1 /* 2 * Copyright (c) 2008, 2011, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "interpreter/interpreter.hpp" 27 #include "memory/allocation.inline.hpp" 28 #include "prims/methodHandles.hpp" 29 30 #define __ _masm-> 31 32 #ifdef PRODUCT 33 #define BLOCK_COMMENT(str) /* nothing */ 34 #else 35 #define BLOCK_COMMENT(str) __ block_comment(str) 36 #endif 37 38 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 39 40 address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm, 41 address interpreted_entry) { 42 // Just before the actual machine code entry point, allocate space 43 // for a MethodHandleEntry::Data record, so that we can manage everything 44 // from one base pointer. 45 __ align(wordSize); 46 address target = __ pc() + sizeof(Data); 47 while (__ pc() < target) { 48 __ nop(); 49 __ align(wordSize); 50 } 51 52 MethodHandleEntry* me = (MethodHandleEntry*) __ pc(); 53 me->set_end_address(__ pc()); // set a temporary end_address 54 me->set_from_interpreted_entry(interpreted_entry); 55 me->set_type_checking_entry(NULL); 56 57 return (address) me; 58 } 59 60 MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm, 61 address start_addr) { 62 MethodHandleEntry* me = (MethodHandleEntry*) start_addr; 63 assert(me->end_address() == start_addr, "valid ME"); 64 65 // Fill in the real end_address: 66 __ align(wordSize); 67 me->set_end_address(__ pc()); 68 69 return me; 70 } 71 72 // stack walking support 73 74 frame MethodHandles::ricochet_frame_sender(const frame& fr, RegisterMap *map) { 75 //RicochetFrame* f = RicochetFrame::from_frame(fr); 76 // Cf. is_interpreted_frame path of frame::sender 77 intptr_t* younger_sp = fr.sp(); 78 intptr_t* sp = fr.sender_sp(); 79 map->make_integer_regs_unsaved(); 80 map->shift_window(sp, younger_sp); 81 bool this_frame_adjusted_stack = true; // I5_savedSP is live in this RF 82 return frame(sp, younger_sp, this_frame_adjusted_stack); 83 } 84 85 void MethodHandles::ricochet_frame_oops_do(const frame& fr, OopClosure* blk, const RegisterMap* reg_map) { 86 ResourceMark rm; 87 RicochetFrame* f = RicochetFrame::from_frame(fr); 88 89 // pick up the argument type descriptor: 90 Thread* thread = Thread::current(); 91 Handle cookie(thread, f->compute_saved_args_layout(true, true)); 92 93 // process fixed part 94 blk->do_oop((oop*)f->saved_target_addr()); 95 blk->do_oop((oop*)f->saved_args_layout_addr()); 96 97 // process variable arguments: 98 if (cookie.is_null()) return; // no arguments to describe 99 100 // the cookie is actually the invokeExact method for my target 101 // his argument signature is what I'm interested in 102 assert(cookie->is_method(), ""); 103 methodHandle invoker(thread, methodOop(cookie())); 104 assert(invoker->name() == vmSymbols::invokeExact_name(), "must be this kind of method"); 105 assert(!invoker->is_static(), "must have MH argument"); 106 int slot_count = invoker->size_of_parameters(); 107 assert(slot_count >= 1, "must include 'this'"); 108 intptr_t* base = f->saved_args_base(); 109 intptr_t* retval = NULL; 110 if (f->has_return_value_slot()) 111 retval = f->return_value_slot_addr(); 112 int slot_num = slot_count - 1; 113 intptr_t* loc = &base[slot_num]; 114 //blk->do_oop((oop*) loc); // original target, which is irrelevant 115 int arg_num = 0; 116 for (SignatureStream ss(invoker->signature()); !ss.is_done(); ss.next()) { 117 if (ss.at_return_type()) continue; 118 BasicType ptype = ss.type(); 119 if (ptype == T_ARRAY) ptype = T_OBJECT; // fold all refs to T_OBJECT 120 assert(ptype >= T_BOOLEAN && ptype <= T_OBJECT, "not array or void"); 121 slot_num -= type2size[ptype]; 122 loc = &base[slot_num]; 123 bool is_oop = (ptype == T_OBJECT && loc != retval); 124 if (is_oop) blk->do_oop((oop*)loc); 125 arg_num += 1; 126 } 127 assert(slot_num == 0, "must have processed all the arguments"); 128 } 129 130 // Ricochet Frames 131 const Register MethodHandles::RicochetFrame::L1_continuation = L1; 132 const Register MethodHandles::RicochetFrame::L2_saved_target = L2; 133 const Register MethodHandles::RicochetFrame::L3_saved_args_layout = L3; 134 const Register MethodHandles::RicochetFrame::L4_saved_args_base = L4; // cf. Gargs = G4 135 const Register MethodHandles::RicochetFrame::L5_conversion = L5; 136 #ifdef ASSERT 137 const Register MethodHandles::RicochetFrame::L0_magic_number_1 = L0; 138 #endif //ASSERT 139 140 oop MethodHandles::RicochetFrame::compute_saved_args_layout(bool read_cache, bool write_cache) { 141 if (read_cache) { 142 oop cookie = saved_args_layout(); 143 if (cookie != NULL) return cookie; 144 } 145 oop target = saved_target(); 146 oop mtype = java_lang_invoke_MethodHandle::type(target); 147 oop mtform = java_lang_invoke_MethodType::form(mtype); 148 oop cookie = java_lang_invoke_MethodTypeForm::vmlayout(mtform); 149 if (write_cache) { 150 (*saved_args_layout_addr()) = cookie; 151 } 152 return cookie; 153 } 154 155 void MethodHandles::RicochetFrame::generate_ricochet_blob(MacroAssembler* _masm, 156 // output params: 157 int* bounce_offset, 158 int* exception_offset, 159 int* frame_size_in_words) { 160 (*frame_size_in_words) = RicochetFrame::frame_size_in_bytes() / wordSize; 161 162 address start = __ pc(); 163 164 #ifdef ASSERT 165 __ illtrap(0); __ illtrap(0); __ illtrap(0); 166 // here's a hint of something special: 167 __ set(MAGIC_NUMBER_1, G0); 168 __ set(MAGIC_NUMBER_2, G0); 169 #endif //ASSERT 170 __ illtrap(0); // not reached 171 172 // Return values are in registers. 173 // L1_continuation contains a cleanup continuation we must return 174 // to. 175 176 (*bounce_offset) = __ pc() - start; 177 BLOCK_COMMENT("ricochet_blob.bounce"); 178 179 if (VerifyMethodHandles) RicochetFrame::verify_clean(_masm); 180 trace_method_handle(_masm, "ricochet_blob.bounce"); 181 182 __ JMP(L1_continuation, 0); 183 __ delayed()->nop(); 184 __ illtrap(0); 185 186 DEBUG_ONLY(__ set(MAGIC_NUMBER_2, G0)); 187 188 (*exception_offset) = __ pc() - start; 189 BLOCK_COMMENT("ricochet_blob.exception"); 190 191 // compare this to Interpreter::rethrow_exception_entry, which is parallel code 192 // for example, see TemplateInterpreterGenerator::generate_throw_exception 193 // Live registers in: 194 // Oexception (O0): exception 195 // Oissuing_pc (O1): return address/pc that threw exception (ignored, always equal to bounce addr) 196 __ verify_oop(Oexception); 197 198 // Take down the frame. 199 200 // Cf. InterpreterMacroAssembler::remove_activation. 201 leave_ricochet_frame(_masm, /*recv_reg=*/ noreg, I5_savedSP, I7); 202 203 // We are done with this activation frame; find out where to go next. 204 // The continuation point will be an exception handler, which expects 205 // the following registers set up: 206 // 207 // Oexception: exception 208 // Oissuing_pc: the local call that threw exception 209 // Other On: garbage 210 // In/Ln: the contents of the caller's register window 211 // 212 // We do the required restore at the last possible moment, because we 213 // need to preserve some state across a runtime call. 214 // (Remember that the caller activation is unknown--it might not be 215 // interpreted, so things like Lscratch are useless in the caller.) 216 __ mov(Oexception, Oexception ->after_save()); // get exception in I0 so it will be on O0 after restore 217 __ add(I7, frame::pc_return_offset, Oissuing_pc->after_save()); // likewise set I1 to a value local to the caller 218 __ call_VM_leaf(L7_thread_cache, 219 CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), 220 G2_thread, Oissuing_pc->after_save()); 221 222 // The caller's SP was adjusted upon method entry to accomodate 223 // the callee's non-argument locals. Undo that adjustment. 224 __ JMP(O0, 0); // return exception handler in caller 225 __ delayed()->restore(I5_savedSP, G0, SP); 226 227 // (same old exception object is already in Oexception; see above) 228 // Note that an "issuing PC" is actually the next PC after the call 229 } 230 231 void MethodHandles::RicochetFrame::enter_ricochet_frame(MacroAssembler* _masm, 232 Register recv_reg, 233 Register argv_reg, 234 address return_handler) { 235 // does not include the __ save() 236 assert(argv_reg == Gargs, ""); 237 Address G3_mh_vmtarget( recv_reg, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes()); 238 Address G3_amh_conversion(recv_reg, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes()); 239 240 // Create the RicochetFrame. 241 // Unlike on x86 we can store all required information in local 242 // registers. 243 BLOCK_COMMENT("push RicochetFrame {"); 244 __ set(ExternalAddress(return_handler), L1_continuation); 245 __ load_heap_oop(G3_mh_vmtarget, L2_saved_target); 246 __ mov(G0, L3_saved_args_layout); 247 __ mov(Gargs, L4_saved_args_base); 248 __ lduw(G3_amh_conversion, L5_conversion); // 32-bit field 249 // I5, I6, I7 are already set up 250 DEBUG_ONLY(__ set((int32_t) MAGIC_NUMBER_1, L0_magic_number_1)); 251 BLOCK_COMMENT("} RicochetFrame"); 252 } 253 254 void MethodHandles::RicochetFrame::leave_ricochet_frame(MacroAssembler* _masm, 255 Register recv_reg, 256 Register new_sp_reg, 257 Register sender_pc_reg) { 258 assert(new_sp_reg == I5_savedSP, "exact_sender_sp already in place"); 259 assert(sender_pc_reg == I7, "in a fixed place"); 260 // does not include the __ ret() & __ restore() 261 assert_different_registers(recv_reg, new_sp_reg, sender_pc_reg); 262 // Take down the frame. 263 // Cf. InterpreterMacroAssembler::remove_activation. 264 BLOCK_COMMENT("end_ricochet_frame {"); 265 if (recv_reg->is_valid()) 266 __ mov(L2_saved_target, recv_reg); 267 BLOCK_COMMENT("} end_ricochet_frame"); 268 } 269 270 // Emit code to verify that FP is pointing at a valid ricochet frame. 271 #ifdef ASSERT 272 enum { 273 ARG_LIMIT = 255, SLOP = 45, 274 // use this parameter for checking for garbage stack movements: 275 UNREASONABLE_STACK_MOVE = (ARG_LIMIT + SLOP) 276 // the slop defends against false alarms due to fencepost errors 277 }; 278 279 void MethodHandles::RicochetFrame::verify_clean(MacroAssembler* _masm) { 280 // The stack should look like this: 281 // ... keep1 | dest=42 | keep2 | magic | handler | magic | recursive args | [RF] 282 // Check various invariants. 