virtual bool can_elide_initializing_store_barrier(oop new_obj) { 1436 return is_in_young(new_obj); 1437 } 1438 1439 // Can a compiler elide a store barrier when it writes 1440 // a permanent oop into the heap? Applies when the compiler 1441 // is storing x to the heap, where x->is_perm() is true. 1442 virtual bool can_elide_permanent_oop_store_barriers() const { 1443 // At least until perm gen collection is also G1-ified, at 1444 // which point this should return false. 1445 return true; 1446 } 1447 1448 // Returns "true" iff the given word_size is "very large". 1449 static bool isHumongous(size_t word_size) { 1450 // Note this has to be strictly greater-than as the TLABs 1451 // are capped at the humongous thresold and we want to 1452 // ensure that we don't try to allocate a TLAB as 1453 // humongous and that we don't allocate a humongous 1454 // object in a TLAB. 1455 return word_size > _humongous_object_threshold_in_words; 1456 } 1457 1458 // Update mod union table with the set of dirty cards. 1459 void updateModUnion(); 1460 1461 // Set the mod union bits corresponding to the given memRegion. Note 1462 // that this is always a safe operation, since it doesn't clear any 1463 // bits. 1464 void markModUnionRange(MemRegion mr); 1465 1466 // Records the fact that a marking phase is no longer in progress. 1467 void set_marking_complete() { 1468 _mark_in_progress = false; 1469 } 1470 void set_marking_started() { 1471 _mark_in_progress = true; 1472 } 1473 bool mark_in_progress() { 1474 return _mark_in_progress; 1475 } 1476 1477 // Print the maximum heap capacity. 1478 virtual size_t max_capacity() const; 1479 1480 virtual jlong millis_since_last_gc(); 1481 1482 // Perform any cleanup actions necessary before allowing a verification. 1483 virtual void prepare_for_verify(); 1484 1485 // Perform verification. 1486 1487 // vo == UsePrevMarking -> use "prev" marking information, 1488 // vo == UseNextMarking -> use "next" marking information 1489 // vo == UseMarkWord -> use the mark word in the object header 1490 // 1491 // NOTE: Only the "prev" marking information is guaranteed to be 1492 // consistent most of the time, so most calls to this should use 1493 // vo == UsePrevMarking. 1494 // Currently, there is only one case where this is called with 1495 // vo == UseNextMarking, which is to verify the "next" marking 1496 // information at the end of remark. 1497 // Currently there is only one place where this is called with 1498 // vo == UseMarkWord, which is to verify the marking during a 1499 // full GC. 1500 void verify(bool allow_dirty, bool silent, VerifyOption vo); 1501 1502 // Override; it uses the "prev" marking information 1503 virtual void verify(bool allow_dirty, bool silent); 1504 virtual void print_on(outputStream* st) const; 1505 virtual void print_extended_on(outputStream* st) const; 1506 1507 virtual void print_gc_threads_on(outputStream* st) const; 1508 virtual void gc_threads_do(ThreadClosure* tc) const; 1509 1510 // Override 1511 void print_tracing_info() const; 1512 1513 // The following two methods are helpful for debugging RSet issues. 1514 void print_cset_rsets() PRODUCT_RETURN; 1515 void print_all_rsets() PRODUCT_RETURN; 1516 1517 // Convenience function to be used in situations where the heap type can be 1518 // asserted to be this type. 1519 static G1CollectedHeap* heap(); 1520 1521 void set_region_short_lived_locked(HeapRegion* hr); 1522 // add appropriate methods for any other surv rate groups 1523 1524 YoungList* young_list() { return _young_list; } 1525 1526 // debugging 1527 bool check_young_list_well_formed() { 1528 return _young_list->check_list_well_formed(); 1529 } 1530 1531 bool check_young_list_empty(bool check_heap, 1532 bool check_sample = true); 1533 1534 // *** Stuff related to concurrent marking. It's not clear to me that so 1535 // many of these need to be public. 