283 284 Register O7_temp = O7, O5_temp = O5; 285 286 Label L_ok_1, L_ok_2, L_ok_3, L_ok_4; 287 BLOCK_COMMENT("verify_clean {"); 288 // Magic numbers must check out: 289 __ set((int32_t) MAGIC_NUMBER_1, O7_temp); 290 __ cmp_and_br_short(O7_temp, L0_magic_number_1, Assembler::equal, Assembler::pt, L_ok_1); 291 __ stop("damaged ricochet frame: MAGIC_NUMBER_1 not found"); 292 293 __ BIND(L_ok_1); 294 295 // Arguments pointer must look reasonable: 296 #ifdef _LP64 297 Register FP_temp = O5_temp; 298 __ add(FP, STACK_BIAS, FP_temp); 299 #else 300 Register FP_temp = FP; 301 #endif 302 __ cmp_and_brx_short(L4_saved_args_base, FP_temp, Assembler::greaterEqualUnsigned, Assembler::pt, L_ok_2); 303 __ stop("damaged ricochet frame: L4 < FP"); 304 305 __ BIND(L_ok_2); 306 // Disable until we decide on it's fate 307 // __ sub(L4_saved_args_base, UNREASONABLE_STACK_MOVE * Interpreter::stackElementSize, O7_temp); 308 // __ cmp(O7_temp, FP_temp); 309 // __ br(Assembler::lessEqualUnsigned, false, Assembler::pt, L_ok_3); 310 // __ delayed()->nop(); 311 // __ stop("damaged ricochet frame: (L4 - UNREASONABLE_STACK_MOVE) > FP"); 312 313 __ BIND(L_ok_3); 314 extract_conversion_dest_type(_masm, L5_conversion, O7_temp); 315 __ cmp_and_br_short(O7_temp, T_VOID, Assembler::equal, Assembler::pt, L_ok_4); 316 extract_conversion_vminfo(_masm, L5_conversion, O5_temp); 317 __ ld_ptr(L4_saved_args_base, __ argument_offset(O5_temp, O5_temp), O7_temp); 318 assert(Assembler::is_simm13(RETURN_VALUE_PLACEHOLDER), "must be simm13"); 319 __ cmp_and_brx_short(O7_temp, (int32_t) RETURN_VALUE_PLACEHOLDER, Assembler::equal, Assembler::pt, L_ok_4); 320 __ stop("damaged ricochet frame: RETURN_VALUE_PLACEHOLDER not found"); 321 __ BIND(L_ok_4); 322 BLOCK_COMMENT("} verify_clean"); 323 } 324 #endif //ASSERT 325 326 void MethodHandles::load_klass_from_Class(MacroAssembler* _masm, Register klass_reg, Register temp_reg, Register temp2_reg) { 327 if (VerifyMethodHandles) 328 verify_klass(_masm, klass_reg, SystemDictionaryHandles::Class_klass(), temp_reg, temp2_reg, 329 "AMH argument is a Class"); 330 __ load_heap_oop(Address(klass_reg, java_lang_Class::klass_offset_in_bytes()), klass_reg); 331 } 332 333 void MethodHandles::load_conversion_vminfo(MacroAssembler* _masm, Address conversion_field_addr, Register reg) { 334 assert(CONV_VMINFO_SHIFT == 0, "preshifted"); 335 assert(CONV_VMINFO_MASK == right_n_bits(BitsPerByte), "else change type of following load"); 336 __ ldub(conversion_field_addr.plus_disp(BytesPerInt - 1), reg); 337 } 338 339 void MethodHandles::extract_conversion_vminfo(MacroAssembler* _masm, Register conversion_field_reg, Register reg) { 340 assert(CONV_VMINFO_SHIFT == 0, "preshifted"); 341 __ and3(conversion_field_reg, CONV_VMINFO_MASK, reg); 342 } 343 344 void MethodHandles::extract_conversion_dest_type(MacroAssembler* _masm, Register conversion_field_reg, Register reg) { 345 __ srl(conversion_field_reg, CONV_DEST_TYPE_SHIFT, reg); 346 __ and3(reg, 0x0F, reg); 347 } 348 349 void MethodHandles::load_stack_move(MacroAssembler* _masm, 350 Address G3_amh_conversion, 351 Register stack_move_reg) { 352 BLOCK_COMMENT("load_stack_move {"); 353 __ ldsw(G3_amh_conversion, stack_move_reg); 354 __ sra(stack_move_reg, CONV_STACK_MOVE_SHIFT, stack_move_reg); 355 #ifdef ASSERT 356 if (VerifyMethodHandles) { 357 Label L_ok, L_bad; 358 int32_t stack_move_limit = 0x0800; // extra-large 359 __ cmp_and_br_short(stack_move_reg, stack_move_limit, Assembler::greaterEqual, Assembler::pn, L_bad); 360 __ cmp(stack_move_reg, -stack_move_limit); 361 __ br(Assembler::greater, false, Assembler::pt, L_ok); 362 __ delayed()->nop(); 363 __ BIND(L_bad); 364 __ stop("load_stack_move of garbage value"); 365 __ BIND(L_ok); 366 } 367 #endif 368 BLOCK_COMMENT("} load_stack_move"); 369 } 370 371 #ifdef ASSERT 372 void MethodHandles::RicochetFrame::verify() const { 373 assert(magic_number_1() == MAGIC_NUMBER_1, ""); 374 if (!Universe::heap()->is_gc_active()) { 375 if (saved_args_layout() != NULL) { 376 assert(saved_args_layout()->is_method(), "must be valid oop"); 377 } 378 if (saved_target() != NULL) { 379 assert(java_lang_invoke_MethodHandle::is_instance(saved_target()), "checking frame value"); 380 } 381 } 382 int conv_op = adapter_conversion_op(conversion()); 383 assert(conv_op == java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS || 384 conv_op == java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS || 385 conv_op == java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF, 386 "must be a sane conversion"); 387 if (has_return_value_slot()) { 388 assert(*return_value_slot_addr() == RETURN_VALUE_PLACEHOLDER, ""); 389 } 390 } 391 392 void MethodHandles::verify_argslot(MacroAssembler* _masm, Register argslot_reg, Register temp_reg, const char* error_message) { 393 // Verify that argslot lies within (Gargs, FP]. 394 Label L_ok, L_bad; 395 BLOCK_COMMENT("verify_argslot {"); 396 __ cmp_and_brx_short(Gargs, argslot_reg, Assembler::greaterUnsigned, Assembler::pn, L_bad); 397 __ add(FP, STACK_BIAS, temp_reg); // STACK_BIAS is zero on !_LP64 398 __ cmp_and_brx_short(argslot_reg, temp_reg, Assembler::lessEqualUnsigned, Assembler::pt, L_ok); 399 __ BIND(L_bad); 400 __ stop(error_message); 401 __ BIND(L_ok); 402 BLOCK_COMMENT("} verify_argslot"); 403 } 404 405 void MethodHandles::verify_argslots(MacroAssembler* _masm, 406 RegisterOrConstant arg_slots, 407 Register arg_slot_base_reg, 408 Register temp_reg, 409 Register temp2_reg, 410 bool negate_argslots, 411 const char* error_message) { 412 // Verify that [argslot..argslot+size) lies within (Gargs, FP). 413 Label L_ok, L_bad; 414 BLOCK_COMMENT("verify_argslots {"); 415 if (negate_argslots) { 416 if (arg_slots.is_constant()) { 417 arg_slots = -1 * arg_slots.as_constant(); 418 } else { 419 __ neg(arg_slots.as_register(), temp_reg); 420 arg_slots = temp_reg; 421 } 422 } 423 __ add(arg_slot_base_reg, __ argument_offset(arg_slots, temp_reg), temp_reg); 424 __ add(FP, STACK_BIAS, temp2_reg); // STACK_BIAS is zero on !_LP64 425 __ cmp_and_brx_short(temp_reg, temp2_reg, Assembler::greaterUnsigned, Assembler::pn, L_bad); 426 // Gargs points to the first word so adjust by BytesPerWord 427 __ add(arg_slot_base_reg, BytesPerWord, temp_reg); 428 __ cmp_and_brx_short(Gargs, temp_reg, Assembler::lessEqualUnsigned, Assembler::pt, L_ok); 429 __ BIND(L_bad); 430 __ stop(error_message); 431 __ BIND(L_ok); 432 BLOCK_COMMENT("} verify_argslots"); 433 } 434 435 // Make sure that arg_slots has the same sign as the given direction. 436 // If (and only if) arg_slots is a assembly-time constant, also allow it to be zero. 437 void MethodHandles::verify_stack_move(MacroAssembler* _masm, 438 RegisterOrConstant arg_slots, int direction) { 439 enum { UNREASONABLE_STACK_MOVE = 256 * 4 }; // limit of 255 arguments 440 bool allow_zero = arg_slots.is_constant(); 441 if (direction == 0) { direction = +1; allow_zero = true; } 442 assert(stack_move_unit() == -1, "else add extra checks here"); 443 if (arg_slots.is_register()) { 444 Label L_ok, L_bad; 445 BLOCK_COMMENT("verify_stack_move {"); 446 // __ btst(-stack_move_unit() - 1, arg_slots.as_register()); // no need 447 // __ br(Assembler::notZero, false, Assembler::pn, L_bad); 448 // __ delayed()->nop(); 449 __ cmp(arg_slots.as_register(), (int32_t) NULL_WORD); 450 if (direction > 0) { 451 __ br(allow_zero ? Assembler::less : Assembler::lessEqual, false, Assembler::pn, L_bad); 452 __ delayed()->nop(); 453 __ cmp(arg_slots.as_register(), (int32_t) UNREASONABLE_STACK_MOVE); 454 __ br(Assembler::less, false, Assembler::pn, L_ok); 455 __ delayed()->nop(); 456 } else { 457 __ br(allow_zero ? Assembler::greater : Assembler::greaterEqual, false, Assembler::pn, L_bad); 458 __ delayed()->nop(); 459 __ cmp(arg_slots.as_register(), (int32_t) -UNREASONABLE_STACK_MOVE); 460 __ br(Assembler::greater, false, Assembler::pn, L_ok); 461 __ delayed()->nop(); 462 } 463 __ BIND(L_bad); 464 if (direction > 0) 465 __ stop("assert arg_slots > 0"); 466 else 467 __ stop("assert arg_slots < 0"); 468 __ BIND(L_ok); 469 BLOCK_COMMENT("} verify_stack_move"); 470 } else { 471 intptr_t size = arg_slots.as_constant(); 472 if (direction < 0) size = -size; 473 assert(size >= 0, "correct direction of constant move"); 474 assert(size < UNREASONABLE_STACK_MOVE, "reasonable size of constant move"); 475 } 476 } 477 478 void MethodHandles::verify_klass(MacroAssembler* _masm, 479 Register obj_reg, KlassHandle klass, 480 Register temp_reg, Register temp2_reg, 481 const char* error_message) { 482 oop* klass_addr = klass.raw_value(); 483 assert(klass_addr >= SystemDictionaryHandles::Object_klass().raw_value() && 484 klass_addr <= SystemDictionaryHandles::Long_klass().raw_value(), 485 "must be one of the SystemDictionaryHandles"); 486 Label L_ok, L_bad; 487 BLOCK_COMMENT("verify_klass {"); 488 __ verify_oop(obj_reg); 489 __ br_null_short(obj_reg, Assembler::pn, L_bad); 490 __ load_klass(obj_reg, temp_reg); 491 __ set(ExternalAddress(klass_addr), temp2_reg); 492 __ ld_ptr(Address(temp2_reg, 0), temp2_reg); 493 __ cmp_and_brx_short(temp_reg, temp2_reg, Assembler::equal, Assembler::pt, L_ok); 494 intptr_t super_check_offset = klass->super_check_offset(); 495 __ ld_ptr(Address(temp_reg, super_check_offset), temp_reg); 496 __ set(ExternalAddress(klass_addr), temp2_reg); 497 __ ld_ptr(Address(temp2_reg, 0), temp2_reg); 498 __ cmp_and_brx_short(temp_reg, temp2_reg, Assembler::equal, Assembler::pt, L_ok); 499 __ BIND(L_bad); 500 __ stop(error_message); 501 __ BIND(L_ok); 502 BLOCK_COMMENT("} verify_klass"); 503 } 504 #endif // ASSERT 505 506 507 void MethodHandles::jump_from_method_handle(MacroAssembler* _masm, Register method, Register target, Register temp) { 508 assert(method == G5_method, "interpreter calling convention"); 509 __ verify_oop(method); 510 __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target); 511 if (JvmtiExport::can_post_interpreter_events()) { 512 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 513 // compiled code in threads for which the event is enabled. Check here for 514 // interp_only_mode if these events CAN be enabled. 515 __ verify_thread(); 516 Label skip_compiled_code; 517 518 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset()); 519 __ ld(interp_only, temp); 520 __ tst(temp); 521 __ br(Assembler::notZero, true, Assembler::pn, skip_compiled_code); 522 __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target); 523 __ bind(skip_compiled_code); 524 } 525 __ jmp(target, 0); 526 __ delayed()->nop(); 527 } 528 529 530 // Code generation 531 address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) { 532 // I5_savedSP/O5_savedSP: sender SP (must preserve) 533 // G4 (Gargs): incoming argument list (must preserve) 534 // G5_method: invoke methodOop 535 // G3_method_handle: receiver method handle (must load from sp[MethodTypeForm.vmslots]) 536 // O0, O1, O2, O3, O4: garbage temps, blown away 537 Register O0_mtype = O0; 538 Register O1_scratch = O1; 539 Register O2_scratch = O2; 540 Register O3_scratch = O3; 541 Register O4_argslot = O4; 542 Register O4_argbase = O4; 543 544 // emit WrongMethodType path first, to enable back-branch from main path 545 Label wrong_method_type; 546 __ bind(wrong_method_type); 547 Label invoke_generic_slow_path; 548 assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");; 549 __ ldub(Address(G5_method, methodOopDesc::intrinsic_id_offset_in_bytes()), O1_scratch); 550 __ cmp(O1_scratch, (int) vmIntrinsics::_invokeExact); 551 __ brx(Assembler::notEqual, false, Assembler::pt, invoke_generic_slow_path); 552 __ delayed()->nop(); 553 __ mov(O0_mtype, G5_method_type); // required by throw_WrongMethodType 554 __ mov(G3_method_handle, G3_method_handle); // already in this register 555 // O0 will be filled in with JavaThread in stub 556 __ jump_to(AddressLiteral(StubRoutines::throw_WrongMethodTypeException_entry()), O3_scratch); 557 __ delayed()->nop(); 558 559 // here's where control starts out: 560 __ align(CodeEntryAlignment); 561 address entry_point = __ pc(); 562 563 // fetch the MethodType from the method handle 564 // FIXME: Interpreter should transmit pre-popped stack pointer, to locate base of arg list. 565 // This would simplify several touchy bits of code. 566 // See 6984712: JSR 292 method handle calls need a clean argument base pointer 567 { 568 Register tem = G5_method; 569 for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) { 570 __ ld_ptr(Address(tem, *pchase), O0_mtype); 571 tem = O0_mtype; // in case there is another indirection 572 } 573 } 574 575 // given the MethodType, find out where the MH argument is buried 576 __ load_heap_oop(Address(O0_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, O1_scratch)), O4_argslot); 577 __ ldsw( Address(O4_argslot, __ delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, O1_scratch)), O4_argslot); 578 __ add(__ argument_address(O4_argslot, O4_argslot, 1), O4_argbase); 579 // Note: argument_address uses its input as a scratch register! 580 Address mh_receiver_slot_addr(O4_argbase, -Interpreter::stackElementSize); 581 __ ld_ptr(mh_receiver_slot_addr, G3_method_handle); 582 583 trace_method_handle(_masm, "invokeExact"); 584 585 __ check_method_handle_type(O0_mtype, G3_method_handle, O1_scratch, wrong_method_type); 586 587 // Nobody uses the MH receiver slot after this. Make sure. 588 DEBUG_ONLY(__ set((int32_t) 0x999999, O1_scratch); __ st_ptr(O1_scratch, mh_receiver_slot_addr)); 589 590 __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); 591 592 // for invokeGeneric (only), apply argument and result conversions on the fly 593 __ bind(invoke_generic_slow_path); 594 #ifdef ASSERT 595 if (VerifyMethodHandles) { 596 Label L; 597 __ ldub(Address(G5_method, methodOopDesc::intrinsic_id_offset_in_bytes()), O1_scratch); 598 __ cmp(O1_scratch, (int) vmIntrinsics::_invokeGeneric); 599 __ brx(Assembler::equal, false, Assembler::pt, L); 600 __ delayed()->nop(); 601 __ stop("bad methodOop::intrinsic_id"); 602 __ bind(L); 603 } 604 #endif //ASSERT 605 606 // make room on the stack for another pointer: 607 insert_arg_slots(_masm, 2 * stack_move_unit(), O4_argbase, O1_scratch, O2_scratch, O3_scratch); 608 // load up an adapter from the calling type (Java weaves this) 609 Register O2_form = O2_scratch; 610 Register O3_adapter = O3_scratch; 611 __ load_heap_oop(Address(O0_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, O1_scratch)), O2_form); 612 __ load_heap_oop(Address(O2_form, __ delayed_value(java_lang_invoke_MethodTypeForm::genericInvoker_offset_in_bytes, O1_scratch)), O3_adapter); 613 __ verify_oop(O3_adapter); 614 __ st_ptr(O3_adapter, Address(O4_argbase, 1 * Interpreter::stackElementSize)); 615 // As a trusted first argument, pass the type being called, so the adapter knows 616 // the actual types of the arguments and return values. 617 // (Generic invokers are shared among form-families of method-type.) 618 __ st_ptr(O0_mtype, Address(O4_argbase, 0 * Interpreter::stackElementSize)); 619 // FIXME: assert that O3_adapter is of the right method-type. 620 __ mov(O3_adapter, G3_method_handle); 621 trace_method_handle(_masm, "invokeGeneric"); 622 __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); 623 624 return entry_point; 625 } 626 627 // Workaround for C++ overloading nastiness on '0' for RegisterOrConstant. 628 static RegisterOrConstant constant(int value) { 629 return RegisterOrConstant(value); 630 } 631 632 static void load_vmargslot(MacroAssembler* _masm, Address vmargslot_addr, Register result) { 633 __ ldsw(vmargslot_addr, result); 634 } 635 636 static RegisterOrConstant adjust_SP_and_Gargs_down_by_slots(MacroAssembler* _masm, 637 RegisterOrConstant arg_slots, 638 Register temp_reg, Register temp2_reg) { 639 // Keep the stack pointer 2*wordSize aligned. 640 const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1); 641 if (arg_slots.is_constant()) { 642 const int offset = arg_slots.as_constant() << LogBytesPerWord; 643 const int masked_offset = round_to(offset, 2 * BytesPerWord); 644 const int masked_offset2 = (offset + 1*BytesPerWord) & ~TwoWordAlignmentMask; 645 assert(masked_offset == masked_offset2, "must agree"); 646 __ sub(Gargs, offset, Gargs); 647 __ sub(SP, masked_offset, SP ); 648 return offset; 649 } else { 650 #ifdef ASSERT 651 { 652 Label L_ok; 653 __ cmp_and_br_short(arg_slots.as_register(), 0, Assembler::greaterEqual, Assembler::pt, L_ok); 654 __ stop("negative arg_slots"); 655 __ bind(L_ok); 656 } 657 #endif 658 __ sll_ptr(arg_slots.as_register(), LogBytesPerWord, temp_reg); 659 __ add( temp_reg, 1*BytesPerWord, temp2_reg); 660 __ andn(temp2_reg, TwoWordAlignmentMask, temp2_reg); 661 __ sub(Gargs, temp_reg, Gargs); 662 __ sub(SP, temp2_reg, SP ); 663 return temp_reg; 664 } 665 } 666 667 static RegisterOrConstant adjust_SP_and_Gargs_up_by_slots(MacroAssembler* _masm, 668 RegisterOrConstant arg_slots, 669 Register temp_reg, Register temp2_reg) { 670 // Keep the stack pointer 2*wordSize aligned. 671 const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1); 672 if (arg_slots.is_constant()) { 673 const int offset = arg_slots.as_constant() << LogBytesPerWord; 674 const int masked_offset = offset & ~TwoWordAlignmentMask; 675 __ add(Gargs, offset, Gargs); 676 __ add(SP, masked_offset, SP ); 677 return offset; 678 } else { 679 __ sll_ptr(arg_slots.as_register(), LogBytesPerWord, temp_reg); 680 __ andn(temp_reg, TwoWordAlignmentMask, temp2_reg); 681 __ add(Gargs, temp_reg, Gargs); 682 __ add(SP, temp2_reg, SP ); 683 return temp_reg; 684 } 685 } 686 687 // Helper to insert argument slots into the stack. 688 // arg_slots must be a multiple of stack_move_unit() and < 0 689 // argslot_reg is decremented to point to the new (shifted) location of the argslot 690 // But, temp_reg ends up holding the original value of argslot_reg. 691 void MethodHandles::insert_arg_slots(MacroAssembler* _masm, 692 RegisterOrConstant arg_slots, 693 Register argslot_reg, 694 Register temp_reg, Register temp2_reg, Register temp3_reg) { 695 // allow constant zero 696 if (arg_slots.is_constant() && arg_slots.as_constant() == 0) 697 return; 698 699 assert_different_registers(argslot_reg, temp_reg, temp2_reg, temp3_reg, 700 (!arg_slots.is_register() ? Gargs : arg_slots.as_register())); 701 702 BLOCK_COMMENT("insert_arg_slots {"); 703 if (VerifyMethodHandles) 704 verify_argslot(_masm, argslot_reg, temp_reg, "insertion point must fall within current frame"); 705 if (VerifyMethodHandles) 706 verify_stack_move(_masm, arg_slots, -1); 707 708 // Make space on the stack for the inserted argument(s). 709 // Then pull down everything shallower than argslot_reg. 710 // The stacked return address gets pulled down with everything else. 711 // That is, copy [sp, argslot) downward by -size words. In pseudo-code: 712 // sp -= size; 713 // for (temp = sp + size; temp < argslot; temp++) 714 // temp[-size] = temp[0] 715 // argslot -= size; 716 717 // offset is temp3_reg in case of arg_slots being a register. 718 RegisterOrConstant offset = adjust_SP_and_Gargs_up_by_slots(_masm, arg_slots, temp3_reg, temp_reg); 719 __ sub(Gargs, offset, temp_reg); // source pointer for copy 720 721 { 722 Label loop; 723 __ BIND(loop); 724 // pull one word down each time through the loop 725 __ ld_ptr( Address(temp_reg, 0 ), temp2_reg); 726 __ st_ptr(temp2_reg, Address(temp_reg, offset) ); 727 __ add(temp_reg, wordSize, temp_reg); 728 __ cmp_and_brx_short(temp_reg, argslot_reg, Assembler::lessUnsigned, Assembler::pt, loop); 729 } 730 731 // Now move the argslot down, to point to the opened-up space. 732 __ add(argslot_reg, offset, argslot_reg); 733 BLOCK_COMMENT("} insert_arg_slots"); 734 } 735 736 737 // Helper to remove argument slots from the stack. 738 // arg_slots must be a multiple of stack_move_unit() and > 0 739 void MethodHandles::remove_arg_slots(MacroAssembler* _masm, 740 RegisterOrConstant arg_slots, 741 Register argslot_reg, 742 Register temp_reg, Register temp2_reg, Register temp3_reg) { 743 // allow constant zero 744 if (arg_slots.is_constant() && arg_slots.as_constant() == 0) 745 return; 746 assert_different_registers(argslot_reg, temp_reg, temp2_reg, temp3_reg, 747 (!arg_slots.is_register() ? Gargs : arg_slots.as_register())); 748 749 BLOCK_COMMENT("remove_arg_slots {"); 750 if (VerifyMethodHandles) 751 verify_argslots(_masm, arg_slots, argslot_reg, temp_reg, temp2_reg, false, 752 "deleted argument(s) must fall within current frame"); 753 if (VerifyMethodHandles) 754 verify_stack_move(_masm, arg_slots, +1); 755 756 // Pull up everything shallower than argslot. 757 // Then remove the excess space on the stack. 758 // The stacked return address gets pulled up with everything else. 759 // That is, copy [sp, argslot) upward by size words. In pseudo-code: 760 // for (temp = argslot-1; temp >= sp; --temp) 761 // temp[size] = temp[0] 762 // argslot += size; 763 // sp += size; 764 765 RegisterOrConstant offset = __ regcon_sll_ptr(arg_slots, LogBytesPerWord, temp3_reg); 766 __ sub(argslot_reg, wordSize, temp_reg); // source pointer for copy 767 768 { 769 Label L_loop; 770 __ BIND(L_loop); 771 // pull one word up each time through the loop 772 __ ld_ptr( Address(temp_reg, 0 ), temp2_reg); 773 __ st_ptr(temp2_reg, Address(temp_reg, offset) ); 774 __ sub(temp_reg, wordSize, temp_reg); 775 __ cmp_and_brx_short(temp_reg, Gargs, Assembler::greaterEqualUnsigned, Assembler::pt, L_loop); 776 } 777 778 // And adjust the argslot address to point at the deletion point. 779 __ add(argslot_reg, offset, argslot_reg); 780 781 // We don't need the offset at this point anymore, just adjust SP and Gargs. 782 (void) adjust_SP_and_Gargs_up_by_slots(_masm, arg_slots, temp3_reg, temp_reg); 783 784 BLOCK_COMMENT("} remove_arg_slots"); 785 } 786 787 // Helper to copy argument slots to the top of the stack. 788 // The sequence starts with argslot_reg and is counted by slot_count 789 // slot_count must be a multiple of stack_move_unit() and >= 0 790 // This function blows the temps but does not change argslot_reg. 791 void MethodHandles::push_arg_slots(MacroAssembler* _masm, 792 Register argslot_reg, 793 RegisterOrConstant slot_count, 794 Register temp_reg, Register temp2_reg) { 795 // allow constant zero 796 if (slot_count.is_constant() && slot_count.as_constant() == 0) 797 return; 798 assert_different_registers(argslot_reg, temp_reg, temp2_reg, 799 (!slot_count.is_register() ? Gargs : slot_count.as_register()), 800 SP); 801 assert(Interpreter::stackElementSize == wordSize, "else change this code"); 802 803 BLOCK_COMMENT("push_arg_slots {"); 804 if (VerifyMethodHandles) 805 verify_stack_move(_masm, slot_count, 0); 806 807 RegisterOrConstant offset = adjust_SP_and_Gargs_down_by_slots(_masm, slot_count, temp2_reg, temp_reg); 808 809 if (slot_count.is_constant()) { 810 for (int i = slot_count.as_constant() - 1; i >= 0; i--) { 811 __ ld_ptr( Address(argslot_reg, i * wordSize), temp_reg); 812 __ st_ptr(temp_reg, Address(Gargs, i * wordSize)); 813 } 814 } else { 815 Label L_plural, L_loop, L_break; 816 // Emit code to dynamically check for the common cases, zero and one slot. 817 __ cmp(slot_count.as_register(), (int32_t) 1); 818 __ br(Assembler::greater, false, Assembler::pn, L_plural); 819 __ delayed()->nop(); 820 __ br(Assembler::less, false, Assembler::pn, L_break); 821 __ delayed()->nop(); 822 __ ld_ptr( Address(argslot_reg, 0), temp_reg); 823 __ st_ptr(temp_reg, Address(Gargs, 0)); 824 __ ba_short(L_break); 825 __ BIND(L_plural); 826 827 // Loop for 2 or more: 828 // top = &argslot[slot_count] 829 // while (top > argslot) *(--Gargs) = *(--top) 830 Register top_reg = temp_reg; 831 __ add(argslot_reg, offset, top_reg); 832 __ add(Gargs, offset, Gargs ); // move back up again so we can go down 833 __ BIND(L_loop); 834 __ sub(top_reg, wordSize, top_reg); 835 __ sub(Gargs, wordSize, Gargs ); 836 __ ld_ptr( Address(top_reg, 0), temp2_reg); 837 __ st_ptr(temp2_reg, Address(Gargs, 0)); 838 __ cmp_and_brx_short(top_reg, argslot_reg, Assembler::greaterUnsigned, Assembler::pt, L_loop); 839 __ BIND(L_break); 840 } 841 BLOCK_COMMENT("} push_arg_slots"); 842 } 843 844 // in-place movement; no change to Gargs 845 // blows temp_reg, temp2_reg 846 void MethodHandles::move_arg_slots_up(MacroAssembler* _masm, 847 Register bottom_reg, // invariant 848 Address top_addr, // can use temp_reg 849 RegisterOrConstant positive_distance_in_slots, // destroyed if register 850 Register temp_reg, Register temp2_reg) { 851 assert_different_registers(bottom_reg, 852 temp_reg, temp2_reg, 853 positive_distance_in_slots.register_or_noreg()); 854 BLOCK_COMMENT("move_arg_slots_up {"); 855 Label L_loop, L_break; 856 Register top_reg = temp_reg; 857 if (!top_addr.is_same_address(Address(top_reg, 0))) { 858 __ add(top_addr, top_reg); 859 } 860 // Detect empty (or broken) loop: 861 #ifdef ASSERT 862 if (VerifyMethodHandles) { 863 // Verify that &bottom < &top (non-empty interval) 864 Label L_ok, L_bad; 865 if (positive_distance_in_slots.is_register()) { 866 __ cmp(positive_distance_in_slots.as_register(), (int32_t) 0); 867 __ br(Assembler::lessEqual, false, Assembler::pn, L_bad); 868 __ delayed()->nop(); 869 } 870 __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::lessUnsigned, Assembler::pt, L_ok); 871 __ BIND(L_bad); 872 __ stop("valid bounds (copy up)"); 873 __ BIND(L_ok); 874 } 875 #endif 876 __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::greaterEqualUnsigned, Assembler::pn, L_break); 877 // work top down to bottom, copying contiguous data upwards 878 // In pseudo-code: 879 // while (--top >= bottom) *(top + distance) = *(top + 0); 880 RegisterOrConstant offset = __ argument_offset(positive_distance_in_slots, positive_distance_in_slots.register_or_noreg()); 881 __ BIND(L_loop); 882 __ sub(top_reg, wordSize, top_reg); 883 __ ld_ptr( Address(top_reg, 0 ), temp2_reg); 884 __ st_ptr(temp2_reg, Address(top_reg, offset) ); 885 __ cmp_and_brx_short(top_reg, bottom_reg, Assembler::greaterUnsigned, Assembler::pt, L_loop); 886 assert(Interpreter::stackElementSize == wordSize, "else change loop"); 887 __ BIND(L_break); 888 BLOCK_COMMENT("} move_arg_slots_up"); 889 } 890 891 // in-place movement; no change to rsp 892 // blows temp_reg, temp2_reg 893 void MethodHandles::move_arg_slots_down(MacroAssembler* _masm, 894 Address bottom_addr, // can use temp_reg 895 Register top_reg, // invariant 896 RegisterOrConstant negative_distance_in_slots, // destroyed if register 897 Register temp_reg, Register temp2_reg) { 898 assert_different_registers(top_reg, 899 negative_distance_in_slots.register_or_noreg(), 900 temp_reg, temp2_reg); 901 BLOCK_COMMENT("move_arg_slots_down {"); 902 Label L_loop, L_break; 903 Register bottom_reg = temp_reg; 904 if (!bottom_addr.is_same_address(Address(bottom_reg, 0))) { 905 __ add(bottom_addr, bottom_reg); 906 } 907 // Detect empty (or broken) loop: 908 #ifdef ASSERT 909 assert(!negative_distance_in_slots.is_constant() || negative_distance_in_slots.as_constant() < 0, ""); 910 if (VerifyMethodHandles) { 911 // Verify that &bottom < &top (non-empty interval) 912 Label L_ok, L_bad; 913 if (negative_distance_in_slots.is_register()) { 914 __ cmp(negative_distance_in_slots.as_register(), (int32_t) 0); 915 __ br(Assembler::greaterEqual, false, Assembler::pn, L_bad); 916 __ delayed()->nop(); 917 } 918 __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::lessUnsigned, Assembler::pt, L_ok); 919 __ BIND(L_bad); 920 __ stop("valid bounds (copy down)"); 921 __ BIND(L_ok); 922 } 923 #endif 924 __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::greaterEqualUnsigned, Assembler::pn, L_break); 925 // work bottom up to top, copying contiguous data downwards 926 // In pseudo-code: 927 // while (bottom < top) *(bottom - distance) = *(bottom + 0), bottom++; 928 RegisterOrConstant offset = __ argument_offset(negative_distance_in_slots, negative_distance_in_slots.register_or_noreg()); 929 __ BIND(L_loop); 930 __ ld_ptr( Address(bottom_reg, 0 ), temp2_reg); 931 __ st_ptr(temp2_reg, Address(bottom_reg, offset) ); 932 __ add(bottom_reg, wordSize, bottom_reg); 933 __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::lessUnsigned, Assembler::pt, L_loop); 934 assert(Interpreter::stackElementSize == wordSize, "else change loop"); 935 __ BIND(L_break); 936 BLOCK_COMMENT("} move_arg_slots_down"); 937 } 938 939 // Copy from a field or array element to a stacked argument slot. 940 // is_element (ignored) says whether caller is loading an array element instead of an instance field. 941 void MethodHandles::move_typed_arg(MacroAssembler* _masm, 942 BasicType type, bool is_element, 943 Address value_src, Address slot_dest, 944 Register temp_reg) { 945 assert(!slot_dest.uses(temp_reg), "must be different register"); 946 BLOCK_COMMENT(!is_element ? "move_typed_arg {" : "move_typed_arg { (array element)"); 947 if (type == T_OBJECT || type == T_ARRAY) { 948 __ load_heap_oop(value_src, temp_reg); 949 __ verify_oop(temp_reg); 950 __ st_ptr(temp_reg, slot_dest); 951 } else if (type != T_VOID) { 952 int arg_size = type2aelembytes(type); 953 bool arg_is_signed = is_signed_subword_type(type); 954 int slot_size = is_subword_type(type) ? type2aelembytes(T_INT) : arg_size; // store int sub-words as int 955 __ load_sized_value( value_src, temp_reg, arg_size, arg_is_signed); 956 __ store_sized_value(temp_reg, slot_dest, slot_size ); 957 } 958 BLOCK_COMMENT("} move_typed_arg"); 959 } 960 961 // Cf. TemplateInterpreterGenerator::generate_return_entry_for and 962 // InterpreterMacroAssembler::save_return_value 963 void MethodHandles::move_return_value(MacroAssembler* _masm, BasicType type, 964 Address return_slot) { 965 BLOCK_COMMENT("move_return_value {"); 966 // Look at the type and pull the value out of the corresponding register. 967 if (type == T_VOID) { 968 // nothing to do 969 } else if (type == T_OBJECT) { 970 __ verify_oop(O0); 971 __ st_ptr(O0, return_slot); 972 } else if (type == T_INT || is_subword_type(type)) { 973 int type_size = type2aelembytes(T_INT); 974 __ store_sized_value(O0, return_slot, type_size); 975 } else if (type == T_LONG) { 976 // store the value by parts 977 // Note: We assume longs are continguous (if misaligned) on the interpreter stack. 978 #if !defined(_LP64) && defined(COMPILER2) 979 __ stx(G1, return_slot); 980 #else 981 #ifdef _LP64 982 __ stx(O0, return_slot); 983 #else 984 if (return_slot.has_disp()) { 985 // The displacement is a constant 986 __ st(O0, return_slot); 987 __ st(O1, return_slot.plus_disp(Interpreter::stackElementSize)); 988 } else { 989 __ std(O0, return_slot); 990 } 991 #endif 992 #endif 993 } else if (type == T_FLOAT) { 994 __ stf(FloatRegisterImpl::S, Ftos_f, return_slot); 995 } else if (type == T_DOUBLE) { 996 __ stf(FloatRegisterImpl::D, Ftos_f, return_slot); 997 } else { 998 ShouldNotReachHere(); 999 } 1000 BLOCK_COMMENT("} move_return_value"); 1001 } 1002 1003 #ifndef PRODUCT 1004 extern "C" void print_method_handle(oop mh); 1005 void trace_method_handle_stub(const char* adaptername, 1006 oopDesc* mh, 1007 intptr_t* saved_sp) { 1008 bool has_mh = (strstr(adaptername, "return/") == NULL); // return adapters don't have mh 1009 tty->print_cr("MH %s mh="INTPTR_FORMAT " saved_sp=" INTPTR_FORMAT, adaptername, (intptr_t) mh, saved_sp); 1010 if (has_mh) 1011 print_method_handle(mh); 1012 } 1013 void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) { 1014 if (!TraceMethodHandles) return; 1015 BLOCK_COMMENT("trace_method_handle {"); 1016 // save: Gargs, O5_savedSP 1017 __ save_frame(16); 1018 __ set((intptr_t) adaptername, O0); 1019 __ mov(G3_method_handle, O1); 1020 __ mov(I5_savedSP, O2); 1021 __ mov(G3_method_handle, L3); 1022 __ mov(Gargs, L4); 1023 __ mov(G5_method_type, L5); 1024 __ call_VM_leaf(L7, CAST_FROM_FN_PTR(address, trace_method_handle_stub)); 1025 1026 __ mov(L3, G3_method_handle); 1027 __ mov(L4, Gargs); 1028 __ mov(L5, G5_method_type); 1029 __ restore(); 1030 BLOCK_COMMENT("} trace_method_handle"); 1031 } 1032 #endif // PRODUCT 1033 1034 // which conversion op types are implemented here? 1035 int MethodHandles::adapter_conversion_ops_supported_mask() { 1036 return ((1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_ONLY) 1037 |(1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_RAW) 1038 |(1<<java_lang_invoke_AdapterMethodHandle::OP_CHECK_CAST) 1039 |(1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_PRIM) 1040 |(1<<java_lang_invoke_AdapterMethodHandle::OP_REF_TO_PRIM) 1041 // OP_PRIM_TO_REF is below... 1042 |(1<<java_lang_invoke_AdapterMethodHandle::OP_SWAP_ARGS) 1043 |(1<<java_lang_invoke_AdapterMethodHandle::OP_ROT_ARGS) 1044 |(1<<java_lang_invoke_AdapterMethodHandle::OP_DUP_ARGS) 1045 |(1<<java_lang_invoke_AdapterMethodHandle::OP_DROP_ARGS) 1046 // OP_COLLECT_ARGS is below... 1047 |(1<<java_lang_invoke_AdapterMethodHandle::OP_SPREAD_ARGS) 1048 |( 1049 java_lang_invoke_MethodTypeForm::vmlayout_offset_in_bytes() <= 0 ? 0 : 1050 ((1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF) 1051 |(1<<java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS) 1052 |(1<<java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS) 1053 ) 1054 ) 1055 ); 1056 } 1057 1058 //------------------------------------------------------------------------------ 1059 // MethodHandles::generate_method_handle_stub 1060 // 1061 // Generate an "entry" field for a method handle. 1062 // This determines how the method handle will respond to calls. 1063 void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) { 1064 MethodHandles::EntryKind ek_orig = ek_original_kind(ek); 1065 1066 // Here is the register state during an interpreted call, 1067 // as set up by generate_method_handle_interpreter_entry(): 1068 // - G5: garbage temp (was MethodHandle.invoke methodOop, unused) 1069 // - G3: receiver method handle 1070 // - O5_savedSP: sender SP (must preserve) 1071 1072 const Register O0_scratch = O0; 1073 const Register O1_scratch = O1; 1074 const Register O2_scratch = O2; 1075 const Register O3_scratch = O3; 1076 const Register O4_scratch = O4; 1077 const Register G5_scratch = G5; 1078 1079 // Often used names: 1080 const Register O0_argslot = O0; 1081 1082 // Argument registers for _raise_exception: 1083 const Register O0_code = O0; 1084 const Register O1_actual = O1; 1085 const Register O2_required = O2; 1086 1087 guarantee(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets"); 1088 1089 // Some handy addresses: 1090 Address G3_mh_vmtarget( G3_method_handle, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes()); 1091 1092 Address G3_dmh_vmindex( G3_method_handle, java_lang_invoke_DirectMethodHandle::vmindex_offset_in_bytes()); 1093 1094 Address G3_bmh_vmargslot( G3_method_handle, java_lang_invoke_BoundMethodHandle::vmargslot_offset_in_bytes()); 1095 Address G3_bmh_argument( G3_method_handle, java_lang_invoke_BoundMethodHandle::argument_offset_in_bytes()); 1096 1097 Address G3_amh_vmargslot( G3_method_handle, java_lang_invoke_AdapterMethodHandle::vmargslot_offset_in_bytes()); 1098 Address G3_amh_argument ( G3_method_handle, java_lang_invoke_AdapterMethodHandle::argument_offset_in_bytes()); 1099 Address G3_amh_conversion(G3_method_handle, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes()); 1100 1101 const int java_mirror_offset = in_bytes(Klass::java_mirror_offset()); 1102 1103 if (have_entry(ek)) { 1104 __ nop(); // empty stubs make SG sick 1105 return; 1106 } 1107 1108 address interp_entry = __ pc(); 1109 1110 trace_method_handle(_masm, entry_name(ek)); 1111 1112 BLOCK_COMMENT(err_msg("Entry %s {", entry_name(ek))); 1113 1114 switch ((int) ek) { 1115 case _raise_exception: 1116 { 1117 // Not a real MH entry, but rather shared code for raising an 1118 // exception. For sharing purposes the arguments are passed into registers 1119 // and then placed in the intepreter calling convention here. 1120 assert(raise_exception_method(), "must be set"); 1121 assert(raise_exception_method()->from_compiled_entry(), "method must be linked"); 1122 1123 __ set(AddressLiteral((address) &_raise_exception_method), G5_method); 1124 __ ld_ptr(Address(G5_method, 0), G5_method); 1125 1126 const int jobject_oop_offset = 0; 1127 __ ld_ptr(Address(G5_method, jobject_oop_offset), G5_method); 1128 1129 adjust_SP_and_Gargs_down_by_slots(_masm, 3, noreg, noreg); 1130 1131 __ st (O0_code, __ argument_address(constant(2), noreg, 0)); 1132 __ st_ptr(O1_actual, __ argument_address(constant(1), noreg, 0)); 1133 __ st_ptr(O2_required, __ argument_address(constant(0), noreg, 0)); 1134 jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch); 1135 } 1136 break; 1137 1138 case _invokestatic_mh: 1139 case _invokespecial_mh: 1140 { 1141 __ load_heap_oop(G3_mh_vmtarget, G5_method); // target is a methodOop 1142 // Same as TemplateTable::invokestatic or invokespecial, 1143 // minus the CP setup and profiling: 1144 if (ek == _invokespecial_mh) { 1145 // Must load & check the first argument before entering the target method. 