1536 1537 // The functions below are helper functions that a subclass of 1538 // "CollectedHeap" can use in the implementation of its virtual 1539 // functions. 1540 // This performs a concurrent marking of the live objects in a 1541 // bitmap off to the side. 1542 void doConcurrentMark(); 1543 1544 bool isMarkedPrev(oop obj) const; 1545 bool isMarkedNext(oop obj) const; 1546 1547 // vo == UsePrevMarking -> use "prev" marking information, 1548 // vo == UseNextMarking -> use "next" marking information, 1549 // vo == UseMarkWord -> use mark word from object header 1550 bool is_obj_dead_cond(const oop obj, 1551 const HeapRegion* hr, 1552 const VerifyOption vo) const { 1553 1554 switch (vo) { 1555 case VerifyOption_G1UsePrevMarking: 1556 return is_obj_dead(obj, hr); 1557 case VerifyOption_G1UseNextMarking: 1558 return is_obj_ill(obj, hr); 1559 default: 1560 assert(vo == VerifyOption_G1UseMarkWord, "must be"); 1561 return !obj->is_gc_marked(); 1562 } 1563 } 1564 1565 // Determine if an object is dead, given the object and also 1566 // the region to which the object belongs. An object is dead 1567 // iff a) it was not allocated since the last mark and b) it 1568 // is not marked. 1569 1570 bool is_obj_dead(const oop obj, const HeapRegion* hr) const { 1571 return 1572 !hr->obj_allocated_since_prev_marking(obj) && 1573 !isMarkedPrev(obj); 1574 } 1575 1576 // This is used when copying an object to survivor space. 1577 // If the object is marked live, then we mark the copy live. 1578 // If the object is allocated since the start of this mark 1579 // cycle, then we mark the copy live. 1580 // If the object has been around since the previous mark 1581 // phase, and hasn't been marked yet during this phase, 1582 // then we don't mark it, we just wait for the 1583 // current marking cycle to get to it. 1584 1585 // This function returns true when an object has been 1586 // around since the previous marking and hasn't yet 1587 // been marked during this marking. 1588 1589 bool is_obj_ill(const oop obj, const HeapRegion* hr) const { 1590 return 1591 !hr->obj_allocated_since_next_marking(obj) && 1592 !isMarkedNext(obj); 1593 } 1594 1595 // Determine if an object is dead, given only the object itself. 1596 // This will find the region to which the object belongs and 1597 // then call the region version of the same function. 1598 1599 // Added if it is in permanent gen it isn't dead. 1600 // Added if it is NULL it isn't dead. 1601 1602 // vo == UsePrevMarking -> use "prev" marking information, 1603 // vo == UseNextMarking -> use "next" marking information, 1604 // vo == UseMarkWord -> use mark word from object header 1605 bool is_obj_dead_cond(const oop obj, 1606 const VerifyOption vo) const { 1607 1608 switch (vo) { 1609 case VerifyOption_G1UsePrevMarking: 1610 return is_obj_dead(obj); 1611 case VerifyOption_G1UseNextMarking: 1612 return is_obj_ill(obj); 1613 default: 1614 assert(vo == VerifyOption_G1UseMarkWord, "must be"); 1615 return !obj->is_gc_marked(); 1616 } 1617 } 1618 1619 bool is_obj_dead(const oop obj) const { 1620 const HeapRegion* hr = heap_region_containing(obj); 1621 if (hr == NULL) { 1622 if (Universe::heap()->is_in_permanent(obj)) 1623 return false; 1624 else if (obj == NULL) return false; 1625 else return true; 1626 } 1627 else return is_obj_dead(obj, hr); 1628 } 1629 1630 bool is_obj_ill(const oop obj) const { 1631 const HeapRegion* hr = heap_region_containing(obj); 1632 if (hr == NULL) { 1633 if (Universe::heap()->is_in_permanent(obj)) 1634 return false; 1635 else if (obj == NULL) return false; 1636 else return true; 1637 } 1638 else return is_obj_ill(obj, hr); 1639 } 1640 1641 // The following is just to alert the