1146 __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch); 1147 __ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle); 1148 __ null_check(G3_method_handle); 1149 __ verify_oop(G3_method_handle); 1150 } 1151 jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch); 1152 } 1153 break; 1154 1155 case _invokevirtual_mh: 1156 { 1157 // Same as TemplateTable::invokevirtual, 1158 // minus the CP setup and profiling: 1159 1160 // Pick out the vtable index and receiver offset from the MH, 1161 // and then we can discard it: 1162 Register O2_index = O2_scratch; 1163 __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch); 1164 __ ldsw(G3_dmh_vmindex, O2_index); 1165 // Note: The verifier allows us to ignore G3_mh_vmtarget. 1166 __ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle); 1167 __ null_check(G3_method_handle, oopDesc::klass_offset_in_bytes()); 1168 1169 // Get receiver klass: 1170 Register O0_klass = O0_argslot; 1171 __ load_klass(G3_method_handle, O0_klass); 1172 __ verify_oop(O0_klass); 1173 1174 // Get target methodOop & entry point: 1175 const int base = instanceKlass::vtable_start_offset() * wordSize; 1176 assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1177 1178 __ sll_ptr(O2_index, LogBytesPerWord, O2_index); 1179 __ add(O0_klass, O2_index, O0_klass); 1180 Address vtable_entry_addr(O0_klass, base + vtableEntry::method_offset_in_bytes()); 1181 __ ld_ptr(vtable_entry_addr, G5_method); 1182 1183 jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch); 1184 } 1185 break; 1186 1187 case _invokeinterface_mh: 1188 { 1189 // Same as TemplateTable::invokeinterface, 1190 // minus the CP setup and profiling: 1191 __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch); 1192 Register O1_intf = O1_scratch; 1193 Register G5_index = G5_scratch; 1194 __ load_heap_oop(G3_mh_vmtarget, O1_intf); 1195 __ ldsw(G3_dmh_vmindex, G5_index); 1196 __ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle); 1197 __ null_check(G3_method_handle, oopDesc::klass_offset_in_bytes()); 1198 1199 // Get receiver klass: 1200 Register O0_klass = O0_argslot; 1201 __ load_klass(G3_method_handle, O0_klass); 1202 __ verify_oop(O0_klass); 1203 1204 // Get interface: 1205 Label no_such_interface; 1206 __ verify_oop(O1_intf); 1207 __ lookup_interface_method(O0_klass, O1_intf, 1208 // Note: next two args must be the same: 1209 G5_index, G5_method, 1210 O2_scratch, 1211 O3_scratch, 1212 no_such_interface); 1213 1214 jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch); 1215 1216 __ bind(no_such_interface); 1217 // Throw an exception. 1218 // For historical reasons, it will be IncompatibleClassChangeError. 1219 __ unimplemented("not tested yet"); 1220 __ ld_ptr(Address(O1_intf, java_mirror_offset), O2_required); // required interface 1221 __ mov( O0_klass, O1_actual); // bad receiver 1222 __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch); 1223 __ delayed()->mov(Bytecodes::_invokeinterface, O0_code); // who is complaining? 1224 } 1225 break; 1226 1227 case _bound_ref_mh: 1228 case _bound_int_mh: 1229 case _bound_long_mh: 1230 case _bound_ref_direct_mh: 1231 case _bound_int_direct_mh: 1232 case _bound_long_direct_mh: 1233 { 1234 const bool direct_to_method = (ek >= _bound_ref_direct_mh); 1235 BasicType arg_type = ek_bound_mh_arg_type(ek); 1236 int arg_slots = type2size[arg_type]; 1237 1238 // Make room for the new argument: 1239 load_vmargslot(_masm, G3_bmh_vmargslot, O0_argslot); 1240 __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot); 1241 1242 insert_arg_slots(_masm, arg_slots * stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch); 1243 1244 // Store bound argument into the new stack slot: 1245 __ load_heap_oop(G3_bmh_argument, O1_scratch); 1246 if (arg_type == T_OBJECT) { 1247 __ st_ptr(O1_scratch, Address(O0_argslot, 0)); 1248 } else { 1249 Address prim_value_addr(O1_scratch, java_lang_boxing_object::value_offset_in_bytes(arg_type)); 1250 move_typed_arg(_masm, arg_type, false, 1251 prim_value_addr, 1252 Address(O0_argslot, 0), 1253 O2_scratch); // must be an even register for !_LP64 long moves (uses O2/O3) 1254 } 1255 1256 if (direct_to_method) { 1257 __ load_heap_oop(G3_mh_vmtarget, G5_method); // target is a methodOop 1258 jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch); 1259 } else { 1260 __ load_heap_oop(G3_mh_vmtarget, G3_method_handle); // target is a methodOop 1261 __ verify_oop(G3_method_handle); 1262 __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); 1263 } 1264 } 1265 break; 1266 1267 case _adapter_opt_profiling: 1268 if (java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes() != 0) { 1269 Address G3_mh_vmcount(G3_method_handle, java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes()); 1270 __ ld(G3_mh_vmcount, O1_scratch); 1271 __ add(O1_scratch, 1, O1_scratch); 1272 __ st(O1_scratch, G3_mh_vmcount); 1273 } 1274 // fall through 1275 1276 case _adapter_retype_only: 1277 case _adapter_retype_raw: 1278 // Immediately jump to the next MH layer: 1279 __ load_heap_oop(G3_mh_vmtarget, G3_method_handle); 1280 __ verify_oop(G3_method_handle); 1281 __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); 1282 // This is OK when all parameter types widen. 1283 // It is also OK when a return type narrows. 1284 break; 1285 1286 case _adapter_check_cast: 1287 { 1288 // Check a reference argument before jumping to the next layer of MH: 1289 load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot); 1290 Address vmarg = __ argument_address(O0_argslot, O0_argslot); 1291 1292 // What class are we casting to? 1293 Register O1_klass = O1_scratch; // Interesting AMH data. 1294 __ load_heap_oop(G3_amh_argument, O1_klass); // This is a Class object! 1295 load_klass_from_Class(_masm, O1_klass, O2_scratch, O3_scratch); 1296 1297 Label L_done; 1298 __ ld_ptr(vmarg, O2_scratch); 1299 __ br_null_short(O2_scratch, Assembler::pn, L_done); // No cast if null. 1300 __ load_klass(O2_scratch, O2_scratch); 1301 1302 // Live at this point: 1303 // - O0_argslot : argslot index in vmarg; may be required in the failing path 1304 // - O1_klass : klass required by the target method 1305 // - O2_scratch : argument klass to test 1306 // - G3_method_handle: adapter method handle 1307 __ check_klass_subtype(O2_scratch, O1_klass, O3_scratch, O4_scratch, L_done); 1308 1309 // If we get here, the type check failed! 1310 __ load_heap_oop(G3_amh_argument, O2_required); // required class 1311 __ ld_ptr( vmarg, O1_actual); // bad object 1312 __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch); 1313 __ delayed()->mov(Bytecodes::_checkcast, O0_code); // who is complaining? 1314 1315 __ BIND(L_done); 1316 // Get the new MH: 1317 __ load_heap_oop(G3_mh_vmtarget, G3_method_handle); 1318 __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); 1319 } 1320 break; 1321 1322 case _adapter_prim_to_prim: 1323 case _adapter_ref_to_prim: 1324 // Handled completely by optimized cases. 1325 __ stop("init_AdapterMethodHandle should not issue this"); 1326 break; 1327 1328 case _adapter_opt_i2i: // optimized subcase of adapt_prim_to_prim 1329 //case _adapter_opt_f2i: // optimized subcase of adapt_prim_to_prim 1330 case _adapter_opt_l2i: // optimized subcase of adapt_prim_to_prim 1331 case _adapter_opt_unboxi: // optimized subcase of adapt_ref_to_prim 1332 { 1333 // Perform an in-place conversion to int or an int subword. 1334 load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot); 1335 Address value; 1336 Address vmarg; 1337 bool value_left_justified = false; 1338 1339 switch (ek) { 1340 case _adapter_opt_i2i: 1341 value = vmarg = __ argument_address(O0_argslot, O0_argslot); 1342 break; 1343 case _adapter_opt_l2i: 1344 { 1345 // just delete the extra slot 1346 #ifdef _LP64 1347 // In V9, longs are given 2 64-bit slots in the interpreter, but the 1348 // data is passed in only 1 slot. 1349 // Keep the second slot. 1350 __ add(__ argument_address(O0_argslot, O0_argslot, -1), O0_argslot); 1351 remove_arg_slots(_masm, -stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch); 1352 value = Address(O0_argslot, 4); // Get least-significant 32-bit of 64-bit value. 1353 vmarg = Address(O0_argslot, Interpreter::stackElementSize); 1354 #else 1355 // Keep the first slot. 1356 __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot); 1357 remove_arg_slots(_masm, -stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch); 1358 value = Address(O0_argslot, 0); 1359 vmarg = value; 1360 #endif 1361 } 1362 break; 1363 case _adapter_opt_unboxi: 1364 { 1365 vmarg = __ argument_address(O0_argslot, O0_argslot); 1366 // Load the value up from the heap. 1367 __ ld_ptr(vmarg, O1_scratch); 1368 int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT); 1369 #ifdef ASSERT 1370 for (int bt = T_BOOLEAN; bt < T_INT; bt++) { 1371 if (is_subword_type(BasicType(bt))) 1372 assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), ""); 1373 } 1374 #endif 1375 __ null_check(O1_scratch, value_offset); 1376 value = Address(O1_scratch, value_offset); 1377 #ifdef _BIG_ENDIAN 1378 // Values stored in objects are packed. 1379 value_left_justified = true; 1380 #endif 1381 } 1382 break; 1383 default: 1384 ShouldNotReachHere(); 1385 } 1386 1387 // This check is required on _BIG_ENDIAN 1388 Register G5_vminfo = G5_scratch; 1389 __ ldsw(G3_amh_conversion, G5_vminfo); 1390 assert(CONV_VMINFO_SHIFT == 0, "preshifted"); 1391 1392 // Original 32-bit vmdata word must be of this form: 1393 // | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 | 1394 __ lduw(value, O1_scratch); 1395 if (!value_left_justified) 1396 __ sll(O1_scratch, G5_vminfo, O1_scratch); 1397 Label zero_extend, done; 1398 __ btst(CONV_VMINFO_SIGN_FLAG, G5_vminfo); 1399 __ br(Assembler::zero, false, Assembler::pn, zero_extend); 1400 __ delayed()->nop(); 1401 1402 // this path is taken for int->byte, int->short 1403 __ sra(O1_scratch, G5_vminfo, O1_scratch); 1404 __ ba_short(done); 1405 1406 __ bind(zero_extend); 1407 // this is taken for int->char 1408 __ srl(O1_scratch, G5_vminfo, O1_scratch); 1409 1410 __ bind(done); 1411 __ st(O1_scratch, vmarg); 1412 1413 // Get the new MH: 1414 __ load_heap_oop(G3_mh_vmtarget, G3_method_handle); 1415 __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); 1416 } 1417 break; 1418 1419 case _adapter_opt_i2l: // optimized subcase of adapt_prim_to_prim 1420 case _adapter_opt_unboxl: // optimized subcase of adapt_ref_to_prim 1421 { 1422 // Perform an in-place int-to-long or ref-to-long conversion. 1423 load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot); 1424 1425 // On big-endian machine we duplicate the slot and store the MSW 1426 // in the first slot. 1427 __ add(__ argument_address(O0_argslot, O0_argslot, 1), O0_argslot); 1428 1429 insert_arg_slots(_masm, stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch); 1430 1431 Address arg_lsw(O0_argslot, 0); 1432 Address arg_msw(O0_argslot, -Interpreter::stackElementSize); 1433 1434 switch (ek) { 1435 case _adapter_opt_i2l: 1436 { 1437 #ifdef _LP64 1438 __ ldsw(arg_lsw, O2_scratch); // Load LSW sign-extended 1439 #else 1440 __ ldsw(arg_lsw, O3_scratch); // Load LSW sign-extended 1441 __ srlx(O3_scratch, BitsPerInt, O2_scratch); // Move MSW value to lower 32-bits for std 1442 #endif 1443 __ st_long(O2_scratch, arg_msw); // Uses O2/O3 on !_LP64 1444 } 1445 break; 1446 case _adapter_opt_unboxl: 1447 { 1448 // Load the value up from the heap. 1449 __ ld_ptr(arg_lsw, O1_scratch); 1450 int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG); 1451 assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), ""); 1452 __ null_check(O1_scratch, value_offset); 1453 __ ld_long(Address(O1_scratch, value_offset), O2_scratch); // Uses O2/O3 on !