verification code 1642 // that a full collection has occurred and that the 1643 // remembered sets are no longer up to date. 1644 bool _full_collection; 1645 void set_full_collection() { _full_collection = true;} 1646 void clear_full_collection() {_full_collection = false;} 1647 bool full_collection() {return _full_collection;} 1648 1649 ConcurrentMark* concurrent_mark() const { return _cm; } 1650 ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; } 1651 1652 // The dirty cards region list is used to record a subset of regions 1653 // whose cards need clearing. The list if populated during the 1654 // remembered set scanning and drained during the card table 1655 // cleanup. Although the methods are reentrant, population/draining 1656 // phases must not overlap. For synchronization purposes the last 1657 // element on the list points to itself. 1658 HeapRegion* _dirty_cards_region_list; 1659 void push_dirty_cards_region(HeapRegion* hr); 1660 HeapRegion* pop_dirty_cards_region(); 1661 1662 public: 1663 void stop_conc_gc_threads(); 1664 1665 double predict_region_elapsed_time_ms(HeapRegion* hr, bool young); 1666 void check_if_region_is_too_expensive(double predicted_time_ms); 1667 size_t pending_card_num(); 1668 size_t max_pending_card_num(); 1669 size_t cards_scanned(); 1670 1671 protected: 1672 size_t _max_heap_capacity; 1673 }; 1674 1675 #define use_local_bitmaps 1 1676 #define verify_local_bitmaps 0 1677 #define oop_buffer_length 256 1678 1679 #ifndef PRODUCT 1680 class GCLabBitMap; 1681 class GCLabBitMapClosure: public BitMapClosure { 1682 private: 1683 ConcurrentMark* _cm; 1684 GCLabBitMap* _bitmap; 1685 1686 public: 1687 GCLabBitMapClosure(ConcurrentMark* cm, 1688 GCLabBitMap* bitmap) { 1689 _cm = cm; 1690 _bitmap = bitmap; 1691 } 1692 1693 virtual bool do_bit(size_t offset); 1694 }; 1695 #endif // !PRODUCT 1696 1697 class GCLabBitMap: public BitMap { 1698 private: 1699 ConcurrentMark* _cm; 1700 1701 int _shifter; 1702 size_t _bitmap_word_covers_words; 1703 1704 // beginning of the heap 1705 HeapWord* _heap_start; 1706 1707 // this is the actual start of the GCLab 1708 HeapWord* _real_start_word; 1709 1710 // this is the actual end of the GCLab 1711 HeapWord* _real_end_word; 1712 1713 // this is the first word, possibly located before the actual start 1714 // of the GCLab, that corresponds to the first bit of the bitmap 1715 HeapWord* _start_word; 1716 1717 // size of a GCLab in words 1718 size_t _gclab_word_size; 1719 1720 static int shifter() { 1721 return MinObjAlignment - 1; 1722 } 1723 1724 // how many heap words does a single bitmap word corresponds to? 1725 static size_t bitmap_word_covers_words() { 1726 return BitsPerWord << shifter(); 1727 } 1728 1729 size_t gclab_word_size() const { 1730 return _gclab_word_size; 1731 } 1732 1733 // Calculates actual GCLab size in words 1734 size_t gclab_real_word_size() const { 1735 return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word)) 1736 / BitsPerWord; 1737 } 1738 1739 static size_t bitmap_size_in_bits(size_t gclab_word_size) { 1740 size_t bits_in_bitmap = gclab_word_size >> shifter(); 1741 // We are going to ensure that the beginning of a word in this 1742 // bitmap also corresponds to the beginning of a word in the 1743 // global marking bitmap. To handle the case where a GCLab 1744 // starts from the middle of the bitmap, we need to add enough 1745 // space (i.e. up to a bitmap word) to ensure that we have 1746 // enough bits in the bitmap. 1747 return bits_in_bitmap + BitsPerWord - 1; 1748 } 1749 public: 1750 GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size) 1751 : BitMap(bitmap_size_in_bits(gclab_word_size)), 1752 _cm(G1CollectedHeap::heap()->concurrent_mark()), 1753 _shifter(shifter()), 1754 _bitmap_word_covers_words(bitmap_word_covers_words()), 1755 _heap_start(heap_start), 1756 _gclab_word_size(gclab_word_size), 1757 _real_start_word(NULL), 1758 _real_end_word(NULL), 1759 _start_word(NULL) { 1760 guarantee(false, "GCLabBitMap::GCLabBitmap(): don't call this any more"); 1761 } 1762 1763 inline unsigned heapWordToOffset(HeapWord* addr) { 1764 unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter; 1765 assert(offset < size(), "offset should be within bounds"); 1766 return offset; 1767 } 1768 1769 inline HeapWord* offsetToHeapWord(size_t offset) { 1770 HeapWord* addr = _start_word + (offset << _shifter); 1771 assert(_real_start_word <= addr && addr < _real_end_word, "invariant"); 1772 return addr; 1773 } 1774 1775 bool fields_well_formed() { 1776 bool ret1 = (_real_start_word == NULL) && 1777 (_real_end_word == NULL) && 1778 (_start_word == NULL); 1779 if (ret1) 1780 return true; 1781 1782 bool ret2 = _real_start_word >= _start_word && 1783 _start_word < _real_end_word && 1784 (_real_start_word + _gclab_word_size) == _real_end_word && 1785 (_start_word + _gclab_word_size + _bitmap_word_covers_words) 1786 > _real_end_word; 1787 return ret2; 1788 } 1789 1790 inline bool mark(HeapWord* addr) { 1791 guarantee(use_local_bitmaps, "invariant"); 1792 assert(fields_well_formed(), "invariant"); 1793 1794 if (addr >= _real_start_word && addr < _real_end_word) { 1795 assert(!isMarked(addr), "should not have already been marked"); 1796 1797 // first mark it on the bitmap 1798 at_put(heapWordToOffset(addr), true); 1799 1800 return true; 1801 } else { 1802 return false; 1803 } 1804 } 1805 1806 inline bool isMarked(HeapWord* addr) { 1807 guarantee(use_local_bitmaps, "invariant"); 1808 assert(fields_well_formed(), "invariant"); 1809 1810 return at(heapWordToOffset(addr)); 1811 } 1812 1813 void set_buffer(HeapWord* start) { 1814 guarantee(false, "set_buffer(): don't call this any more"); 1815 1816 guarantee(use_local_bitmaps, "invariant"); 1817 clear(); 1818 1819 assert(start != NULL, "invariant"); 1820 _real_start_word = start; 1821 _real_end_word = start + _gclab_word_size; 1822 1823 size_t diff = 1824 pointer_delta(start, _heap_start) % _bitmap_word_covers_words; 1825 _start_word = start - diff; 1826 1827 assert(fields_well_formed(), "invariant"); 1828 } 1829 1830 #ifndef PRODUCT 1831 void verify() { 1832 // verify that the marks have been propagated 1833 GCLabBitMapClosure cl(_cm, this); 1834 iterate(&cl); 1835 } 1836 #endif // PRODUCT 1837 1838 void retire() { 1839 guarantee(false, "retire(): don't call this any more"); 1840 1841 guarantee(use_local_bitmaps, "invariant"); 1842 assert(fields_well_formed(), "invariant"); 1843 1844 if (_start_word != NULL) { 1845 CMBitMap* mark_bitmap = _cm->nextMarkBitMap(); 1846 1847 // this means that the bitmap was set up for the GCLab 1848 assert(_real_start_word != NULL && _real_end_word != NULL, "invariant"); 1849 1850 mark_bitmap->mostly_disjoint_range_union(this, 1851 0, // always start from the start of the bitmap 1852 _start_word, 1853 gclab_real_word_size()); 1854 _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word)); 1855 1856 #ifndef PRODUCT 1857 if (use_local_bitmaps && verify_local_bitmaps) 1858 verify(); 1859 #endif // PRODUCT 1860 } else { 1861 assert(_real_start_word == NULL && _real_end_word == NULL, "invariant"); 1862 } 1863 } 1864 1865 size_t bitmap_size_in_words() const { 1866 return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord; 1867 } 1868 1869 }; 1870 1871 class G1ParGCAllocBuffer: public ParGCAllocBuffer { 1872 private: 1873 bool _retired; 1874 1875 public: 1876 G1ParGCAllocBuffer(size_t gclab_word_size); 1877 1878 void set_buf(HeapWord* buf) { 1879 ParGCAllocBuffer::set_buf(buf); 1880 _retired = false; 1881 } 1882 1883 void retire(bool end_of_gc, bool retain) { 1884 