_LP64 1454 __ st_long(O2_scratch, arg_msw); 1455 } 1456 break; 1457 default: 1458 ShouldNotReachHere(); 1459 } 1460 1461 __ load_heap_oop(G3_mh_vmtarget, G3_method_handle); 1462 __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); 1463 } 1464 break; 1465 1466 case _adapter_opt_f2d: // optimized subcase of adapt_prim_to_prim 1467 case _adapter_opt_d2f: // optimized subcase of adapt_prim_to_prim 1468 { 1469 // perform an in-place floating primitive conversion 1470 __ unimplemented(entry_name(ek)); 1471 } 1472 break; 1473 1474 case _adapter_prim_to_ref: 1475 __ unimplemented(entry_name(ek)); // %%% FIXME: NYI 1476 break; 1477 1478 case _adapter_swap_args: 1479 case _adapter_rot_args: 1480 // handled completely by optimized cases 1481 __ stop("init_AdapterMethodHandle should not issue this"); 1482 break; 1483 1484 case _adapter_opt_swap_1: 1485 case _adapter_opt_swap_2: 1486 case _adapter_opt_rot_1_up: 1487 case _adapter_opt_rot_1_down: 1488 case _adapter_opt_rot_2_up: 1489 case _adapter_opt_rot_2_down: 1490 { 1491 int swap_slots = ek_adapter_opt_swap_slots(ek); 1492 int rotate = ek_adapter_opt_swap_mode(ek); 1493 1494 // 'argslot' is the position of the first argument to swap. 1495 load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot); 1496 __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot); 1497 if (VerifyMethodHandles) 1498 verify_argslot(_masm, O0_argslot, O2_scratch, "swap point must fall within current frame"); 1499 1500 // 'vminfo' is the second. 1501 Register O1_destslot = O1_scratch; 1502 load_conversion_vminfo(_masm, G3_amh_conversion, O1_destslot); 1503 __ add(__ argument_address(O1_destslot, O1_destslot), O1_destslot); 1504 if (VerifyMethodHandles) 1505 verify_argslot(_masm, O1_destslot, O2_scratch, "swap point must fall within current frame"); 1506 1507 assert(Interpreter::stackElementSize == wordSize, "else rethink use of wordSize here"); 1508 if (!rotate) { 1509 // simple swap 1510 for (int i = 0; i < swap_slots; i++) { 1511 __ ld_ptr( Address(O0_argslot, i * wordSize), O2_scratch); 1512 __ ld_ptr( Address(O1_destslot, i * wordSize), O3_scratch); 1513 __ st_ptr(O3_scratch, Address(O0_argslot, i * wordSize)); 1514 __ st_ptr(O2_scratch, Address(O1_destslot, i * wordSize)); 1515 } 1516 } else { 1517 // A rotate is actually pair of moves, with an "odd slot" (or pair) 1518 // changing place with a series of other slots. 1519 // First, push the "odd slot", which is going to get overwritten 1520 switch (swap_slots) { 1521 case 2 : __ ld_ptr(Address(O0_argslot, 1 * wordSize), O4_scratch); // fall-thru 1522 case 1 : __ ld_ptr(Address(O0_argslot, 0 * wordSize), O3_scratch); break; 1523 default: ShouldNotReachHere(); 1524 } 1525 if (rotate > 0) { 1526 // Here is rotate > 0: 1527 // (low mem) (high mem) 1528 // | dest: more_slots... | arg: odd_slot :arg+1 | 1529 // => 1530 // | dest: odd_slot | dest+1: more_slots... :arg+1 | 1531 // work argslot down to destslot, copying contiguous data upwards 1532 // pseudo-code: 1533 // argslot = src_addr - swap_bytes 1534 // destslot = dest_addr 1535 // while (argslot >= destslot) *(argslot + swap_bytes) = *(argslot + 0), argslot--; 1536 move_arg_slots_up(_masm, 1537 O1_destslot, 1538 Address(O0_argslot, 0), 1539 swap_slots, 1540 O0_argslot, O2_scratch); 1541 } else { 1542 // Here is the other direction, rotate < 0: 1543 // (low mem) (high mem) 1544 // | arg: odd_slot | arg+1: more_slots... :dest+1 | 1545 // => 1546 // | arg: more_slots... | dest: odd_slot :dest+1 | 1547 // work argslot up to destslot, copying contiguous data downwards 1548 // pseudo-code: 1549 // argslot = src_addr + swap_bytes 1550 // destslot = dest_addr 1551 // while (argslot <= destslot) *(argslot - swap_bytes) = *(argslot + 0), argslot++; 1552 // dest_slot denotes an exclusive upper limit 1553 int limit_bias = OP_ROT_ARGS_DOWN_LIMIT_BIAS; 1554 if (limit_bias != 0) 1555 __ add(O1_destslot, - limit_bias * wordSize, O1_destslot); 1556 move_arg_slots_down(_masm, 1557 Address(O0_argslot, swap_slots * wordSize), 1558 O1_destslot, 1559 -swap_slots, 1560 O0_argslot, O2_scratch); 1561 1562 __ sub(O1_destslot, swap_slots * wordSize, O1_destslot); 1563 } 1564 // pop the original first chunk into the destination slot, now free 1565 switch (swap_slots) { 1566 case 2 : __ st_ptr(O4_scratch, Address(O1_destslot, 1 * wordSize)); // fall-thru 1567 case 1 : __ st_ptr(O3_scratch, Address(O1_destslot, 0 * wordSize)); break; 1568 default: ShouldNotReachHere(); 1569 } 1570 } 1571 1572 __ load_heap_oop(G3_mh_vmtarget, G3_method_handle); 1573 __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); 1574 } 1575 break; 1576 1577 case _adapter_dup_args: 1578 { 1579 // 'argslot' is the position of the first argument to duplicate. 1580 load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot); 1581 __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot); 1582 1583 // 'stack_move' is negative number of words to duplicate. 1584 Register O1_stack_move = O1_scratch; 1585 load_stack_move(_masm, G3_amh_conversion, O1_stack_move); 1586 1587 if (VerifyMethodHandles) { 1588 verify_argslots(_masm, O1_stack_move, O0_argslot, O2_scratch, O3_scratch, true, 1589 "copied argument(s) must fall within current frame"); 1590 } 1591 1592 // insert location is always the bottom of the argument list: 1593 __ neg(O1_stack_move); 1594 push_arg_slots(_masm, O0_argslot, O1_stack_move, O2_scratch, O3_scratch); 1595 1596 __ load_heap_oop(G3_mh_vmtarget, G3_method_handle); 1597 __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); 1598 } 1599 break; 1600 1601 case _adapter_drop_args: 1602 { 1603 // 'argslot' is the position of the first argument to nuke. 1604 load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot); 1605 __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot); 1606 1607 // 'stack_move' is number of words to drop. 1608 Register O1_stack_move = O1_scratch; 1609 load_stack_move(_masm, G3_amh_conversion, O1_stack_move); 1610 1611 remove_arg_slots(_masm, O1_stack_move, O0_argslot, O2_scratch, O3_scratch, O4_scratch); 1612 1613 __ load_heap_oop(G3_mh_vmtarget, G3_method_handle); 1614 __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); 1615 } 1616 break; 1617 1618 case _adapter_collect_args: 1619 case _adapter_fold_args: 1620 case _adapter_spread_args: 1621 // Handled completely by optimized cases. 1622 __ stop("init_AdapterMethodHandle should not issue this"); 1623 break; 1624 1625 case _adapter_opt_collect_ref: 1626 case _adapter_opt_collect_int: 1627 case _adapter_opt_collect_long: 1628 case _adapter_opt_collect_float: 1629 case _adapter_opt_collect_double: 1630 case _adapter_opt_collect_void: 1631 case _adapter_opt_collect_0_ref: 1632 case _adapter_opt_collect_1_ref: 1633 case _adapter_opt_collect_2_ref: 1634 case _adapter_opt_collect_3_ref: 1635 case _adapter_opt_collect_4_ref: 1636 case _adapter_opt_collect_5_ref: 1637 case _adapter_opt_filter_S0_ref: 1638 case _adapter_opt_filter_S1_ref: 1639 case _adapter_opt_filter_S2_ref: 1640 case _adapter_opt_filter_S3_ref: 1641 case _adapter_opt_filter_S4_ref: 1642 case _adapter_opt_filter_S5_ref: 1643 case _adapter_opt_collect_2_S0_ref: 1644 case _adapter_opt_collect_2_S1_ref: 1645 case _adapter_opt_collect_2_S2_ref: 1646 case _adapter_opt_collect_2_S3_ref: 1647 case _adapter_opt_collect_2_S4_ref: 1648 case _adapter_opt_collect_2_S5_ref: 1649 case _adapter_opt_fold_ref: 1650 case _adapter_opt_fold_int: 1651 case _adapter_opt_fold_long: 1652 case _adapter_opt_fold_float: 1653 case _adapter_opt_fold_double: 1654 case _adapter_opt_fold_void: 1655 case _adapter_opt_fold_1_ref: 1656 case _adapter_opt_fold_2_ref: 1657 case _adapter_opt_fold_3_ref: 1658 case _adapter_opt_fold_4_ref: 1659 case _adapter_opt_fold_5_ref: 1660 { 1661 // Given a fresh incoming stack frame, build a new ricochet frame. 1662 // On entry, TOS points at a return PC, and FP is the callers frame ptr. 1663 // RSI/R13 has the caller's exact stack pointer, which we must also preserve. 1664 // RCX contains an AdapterMethodHandle of the indicated kind. 1665 1666 // Relevant AMH fields: 1667 // amh.vmargslot: 1668 // points to the trailing edge of the arguments 1669 // to filter, collect, or fold. For a boxing operation, 1670 // it points just after the single primitive value. 1671 // amh.argument: 1672 // recursively called MH, on |collect| arguments 1673 // amh.vmtarget: 1674 // final destination MH, on return value, etc. 1675 // amh.conversion.dest: 1676 // tells what is the type of the return value 1677 // (not needed here, since dest is also derived from ek) 1678 // amh.conversion.vminfo: 1679 // points to the trailing edge of the return value 1680 // when the vmtarget is to be called; this is 1681 // equal to vmargslot + (retained ? |collect| : 0) 1682 1683 // Pass 0 or more argument slots to the recursive target. 1684 int collect_count_constant = ek_adapter_opt_collect_count(ek); 1685 1686 // The collected arguments are copied from the saved argument list: 1687 int collect_slot_constant = ek_adapter_opt_collect_slot(ek); 1688 1689 assert(ek_orig == _adapter_collect_args || 1690 ek_orig == _adapter_fold_args, ""); 1691 bool retain_original_args = (ek_orig == _adapter_fold_args); 1692 1693 // The return value is replaced (or inserted) at the 'vminfo' argslot. 1694 // Sometimes we can compute this statically. 1695 int dest_slot_constant = -1; 1696 if (!retain_original_args) 1697 dest_slot_constant = collect_slot_constant; 1698 else if (collect_slot_constant >= 0 && collect_count_constant >= 0) 1699 // We are preserving all the arguments, and the return value is prepended, 1700 // so the return slot is to the left (above) the |collect| sequence. 1701 dest_slot_constant = collect_slot_constant + collect_count_constant; 1702 1703 // Replace all those slots by the result of the recursive call. 1704 // The result type can be one of ref, int, long, float, double, void. 1705 // In the case of void, nothing is pushed on the stack after return. 1706 BasicType dest = ek_adapter_opt_collect_type(ek); 1707 assert(dest == type2wfield[dest], "dest is a stack slot type"); 1708 int dest_count = type2size[dest]; 1709 assert(dest_count == 1 || dest_count == 2 || (dest_count == 0 && dest == T_VOID), "dest has a size"); 1710 1711 // Choose a return continuation. 1712 EntryKind ek_ret = _adapter_opt_return_any; 1713 if (dest != T_CONFLICT && OptimizeMethodHandles) { 1714 switch (dest) { 1715 case T_INT : ek_ret = _adapter_opt_return_int; break; 1716 case T_LONG : ek_ret = _adapter_opt_return_long; break; 1717 case T_FLOAT : ek_ret = _adapter_opt_return_float; break; 1718 case T_DOUBLE : ek_ret = _adapter_opt_return_double; break; 1719 case T_OBJECT : ek_ret = _adapter_opt_return_ref; break; 1720 case T_VOID : ek_ret = _adapter_opt_return_void; break; 1721 default : ShouldNotReachHere(); 1722 } 1723 if (dest == T_OBJECT && dest_slot_constant >= 0) { 1724 EntryKind ek_try = EntryKind(_adapter_opt_return_S0_ref + dest_slot_constant); 1725 if (ek_try <= _adapter_opt_return_LAST && 1726 ek_adapter_opt_return_slot(ek_try) == dest_slot_constant) { 1727 ek_ret = ek_try; 1728 } 1729 } 1730 assert(ek_adapter_opt_return_type(ek_ret) == dest, ""); 1731 } 1732 1733 // Already pushed: ... keep1 | collect | keep2 | 1734 1735 // Push a few extra argument words, if we need them to store the return value. 1736 { 1737 int extra_slots = 0; 1738 if (retain_original_args) { 1739 extra_slots = dest_count; 1740 } else if (collect_count_constant == -1) { 1741 extra_slots = dest_count; // collect_count might be zero; be generous 1742 } else if (dest_count > collect_count_constant) { 1743 extra_slots = (dest_count - collect_count_constant); 1744 } else { 1745 // else we know we have enough dead space in |collect| to repurpose for return values 1746 } 1747 if (extra_slots != 0) { 1748 __ sub(SP, round_to(extra_slots, 2) * Interpreter::stackElementSize, SP); 1749 } 1750 } 1751 1752 // Set up Ricochet Frame. 1753 __ mov(SP, O5_savedSP); // record SP for the callee 1754 1755 // One extra (empty) slot for outgoing target MH (see Gargs computation below). 1756 __ save_frame(2); // Note: we need to add 2 slots since frame::memory_parameter_word_sp_offset is 23. 1757 1758 // Note: Gargs is live throughout the following, until we make our recursive call. 1759 // And the RF saves a copy in L4_saved_args_base. 1760 1761 RicochetFrame::enter_ricochet_frame(_masm, G3_method_handle, Gargs, 1762 entry(ek_ret)->from_interpreted_entry()); 1763 1764 // Compute argument base: 1765 // Set up Gargs for current frame, extra (empty) slot is for outgoing target MH (space reserved by save_frame above). 1766 __ add(FP, STACK_BIAS - (1 * Interpreter::stackElementSize), Gargs); 1767 1768 // Now pushed: ... keep1 | collect | keep2 | extra | [RF] 1769 1770 #ifdef ASSERT 1771 if (VerifyMethodHandles && dest != T_CONFLICT) { 1772 BLOCK_COMMENT("verify AMH.conv.dest {"); 1773 extract_conversion_dest_type(_masm, RicochetFrame::L5_conversion, O1_scratch); 1774 Label L_dest_ok; 1775 __ cmp(O1_scratch, (int) dest); 1776 __ br(Assembler::equal, false, Assembler::pt, L_dest_ok); 1777 __ delayed()->nop(); 1778 if (dest == T_INT) { 1779 for (int bt = T_BOOLEAN; bt < T_INT; bt++) { 1780 if (is_subword_type(BasicType(bt))) { 1781 __ cmp(O1_scratch, (int) bt); 1782 __ br(Assembler::equal, false, Assembler::pt, L_dest_ok); 1783 __ delayed()->nop(); 1784 } 1785 } 1786 } 1787 __ stop("bad dest in AMH.conv"); 1788 __ BIND(L_dest_ok); 1789 BLOCK_COMMENT("} verify AMH.conv.dest"); 1790 } 1791 #endif //ASSERT 1792 1793 // Find out where the original copy of the recursive argument sequence begins. 1794 Register O0_coll = O0_scratch; 1795 { 1796 RegisterOrConstant collect_slot = collect_slot_constant; 1797 if (collect_slot_constant == -1) { 1798 load_vmargslot(_masm, G3_amh_vmargslot, O1_scratch); 1799 collect_slot = O1_scratch; 1800 } 1801 // collect_slot might be 0, but we need the move anyway. 1802 __ add(RicochetFrame::L4_saved_args_base, __ argument_offset(collect_slot, collect_slot.register_or_noreg()), O0_coll); 1803 // O0_coll now points at the trailing edge of |collect| and leading edge of |keep2| 1804 } 1805 1806 // Replace the old AMH with the recursive MH. (No going back now.) 1807 // In the case of a boxing call, the recursive call is to a 'boxer' method, 1808 // such as Integer.valueOf or Long.valueOf. In the case of a filter 1809 // or collect call, it will take one or more arguments, transform them, 1810 // and return some result, to store back into argument_base[vminfo]. 1811 __ load_heap_oop(G3_amh_argument, G3_method_handle); 1812 if (VerifyMethodHandles) verify_method_handle(_masm, G3_method_handle, O1_scratch, O2_scratch); 1813 1814 // Calculate |collect|, the number of arguments we are collecting. 1815 Register O1_collect_count = O1_scratch; 1816 RegisterOrConstant collect_count; 1817 if (collect_count_constant < 0) { 1818 __ load_method_handle_vmslots(O1_collect_count, G3_method_handle, O2_scratch); 1819 collect_count = O1_collect_count; 1820 } else { 1821 collect_count = collect_count_constant; 1822 #ifdef ASSERT 1823 if (VerifyMethodHandles) { 1824 BLOCK_COMMENT("verify collect_count_constant {"); 1825 __ load_method_handle_vmslots(O3_scratch, G3_method_handle, O2_scratch); 1826 Label L_count_ok; 1827 __ cmp_and_br_short(O3_scratch, collect_count_constant, Assembler::equal, Assembler::pt, L_count_ok); 1828 __ stop("bad vminfo in AMH.conv"); 1829 __ BIND(L_count_ok); 1830 BLOCK_COMMENT("} verify collect_count_constant"); 1831 } 1832 #endif //ASSERT 1833 } 1834 1835 // copy |collect| slots directly to TOS: 1836 push_arg_slots(_masm, O0_coll, collect_count, O2_scratch, O3_scratch); 1837 // Now pushed: ... keep1 | collect | keep2 | RF... | collect | 1838 // O0_coll still points at the trailing edge of |collect| and leading edge of |keep2| 1839 1840 // If necessary, adjust the saved arguments to make room for the eventual return value. 1841 // Normal adjustment: ... keep1 | +dest+ | -collect- | keep2 | RF... | collect | 1842 // If retaining args: ... keep1 | +dest+ | collect | keep2 | RF... | collect | 1843 // In the non-retaining case, this might move keep2 either up or down. 1844 // We don't have to copy the whole | RF... collect | complex, 1845 // but we must adjust RF.saved_args_base. 1846 // Also, from now on, we will forget about the original copy of |collect|. 1847 // If we are retaining it, we will treat it as part of |keep2|. 1848 // For clarity we will define |keep3| = |collect|keep2| or |keep2|. 1849 1850 BLOCK_COMMENT("adjust trailing arguments {"); 1851 // Compare the sizes of |+dest+| and |-collect-|, which are opposed opening and closing movements. 1852 int open_count = dest_count; 1853 RegisterOrConstant close_count = collect_count_constant; 1854 Register O1_close_count = O1_collect_count; 1855 if (retain_original_args) { 1856 close_count = constant(0); 1857 } else if (collect_count_constant == -1) { 1858 close_count = O1_collect_count; 1859 } 1860 1861 // How many slots need moving? This is simply dest_slot (0 => no |keep3|). 1862 RegisterOrConstant keep3_count; 1863 Register O2_keep3_count = O2_scratch; 1864 if (dest_slot_constant < 0) { 1865 extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O2_keep3_count); 1866 keep3_count = O2_keep3_count; 1867 } else { 1868 keep3_count = dest_slot_constant; 1869 #ifdef ASSERT 1870 if (VerifyMethodHandles && dest_slot_constant < 0) { 1871 BLOCK_COMMENT("verify dest_slot_constant {"); 1872 extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O3_scratch); 1873 Label L_vminfo_ok; 1874 __ cmp_and_br_short(O3_scratch, dest_slot_constant, Assembler::equal, Assembler::pt, L_vminfo_ok); 1875 __ stop("bad vminfo in AMH.conv"); 1876 __ BIND(L_vminfo_ok); 1877 BLOCK_COMMENT("} verify dest_slot_constant"); 1878 } 1879 #endif //ASSERT 1880 } 1881 1882 // tasks remaining: 1883 bool move_keep3 = (!keep3_count.is_constant() || keep3_count.as_constant() != 0); 1884 bool stomp_dest = (NOT_DEBUG(dest == T_OBJECT) DEBUG_ONLY(dest_count != 0)); 1885 bool fix_arg_base = (!close_count.is_constant() || open_count != close_count.as_constant()); 1886 1887 // Old and new argument locations (based at slot 0). 1888 // Net shift (&new_argv - &old_argv) is (close_count - open_count). 1889 bool zero_open_count = (open_count == 0); // remember this bit of info 1890 if (move_keep3 && fix_arg_base) { 1891 // It will be easier to have everything in one register: 1892 if (close_count.is_register()) { 1893 // Deduct open_count from close_count register to get a clean +/- value. 1894 __ sub(close_count.as_register(), open_count, close_count.as_register()); 1895 } else { 1896 close_count = close_count.as_constant() - open_count; 1897 } 1898 open_count = 0; 1899 } 1900 Register L4_old_argv = RicochetFrame::L4_saved_args_base; 1901 Register O3_new_argv = O3_scratch; 1902 if (fix_arg_base) { 1903 __ add(L4_old_argv, __ argument_offset(close_count, O4_scratch), O3_new_argv, 1904 -(open_count * Interpreter::stackElementSize)); 1905 } 1906 1907 // First decide if any actual data are to be moved. 1908 // We can skip if (a) |keep3| is empty, or (b) the argument list size didn't change. 1909 // (As it happens, all movements involve an argument list size change.) 1910 1911 // If there are variable parameters, use dynamic checks to skip around the whole mess. 1912 Label L_done; 1913 if (keep3_count.is_register()) { 1914 __ cmp_and_br_short(keep3_count.as_register(), 0, Assembler::equal, Assembler::pn, L_done); 1915 } 1916 if (close_count.is_register()) { 1917 __ cmp_and_br_short(close_count.as_register(), open_count, Assembler::equal, Assembler::pn, L_done); 1918 } 1919 1920 if (move_keep3 && fix_arg_base) { 1921 bool emit_move_down = false, emit_move_up = false, emit_guard = false; 1922 if (!close_count.is_constant()) { 1923 emit_move_down = emit_guard = !zero_open_count; 1924 emit_move_up = true; 1925 } else if (open_count != close_count.as_constant()) { 1926 emit_move_down = (open_count > close_count.as_constant()); 1927 emit_move_up = !emit_move_down; 1928 } 1929 Label L_move_up; 1930 if (emit_guard) { 1931 __ cmp(close_count.as_register(), open_count); 1932 __ br(Assembler::greater, false, Assembler::pn, L_move_up); 1933 __ delayed()->nop(); 1934 } 1935 1936 if (emit_move_down) { 1937 // Move arguments down if |+dest+| > |-collect-| 1938 // (This is rare, except when arguments are retained.) 1939 // This opens space for the return value. 1940 if (keep3_count.is_constant()) { 1941 for (int i = 0; i < keep3_count.as_constant(); i++) { 1942 __ ld_ptr( Address(L4_old_argv, i * Interpreter::stackElementSize), O4_scratch); 1943 __ st_ptr(O4_scratch, Address(O3_new_argv, i * Interpreter::stackElementSize) ); 1944 } 1945 } else { 1946 // Live: O1_close_count, O2_keep3_count, O3_new_argv 1947 Register argv_top = O0_scratch; 1948 __ add(L4_old_argv, __ argument_offset(keep3_count, O4_scratch), argv_top); 1949 move_arg_slots_down(_masm, 1950 Address(L4_old_argv, 0), // beginning of old argv 1951 argv_top, // end of old argv 1952 close_count, // distance to move down (must be negative) 1953 O4_scratch, G5_scratch); 1954 } 1955 } 1956 1957 if (emit_guard) { 1958 __ ba_short(L_done); // assumes emit_move_up is true also 1959 __ BIND(L_move_up); 1960 } 1961 1962 if (emit_move_up) { 1963 // Move arguments up if |+dest+| < |-collect-| 1964 // (This is usual, except when |keep3| is empty.) 1965 // This closes up the space occupied by the now-deleted collect values. 1966 if (keep3_count.is_constant()) { 1967 for (int i = keep3_count.as_constant() - 1; i >= 0; i--) { 1968 __ ld_ptr( Address(L4_old_argv, i * Interpreter::stackElementSize), O4_scratch); 1969 __ st_ptr(O4_scratch, Address(O3_new_argv, i * Interpreter::stackElementSize) ); 1970 } 1971 } else { 1972 Address argv_top(L4_old_argv, __ argument_offset(keep3_count, O4_scratch)); 1973 // Live: O1_close_count, O2_keep3_count, O3_new_argv 1974 move_arg_slots_up(_masm, 1975 L4_old_argv, // beginning of old argv 1976 argv_top, // end of old argv 1977 close_count, // distance to move up (must be positive) 1978 O4_scratch, G5_scratch); 1979 } 1980 } 1981 } 1982 __ BIND(L_done); 1983 1984 if (fix_arg_base) { 1985 // adjust RF.saved_args_base 1986 __ mov(O3_new_argv, RicochetFrame::L4_saved_args_base); 1987 } 1988 1989 if (stomp_dest) { 1990 // Stomp the return slot, so it doesn't hold garbage. 1991 // This isn't strictly necessary, but it may help detect bugs. 1992 __ set(RicochetFrame::RETURN_VALUE_PLACEHOLDER, O4_scratch); 1993 __ st_ptr(O4_scratch, Address(RicochetFrame::L4_saved_args_base, 1994 __ argument_offset(keep3_count, keep3_count.register_or_noreg()))); // uses O2_keep3_count 1995 } 1996 BLOCK_COMMENT("} adjust trailing arguments"); 1997 1998 BLOCK_COMMENT("do_recursive_call"); 1999 __ mov(SP, O5_savedSP); // record SP for the callee 2000 __ set(ExternalAddress(SharedRuntime::ricochet_blob()->bounce_addr() - frame::pc_return_offset), O7); 2001 // The globally unique bounce address has two purposes: 2002 // 1. It helps the JVM recognize this frame (frame::is_ricochet_frame). 2003 // 2. When returned to, it cuts back the stack and redirects control flow 2004 // to the return handler. 2005 // The return handler will further cut back the stack when it takes 2006 // down the RF. Perhaps there is a way to streamline this further. 