if (_retired) 1885 return; 1886 ParGCAllocBuffer::retire(end_of_gc, retain); 1887 _retired = true; 1888 } 1889 }; 1890 1891 class G1ParScanThreadState : public StackObj { 1892 protected: 1893 G1CollectedHeap* _g1h; 1894 RefToScanQueue* _refs; 1895 DirtyCardQueue _dcq; 1896 CardTableModRefBS* _ct_bs; 1897 G1RemSet* _g1_rem; 1898 1899 G1ParGCAllocBuffer _surviving_alloc_buffer; 1900 G1ParGCAllocBuffer _tenured_alloc_buffer; 1901 G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount]; 1902 ageTable _age_table; 1903 1904 size_t _alloc_buffer_waste; 1905 size_t _undo_waste; 1906 1907 OopsInHeapRegionClosure* _evac_failure_cl; 1908 G1ParScanHeapEvacClosure* _evac_cl; 1909 G1ParScanPartialArrayClosure* _partial_scan_cl; 1910 1911 int _hash_seed; 1912 uint _queue_num; 1913 1914 size_t _term_attempts; 1915 1916 double _start; 1917 double _start_strong_roots; 1918 double _strong_roots_time; 1919 double _start_term; 1920 double _term_time; 1921 1922 // Map from young-age-index (0 == not young, 1 is youngest) to 1923 // surviving words. base is what we get back from the malloc call 1924 size_t* _surviving_young_words_base; 1925 // this points into the array, as we use the first few entries for padding 1926 size_t* _surviving_young_words; 1927 1928 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t)) 1929 1930 void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; } 1931 1932 void add_to_undo_waste(size_t waste) { _undo_waste += waste; } 1933 1934 DirtyCardQueue& dirty_card_queue() { return _dcq; } 1935 CardTableModRefBS* ctbs() { return _ct_bs; } 1936 1937 template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) { 1938 if (!from->is_survivor()) { 1939 _g1_rem->par_write_ref(from, p, tid); 1940 } 1941 } 1942 1943 template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) { 1944 // If the new value of the field points to the same region or 1945 // is the to-space, we don't need to include it in the Rset updates. 1946 if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) { 1947 size_t card_index = ctbs()->index_for(p); 1948 // If the card hasn't been added to the buffer, do it. 1949 if (ctbs()->mark_card_deferred(card_index)) { 1950 dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index)); 1951 } 1952 } 1953 } 1954 1955 public: 1956 G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num); 1957 1958 ~G1ParScanThreadState() { 1959 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base); 1960 } 1961 1962 RefToScanQueue* refs() { return _refs; } 1963 ageTable* age_table() { return &_age_table; } 1964 1965 G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) { 1966 return _alloc_buffers[purpose]; 1967 } 1968 1969 size_t alloc_buffer_waste() const { return _alloc_buffer_waste; } 1970 size_t undo_waste() const { return _undo_waste; } 1971 1972 #ifdef ASSERT 1973 bool verify_ref(narrowOop* ref) const; 1974 bool verify_ref(oop* ref) const; 1975 bool verify_task(StarTask ref) const; 1976 #endif // ASSERT 1977 1978 template <class T> void push_on_queue(T* ref) { 1979 assert(verify_ref(ref), "sanity"); 1980 refs()->push(ref); 1981 } 1982 1983 template <class T> void update_rs(HeapRegion* from, T* p, int tid) { 1984 if (G1DeferredRSUpdate) { 1985 deferred_rs_update(from, p, tid); 1986 } else { 1987 immediate_rs_update(from, p, tid); 1988 } 1989 } 1990 1991 HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) { 1992 1993 HeapWord* obj = NULL; 1994 size_t gclab_word_size = _g1h->desired_plab_sz(purpose); 1995 if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) { 1996 G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose); 1997 assert(gclab_word_size == alloc_buf->word_sz(), 1998 "dynamic resizing is not supported"); 1999 add_to_alloc_buffer_waste(alloc_buf->words_remaining()); 2000 alloc_buf->retire(false, false); 2001 2002 HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size); 2003 if (buf == NULL) return NULL; // Let caller handle allocation failure. 