2007 2008 // State during recursive call: 2009 // ... keep1 | dest | dest=42 | keep3 | RF... | collect | bounce_pc | 2010 __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); 2011 } 2012 break; 2013 2014 case _adapter_opt_return_ref: 2015 case _adapter_opt_return_int: 2016 case _adapter_opt_return_long: 2017 case _adapter_opt_return_float: 2018 case _adapter_opt_return_double: 2019 case _adapter_opt_return_void: 2020 case _adapter_opt_return_S0_ref: 2021 case _adapter_opt_return_S1_ref: 2022 case _adapter_opt_return_S2_ref: 2023 case _adapter_opt_return_S3_ref: 2024 case _adapter_opt_return_S4_ref: 2025 case _adapter_opt_return_S5_ref: 2026 { 2027 BasicType dest_type_constant = ek_adapter_opt_return_type(ek); 2028 int dest_slot_constant = ek_adapter_opt_return_slot(ek); 2029 2030 if (VerifyMethodHandles) RicochetFrame::verify_clean(_masm); 2031 2032 if (dest_slot_constant == -1) { 2033 // The current stub is a general handler for this dest_type. 2034 // It can be called from _adapter_opt_return_any below. 2035 // Stash the address in a little table. 2036 assert((dest_type_constant & CONV_TYPE_MASK) == dest_type_constant, "oob"); 2037 address return_handler = __ pc(); 2038 _adapter_return_handlers[dest_type_constant] = return_handler; 2039 if (dest_type_constant == T_INT) { 2040 // do the subword types too 2041 for (int bt = T_BOOLEAN; bt < T_INT; bt++) { 2042 if (is_subword_type(BasicType(bt)) && 2043 _adapter_return_handlers[bt] == NULL) { 2044 _adapter_return_handlers[bt] = return_handler; 2045 } 2046 } 2047 } 2048 } 2049 2050 // On entry to this continuation handler, make Gargs live again. 2051 __ mov(RicochetFrame::L4_saved_args_base, Gargs); 2052 2053 Register O7_temp = O7; 2054 Register O5_vminfo = O5; 2055 2056 RegisterOrConstant dest_slot = dest_slot_constant; 2057 if (dest_slot_constant == -1) { 2058 extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O5_vminfo); 2059 dest_slot = O5_vminfo; 2060 } 2061 // Store the result back into the argslot. 2062 // This code uses the interpreter calling sequence, in which the return value 2063 // is usually left in the TOS register, as defined by InterpreterMacroAssembler::pop. 2064 // There are certain irregularities with floating point values, which can be seen 2065 // in TemplateInterpreterGenerator::generate_return_entry_for. 2066 move_return_value(_masm, dest_type_constant, __ argument_address(dest_slot, O7_temp)); 2067 2068 RicochetFrame::leave_ricochet_frame(_masm, G3_method_handle, I5_savedSP, I7); 2069 2070 // Load the final target and go. 2071 if (VerifyMethodHandles) verify_method_handle(_masm, G3_method_handle, O0_scratch, O1_scratch); 2072 __ restore(I5_savedSP, G0, SP); 2073 __ jump_to_method_handle_entry(G3_method_handle, O0_scratch); 2074 __ illtrap(0); 2075 } 2076 break; 2077 2078 case _adapter_opt_return_any: 2079 { 2080 Register O7_temp = O7; 2081 Register O5_dest_type = O5; 2082 2083 if (VerifyMethodHandles) RicochetFrame::verify_clean(_masm); 2084 extract_conversion_dest_type(_masm, RicochetFrame::L5_conversion, O5_dest_type); 2085 __ set(ExternalAddress((address) &_adapter_return_handlers[0]), O7_temp); 2086 __ sll_ptr(O5_dest_type, LogBytesPerWord, O5_dest_type); 2087 __ ld_ptr(O7_temp, O5_dest_type, O7_temp); 2088 2089 #ifdef ASSERT 2090 { Label L_ok; 2091 __ br_notnull_short(O7_temp, Assembler::pt, L_ok); 2092 __ stop("bad method handle return"); 2093 __ BIND(L_ok); 2094 } 2095 #endif //ASSERT 2096 __ JMP(O7_temp, 0); 2097 __ delayed()->nop(); 2098 } 2099 break; 2100 2101 case _adapter_opt_spread_0: 2102 case _adapter_opt_spread_1_ref: 2103 case _adapter_opt_spread_2_ref: 2104 case _adapter_opt_spread_3_ref: 2105 case _adapter_opt_spread_4_ref: 2106 case _adapter_opt_spread_5_ref: 2107 case _adapter_opt_spread_ref: 2108 case _adapter_opt_spread_byte: 2109 case _adapter_opt_spread_char: 2110 case _adapter_opt_spread_short: 2111 case _adapter_opt_spread_int: 2112 case _adapter_opt_spread_long: 2113 case _adapter_opt_spread_float: 2114 case _adapter_opt_spread_double: 2115 { 2116 // spread an array out into a group of arguments 2117 int length_constant = ek_adapter_opt_spread_count(ek); 2118 bool length_can_be_zero = (length_constant == 0); 2119 if (length_constant < 0) { 2120 // some adapters with variable length must handle the zero case 2121 if (!OptimizeMethodHandles || 2122 ek_adapter_opt_spread_type(ek) != T_OBJECT) 2123 length_can_be_zero = true; 2124 } 2125 2126 // find the address of the array argument 2127 load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot); 2128 __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot); 2129 2130 // O0_argslot points both to the array and to the first output arg 2131 Address vmarg = Address(O0_argslot, 0); 2132 2133 // Get the array value. 2134 Register O1_array = O1_scratch; 2135 Register O2_array_klass = O2_scratch; 2136 BasicType elem_type = ek_adapter_opt_spread_type(ek); 2137 int elem_slots = type2size[elem_type]; // 1 or 2 2138 int array_slots = 1; // array is always a T_OBJECT 2139 int length_offset = arrayOopDesc::length_offset_in_bytes(); 2140 int elem0_offset = arrayOopDesc::base_offset_in_bytes(elem_type); 2141 __ ld_ptr(vmarg, O1_array); 2142 2143 Label L_array_is_empty, L_insert_arg_space, L_copy_args, L_args_done; 2144 if (length_can_be_zero) { 2145 // handle the null pointer case, if zero is allowed 2146 Label L_skip; 2147 if (length_constant < 0) { 2148 load_conversion_vminfo(_masm, G3_amh_conversion, O3_scratch); 2149 __ cmp_zero_and_br(Assembler::notZero, O3_scratch, L_skip); 2150 __ delayed()->nop(); // to avoid back-to-back cbcond instructions 2151 } 2152 __ br_null_short(O1_array, Assembler::pn, L_array_is_empty); 2153 __ BIND(L_skip); 2154 } 2155 __ null_check(O1_array, oopDesc::klass_offset_in_bytes()); 2156 __ load_klass(O1_array, O2_array_klass); 2157 2158 // Check the array type. 2159 Register O3_klass = O3_scratch; 2160 __ load_heap_oop(G3_amh_argument, O3_klass); // this is a Class object! 2161 load_klass_from_Class(_masm, O3_klass, O4_scratch, G5_scratch); 2162 2163 Label L_ok_array_klass, L_bad_array_klass, L_bad_array_length; 2164 __ check_klass_subtype(O2_array_klass, O3_klass, O4_scratch, G5_scratch, L_ok_array_klass); 2165 // If we get here, the type check failed! 2166 __ ba_short(L_bad_array_klass); 2167 __ BIND(L_ok_array_klass); 2168 2169 // Check length. 2170 if (length_constant >= 0) { 2171 __ ldsw(Address(O1_array, length_offset), O4_scratch); 2172 __ cmp(O4_scratch, length_constant); 2173 } else { 2174 Register O3_vminfo = O3_scratch; 2175 load_conversion_vminfo(_masm, G3_amh_conversion, O3_vminfo); 2176 __ ldsw(Address(O1_array, length_offset), O4_scratch); 2177 __ cmp(O3_vminfo, O4_scratch); 2178 } 2179 __ br(Assembler::notEqual, false, Assembler::pn, L_bad_array_length); 2180 __ delayed()->nop(); 2181 2182 Register O2_argslot_limit = O2_scratch; 2183 2184 // Array length checks out. Now insert any required stack slots. 2185 if (length_constant == -1) { 2186 // Form a pointer to the end of the affected region. 2187 __ add(O0_argslot, Interpreter::stackElementSize, O2_argslot_limit); 2188 // 'stack_move' is negative number of words to insert 2189 // This number already accounts for elem_slots. 2190 Register O3_stack_move = O3_scratch; 2191 load_stack_move(_masm, G3_amh_conversion, O3_stack_move); 2192 __ cmp(O3_stack_move, 0); 2193 assert(stack_move_unit() < 0, "else change this comparison"); 2194 __ br(Assembler::less, false, Assembler::pn, L_insert_arg_space); 2195 __ delayed()->nop(); 2196 __ br(Assembler::equal, false, Assembler::pn, L_copy_args); 2197 __ delayed()->nop(); 2198 // single argument case, with no array movement 2199 __ BIND(L_array_is_empty); 2200 remove_arg_slots(_masm, -stack_move_unit() * array_slots, 2201 O0_argslot, O1_scratch, O2_scratch, O3_scratch); 2202 __ ba_short(L_args_done); // no spreading to do 2203 __ BIND(L_insert_arg_space); 2204 // come here in the usual case, stack_move < 0 (2 or more spread arguments) 2205 // Live: O1_array, O2_argslot_limit, O3_stack_move 2206 insert_arg_slots(_masm, O3_stack_move, 2207 O0_argslot, O4_scratch, G5_scratch, O1_scratch); 2208 // reload from rdx_argslot_limit since rax_argslot is now decremented 2209 __ ld_ptr(Address(O2_argslot_limit, -Interpreter::stackElementSize), O1_array); 2210 } else if (length_constant >= 1) { 2211 int new_slots = (length_constant * elem_slots) - array_slots; 2212 insert_arg_slots(_masm, new_slots * stack_move_unit(), 2213 O0_argslot, O2_scratch, O3_scratch, O4_scratch); 2214 } else if (length_constant == 0) { 2215 __ BIND(L_array_is_empty); 2216 remove_arg_slots(_masm, -stack_move_unit() * array_slots, 2217 O0_argslot, O1_scratch, O2_scratch, O3_scratch); 2218 } else { 2219 ShouldNotReachHere(); 2220 } 2221 2222 // Copy from the array to the new slots. 2223 // Note: Stack change code preserves integrity of O0_argslot pointer. 2224 // So even after slot insertions, O0_argslot still points to first argument. 2225 // Beware: Arguments that are shallow on the stack are deep in the array, 2226 // and vice versa. So a downward-growing stack (the usual) has to be copied 2227 // elementwise in reverse order from the source array. 2228 __ BIND(L_copy_args); 2229 if (length_constant == -1) { 2230 // [O0_argslot, O2_argslot_limit) is the area we are inserting into. 2231 // Array element [0] goes at O0_argslot_limit[-wordSize]. 2232 Register O1_source = O1_array; 2233 __ add(Address(O1_array, elem0_offset), O1_source); 2234 Register O4_fill_ptr = O4_scratch; 2235 __ mov(O2_argslot_limit, O4_fill_ptr); 2236 Label L_loop; 2237 __ BIND(L_loop); 2238 __ add(O4_fill_ptr, -Interpreter::stackElementSize * elem_slots, O4_fill_ptr); 2239 move_typed_arg(_masm, elem_type, true, 2240 Address(O1_source, 0), Address(O4_fill_ptr, 0), 2241 O2_scratch); // must be an even register for !_LP64 long moves (uses O2/O3) 2242 __ add(O1_source, type2aelembytes(elem_type), O1_source); 2243 __ cmp_and_brx_short(O4_fill_ptr, O0_argslot, Assembler::greaterUnsigned, Assembler::pt, L_loop); 2244 } else if (length_constant == 0) { 2245 // nothing to copy 2246 } else { 2247 int elem_offset = elem0_offset; 2248 int slot_offset = length_constant * Interpreter::stackElementSize; 2249 for (int index = 0; index < length_constant; index++) { 2250 slot_offset -= Interpreter::stackElementSize * elem_slots; // fill backward 2251 move_typed_arg(_masm, elem_type, true, 2252 Address(O1_array, elem_offset), Address(O0_argslot, slot_offset), 2253 O2_scratch); // must be an even register for !_LP64 long moves (uses O2/O3) 2254 elem_offset += type2aelembytes(elem_type); 2255 } 2256 } 2257 __ BIND(L_args_done); 2258 2259 // Arguments are spread. Move to next method handle. 2260 __ load_heap_oop(G3_mh_vmtarget, G3_method_handle); 2261 __ jump_to_method_handle_entry(G3_method_handle, O1_scratch); 2262 2263 __ BIND(L_bad_array_klass); 2264 assert(!vmarg.uses(O2_required), "must be different registers"); 2265 __ load_heap_oop(Address(O2_array_klass, java_mirror_offset), O2_required); // required class 2266 __ ld_ptr( vmarg, O1_actual); // bad object 2267 __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch); 2268 __ delayed()->mov(Bytecodes::_aaload, O0_code); // who is complaining? 2269 2270 __ bind(L_bad_array_length); 2271 assert(!vmarg.uses(O2_required), "must be different registers"); 2272 __ mov( G3_method_handle, O2_required); // required class 2273 __ ld_ptr(vmarg, O1_actual); // bad object 2274 __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch); 2275 __ delayed()->mov(Bytecodes::_arraylength, O0_code); // who is complaining? 2276 } 2277 break; 2278 2279 default: 2280 DEBUG_ONLY(tty->print_cr("bad ek=%d (%s)", (int)ek, entry_name(ek))); 2281 ShouldNotReachHere(); 2282 } 2283 BLOCK_COMMENT(err_msg("} Entry %s", entry_name(ek))); 2284 2285 address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry); 2286 __ unimplemented(entry_name(ek)); // %%% FIXME: NYI 2287 2288 init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie)); 2289 }