2004 // Otherwise. 2005 alloc_buf->set_buf(buf); 2006 2007 obj = alloc_buf->allocate(word_sz); 2008 assert(obj != NULL, "buffer was definitely big enough..."); 2009 } else { 2010 obj = _g1h->par_allocate_during_gc(purpose, word_sz); 2011 } 2012 return obj; 2013 } 2014 2015 HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) { 2016 HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz); 2017 if (obj != NULL) return obj; 2018 return allocate_slow(purpose, word_sz); 2019 } 2020 2021 void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) { 2022 if (alloc_buffer(purpose)->contains(obj)) { 2023 assert(alloc_buffer(purpose)->contains(obj + word_sz - 1), 2024 "should contain whole object"); 2025 alloc_buffer(purpose)->undo_allocation(obj, word_sz); 2026 } else { 2027 CollectedHeap::fill_with_object(obj, word_sz); 2028 add_to_undo_waste(word_sz); 2029 } 2030 } 2031 2032 void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) { 2033 _evac_failure_cl = evac_failure_cl; 2034 } 2035 OopsInHeapRegionClosure* evac_failure_closure() { 2036 return _evac_failure_cl; 2037 } 2038 2039 void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) { 2040 _evac_cl = evac_cl; 2041 } 2042 2043 void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) { 2044 _partial_scan_cl = partial_scan_cl; 2045 } 2046 2047 int* hash_seed() { return &_hash_seed; } 2048 uint queue_num() { return _queue_num; } 2049 2050 size_t term_attempts() const { return _term_attempts; } 2051 void note_term_attempt() { _term_attempts++; } 2052 2053 void start_strong_roots() { 2054 _start_strong_roots = os::elapsedTime(); 2055 } 2056 void end_strong_roots() { 2057 _strong_roots_time += (os::elapsedTime() - _start_strong_roots); 2058 } 2059 double strong_roots_time() const { return _strong_roots_time; } 2060 2061 void start_term_time() { 2062 note_term_attempt(); 2063 _start_term = os::elapsedTime(); 2064 } 2065 void end_term_time() { 2066 _term_time += (os::elapsedTime() - _start_term); 2067 } 2068 double term_time() const { return _term_time; } 2069 2070 double elapsed_time() const { 2071 return os::elapsedTime() - _start; 2072 } 2073 2074 static void 2075 print_termination_stats_hdr(outputStream* const st = gclog_or_tty); 2076 void 2077 print_termination_stats(int i, outputStream* const st = gclog_or_tty) const; 2078 2079 size_t* surviving_young_words() { 2080 // We add on to hide entry 0 which accumulates surviving words for 2081 // age -1 regions (i.e. non-young ones) 2082 return _surviving_young_words; 2083 } 2084 2085 void retire_alloc_buffers() { 2086 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { 2087 size_t waste = _alloc_buffers[ap]->words_remaining(); 2088 add_to_alloc_buffer_waste(waste); 2089 _alloc_buffers[ap]->retire(true, false); 2090 } 2091 } 2092 2093 template <class T> void deal_with_reference(T* ref_to_scan) { 2094 if (has_partial_array_mask(ref_to_scan)) { 2095 _partial_scan_cl->do_oop_nv(ref_to_scan); 2096 } else { 2097 // Note: we can use "raw" versions of "region_containing" because 2098 // "obj_to_scan" is definitely in the heap, and is not in a 2099 // humongous region. 2100 HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan); 2101 _evac_cl->set_region(r); 2102 _evac_cl->do_oop_nv(ref_to_scan); 2103 } 2104 } 2105 2106 void deal_with_reference(StarTask ref) { 2107 assert(verify_task(ref), "sanity"); 2108 if (ref.is_narrow()) { 2109 deal_with_reference((narrowOop*)ref); 2110 } else { 2111 deal_with_reference((oop*)ref); 2112 } 2113 } 2114 2115 public: 2116 void trim_queue(); 2117 }; 2118 2119 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP